dc.rights.license | Attribution 4.0 International | * |
dc.contributor.author | Serradilla, Oscar | |
dc.contributor.author | Zugasti, Ekhi | |
dc.contributor.author | Zurutuza, Urko | |
dc.contributor.other | Ramirez de Okariz, Julian | |
dc.contributor.other | Rodríguez, Jon | |
dc.date.accessioned | 2021-09-02T09:14:52Z | |
dc.date.available | 2021-09-02T09:14:52Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2076-3417 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=164497 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/5357 | |
dc.description.abstract | Predictive maintenance (PdM) has the potential to reduce industrial costs by anticipating failures and extending the work life of components. Nowadays, factories are monitoring their assets and most collected data belong to correct working conditions. Thereby, semi-supervised data-driven models are relevant to enable PdM application by learning from assets’ data. However, their main challenges for application in industry are achieving high accuracy on anomaly detection, diagnosis of novel failures, and adaptability to changing environmental and operational conditions (EOC). This article aims to tackle these challenges, experimenting with algorithms in press machine data of a production line. Initially, state-of-the-art and classic data-driven anomaly detection model performance is compared, including 2D autoencoder, null-space, principal component analysis (PCA), one-class support vector machines (OC-SVM), and extreme learning machine (ELM) algorithms. Then, diagnosis tools are developed supported on autoencoder’s latent space feature vector, including clustering and projection algorithms to cluster data of synthetic failure types semi-supervised. In addition, explainable artificial intelligence techniques have enabled to track the autoencoder’s loss with input data to detect anomalous signals. Finally, transfer learning is applied to adapt autoencoders to changing EOC data of the same process. The data-driven techniques used in this work can be adapted to address other industrial use cases, helping stakeholders gain trust and thus promote the adoption of data-driven PdM systems in smart factories. | en |
dc.description.sponsorship | Diputación Foral de Gipuzkoa | es |
dc.description.sponsorship | Comisión Europea | es |
dc.language.iso | eng | en |
dc.publisher | MDPI | en |
dc.rights | © 2021 by the authors. Licensee MDPI | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | fault detection | en |
dc.subject | diagnosis | en |
dc.subject | predictive maintenance | en |
dc.subject | deep learning | en |
dc.subject | autoencoder | en |
dc.subject | Explainable Artificial Intelligence | en |
dc.subject | transfer learning | en |
dc.subject | semi-supervised | en |
dc.subject | press machine | en |
dc.subject | Industry 4.0 | en |
dc.title | Adaptable and Explainable Predictive Maintenance: Semi-Supervised Deep Learning for Anomaly Detection and Diagnosis in Press Machine Data | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | Applied Sciences | en |
local.contributor.group | Análisis de datos y ciberseguridad | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.3390/app11167376 | en |
local.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825030/EU/Digital Reality in Zero Defect Manufacturing/QU4LITY | en |
local.relation.projectID | DFG/Programa de Red Guipuzcoana de Ciencia, Tecnología e Innovación 2020/OF-326-2020/GIP/Hacia una metodologia que guíe a la industria al mantenimiento predictivo y explicativo/MEANER | en |
local.rights.publicationfee | APC | en |
local.rights.publicationfeeamount | 1845 EUR 2000 CHF | en |
local.contributor.otherinstitution | Koniker, S. Coop. | es |
local.source.details | Vol. 11. N. 16. N. artículo 7376, 2021 | en |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | en |