Erregistro soila

dc.contributor.advisorSagardui Mendieta, Goiuria
dc.contributor.advisorTrujillo González, Salvador
dc.contributor.authorDe Carlos, Xabier
dc.date.accessioned2019-05-02T14:04:58Z
dc.date.available2019-05-02T14:04:58Z
dc.date.issued2016
dc.date.submitted2016-06-14
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=126052en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/1188
dc.description.abstractMemory problems of XML Metadata Interchange (XMI) (default persistence in Eclipse Modelling Framework (EMF)) when operating large models, have motivated the appearance of alternative mechanisms for persistence of EMF models. Most recent approaches propose using database back-ends. These approaches provide support for querying models using EMF-based model query languages (Plain EMF, Object Constraint Language (OCL), EMF Query, Epsilon Object Language (EOL), etc.). However, these languages commonly require loading in-memory all the model elements that are involved in the query. In the case of queries that traverse models (most commonly used type of queries) they require to load entire model in-memory. This loading strategy causes memory problems when operated models are large. Most database back-ends provide database-specific query languages that leverage capabilities of the database engine (better performance) and without requiring in-memory load of models for query execution (lower memory footprint). For example, Structured Query Language (SQL) is a query language for relational databases and Cypher is for Neo4J databases. In this dissertation we present MQT-Engine, a framework that supports execution of model query languages but with the e ciency (in terms of memory and performance) of a database-specifoc query language. To achieve this, MQT-Engine provides a two-step query transformation mechanism: forst, queries expressed with a model query language are transformed into a Query Language Independent Model (QLI Model); and then QLI Model is transformed into a database-specifoc query that is executed directly over the database. This mechanism provides extensibility and reusability to the framework, since it facilitates the inclusion of new query languages at both sides of the transformation. A prototype of the framework is provided. It supports transformation of EOL queries into SQL queries that are executed directly over a relational Connected Data Objects (CDO) repository. The prototype has been evaluated with two experimental evaluations. First evaluation is based on the reverse engineering domain. It compares time and memory usage required by MQT-Engine and other query languages (EMF API, OCL and SQL) to execute a set of queries over models persisted with CDO. Second evaluation is based on the railway domain, and compares performance results of MQT-Engine and other query languages (EMF API, OCL, IncQuery, SQL, etc.) for executing a set of queries. Obtained results show that MQT-Engine is able to execute successfully all the evaluated experiments. MQT-Engine is one of the evaluated solutions showing best performance results for first execution of model queries. In the case of query languages executed over CDO repositories, it is the faster solution and the one requiring less memory. For example, for the largest model in the reverse engineering case it is up to 162 times faster than a model query language executed at client-side, and it requires 23 times less memory. Additionally, the query transformation overload is constant and small (less than 2 seconds). These results validate the main goal of this dissertation: to provide a framework that gives to the model engineers the ability for specifying queries in a model query language, and then execute them with a performance and memory footprint similar to that of a persistence-specific query language. However, the framework has a set of limitations: the approach should be optimized when queries are subsequently executed; it only supports nonmodification model traversal queries; and the prototype is specific for EOL queries over CDO repositories with DBStore. Therefore, it is planned to extend the framework and address these limitations in a future version.en
dc.description.abstractLos problemas de memoria de XMI (mecanismo de persistencia por defecto en EMF) cuando se trabaja con modelos grandes, han motivado la aparición de mecanismos de persistencia alternativos para los modelos EMF. Los enfoques más recientes proponen el uso de bases de datos para la persistencia de los modelos. La mayoría de estos enfoques soportan la ejecución de operaciones usando lenguajes de consulta de modelos basados en EMF (EMF API, OCL, EMF Query, EOL, etc.). Sin embargo, este tipo de lenguajes necesitan almacenar en memoria al menos todos los elementos implicados en la consulta (todos los elementos del modelo en las consultas que recorren completamente el modelo consultado). Esta estrategia de carga de la información para hacer las consultas provoca problemas de memoria cuando los modelos son de gran tamaño. La mayoría de las bases de datos tienen lenguajes específicos que aprovechan las capacidades del motor de la base de datos (mayor rapidez) y sin la necesidad de cargar en memoria los modelos (menor uso de memoria). Por ejemplo, SQL es el lenguaje específico para las bases de datos relacionales y Cypher para las bases de datos Neo4J. Este trabajo propone MQT-Engine, un framework que permite ejecutar lenguajes de consulta para modelos con tiempos de ejecución y uso de memoria similares al de un lenguaje específico de base de datos. MQT-Engine realiza una transformación en dos pasos de las consultas: primero transforma las consultas que han sido escritas con un lenguaje de consulta para modelos en un modelo que es independiente del lenguaje (QLI Model); después, el modelo generado se transforma en una consulta equivalente, pero escrita con un lenguaje específico de base de datos. La transformación en dos pasos proporciona extensibilidad y reusabilidad ya que facilita la inclusión de nuevos lenguajes. Se ha implementado un prototipo de MQT-Engine que transforma consultas EOL en SQL y las ejecuta directamente sobre un repositorio CDO. El prototipo se ha evaluado con dos casos de uso. El primero está basado en el dominio de la ingeniería inversa. Se han comparado los tiempos de ejecución y el uso de memoria que necesitan MQT-Engine y otros lenguajes de consulta (EMF API, OCL y SQL) para ejecutar una serie de consultas sobre modelos persistidos en CDO. El segundo caso de uso está basado en el dominio de los ferrocarriles y compara los tiempos de ejecución que necesitan MQT-Engine y otros lenguajes (EMF API, OCL, IncQuery, etc.) para ejecutar varias consultas. Los resultados obtenidos muestran que MQT-Engine es capaz de ejecutar correctamente todos los experimentos y además es una de las soluciones con mejores tiempos para la primera ejecución de las consultas de modelos. MQTEngine es la opción más rápida y que necesita menos memoria entre los lenguajes ejecutados sobre repositorios CDO. Por ejemplo, en el caso del modelo más grande de ingeniería inversa, MQT-Engine es 162 veces más rápido y necesita 23 veces menos memoria que los lenguajes de consulta de modelos ejecutados al lado del cliente. Además, la sobrecarga de la transformación es pequeña y constante (menos de 2 segundos). Estos resultados prueban el objetivo principal de esta tesis: proporcionar un framework que permite a los ingenieros de modelos definir las consultas con un lenguaje de consulta de modelos y además ejecutarlas con una con tiempos de ejecución y uso de memoria similares a los de un lenguaje específico de bases de datos. Sin embargo, la solución tiene una serie de limitaciones: solo soporta consultas que recorren el modelo completamente y sin modificarlo; el prototipo es específico para consultas en EOL y sobre repositorios CDO (relacionales); y habría que optimizar la ejecución de las consultas cuando estas se ejecutan más de una vez. Se ha planeado resolver estas limitaciones en versiones futuras del trabajo.es
dc.format.extent182en
dc.language.isoengen
dc.publisherMondragon Unibertsitatea. Goi Eskola Politeknikoaen
dc.rights© Xabier de Carlos Garcíaen
dc.subjectBases de datoses
dc.subjectInformáticaes
dc.subjectDiseño y componentes de sistemas de informaciónes
dc.subjectODS 17 Alianzas para lograr los objetivoses
dc.titleModel query transformation framework- MQT: from EMF-based model query languages to persistence-spefic query languagesen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
local.contributor.groupIngeniería del software y sistemases
local.description.degreePrograma de Doctorado en Ingeniería Mecánica y Energía Eléctricaes
local.description.responsabilityPresidencia: Oscar Díaz García (EHU-UPV); Vocalía: Daniel Varró (Budapest University of Technology and Economics); Vocalía: Oeystein Haugen (SINTEF); Vocalía: Juan De Lara Jaramillo (Universidad Autónoma de Madrid); Secretaría: Leire Etxeberria Elorza (Mondragon Unibertsitatea)es
local.identifier.doihttps://doi.org/10.48764/k3zr-1d40
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_db06en


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila