Simple record

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorGarayalde Perez, Erik
dc.contributor.authorAizpuru Larrañaga, Iosu
dc.contributor.authorCanales Segade, Jose Maria
dc.contributor.otherSanz Gorrachategui, Iván
dc.contributor.otherBernal Ruiz, Carlos
dc.contributor.otherOyarbide Usabiaga, Estanis
dc.contributor.otherBono Nuez, Antonio
dc.contributor.otherArtal Sevil, Sergio Jesús
dc.date.accessioned2020-05-27T14:11:06Z
dc.date.available2020-05-27T14:11:06Z
dc.date.issued2019
dc.identifier.issn1996-1073en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=153687en
dc.identifier.urihttp://hdl.handle.net/20.500.11984/1667
dc.description.abstractEnergy Storage in photovoltaic installations has increased in popularity in recent years due to the improvement in solar panel technology and energy storage systems. In several places where the grid is not available, in remote isolated rural locations or developing countries, isolated photovoltaic installations are one of the main options to power DC micro-grids. In these scenarios, energy storage elements are mandatory due to the natural day-night cycles and low irradiation periods. Traditionally, lead-acid batteries have been responsible for this task, due to their availability and low cost. However, the intermittent features of the solar irradiance patterns and load demand, generate multiple shallow charge–discharge cycles or high power pulses, which worsen the performance of these batteries. Some Hybrid Energy Storage Systems (HESSs) have been reported in the literature to enhance the lifetime and power capabilities of these storage elements, but they are not intended to overcome the Partial State of Charge (PSoC) issue caused by daily cycles, which has an e ect on the short and mid-term performance of the system. This paper studies the impact of the already proposed HESSs on PSoC operation, establishing the optimal hybrid ratios, and implementing them in a real installation with a satisfactory outcome.en
dc.description.sponsorshipGobierno de Españaes
dc.language.isoengen
dc.publisherMPDIen
dc.rights© 2019 by the authors
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEnergy Storage Systemsen
dc.subjectStandalone Photovoltaic Systemsen
dc.subjectHybrid Energy Storage Systemsen
dc.subjectLiFePO4 batteriesen
dc.subjectLead Acid batteriesen
dc.titlePartial state-of-charge mitigation in standalone photovoltaic hybrid storage systemsen
dc.typeinfo:eu-repo/semantics/articleen
dcterms.accessRightsinfo:eu-repo/semantics/openAccessen
dcterms.sourceEnergiesen
dc.description.versioninfo:eu-repo/semantics/publishedVersionen
local.contributor.groupSistemas de almacenamiento eléctricoes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.3390/en12224393en
local.relation.projectIDGE/Retos-Colaboración del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 RTC-2015-3358-5/ES/Desarrollo de extensores de vida útil de baterías para sistemas autónomos alimentados por placas fotovoltaicas/BATT-EXen
local.rights.publicationfeeAPCen
local.rights.publicationfeeamount1640 €en
local.contributor.otherinstitutionUniversidad de Zaragozaes
local.source.detailsVol. 12. N. 22. Art. 4393. MDPI, 2019eu_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Simple record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International