eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ikusi/Ireki
Manuscript_Crojas.pdf (3.412Mb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
A critical look at efficient parameter estimation methodologies of electrochemical models for Lithium-Ion cells
Egilea
Rojas Garcia, Clara
Oca, Laura
Lopetegi, Iker
IRAOLA, UNAI
Carrasco, Javier
Ikerketa taldea
Almacenamiento de energía
Beste instituzio
CIC energiGUNE
Ikerbasque
Bertsioa
Bertsio argitaratua
Eskubideak
© 2024 Elsevier Ltd.
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/6954
Argitaratzailearen bertsioa
https://doi.org/10.1016/j.est.2023.110384
Non argitaratua
Journal of Energy Storage  Vol. 80. N. art. 110384, 2024
Argitaratzailea
Elsevier
Gako-hitzak
Parameter estimation
Physics-based model (PBM)
Parametrisation
Li-ion battery ... [+]
Parameter estimation
Physics-based model (PBM)
Parametrisation
Li-ion battery
Pseudo-two-dimensional model [-]
Laburpena
Physics-Based Models (PBMs) offer a promising approach to develop advanced battery management systems that rely on information about the internal states of battery cells. The reliability of model pred ... [+]
Physics-Based Models (PBMs) offer a promising approach to develop advanced battery management systems that rely on information about the internal states of battery cells. The reliability of model predictions heavily depends on a proper parametrisation. However, the non-linear model structure, the high number of embedded parameters, and the experimental limitations, make the parametrisation procedure a difficult task. To tackle this issue, a myriad of approaches has been proposed in the research community, including physico-chemical characterisation techniques, non-invasive methodologies, or a combination of invasive- and non-invasive procedures, all aimed at maximising parameter identifiability. While a single solution may not exist, there is a recognised need to establish a systematic framework that can guarantee the correct estimation of model parameters. In this paper, we aim to review the key concepts and major challenges encountered in the field of parameter estimation of PBMs for the modelling of lithium-ion cells. Furthermore, the strengths and weaknesses of the current methodologies will be discussed based on previous attempts. Our analysis will lead to the conclusion that mixed methodologies, which combine invasive and non-invasive techniques, are promising approaches for a full-parametrisation of PBMs as they can maximise the identifiability of parameters. For the mixed methodology implementation, the essential steps that should be included are described: (1) parameter clustering, (2) design of optimal experiments, (3) sensitivity analysis, (4) selection of an optimisation algorithm for parameter fitting, and (5) the validation of the model. These steps must ensure, when possible, the convergence to a realistic parameter set and the model adaptability to multiple scenarios. [-]
Finantzatzailea
Gobierno Vasco
Programa
Elkartek 2021
Zenbakia
KK-2021-00064
Laguntzaren URIa
Sin información
Proiektua
Investigación en modelos materiales y componentes para la futura generación de baterías en movilidad (CICe2021)
Bildumak
  • Artikuluak - Ingeniaritza [735]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace