eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
View/Open
Manuscript_Crojas.pdf (3.412Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
A critical look at efficient parameter estimation methodologies of electrochemical models for Lithium-Ion cells
Author
Rojas Garcia, Clara
Oca, Laura
Lopetegi, Iker
IRAOLA, UNAI
Carrasco, Javier
Research Group
Almacenamiento de energía
Other institutions
CIC energiGUNE
Ikerbasque
Version
Published version
Rights
© 2024 Elsevier Ltd.
Access
Embargoed access
URI
https://hdl.handle.net/20.500.11984/6954
Publisher’s version
https://doi.org/10.1016/j.est.2023.110384
Published at
Journal of Energy Storage  Vol. 80. N. art. 110384, 2024
Publisher
Elsevier
Keywords
Parameter estimation
Physics-based model (PBM)
Parametrisation
Li-ion battery ... [+]
Parameter estimation
Physics-based model (PBM)
Parametrisation
Li-ion battery
Pseudo-two-dimensional model [-]
Abstract
Physics-Based Models (PBMs) offer a promising approach to develop advanced battery management systems that rely on information about the internal states of battery cells. The reliability of model pred ... [+]
Physics-Based Models (PBMs) offer a promising approach to develop advanced battery management systems that rely on information about the internal states of battery cells. The reliability of model predictions heavily depends on a proper parametrisation. However, the non-linear model structure, the high number of embedded parameters, and the experimental limitations, make the parametrisation procedure a difficult task. To tackle this issue, a myriad of approaches has been proposed in the research community, including physico-chemical characterisation techniques, non-invasive methodologies, or a combination of invasive- and non-invasive procedures, all aimed at maximising parameter identifiability. While a single solution may not exist, there is a recognised need to establish a systematic framework that can guarantee the correct estimation of model parameters. In this paper, we aim to review the key concepts and major challenges encountered in the field of parameter estimation of PBMs for the modelling of lithium-ion cells. Furthermore, the strengths and weaknesses of the current methodologies will be discussed based on previous attempts. Our analysis will lead to the conclusion that mixed methodologies, which combine invasive and non-invasive techniques, are promising approaches for a full-parametrisation of PBMs as they can maximise the identifiability of parameters. For the mixed methodology implementation, the essential steps that should be included are described: (1) parameter clustering, (2) design of optimal experiments, (3) sensitivity analysis, (4) selection of an optimisation algorithm for parameter fitting, and (5) the validation of the model. These steps must ensure, when possible, the convergence to a realistic parameter set and the model adaptability to multiple scenarios. [-]
Funder
Gobierno Vasco
Program
Elkartek 2021
Number
KK-2021-00064
Award URI
Sin información
Project
Investigación en modelos materiales y componentes para la futura generación de baterías en movilidad (CICe2021)
Collections
  • Articles - Engineering [735]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace