eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
Deflectometric data segmentation for surface inspection - a fully convolutional neural network approach.pdf (2.304Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Deflectometric data segmentation for surface inspection: a fully convolutional neural network approach
Autor-a
Maestro-Watson, Daniel
Balzategui, Julen
Eciolaza, Luka
Arana-Arexolaleiba, Nestor
Grupo de investigación
Robótica y automatización
Versión
Postprint
Derechos
© 2020 Society of Photo-Optical Instrumentation Engineers
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/6938
Versión del editor
https://doi.org/10.1117/1.JEI.29.4.041007
Publicado en
Journal of Electronic Imaging  Vol. 29. N. 4. N. artículo, 041007, 2020
Editor
SPIE
Palabras clave
Specular surfaces
Defect detection
Deflectometry
Artificial Neural Networks
Resumen
The purpose of this paper is to explore the use of fully convolutional neural networks (FCN) to perform a semantic segmentation of deflectometric recordings for quality control of reflective surfaces. ... [+]
The purpose of this paper is to explore the use of fully convolutional neural networks (FCN) to perform a semantic segmentation of deflectometric recordings for quality control of reflective surfaces. The proposed method relies on a U-net network to identify the location and boundaries of the object and the possible defective areas present on it by performing a pixel-wise classification based on local curvatures and data modulation. Experiments were performed on a real industrial problem using four variations of the architecture. The results demonstrate that the method combining geometric and photometric information enables the identification of a wider variety of shape and texture imperfections, with the resulting segmentations closely correlated with the visual impact of the defects. In addition, several suggestions are presented for near-term industrial utilization. [-]
Financiador
Gobierno Vasco
Gobierno Vasco
Programa
Convocatoria Universidad Empresa 2018-2019
Ikertalde Convocatoria 2019-2021
Número
PUE 2018-06
IT1357-19
URI de la ayuda
Sin información
Sin información
Proyecto
Desarrollo de un sistema de inspección inteligente basado en algoritmos de Deep Learning para células robotizadas flexibles multi-puesto 3D (IDEFIX)
Sistemas Inteligentes para Sistemas Industriales (IKERTALDE 2019-2021)
Colecciones
  • Artículos - Ingeniería [735]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace