eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
View/Open
A_Hybrid_Probabilistic_Battery_Health_Management_Approach_for_Robust_Inspection_Drone_Operations.pdf (4.666Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
A hybrid probabilistic battery health management approach for robust inspection drone operations
Author
Alcibar, Jokin
Aizpurua, Jose I.
Zugasti, Ekhi
Peñagarikano, Oier
Research Group
Análisis de datos y ciberseguridad
Version
Postprint
Rights
© 2025 Elsevier Ltd.
Access
Embargoed access
URI
https://hdl.handle.net/20.500.11984/6919
Publisher’s version
https://doi.org/10.1016/j.engappai.2025.110246
Published at
Engineering Applications of Artificial Intelligence  Vol. 146. N. art. 110246. April, 2025
Publisher
Elsevier
Keywords
Convolutional Neural Networks
Uncertainty quantification
Prognostics and health management
Hybrid health monitoring ... [+]
Convolutional Neural Networks
Uncertainty quantification
Prognostics and health management
Hybrid health monitoring
Robustness [-]
Abstract
Monitoring the health of remote critical infrastructure poses significant challenges due to limited accessibility and harsh operational environments. Inspection drones are ubiquitous assets that enhan ... [+]
Monitoring the health of remote critical infrastructure poses significant challenges due to limited accessibility and harsh operational environments. Inspection drones are ubiquitous assets that enhance the reliability of critical infrastructures through improved accessibility. However, due to the harsh operation environment, it is crucial to monitor their health to ensure successful inspection operations. The battery is a key component that determines the reliability of the inspection drones and, with an appropriate health management approach, contributes to reliable and robust inspections. This paper introduces a novel hybrid probabilistic approach for predicting the end-of-discharge (EOD) voltage of lithium polymer (Li-Po) batteries in inspection drones. The proposed approach integrates Monte Carlo (MC) dropout based Convolutional Neural Networks (CNN) with electrochemistry-based battery discharge model. This integration employs an error-correction configuration that combines electrochemistry-based EOD prediction with probabilistic error correction using CNN with MC dropout. The approach is designed to infer aleatoric and epistemic uncertainty, facilitating robust battery discharge predictions through uncertainty-aware predictions. The proposed approach is empirically evaluated using a dataset comprising EOD voltage measurements under varying load conditions. The dataset, obtained from real inspection drones during offshore wind turbine inspections, underscores the practical applicability of the proposed approach. Comparative analysis with various probabilistic methods, including Quantile Linear Regression, Quantile Regression Forest, and Quantile Gradient Boosting, demonstrates a 14.8% improvement in probabilistic accuracy compared to the best-performing method. Additionally, the estimation of different uncertainties enhances the diagnosis of battery health states, contributing to more reliable inspection operations and highlighting the practical value of the work. [-]
Funder
Gobierno Vasco
Gobierno Vasco
Gobierno Vasco
Program
Elkartek 2024
Ikertalde Convocatoria 2022-2025
Elkartek 2023
Number
KK-2024-00030
IT1676-22
KK-2023-00042
Award URI
Sin información
Sin información
Sin información
Project
Mecatrónica cognitiva para el diseño de las maquinas industriales (MECACOGNIT)
Grupo de sistemas inteligentes para sistemas industriales (IKERTALDE 2022-2025)
Redes eléctricas altamente resilientes: diseño, control y protección de los activos energéticos para garantizar la robustez, flexibilidad y seguridad de suministro (RESINET)
Collections
  • Articles - Engineering [735]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace