Izenburua
MagNet challenge for data-driven power magnetics modelingEgilea (beste erakunde batekoa)
Bertsioa
Postprinta
Eskubideak
© 2024 IEEESarbidea
Sarbide irekiaArgitaratzailearen bertsioa
https://doi.org/10.1109/OJPEL.2024.3469916Non argitaratua
IEEE Open Journal of Power Electronics Argitaratzailea
IEEEGako-hitzak
open source software
Data-driven methods
Machine learning
Artificial Intelligence ... [+]
Data-driven methods
Machine learning
Artificial Intelligence ... [+]
open source software
Data-driven methods
Machine learning
Artificial Intelligence
Power magnetics
Power ferrites
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
ODS 12 Producción y consumo responsables [-]
Data-driven methods
Machine learning
Artificial Intelligence
Power magnetics
Power ferrites
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
ODS 12 Producción y consumo responsables [-]
Gaia (UNESCO Tesauroa)
http://vocabularies.unesco.org/thesaurus/concept3052UNESCO Sailkapena
http://skos.um.es/unesco6/3304Laburpena
This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has ... [+]
This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has (1) advanced the stateof-the-art in power magnetics modeling; (2) set up examples for fostering an open-source and transparent research community; (3) developed useful guidelines and practical rules for conducting data-driven research in power electronics; and (4) provided a fair performance benchmark leading to insights on the most promising future research directions. The competition yielded a collection of publicly disclosed software algorithms and tools designed to capture the distinct loss characteristics of power magnetic materials, which are mostly open-sourced. We have attempted to bridge power electronics domain knowledge with state-of-the-art advancements in artificial intelligence, machine learning, pattern recognition, and signal processing. The MagNet Challenge has greatly improved the accuracy and reduced the size of data-driven power magnetic material models. The models and tools created for various materials were meticulously documented and shared within the broader power electronics community. [-]
Bildumak
Item honek honako baimen-fitxategi hauek dauzka asoziatuta: