eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
Monitorización del estado de la herramienta en mecanizado mediante redes neuronales residuales robustas.pdf (924.9Kb)
Tool condition monitoring in machining using robust residual neural networks.pdf (737.0Kb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Monitorización del estado de la herramienta en mecanizado mediante redes neuronales residuales robustas
Tool condition monitoring in machining using robust residual neural networks
Egilea
Peralta Abadía, José Joaquín
CUESTA ZABALAJAUREGUI, MIKEL
Larrinaga, Felix
Ikerketa taldea
Ingeniería del software y sistemas
Bertsioa
Postprinta
Eskubideak
© 2024 The Authors
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/6641
Argitaratzailearen bertsioa
https://doi.org/10.52152/D11111
Non argitaratua
DYNA  Vol. 99. N. 5. Pp. 493-500. Septiembre, 2024
Argitaratzailea
Dyna
Gako-hitzak
Desgaste de herramienta
aprendizaje profundo
Industria 4.0
Condición de la herramienta ... [+]
Desgaste de herramienta
aprendizaje profundo
Industria 4.0
Condición de la herramienta
resnet
Tool condition monitoring
Machining
Industry 4.0.
Deep learning
resnet
Sensor fusion [-]
Laburpena
La monitorización del estado de la herramienta (TCM) tiene como objetivo mejorar la eficiencia del proceso, la calidad y los costos de mantenimiento de las herramientas mediante la supervisión de vari ... [+]
La monitorización del estado de la herramienta (TCM) tiene como objetivo mejorar la eficiencia del proceso, la calidad y los costos de mantenimiento de las herramientas mediante la supervisión de variables críticas como el desgaste de la herramienta. Este estudio propone una arquitectura de aprendizaje profundo (deep learning, DL) basada en redes neuronales residuales robustas (Robust-ResNet) informadas por el proceso para predecir el desgaste de las herramientas en procesos de fresado utilizando series temporales de señales internas del control numérico computarizado (CNC). La arquitectura Robust-ResNet utiliza conexiones de salto para moverse a través de múltiples capas, evitando los problemas de desvanecimiento de gradiente de otros algoritmos de redes neuronales. Se realizó una evaluación sobre la adhesión de información de proceso como entrada a la arquitectura y un mecanismo de atención entre los saltos para hacer predicciones más robustas. La arquitectura propuesta se entrenó y se puso a punto empleando un conjunto de datos de acceso libre de series temporales de fresado. En este caso concreto se han empleado señales de corriente alterna y continua junto con los valores correspondientes de desgaste de herramientas. Los resultados de este estudio demuestran los beneficios del uso de técnicas de aprendizaje profundo en la predicción del desgaste de la herramienta usando señales internas que proporciona el propio CNC. Se espera que la implementación de la arquitectura propuesta ayude a reducir los costos de mantenimiento, mejorar la calidad del producto y aumentar la eficiencia de producción en los procesos de fabricación mediante fresado. [-]

Tool condition monitoring (TCM) aims to improve process efficiency, quality and tool maintenance costs by monitoring critical variables such as tool wear. This study proposes a deep learning (DL) arch ... [+]
Tool condition monitoring (TCM) aims to improve process efficiency, quality and tool maintenance costs by monitoring critical variables such as tool wear. This study proposes a deep learning (DL) architecture based on process-informed robust residual networks (Robust-ResNet) to predict tool wear in milling processes using time series of internal computer numerical control (CNC) signals. The Robust-ResNet architecture uses skip connections to move through multiple convolutional layers, avoiding the vanishing gradient problem of other neural network algorithms. The study includes an evaluation of the binding of process information as input to the architecture and an attention mechanism between skips to make more robust predictions. The proposed architecture has been trained and optimised using an open access data set of face milling time series. In this particular case, AC and DC signals have been used together with the corresponding tool wear values. The results of this study demonstrate the benefits of using deep learning techniques in the prediction of tool wear using internal signals provided by the CNC itself. The implementation of the proposed architecture is expected to help reduce maintenance costs, improve product quality and increase production efficiency in milling manufacturing processes. [-]
Finantzatzailea
Comisión Europea
Gobierno Vasco
Gobierno Vasco
Programa
H2020
Ikertalde Convocatoria 2022-2023
Ikasiker 2022-2023
Zenbakia
814078
IT1519-22
IT1443-22
Laguntzaren URIa
https://doi.org/10.3030/814078
Sin información
Sin información
Proiektua
Digital Manufacturing and Design Training Network (DiManD)
Ingeniería de Software y Sistemas
Grupo de Mecanizado de Alto Rendimiento
Bildumak
  • Artikuluak - Ingeniaritza [743]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace