Título
Creating a Robust SoC Estimation Algorithm Based on LSTM Units and Trained with Synthetic DataAutor-a (de otra institución)
Otras instituciones
IkerlanVersión
Version publicada
Derechos
© 2023 The AuthorsAcceso
Acceso abiertoVersión del editor
https://doi.org/10.3390/wevj14070197Publicado en
World Electric Vehicle Journal Vol. 14. N. 7. N. art. 197Editor
MDPIPalabras clave
computer intelligence
Li-ion battery
estimation algorithm
ODS 7 Energía asequible y no contaminante ... [+]
Li-ion battery
estimation algorithm
ODS 7 Energía asequible y no contaminante ... [+]
computer intelligence
Li-ion battery
estimation algorithm
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
state of charge
synthetic data [-]
Li-ion battery
estimation algorithm
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
state of charge
synthetic data [-]
Resumen
Creating SoC algorithms for Li-ion batteries based on neural networks requires a large amount of training data, since it is necessary to test the batteries under different conditions so that the algor ... [+]
Creating SoC algorithms for Li-ion batteries based on neural networks requires a large amount of training data, since it is necessary to test the batteries under different conditions so that the algorithm learns the relationship between the different inputs and the output. Obtaining such data through laboratory tests is costly and time consuming; therefore, in this article, a neural network has been trained with data generated synthetically using electrochemical models. These models allow us to obtain relevant data related to different conditions at a minimum cost over a short period of time. By means of the different training rounds carried out using these data, it has been studied how the different hyperparameters affect the behaviour of the algorithm, creating a robust and accurate algorithm. To adapt this approach to new battery references or chemistries, transfer learning techniques can be employed. [-]
Financiador
European CommissionPrograma
H2020Número
963522URI de la ayuda
https://doi.org/10.3030/963522Proyecto
Lightweight Battery System for Extended Range at Improved Safety (LIBERTY)Colecciones
- Artículos - Ingeniería [683]
El ítem tiene asociados los siguientes ficheros de licencia: