Título
Survey on Fully Homomorphic Encryption, Theory, and ApplicationsAutor-a
Autor-a (de otra institución)
Otras instituciones
Technology Innovation Institute (TII), Abu DhabiSandboxAQ
Technische Universität Dresden
Versión
Postprint
Derechos
© 2022 IEEEAcceso
Acceso abiertoVersión del editor
https://doi.org/10.1109/JPROC.2022.3205665Publicado en
Proceedings of the IEEE Vol. 110. N. 10. Pp. 1572-1609. October, 2022Primera página
1572Última página
1609Editor
IEEEPalabras clave
Homomorphic encryption
neural networks
Cloud computing
Public key ... [+]
neural networks
Cloud computing
Public key ... [+]
Homomorphic encryption
neural networks
Cloud computing
Public key
Gaussian distribution
Privacy
Internet of Things [-]
neural networks
Cloud computing
Public key
Gaussian distribution
Privacy
Internet of Things [-]
Resumen
Data privacy concerns are increasing significantly in the context of the Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by nex ... [+]
Data privacy concerns are increasing significantly in the context of the Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by next-generation networks. Homomorphic encryption addresses privacy challenges by enabling multiple operations to be performed on encrypted messages without decryption. This article comprehensively addresses homomorphic encryption from both theoretical and practical perspectives. This article delves into the mathematical foundations required to understand fully homomorphic encryption ( FHE ). It consequently covers design fundamentals and security properties of FHE and describes the main FHE schemes based on various mathematical problems. On a more practical level, this article presents a view on privacy-preserving machine learning using homomorphic encryption and then surveys FHE at length from an engineering angle, covering the potential application of FHE in fog computing and cloud computing services. It also provides a comprehensive analysis of existing state-of-the-art FHE libraries and tools, implemented in software and hardware, and the performance thereof. [-]
Sponsorship
Gobierno Vasco-Eusko JaurlaritzaID Proyecto
info:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2025/IT1676-22/CAPV/Grupo de sistemas inteligentes para sistemas industriales/Colecciones
- Artículos - Ingeniería [683]