Título
A novel indirect cryogenic cooling system for improving surface finish and reducing cutting forces when turning ASTM F-1537 cobalt-chromium alloysOtras instituciones
Chulalongkorn UniversityVersión
Postprint
Derechos
© 2020 SpringerAcceso
Acceso abiertoVersión del editor
https://doi.org/10.1007/s00170-020-06193-xPublicado en
International Journal of Advanced Manufacturing Technology Vol. 111. N. 7-8. Pp. 1971-1989, 2020Primera página
1971Última página
1989Editor
SpringerPalabras clave
Indirect cryogenic coolingLiquid nitrogen
Cobalt-based alloys
Cryogenic turning
Resumen
This paper presents a novel indirect cryogenic cooling system, employing liquid nitrogen (LN2) as a coolant for machining the difficult-to-cut ASTM F-1537 cobalt-chromium (CoCr) alloy. The prototype d ... [+]
This paper presents a novel indirect cryogenic cooling system, employing liquid nitrogen (LN2) as a coolant for machining the difficult-to-cut ASTM F-1537 cobalt-chromium (CoCr) alloy. The prototype differs from the already existing indirect cooling systems by using a modified cutting insert that allows a larger volume of cryogenic fluid to flow under the cutting zone. For designing the prototype analytical and finite element, thermal calculations were performed; this enabled to optimize the heat evacuation of the tool from the rake face without altering the stress distribution on the insert when cutting material. Turning experiments on ASTM F-1537 CoCr alloys were performed under different cutting conditions and employing indirect cryogenic cooling and dry machining, to test the performance of the developed system. The results showed that the new system improved surface roughness by 12%, and cutting forces were also reduced by 12% when compared with the existing indirect cryogenic cooling technique. [-]
Sponsorship
Gobierno Vasco-Eusko JaurlaritzaID Proyecto
info:eu-repo/grantAgreement/GV/Elkartek 2019/KK-2019-00004/CAPV/Procesos de alto valor basados en el conocimiento y los datos/PROCODAColecciones
- Artículos - Ingeniería [684]