eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
Surface roughness assessment on hole drilled through the identification and clustering of.pdf (1.817Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Surface roughness assessment on hole drilled through the identification and clustering of relevant external and internal signal statistical features
Autor-a
Duo, Aitor
Basagoiti, Rosa
ARRAZOLA, PEDRO JOSE
CUESTA ZABALAJAUREGUI, MIKEL
Illarramendi, Miren
Grupo de investigación
Análisis de datos y ciberseguridad
Mecanizado de alto rendimiento
Versión
Postprint
Derechos
© 2021 CIRP
Acceso
Acceso embargado
URI
https://hdl.handle.net/20.500.11984/5622
Versión del editor
https://doi.org/10.1016/j.cirpj.2021.11.007
Publicado en
CIRP Journal of manufacturing science and technology  Vol. 36. Pp. 143-157, 2022
Primera página
143
Última página
157
Editor
Elsevier
Palabras clave
Drilling
Surface Roughnes
Clustering, PCA
Resumen
Drilling is a continuous cutting process where two or more cutting edges remove the material, to obtain the desired feature. During the chip evacuation, it generally rubs against the generated surface ... [+]
Drilling is a continuous cutting process where two or more cutting edges remove the material, to obtain the desired feature. During the chip evacuation, it generally rubs against the generated surface. Thus, the roughness obtained differs from other machining processes such as turning or milling. Therefore, surface roughness can be different from the analytically expected one. In this research work, an analysis of the cutting conditions where a level of roughness is expected to meet specific requirements has been carried out. 600 holes were made with two different tool geometries on steel without modifying the cutting conditions. When analysing the surface generated, certain variability in the roughness profiles obtained can be observed. External signals to the machine tool were acquired with sensors (cutting forces, vibrations, and acoustic emissions) as well as internal signals (spindle power, spindle torque in the Z-axis, spindle current and positions, speeds, accelerations, and jerk of the tool tip in the three axes of the machine). The most representative statistical features of the signals regarding roughness were selected using correlation analysis. Besides that, the hierarchical clustering of statistical features of the external and internal signals of the process was compared with clusters obtained using roughness parameters. Results show that clusters appear using signals highly related to the roughness parameters obtained from the measured profiles, confirming a mapping between the acquired signals during the machining process and the roughness of the holes. [-]
Sponsorship
Gobierno Vasco
ID Proyecto
info:eu-repo/grantAgreement/GV/Elkartek 2020/KK-2020-00103/CAPV/Herramientas de corte inteligentes sensorizadas mediante recubrimientos funcionales/INTOOL II
Colecciones
  • Artículos - Ingeniería [743]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace