eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
Impregnation quality diagnosis in Resin Transfer Moulding by machine learning.pdf (3.033Mb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Impregnation quality diagnosis in Resin Transfer Moulding by machine learning
Egilea
Mendikute, Julen
Plazaola Madinabeitia, Joanes
Baskaran, Maider
Zugasti, Ekhi
Aretxabaleta, Laurentzi
Aurrekoetxea, Jon
Ikerketa taldea
Tecnología de plásticos y compuestos
Análisis de datos y ciberseguridad
Bertsioa
Berrikusten dagoen preprinta
Eskubideak
© 2021 Elsevier Ltd.
Sarbidea
Sarbide bahitua
URI
https://hdl.handle.net/20.500.11984/5309
Argitaratzailearen bertsioa
https://doi.org/10.1016/j.compositesb.2021.108973
Non argitaratua
Composites Part B: Engineering  Vol. 221. N. artículo 108973, 2021
Argitaratzailea
Elsevier Ltd.
Gako-hitzak
Supervised learning
Quality diagnosis
Composites manufacturing
Resin transfer moulding
Laburpena
In recent years, several optimization strategies have been developed which reduce the overall defectiveness of the RTM manufactured part. RTM filling simulations showed that, even using optimized inje ... [+]
In recent years, several optimization strategies have been developed which reduce the overall defectiveness of the RTM manufactured part. RTM filling simulations showed that, even using optimized injection strategies, local variations in permeability could still generate local defects in the part. Such defects must be identified quickly and accurately right after the injection phase in order to repair or scrap the part. The present paper analyses the feasibility of diagnosing the quality after the injection stage of RTM parts by Machine Learning. The diagnosis was performed using a Supervised Learning binary classification model trained with synthetic data set. Among the different predictive models studied, Extreme Gradient Boosting and Light Gradient Boosting Machine were the most accurate models for predicting the filling quality of RTM, with an accuracy of 84.9% and 83.35%, respectively. In addition, a scaling of the ML model allowed not only to predict the quality of the part but also to locate the areas where the defect was generated. The computation time of the trained ML model versus the FEM model, both computed with a workstation (CPU Intel Xeon Processor E5.2690 with 2.9 GHz–8 core), were compared. In the specific case studied, a reduction from 360 s to 1 s was observed in the computation time utilizing the trained ML model. Thus, Supervised Learning predictive models can be used for diagnosing the composite quality. They are fast enough to be integrated in real processes and could be helpful for designing the monitoring system. [-]
Sponsorship
Gobierno Vasco
Projectu ID
GV/Programa predoctoral de formación del personal investigador no doctor 2018-2019/PRE_2018_1_0338/CAPV//
Bildumak
  • Artikuluak - Ingeniaritza [735]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace