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ABSTRACT In this paper, a smart machine-learning-based energymanagement system (MLBEMS) is devel-
oped for a hybrid energy storage system (HESS). This HBESS consists of batteries with high-energy (HE)
and high-power (HP) characteristics, to provide grid-supporting services. The aim of the MLBEMS is
to improve the overall battery lifetime and achieve state-of-charge (SoC) balancing for two different use
cases (UC). UC1 involves enhanced frequency regulation for the Pan-European grid, while UC2 pertains
to an electric vehicle (EV) charging station with photovoltaic (PV) generation. The designed MLBEMS is
compared with a rule-based energy management system (RBEMS) from the literature with similar use cases.
To ensure optimal power sharing between the battery modules, an optimization model is created using real
battery aging data. Using a genetic algorithm, optimal power sharing is achieved for various initial SoC
conditions. The generated dataset is subsequently utilized to train a machine-learning regression model, and
the resulting prediction function is imported into MATLAB/Simulink. In UC1, MLBEMS achieved a 39.3%
better SoC balancing compared to RBEMS, along with 36.5% and 22.6% higher battery lifetimes for HE and
HP batteries, respectively. Similarly, for UC2, MLBEMS achieved a 68.5% improvement in SoC balancing,
along with 53.6% and 45.8% higher battery lifetimes for HE and HP batteries, respectively.

INDEX TERMS Energy management system, hybrid energy storage system, machine learning, stationary
storage system.

I. INTRODUCTION
The environmental concerns, increasing fossil fuel prices, and
the reduction in operational and capital costs of renewable
energy sources (RES), among other factors, are driving the
accelerated electrification of the energy sector. This trend
provides significant incentives for electrical mobility and the
massive installation of RES [1]. However, the dependency
on weather conditions causes RES to be highly variable
in terms of power generation [2]. This variability, coupled
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with an insufficient amount of energy storage in the energy
system, necessitates a delicate balance between supplied
and demanded power to avoid generation curtailments and
consequent economic losses.

Another challenge emerging in this transition is the
replacement of conventional power plants, primarily coal/gas
plants, which connect to the grid via synchronous generators
with high mechanical inertia, by converter-interfaced RES.
These converter-interfaced RES do not inherently respond
under power perturbations, leading to higher frequency
swings that can jeopardize the system stability, especially
when the penetration of RES in the system is high [3].
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Consequently, research on power quality and grid stability
has significantly increased in recent years.

In this context, converter-based energy storage sys-
tems (ESS) are expected to play a key role in the operation
of the system, since they increase the flexibility to manage
the generated and demanded power. ESSs can be used in
a variety of applications ranging from frequency regulation
to electric vehicle (EV) charger power and ramp-rate limit,
uninterruptible power supplies (UPS), backup energy, storage
of excess renewable energy generation, etc. In the literature,
there are different ESS technologies (battery, flywheel,
hydrogen, super-capacitors, pumped hydro, thermal,. . . ) [4],
[5], [6]. With the increased demand for EV batteries, the
mass production, and research on electrochemical storage
unit has also increased. Therefore, the cost of battery energy
storage systems (BESS) has decreased and this has become a
profitable sector [7].

Compared to single BESSs, Hybrid BESSs (HBESS)
increase the degrees of freedom to provide a wide range
of grid services while decreasing the degradation of the
system [8]. The idea is to combine two or more battery
chemistries with different energy and power ratings. By opti-
mally using their characteristics, for example allocating the
faster power setpoints to the high-power (HP) and the slower
setpoint to the high-energy (HE) battery technology, the
overall lifetime of the system can be increased [9], [10],
[11], [12]. Moreover, the lower internal resistance of HP
batteries makes it possible to reduce the size of the system [9],
[10], [11]. Therefore, optimizing the size/cost/lifetime of the
HBESS results in a superior system compared to a single-
chemistry BESS [9], [10], [11], [13]. The general structure of
a HESSwith two battery technologies is represented in Fig. 1.
Parameters of the batteries and the grid is presented briefly
in Table 1. The details of the power electronics are not
presented due to confidentiality. However, they consist of
two-stage solutions with a DC/DC conversion stage followed
by a grid-tied bi-directional inverter. More details of the
battery and power electronics and the system sizing can be
found in [13].

TABLE 1. Battery and grid parameters.

Even though a HESS can be more performant compared
to a BESS, its advantages can be maximized only with a
well-designed energymanagement system (EMS). Compared
to single-technology ESSs, in hybrid systems the EMS
has to calculate not only the power setpoint to provide
a certain grid service, but also to optimally allocate the
power internally between the different battery to improve
the system performance and maximize its lifetime. In the

FIGURE 1. Diagram of a HESS system including the power electronics.

literature, the EMS solutions for HESSs can be classified in
two groups, namely smart and classical EMSs [14]. Classical
EMS structures use equation-, droop- and/or filter-based
mathematical approaches. In [15], different rule-based EMS
for grid connected BESS is presented namely frequency
based inertia control and swing-equation based inertial
control. In [16], different equation based control methods
are presented for improved voltage stability in micro-grids
including RESs and HESSs. In [17], a review for HESS
control for microgrids is presented where different methods
like fuzzy-logic [18], filter-based [19] or model predictive
control [20] are presented. In [21], an intelligent fuzzy logic
is presented to distribute the total power demand among
a fuel-cell, battery and solar panels. The demand profile
is created using a mission profile created for an EV. The
proposed algorithm is also tested in real time for a scaled-
down system. Smart EMS structures, on the other hand,
employ methods such as online optimization or machine-
learning (ML) algorithms. In [22], the degration model of
the system is improved and with the use of Markovian
degradation model coupled with reinforced learning a cost
saving of 5-29% is achieved. In [23], a dynamic power
management for DC microgrid with HESS is presented.
In the article Hybrid Bat Search and ANN is used. The ANN
model is found superior to conventional method in terms of
voltage overshoot and settling time for different cases. In [24],
a HESS with battery/ultra-capacitor system is optimized
using neural networks. The proposed neural network strategy
is found to increase the battery life over 60% compared to a
conventional rule-based method. Since smart EMS methods
derive from either complex, realistic data-driven digital twin
models or actual system operational data, they are superior
to classical approaches [25]. However, since the EMS is
designed for a specific system, up-scaling or multi-purposing
the developed algorithm is a challenging task.

The aim of this paper is to compare the improved
interoperable rule-based EMS (RBEMS) developed in [26],
to machine learning-based EMS (MLBEMS). MLBEMS
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aims to include the consumed life of the batteries and provide
a power-sharing such that the overall system lifetime is
improved and hence the operational costs are reduced.

The paper organization is as follows. In II, two different
grid services are introduced, which will be used to compare
the performance of the proposed EMS over more conven-
tional approaches. These use cases consist of an enhanced
frequency response service, and a peak power and ramp-rate
limited EV charger station. In III, the framework of the
MLBEMS will be presented. During the ML optimization,
SoC balancing and the battery lifetime are chosen goals.
Finally in V and VI, the RBEMS and MLBEMS results are
presented, compared and discussed.

II. USE CASE DESCRIPTIONS
Grid-connected BESSs can be employed to provide a wide
range of various services like frequency regulation, RES
excess energy storage, improved power quality applications,
. . .Most of these systems, however, are specifically designed
for a single application, and their adaptation to other use cases
is often unfeasible.

The aim of the EMS proposed in this paper is to be
interoperable, meaning that with slight modifications in the
control parameters, it might be used for the provision of
different grid services.

In this section two relatively different use cases are
described. They will be used in subsequent sections to
compare the performance of the proposed MLBEMS versus
an updated version of the RBEMS proposed in [26]. These
use cases represent the Pan-European grid scenario and an EV
charging stationwith PV generation. In the following sections
a brief description of these use cases is provided.

A. USE CASE 1: PAN-EUROPEAN GRID
In the first use case (UC1), the HESS is integrated into
the Pan-European power grid to participate in the frequency
support. The primary goal is to deliver a frequency regulation
service known as Enhanced Frequency Response (EFR). The
EFR service, developed within the regulatory framework
of the UK market, plays a crucial role in supporting the
smooth integration of RES into the grid. For a comprehensive
understanding of this service, the reader can refer to [27].
In essence, this service involves the dynamic exchange of
power between the HESS and the grid, responding to the
specific frequency conditions at the point of interconnection.
This mechanism aids in the efficient regulation of frequency,
ensuring the reliable operation of the grid while accommo-
dating the variability of RESs.

Using a standard frequency support algorithm presented
in [26], the power demand from the HESS is given in Fig. 2.

B. USE CASE 2: EV CHARGING STATION
In Use case 2 (UC2), the HESS runs in parallel to a
high-power EV charging station. As distribution grids are
challenged by the widespread integration of these stations,
many aspects of the existing infrastructure struggle to
accommodate additional high-power consumers without the

FIGURE 2. (a) EFR power vs. frequency. The power demand from the HESS
is determined by the deviation from the nominal grid frequency. (b) The
grid frequency and power demand from HESS for an entire day.

need for oversized transmission and distribution lines and
transformers. In this context, the HESS serves a dual purpose
within this application.

Firstly, it aims to limit the maximum power absorbed by
the EV charging station. By regulating the power, the HESS
ensures that the charging station operates within predefined
bounds, preventing excessive strain on the distribution grid.
This limitation aids in deferring the investments in new
distribution grid infrastructure.

Secondly, the HESS plays a critical role in managing the
rate at which power is exchanged by the charging station.
By restricting the rate of power, sudden fluctuations that
could disturb the overall operation of the grid are prevented.
This controlled ramping ensures a smoother integration of
the EV charging station into the distribution grid, minimizing
grid disturbances and maintaining a reliable and stable
electricity supply.

The power demand of the EV charging station (PEV ) is
presented in Fig. 3. In this case, the power consumed from
the grid is limited to 120 kW, and its maximum rate is defined
as 100 W/s. In order to limit these values, the HESS has to
exchange the power represented in blue (PHESS ).

III. MACHINE LEARNING-BASED EMS
The framework of the MLBEMS development is presented
in Fig. 4. Initially, the charge loss aging models of both
battery chemistries are obtained using accelerated battery
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FIGURE 3. Mission profile for the UC2. PEV is the demand of EV station,
PHESS is the power demanded by the HESS, PG is the power demand from
the utility grid. The peak power is limited to 120 kW and the ramp rate is
limited to 100 W/s.

aging testing. The details of the aging maps will be presented
in subsection III-A. To create the dataset, a multi-objective
genetic algorithm is used. The input of the optimization is
the total power demand from the grid (Pgrid ), the state of
charge (SoC) of the batteries, the battery aging maps, and
some constants of the HESS system such as the charge loss
of the batteries from the beginning of life (Qloss), the battery
voltages and capacities, etc. For many combinations of power
demand, SoC and Qloss, a solution space is generated. For all
initial conditions, the optimization is repeated and the dataset
is created.

A. BATTERY CHARGE LOSS MODEL
In the MLBEMS, the aim is to improve the overall battery
lifetime, decrease operational costs, and extend the overall
system lifetime. Therefore it is crucial to estimate the charge
loss for a certain C-rate and time duration for all conditions.
Both the HE and HP batteries are put into accelerated aging
chambers and the semi-empirical aging models are obtained
using Sigma-Point Kalman filter as presented in [28]. The
lifetime model used in the optimization framework is as
follows:

The state of Health (SoH) of a battery is presented in (1).

SoH (%) =
100
CC

(CC − Qloss) (1)

where Qloss is the charge loss from the beginning of life and
CC is the total capacity of the batteries. The change in Qloss
can be expressed as (2).

∂Qloss
∂t

=
∂Qcyc,loss

∂t
+

∂Qcal,loss
∂t

(2)

where Qcyc,loss and Qcal,loss are cycle and calendar charge

losses. ∂Qcyc,loss
∂t is a 4-D look-up-table (LUT) whose axis

are Qloss, temperature (T), state of charge (SoC) and Crate.

Similarly, ∂Qcal,loss
∂t is a 3-D LUT depending on Qloss,

temperature (T) and state of charge (SoC).

During the optimization the ∂Qcyc,loss
∂t is calculated for a

short duration. Therefore the C-rate, SoC, temperature and
Qloss are assumed to be constant, and (2) can be discretized
as follows:

1Qloss
1t

=
1Qcyc,loss

1t
+

1Qcal,loss
1t

(3)

B. OPTIMIZATION MODEL
The optimization is selected as genetic algorithm (RCGA).
This method is selected due to non-linearities and its
performance of finding the global optimum in the solution
space. Some parameters of the RCGA are given in Table 2.
The parameters were adjusted by checking the convergence
of the RCGA using different optimization test functions [29].

TABLE 2. Parameters of the RCGA method.

The cost function consists of 3 different elements which
are SoC balancing, battery aging, and the power supplied to
the grid. The SoC balancing and battery aging are combined
into a single cost function by using weighting factors denoted
as ω. The power demand from the grid has to be satisfied at
all conditions and is therefore implemented as a higher/lower
boundary penalty condition. The optimization function is
formulated as follows:

min X = ω1SoCBal + ω2BATLT − QpenaltyPerror
subject to

ω1 + ω2 = 1

Perror = |PHP + PHE − Pdemand |

Qpenalty = 0 if Perror < Perror,max
Qpenalty = 100 if Perror ≥ Perror,max (4)

1) SoC BALANCING
The SoC balancing is crucial to extend the operation duration
of the HESS. When the SoC of one of the batteries reaches
the higher or lower boundary the operation has to be stopped,
or the power should be allocated such that it is far from
optimal for the battery lifetime. However, limiting the SoC
difference may also result in non-optimal power sharing for
battery lifetime. Therefore, it is important to have control
over the SoC difference to find the optimal balance between
system operation extension and battery lifetime reduction.
The SoC balancing equation can be expressed as:

SoCBal
= k1P1P2P3 + k2P4

P1 =
|SoCHE − SoCHP|

60
P2 = sign(|SoCHE − SoCHP| − |SoCHE,Final − SoCHP,Final |)

P3 =
|SoCHE − SoCHE,Final | + |SoCHP − SoCHP,Final |

|SoCHE − SoCHE,Best | + |SoCHP − SoCHP,Best |

P4 =
|SoCHE − SoCset |

SoCset
+

|SoCHP − SoCset |
SoCset

(5)
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FIGURE 4. The framework and steps for the MLBEMS strategy. The model is trained using GA. Later the dataset is trained with regression learner and the
cost function is tuned for optimal SoC balancing, battery lifetime and service performance measure.

The SoCBal has 4 parts. The first part denoted as P1, is a term
that minimizes the effect of SoC balancing as the SoC’s are
close to each other. When the SoC’s are already balanced, it is
better to allocate power such that it maximizes the battery
lifetime. The second term denoted as P2, shows whether
the initial SoC difference is more or less than final case.
The term is positive if the final SoC difference is smaller
than the initial condition. The third term denoted as P3
indicates how well the SoC balancing is achieved compared
to the best case (SoCHP,best , SoCHE,best ). The best case is
when both HE and HP batteries are charged/discharged with
maximum power such that their SoCs are closer to each
other. During the operation, no constraint is put on providing
the demanded power. Therefore, it can be seen as the most
amount of SoC balancing that can be achieved for a certain
timeframe. Finally, the last term P4 tries to bring both SoCs
to the setpoint. This setpoint is UC-specific. As an example,
while it might be interesting to keep this term around 50%
for providing the EFR service (UC1), it is more interesting
to bring the SoC to the highest boundary (e.g. 80%) for
limiting the power in an EV charging station (UC2). In UC1,
the variation of the frequency is unknown. Therefore, it is
unknown whether the system will have to supply or absorb
power from the grid. Hence, it is best to keep it at 50% such
that the operation is extended as long as possible. In UC2, it is
known that the moment an EV is connected, the HESS will
have to supply power to the grid. Therefore, it is best to keep it
fully charged such that the service in this case can be provided
to as many EV charging cycles as possible. The terms k1
and 4 k2 are internal weighting factors whose summation is
equal to unity. A simplified illustration of the SoC balancing
can be seen in Fig. 5.

2) BATTERY LIFETIME
The battery lifetime is separately calculated, using the
discrete form presented in section III-A. For each finite step,
the charge loss for HP and HE batteries denoted as 1Qloss,HP
and 1Qloss,HE is estimated using the LUT. Then the cost
function is written as in (6).

BATLT = 1 − α1
|1Qloss,HP − 3.331Qloss,HE |

|1Qloss,HP + 3.331Qloss,HE

− α2
1Qloss,HE + 1Qloss,HP

1Qloss,HE,max + 1Qloss,HE,max
(6)

FIGURE 5. Visual illustration of SoC balancing metric.

where α1 and α2 are internal weighting factors whose
summation equals to one. α1 represents the weight of the
term of equating the HP battery charge loss to 3.33 times
the HE battery module. This factor is derived from the
maximum full cycle of the NMC and LFP batteries. The LFP
batteries have 3.33 times more cycle life [13]. The second
term α2 is the weight to minimize the total charge loss.
While increasing α1 will result in a battery aging with a
ratio of their total cycle life, it does not necessarily imply an
overall improved lifetime. Increasing the second term α2 will
result in a minimization of the overall battery aging, but
it doesn’t imply a controlled battery aging. Therefore, the
internal weighting factors should be chosen according to the
system requirements.

C. MACHINE LEARNING BASED EMS TRAINING
To train the model to be capable of accurately predicting
an optimal power sharing, a wide solution space needs to
be covered with a high number of data. Therefore, the
initial conditions are varied with small increments, covering
the entire solution space. For all elements of the dataset,
the optimization model is repeated. The results are later
fed into the ‘‘Regression Learner’’ in MATLAB toolbox
to find the optimal regression learner method. Moreover,
for each UC, different cost function weighting factors and
internal weighting factors are tested. Based on the results of
these tests, the final set of parameters is selected to reach
an adequate compromise between the provision of the grid
service, the SoC balancing and the battery degradation. The
parameters for UC1 and UC2 are presented in Table 3.

IV. COMPARISON METHODOLOGY
The main advantage of the MLBEMS proposed in this
paper, compared to the RBEMS, is that the power setpoints
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TABLE 3. Machine learning training parameters. (GIE: gaussian isotropic
exponential).

are calculated to optimize the battery aging and hence the
operational expenditure of the system. The aim in this section
is to explain the metrics that have been employed to carry out
a detailed comparative evaluation of these two EMSs. In order
to compare both methods’ performance, it is necessary to
define some criteria showing the advantages of one method
over the other. In this paper 3 different criteria are defined,
namely root mean square error of SoC (SoCRMSE ), battery
charge loss, and system performance measure (SPM). It must
be highlighted that the latter is a metric to determine howwell
theHESS is providing the EFR service, so it is only applicable
to UC1.

A. ROOT MEAN SQUARE ERROR OF SOC
One of the main ideas behind including the SoC balancing
into both the original RBEMS and the proposed MLBEMS
optimization framework is to increase the HESS’s available
energy to provide the requested grid services. This will reduce
the instances where one of the battery modules reaches
the maximum and minimum SoC boundaries, which are
80% and 20%, respectively. The longer the HESS provides
the grid service, the higher is the revenue and hence the lower
the return of the investment of the system.

The discrete SoCRMSE is calculated for the entire mission
profile for both UC1 and UC2 based on the following
equation:

SoCRMSE =

√√√√ n∑
i=1

(SoCHP(i) − SoCHE (i))2

n
(7)

In the discrete formulation, n is the total number of data
available. SoCHP(i) and SoCHE (i) are the SoC’s of the HP and
HE batteries at the given time instant, respectively. From (7),
it can be concluded that as the value of SoCRMSE is closer to
zero, the SoC balancing will be better.

B. BATTERY CHARGE LOSS
The changes in the battery charge loss (1Qloss) for both HE
and HP batteries are recorded in an array denoted by X for
the entire mission profiles, as shown in (8).

X = [1Qloss,1, 1Qloss,2, · · ·, 1Qloss,n−1, 1Qloss,n] (8)

Then the total charge loss for a single mission pro-
file (Qloss) is calculated by taking the discrete integral of the

array X . In (9), tstep is the time step between each element
of X .

Qloss = tstep
n∑
i=1

Xi (9)

C. SERVICE PERFORMANCE MEASURE (SPM)
The EFR p/f curve has higher and lower boundaries for the
power transfer between the grid and HESS. This boundary is
higher as the frequency deviation from the nominal value is
smaller, and the band gap decreases as the frequency diverges.
The SPM is a metric that determines how well the HESS is
providing the power requested according to the EFR p/f curve
shown in Fig. 2.
The calculation of the SPM is carried out according to (10).

Ideally, the SPM is expected to be unity, meaning that the
service is constantly provided within boundaries. However,
when the SoC boundaries or maximum power constraints
are met, the system is not capable of providing the services.
Therefore the SPM starts to decrease from 1. Pnorm is
the normalized power transferred to the grid. Penv is the
normalized power of the envelope in the EFR curve [27].
Phigh and Plow are the higher and lower power limits of the
EFR curve, respectively.

SPM =


1, if Plow ≤ PHESS ≤ Phigh
1 − |Pnorm − Penv|, if PHESS ≤ Plow
1 − |Pnorm − Penv|, if Phigh ≤ PHESS


(10)

V. RESULTS AND COMPARISON
In this section, the RBEMS and MLBEMS results are
presented and compared.

A. EFFECT OF WEIGHTING FACTORS (ωN )
ON THE SOC BALANCING
In section III, the objective was to maximize X where its
parts are SoCBal and BATLT . The weighting factors are
one of the key elements in the optimization determining
the performance of the overall MLBEMS. The weighting
factor ω1 is swept from 0.9 to 0.6 with 0.1 decrements. The
weighting factor ω2 is adjusted such that ω1 + ω2 = 1. The
results for UC1 and UC2 are presented in Fig. 6.

The SoCRMSE , Qloss and SPM for both use cases are
presented in Table 4. For UC1, the weighting factors ω1−2
are defined as 0.8 and 0.2, respectively. This parameters are
selected since, it shows great compromise between SPM, SoC
balancing and battery lifetime. Compared to other weight
factor combinations, it is the second best in SPM, second best
in SoC balancing, third and second for HE and HP battery
lifetime. Similarly for UC2, the weighting factors ω1−2 are
defined as 0.7 and 0.3, respectively.

B. RESULTS FOR RBEMS AND MLBEMS
In this section, the performance results for RBEMS and
MLBEMS are presented for both use cases (see descriptions
in section II).
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FIGURE 6. UC1 and UC2 mission profile SoC variation using MLBEMS for different weighting factor combinations.

For UC1 and UC2, the system is run for an entire mission
profile as presented in Fig. 2 and Fig. 3 using both RBEMS
and MLBEMS, respectively. In Fig. 7, the power sharing
between the HE and HP modules and the SoC variations are
presented.

C. COMPARATIVE EVALUATION OF RBEMS AND MLBEMS
For both use cases, the performance measures are presented
in Table 5. Moreover, in the table, the improvement in
percentages is given. For UC1, switching toMLBEMS results
in a decrease of 0.4% in terms of SPM. However, the SoCBal
and the BATLT for the HE and HP batteries are increased by
39.3%, 36.5% and 22.6%, respectively. Similarly, for UC2
SoCBal and the BATLT for the HE and HP batteries are

TABLE 4. Performance of different MLBEMS using different weighting
factors. (N.A: Not applicable).

increased by 68.6%, 53.6%, and 45.8%, respectively. This
significant increase is due to smart power allocation coming
from the trainedmodel for higher lifetime and SoC balancing.
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FIGURE 7. UC1 and UC2 mission profile power sharing and SoC variation for both RBEMS and MLBEMS.

However, the main reason for such a difference is due to
internal power oscillations in the RBEMS. In Fig 7-b the
internal power oscillation between HE and HP modules is
visible.

TABLE 5. Performance of RBEMS and MLBEMS for both use cases.

According to the results, MLBEMS outperforms RBEMS
in terms of both SoCBal and BATLT for all use cases. For UC1,
the SoCBal was increased by almost 40% and the BATLT by
around 20-35%. These improvements are subject to changes
in the weight factors in the optimization model. Similarly
for UC2, the SoCBal was increased almost 70% and theBATLT
around 45-55%. One of the reasons for this high difference is
the internal power oscillations in the RBEMS.

VI. CONCLUSION
In this paper, a machine learning based EMS (MLBEMS)
approach is presented. It aims to replace conventional
rule-based EMS (RBEMS) to further improve the SoC
balancing and battery lifetime. To compare the methods, two
use-cases are selected. The first one is enhanced frequency
regulation for the Pan-European grid where the aim is to
absorb/supply power from the grid in order to stabilize the
grid frequency. The second use case is an EV charging
station with PV generation where the aim is to limit the
maximum power demand from the grid to 120 kW and limit
the ramp-rate to 100 W/s in order to enhance grid stability.

The sharp increase in the power demand of the EV charger is
supplied by the HESS and the batteries are charged back to
their setpoints.

In order to train the model, an optimization model is
created. The cost function consists of two parts which are
state of charge (SoC) balancing and the consumed life of
the HE and HP batteries. The optimization model is run for
a wide range of different initial conditions. For each initial
point, the optimal power sharing between the HE and HP
is determined while ensuring the demanded power from the
grid. The generated dataset is provided as input to a Gaussian
Isotropic Exponential machine learning regression trainer.
The prediction model is fed into the model replacing the
RBEMS and runs for both mission profiles.

In conclusion, MLBEMS performs better than the RBEMS
in terms of both SoCBal and BATLT . In particular, the
MLBEMS gives the developer direct control over the lifetime
of the overall system. Moreover, MLBEMS allows training
externally preferably in a cloud, using real-time system
data, and hence the optimal control of the system can be
adaptive to aging conditions. A downside is the complexity
of the development procedure where accurate battery lifetime
modeling requires intensive testing for a long duration.
Moreover, developing the overall optimization algorithm
and training model requires intensive work. Compared to
MLBEMS, RBEMS is simpler in terms of development and
code deployment due to the use of conventional controllers
and easier to implement in real-time hardware. MLBEMS
calculates the optimal power sharing at any given instant
and is time independent whereas integrator inside RBEMS
may result in system oscillation and stability issues since it
accumulates errors from previous time steps. The proposed
MLBEMS is also scalable under certain conditions. If the
system is scaled by duplicating the exact system then
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the proposed MLBEMS can be used as local smart EMS
maximizing SoC balancing and battery lifetime. However,
to allocate the power from the grid to each HESS, a smart
higher level power sharing algorithm is required. If different
batteries are added to HESS, the study needs to be repeated
and the degradation model of the new battery is required.
In that sense, it can be concluded that the specific MLBEMS
is not always scalable but the proposed method is.

VII. FUTURE WORK
For future work, the RBEMSmodel control parameters could
be modified coupled with additional steps to eliminate the
internal power oscillation between the two different batteries.
In this paper, a single objective optimization is created and
it outperformed RBEMS in terms of SoCBal and BATLT .
However, the performance of multi-objective optimization
study is yet to be performed and investigated. The developed
RBEMS and MLBEMS are tested in simulation but the
performance of both methods needs to be compared to the
actual system.
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