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ABSTRACT Big data is defined as a large set of data that could be structured or unstructured. In
manufacturing shop-floor, big data incorporates data collected at every stage of the production process. This
includes data from machines, connecting devices, and even manufacturing operators. The large size of the
data available on the manufacturing shop-floor presents a need for the establishment of tools and techniques
along with associated best practices to leverage the advantage of data-driven performance improvement and
optimization. There also exists a need for a better understanding of the approaches and techniques at various
stages of the data life cycle.
In the work carried out, the data life-cycle in shop-floor is studied with a focus on each of the components
- Data sources, collection, transmission, storage, processing, and visualization. A narrative literature review
driven by two research questions is provided to study trends and challenges in the field. The selection
of papers is supported by an analysis of n-grams. Those are used to comprehensively characterize the
main technological and methodological aspects and as starting point to discuss potential future research
directions. A detailed review of the current trends in different data life cycle stages is provided. In the end,
the discussion of the existing challenges is also presented.

INDEX TERMS Big Data, Data Life Cycle, Intelligent Manufacturing, Machine Learning, Literature
Review

I. INTRODUCTION

The evolution of data storing and analyzing has been a
key factor in the development of manufacturing processes.
During the pre-industrial revolution, low quantities of data
were stored and were mostly transmitted verbally, which led
to low production volumes and low quality products. There-
after, during the first industrial revolution, two kinds of data
were being recorded, i.e. machine and worker data. Worker
data (attendance and performance) and machine data helped
to improve productivity and maintenance, respectively. The
mass production model introduced in the second industrial
revolution also shifted the job of data processing to educated
managers. Scientific methods and statistical models helped
in all stages of manufacturing from production planning to
inventory management [1]. With the introduction of IT in

manufacturing, computer systems, such as CAM and FEA,
and information systems, such as MES and ERP, helped
in product creation, process optimization, and management.
The merge between data and manufacturing in the informa-
tion age has helped in the shift from dedicated production
to flexible production. The extension of IT with unified
communication, i.e. ICT further enhanced the role of data in
manufacturing.

The concept of SM has emerged as a new paradigm
focused on responding in real time to constant changing de-
mand and conditions in factories, supply networks, and cus-
tomer needs [2]. Three key SM technologies include: (i) CPS
(physical assets integrated with computational capabilities),
(ii) IoT (highly connected devices with embedded sensors),
and big data [3]. The big data age has arisen with the massive
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Acronyms

ARIMA Auto-Regressive Integrated Moving Average
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CATIA Computer-Aided Three-Dimensional Interactive Application
CNC Computer Numeric Control
CNN Convolutional Neural Network
CPS Cyber Physical System
CSV Comma Separated Values
CSS Cascading Style Sheets
DCS Distributed Control System
DDBS Distributed DataBase System
DevOps Development Operations
ERP Enterprise Resource Planning
FEA Finite Element Analysis
HDFS Hadoop Distributed File System
HMI Human-Machine Interface
HTML HyperText Markup Language
IT Information Technology
ICT Information & Communication Technologies
IoT Internet of Things
JSON JavaScript Object Notation
KPI Key Performance Indicator
MES Manufacturing Execution System
ML Machine Learning
MQTT Message Queuing Telemetry Transport
NFC Near Field Communication
OEE Overall Equipment Effectiveness
OPC Open Platform Communications
OPC-UA OPC Unified Architecture
OS Operating System
OWL Web Ontology Language
PLC Programmable Logic Controller
RDBMS Relational DataBase Management System
RDF Resource Description Framework
RFID Radio-Frequency IDentification
RMS Root Mean Square
RQ Research Question
SCADA Supervisory Control And Data Acquisition
SM Smart Manufacturing
SQL Structured Query Language
SWRL Semantic Web Rule Language
TCP/IP Transmission Control Protocol/Internet Protocol
TSDB Time Series DataBase
VPN Virtual Private Network
WiFi wireless fidelity
WoS Web of Science
XML Extensible Markup Language

use of mobile and smart devices, the great availability of
IoT devices, and cloud computing, when traditional methods
were not sufficient for adequate information processing [4].
In general, big data refers to the storage and analysis of
data sets that are characterized by large volume and variety
of sources, high velocity of generation and processing, and
value generation from its analysis [5].

In the age of big data technologies, various data sources
generate manufacturing data, which are collected from con-
nected software solutions, sensors, and IoT devices. On a
high level, manufacturing data may be categorized into man-
agement, equipment, user, product, operational, and process
data [1], [6]. On a low level, manufacturing data may be
categorized into structured, semi-structured, and unstructured
data [7]. Structured data have clear relationships between
their attributes and is the simplest data type to store and
organize, usually represented as tables. Unstructured data

comprise most manufacturing data, has no associated data
model, and cannot be organized using tables or spread-
sheets. Examples of unstructured data include images, audio,
text, video. Semi-structured data do not reside in relational
databases but have an organizational structure that makes
them easier to analyze. Examples of semi-structured data
include XML, JSON, and HTML.

The collection and processing of the data in the shop-
floor is critical, as most manufacturing operations are car-
ried out there. The advent of IoT and new industrial pro-
tocols have supported the acquisition of the information
from manufacturing cells, products, transport systems, and
people [8]. Thus, many data-driven SM applications have
emerged recently, e.g., smart design, smart planning and pro-
cess optimization, material distribution and tracking, process
monitoring, quality control, and smart equipment mainte-
nance [1]. This SM applications rely on transforming pri-
mary data to information, making manufacturing processes
more intelligent. Examples of shop-floor data include energy
consumption, quality test, equipment status, equipment pa-
rameters, resource loading, delivery time, and material data
[1]. However, despite the benefits foreseen by the usage and
processing of data in the shop-floor, challenges in SM need
to be considered.

The 5Vs characteristics of big data are widely acknowl-
edged as challenges of big data in manufacturing, including:
(i) volume (level of data size), (ii) velocity (ingesting or
processing big data in streams or batches, in real time or
non-real time), (iii) variety (dealing with complex big data
formats, schemas, semantic models and information), (iv)
value (analysing data to deliver added-value to some events),
(v) and veracity (validate data consistency and trustworthi-
ness) [9]. In addition, cybersecurity is an important aspect
in manufacturing. Since big data platforms connect physical
spaces with cyber spaces, the danger of not considering
cybersecurity might swiftly spread to physical parts of man-
ufacturing systems [7].

Influx of big data generated from multitude of production
systems (data sources) on the shop-floor complicates deci-
sion making. Combined with multiple data sources, varied
transmission protocols and storage requirements for pro-
duction systems on shop-floor further complicate decision
making. As such, the increasing size of data on the shop-
floor requires accurately classifying data for reliable decision
making. This study aims to develop a homogeneous approach
to gathering and utilizing data on shop-floor in manufacturing
environments, based on influences and insights of a literature
review. Therefore, the complete data life cycle is reviewed.

A need for reviewing the data life cycle in the shop-
floor is identified, as research in this field has focused on
other aspects of big data, i.e. applications, manufacturing
systems and processes, decision making, economics, supply
chain, business management, and product life cycle (see
Table 1). This work focuses mainly on big data life cycle
in the shop-floor, where increasing complexities of data life
cycle management requires a detailed review. The effective
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use of data sources for generating big data for objective
completion is studied. Needs, requirements, and methods
for data collection and data transmission are also reviewed.
Special focus is given to homogenising data acquired, as
multiple production systems operate on several protocols and
technologies, generating heterogeneous data. Thereafter, data
storage, data processing, and data visualisation applied to
shop-floor in manufacturing is reviewed. Finally, the review
builds on the aforementioned aspects of the data life cycle to
elaborate on data application.

This contribution leverages the data life cycle for capturing
big data in shop-floor. Specifically, the suitability and adap-
tation of big data life cycle to shop-floor in manufacturing is
the main goal in this contribution. This study, addressing the
need for big data on shop-floor, establishes the approach for
data acquisition, processing, and utilisation for decision mak-
ing. Challenges towards real-time data-driven manufacturing
are also elaborated.

The rest of this paper is organized as follows. Section II
presents the data life cycle to have an uniform terminology
for big data in shop-floor. Section III presents the methodol-
ogy used to understand current trends and future challenges
of big data in shop-floor. Section IV presents the results of the
literature review, based on data life cycle presented in Section
II. Section V presents a discussion of the results and existing
challenges in implementing big data in shop-floor. Finally,
Section VI presents the conclusions, as well as on outlook on
future work.

II. DATA LIFE CYCLE
Big data, and data in general, requires to be structured into
specific content formats and context to be useful for users
[16]. Big data is useful for automating processes in man-
ufacturing, as it enables machines to communicate among
themselves and enables users to extract information and
knowledge. As such, research has focused on the data life
cycle and how to extract knowledge from varied, hetero-
geneous data sources, enabling informed decision making.
In this context, the data life cycle in shop floor has been
presented as consisting of seven stages. This list was devel-
oped considering similar works (Table 2) to have a simplified
uniform terminology. Furthermore, Figure 1 presents a visual
representation of the seven stages of the data life cycle.

1) Data sources: Data sources generate big quantities of
data across all the manufacturing value chain and prod-
uct life cycle, bringing the concept of big data to the
shop-floor. According to Demchenko et al. [9], big data
is characterized by the 5Vs model, i.e. high volume
(big quantities of data), variety (data have different
formats and sources), velocity (data is rapidly gener-
ated), variety (heterogeneous data in varied formats),
and value (data has value, which needs to be extracted
and analyzed). In this regard, the 5Vs model applies
to big data sources in the shop-floor. Data sources
includes manufacturing information systems, industrial
IoT technologies, internet sources (e.g. e-commerce

platforms and social networks), smart products, and
governmental public data [1].

2) Data collection: After data sources generate data,
data collection is performed. The collection is per-
formed mainly by IoT technologies, by means of smart
sensor nodes equipped with sensing devices, such
as accelerometers and temperature sensors, and the
data is then transmitted using standardized commu-
nication protocols [23]. Data collection may be per-
formed at different frequencies, referred to as sampling
frequency or sampling rate, based on the processing
power of sensor nodes and the requirements of the
variables being measured. In addition to shop floor data
sources, other data collection sources, such as third-
party application program interfaces or web crawling
of internet sources, may be used to collect data, further
enriching and expanding the context of data collected
during the process.

3) Data transmission: Data transmission maintains the
communications between the elements involved in the
data life cycle, e.g. manufacturing systems and man-
ufacturing resources. Defining standardized means of
transmission, communication and application proto-
cols define how the elements communicate data among
each other, for example data transmission rate and
communication range, ensuring real-time, secure, and
scalable data transmission [24]. As with data collec-
tion, data may be transmitted at different frequencies,
based on the requirements of the monitoring strategy,
such as real-time data transmission or batch data trans-
mission.

4) Data storage: Data obtained during data collection
must be stored securely and integrally. Nevertheless,
data sources have different formats and may be struc-
tured, semi-structured, and unstructured [25]. As stated
in [26], the second design principle of knowledge
discovery in big data is that one size does not fit all,
and several different storage types must be considered.
Besides structured data storage, object-based storage
provides a flexible solution for storing semi-structured
and unstructured data, thus covering the integrity re-
quirement of data storage. In addition, by means of
cloud computing, data storage may achieve cost effec-
tiveness and high-processing power, as well as security,
scalability and heterogeneity.

5) Data processing: Data processing builds upon data
storage and refers to the operations required to extract
information, i.e. knowledge from heterogeneous data
sources. By processing raw data, hidden information
and patterns may be revealed, providing stakeholders
with valuable information for decision making. Dif-
ferent processing techniques and tools may be used
depending on analysis to be done on the data. Big
data may be processed efficiently by means of data
cleaning, data reduction, data analysis, and data mining
techniques, owing to advances in artificial intelligence,
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TABLE 1: Existing review papers about big-data on manufacturing

Publication Main Focus
Cui et al., 2020 [7] Identified key drivers for big data applications, essential components for big data ecosystem, research domains and

future directions based on manufacturing requirements and available big data capabilities.
Wang et al., 2021 [10] Presents big data frameworks, key technologies and application considering concepts of model and data driven

methods for manufacturing systems. The work also sheds light on the current challenges and future research
opportunities.

Chunquan Li et al., 2021 [11] Provides analysis for big data-driven decision making considering the practicability of intelligent technologies in
manufacturing. The work also provides a conceptual framework, challenges and future research directions.

Mageto, 2021 [12] Presents an argumentation model considering the elements of big data analytics including security and economics
for understanding the impact of big data on the sustainable manufacturing supply chain.

Belhadi et al., 2019 [13] Proposes a novel model with focus on big data analytics on manufacturing processes considering ongoing research
and phosphate manufacturers as case study.

Sahoo, 2021 [14] Presents a bibliometric, visual and factorial analysis to understand the research clusters in business management of
big data analytics in manufacturing.

Ren et al., 2019 [15] Proposes a conceptual framework considering the product life cycle and sustainable manufacturing based on big
data, as well as the potential applications and research directions.

TABLE 2: Relevant data life cycles proposed in literature

Ref. Stages Summary
Levitin et
al., 1993

[17]

Define view (planning), implement
view (sources), obtain values
(collect and store), assess and
analyze (data quality check),
update records (processing),

present results, assess and analyze
(updated data quality check), use
data, assess and analyze (results

check), and delete data.

The authors propose two data lifecycles : acquisition and usage. When merged, the data lifecycle
is comprised of three main activities: (i) data generation/collection, (ii) data storage, and (iii)
data processing/utilization. The complete data lifecycle starts with planning phases, i.e. define
views of data to be acquired and implement them in the sources. Data is then obtained and
assessment and analysis of the data is performed. Following, data collected is update by adding,
modifying or deleting data (roughly, data processing) and presented to users. The processed data
is once again assessed and analyzed before being used for data analysis. Finally, the usage is
assessed and analyzed, deleting unnecessary resulting data.

Yoon et
al., 2000

[18]

Create metadata, create metadata
structure, use data, manipulate

data, refine data, and refine
metadata.

The authors build upon the work of [17], adding additional metadata stages. Metada creation
begins by defining data architecture and data model structures (views). Metadata structuring
implements the views and associates them to data sources. Data creation collects and stores the
data, as well as performs quality checks. Then, data utilization focuses on using and presenting
the data and is followed by data manipulation, where data is processed by altering data forms or
values. Data assessment determines the manipulated data suitability for current and future use.
If data is not suitable, it may be corrected either by data refinement or metada refinement stages.

Borgman
et al.,

2007 [19]

Design experiment, calibrate,
capture, derive, integrate, analyze,

publish, and preserve.

The authors propose a big data lifecycle comprised of eight stages. Experiment design begins
by reusing historic data to design new experiments. Before deploying the system, sensors are
calibrate to known values. Then, the system is deployed and data is captured from data sources.
Afterwards, deriviations processes the data and reveals hidden data or salient features and
data from different sources is integrated. With the processed data, data analysis is performed
to generate knowledge and information. Results are then published and the data is stored for
preservation.

Fisher et
al., 2012

[20]

Acquire data, choose architecture,
shape data into architecture,

code/debug, and reflect.

The authors clustered data analyst tasks for big data into a life cycle comprised of five stages. Big
data sources are identified and data is acquired. Based on cost and performance, an architecture
(computing platform) for processing and analyzing data is chosen, such as cloud computing.
Thereafter, data is uploaded to the chosen platform and is then cleaned, processed and reshaped
(when needed). Finally, the data analytics approach is coded and debugged and the results are
reflected (visualized) by the user to extract knowledge and information.

Khan et
al., 2014

[21]

Raw data, collect data, filter and
classify, analyze data, store data,

share and publish, and retreave and
discover data.

The authors propose a big data lifecycle comprised of seven stages (eight including raw data).
Collection starts by obtaining raw data from data sources. Data is filtered, classified and mined
to identify salient features. Thereafter, data analysis is used to understand the patters and
correlations in the data and to develop methods to accurately predict future observations. During
storing, big data datasets are stored and managed with reliability, availability, and accessibility
and are shared and published. Finally, retrieving and discoverying of the data is made possible
for further analysis and historic queries.

Chi et al.,
2016 [22]

Select data application, identify big
data, deploy big data, select

innovative data method, visualize
big data, and interpret big data.

The authors discuss a big data lifecycle comprised of six stages. First, design and planning of the
business need is done during data application selection. Then, big data sources are identified, big
data collectors are deployed and collected data is stored. With the stored data, innovative data
methods are to be developed to process and extract knowledge from big data datasets. Finally,
big data and obtained results are visualized and interpreted by users.
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FIGURE 1: Proposed data life cycle

cloud computing and IoT [1]. As such, the first design
principle of knowledge discovery in big data is that
data processing should be supported by a variety of
data processing methods and analysis environments
[26].

6) Data visualization: Data visualization provides the
means to visually understand the information extracted
during data processing. Data may be visualized in
dashboards, including statements, charts, graphs and
augmented reality [27], and data may be queried in
real time or on demand, based on the users needs,
enabling decision making based on historical or real-
time data. In addition, data visualization should be
accessible and easy to understand, as stated in the third
design principle of knowledge discovery in big data
[26]. As such, popular open standards and lightweight
architectures should be used for presenting results, as
well as exposing the results using application program
interfaces for third-party software integration.

7) Data application: Data application refers to data an-
alytics performed during the entire product life cycle,
providing stakeholders with tools for decision making.
Data analytics may be applied during the design phase,
translating customer needs into product features and
quality requirements [28]. Thereafter, during produc-
tion, data analytics monitor the production process
and lead to informed decision making regarding the
manufacturing process, improving product quality and
reducing production costs [10]. Finally, during product
operation and maintenance, data analytics may be used
to predict possible faults and to provide preventive

maintenance, elongating the life cycle of the product
and improving relationships with costumers [10].

III. OBJECTIVE AND METHOD
The work focuses on understanding the trends and challenges
in implementing big data on shop-floor applications, em-
phasizing their data life cycle. For this purpose, a narrative
literature review was carried out supported by the extraction
of n-grams that allow the preliminary exploration of related
trending research. The following research questions guide
hereafter the development of this review.

• RQ1: What are the recent trends in big data life cycle in
shop-floor?

• RQ2: What are the main challenges and future research
directions in big data life cycle in shop-floor?

A. METHODOLOGY: NARRATIVE REVIEW
Narrative reviews contemplate the identification of several
key studies that describe a problem of interest to have a
general overview of a field [29]. Despite having a less rig-
orous approach compared to a more systematic one, in this
paper we support the selection of references of interest by
extracting monograms, bigrams, trigrams, and quatrograms,
related to the main RQs and objective of the work.

B. OBJECTIVES
This review’s objectives are twofold and is aligned with the
research questions presented above.

• In terms of RQ1: What are the recent trends in big data
life cycle in shop-floor? The main interest is to briefly
characterize technologies and approaches, considering
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the seven stages of the data life cycle presented in
section II of this review.

• In terms of RQ2: What are the main challenges and
future research directions in big data life cycle in shop-
floor? The main interest is to discuss the general chal-
lenges mentioned in literature, establishing a baseline
of potential future research directions.

C. STUDY IDENTIFICATION, SCREENING AND
INCLUSION
A set of keywords has been chosen considering relevant
terminology in the area. Core concepts reflected here are
"manufactur*", "factory", "factories" and "shop floor". Those
are accompanied by the keyword "big data". Group 1 and
Group 2 are linked with the operator AND, whereas internally
they are linked by the operator OR. This resulted in the
following string:

• ("manufactur*" OR "factory" or "factories" or "shop
floor") AND ("big data")

The research string was applied in the electronic database
Web of Science (WOS) as it is a well-known and large
academic scientific repository. Fundamental consideration to
select studies were:

• Works published after 2012.
• Review papers were excluded from the search.

A set of 4912 papers was obtained from this search. From
this point, the strategy was first the extraction of monograms,
bigrams, trigrams and quatrograms to have a brief notion
of characterization of relevant terms in the field and based
on such characterization the selection of main works of
interest. The notion of data life cycle and the consideration of
relevant application in shop-floor operations were additional
considerations for the manual selecttion of papers of interest.

In the end, a total of 61 articles were chosen, and further
analyzed to answer each of the RQs. Fig. 2 presents the
methodology used in this review.

D. RESULTS
Fig. 3 presents the result of monograms, bigrams, trigrams,
quatrograms from the set of papers collected. In general, we
should highlight the presence of technological enablers like
internet of things, cyber-physical systems, artificial intelli-
gence (neural networks), digital twin models, cloud comput-
ing and other which are supporting the implementation of big
data in the shop floor. Other representative key words are
related to specific applications e.g. predictive maintenance,
energy optimization, product quality, process monitoring,
anomaly detection and decision making process. From an-
other perspective, cloud computing and edge computing are
also highlighted as computation infrastructure to treat the
data. Various of these properties are used as a baseline to
characterize the data shop-floor data life cycle in the next
section of this review.

IV. RECENT TRENDS IN SHOP-FLOOR BIG DATA LIFE
CYCLE
This section explains the results of the narrative review of
publications related to big data life cycle. The section is
divided into different stages of data life cycle. The results
presented are a collective overview of studies presented in
the last decade on each of these stages related to big data in
manufacturing shop-floor.

A. DATA SOURCES
Different applications in the context of smart manufacturing
require different data sources (Figure 4). They are mostly
based on the utilization of IoT devices i.e. sensors that
collect data from machines, shop-floor, products, people and
environmental variables. Other important data sources are
the ones provided by heterogeneous product requirements,
specially in product driven manufacturing applications.

For decision making activities, examples of data sources
include customer requirement documents, datasets, and CAD
models. These sources are multi-modal with different forms
and, hence, require separate processing methods. Another
example is information embedded in CAD models. In this
context, Collada can be used as the data format to describe
CAD models. If CAD models are designed in CATIA V5,
then converters from CATIA V5 to Collada can be used to
obtain Collada models [30].

Devices used to monitor energy in shop-floor include smart
meters, current and voltage clamps, and machine-integrated
devices that provide out-of-the-box instantaneous power con-
sumption [31]. Industrial robots, for example, can provide
power consumption for each joint of the robot directly from a
robot controller [32]. Experimental data regarding actuation
torques and servo drive voltages, used directly to derive
input power of plants, can be captured with energy sensors,
such as clamps [33]. Alternatively, single-phase and 3-phase
smart plugs have become popular for monitoring the energy
consumption of manufacturing equipment on the shop-floor
[34].

Human data can also provide additional context infor-
mation to current shop-floor situations. This data provide a
better user experience for operators, improving productivity
and decision quality. Human data can be divided into human
attribute data and state data. Human attribute data are com-
prised by demographic and characteristic information that
does not change or changes sporadically (e.g. age, profession,
education status, and skills). This data may be used for "user
modelling" to deliver information or services according, for
instance, to the proficiency, skills, and interest of the user.
Human state data refers to a collection of all kinds of data that
may be used to model abstract human characteristics, such
as behaviour and comfort [35]. Traditional IoT devices may
acquire data about the state of operators (e.g. current position
and vital functions). For instance, wearable trackers measure
human performance under stressful or difficult conditions,
analyzing the data and sending warnings when needed [36].
Furthermore, operators can use portable smart devices (e.g.
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FIGURE 2: Methodology used for the narrative literature review

smartphone, smartwatch, and tablet) with NFC readers to
check into a location and receive information about relevant
parts of the production system equipped with NFC or RFID
tag. [36]. The behaviour can also be inferred through interac-
tions that users have with machines or applications, capturing
the interactions with plugins or applications, such as Google
Analytics and Matomo. Acquired data can be uploaded to
cloud services using IoT technology, where it is processed
and analyzed to deliver personalized information to operators
and supervisors, informing about potential issues.

Most applications for data-driven automation rely on op-
timal decision making, considering status of machines and
conveyors (availability) [37]. Smart sensors have been used
to track equipment and people e.g. RFID tags [38]–[41].
Smart sensors have also been used to monitor best conditions
of machines, e.g., in terms of temperature [42]. In addition,
information of images (quality control) has been used as a de-
cision factor for autonomous reconfiguration and adaptation
processes [43].

Data-based maintenance sensors that have been used in
literature include vibration [44], [45], acoustic emission [44],
[45], temperature [40], [44], current [44], [45], velocity [40],
pressure [40], and forces [46], implemented in various parts
of the machine. The sensor may exist in the machine [47]
or may be installed as add-on sensors dependent on the ap-
plication. PLC controllers provide process-related data, such
as cutting speed, feed, and depth of cut [44]. Application-
specific data sources also contribute in monitoring and main-
tenance activities. For example, 3D laser scanners have been
used to evaluate tool flank wear [45]. Other sources have used
device status (such as alarms and logs) [47] and historical
failure data [48] logged after quality inspection, aiding in
identifying product failure patterns. RFID tags also have
been used to identify defective products, comparing with the
failure data [40].

Accuracy and quality of data play a vital role in suc-
cessful implementation of intelligent systems, depending on
the effectiveness of data sources. However, data gaps and
incompatibility in system applications may be found. To

overcome them, proper calibration of data sources is needed.
Data sources consist of automation system resources (such as
sensors, actuators, PLC, SCADA, DCS, and CNC systems),
identification systems (such as RFID, AutoID, barcodes, and
vision systems), communication standards between produc-
tion resources (such as fieldbus and wired and wireless com-
munication), with accompanying data exchange standards
(such as OPCUA, MTConnect, and MQTT).

Automation technologies allow a significant reduction of
human participation on the shop-floor during production op-
eration. On the one hand, there are processes that may not be
automated, mainly due to infeasibility of economic outcome.
Specific production processes may involve manual work to
be carried out in different manners. The employee carrying
out the work may enter the information to a management
support system. Nevertheless, the information accumulated
from employees through this approach is highly unreliable
and cannot be used for machine adaptation. On the otherhand,
production systems may perform automated data acquisition
without human intervention. Data accumulated in this man-
ner can be used for decision making. However, interfaces
and processing of the data may be necessary. Most common
data sources in automated production systems for machine
adaptation have been identified to be control and measure-
ment devices, measurement instruments (such as sensors
and transducers), PLCs (and other control mechanisms), and
robots.

B. DATA COLLECTION
The data collection techniques for decision-making are de-
pendent on the data sources. In case of customer requirement,
natural language processing techniques, such as named en-
tity recognition [49], relation extraction [50], and attribute
extraction [51], have been used. If data come from datasets,
deep learning techniques and sampling techniques have been
used to collect data [52].

There are mainly two types of data collection techniques,
manual data acquisition and automatic data acquisition. Man-
ual data acquisition techniques are employee dependent and
are gathered through a manufacturing support system. How-
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FIGURE 3: Relevant N-grams on the related publication

ever, they are highly inconsistent and unreliable [53]. Auto-
mated data collection is performed by automated systems like
sensors, measuring, and control devices that correspond to
changes in physical processes [54].

Data collection in shop-floor depends on the nature of the
data, i.e. structured and unstructured [55]. Multiple frame-
works are in-place that incorporate data collection strategies
for structured and unstructured data [55]. Data collection for
machine adaptation is a six-step process involving initialisa-
tion, configuration, capturing, analysing, and focusing [56].

Cui et. al. [7] stated that almost half of big data col-
lection applications were distributed in monitoring (25%)
and predictive applications (24%), characterized for real-time
process and non-real-time process, respectively. Real-time
process data analysis in manufacturing refers to methods
where data from production lines are acquired, processed,
and delivered to operators. Thus, it is possible to timely detect
anomalies or to quickly know the status of the shop floor,
production, machines, and personnel [57]. This is one of the
basic needs for operators on the shop-floor, who require a
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FIGURE 4: Data sources in smart manufacturing applications

FIGURE 5: Data Collection in Manufacturing applications

synthesized and centralized view of multiple data sources,
which could be highly dispersed. Nevertheless, predictive
applications do not necessarily require a real-time data col-
lection and focuses on extracting patterns and trends based
on historical process data for optimization and management
innovation [57].

Although real-time data collection is preferred, in practice,
it is seldom the case for maintenance-related data. Add-
on sensors, such as temperature, vibration, pressure, force,
and process data from PLC controllers (cutting speed, feed,
and depth of cut), may provide near real-time data. Device

status and logs have been periodically collected and stored
[47]. Wear information has been collected after a predefined
amount of time to accurately analysis the wear (e.g. tool wear
is measured every 20min in [44]). Process parameters and
performance metrics (historic data) have been collected after
each production run/shift [40], such as maintenance history
and failure records [48]. Almost all data relevant for mon-
itoring or maintenance are time series, being assigned time
stamps during collection. Data collection techniques (Fig-
ure 5) include support for RESTful/configurable application
layer protocols, OPC unified architectures, and distributed
data acquisition (e.g. Flume [47]).

Automation activities rely on event-driven data collection
techniques e.g. time driven, quantity driven, operation driven
[58]. Event driven approaches allow the storage of manu-
facturing information after a specific time interval. These
techniques are also useful to query manufacturing services
for process automation purposes. Optimal decision making
usually require storage of historical data and the comparison
with a real-time monitoring data collection [40].

For time-driven data collection, energy data from man-
ufacturing equipment has been studied. Energy is usually
monitored in given time intervals, such as every 15 min-
utes, monitoring total energy consumption. However, some
applications, such as profiling the robotic motions and under-
standing the parameters affecting the energy consumption,
requires real-time energy data sampled in few milliseconds
[59].

C. DATA TRANSMISSION
Data transmission protocols includes sockets, OPC-UA,
MQTT, TCP/IP (such as PLC simulator), or other commu-
nication protocols (Figure 6). Data transmission protocols
depend on the application domain and may be dynamically
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chosen. Data transmission is used as the communication
channel between different devices, including IoT devices,
workstations, and digital twins. When workstations in man-
ufacturing environments use different operating systems,
OPC-UA is a suggested solution. Cloud-based systems have
also been recommended, as modularity among components
of the pipeline is promoted [60].

The transmission of data for further processing depends
on the logging frequency of the data. High-frequency data
may be stored first in storage devices of monitoring so-
lutions. Thereafter, collected data are transmitted manually
in batch to processing computers via Ethernet connections.
Some monitoring solutions also offer transmitting data via
WiFi. Transmitting energy data via WiFi has the benefit of
transport flexibility and high transmission distance. However,
WiFi comes with shortcomings, such as high latency and
transmission unreliability. Hence, industrial standards such
as Modbus and Profinet have been used for mission-critical
applications [59], [61].

Process automation may require connecting manufactur-
ing resources to the Internet. Generally, the connection has
been done by Ethernet [37] and wireless communications
[38]. Data transmission has also been implemented using
industrial standards with higher reliability, such as OPC-UA,
Modbus, and Profibus [62]. IoT communication has been
used to perform data transmission using publish/subscribe
messaging, e.g. MQTT protocol [43], for event-driven pro-
cess automation purposes.

Real-time data may be transmitted using WiFi, Zigbee,
and 4G through Internet and using VPNs. Non-real time data
may be transmitted through technologies or application like
Apache Sqoop and Data/X [40]. Production and sensor data
with high frequency have been transmitted through Ethernet
to a local server and then, after feature extraction, have been
sent to cloud servers in the Internet using WiFi protocol [44].

The introduction of IoT in the shop-floor has increased the
transmission of low-frequency sensor information directly
from the source through WiFi from various sources. This
has also had an impact on the latency of the system re-
sponse. Data transmission rates play a vital role that depend
on the manufacturing application. To incorporate multiple
data formats, standards, and needs for machine adaptation,
a combination of technologies is proposed in this study to
assists in data transmission. To this end, a data transmission
framework is necessary to improve data transmission across
the production domain.

D. DATA STORAGE
Common data formats to store machine information are XML
and JSON files [38]. Different data types include structured
(formatted as tables), semi-structured (such as XML, JSON,
and HTML) and unstructured data (such as documents,
images, audio, video, text, and emails) [58]. Table 3 ore-
sents data storage types and technologies used in manufac-
turing shop-floor. Unstructured data are first processed to
extract relevant information internally before being stored

Industrial
Protocols

Wired Wireless

Fieldbus Industrial
Ethernet

802.15.4
6LoWPAN
Bluetooth
Cellular
LoRA
Wi-Fi
ZigBeeProfibus

ModBus
DeviceNET
CANOpen
CC-Link
AS-I

Interbus
ControlNet

Profinet
Ethernet/IP
Ethernet-
CAT

Ethernet-
TCP

FIGURE 6: Industrial protocols for Data Transmission

in databases. For example, tool wear information has been
extracted from wear images using image processing software
and converted into flank/crater wear values along with their
time stamps [45].

Depending on the data type, data may be stored using
several techniques. Traditionally, RDBMS and DDBS have
been used for structured data. RDBMS are characterized
by well-defined schemas and relationships. For example,
basic user information may be stored in traditional database
systems such as MySQL, PostgreSQL, and SQLite. RDBMS
have been used for user interaction data storage. For instance,
Matomo, an user analytics platform, captures user interaction
streams (e.g. clicks and page views) in MySQL and MariaDB
databases. However, RDBMS offer limited scalability.

NO SQL databases (e.g. MongoDB and Cassandra) have
proven to be better approaches for semi-structured (JSON,
XML) and unstructured (audio, video) data. In addition,
XML has been used to transform structured data to semi-
structured data [40]). HDFS may also be used for dealing
with unstructured data. Some examples of these kind of
databases include:

• Cassandra to store event data of automation controller.
• MongoDB (document NoSQL database) to store ma-

chine data.
• TSDBS, such as OpenTSDB and InfluxDB, to store and

access sensor time-series data.

Data models are also used to represent manufacturing data.
Data models are comprised of two parts: (i) run time condi-
tions (process knowledge and time-sensitive dimension) and
(ii) process model (production requirements of products).
Once data models are defined, knowledge graphs may be
used to store data. There are two main types of storage
for knowledge graphs: RDF-based storage and graph-based
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storage. An important design principle of RDF-based storage
is the ease of data distribution and sharing, while graph-
based storage focuses on efficient graph queries and search.
The Neo4j system is a widely used graph database [63]. It
has an active community, and the system itself is efficient in
querying. However, it lacks of support for quasi-distribution.

Smart manufacturing applications have used distributed
file systems (for data-at-rest) and databases (for data-at-
motion) for storage [37]. Historical data are ingested from
databases to predict production planning performance, safety
critical aspects, and network designs. In addition, Hadoop
and MapReduce techniques may be used to reduce the stor-
age space required for big data.

Production and sensor data from the machines have been
initially stored in industrial computers connected to ma-
chines, which are then processed internally using feature ex-
traction to understand the states of the machines. Thereafter,
the data have been sent to cloud servers for managed and
storage in a database, acting as remote server for data storage
[44].

Automation applications relying in storage of manufac-
turing information, as well as services, have increased the
responsiveness and interoperability of the shop-floor and
thus, the automation capacity. The choice of storage solutions
greatly affects the application. High-frequency big-data files
require special solutions such as Hadoop and Spark that can
deal with the high volume property of big data. Data have
been recorded in regular time intervals, resulting in time-
series data [64]. To this end, special database solutions for
storing time-series data, such as InfluxDB, may be used.
Also, relational database methods have been used for their re-
liability. Futhermore, some monitoring solutions have stored
the collected energy in storage devices using CSV files.

TABLE 3: Data storage types and technologies used in manufacturing shop-
floor

Data Storage Type Data Storage Technologies
Relational database MySQL, SQLlite, Oracle DB, SQL server,

ProgresSQL

NoSQL database

Column-based: HBase,Cassandra
Document-based: MongoDB
Key value-based: Redis
Graph-based: Neo4j

NewSQL database VoltDB

Other data storage
types

Time series data base : OpenTSDB
Search engine : Solr, Elasticsearch, SparkSQL
Data warehouse : Hive, Kylin
ETL (Extract, Transform and Load) : Pig
Others : HDFS, Clustrix, NuoDB

E. DATA PROCESSING
When data are collected and transformed into usable form,
data processing takes place. Data processing must be done
appropriately to avoid having detrimental impact on the final
product, or data output. It is typically performed by data
scientists or teams of data scientists. Different techniques can
be used for data processing. Figure 7 presents the traditional
data processing process performed in the shop-floor.

FIGURE 7: Data processing for big data shop-floor

Data processing is a computationally intensive task. First,
data should be resampled to match the recorded timestamps.
Resampling methods such as averaging, forward filling, or
backward filling have been used in literature [65]. Averaging
method takes an average value within a pre-defined time
interval and replaces the missing values with the average
value in the data. In forward- and backward-filling methods,
missing timestamps are filled with values before and after
the missing timestamp, respectively. Once data has been pro-
cessed, it has been fed into application-dependent algorithms
such as ARIMA, Seasonal ARIMA, Bayesian Optimization,
clustering, neural networks [66], genetic algorithms [67] and
parameter identification methods [68].

Several approaches exist for data processing in decision
making. Several studies have used a method based on multi-
neural collaboration to extract knowledge and the extracted
knowledge has been classified according to labels. An ontol-
ogy model and schema layer of the knowledge graph has been
defined and the knowledge has been represented with fuzzy
comprehensive evaluation [69]. Knowledge has been directly
described as production rules [70] and as knowledge graph
[71]. Owing to the wide range of knowledge sources, the
knowledge base that has been constructed according to the
two steps above has high redundancy. To this end, latent se-
mantic analysis, similarity calculations and attribute weight-
ing may be used to eliminate redundancy in the knowledge.
First, the entity triples in the preliminary knowledge base
have been mapped with the Protege ontology library, and
then the semantic web rule language (SWRL) has been used
to represent the empirical rule knowledge. Finally, the data
layer has been instantiated to construct the final knowledge
base [72].

As for the data processing in HMI, in addition to using
several data mining and machine learning techniques, the
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TABLE 4: Relevant references for big data shop-floor

Reference Data Sources Data Collection Data Transmission Data Storage Data Processing Data Visualization
Wang et. al., 2016

[37]
Machine, conveyors, products NA Ethernet, Wireless

communication
HDFS Hadoop, Hive(SQL), Yarn Web pages

Rehman et. al.,
2021 [43]

Images Historical Data Gateway, Internet,
MQTT

Cloud Storage Machine Learning services User Interface

Tsuda et. al., 2014
[42]

Extrusion process data, Temperature and pressure
sensor, machine controllers

NA TCP-IP Oracle, S7 Classification models GUI: MATLAB,
QuickCog

Yan et. al., 2017
[45]

Sensors - Vibration signals, acoustical signals,
power and 3D laser scanner - Tool flank wear

Vibration (every min,
1MHz), Wear (every
20min), Power (every

1min)

NA BMP format as
unstructred data

Envelop analysis, statistical feature extraction,
ANN model

NA

Lin et. al., 2017
[38]

Sensors, RFID, metrology, processing and
machining data

NA Wi-Fi, ethernet,
6LoWPAN,

ZigBee/WSN,
REST/SOAP

XML, JSON, Hadoop Sparq, Impala, Hive NA

Villalonga et. al.,
2020 [73]

Machining data, Vibration Signals NA Profibus, Ethernet Global Warehouse Machine learning NA

Lu et. al., 2019
[58]

CNC controllers, sensors, mechanical actuators,
machine tool data

Time, quantiy &
Operator driven event

Cloud via HTTP
request

XMill Data packaging techniques SSPṄET Web APP

Zhong et. al.,
2015 [39]

Raw material, internal logistic opeartor, tuples NA NA NA Saptio-temporal pattern recognition, logistic
knowledge interpretation, machine learning

regression, structural insight abalysis

NA

Zhang et. al.,
2017 [40]

RFID reader, sensors - pressure, velocity &
temperature

Real time non-real time data Internet, 4G, WLAN,
Sqoop Apache,

Data/X

DDBS, XML, NoSQL/HDFS & Storm, Hadoop,
Machine Learning

NA

Zhang et. al.,
2017 [41]

RFID tags, Smart meters NA NA Storm, Hadoop,
Mapreduce, DDBS

Data cleaning, reduction, Clustering, Association,
Classification, Prediction

NA

Wan et. al., 2017
[47]

Alarms, device logs, device status, machine
center with embedded equipment

Nodes with Restful
protocol , OPC unified

arch with real-time,
periodic & aperiodic

data

Zigbee, Wifi,
Industrial switch &

routing

HDFS based on
Hadoop, Sqoop,

aMysql monitoring
database

Correlation analysis, STORM cluster, Hadoop
cluster using MapReduce batch calcuation

Large screen and
mobile services,

visual analysis reports

Lee et. al., 2015
[44]

Saw machining data, PLC controller, add on
sensor - vibration, acoustic emission, temperature

& current

Real time Ethernet, WiFi Cloud server Time & frequency domain feature extraction,
adaptive clustering

Web & iOS-based
User interface

Bonnard et. al.,
2021 [74]

PLCs NA OPC-UA, API REST,
Ethernet, Wireless
solutions, Modbus,

Profibus

Cassandra Spark, SparJAVA, Machine Learning Web, mobile,
dashboard

Nakata et. al.,
2017 [48]

Failure data Historical data NA NA Distributed clustering method, scalable
K-Means++, Apriori, FPGrowth, Deep Learning

Classification (CNN)

Single View integrated
failure map pattern
monitoring & cause
identification Screen

Zhang et. al.,
2020 [75]

Smart meter, sensors, RFID tags Distributed perception Ethernet, RS232,
Modbus

HDFS, HBASE Feature extraction, clustering algorithm, data
association analysis, anomaly detection

NA

Ji et. al., 2017
[76]

Machine state and parameters Real-time NA Local network &
cloud

Cluster analysis, Factor analysis, Analysis of
correlation and dependence, Regression analysis,

A/B testing, Data mining

NA

Wang et. al., 2020
[77]

RFID, Excel & video NA NA DDBS, NoSQL Data reduction, data transformation, data
cleaning, data integration

NA

Cui et. al., 2020
[7]

Files & Web OPC-UA and
MTConnect

NA RDBMS, NoSQL,
NewSQL

Online analytic processing,online transaction
processing

Zeppelin, Matplotlib,
Tableau, D3, GraphX

Tao et. al., 2018
[1]

Manufacturing information System (MES, ERP,
CRM, SCM, and PDM), IoT sensors, RFID

Real-time using IoT
sensors

NA Object-based storage,
cloud storage

Data cleaning, data reduction Statements, chart,
diagrams, graphs, and

virtual reality
Zambal et. al.,

2018 [78]
Sensors, Digital Twin NA NA HDF5 storage Digital twin data defect analysis NA

Kahvenci et. al.,
2022 [79]

AGV, PLC data Real time OPC-UA, Modbus,
MTConnect

InfluxDB RESTful APIs, Operational KPI Calculation Amazon Quicksight
and PowerBI on
Azure, Grafana,

Kibana, Splunk and
Custom dashboards

Yu et. al., 2019
[80]

Sensor data from multiple manufacturing plants Real time data OPC/UA, SFTP Apache Hive Central
Data Warehouse and

MapR Database

Backend APIs, Apache Spark cluster computing,
PCA predicting model for anomaly detection

Databoard (React
Javascript framework)

Saez et. al., 2018
[81]

Sensors, Machines NA OPC/UA,
MTConnect, TCP,

HTTP

RDBMS, Mysql,
SQL, Postgre,

NO-SQL, MariaDB,
Node4j, InfluxDB

Streaming: Spark, Micro Batching, Batching:
Spark-ML and R

Grafana dashboards

Reuter et. al.,
2016 [53]

Production feedback data Plans, Ad-hoc control
interventions,

resources’ efficiency
& job status

NA NA Naïve Bayes Classifier (NBC), the Association
Rule Induction (ARI) algorithm, and the

k-Nearest Neighbor (kNN) algorithm

NA

Robertson et. al.,
2017 [54]

Simulated data source Manual, spreadsheet,
database, automated

NA NA NA NA

Azad et. al., 2020
[55]

Manufacturing equipment Automated NA NA SQL database, NoSQL database, and graph
database

NA

Lu et. al., 2019
[58]

Event generators, event channels Data packaging Event procedding cloud cloud data analytics cloud apps

Gadaleta et. al.,
2021 [82]

Robot, differential probe, current Data collection in
datasets

Acquisition module
Data Translation

DT9826

Local on robot Variation analysis under parameter effects Plotting and heat maps

Wan et. al., 2017
[47]

Alarm, log and equipment status Adjust sampling
frequency and

configure application
layer protocols

Wired and wireless
transmission

Cloud Real-time active maintenance and offline analysis
and prediction in the cloud is provided

Visual presentation
through digital twin

etc.

Nakata et. al.,
2017 [48]

Yield analysis identifying the cause of failure
from wafer failure map patterns

Utilization of Pattern
Mining.

Manufacturing history

NA NA Distributed clustering method scalable K-Means Plots failure map
pattern monitoring,

failure cause
identification and
failure recurrence

monitoring.
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development of analytic solutions requires selecting the right
strategy according to diverse scenarios. Streaming, large-
batch, and small-batch analytics are the three main process-
ing strategies for big data [81]. Streaming is a processing
technique for real-time analysis of data streams, particularly
necessary when data arrives at high velocity. Large-batch
processing is the most traditional form of processing where
big data volumes are collected, representing large periods of
time (e.g. hours, day, week) and being analysed with complex
machine learning models. For batch processing, real-time
data processing is not a priority. Small-batch processing (also
known as micro-batch) is the process of small cumulus of
data on a small time window (e.g. seconds, minutes).

Data processing can be also used for automation. In-
telligent decision making for process automation and self-
organization requires the analysis of machine status and en-
ergy consumption. This makes necessary the use of machine
learning techniques. Some examples for process automation
include neural networks, support vector machines, and k-
nearest neighbours [42]. Negotiation based approaches with
machine learning have been used for choosing proper routing
and transportation of products, e.g. for storing or scrapping
[43]. Genetic algorithms have also been used under the
scope of ML. For process automation, genetic algorithms find
optimal production resources e.g. the ones with minimum
energy consumption or the ones that require less production
time. In general, classical machine learning techniques are
enough for this type applications.

In maintenance sector, feature extraction of the time series
data from sensors like vibration/forces include both time-
domain and frequency domain feature extraction. Time do-
main features include RMS, peak, mean, standard deviation,
skewness, kurtosis, and crest factor [44]. Frequency do-
main features include main frequency, harmonics, frequency
band energy percentage. Before feature extraction of high-
frequency data, noise reduction should be performed to the
signal. Data and pattern mining models for maintenance (e.g.
Apriori [40] or FPGrowth [48]) could be used for knowledge
and rules generation. Generated knowledge along with pro-
duction data could aid in fault diagnosis and prediction. Cor-
relation analysis has provided internal relationships between
device and faults [47].

Traditional and Deep machine Learning techniques have
been used for data analytics. Clustering algorithms have been
identified to be the most common machine learning algorithm
for preliminary grouping of sensor data and for creating
labels according to their process state [44], [48]. Clustering
algorithms have been followed by classification algorithms
based on traditional machine learning (e.g. k-means in [48])
or deep learning (e.g. CNN in [46]). Technologies that have
been used for data analysis in maintenance include STORM
[40] (distributed computing), STORM cluster [47] (resource
scheduling), Hadoop [40] (offline prediction - considering
both current status and historical information).

The collected data needs to be processed to generate in-
sights. Primary steps in data processing involve cleaning the

data to remove noisy and incorrect format issues. Streamlink
(Flink, Storm), micro-batching (Spark) and batching data
processing (MapReduce) provide technologies to clean and
process big data volumes. Manufacturing applications like
complex event processing by Storm, and detecting deviations
by Flink, prediction and quality control by MapReduce are
some examples where these technologies are used to process
manufacturing data. Knowledge can be generated by harvest-
ing big data technologies on the generated big data. Apache
Hive-Mind based platforms have aided knowledge generation
for predictive maintenance. Hadoop and OWL technologies
can manage knowledge of intelligent applications for smart
manufacturing applications.

F. DATA VISUALIZATION
Data visualization is an integral part of data analysis which
uses tables and graphs for presenting quantitative and qualita-
tive information, and is used by users to interact with the data
[83]. However, few state-of-the-art works describe methods
for data visualization in the context of smart manufacturing
automation and big data. Data visualization is usually imple-
mented in the form of dashboards, a type of graphical user
interface that consolidates big data (e.g. sensor, operational,
and maintenance data). Dashboards are used to monitor and
access production status and, in some cases, are used as a
direct interface between the customer and the shop floor.
They are often interactive and users can filter and query data,
zoom in/out, and scroll. Many of the visualizations contained
in dashboards show changes over time and are updated as
new data is released, thus displaying real-time data updated
every few seconds or minutes. In general, data visualization
can include [84]:

• Different types of charts and graphs, tables, time trends,
etc.

• Interactive widgets (e.g. knobs, dimers, and keypads)
used to interact with CPS, IoT devices and applications,
based on current data analysis.

• Visualization of geo-referenced data (machines in dif-
ferent locations, operators location tracking, external
sensors)

From the technological perspective, research has prefered
the use of Python programming language to develop machine
learning models. Therefore, for data visualization, Python
libraries such as Seaborn or Matplotlib have been chosen
to develop charts and graphs. Matplotlib has been used to
visualize a heat map and to find the correlation between the
variables involved in milling tool wear (Figure 8.a) [85].

Depending on the tools and technology used (e.g. SQL
databases, graph databases), visualisation methods integrated
into the development environment have been used [63]. How-
ever, these options are not intuitive or designed for end-
users. At the moment, multiple platforms and frameworks
can produce analytics applications and visualizations easily
with very aesthetically pleasing results. Grafana is one of
the most popular open-source platforms for interactive data
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visualization. [79] has used Grafana to create a dashboard
for visualising energy data at the workstation level to show
operational KPI and power consumption trends (Figure 8.b).
Similarly, [81] has developed dashboards using Grafana and
Amazon QuickSight for its compatibility with Spark to dis-
play the results of small-batch processing for the detection
of anomalies on CNC Machines (Figure 8.c). Other similar
products include Qlikview, Tableau, Kibana, and Splunk.

Although these platforms are claimed for their ease of use;
the target users are data scientists and engineers, business
analysts, or DevOps engineers. For end-users (i.e customers,
operators, supervisors) customized applications accessible
through mobile devices or web interfaces using browsers [62]
is the best option. In [44], a Web and iOS-based user interface
has been used in real-time for decision-making on the assess-
ment of health. In [47], the manufacturing data processed has
been sent to backstage supporters and the diagnosis or prog-
nosis reports have been visualized on large screens through a
web application (Single View integrated failure map pattern
and cause [48]) or sent to mobile devices of the maintenance
personnel (Figure 8.d). These kinds of applications require
software development. Javascript is the most used web pro-
gramming language for reactive applications, with multiple
frameworks such as React, AngularJs, and NodeJs. There
are specific Javascript libraries that allow the development
of interactive visualizations such as CanvasJS or ChartJS.
[86] has developed a web application for historical analysis
and real-time tracking of the assembly line performance.
The web is created with a combination of HTML5, CSS,
JavaScript, the JavaScript Data-Driven Documents (D3) li-
brary, the Three.js, and several JavaScript framework and
utility libraries including Underscore.js, Backbone.js, and
JQuery (Figure 8.e).

It is important to consider that manufacturing processes
involve several types of users where multiple variables inter-
vene (e.g. expertise, role, and age). Therefore, users have dif-
ferent perceptions of visual data presentation and interactive
data analysis [57]. User-centered design as a methodology
can help to understand the requirements and needs of deter-
mined roles in the industry.

V. DISCUSSION ON THE RECENT TRENDS AND
CHALLENGES
Table 4 provides a brief overview of the relevant references
for big data shop-floor reviewed in this work. Different man-
ufacturing applications require different data sources. Data
sources comprise mostly smart sensors and IoT devices that
convert physical variables into digitized measurable units.
Smart decision making in product driven manufacturing ap-
plications rely on specifications of production requirements.
Manufacturing automation concepts are based on logic-based
or negotiation based approaches. In particular, it has been
identified that data-driven automation has been considered
less, making this as an opportunity for future research.

Some applications rely fundamentally in data acquisition
and number of sensors placed in shop-floor machines and

resources. Two examples are maintenance and energy opti-
mization. One the one hand, maintenance has relied on acous-
tic emissions, temperature, velocity, pressure, and other vari-
ables to understand health status of machines. On the other
hand, energy optimization application have relied mostly on
measurement of electrical variables, e.g. smart meters, cur-
rent and voltage clamps, and single-phase and 3-phase smart
plugs. With the advent of human-centre manufacturing appli-
cations, the acquisition of data from operators has become a
trend in current research, specially data used to model human
characteristics, such as behaviour and comfort. Wearable
trackers can measure human performance under stressful or
difficult conditions. Consideration should be given to data
sources that contain collection of data that should not be used
due to regulations i.e General Data Protection Regulation.

Data collection may be performed with either manual or
automatic data acquisition. Main trade-offs happen in form,
consistency and reliability of the data. Data collection is
dependent on the type of data source and comes from sources,
such as IoT devices, evaluations, simulations, and predic-
tions, in structured or unstructured formats. Data collection
has been usually accompanied by an underlying framework
that leverages step-wise processes to gather desired data for
decision-making. Predictive maintenance, monitoring, en-
ergy consumption, and event-driven automation applications
require data to be collected as per specific requirements.
These requirements include real-time, time-driven, and peri-
odic data collection, as well as application-specific criterion.

Data transmission may be performed with sockets, OPC-
UA, MQTT, TCP/IP (such as PLC simulator), or other com-
munication protocols depending on the application domain
and can be dynamically chosen. Data transmission is the mid-
dleware between digital twins and the shop-floor. Moreover,
it is the communication channel between devices in digital
twins and their physical counterpart. The introduction of IoT
on the shop floor has increased the transmission of low-
frequency sensor information directly from sources through
wireless communication. This has had impact on the latency
of the response of the system. Industrial wireless communi-
cation devices include industrial switches, industrial routing,
and wireless access points.

As manufacturers becomes increasingly reliant on sen-
sors and various data sources, data storage has become an
increasingly important concern. In particular, the ability to
store big data has been given special attention. A trend has
been identified in manufacturers, moving from traditional
RDBMS databases to NoSQ and NewSQL databases when
considering scalabilty. Moreover, a need has been identified
to develop techniques to not only store data in a structured
manner but also filter redundant data and delete data which is
no longer relevant. This could greatly reduces storage costs
and complexity. However, it has been recognized that there
are few studies considering this aspect.

Data processing techniques have been widely used in
manufacturing. With the development of IoT, 5G and 6G, and
cloud computing technologies, the data quantity from manu-
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FIGURE 8: Data visualization. a) [85] Seaborn visualization b) [79] Grafana visualization c) [81] Grafana and QuickSight d) [47] web and mobile apps e) [86]
HTML5, CSS, JavaScript web application

facturing systems has increased rapidly. With industrial big
data, achievements beyond expectations have been made in
product design, manufacturing, and maintenance processes.
Data processing has been a core technology to empower
intelligent manufacturing systems.

Finally, visualization has been identified to usually be a
neglected aspect in research. As presented in the results,
multiple scholars prefer Python libraries for simple static
visualization. However, to provide adequate commercial im-
plementations of big data applications, visualization is as
essential as the other stages. The capability of applications
to further exploit data from user behaviour, improving the
visualization aspect in manufacturing, needs further research.
Furthermore, there is a lack of standardization that requires
researchers and engineers to identify generic abstractions
for industrial data and understand different users groups.
Thus, new frameworks for visualization applications may be
developed.

CHALLENGES
Challenges found in literature have been compiled in this
study from the results and discussion of the review process.
Although some of the challenges below are application-
specific, they were found quite often in the reviewed liter-
ature.

• Data measurement solutions usually come with inherent
measurement errors. Although these errors are relatively
small, transferability has been affected. For instance,

the same sensor for the same equipment performing the
same application can yield different energy consump-
tion values. Noisy and non-deterministic measurement
values challenge data-processing and decision-making
algorithms.

• Frequency of collected data is identified as another
challenge in literature. Sampling at a high rate pro-
duces big data that is difficult to transmit and process
in real-time. However, some applications require high-
frequency data, such as energy parameter profiling ap-
plications. Therefore, trade-offs should be considered in
data collection on the shop-floor.

• Data acquisition systems, incorporating all information
gathered during the production process, are needed to
collect data, discover knowledge, and share it among all
stakeholders.

• Real-time processing, analysis, production reporting,
and monitoring of data-driven sources must be imple-
mented for real-time analysis of sensor data.

• Reliable data and valuable knowledge is needed to sup-
port optimized decision-making of product life-cycle
management.

• Data heterogeneity must be processed in shop-floor
systems comprised of multi-source heterogeneous data
and complex processes, such as fault prediction using
traditional signal processing techniques considering the
5V challenges posed by industrial big data.

• Data visualization disgned should be improved for hu-
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man interaction. Visual and task complexity must be
consider for data visualization, such as complex dash-
boards and unorganized big data. In addition, a high
number of steps to realize a task may cause mistakes
and reduce the performance of operators.

• The lack of implementations of cybersecurity and data
privacy remains a challenge in shop-floor systems, in
particular for big data analytics.

• Governance of big data handles data integrity, quality,
provenance, retention, processing, and analysis in the
full data life cycle. Governance of industrial big data
should consider the issues of cybersecurity and data
privacy as well.

VI. CONCLUSION
In this work, a basis for the development of an homogeneous
approach to gather and use big data on the shop-floor in
manufacturing environments has been presented. A literature
review of research regarding big data in manufacturing has
been performed, targeting the complete data life cycle. In
this regard, the needs, requirements and methods for the
seven stages of the big-data life cycle in manufacturing have
been presented and discussed. Therefore, approaches for data
acquisition, processing and utilisation for decision making
in shop-floor in manufacturing have been established and
challenges in each stage have been elaborated.

As results of this study, approaches have been identified
in each stage of the big-data life cycle in manufacturing,
focusing on maintenance, automation, quality, decision mak-
ing, energy optimization, user interaction, and adaptability.
Data sources, such as sensors, documents and models, have
been identified and elaborated, detailing their usage and
benefits, as well as possible drawbacks. Thereupon, data
collection techniques have been presented, i.e. manual data
acquisition and automatic data acquisition, describing the
benefits and drawbacks of each. Furthermore, a separation
between monitoring and predictive applications has been
described, highlighting the effect that the intended applica-
tion has in data collection. Having presented data collection
techniques, data transmission protocols and techniques have
been studied. Techniques and protocols for data transmission
have been presented, as well as the cases in which each
may be used. Following, data storage possibilities have been
presented. Since data may be structured, semi-structured and
unstructured, storage options have been discussed for each
type of data structure, as well as the methods to integrate
data in different formats and from different sources. In the
context of data processing, several approaches towards data
processing have been presented, as well as leading technolo-
gies for big data processing. In general, artificial intelligence
and statistical approaches have been identified as the main
contributors in this stage. Finally, data visualization meth-
ods, an integral part of data analysis, have been described
in the context of smart manufacturing automation and big
data. Several platforms and frameworks for data visualization
have been reviewed and programming languages suitable for

creating dashboards and visualization applications have been
described.

A discussion of the trends and challenges obtained from
the review process has been presented. It has been identified
that the primary data sources include smart sensors and
IoT devices. Nevertheless, human-centered manufacturing
applications have included data acquisition from operators,
allowing modelling of behaviour and comfort. An important
consideration that has been highlighted, regardless of the
source of the data, is data privacy and restrictions that may
apply due to regulations.

Regarding data transmission, several protocols have been
identified and their usage will depend on the technologies
being used and the application. Data format, data size, trans-
mission distance and transmission rates have a determining
effect on which protocols to use and how to integrate the
data being sent. In data storage, moving from traditional
structured data storage, such as RDBMS, to unstructured and
semi-structured data storage, such as NoSQL and NewSQL,
has been identified as the leading trend. In addition, it has
been identified that there is a lack of focus on irrelevant data
filtering and deletion, which might help to reduce cost and
processing power in applications where there are economical
or storage constraints.

In general, this research has identified several challenges in
literature. Challenges involve possible errors in the collected
data, which may lead to inaccurate measurements, as well
as the challenges regarding the handling of varied sampling
frequencies and the impact on the transmission technologies
used. Furthermore, challenges regarding heterogeneity of
data have been identified, where the integration of varied
data sources could represent a challenge during data storage,
processing, and visualization, deriving in incorrect analysis
of data or complexity in understanding the data obtained
during the data life cycle. Finally, cybersecurity and data pri-
vacy have been identified as important challenges, as several
studies have lacked attention in this regard.

Future work will focus on developing a consolidated
framework and methodology for big-data life cycle. Based on
the findings of this review, it is expected that this work will
serve as basis for future frameworks for big-data life cycle on
the shop floor.
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