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Abstract

New trends in manufacturing and industry lead to digitalise all processes,
machines and communicate them forming Cyber Physical Systems (CPS),
facilitating process monitoring and data acquisition. The analysis of that
amount of data provides new insights in product quality, process optimi-
sation and Predictive Maintenance (PdM). PdM analyses industrial assets
to perform maintenance actions that extend their life and anticipate their
failures to prevent them, optimising maintenance costs with respect to time-
based and corrective maintenance strategies. PdM systems aim to monitor
industrial assets to detect anomalies, diagnose their root cause, predict their
degradation and propose mitigation actions.

Research on data-driven PdM systems has increased in the last six years
due to their capability to model complex industrial systems by learning from
the large amount of data collected from industrial assets. However, they are
rarely transferred to industrial production scenarios due to they fail incor-
porating domain expert knowledge to the system. In addition, most data-
driven works do not address industrial requirements such as interpretability,
real time execution, novelty detection or uncertainty modelling. No method-
ology to guide the life-cycle of data-driven PdM models in industrial envi-
ronments exist, which could facilitate the implementation of PdM systems in
real use-cases to reduce maintenance costs and avoid production breakdowns.

The main contribution of this thesis is the design and validation of
the methodology for data-driven techniques and expert knowledge com-
bination for predictive maintenance MEthodology for DAta-Driven tech-
niques and Expert Knowledge combination for Predictive Maintenance
(MEDADEK-PdM). It defines the stages, steps and tasks to guide the de-
sign, development and implementation of data-driven PdM systems accord-
ing to business and process characteristics. It defines the required working
profiles to facilitate their collaboration, and includes a list of deliverables.
The methodology is designed in a flexible and iterative way, combining stan-
dards, state-of-the-art methodologies and related works of the field.

The methodology has been validated empirically by its application in



three industrial use-cases, where industrial requirements are addressed. The
first use-case consists of modelling correct working engine data to detect
anomalies in run-to-failure aviation engine data, addressing novelty detection
with data-driven PdM systems in a simulated environment. The second use-
case consists of estimating and explaining the Remaining Useful Life (RUL)
of experiments in a bushing testbed, by combining data-driven PdM systems
with eXplainable Artificial Intelligence (XAI) techniques and domain knowl-
edge. The third use-case implements an adaptable data-driven PdM system
for semi-supervised anomaly detection and diagnosis in press machine pro-
cess data. The system detects novel anomalies and performs their diagnosis
combining XAI, clustering and projection techniques. The adaptability of
the system to changing Environmental and Operational Conditions (EOC)
is addressed with transfer learning.

The application of the proposed methodology guides the life-cycle of data-
driven PdM systems, integrating Human-In-The-Loop (HITL) to include do-
main knowledge. As a result, the obtained PdM systems tackle the specific
industrial requirements of the addressed use-cases, obtaining a trade-off be-
tween accuracy and explainability.



Resumen

Las nuevas tendencias en la fabricación y la industria llevan a digitalizar
todos los procesos y máquinas y a comunicarlos formando sistemas ciberfísi-
cos (CPS), facilitando la monitorización de los procesos y la adquisición de
datos. El análisis de esa cantidad de datos proporciona nuevos conocimientos
sobre la calidad de los productos, la optimización de los procesos y el man-
tenimiento predictivo (PdM). El PdM analiza los activos industriales para
llevar a cabo acciones de mantenimiento que prolonguen su vida útil y se an-
ticipen a sus fallos para prevenirlos, optimizando los costes de mantenimiento
respecto a las estrategias de mantenimiento correctivo y mantenimiento pre-
determinado. Los sistemas PdM tienen como objetivo monitorizar los activos
industriales para detectar anomalías, diagnosticar su causa raíz, predecir su
degradación y proponer acciones de mitigación.

La investigación sobre los sistemas PdM basados en datos ha aumentado
en los últimos seis años debido a su capacidad para modelar sistemas indus-
triales complejos aprendiendo de la gran cantidad de datos recogidos de los
activos industriales. Sin embargo, rara vez son transferidos a escenarios de
producción industrial debido a que no logran incorporar el conocimiento de
los expertos del dominio al sistema. Además, la mayoría de los trabajos basa-
dos en datos no abordan requisitos industriales como la interpretabilidad, la
ejecución en tiempo real, la detección de nuevos patrones de funcionamiento
o el modelado de la incertidumbre. No existe ninguna metodología que guíe
el ciclo de vida de los modelos PdM basados en datos en entornos industri-
ales, lo que facilitaría la implementación de los sistemas de PdM en casos
de uso reales para reducir sus costes de mantenimiento y evitar paradas de
producción.

La principal aportación de esta tesis es el diseño y la validación de la
metodología para combinar de técnicas basadas en datos y conocimiento
experto en la aplicación de mantenimiento predictivo (MEDADEK-PdM).
La metodología define las etapas, los pasos y las tareas necesarios para guiar
el diseño, el desarrollo y la implementación de sistemas de PdM basados en
datos según las características del proceso y su negocio. Además, define los



perfiles de trabajo necesarios para facilitar su colaboración e incluye una lista
de entregables resultantes de su implementación. El diseño de la metodología
es flexible e iterativo, combinando estándares, metodologías del estado del
arte y trabajos relacionados del campo de investigación.

La metodología ha sido validada empíricamente mediante su aplicación
en tres casos de uso industriales. El primer caso de uso consiste en detec-
tar anomalías en motores de aviación mediante el modelado de datos de
funcionamiento correcto, abordando la detección de nuevas anomalías con
sistemas de PdM basados en datos en un entorno de simulación. El segundo
caso de uso consiste en estimar y explicar la vida útil restante (RUL) de los
experimentos en un banco de pruebas de casquillos, combinando sistemas de
PdM basados en datos con técnicas de inteligencia artificial explicable (XAI)
y conocimiento del dominio. El tercer caso de uso implementa un sistema de
PdM adaptable basado en datos para la detección y el diagnóstico de anoma-
lías de forma semisupervisada en datos de proceso de máquinas de prensa.
El sistema detecta nuevas anomalías y realiza su diagnóstico mediante la
combinación de técnicas de XAI, clustering y proyección. La adaptabilidad
del sistema a cambios en condiciones ambientales y operacionales (EOC) se
aborda mediante el aprendizaje por transferencia.

La aplicación de la metodología propuesta guía el ciclo de vida de los
sistemas PdM basados en datos, integrando al humano en el bucle (HITL)
para incluir el conocimiento del dominio. Como resultado, los sistemas PdM
obtenidos abordan los requisitos industriales específicos de cada caso de uso,
obteniendo un equilibrio entre precisión y explicabilidad.



Laburpena

Fabrikazioaren eta industriaren joera berriek prozesu eta makina guz-
tiak digitalizatzera eta komunikatzera eramaten dute sistema ziberfisikoak
(CPS) eratuz, prozesuen monitorizazioa eta datuen eskurapena erraztuz.
Datu kopuru horren analisiak ezagutza berriak ekartzen ditu produktuen
kalitateari, prozesuen optimizazioari eta mantentze prediktiboari (PdM) bu-
ruz. PdMk aktibo industrialak aztertzen ditu hauen balio-bizitza luzatzen
duten mantentze-ekintzak gauzatzeko eta hauen akatsei aurreratuz hauek
prebenitzeko, mantentze-kostuak optimizatzeko mantenketa zuzengarria eta
aurrez zehaztutako mantentze estrategiekin alderatuz. PdM sistemen helbu-
rua aktibo industrialak monitorizatzea da, anomaliak detektatzeko, horien
kausa diagnostikatzeko, degradazioa aurreikusteko eta arintze-ekintzak pro-
posatzeko.

Datuetan oinarritutako PdM sistemei buruzko ikerketak gora egin du
azken sei urteotan industria-sistema konplexuak modelatzeko duten gaita-
sunagatik, industria-aktiboetatik jasotako datu kopuru handitik ikasiz. Hala
ere, gutxitan transferitzen dira industria-produkzioko inguruneetara, ez
baitute adituen ezagutza sisteman txertatzen. Gainera, datuetan oinar-
ritutako lan gehienek ez dituzte baldintza industrialak jorratzen, hala nola
interpretagarritasuna, denbora errealean gauzatzea, funtzionamendu-patroi
berriak detektatzea edo ziurgabetasuna modelatzea. Ez dago industria-
inguruneetan datuetan oinarritutako PdM ereduen bizi-zikloa gidatuko duen
metodologiarik, eta horrek PdM sistemak ezartzea erraztuko luke erabilera-
kasu errealetan, mantentze-kostuak murrizteko eta produkzio-geldialdiak sai-
hesteko.

Tesi honen ekarpen nagusia datuetan oinarritutako teknikak eta adituen
ezagutza integratzen duten mantentze prediktiboaren aplikazioak gidatzeko
metodologiaren (MEDADEK-PdM) diseinua eta balidazioa da. Metodolo-
gian, prozesuko eta negozioko ezaugarrien arabera datuetan oinarritutako
PdM sistemen diseinua, garapena eta inplementazioa gidatzeko beharrezkoak
diren etapak, urratsak eta zereginak zehazten dira. Gainera, lankidetza
errazteko beharrezkoak diren lan-profilak zehazten ditu, eta metodologia



inplementatzearen ondorioz sortutako entregagaien zerrenda jasotzen du.
Metodologiaren diseinua malgua eta iteratiboa da, estandarrak, puntako
metodologiak eta ikerketa arloarekin lotutako lanak konbinatuz.

Metodologia enpirikoki baliozkotu da, hiru erabilera-kasu industriale-
tan aplikatuz. Lehenengo erabilera-kasua abiazio-motorretan anomaliak de-
tektatzean datza, funtzionamendu egokiko datuak modelatuz, simulazio-
ingurune batean datuetan oinarritutako PdM sistemekin anomalia berriak
detektatuz. Bigarren erabilera-kasua zorro bankuan egindako esperimentuen
gainerako bizitza erabilgarria (RUL) kalkulatzean eta azaltzean datza,
datuetan oinarritutako PdM sistemak adimen artifizial azalgarriko (XAI)
teknikekin eta domeinuaren ezagutzarekin konbinatuz. Hirugarren erabilera-
kasuak datuetan oinarritutako PdM sistema moldagarri bat inplementatzen
du, prentsa-makinen prozesu-datuetan anomaliak modu erdi-superbisatuan
detektatzeko eta diagnostikatzeko. Sistemak anomalia berriak detektatzen
ditu eta horien diagnostikoa egiten du XAI, multzokatze eta proiekzio
teknikak konbinatuz. Sistemak ingurumen-baldintzen eta baldintza oper-
atiboen (EOC) aldaketetara egokitzeko gaitasuna lortzeko transferentzia
bidezko ikaskuntza erabiltzen du.

Proposatutako metodologiaren aplikazioak datuetan oinarritutako PdM
sistemen bizi-zikloa gidatzen du, gizakia buklean (HITL) integratuz domein-
uaren ezagutza sartzeko. Horren ondorioz, lortutako PdM sistemek erabilera-
kasu bakoitzaren baldintza industrial espezifikoak jorratzen dituzte, zehaz-
tasunaren eta azalgarritasunaren arteko oreka lortuz.
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Chapter 1

Introduction

This chapter introduces maintenance background, basic predictive maintenance con-
cepts, and author’s motivation for research to provide solutions to observed problems.
Accordingly, the research hypothesis, objectives and thesis statements are defined, com-
plemented with the main thesis contributions.

1.1 Maintenance in industrial environments

The evolution of industry since the first machine was created has been classified into
different revolutions. The first brought mechanisation with water power and steam
power, the second brought mass manufacturing by product lines and electric energy, and
the third brought the production automation by digital revolution based on Information
& Communication Technology (ICT) and electronics.

Nowadays, the fourth revolution denominated as Industry 4.0 (I4.0) is underway, being
supported on Cyber Physical Systems (CPS) and Industrial Internet of Things (IIoT).
Its objective is the digitalisation of industry to improve industrial processes and address
their requirements using software, sensors and intelligent control units [20].

The heterogeneous data collected from I4.0 platforms creates opportunities for process
optimisation, product quality and Predictive Maintenance (PdM), among others. One
of the main opportunities identified in I4.0 is maintenance optimisation by applying
data-driven techniques to massive amount of collected process data, making predictive
and proactive maintenance strategies more accessible than ever before.

The norm EN 13306 [21] defines maintenance as the combination of all technical,
administrative and managerial actions during the life cycle of an item intended to retain
it in, or restore it to, a state in which it can perform the required function, failure as
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the loss of the ability of an item to perform a required function and fault as a state of an
item where it is unable to perform the required function, excluding time for maintenance
actions.

Furthermore, it defines 3 main maintenance strategies:

• Improvement maintenance: to improve reliability, maintainability and safety
while keeping the original function.

• Preventive maintenance: before failure occurs; it can be classified in two sub-
types according to the performing way. One sub-type is predetermined main-
tenance, where the components are replaced periodically without observing their
degradation. The other sub-type is Condition Based Maintenance (CBM)
supported on PdM, in which diagnosis and prognosis are performed to antici-
pate maintenance requirements based on assets’ condition.

• Corrective Maintenance: replaces the broken parts of a machine when it stops
working or when its users detect defects on it. This maintenance strategy is
expensive and leads to environmental and human security problems.

There is another commonly mentioned maintenance strategy called proactive mainte-
nance, which strives to identify and address the problems that can lead to breakdowns in
the first place, addressing the root causes [22].

Industrial companies consider maintenance a key process to be tracked and for that,
Maintenance Management (MM) and Manufacturing Operation Management (MOM)
approaches are used.

1.2 Introduction to predictive maintenance

PdM aims to keep assets working correctly and only apply maintenance actions once
they start degrading, anticipating their maintenance requirements. This maintenance
strategy extends components’ working life with respect to predetermined maintenance,
and prevents damages by intervening before failures occur: before corrective mainte-
nance, as shown in Figure 1.1.

Even though the concept of PdM is a step further from the CBM, which is the application
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Figure 1.1: PdM optimisation cost by Asset Infinity [1].

of Prognosis and Health Management (PHM) in the maintenance field that arose in
1940’s [23], nowadays its automation is even more feasible thanks to the standardisation
of technologies.

PdM is achieved by a system that monitors machine/component conditions and detects
early signs of failure to apply maintenance in a proactive way, supported on diagnosis
and prognosis techniques. This health monitoring system can provide data-driven main-
tenance information and recommendations to domain technicians, who may anticipate
maintenance needs.

These systems have applications on many fields such as manufacturing, automotive, en-
ergy, water, service and other industry domains [24, 25]. They anticipate and attend
failures to ensure smooth operation which enhances total productive maintenance, im-
proves Overall Equipment Effectiveness (OEE), safety, and protects the environment.
As stated by Vorne in [26], OEE is a metric that measures the total productive time
in range between 0% and 100%; it is described in Equation 1.1. According to Vorne
[26], it identifies all losses of time in availability, performance and quality which helps
benchmarking progress and improving the productivity of manufacturing equipment.

3



OEE = Availability × Performance×Quality (1.1)

By using PdM, companies can achieve a OEE over 90% [22] and obtain a 10 times return
on investment [27]. It is the most advanced level in maintenance, and often the most
efficient by allowing strategic decision making, as introduced in Figure 1.2

Figure 1.2: OEE of 4 maintenance strategies: corrective, predetermined, proactive and pre-
dictive respectively. Image by TIBCO [2].

1.3 Motivation

Effective maintenance can reduce industrial companies’ costs up to 50% on machines,
systems and people [28]. Nowadays most industrial companies are using the following
maintenance approaches: either preventive/time-based maintenance, applying periodi-
cal interventions to avoid failures; or corrective maintenance, waiting until failures occur
to apply interventions.

These maintenance strategies have a big economical optimisation potential. On the one
hand, components’ working life can be extended by taking advantage of their untapped

4



working time before failure, which reduces downtime and replacement costs. On the
other hand, replacing components before failures occur can prevent expensive break-
downs whose reparation cost is much higher than the components, given production
time loss and maintenance task cost.

For these reasons, recent trends are advancing towards data-driven predictive and proac-
tive maintenance strategies, which have shown to be the most cost-optimal ones [22, 29].
This is best time for industrial companies to apply data-driven techniques to improve
their processes, since many of them are monitoring their machines using sensors and up-
loading it to online platforms. However, there is a gap between the models presented in
state-of-the-art publications, which often use controlled and simulated datasets to test
the algorithms that do not contain industrial companies requirements. For that reason,
several aspects required to deploy models to industrial plants are not addressed, such
as modelling correct working data, diagnosis of novel anomalies or real time execution,
among others.

Industrial companies require a systematic form or methodology that guides them in the
development of data-driven PdM models supported on domain knowledge from scratch,
given their lack of expertise and limited resources and time to take these systems to pro-
duction. Additionally, 80% of Machine Learning (ML) projects finish in pre-production
stages before reaching production [30], thus failing to deliver their potential value. A
systematic methodology for data-driven PdM life-cycle management may help them
prioritise, define use-case requirements and guide them throughout the process: thus
reducing uncertainty, and optimising costs and time.

1.4 Hypotheses and research objectives

This thesis wants to demonstrate that a modular methodology for data-driven pre-
dictive maintenance that integrates domain knowledge can guide the process
of the life-cycle development of predictive maintenance in industrial environ-
ments. This main hypothesis is completed with two additional hypotheses:

• H1: this methodology can adapt to different use-cases to meet their requirements,
addressing their limitations and adapting to their diverse resources thanks to its
flexibility.
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• H2: given the guidance provided by Human-In-The-Loop (HITL) during the PdM
life-cycle, the methodology enables to obtain explainable results.

Inasmuch as industrial companies are nowadays starting to develop data acquisition and
data infrastructure, a modular methodology that guides them in the implementation
of predictive maintenance life-cycle can facilitate companies addressing different use-
cases to meet their requirements. Methodology’s adaptability refers to its capability to
accommodate to industrial characteristics such as data variability or the lack of failure
data given that industrial companies work hard to avoid machine breakage. Moreover,
the methodology should facilitate the integration of domain knowledge and the guidance
of business perspective in the process, in order to achieve accurate as well as explainable
models that meet industrial use-case requirements.

To find answer to these hypotheses, the thesis’ main objective is defined to: de-
sign and validate a modular methodology to systematise the application of
data-driven predictive maintenance in industrial assets, guided by domain
knowledge and adaptable to industrial requirements. Two specific objectives are
defined to fulfill the main objective:

• O1: design the methodology that enables the systematisation of data-driven pre-
dictive maintenance in industrial environments. It will be supported on existing
data-driven PdM methodologies, standards, and architectures, and based on ma-
turity level of digitalisation processes.

• O2: validate the methodology by its implementation in three industrial use-cases:
aircraft engine run-to-failure simulation, fatigue experiments of a bushing testbed
and press machine of a production line with no known failure. The methodology
will systematically guide the data-driven PdM life-cycle on each use-case, being
adaptable to fulfill their requirements and industrial needs.

– O2.1: Demonstrate that the integration of domain knowledge in PdM life-
cycle permits to obtain accurate and interpretable data-driven models.

After completing the objectives and validating the hypotheses, the developed and vali-
dated methodology will be ready for application in other industrial use-cases.
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1.5 Contributions

The main contributions of this thesis are the following:

• Provides a state of the art review of data-driven predictive maintenance techniques,
covering statistical, machine learning and deep learning architectures designed to
address industrial requirements. It will help data-scientists in the selection of the
most adequate algorithms that meet their use-case requirements according to the
available resources and data characteristics.

• Presents a methodology for data-driven predictive maintenance application guided
by expert knowledge in industrial environments. This methodology differs from
state of the art works in covering the whole life-cycle required to design the use-
case, analyse the resources, prepare the data, train and validate the model and
deploy it into production. Thus, the methodology can guide industrial companies
in the implementation of these technologies, helping them to overcome challenges.
Moreover, the methodology proposes a roadmap to increase information levels on
industrial data, which can be used to refine data collection systems and define
data classification systems that will enable more advanced PdM implementation.

• Data-driven systems for three different use-cases based on simulation, test and
production data have been implemented. Each use-case had its requirements and
resources, so they have been analysed, implemented and compared State-of-the-Art
(SotA) algorithms, adapting them to address industrial companies’ requirements,
which are sometimes overlooked in state-of-the art-works.

• The validation use-cases may be used as showcase of how to implement predictive
maintenance for companies that are starting with it. These will help them spot
possible applications and benefits of PdM, learn how to adapt the methodology to
their requirements, identify the required resources and profiles, and gain knowledge
on how data-driven models can be selected, adapted, compared and validated. The
stated tasks may facilitate project planning.

• Presents how explainable artificial intelligence, clustering and projection tech-
niques can help domain technicians in the diagnosis of novel anomalies detected by
data-driven models. This may encourage collaboration of different profiles and in-
crease trust of stakeholders in the technology, promoting the adoption of predictive
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maintenance in industrial companies.

• Demonstrates that a PdM data-driven model can be reused over time with data of
similar environmental and Environmental and Operational Conditions (EOC) by
adaptation using transfer learning. However, model execution with different EOC
data may require a new model.

• Disseminates the results of the research performed during this thesis:

– O. Serradilla, E. Zugasti, C. Cernuda, A. Aranburu, J. R. de Okariz and
U. Zurutuza, "Interpreting Remaining Useful Life estimations combining
Explainable Artificial Intelligence and domain knowledge in industrial ma-
chinery," in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 2020, pp. 1-8, doi: 10.1109/FUZZ48607.2020.9177537.

– O. Serradilla, E. Zugasti, J. Ramirez de Okariz, J. Rodriguez and U. Zuru-
tuza, "Adaptable and explainable predictive maintenance: Semi-supervised
deep learning for anomaly detection and diagnosis in press machine data".
Applied Sciences, 2021, 11(16), 7376, doi: 10.3390/app11167376

– O. Serradilla, E. Zugasti, J. Rodriguez, and U. Zurutuza, "Deep learning
models for predictive maintenance: a survey, comparison, challenges and
prospects,". Applied Intelligence. Accepted for publication.

– O. Serradilla, E. Zugasti, J. Rodriguez, and U. Zurutuza, "Methodology for
data-driven predictive maintenance models design, development and imple-
mentation on manufacturing guided by domain knowledge". International
Journal of Computer Integrated Manufacturing. Major revision.

1.6 Research methodology

Before deepening into the research undertaken in this thesis, the research methodology
that guided its elaboration is briefly presented. Given the research is focused on de-
signing and validating a methodology to manage data-driven PdM life-cycle, the author
initially reviewed state-of-the-art data driven PdM works, and analysed methodologies
related to PdM and data-driven life-cycle management. In addition, several experiments
were performed to practice acquired knowledge.
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Afterwards, the hypothesis that this thesis aims to demonstrate was specified, including
secondary hypotheses. Moreover, the objectives to test the defined hypothesis were
defined, addressing research questions.

Then, the data-driven PdM methodology was designed, combining state-of-the-art the-
oretical knowledge and author’s experience. It is the main contribution of the thesis:
a methodology for data-driven PdM life-cycle management including domain knowl-
edge, to guide industrial companies in the design and implementation of their PdM
use-cases according to their needs. It includes use-case definition, design and analysis of
required resources, and PdM system development, validation, deployment and monitor-
ing. This methodology and thesis hypothesis have been empirically validated in three
diverse use-cases with different requirements. Moreover, theoretical foundations and
domain expertise have been used in many PdM steps of these use-cases for tasks like
data preparation or model design and validation.

The first use-case for methodology validation consists of detecting faulty engine condi-
tions on simulated run-to-failure turbofan data, where PdM models learn from correct
working conditions. The second use-case models remaining useful life of fatigue ex-
periments performed in a bushing test bed, targeting accuracy and also explainability.
Finally, the third use-case models press machine data of a stamping production line by
learning from correct working conditions. Its objective is to perform anomaly detection
and provide tools for diagnosis supported on a deep learning model. Fault diagnosis is
addressed combining eXplainable Artificial Intelligence (XAI), clustering and projection
techniques with domain knowledge. The adaptability of the anomaly detection model
to different time and operational conditions has also been evaluated.

1.7 Organisation of the work

This work is organised in six chapters. The first and introductory chapter contextu-
alises and introduces predictive maintenance, and explains the main motivations of the
thesis. It also states the hypotheses tested during the thesis and its main objectives, in
addition to limiting its scope, explaining the main contributions and defining research
methodology.

The second chapter discusses the techniques and theoretical background required to
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understand the main data-driven techniques used in experimentation. Moreover, it
introduces and explains each predictive maintenance stage.

The third chapter reviews state-of-the-art predictive maintenance works based on expert-
knowledge and data-driven techniques, including reference benchmark datasets and their
results. Furthermore, it reviews standards, norms and state-of-the-art methodologies
related to data-driven predictive maintenance.

The fourth chapter defines the methodology proposed in this thesis, which guides the life-
cycle of data-driven predictive maintenance systems including their design, development
and implementation combined with domain knowledge. It contains the main stages,
steps and tasks for their elaboration, complemented by required profiles and resulting
deliverables.

The fifth chapter presents the methodology validation in three industrial use-cases: sim-
ulated aircraft engine, bushing testbed and production press machine. Each use-case
has different objectives and addresses different PdM stages, so each one implements the
methodology according to its requirements.

The sixth and last chapter gathers the conclusions of the work and presents future
research lines.
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Chapter 2

Theoretical background

This chapter describes the theoretical background of data-analysis and predictive main-
tenance used for the elaboration of this thesis. Section 2.1 describes the background
of the implemented statistical, machine learning and deep learning techniques for data-
driven PdM, and scoring metrics to evaluate their performance. Furthermore, it de-
scribes transfer learning, its applications and main techniques. In addition, it overviews
the XAI background, presenting the main techniques that have been used for model
interpretation. Moreover, Section 2.2 sets the background of PdM, defines concepts
related to it, and introduces the PdM roadmap by describing its stages.

2.1 Data analysis

This section presents the background of the statistical, machine learning and deep learn-
ing models related to the thesis classified by the ML task they address. Moreover, it
reviews the topics transfer learning and explainable artificial intelligence.

2.1.1 Statistical and traditional machine learning models

This section explains how the statistical and traditional ML models used in the use-cases
work, and the metrics used to evaluate them.

2.1.1.1 Supervised

Classification

Principal Components Analysis
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The Principal Component Analysis (PCA) [31] is a commonly used technique for multi-
variate linear dimensionality reduction that takes advantage of the correlations among
the input variables.

PCA works in the following way: it extracts the eigenvectors and eigenvalues of the input
data matrix to project it into a new space where the new variables, named principal
components, are orthogonal among them and hence they are linearly uncorrelated. The
first principal component holds the largest variance of the original data, the second
holds the second largest variance while being perpendicular to the first, and so on and
so forth.

The application of PCA for dimensionality reduction is done by selecting the k first
principal components to project the original data from d dimensions to k dimensions
in the new space, where k ≤ d. Another way to select the k number of components
is by choosing an a-priory percentage of variance to be represented in the new space,
and then, k is derived by selecting the least number of first principal components that
represent the selected variance.

PCA has also applications on semi-supervised anomaly detection, by applying the di-
mensionality reduction with following the methodology presented in the previous para-
graph, but then the projected data is reconstructed to the original space by only using
the chosen k first principal components. Therefore, there will be a difference between
the original and its reconstructed data if its explained variance is less than 100%. The
Anomaly Detection (AD) is performed by calculating the distance between the recon-
structed and the original data in a positive value that is denominated as reconstruction
error, which is usually calculated using a distance function like mahalanobis or euclidean
distances. The higher the reconstruction error is, the further or more different the recon-
structed data is from the original data. Finally, a threshold is set in the reconstruction
error to categorise as anomalous the instances with reconstruction errors higher than
this threshold. This threshold can be calculated from the data if it is labelled, or be
inferred in semi-supervised ways based on outlier detection or clustering techniques.

The logic behind this AD method is that the PCA model is trained to model the linear
relations of the input variables by mapping them to the principal components’ space
named latent space. When the model is fed with data whose variables do not share the
same correlations, the model will not be able to reconstruct the input data properly and
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therefore the reconstruction error will increase and surpass the established threshold,
categorising it as anomalous.

One-class Support Vector Machines

The One-Class Support Vector Machine (OC-SVM) [32] is a semi-supervised model
with applications on outlier detection and anomaly detection. It is trained with data
instances of one class, adjusting an hyperplane that surrounds them aiming at isolating
the data distribution of the observed class. Then, this model can be used to classify novel
instances into normal or anomalous/outliers classes when they are inside or outside the
hyperplane respectively. In addition, the anomalous magnitude of the instances outside
the hyperplane increases with their distance regarding the hyperplane.

The OC-SVM can use different kernels that enable modelling linear and also non-linear
relations. Figure 2.1 shows a two dimensional space where the OC-SVM isolates the
normal class with radial hyperplanes.

Figure 2.1: Schematic of a OC-SVM that models the normal class and establishes the hyper-
plane frontier to differentiate normal and anomalous data observations [3].

Regression
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Random Forest Regression

The random forest regression [33] is a supervised model used for regression problems. It
is a bagging ensemble method that underlies on the combination of less precise uncorre-
lated models to improve the precision and generalisation in an assembled model.

The random forest aggregates many random regression trees trained with different fea-
tures and data subsets, forming a forest. The regressions are done by averaging the
regressions of the trees.

eXtra Gradient Boosting regression

eXtra Gradient Boosting (XGBoost) [34] is an implementation of gradient boosting
framework presented by Friedman [35] and Friedman et al. [36]. The XGBoost regression
is a supervised model used for regression problems. It is a boosting ensemble method
that aggregates weak regressors to fix the errors generated by existing ones using the
gradient boosting method.

The difference between bagging and boosting algorithms is that the first aggregates
random weak classifiers whereas the latter aggregates weak classifiers that fix the errors
of existing classifiers. These differences are visualised in Figure 2.2.

2.1.1.2 Unsupervised

Agglomerative Clustering

The agglomerative clustering is an unsupervised technique to group the data into the
selected k number of clusters. It uses a distance function to calculate the distance
among observations in the feature space. The algorithm first assigns a cluster to each
observation and then it recursively merges the clusters that are near given their obser-
vations, reducing the number of clusters while augmenting their size. This procedure is
continued until there only remain the selected k number of clusters. One advantage of
this algorithm is its visualisation of the distance among observations and clusters in a
hierarchical scheme named dendrogram. In addition, it can select the number of clusters
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Figure 2.2: Difference between bagging and boosting, by Nikulski [4].

automatically by specifying the distance limit to stop merging the clusters.

Gaussian Mixture Models

The gaussian mixture models [37] model the data in a probabilistic way assuming that
data observations belong to a finite number of gaussian distributions. The model uses
the expectation maximisation algorithm [38] to estimate the parameters of the gaussian
distributions from the data and cluster observations accordingly based on probabilities.
Figure 2.3 shows the estimated probability distribution function of a gaussian mixture
model with two gaussian distributions.

2.1.2 Neural networks and deep learning techniques

This section introduces deep learning background and presents the common architec-
tures applied to the field of PdM, classified by the ML task they address. Nowadays,
deep learning models outperform statistical and traditional ML models in many fields
including PdM, when enough historical data exists. The deep learning term refers to
Artificial Neural Network (ANN) that go beyond shallow 1- and 2-hidden layer networks
[39], and ANNs are a machine learning technique inspired on how brains work.

A deep learning network is formed by layers of neurons that compute linear regressions
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Figure 2.3: Plot of the probability distribution estimated from data using gaussian mixture
models, where two gaussian distributions are combined. Image by Turner [5].

of inputs with weights plus a bias, and they may contain non-linear activation functions
such as sigmoid, Rectified Linear Unit (reLU) or tan-h to produce non-linear outputs.
The networks’ parameters are commonly initialised randomly and afterwards they are
adjusted to map input data to the selected output data given a training dataset. This
learning process takes place by running the gradient descend algorithm combined with
the backpropagation algorithm. These calculate the weight adjustments of each neuron
required to reduce the error produced by the network, which is calculated by a cost
function. The article by Hornik [40] justifies that networks of at least two hidden layers
with enough training data are capable of modelling any function or behaviour, creating
the universal approximator.

The book by Goodfellow et al. [41] provides exhaustive background on DL and it is
considered a reference book by many researchers in the field. Concretely, the book in-
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troduces machine learning and deep learning mathematical background. Afterwards, it
focuses on DL optimisation, regularisation, presents different architecture types, intro-
duces their mathematical definition and presents common applications. A simpler yet
powerful overview of the field is done in the survey of DL applied to medicine by Litjens
et al. [42], which is complemented with a visual scheme collecting the main architectures.
Pouyanfar et al. [43] present another survey specifically focused on DL architectures,
applications, frameworks, SotA and historical works, trends and challenges. Addition-
ally, a reference book of practical DL applications is presented by Geron [44], which is
based on Scikit-Learn [45], Keras [46], and TensorFlow [47] tools.

2.1.2.1 Supervised

Classification

Feed-forward network

Feed Forward Neural Network (FFNN) or Multi Layer Perceptron (MLP) [48] is the
first, most common and simplest architecture. It is formed by stacked neurons creating
layers, where all the neurons of a layer are connected to all the neurons of the next layer
by feeding their output to others’ input. However, there are no connections to neurons
of previous layers or among neurons of the same layer. The first layer is named input
layer, the last layer is denominated as output layer, and each intermediate layer is named
hidden layer. The neural network is fed with observations pairing input features and
target features, which are used to learn their relation by minimising the error produced
by the network when mapping input data to the output. The majority of DL structures
are based on the feed-forward scheme but each has its own characteristics.

Convolutional neural network
Convolutional Neural Nework (CNN) [49] is a type of feedforward network that processes
neurons’ neighborhoods by applying convolutional filters. It is inspired by the animal
visual cortex and it has applications on image and signal recognition, recommendation
systems and natural language processing among others. The convolutional layer is
linear and it is usually followed by an activation function to produce non-linear outputs.
After that, a max or average pooling layers may be used to reduce the dimension while
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keeping relevant information. Finally, most architectures have a flatten step to obtain
representative features of input data that can be used with other ML or DL networks to
perform typical ML tasks. The weights of convolutions are shared, which makes them
them easier to train.

Extreme Learning Machine

Extreme Learning Machine (ELM) [50] is a feed-forward neural network used for clas-
sification, clustering, regression and feature extraction [51]. It can be linear or use
different activation functions such as sigmoid to model non-linear relations. It has a
single or multiple hidden layers whose parameters are randomly assigned and they are
not tuned. The output layer’s weights are assigned by calculating the pseudoinverse on
the projection of the training data into the network up to the last layer.

The work by Huang et al. [52] has proved that ELMs have the capability of universal
approximator. Another advantage of ELMs is their high speed training and their little
requirement of training resources. Figure 2.4 contains the scheme of a simple ELM.

Figure 2.4: Schematic of the extreme learning machine of one hidden layer. Image by Zhang
et al. [6].

Regression

Recurrent neural network
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Recurrent Neural Network (RNN) [53] models temporal data by saving the state derived
from previous inputs of the network. The back-propagation through time algorithm [54]
is an adaptation of the traditional backpropagation for temporal data, which is used to
propagate network’s error to previous time instances. However, this propagation can
result into vanishing or exploding gradient problem [55], making this networks forget
long-term relations. To solve this problem, specific RNN architectures were created
based on forget gates, like the Long-Short Term Memory (LSTM) [56] and Gated Rec-
tified Unit (GRU) [57].

2.1.2.2 Unsupervised

Autoencoder

AutoEncoder (AE) [58] is based on the singular value decomposition concept [59] to
extract the non-linear features that best represent the input data in a smaller space. It
consists of two parts: an encoder that maps input data to the encoded, latent space, and
the decoder, which projects latent space data to the reconstructed space that has the
same dimension as input data. The network is trained to minimise the reconstruction
error, which is the loss between the input and the output. Autoencoders can be classified
according to their latent space dimensionality in undercomplete and overcomplete, which
respectively correspond to a latent space smaller, and bigger or equal to the input
dimension. These simple architectures are extended and adapted to address different
tasks and problems. It can be trained in unsupervised way to detect patterns in its
latent space, or it can be used for semi-supervised anomaly detection.

Vanilla autoencoders are the simplest autoencoders, which belong to the undercomplete
type. There are different types of autoencoders obtained by applying regularisation and
modifying the explained types. One adaptation is the Denoising AutoEncoder (DAE)
[60], used for corrupt data reconstruction. It is a version of the overcomplete AE where
learning is controlled to avoid the identity function. It is fed with data pairs of noisy
input and its denoised output, and it is trained to reduce the loss between them. Another
modification is the Sparse AutoEncoder (SAE) [61], an AE restricted in the learning
phase that uses a sparse penalty constraint, which is based on the concept of KL-
Divergence. This algorithm aims to make each neuron sparse, discovering the structure
information from the data easier than vanilla AE, which may be useful for practical
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applications [62].

Variational AutoEnconder (VAE) [63] is a generative and therefore non-deterministic
modification of the vanilla AE where the latent space is continuous. Usually, its latent
space distribution is gaussian, from where the decoder reconstructs the original data
based on random sampling and interpolation. It has applications on estimating the
data distribution, learning a representation of data samples and generating synthetic
data samples, among others.

Generative adversarial network
Generative Adversarial Network (GAN) [64] is designed to work in unsupervised way.
GAN is another type of generative neural network that consists of two parts: the gener-
ator and the discriminator. The generator is trained to generate an output that belongs
to a specific data distribution using as input a representation vector. The discriminator
is trained to classify its input data into the learned data distribution or not belonging to
this distribution. The generator’s output is connected to the discriminator’s input and
they are trained together, adversarially. The generator’s objective is to bias the discrim-
inator by generating outputs from a random input and trying to make the discriminator
classify it as it belongs to the specific trained distribution. The role of the discriminator
is to distinguish between the synthetic/generated data from the non-synthetic/real class
data from trained distribution. They are trained together so that each part learns from
the other, competing to bias the other part, similarly to game theory. GANs can be
extended to other ML tasks such as supervised learning or reinforcement learning.

Self organising map
Self Organising Map (SOM) [65] is a neural network-based unsupervised way to organise
the internal representations of the data. It is based on competitive learning, in contrast
to typical neural networks that use backpropagation and gradient-descend for training.
The SOM creates a new space called map that is typically 2 dimensional, where input
data is projected and represented in cells. It is based on neighborhood functions to pre-
serve the topological properties of the input space into the new space. It has applications
on clustering and visualisation, among others.
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2.1.3 Evaluation/scoring metrics

Measuring the performance of the ML models in any task such as classification, regres-
sion, clustering or anomaly detection is required. This will show the models’ performance
on the selected task, enabling comparisons among them and facilitating model optimisa-
tion by parameter setting and architecture selection. The models are first trained with
a subset of the available data called train data, and then they are evaluated with scoring
metrics on a different data subset denominated as test data. An additional data subset
denominated as validation data can be used to track the training using the score metric,
which can be used to stop the training in an optimal moment, preventing underfitting
and overfitting.

There exist different metrics to evaluate ML models, but the most adequate ones should
be selected according to the addressed problem. In binary anomaly classification, the
confusion matrix is a widely used tool that enables results’ evaluation and model com-
parison by counting the number of instances that are correctly and wrongly classified
by the model. Figure 2.5 shows a confusion matrix containing the number of instances
correctly classified by the model as normal and anomaly labelled True Positive (TN)
and True Negative (TP), whereas the number of misclassified normal and anomaly in-
stances are denominated as False Positive (FP) and False Negative (FN) respectively
[44].

Figure 2.5 also introduces three common evaluation metrics that facilitate model eval-
uation, which are defined by Exsilio solutions [66] as: accuracy is the ratio of correctly
predicted observations to the total observations, it is an intuitive metric despite only
being useful for balanced classes ; precision is the ratio of correctly predicted positive ob-
servations to the total predicted positive observations ; and recall is the ratio of correctly
predicted positive observations to the all observations in actual class.

In addition, the F-score metric defined in Equation 2.1 is the harmonic mean that
combines precision and recall, which contains a β parameter to weight their importance.
When β equals 1, both metrics are evenly weighted; when β is higher than 1, more
importance is given to the recall and as a result, to false negative errors; conversely, when
beta takes values lower than 1, the precision is more valued than recall and therefore,
the importance of False Positive errors is higher.
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Figure 2.5: Confusion matrix and definition of the main evaluation metrics for binary classi-
fication, applied to anomaly detection.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(2.1)

Regarding the evaluation of regression models, the Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) are two widely used metrics. MAE is the average of
all the absolute errors between the real and predicted values, presented in Equation 2.2;
and RMSE is the square root of the average of all the squared errors between real and
predicted values, presented in Equation 2.3. In these equations, i indicates the number
of observation, yi is the real target value in the observation i and ŷi is the predicted
target value in the observation i.

MAE =

∑n
i=1 |yi − ŷi|

n
(2.2)

RMSE =

 ∑n
i=1(yi − ŷi)2

n
(2.3)

The MAE metric is more intuitive to understand than RMSE because it is the absolute
error performed by the model on average in each observation. In contrast, RMSE is
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more sensible to outliers than MAE, making it interesting for some use-cases [67].

2.1.4 Transfer learning

Transfer learning aims at transferring the knowledge acquired in the source domain to
improve the performance on a related target domain, according to the survey by Zhuang
et al. [7]. The use of transfer learning may reduce the required number of target domain
data samples, which simplifies the data collection and model training processes. Transfer
learning can also be beneficial for scenarios where data labelling is difficult, expensive
or even impossible; for instance, when domain expertise is required or when only data
of one class is collected.

The published research works about transfer learning have applications on developing
new algorithms, improving existing transfer learning algorithms, and developing algo-
rithms in new application domains, as indicated by Weiss et al. [68]. In addition, its
authors classify transfer learning techniques into two groups: homogeneous, when the
source and target domains are represented in the same feature space; and heterogeneous,
when these domains are represented into different feature spaces.

Moreover, Zhuang et al. [7] classify the transfer learning techniques for models accord-
ing to their strategy and objectives. The main categories of transfer learning techniques
defined by strategies are model control, parameter control, model ensemble and deep
learning techniques. Additionally, the categories of transfer learning techniques ac-
cording to their objective are prediction making, domain adaptation and pseudo label
generation. A scheme of these categories and strategies is presented in Figure 2.6.

2.1.5 eXplainable Artificial Intelligence

Complex ML and DL models can achieve high accuracy, but there is the need of un-
derstanding the decisions taken by these models so that humans can understand and
trust them. These explanations may also be used for decision justification, control,
improvement and discovery of model behaviour.

The objective of explainable artificial intelligence is to make Artificial Intelligence (AI)
more transparent while maintaining high performance levels. Gunning et al. present on
DARPA [69] the questions that XAI aims at answering from ML models: why did you
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Figure 2.6: Tree-based classification of transfer learning methods according to their strategies
and objectives. Image by Zhuang et al. [7].

do that? why not something else? when do you succeed? when do you fail? when can I
trust you? how do I correct an error?.

The publication of XAI for anomaly detection made by Amarasinghe et al. [70] argues
that explainability can be classified into two categories: model functionality, which fo-
cuses on explaining the reasons behind the model’s learned concepts; and transparency,
which can be analysed though three parameters: decomposability, simulatability and
algorithm transparency. Decomposability is an intuitive explanations analysis, in sim-
ulatability a human reproduces model’s calculations to predict the output given the
input data, and algorithmic transparency focused on the inner workings of the learning
algorithm.

Moreover, a detailed description of the XAI techniques is provided by Adadi et al.
[71], who summarise their trends and explain their applications on explaining black-box
models. XAI can have a big impact on the fields of transportation, healthcare, legal,
finance and military among others. In addition, Adadi et al. [71] propose a classification
of XAI techniques based on three characteristics:

• Complexity: the more complex the model is, the more difficult it is to interpret.

• Scoop: where global interpretability techniques analyse the model’s overall logic
and reasoning, and local interpretability techniques analyse the model’s decision
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based on individual data observations.

• Level of dependency where 2 types of interpretability techniques are distin-
guished: model-specific techniques take advantage of the particularities of the
model to hande it, for example being white-box, and model-agnostic techniques
are generally applicable to different models because they treat models as black-box.

There exist different XAI techniques available, which the book by Samek et al. [72]
classifies into four groups regarding their underlying technique. Approximation using
local surrogate functions samples neighbours of an observation to perform local explain-
ability, like Local Interpretable Model-agnostic Explanations (LIME) [73] does. Lo-
cal perturbations analyse how perturbations on an observation change model’s output,
like the sensitivity analysis feature importance technique proposed for Random Forests
[33] works, and it was was generalised afterwards with ELI5 [9]. Propagation-based
approaches integrate in the model structure using local redistribution rules based on
methods as Layer-wise Relevance Propagation (LRP) [74]. Finally, meta-explanations
use techniques like Sprectral Relevance AnalYsis (SpRAY) [75] and SHapley Additive
exPlanations (SHAP) [76] that aggregate local explanations to obtain global explana-
tions.

2.1.5.1 LIME

LIME [73] is a library that enables to explain individual predictions of black-box models.
Concretely, it perturbs the data points near to the target observation, uses the model
to predict the target values of these data points, and then it creates a sparse linear
regression model using the data points and target values to approximate the black-
box model’s behaviour on the target observation. Finally, the linear model is analysed,
interpreting this white-box approximation of the original model’s behaviour on the target
observation. Figure 2.7 presents a local linear approximation of the black-box model,
and Figure 2.8 shows an example of the interpretability information provided by the
linear model on the target observation.

2.1.5.2 ELI5

Explain Like I’m 5 (ELI5) [9] is a python library that helps to debug machine learning
models and explain their predictions. ELI5 provides visualisation techniques for white-
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Figure 2.7: Representation of LIME perturbing the observations next to the target observa-
tion and approximating a linear model to enable the interpretation of a black-box classifier.
Image by Tulio [8].

Figure 2.8: The information provided by LIME using linear models to interpret a local
prediction of a model. It includes the features’ contribution to the prediction. Image by Tulio
[8]

box models by implementing local and global interpretation. It also enables global
interpretation of black-box models by implementing permutation importance. Permu-
tation importance shuffles the values of each feature of the dataset individually and
compares the model’s original accuracy with the accuracy decrease of each feature shuf-
fle. Figure 2.9 shows the contribution of each feature to an individual prediction based
on ELI5.

2.1.5.3 SHAP

SHAP [76] is a local interpretation library that enables explaining the output of any
machine learning model [10]. It is supported on a game theoretic approach, using shapley
values [77] and their related extensions to explain the contribution of features to the
model’s predictions. The library creates an approximated prediction model for all the
possible feature subsets to estimate the features’ marginal contribution to the prediction
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Figure 2.9: ELI5’s local interpretation of a probabilistic classification model [9]. It contains
the contribution of each feature on the model’s prediction.

of the original model. The addition of the expected value with the features’ marginal
contribution of an observation equals to the model’s prediction for that observation. In
Figure 2.10, SHAP has been used to interpret a black-box probabilistic classifier.

Figure 2.10: Diagram of SHAP used to interpret a black-box model, where each feature’s
contribution to the prediction with respect to the expected value is indicated [10].
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2.2 Predictive maintenance

This section introduces the background of predictive maintenance by explaining differ-
ent ways to perform PdM, explaining different failure types, related industrial data and
monitoring techniques. In addition, the PdM life-cycle is explained in stages, overview-
ing the possibilities of PdM application and establishing relations among these stages.

2.2.1 Predictive maintenance background

There exist different techniques to create PdM systems. These techniques can be clas-
sified according to their underlying methodology, as stated by Liao et al. [78]:

• Expert knowledge/model-based methods use the knowledge of the system’s
failure mechanisms to build a mathematical description of the system’s degrada-
tion. The result is in a white-box system whose results are easily linked to their
physical meaning, but it is difficult to implement in complex systems.

• Data-driven methods estimate the state of the machine based on its sensors’
data. They are composed of statistical methods, reliability functions and artificial
intelligence methods, adopting grey-box and black-box approaches where there is
no need to understand the complex system’s physics. These systems are more
precise than expert knowledge-based ones but their results are difficult to relate
to their physical meaning.

• Hybrid approach combines the model-based and data-driven approaches, result-
ing in grey-box systems that can be interpreted.

Failures can be classified into three types regarding their life stage according to Aguiar et
al. [79]: in the initial working period, they are caused by improper mounting or defects;
once the machine functioning is stabilized, random failures arise due to inadequate EOC
or working conditions, accidents and incorrect maintenance among other reasons; and
wear failures, which occur due to natural wear of the components.

The term EOC refers to the conditions under which a machine is working [80]. On the
one hand, environmental conditions refer to external conditions that affect the machine
such as ambient temperature or vibrations produced by trucks driving in the surround-
ings of the machine. On the other hand, operational conditions are the conditions under
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which the machine is working to perform the industrial process, such as working speed,
the type of component that is being manufactured or machine adjustments. Some of
these conditions are specified by operation technicians while others can be monitored
by sensors.

The variables collected from industrial assets are usually classified according to their
origin in the process: Process variables are the desired operating values for a machine
that are set by its operators. Identifier variables are the settings under which the process
is being executed. Sensor variables are all the variables read by sensors placed in the
machine, and this data is usually analysed to estimate components’ health. Control
variables are used to specify an action when a sensor variables reach specific actions, for
example start the refrigerator when the temperature of a component reaches a threshold.
Derived variables are sensor variables that have been modified or combined to create
new variables that are easy to understand by technicians, which usually imply unit
conversions and the application of theoretical formulas. Regardless the origin of the
variables, recording their values through time creates a dataset of time-series type.

Predictive maintenance models analyse the state of industrial assets by comparing pat-
terns and trends with regard to historical data and domain knowledge, analysing the
cause and prognosticating degradation. This comparison and modelling is possible in
the data follows patterns such as: trends and seasonality as indicated by Brownlee [81].
Some algorithms extract features from the data to facilitate modelling, whereas others
use the sliding window technique to process the data in chunks. In addition, analysing
the variables together adds more context and complementary information, enabling to
detect contextual anomalies. However, this multivariate approach adds complexity to
the analysis.

The selection and implementation of suitable condition monitoring techniques has a
critical impact on the performance of data-driven PdM models, which analyse the data
provided by the Condition Monitoring (CM) techniques to estimate the assets’ health.
The Potential Failure (P-F) curve contained in Figure 2.11 provides a performance
degradation plot of a damaged component through time from the beginning of the failure
until the asset failure. The plot places the main CM techniques along the degradation
time-lapse where they are able to detect the failure. Detecting the damage sooner is
preferred to have more time to plan and perform maintenance until the machine stops.
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Figure 2.11: P-F curve of a damaged component and techniques to detect failure. Image
from UE Systems [11].

In addition, Figure 2.11 contains the main CM techniques: mechanical ultrasound, vi-
bration analysis, wear particle testing, thermography, Motor Current Evaluation (MCE)
or Motor Signal Current Analysis (MSCA) and NonDestructive Testing (NDT). More-
over, there exist many other CM techniques as torque, voltage and envelopes [82] or
acoustic emission [83]. The articles by Selcuk et al. [24] and Marquez et al. [84] also
dive into these techniques and cover the types of failures they can detect, together with
their applications.

There are different data collection methods, which can be classified by their origin into
real machine and simulation. In the real machine’s case, the data is retrieved either
manually by an operator or automatically through a CPS-based platform, like the one
proposed in the Mantis project by Albano et al. [85]. On contrary, simulations create
data aimed at simulating the behaviour of a real machine under different conditions.
Simulations can be based on testbeds that emulate a physical machine like Civerchia
et al. [86], or Digital Twins such as Borodulin et al. [87], which are software simu-
lations based on theoretical domain knowledge, finite element method, data mining or
statistics, among others. A comparison between the simulated and real behaviour of
the industrial asset can be used to detect anomalies, and the results of the simulation
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can be combined with real data for analysis, like in the work by Borodulin et al. [87].
However, the deployment of data-driven models trained with artificial data to real ma-
chines is not straightforward; this is the reason why many research works first validate
their methodology on simulated data and then they apply it to real machines, training
the models with real data or fine-tuning the simulated models [88].

Several commonly monitored key components in PdM are presented by Zhang et al.
in [89]. The work includes bearings, blades, engines, valves, gears and cutting tools,
among others. Given that failure modes can be different for each component, two
techniques were presented to facilitate their identification: the Failure Modes and Effects
Analysis (FMEA) presented by the NASA in 1963 [90], and its evolution by adding
criticality analysis Failure Mode Effects and Criticality Analysis (FMECA) [91]. These
techniques are still relevant nowadays to prioritise which assets to monitor in search for
the most relevant failures.

The work by Li et al. [92] classifies the possible failure types regarding their source
as: component failure, environmental impact, human mistakes and procedure handling.
Some of the most common failure types are analysed by Selcuk in [24], including imbal-
ance cracks, fatigue, abrasive and corrosion wear, rubbing, defects and leak detection,
among others.

2.2.2 Predictive maintenance stages

The predictive maintenance systems are composed by methods that are applied in incre-
mental steps, which can be classified into different stages [93] (see Figure 2.12) according
to their purpose. These PdM stages are: the first anomaly detection, the second diagno-
sis, the third prognosis and the final stage mitigation. There are two additional stages
previous to these stages that prepare the data to enhance their performance as Khan et
al. [16] state, which are preprocessing and feature engineering.

The preprocessing stage cleans and prepares the data for data-driven algorithms. Fea-
ture engineering extracts a relevant feature subset representative for the problem to
facilitate data-driven algorithms address PdM stages. Anomaly detection is the first
stage of PdM roadmap, and consists of analysing if the data collected from industrial
assets belongs to a correct or incorrect condition. Most industrial companies have diffi-
culties in collecting faulty data and therefore, the use of semi-supervised models for AD
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I Anomaly Detection

II Failure Diagnosis

Degradation
Prognosis

IV
Mitigation

III

Figure 2.12: Pyramid representing the stages of the predictive maintenance roadmap.

is common to model normal working data and detect novel behaviours.

After detecting that an asset is working improperly, the next PdM stage is to perform
diagnosis. Its objective is to perform a Root Cause Analysis (RCA) of the anomaly,
evaluating if it belongs to a faulty component, a known failure type or, in contrast,
determine that the AD model is not working correctly and needs to be adapted. The
diagnosis of an anomaly can be complemented with Health Index (HI) and damage
indexes to estimate the damage of an asset.

The third stage of the PdM roadmap is prognosis, which estimates the future degra-
dation of the asset by evaluating the machine’s working conditions of that moment,
the asset’s degradation state and the asset’s historical evolution data. When there is
a database of run-to-failure observations containing the identified failure type, a super-
vised regression model can be trained to estimate the Remaining Useful Life (RUL) of
the asset. Conversely, if this database does not exist, a semi-supervised prognosis model
can be used to estimate the evolution of the asset’s health or damage indexes based
on the anomaly detection model. The further these metrics are from normal behaviour
values, the lower remaining time to failure the asset is expected to have.

The last stage of the PdM roadmap is mitigation. Once an anomaly has been detected,
its cause has been diagnosed and its degradation has been prognosticated, there is
enough information to mitigate the anomaly in its initial phases and this way avoid
failures. The mitigation stage of PdM restores the proper working condition of the
machine while reducing the implementation and downtime costs. Mitigation is usually
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performed by maintenance technicians who create and implement a mitigation plan.
These technicians should combine their experience with relevant information obtained
from the PdM system to facilitate mitigation. Integrating the mitigation stage with
the industrial MM and MOM processes is essential to ensure an unified maintenance
approach that addresses process requirements.
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Chapter 3

Review on predictive maintenance

This chapter reviews state-of-the-art predictive maintenance works, introducing relevant
works related to this thesis.

On the one hand, PdM applications of physical, knowledge, hybrid, and data-driven
techniques are reviewed. Data-driven models include statistical, traditional machine
learning and deep learning techniques for PdM applications. Moreover, state-of-the-
art data-driven model results are compared in a reference dataset. On the other hand,
predictive maintenance standards, norms, and state-of-the-art methodological works are
reviewed.

3.1 Predictive maintenance works

This section explains relevant physical, knowledge and hybrid models application for
PdM. Moreover, data-driven applications for PdM are reviewed, which are classified into
statistical, traditional machine learning, and deep learning models. The review of data-
driven models covers all PdM stages and data preparation, including: preprocessing,
feature engineering, anomaly detection, diagnosis, prognosis and mitigation. In addition,
it contains ways to combine deep learning models with other data-driven techniques,
reviews works related to deep learning for PdM, and compares data-driven results on a
PdM benchmark dataset.

To perform this review of PdM works, the following research methodology has been de-
fined. The information is gathered from various electronic database-search engines, in-
cluding Scopus, Engineering Village, Springer Link, Science Direct, IEEE-Xplore, ACM
Digital Library and Google Scholar. These resources have provided access to different
types of works, including high-impact journals and conference papers. The research
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focuses on studies published between 2016 and 2021, although it includes relevant works
preceding 2016.

Given the high number of publications in the field, the research space has been lim-
ited by defining keywords and research queries. For the physical, knowledge and hybrid
models, the following research terms have been used: (“physical models”OR(“knowledge-
based”AND“models”)OR“hybrid”) AND “predictive maintenance”. In addition, the terms
(“data-driven”OR“deep learning”) AND “predictive maintenance” are the primary de-
scriptors used to research data-driven PdM techniques. This query has been com-
plemented with the following terms to extend the research to predictive maintenance
stages: “anomaly detection”, “diagnosis”, “prognosis”, “mitigation” and their preparatory
“preprocessing” and “feature engineering” stages, as presented in Figure 3.1. Finally,
the following complementary terms related to industrial requirements were also grouped
with the “deep learning” AND “predictive maintenance” query (see Figure 3.2): “transfer
learning”, “ensemble learning”, “reinforcement learning” and “uncertainty modelling”.

Figure 3.1: The number of data-driven by predictive maintenance stages.

Figure 3.2: The number of deep learning techniques that address industrial requirements by
category.
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As a result, this section reviews 9 publications that address predictive maintenance
using physical, knowledge-based or hybrid models, 92 works that address PdM using
statistical and traditional machine learning, 80 publications that address PdM stages
using deep learning techniques, and 19 works that combine deep learning and non deep
learning data-driven algorithms to create architectures that better address PdM stages.

3.1.1 Physical, knowledge and hybrid models for predictive

maintenance

There are two types of models to apply PdM based on domain knowledge: physical
models and knowledge-based models. The literature aims to tackle the stages presented
in Figure 2.12.

The review made by Peng et al. [94] summarises that physical models usually employ
mathematical models directly tied to physical processes and are developed by domain
experts, requiring specific mechanistic knowledge and theories relevant to the monitored
systems. Common physical models are based on first principle modeling and parameter
estimation.

Conversely, knowledge-based models embed the knowledge that domain technicians have
acquired about the physical systems. Common knowledge-based models rely on expert
systems, which are based on IF-ELSEs, and fuzzy-logic techniques.

The following papers explain two model-based approaches: stochastic prognostics for
RUL prediction on rolling element bearings by Li et al. [95], and physics-based approach
for diagnostics and prognostics of cracked rotor shafts by Oppenheimer et al. [96]. The
paper by Venkatasubramanian et al. [97] presents a methodology for AD and diagnosis
using RCA based on residuals. They also present the 10 desirable characteristics for
a PdM system: quick detection and diagnosis, isolability (distinguish among different
failure types), robustness, novelty identifiability, classification error estimation, adapt-
ability, explanation facility, minimal modelling requirements, real-time computation and
storage handling, multiple fault identifiability.

One of the few recent publications is by Blancke et al. [98], who use a multi-state
Petri Net to diagnose the type of failure occurring in the system and its evolution to
other failure types, contained in Figure 3.3. They first predict intermediate states of
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degradation, then integrate expert knowledge into a dynamic model and finally suggest
maintenance tasks according to the detected active failure.

Figure 3.3: Failure mechanism propagation algorithm of Blancke et al. [98].

Li et al. use in [99] discrete stress-strength interference theory to quantify strength and
stress probabilities with the objective of modelling expert knowledge for maintenance
task assignment.

The other publications tend to use hybrid approaches as the following two studies: a
framework that combines model-based and data-driven methods for RUL prediction on
lithium-ion batteries by Liao et al. [78], and an integrated prognostics method composed
by a hybrid model that qualificates uncertainty for gear remaining life prediction by Zhao
et al. [100].

Another recent hybrid approach is by Li et al. [101], whose authors use expert knowledge
technicians to review water pipe data and create a model for failure detection and
prediction. For that, they first preprocess and visualise the data and then use Factor
Analysis based on statistical tools, having multiple rounds of discussions and reinforced
analysis to reach conclusions of the reasons for failures. To develop prediction models,
they use the statistical approach because, as they present, physical models are usually
designed to capture the mechanisms of failures due to certain reasons. But they have
significant limitations and statistical models capture hidden patterns of the data and
need fewer resources. They use the divide and conquer method, splitting the data based
on attributes. They estimate failure rate with bayesian non-parametric model and use
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domain knowledge for inference.

Nowadays there are few models that only rely on expert knowledge due to the difficulty or
impossibility to model complex systems mathematically. In addition, expert knowledge
elicitation is a bottleneck. Therefore, the research trend is moving towards data-driven
models, which are reviewed in the following sections.

3.1.2 Statistical and traditional machine learning models for

predictive maintenance

The majority of data-driven PdM models are based on the same principles, no matter
if used techniques are statistical, traditional machine learning, or deep learning. Most
data-driven methods follow the incremental steps presented in the roadmap of Figure
2.12, based on the articles [25, 93] and Open System Architecture for Bondition Based
Maintenance (OSA-CBM) standard [102]: 1st anomaly detection, 2nd diagnosis, 3rd
prognosis and lastly mitigation.

Commonly two additional steps are performed before the stated ones to prepare the
data for PdM, as general data analytic life-cycle, Khan et al. [16] and other PdM
authors present. These steps are preprocessing and Feature Engineering (FE), which
are key to enhance model accuracy on PdM stages by creating a representative dataset
for the problem. All PdM stages have to be designed, adapted and implemented to fit
use-cases’ requirements and their data characteristics. In addition, the PdM systems
development is incremental and therefore, techniques, algorithms and decisions taken in
each stage will influence the following ones. This section overviews the most common
data-driven methods to address each PdM stage, excluding deep learning models, which
are explained in Section 3.1.3.

3.1.2.1 Preprocessing for data-driven systems

The initial step of PdM is to preprocess the data, preparing it for data-driven models.
Each PdM model has different requirements and these must be taken into consideration
when choosing adequate preprocessing techniques to boost model performance.

The most common preprocessing techniques are briefly explained and referenced below:
sensor data validation [103] makes sure the collected data is correct; feature synchronisa-
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tion [104] is used to gather signals sampled at different timestamps to create a time-series
or cycle-based data that is easier to handle; data cleaning removes or interpolates not
available and missing values [105, 106]; imbalance data handling [105, 107] is applied
to boost accuracy on commonly scarce failure data class or to deal with small datasets;
encoding and discretisation [108] change features’ type by projection to a new space
where they are easier to handle by the model; segmentation splits data in chunks to
analyse big datasets and enable parallelisation [109]; feature scaling like normalisation
[110] (Equation 3.1) or standardisation [111] (Equation 3.2) scales all features to the
same or similar space that enables comparisons; noise handling [104] facilitates noisy
data modelling. Complementary information of preprocessing techniques can be found
in the article by Cernuda et al. [112] on preprocessing for predictive maintenance.

XS
i =

Xi −Xmin

Xmax −Xmin

(3.1)

XS
i =

Xi −mean(Xi)

var(Xi)
(3.2)

3.1.2.2 Feature engineering for data-driven systems

This step consists of extracting a relevant feature subset to be used as input for mod-
els in further stages. It can boost statistical and machine learning model performance,
despite not being compulsory for deep learning models given these can extract new
representative features that fit the problem automatically. The most common tech-
niques can be grouped into next groups: feature extraction as statistical features in
time [89] and frequency [89, 113, 114] domains that extract time and frequency rela-
tions of features; based on projection to new space like principal component analysis
[115, 116] which reduce dimensionality while keeping relevant information; concatena-
tion and fusion methods [117] create new features by combining available ones; feature
selection [118] reduces dimensionality discarding features of low variance, redundant and
uncorrelated to target, given these increase complexity while not supplying additional
information.

40



3.1.2.3 Anomaly detection

Anomaly detection aims to detect whether the asset is working under normal condition
or not. There are three ways to address this step using data-driven models, classified
by their underlying machine learning task: classification, one-class classification and
clustering. Respectively, these can be used when labeled data of different classes is
available in the training phase, when only one class data exist (commonly non-failure
data), and when the data is unlabelled. FMEA as explained by [90], and its evolution
by adding criticality analysis FMECA [91] are useful to gain vision on the possible types
of failures based on expert knowledge, which helps in the design of the data analysis
life-cycle by prioritising the failure types or anomalies to be detected.

The anomaly detection methods need preprocessed and some also depend on feature
engineered data to work. Once worked on features, the next step is to select, train and
optimise the right model for the use-case. Following PdM stages will be influenced and
constrained by the selected AD method and use-case’s data. Table 3.1 classifies and
summarises the main data-driven anomaly detection techniques based on referenced
state-of-the-art articles and the following review works [89, 119, 120, 121]. Besides, two
or more of these techniques can be combined to create an anomaly detection system
that compensates the disadvantages of a single model.

3.1.2.4 Diagnosis

Once an anomaly has been detected, the next stage consists of diagnosing whether this
anomaly belongs to a faulty working condition and can evolve into a future failure or,
in contrary, there is no risk of failure.

The diagnosis algorithm has to be suitable for the problem being addressed. There are
several approaches to tackle this step, which depend on the implemented AD method
and training data characteristics: multi-class classification, binary classification, one-
class classification and clustering. Concretely, these are chosen if the dataset has mul-
tiple failure types, failure and non failure observations, only observations of one class
or unsupervised, respectively. There is another technique that commonly complements
RCA: anomaly deviation quantification based on health index. It aims to measure as-
sets’ damage by comparing current working data with historical data in a supervised
or unsupervised way. It can either indicate a percentage of deviation with regard to
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Table 3.1: Summary of data-driven anomaly detection models classified by prevailing tech-
niques. In the first column, Unsup refers to unsupervised, All refers to supervised, semi-
supervised and unsupervised and Combination refers to a combination of models respectively.

Based on
and Type

What anal-
yses

Normal
data

Anomalies Most common algorithms and categorised

Density
Unsup

Density
in fea-
tures space
dimension

In high
density

In low den-
sity K Nearest Neighbors (k-NN) [106, 107, 122, 123], Local

Outlier Factor (LOF) [105, 124], LOcal Correlation In-
tegral (LOCI) 2, relative density factor, density-based
outlier score, reliability functions [125, 126]

Distance
Unsup

Distance
among
data-points

Near
from
neigh-
bors

Far from
neighbors

Traditional threshold distance on mahalanobis [110]
or euclidean [127], Rank Based Detection Algorithm
(RBDA), randomization and pruning based, data
streams based.

Statistics
All

Relation to
distribution
models fit
to training
data

Near to
distri-
bution
models

Far from
distribution
models

Parametric: Gaussian Mixture Models (GMM) with
Expectation Maximisation (EM) [128], control charts
as Exponentially Weighted Moving Average (EWMA)
[129, 130]. Non-Parametric: Kernel Density Estima-
tion (KDE): gaussian or KL-divergence [130, 131, 132],
Histogram-Based Outlier Detection (HBOS) [133],
boxplot analysis [105], 3σ [134]. Entropy-based per-
mutation entropy [135, 136], fuzzy entropy [137] and
K-S test [138].

Clustering
Unsup

Relation
to clusters
created by
unsuper-
vised ML
models

Belong
to a
large
cluster
or near
one

Belong to a
small clus-
ter and far
from large
clusters

Partitioning clustering : Partitioning Around Medoids
(PAM), K-means [124, 128, 139]. Hierarchical cluster-
ing : DB-Scan, agglomerative [105], attribute oriented
induction [140]. Grid-based : Dcluster. For high di-
mensional : D-Stream, fuzzy-rules based [124]

Ensemble
Combina-
tion

Combines
dissimilar
models.
Robust

Combina-
tion of
models

Combination
of models

Bagging or boosting based as Random Forest (RF)
[106, 115, 116, 123], eXtra Gradient Boosting
(XGBoost) [105], adaboost [123] and Isolation For-
est (IF) [107], greedy ensemble, score normalization.

Learning
All

Relation
to models
learned
with train-
ing data

Near
the
known
classes
of the
model

Far from
the known
classes of
the model

Active learning. Transfer learning. Reinforcement
learning. Projection-based : Subspace and compression
reconstruction error measuring like PCA [128] and AE
[141], correlation [142, 143] and tensor-based. State-
space based (hidden state of observed data and time
evolution): kalman filter [144], Hidden Markov Models
(HMM) [107], Bayesian Network (BN) [145] (dynamic
BN, belief network), attention-based NN and RNN
(GRU, LSTM). Graph-based : capture interdependi-
encies. OCC : OC-SVM [113], BN. Prediction error-
based regression: measure deviation (AutoRegressive
Integrated Moving Average (ARIMA) [110], RNN as
LSTM [146]). Classification: normal and abnormal
data in training using interpretable models: linear re-
gression [123], logistic regression [106, 123], Decision
Tree (DT) [106, 147]. ML classification techniques as
SVM [106, 122, 147] and feedforward NN [148]. Gen-
erative methods: GAN [149], VAE [150].
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normal working data, or show degradation level in a numerical scale, where the higher
the value the more damaged the component is, minimum value means no damage, max-
imum is fully damaged or failure, and intermediate values indicate different degrees of
degradation [151].

The diagnosis step is easier when there is more information about the dataset and its
labels. The main statistical and machine learning techniques for diagnosis are described
in the following list, ordered by increasing difficulty. They are divided according to
the anomaly detection technique used in the previous stage, which depends on data
characteristics.

• After multi-class classification for anomaly detection: diagnosis is performed based
on previous failure data knowledge of the estimated class, so the link of data to
failure type is directly obtained from model [152, 153]. Once the possible failure
type has been detected, semi-quantitative and qualitative approaches can be used
by harnessing expert knowledge to evaluate its potential consequences, using tools
such as FMEA [154] or ishikawa diagram [155]. In addition, interpreting directly
explainable models [156, 157] or using explainability on less interpretable models
such as Support Vector Machines (SVM) [158] can also help to perform this task.

• After binary classification for anomaly detection: clustering with extracted fea-
tures can be performed to group data by similarity and try to differentiate un-
labeled failure types [159]. These diagnosis techniques can also be based on sta-
tistical performance analysis [160], supported on trend analysis and definition of
thresholds to differentiate failure types by similarity or distance.

• After one-class classification or clustering for anomaly detection: these techniques
use a threshold in distance to the classified class or clusters density respectively to
categorise anomalies. Diagnosis for these models usually consists of precomputing
metrics from data like health index and monitoring their evolution, instead of mon-
itoring input data evolution. The diagnosis can be performed using a clustering
algorithm in these metrics to analyse the intra-cluster and inter-cluster relations.
Domain knowledge is essential to tie unsupervised and semi-supervisedly discov-
ered relations to physical meaning of monitored assets. This novel knowledge is

2Methods that have been applied for AD in general but not specifically for PdM are mentioned but
not referenced
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useful for interpreting unsupervised and semi-supervised models’ output to dis-
cover novel failure types, using models as K-means [161] or HMM with if-else rules
[162]. Log data can also be used for this clustering purpose and tag maintenance
data [163] to perform RCA.

3.1.2.5 Prognosis

Once an anomaly is detected and diagnosed, the degradation evolution can be monitored
based on that moment’s working conditions and machine state, focusing on the most
influential features for AD and diagnosis stages that can track failures.

This step is carried out by remaining useful life models when degradation data is avail-
able, and prognosis of HI and damage indexes when it is not. These techniques can also
provide a confidence bound. The data-driven models for prognosis can be classified into
4 groups regarding their underlying method. The following list summarises the most
common techniques categorised by groups to prognosticate degradation:

• Similarity-based: compare current behavior with past run-to-failure behavior for
prognosis [161, 164].

• Statistical: rely on historical statistics to estimate degradation, for example moni-
toring life usage in combination with mean-time-to-failure [165] or survival models
[166] to estimate the expected duration.

• Time series analysis: ARIMA [161, 165, 167] based on previous values, kalman
filter to model hidden state of time-related noisy data [144], and fourier and genetic
programming to generate a polynomial function by optimising a fitness function
[114].

• Learning: learn patterns from data. Divided in two types: classification and
regression.

– Classification: diagnosis relating the data to a known failure type or similar
working data and then prognosticate a degradation according to the historical
data of this class. Despite any classifier can be used for this purpose, the
following ones are widely used in literature: feed-forward NN [148], SVM
[148], BN [156, 168, 169], HMM [170], fuzzy logic based [171] and RF [165,
172].
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– Regression: directly estimate HI, anomaly deviation or RUL from the input
data. Common state-of-the-art algorithms include: linear function as the
simplest method [163]; nonlinear functions [166, 173] can model non-linear
relations; Support Vector Regressor (SVR) [165, 174] works like SVM adapted
for regression; Relevance Vector Regression (RVR) is based on bayesian re-
gression [161]; CNN models features’ time-based relationships [175]; wiener
processes model degradation by a real valued continuous-time stochastic pro-
cesses [176]; recurrent neural networks like LSTM and GRU [177] retain rel-
evant past information for prognosis at each observation.

3.1.2.6 Mitigation

After detecting an anomaly, diagnosing its cause and prognosticating its evolution, there
is enough information to design and implement a maintenance plan. The implementa-
tion of this plan includes the necessary steps to restore assets to their correct working
condition before failures occur, which reduces implementation and downtime costs.

Data-driven PdM models should generate assistance information, providing domain
technicians with statistics [160] and prescriptions [156]. Therefore, a more advanced
mitigation is accomplished by the combination of domain knowledge and data-driven
information about assets’ health and expected degradation [178].

3.1.3 Deep Learning-based predictive maintenance

This section collects, summarises, classifies and compares the reference DL techniques
for PdM, analysing the most relevant works and applications. It contains accurate DL
models that achieve state-of-the-art results on reviewed articles, surveys and reviews
of the field. Even though most articles combine several techniques and perform more
than one PdM stage in the same architecture, this section classifies the works by their
principal DL technique to perform each stage of Section 2.2; including how to perform
feature engineering to prepare the data for PdM stages. This classification enables
the analysis and comparison of DL techniques by stages. This section also presents
works that successfully combine the aforementioned techniques to create more complete
architectures that fulfil one or more PdM stages, giving examples of ways to combine
techniques that can be infinite. Finally, the most relevant information of similar works
is discussed.
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The state-of-the-art works can be further classified regarding their underlying ML task
and algorithms used to address it, which are directly related to the use-case and its
data requirements. Binary classification is selected when training data contains labelled
failure and non-failure observations. Multi-class classification is used in the same case as
binary classification, but there is more than one type of failure classified and therefore
there are at least three classes: one represents non-failure and then one for each type
of failure. One Class Classification (OCC) semi-supervised approach is applied when
the training dataset only contains non-failure data, which usually consists of collecting
machine data in early working states or when technicians assure the asset is working
correctly. Finally, unsupervised techniques are used when training dataset is unlabelled
and therefore there observations’ failure or non-failure labels are unknown. Additionally,
there are a few works on other machine learning and deep learning topics such as active
learning, reinforcement learning and transfer learning.

3.1.3.1 Feature engineering with deep learning

The deep learning algorithms used in PdM are capable of performing feature engineering
automatically, obtaining a subset of derived features that fit specifically for the task.
A common technique is using feed-forward by adding deep layers with less dimensions.
Restricted Boltzmann Machine (RBM) also provide automatic feature extraction by
modelling data probability with contrastive divergence minimisation, based on one-way
training and reconstructing input from output. Likewise, Deep Belief Network (DBN)
enable automatic feature extraction using stacked RBMs with greedy training, which
can also be used for HI construction. Moreover, SOMs map data to a specified dimen-
sion, and AEs reduce dimensionality in latent space while keeping maximum input data
variance, providing non-linear FE and HI calculation. In addition, CNNs automatically
extract features by univariate or multivariate convolutions of input, thus modelling se-
quential data with sliding windows. CNNs are usually combined with pooling methods
to reduce dimension. Finally, RNNs use regression to model time-series and sequential
data by propagating state information through time.

These feature engineering techniques remove the dependence on manual and feature
engineering process. Table 3.2 shows strengths, limitations and referenced applications
of common deep learning techniques used for feature engineering. These techniques are
integrated with machine learning and deep learning models to create architectures that
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perform PdM stages.

Feed-forward networks are unable to model the temporal relations of industrial sensor
data for feature extraction, but they can fuse nontemporal features to reduce the di-
mensionality of the feature set when used inside an AE. AEs have the ability to extract
features automatically; therefore, they are suitable for extracting representative features
to perform semisupervised and unsupervised predictive maintenance. However, like the
feed-forward models and RBM, DBN and SOM, AEs depend on the use of CNN and
RNN layers to extract time-based relations.

RBMs are simpler and faster to train than feed-forward networks, but they have difficulty
in modelling complex industrial data because they are composed of a single layer. DBNs
address this issue by stacking RBM layers; thus, they achieve SotA results in industrial
data by modelling temporal relations with sliding windows. However, the use of sliding
windows limits the long-term modelling capabilities of RBMs.

CNNs are suitable for modelling individual sensor relations with one-dimensional filters
and can also model time-based relations among sensors by using two-dimensional fil-
ters. Their main advantage is that by weight sharing, they reduce the required training
resources and model complexity, but they have limited memory. RNNs with specific ar-
chitectures can extract longer temporal data relations among sensors, but their memory
is still limited by the vanishing gradient problem. In addition, they add complexity and
therefore increase the explanation difficulty of the network. Explanation difficulty is a
challenge that PdM models must overcome before being deployed to production.

3.1.3.2 Anomaly detection with deep learning

The deep learning-based AD algorithms can be classified in three groups according to
training data characteristics, as stated in the introduction of this section. The main
architectures have been summarised in Figure 3.4.

Those algorithms are summarised, compared and their main applications are referenced
in the following tables. On one hand, the anomaly detection algorithms based on binary
and multi-class classification approaches [148, 180] rely on training data classified as cor-
rect and failure. These commonly used feature extraction techniques either traditional
or deep learning followed by a flatten process, and then have several fully-connected
layers of decreasing dimension until the output layer. In the case of binary classifi-
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Table 3.2: Deep learning techniques for automatic feature engineering and projection. These
techniques are based on input signal relations and temporal context.

Algorithm Advantages Disadvantages Applications and refs
Feed-
forward

- Reduce dimension to lower
feature space
- Simplest NN architecture

- Not model the features by
neighborhood
- Not model temporal rela-
tions

Engine health monitoring
[148, 179], bearing fault di-
agnosis [180]

RBM - Keep spatial representa-
tion in new space
- Not much training time

- Not keeping data variance
in new space
- Difficulty on modelling
complex data since only one
layer

Bearing degradation [181],
factory PLC sensors [182]

DBN - Competitive SotA results
- Can model time-
dependencies using sliding
windows

- Slow training
- Not modelling long-term
dependencies.

Vibration analysis [183],
bearing prognosis [184], en-
gines [185, 186], wind tur-
bine [187]

SOM - Non-linear mapping of
complex data to a lower di-
mension
- Maintains feature distri-
bution in the new space
- Can be combined with
other techniques for RCA
(i.e. 5-whys [188])

- Difficult to link latent vari-
ables with physical meaning
- More complex than other
techniques
- Fixed number of clusters

Turbofan [189], pneumatic
actuator [190], thermal
power plant [188], bearing
degradation [181]

AEs - Automatic FE of raw sen-
sor data achieve similar re-
sults to traditional features
1

- Traditional features can
also be input
- No need of classification or
failure data
- Allows online CM.

- Extracted features not
specific for the task
- Needs more resources:
computational and training
data
- Loses temporal relations if
input data are raw sensors
data
- Can lead to overfitting

Bearing vibration [141, 191,
192], satellite data [193],
CAN vehicles [107]

CNN - Simple yet effective
- Faster than traditional ML
models in production
- Takes advantage of neigh-
borhoods
- Less training time and
data by weight-sharing
- Can outperform LSTM
- Dropout can prevent over-
fitting

- Slower training due to high
number of weights
- Data analysis in chuncks,
not modelling long-term de-
pendencies.

Bearing diagnosis
[194, 195], electric mo-
tor [196], gearbox [197],
turbofan [175, 198], Nu-
menta Anomaly Benchmark
[199], blade [200]

RNNs - Model temporal relation-
ships of EOC data
- Special architectures as
LSTM and GRU can model
medium-term dependencies

- RNNs suffer vanishing gra-
dient problem, even special
architectures cannot model
very long-term dependen-
cies
- Need more resources

turbofan [177, 201, 202], hy-
dropower plant [146]

1 In this section, the term traditional features refers to handcrafted and automatic feature extraction
techniques such as statistical or ML-based features, excluding DL-based features.
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Figure 3.4: Diagram of main deep learning techniques for anomaly detection in predictive
maintenance 3.

cation, there are one or two neurons indicating the probability of failure and normal
working condition. Similarly, in multi-class classification there are N+1 number of neu-
rons, where there is one neuron to indicate the probability of not failure and each of
remaining N indicate the probability of each type of failure.

Another type of algorithms address the AD problem based on one-class classification
or unsupervised approaches, using only training data classified as correct or not clas-
sified. Autoencoder structures are widely used for this propose, where vanilla AEs
uses a threshold in reconstruction error to classify as anomalous data that surpasses it.
Stacking more than one AE after another is denominated as stacked AE, whereas SAEs
constrained training with sparsity to keeping neurons’ activations low, and DAEs are
AEs designed for noisy data. The generative VAE is an AE that maps input data to
posterior distribution, and GANs are used for data augmentation and AD in 2 ways:
using discriminator and using residuals.

One additional one-class technique is OC-NN, which trains AE and freezes encoder for
one-class classification that is similar to OC-SVM loss function. Vanilla RNNs are also
used for AD in the tracking error between predicted and real behavior using regression,

3In this section, the term traditional features refers to handcrafted and automatic feature extraction
techniques such as statistical or ML-based features, excluding DL-based features.
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and measuring HI difference. Similarly, LSTM and GRU neural networks are used re-
placing neurons architecture by LSTM and GRU neurons respectively. A comparison on
strenghts and limitations, together with applications and references of these techniques
are displayed in Table 3.3.

Autoencoders are trained to detect anomalies in industrial data using unsupervised
or one-class data; a vanilla AE is the simplest version. Stacked AEs achieve better
performances but at the cost of increased complexity and additional resources. SAEs
penalise the weights of the autoencoder to limit complexity, which can be used to prevent
overfitting of anomaly detection algorithms, and DAEs are more complex and robust to
noisy data, making them suitable for addressing vibration data. An OC-NN works as a
one-class neural network that can be trained in a semisupervised way. While it cannot
extract time-based relations, this ability can be achieved by combining an OC-NN with
CNN and RNN layers.

Regarding generative models, a VAE learns the posterior distribution of the sensor data,
but the random component can make model interpretability difficult. GANs addition-
ally enable data generation, which can be useful for generating synthetic failure data
when only a few failure observations have been collected, and they can achieve SotA
results in semisupervised anomaly detection. However, GANs have difficulties handling
datasets with high imbalance ratios, their complexity makes them difficult for industrial
stakeholders to interpret, and sometimes they are outperformed by simpler methods.
RNNs are widely used to evaluate the evolution of industrial asset signals over time and
detect anomalies, but the vanilla version cannot model long-term dependencies. LSTMs
and GRUs fix this vanishing gradient problem, so they have currently replaced vanilla
RNNs. The choice of one model type over the other depends on the specific use case
being addressed.

3.1.3.3 Diagnosis with deep learning

The diagnosis steps depends on the information and type of AD model used for the
previous stage, given PdM is an incremental process where each stage is complemented
by previous stages. In the case of multi-class classifier, the type of failure related to
the detected anomaly is already known, which enables a straightforward diagnosis and
comparison with historical data [148, 180]. Nonetheless, most PdM architectures im-
plement binary classifier, one-class classifier or unsupervised models, which lack of fail-

50



Table 3.3: Anomaly detection methods that use training data classified as correct or not
classified: one-class classification and unsupervised.

Algo-
rithm

Advantages Disadvantages Applications and refs

Autoencoders
Vani-
lla
AE

- Automatic feature engi-
neering of raw sensor data
or traditional features
- Minimise variance loss in
latent space
- No need of classification or
failure data
- Allows online CM

- Extracted features not specific for
the task
- Needs more resources: computa-
tional and training data
- Loses temporal relations if input
data are raw sensors data
- Can lead to overfitting

Bearing vibration
[141, 191], satellite
data [193], flight data
[203], CAN vehicles
[107], marine au-
tonomous systems
[204]

Stack-
ed
AE

- Perform slightly better
than vanilla AE

- Needs more resources than vanilla
AE

Bearing vibration [205,
206], generator turbine
vibration [207]

SAE - Same as AE plus pre-
vent overfitting by forcing
all neurons to learn

- More complex networks and need
more resources than vanilla AE

Bearing vibration,
turbine vibration [208],
[209], [207], [192]

DAE - Outperform vanilla AE
with noisy data
- Works slightly better
stacking several DAEs

- More complex networks and need
more resources than vanilla AE
- stacked DAE needs even more

Bearing vibration [208,
210]

Generative
VAE - Learns posterior distribu-

tion from noisy distribu-
tion, generating data non-
deterministically

- Difficulty on implementation
- Loses temporal relations if input
data are raw sensors data.

Ball screw [132], elec-
trostatic coalescer
[211], web traffic [150],
aircraft data [212]

GAN - Good data augmentation
with small imbalance ratio
- AD outperform unsuper-
vised SotA methods

- Not working well with big imbal-
ance ratio
- complex and need more resources
- Outperformed by simpler methods
as CNN [194]

Induction motor [149],
bearing multisensor
[194]

One-Class Classifiers
OC-
NN

- Automatic feature extrac-
tion

- Slower than traditional OCCs
- Extracted features are not focused
on the problem

General AD [213]

Recurrent Neural Networks
Vani-
lla
RNN

- Model temporal relation-
ships of time-series data
- Self-learning.

- Suffers vanishing gradient prob-
lem; therefore cannot model
medium and long-term dependen-
cies
- Need more resources than feedfor-
ward AE or CNN for training.

Activity recognition
[214]

LSTM - Same as vanilla RNN,
however these can model
longer time dependencies
than vanilla

- Even if handle better the vanishing
gradient problem than vanilla, have
difficulty on modelling long-term de-
pendencies
- Long training and computational
requirements

Aircraft data [215], ac-
tivity recognition [214],
nuclear power machin-
ery [216]

GRU - Comparable to LSTMs
plus easier to train

- Comparable to LSTMs Aircraft data [215], ac-
tivity recognition [214]
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ure type information. Therefore, these can only perform diagnosis by grouping the
detected anomalies among them by similarity, which is done using clustering models
[212, 217, 218, 219, 220] and SOM [221, 222, 223, 224]. The features used for this stage
are similar to the ones for AD, which can be based either on traditional or deep learning
techniques.

3.1.3.4 Prognosis with deep learning

The most common deep learning algorithms for prognosis are summarised and compared
in Table 3.4. The Vanilla RNNs, Gate based RNN networks (LSTM or GRU) can be used
for Regression, predicting features’ and Heath Index evolution or predicting remaining
cycles or time. Their input can be the information generated in previous stages and
traditional or deep learning features. This section focuses on the most common and
simple state-of-the-art techniques that only use DL for prognosis, whereas prognosis
works that combine DL with traditional features are presented in the combination of
models and remarkable works part of this section.

Table 3.4: Summary of DL-based prognosis works for PdM. The terms “unsup” and “sup” in
the algorithm column refer to unsupervised and supervised respectively.

Algorithm Advantages Disadvantages Applications and
references

RNNs Model temporal relation-
ships of time-series data.
Possibility for self-learning

Suffer from vanishing gra-
dient problems; therefore,
they cannot model medium
and long-term dependencies.
They have lengthy training
and high computational re-
quirements

Aero engine [177]

LSTMs Same as a vanilla RNN;
however, LSTMs can model
longer time dependencies
than can vanilla RNNs,
and they outperform vanilla
RNNs

Although LSTMs handle the
vanishing gradient problem
better than vanilla RNNs,
they still have difficulty
modelling long-term depen-
dencies and have lengthy
training and high computa-
tional requirements

Aero engine [177],
rolling bearing
[225, 226], lithium
batteries [227, 228]

GRU Same as LSTMs but easier
to train

Same as LSTMs but may
achieve slightly worse results

Aero engine,
lithium batteries
[177, 227]

The use of LSTMs and GRUs is more common than that of vanilla RNNs given that
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they allow the modelling of longer time dependencies. LSTMs are more commonly used
for prognosis in the PdM field, whereas GRUs achieve similar results but are simpler
and therefore easier to train. The choice of one model type over the other depends on
the addressed use case.

When target failure types are known and there is either a priori knowledge or observa-
tions of target class is available, uncertainty quantification can help to identify which
predictions of the generated model are trustable and which not. This is specially relevant
in the case of prognosis, given that as the prediction time horizon increases, prediction
uncertainty is higher. A common technique to quantify uncertainty of data-driven mod-
els is by bayesian inference, which is implemented in articles presented by Wang et al.
[229] and Kraus et al. [230]. However, when there is not enough data collected from the
target failure types or it is tackled as one-class classification, the aforementioned tech-
niques cannot be used; in this cases, self-supervised metrics like variance gain relevance
for uncertainty modelling.

3.1.3.5 Mitigation with deep learning

The research methodology followed to research state-of-the-art, showed few DL-based
mitigation publications. Several possible reasons for this fact are described bellow.
The majority of DL works are focused on optimising a single performance metric for
the ML task to be solved, like maximising accuracy or F1 score on classification, and
minimising errors like MAE or RMSE on regressions. These works’ solutions are usually
compared in simulated reference datasets, looking for the architecture that outperforms
the rest on the aforementioned metrics. Nonetheless, deep learning models are the
hardest ML type to understand given their higher complexity that makes them more
accurate at modelling high dimensionality complex data, and therefore they fail to meet
the industrial explanation facility requirement.

The publications that generate automatic data-driven maintenance policies using deep
learning models for PdM are based on reinforcement learning, an emerging trend in this
field. The article presented by Paraschos et al. [231] uses reinforcement learning for
the generation of control policies that optimise maintenance on degrading failure man-
ufacturing system. Moreover, Rocchetta et al. [232] present a reinforcement learning
framework to optimise power grids maintenance using Q-learning on a fully-connected
neural network. Likewise, the work by Hoong Ong et al. [233] proposes an automatic
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learning framework that creates optimal maintenance decision policies based on machine
health state, which is derived from sensor data and proposes actionable recommenda-
tions.

Predictive maintenance systems should provide mitigation advice or at least explana-
tions about the reasons for making predictions, which could be supported on the emerg-
ing field XAI. Furthermore, the final and most ambitious step in this PdM stage should
be the automatising of recommendations for domain technicians to integrate PdM in
the maintenance plan, by optimising industrial maintenance process via maintenance
operation management.

3.1.3.6 Combination of deep learning models and remarkable works

The DL techniques already presented throughout current section are the basic elements
and architectures used for PdM. It is worth highlighting there are infinite possible ar-
chitectures by combining these techniques among them, or used together with other
data-driven or expert-knowledge based techniques. The combination and adaptation of
models for the problem being addressed results into more accurate models that fulfil
its requirements. Table 3.5 summarises how these models are commonly combined in
architectures, presenting their strengths and limitations.

Moreover, Table 3.6 contains relevant works of the aforementioned types, which merge
traditional FE or deep learning FE with traditional data-driven or deep learning models.
This collection of works shows that combination of techniques can address all PdM stages
using supervised or unsupervised approaches.

The principal deep learning works for PdM have been reviewed, even though the number
of possible architectures is infinite by combining and adapting the presented techniques.
Despite this fact, several common architectures of reviewed publications for anomaly
detection, diagnosis and prognosis are presented in Figure 3.5, Figure 3.6 and Figure
3.7 respectively.
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Table 3.5: Possible combination of deep learning techniques for PdM architectures.

Algorithm How they work Strengths Limitations
Traditional and DL features combined with DL models
Traditional and
DL-based FE
with AE

Combine traditional and
DL FE methods with al-
ready presented autoen-
coder architectures in
the same model

Outperform traditional ML
and simple DL architec-
tures. No need of hand-
crafted features. Auto-
matic FE. Can model time-
series dependencies using
CNN, LSTM and GRU by
context extraction

Understanding deep
features is not straight-
forward. Slower and
more complex than
simple ANN models

Traditional and
DL-based FE
with DBN

DL and traditional FE
methods with DBN
stacked to other models

Same as above Same as above

Hybrid: combination of features and models
DL FE tech-
niques combina-
tion

Combine CNN, LSTM,
other DL FE techniques
and traditional features
to extract more complex
features

Automatic dimension re-
duction. Outperform other
FE techniques. Model tem-
poral relations and neigh-
bors. With bidirectional
RNNs, future context is
available

More complex and
need more resources
than traditional ML
and simple DL models.
Bidirectional RNN
cannot be done online
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Figure 3.5: Diagram of three common deep learning architectures for anomaly detection in
predictive maintenance: convolutional autoencoder on top, autoencoder-based extreme learning
machine on bottom left and autoencoder-based ELM in bottom right.
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Table 3.6: Combination of deep learning techniques for PdM: relevant works summary.

Architecture How it works Strengths Limitations Applications and refs
Autoencoders
AE with ELM. Unsupervised AD tracking error of ELM

for OCC, trained with normal data.
Two steps training. Easy to train. Unable to model non-linear or

complex relations in ELM.
Power plant [234], machine life-
time estimation [235].

Stacked SAE Unsupervised FE adding noise No need of preprocessing. Robust to
noise. Severity identification.

Difficult optimisation of deep ar-
chitecture

Rolling bearing [209]

Stacked CNN-based AE Unsupervised FE modelling temporal re-
lations in sliding window

Model temporality using neighbours. Only short temporal relations Gearbox vibration [236]

AE with LSTM Unsupervised FE modelling temporal re-
lations

Model temporality Higher computational require-
ments

Aviation [237], turbofan and
milling machine [238], solar
energy, electrocardiogram [239]
and manufacturing [240]

VAE with RNN, GRU or
LSTM

Unsupervised generative FE modelling
temporal relations and reducing to latent
gaussian distribution

Model temporality. Regularised la-
tent space

High computational requirements Motor vibration[237], turbofan
[241], sensors [242]

Restricted boltzmann machines and deep belief networks
DBN Unsupervised FE by hierarchical repre-

sentations
Fault classification from frequency
distribution

Need preprocessing. Tendency to
overfitting. Not modelling tem-
poral relations

Induction motors fault simulator
[186]

Regularised RBM +
SOM + RUL

Probabilty modelling, health assesment
and RUL prognosis using distance

RBM regularisation improve FE for
RUL

Single RBM, can be improved by
multiple of these layers.

Rotating systems [181]

Image generation +
DBN + MLP/FDA/-
SOM

Supervised or unsupervised FE modelling
from vibration image data

Model temporality in an image.
Combine with image processing
methods

Difficulty on extracting clus-
ters’ meaning, relying on domain
knowledge.

Journal bearing [243]

Hybrid: combination of features and models
Bidirectional LSTM Unsupervised FE modelling temporal re-

lations
Health estimation and then RUL
mapping. More robust. Future con-
text is available.

Need all signal to be processed:
no streaming. More complex than
simple LSTM.

Turbofan [244]

AE + Convolutional
DBN + Exponential
Moving Average (EMA)

Unsupervised probability modelling by
automatic FE, modelling temporal rela-
tions. Training in steps

Model temporality. More stable
than traditional ML and simple
DL. Each model complement others
weaknesses

Each part trained independently,
not for problem. EMA only
model shorter term temporal re-
lations.

Electric locomotive bearing fault
[245]

CNN and bidirectional
LSTM based AE + fully
connected + linear re-
gression

Unsupervised FE modelling temporal re-
lations

Raw sensor data modelling. Model
long-term temporal dependencies

Sliding window needs complete
window. Higher complexity com-
bining DL techniques

Milling machine [246]

Traditional FE +
bidirectional GRU
combined with ML
models

Unsupervised FE modelling temporal re-
lations

Same as above Same as above Aviation bearing fault detection,
gear fault diagnosis and tool
wear prediction [247]
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Figure 3.6: Diagram of two common deep learning architectures for diagnosis in predictive
maintenance: deep belief network with feed-forward predictor on left and self organizing map
on right.
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Figure 3.7: Diagram of a common deep learning architecture for predictive maintenance
prognosis, based on LSTM layers.

The rest of this subsection summarises the contributions and strengths of relevant anal-
ysed works. One interesting article was published by Shao et al. [248], where a method-
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ology of AE optimisation for rotating machinery fault diagnosis is presented. Firstly,
they create a new loss function based on maximum correntropy to enhance feature learn-
ing. Secondly, they optimise model’s key parameters to adapt it to signal features. This
model is applied to fault diagnosis of gearbox and roller bearing. Another relevant pub-
lication is by Lu et al. [249] which uses growing SOM, a extension of SOM algorithm
that does not need specification of map dimension. It has been applied to simulated
test cases with application in PdM.

Guo et al. [250] propose a model based on LSTM and EWMA control chart for change
point detection that is suitable for online training. An additional interesting work
is presented by Lejon et al. [251], who use ML techniques to detect anomalies in hot
stamping machine by non-ML experts. They aim to detect anomalous strokes, where the
machine is not working properly. They present the problem that most of the collected
data corresponds to press strokes of products without defects and that all the data
is unlabelled. This data comes from sensors that measure pressures, positions and
temperature. The algorithms they benchmarked are AE, OC-SVM and IF, where AE
outperforms the rest achieving the least number of false positive instances. As the
authors conclude, the obtained results show the potential of ML in this field in transient
and non-stationary signals when fault characteristics are unknown, adding that AEs
fulfill the requirements of low implementation cost and close to real-time operation that
will lead to more informed and effective decisions.

As previously mentioned in this section, the possibility of model combination is infinite.
For instance the publication by Li et al. [12] with scheme in Figure 3.8, combines
a GAN structure with LSTM neurons, two widely used DL techniques that achieve
results. Additionally, DL techniques can be combined with other computing techniques
as Unal et al. [252], combining a feed forward network with Genetic Algorithms.

The last highlighted article that combines DL models is by Zhang et al. [13], one of the
most complete unsupervised PdM works, contained in Figure 3.9. They build a model
that uses correlation of sensor signals in the form of signature matrices as input that
is fed into an AE that uses CNN and LSTM with attention for AD, partial RCA and
RUL. The strengths of this work are the following: they show that correlation is a good
descriptor for time-series signals, attention mechanism using LSTMs gives temporal
context and the use of anomaly score as HI is useful for RCA, mapping the detected
failures to the input sensors that originate them. Conversely, the RCA they do is not
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Figure 3.8: Architecture of anomaly detection PdM using GAN and LSTM proposed by Li
et al. [12].

complete since they only correlate failures to input sensors but are not able to link them
to physical meaning. Moreover, the lack of pooling layers together with the combination
of DL techniques results in a complex model that is computationally expensive, needs
more time and data for training and its decisions are hard to explain.

Figure 3.9: Architecture of semi-supervised autoencoder by Zhang et al. [13].

The following publications use other ML tasks combined with DL models for PdM, and
other DL techniques. Wen et al. [253] use transfer learning with a SAE for motor
vibration AD, outperforming DBNs. The article by Wen et al. [254] proposes a transfer
learning based framework inspired in U-Net that is pretrained with univariate time-
series synthetic data. The aim of this network is to be adaptable to other univariate or
multivariate anomaly detection problems by fine-tuning.

Martinez-Arellano et al. [255] present a bayesian and CNN based DL classifier for AD.
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They first use a small labelled dataset to train the model. Then, the model is used
to classify the remaining data and then, it uses uncertainty modelling to analyse the
observations that cannot be correctly classified due to high entropy. Finally, it selects
the top 100 with highest entropy to query an domain knowledge technician, asking
him/her to label them in order to retrain the model with this new data. This procedure
is followed until the model obtains a good accuracy. This work is an example of how
to use two interesting techniques in the field of PdM to address the problem of lacking
labelled data by querying domain technicians, showing them the instances from which
the model can learn the most. Concretely, the aforementioned techniques belong to
semi-supervised classification type using active learning. Similarly, the review by Khan
et al. [16] mentions that expert knowledge can help troubleshooting the model and, if
domain technicians are available, the model could learn from them using a ML training
technique called active learning where the model queries them in the learning stage.
Moreover, the work by Kateris et al. [256] uses SOM as OCC model for AD together
with active learning, to progressively learn different stages of faults.

The architectures of stacked autoencoders and stacked restricted boltzmann machines
stated above are commonly used to optimise the creation of more complex deep learning
architectures by stacking one simple architecture type multiple times. However, there is
little research applied to ensemble learning that combines different deep learning tech-
niques for predictive maintenance, or even with other data-driven systems. The article
by Li et al. [257] trains base algorithms separately and then uses a parallel ensemble
method that weights the prediction of each base algorithm based on their performance
in order to produce the output of the ensemble algorithm for aircraft data; the weight
vectors are optimized using particle swarm optimization and sequential quadratic op-
timization algorithms. Similarly, the article by Li et al. [14] in Figure 3.10 presents a
method that weights predictions of different remaining useful life algorithms; it could
be used to combine different deep learning models with themselves or other data-driven
models. The work presented by Bose et al. [235] uses an ensemble-based voting system
to create a one-class classifier relying on ELMs that optimises consumption and speeds
up calculations; this enables its installation in edge computing given the achieved neuron
quantity reduction.

Additionally, there are methods to fuse deep learning architectures as Shao et al. propose
in [258], where autoencoders are stacked based on majority voting, selective ensemble
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Figure 3.10: Architecture to ensemble prognosis algorithms proposed by Li et al. [14].

and weight assignment techniques for roller bearing diagnosis. Likewise, a stacked en-
semble of recurrent neural networks for remaining useful life estimation is presented by
Mashhadi et al. [259]. All in all, ensemble techniques have shown promising results
in the field of predictive maintenance. However, the combination of algorithms in a
meta-model increases the complexity and therefore difficult explainability, so the choice
of implementing ensemble methods or not is tied to the objectives of each use-case.

Another interesting technique with PdM applications is deep reinforcement learning.
The publication by Zhang et al. [260] uses it for HI learning, outperforming feed-forward
networks but underperforming CNN and LSTM for AD and RUL. This technique con-
sists of transferring the knowledge adquired from one dataset to another one. The
procedure consists of reusing a part or the whole pretrained model adapting it to new’s
requirements, which sometimes requires retraining the model but this needs less data
and time. In addition, Koprinkova-Hristova et al. [261] use reinforcement learning on
echo state networks to predict possible alarm situations in an industrial power plant,
enabling model learning by experience, online readaptation from new information and
human expert advice accounting.

3.1.3.7 Related review works summary

This subsection summarises the most relevant information of the review works related to
DL-based PdM, highlighting their main contributions, detected challenges and gaps in
the works and their conclusions. In addition, Table 3.7 compares the contributions state-
of-the-art reviews and surveys about deep learning-based PdM application, analysing
their applicability on PdM stages and adaptability to relevant industrial requirements.
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Moreover, their description and limitations are presented and compared with the con-
tributions of this section.

Table 3.7: Summary of related review works regarding DL application for PdM and com-
parisons with this section. The columns evaluate whether the works conduct a review of the
corresponding characteristics.
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Description and limitations
Zhao
et al.
[262]

3 3 3 3 7 3 3 3 7 7 7 7 Covers the main models: AE, RBM, DBN, CNN,
RNN, but does not cover generative models. The
results are compared quantitatively in a local
dataset. Several techniques required to address
industrial requirements are not covered.

Zhang
et al.
[89]

3 3 3 3 7 3 7 3 7 7 7 7 Only feed-forward and AE models are included.
Their accuracy in different public datasets is pre-
sented. Several techniques required to address
industrial requirements are not covered.

Khan
et al.
[16]

7 3 3 3 7 3 3 3 7 7 7 3 Covers RBM, DBN, CNN, RNN, but does not
cover generative models. It covers a few tech-
niques required to address industrial require-
ments, but several are missing. It does not com-
pare PdM results.

Fink
et al.
[263]

7 7 7 7 7 3 7 7 3 7 3 3 Reviews the main DL architectures including gen-
erative ones. It reviews the principal works, fo-
cusing on challenges. It does not compare archi-
tectures nor how they are applied to solve PdM
stages. It includes a few techniques required to
address industrial requirements, but several are
missing.

This
sec-
tion

3 3 3 3 3 3 3 3 3 3 3 3 Reviews the principal DL works by category,
including one-class neural networks, SOM and
generative models. Compares and discusses the
results in a public dataset quantitatively. It
also compares models qualitatively, which facil-
itates architecture fusion. Moreover, ensemble
learning is reviewed to enable robust PdM mod-
els. The PdM mitigation step is presented, sup-
ported on domain technicians. It includes several
techniques required to address industrial require-
ments that complement existing works.
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The work by [264] conducts a qualitative narrative review on the SotA fast DL models
applied for PdM in industrial IoT environments. They argue that real-time processing is
essential for IoT applications, meaning that a high-latency system can lead to uninten-
tional reactive maintenance due to insufficient maintenance planning time. Moreover,
they highlight how DL models can be optimised. They state that weight sharing on
RNNs enables parallel learning, which can help in training these types of networks that
achieve SotA results in most PdM applications. Accordingly, they also justify the use
of max-pooling layers when dealing with CNNs to eliminate redundant processing and
thus optimise them.

Two DL reviews applied to other fields contain information about models that could
be used for PdM: DL models for time series classification by [265] and DL used to
model sensor data by [266]. However, these works do not focus on PdM, and therefore,
their design, development and validation do not address predictive maintenance use case
requirements.

The review by [262] explains there are algorithms that use traditional and hand-crafted
features whereas others use DL features for the problem, and presents the most common
FE methods for DL based PdM systems. They state that both aforementioned features
work properly in DL models, supported on their state-of-the-art revision. These works
usually use techniques to boost model performance as data-augmentation, model de-
sign and optimisation for the problem, adopting architectures that already work in the
state-of-the-art. They also adapt the learning function and apply regularisations and
tweak the number of neurons, connections, apply transfer learning or stack models in
order to enhance model generalisation and prevent overfitting. The advantage of tra-
ditional and hand-crafted features is they are not problem specific, being applicable to
other problems. Moreover, they are easy to understand by expert-knowledge technicians
given that they are based on mathematical equations. However, as they are not problem
specific, in some cases DL-based FE techniques perform better since these are learned
specifically for the problem and directly from the data. However, they are not as intu-
itive as aforementioned features, meaning that technicians can have problems trying to
understand how they work.

The article by Zhao et al. [262] also summarises the information already stated through-
out this section: DL models can achieve state-of-the-art results, pre-training in AEs can
boost their performance, denoising models are beneficial for PdM because of the nature
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of sensor data and that CNN and LSTM variants can achieve state-of-the-art results in
the field of PdM using model-optimisation, depending on the dataset’s scale. In addition,
domain knowledge can help in FE and model optimisation. Conversely, it is difficult to
understand DL models even if there are some visualisation techniques because they are
black-box models. Transfer learning could be used when having little training data, and
PdM belongs to a imbalaced class problem because faulty data is scarce or missing.

The survey by Zhang et al.[89] compares the accuracy obtained by ANN, Deep ANN and
AE in different datasets, which allows comparisons, however these comparisons are done
with models applied to different datasets and therefore they are not fair. Nonetheless,
they show high accuracy results, most of them between 95% and 100%, emphasising
that DL models can obtain promising results. They state that deeper models and
higher dimensional feature vectors result in higher accuracy models but sufficient data
is needed. With the increase of computational power and data growth in the field of
PdM, research on this area tends to focus on data-driven techniques and specifically
DL models. However, DL models lack of the explainability and interpretability of taken
decisions.

The review by Khan et al. [16] states that the developed DL architectures are application
or equipment specific and therefore there is no clear way to select, design or implement
those architectures; the researches do not tend to justify the decision of selecting one
architecture over another that also works for the problem, for instance selecting CNN
versus LSTM for RUL. Its authors also argue that algorithms as the ones presented
throughout this section all have shown to be working correctly and are not different
from one another. In addition, the work by Fink et al. [263] reviews relevant PdM
works and current tendencies, but they do not detail how to build DL-based models for
each PdM stage.

Even if this section has been focused on DL models for PdM, these works are often
integrated with traditional models and/or traditionally FE features, such as time and
frequency domains, feature extraction based on expert knowledge or mathematical equa-
tions.

As the authors Khan et al. state [16], there is a lack of understanding of a problem
when building DL models. They also argue that VAE is ideal for modelling complex
systems, achieving high prediction accuracy without health status information. The
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algorithms that analyse the data maintaining its time-series relationship by analysing
the variables together, at the same time, are the most successful: no matter if using
sliding window, CNN or LSTM techniques. Most of algorithms focus on AD, whereas
they can also be adapted to perform RUL by a regression or RNN, where the majority
use LSTMs. Regressions commonly use features learned for the used AD models, or even
use traditional and hand-crafted features. Generative models like GAN do not work as
good as expected. However, CNN works well while needing less data and computing
effort. This means that even DL models can achieve similar accuracy using traditional
features or deep features extracted from the data unsupervisedly.

Finally, the reasons for existing few real application publications are summarised. In-
dustrial companies avoid publishing their data or implementation details to protect their
intellectual property and know-how from competence. Moreover, many data-driven re-
search publications lack of domain technician feedback so they tackle the problem only
relying on data-driven techniques, without embracing domain knowledge.

3.1.4 PdM datasets and state-of-the-art results

This section introduces several publicly available datasets for PdM application, and then
compares and discusses the results of different data-driven models on a selected PdM
dataset.

3.1.4.1 Benchmark PdM datasets

The review made by Khan et al. [16] states that one of the problems of PdM proposals
is the lack of benchmarks that difficult their comparison. There are several public PdM
datasets for prognosis released by the Nasa in the repository [267] belonging to the scope
of predictive maintenance, which are described in the following paragraphs.

Milling dataset [267] gathers acoustic emission, vibration and current sensor data under
different operating conditions with the purpose of analysing the milling wear. Regarding
PdM stages, it allows the application of AD, RCA and RUL.

Bearing dataset [267] gathers vibration data from 4 accelerometers that monitor bearings
under constant pressure until failure, obtaining a run-to-failure dataset where all failures
occur after exceeding their design life of 100 million revolutions. Its possible PdM
applications are AD and RUL estimation.
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Turbofan engine degradation simulation dataset [267] contains run-to-failure data from
engine sensors. Each instance starts at a random point of engine life where it works
correctly, and monitors its evolution until an anomaly happens and afterwards reaches
the failure state. The engines are working under different operational conditions and
develop different failure modes. Its possible PdM applications are AD, RCA and RUL.

Femto bearing dataset [267] is a bearing monitoring dataset inside the Pronostia com-
petition that contains run-to-failure and sudden failure data. The used sensors are
thermocouples gathering temperature data and accelerometers that monitor vibrations
in the horizontal and vertical axis. Its possible PdM applications are AD, RCA and
RUL.

Industrial companies are reluctant to publish their own datasets because they tend
to trade secret their data and knowledge in order to protect themselves from their
competence. The dataset that approximates most to companies data is the one published
by Semeion research center named Steel plates faults dataset [268], where steel plate
faults are classified into 7 categories.

3.1.4.2 Data-driven PdM results comparison

During the elaboration of this part, the majority of reviewed works aimed at anomaly
detection and diagnosis use private datasets, therefore there is no opportunity to com-
pare or replicate their results. However, the prognosis stage is widely researched with
the public dataset NASA turbofan, which has been used as reference to compare model
performance.

This subsection compares different relevant data-driven works for PdM application
on turbofan dataset introduced in previous subsection, which is generated using the
Commercial modular aero-propulsion system simulation. The reasons for choosing this
dataset are that it is one of the reference datasets of PdM, it enables the application
of all PdM steps and it is one of the most used dataset for model ranking; despite the
majority of works focus on prognosis.

This challenge is divided into four datasets, each of them with different characteris-
tics. The first, FD001 dataset, contains 100 train and 100 test trajectories with one
operational condition and unique fault mode; the FD002 dataset contains 260 train
and 259 test trajectories regarding to six operational conditions and unique fault mode;
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FD003 contains 100 train and 100 test trajectories with one operational condition and
two different fault modes; FD004 contains 248 train and 249 test trajectories with six
operational conditions and two different fault modes. All datasets contain 3 operational
setting variables and 26 sensors.

The dataset lacks of the RUL label, which is the target column. Hence, it is commonly
assumed to be constant in the initial period of time where the system works in correct
conditions and degrades linearly after exceeding the changepoint or initial anomalous
point. The constant value in initial period is a parameter denominated as Rmax, which
is set to values near 130 for many state-of-the-art works (see Table 3.8), enabling a fair
comparison of their results.

The most common metrics to evaluate model performance in this dataset are the fol-
lowing ones [175]: RMSE is the square root of the sum of all the squared errors between
real and predicted values divided by the number of predictions, which penalises out-
liers more than the mean absolute error, and defined in Equation 3.3; and a score
function used for this problem in PHM 2008 data challenge [269] and defined in Equa-
tion 3.4, which is asymmetric and penalises more latter error predictions than earlier
ones, growing exponentially when distancing from target value, and early predictions
have lower exponent value than latter ones to penalise late predictions. In previ-
ous equations, N is the number of engines in test set, S is the computed score, and
h = (EstimatedRUL− TrueRUL).

RMSE =
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(3.4)

Table 3.8 gathers the state-of-the-art results of data-driven models from 2014 on the four
data subsets that use the presented two equations for model evaluation. As explained
by Ramasso et al. [270], few works previous to 2014 used the subsets’ testing for model
evaluation, and many used different performance metrics, what complicates comparison.
Therefore, these works have been omitted, focusing only on novel works that overcame
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results of what was already published on at least one of the four data subsets.

Table 3.8: State-of-the-art results on four turbofan data subsets since 2014. The lower
the metric, the better the model is considered to perform on average. The best results are
highlighted in bold.

Reference Rmax Architec-
ture

FD001
RMSE

FD002
RMSE

FD003
RMSE

FD004
RMSE

FD001
Score

FD002
Score

FD003
Score

FD004
Score

Ramasso et
al. [270]

135 RUL-
CLIPPER

13.3 22.9 16.0 24.3 216 2796 317 3132

Babu
et al.
[175]

130

FFNN 37.6 80.0 37.4 77.4 1.7e+4 7.8e+6 1.7e+4 5.6e+6
SVR 21.0 42.0 21.0 45.3 1381 5.8e+5 1598 3.7e+5
RVR 23.8 31.3 22.4 34.3 1504 1.7e+4 1431 2.6e+4
DCNN 18.4 30.3 19.8 29.2 1287 1.3e+4 1596 7886

Zhang et al.
[271]

130 MODBNE 15.0 25.1 12.5 28.7 334 5585 422 6558

Zheng et al.
[272]

130 LSTM +
FFNN

16.1 24.5 16.2 28.2 338 4450 852 5550

Li et al.
[198]

125 CNN +
FFNN

12.6 22.4 12.6 23.3 273 10412 284 1.2e+4

Ellefsen et
al. [273]

115-
135

RBM +
LSTM

12.6 22.7 12.1 22.7 231 3366 251 2840

Kakati et
al. [274]

125 LSTM +
attention

14.0 17.7 12.7 20.2 320 2102 223 3100

The results comparison of Table 3.8 does not show only model’s performance, but also
the combination of preprocessing and feature engineering techniques. Therefore, results
show the performance of the complete data process applied to the dataset until predic-
tion. Nonetheless, the table shows that deep learning based architectures are the ones
that achieve state-of-the-art results in recent years. Concretely, these architectures are
composed of combination of different DL techniques.

The subset FD001 obtains lower errors given it only contains one operational condition
and one failure type, and subset FD003 obtains similar results while containing two
failure types. In contrast, performance on subsets FD002 and FD004 is significantly
worse given operational conditions change at each cycle during the same experiment.
Therefore, it is normal to have a significantly lower errors in subsets FD001 and FD003
in comparison with subsets FD002 and FD004 for all algorithms.
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3.2 Predictive maintenance methodologies

There exist a great number of architectures for the application of PdM systems.
Nonetheless, most of them generally converge into the following reference architecture,
addressed in incremental stages: first anomaly detection, after that diagnosis of the
anomaly, then prognosis of its evolution and finally its mitigation [93], as already pre-
sented in Figure 2.12.

The standardisation, specifications and guidelines on manufacturing and PdM are gath-
ered in norms and standards. The norm EN 13306 [21] defines the terms used in main-
tenance and maintenance management, which enable the understanding of key PdM
concepts. It also classifies maintenance strategies in a tree scheme regarding their base
technique, summarises the distribution of operating time in down state and the sub-
states of up state, and defines how to address intelligent maintenance by prioritising the
most critical failures.

The OSA-CBM specification [102] is a standard information flow architecture for a CBM
system contained in Figure 3.11, on which the aforementioned reference architecture is
based. It proposes XML schemes to facilitate implementation and 7 layers of information
flow. The international standard organization ISO 17359 [275] which, based on other
standards, provides a guideline for CM and diagnosis of machines based on sensor data.
It presents a procedure for implementing PdM on a schematic flowchart, divided in
key steps that complement the reference architecture. Moreover, O’Donovan et al. [276]
presents a set of data and system requirements for implementing equipment maintenance
applications of smart manufacturing in industrial environments. It also presents an
information system model that provides a scalable and fault tolerant big data pipeline
for integrating, processing, and analysing industrial equipment data.

Many publications present their own variations and frameworks that complement the
aforementioned reference architecture and standards. Some of the most relevant works
are presented bellow. Rana et al. [277] present a guideline to help companies in the
analysis of the most suitable maintenance strategy for each use-case. As they state,
two relevant aspects are the analysis of data collection method and FMEA and FMECA
Jordan [91]. If the predictive maintenance turns out to be most optimal, there exist other
works that recommend the stages or suitable steps to facilitate its implementation, as
the ones presented below.
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Figure 3.11: OSA-CBM functional blocks by [15].

The article published by Deloitte [278] presents a PdM journey in levels. Level 0 provides
a maintenance based on reactive resolution of failures, level 1 is based on visualisation,
level 2 is depends on rules created by expert-knowledge, level 3 is supported on data-
driven AD, level 4 is based on prognosis models and the last, level 5, is based on the
identification and mitigation of the anomaly using RCA.

The review by Khan et al. [16] proposes a data-driven step by step flowchart method-
ology to successfully apply PdM, see Figure 3.12. It is supported on OSA-CBM and
reference architectures, and their proposal is aligned with most of the articles that have
been reviewed in this section. Moreover, it states that the difference between traditional
data-driven, statistical and traditional ML, and deep-learning methods is that the latter
ones feed the model with the preprocessed data because features are extracted inside
the model directly whereas the former ones also need the extraction and selection of
features. Conversely, this section is focused on the capability of deep learning models
application in system health management.

Moreover, Nuñez and Borsato [279] presents an ontological model to guide the imple-
mentation of expert systems for prognosis and health management. They demonstrate
its applicability by implementing an expert system that models the RUL of a mechanical
machine before entering into a functional failure.

Furthermore, the publication by Bousdekis et al. [280] proposes how diagnosis, prognosis
and decision support is influenced by company management and the relation of these
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Figure 3.12: PdM flowchart proposed by Khan et al. [16]
.

tasks with maintenance management. It also explains how each PdM stage can influence
or result into maintenance actions. This is the way PdM systems impact company
maintenance by giving recommendations and prospect.

In addition, there are other methodologies designed to handle general machine learning
life-cycle that can also be used for PdM model development. One relevant methodology
is CRISP-DM by Chapman et al. [281] contained in Figure 3.13, even though it is not
specifically designed for maintenance and therefore it does not consider how to handle
industrial requirements.

A research on electronic databases including Scopus, Engineering Village, Springer Link,
Science Direct and the search engine google scholar was performed in the time period
between 2011 and 2021, to search for articles with the terms “predictive maintenance”
AND “methodology” AND (“data-driven” OR “life-cycle” OR “development”). The re-
search reported no methodology for data-driven predictive maintenance systems appli-
cation that combines data-driven models with domain knowledge adapted to industrial
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Figure 3.13: Diagram of CRISP-DM methodology by Wikipedia [17]
.

use-case requirements, specifying the steps required to manage their life-cycle.

3.3 Critical assessment of state-of-the-art

After reviewing state-of-the-art predictive maintenance works and methodologies, this
section summarises current research trends and concludes highlighting research gaps.

The majority of the reviewed PdM works were created and tested in research environ-
ments but not transferred or tested in industrial companies. Even if there are some
models trained with real industrial process data, the majority of the reference datasets
that have been preprocessed and specifically prepared for the task are generated in
simulation or testing environments. However these works do not address industrial
companies’ requirements presented by Venkatasubramanian et al. [97].

Industrial companies nowadays have collected much data for PdM by monitoring assets
under normal working condition, but it contains little to none failure data. In this sce-
nario, research on unsupervised, semi-supervised and one-class classification algorithms
has gained relevance. Concretely, deep learning architectures like autoencoders or deep
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belief networks with LSTMs or CNNs are widely researched given their high accuracy at
modelling time-series data semi-supervisedly. Nonetheless, the design and optimisation
of DL architectures is mainly guided by previous experience and trial and error. In ad-
dition, published unsupervised, semi-supervised and one-class classification data-driven
models are unable to link novel detected failures to their physical meaning. The main
reason is that these models ignore expert knowledge.

Deep learning models have gained popularity in PdM due to their high accuracy, achiev-
ing state-of-the-art results when trained with enough data. However, many works do not
address industrial requirements for PdM models such as interpretability, real time execu-
tion, novelty detection or uncertainty modelling, given that mainly laboratory datasets
have been used.

Nowadays there are emerging trends that may tackle mentioned gaps, such as combining
explainable artificial intelligence and domain knowledge to interpret more accurate grey
and black box models’ behaviour; developing edge computing systems that integrate
simplified architectures, reducing complexity to enable online data processing; research-
ing unsupervised and semi-supervised architectures that enable novelty detection by
modelling only correct machine data to discover failures; and enriching model output
with the probability for each prediction in order to model uncertainty. However, there
are few publications applying these techniques in PdM by modelling production data to
address industrial requirements.

Another little researched area with promising potential is diagnosis of semi-supervised
PdM systems, given the necessity to perform RCA and classify novel failures by linking
to physical meaning. In addition, transfer learning may facilitate model re-usability
along machines and assets, by reducing the required amount of data and training time.
Research on mentioned topics is fundamental to transfer any machine learning model to
real industrial use cases, and run in production.

To sum up, most industrial companies need PdM models to be accurate, easy to un-
derstand, process data on streaming, reusable and capable to detect and diagnose novel
failures, adapting to process data characteristics like correct data modelling. Industrial
companies are starting to implement data-driven PdM models in their use-cases, which
have different characteristics and requirements. Therefore, a general methodology that
defines the main steps for PdM data-driven integration could guide them in the process
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and facilitate their implementation.

Existing methodological publications for data-driven PdM life-cycle management are:
about CBM; focused on details of data-driven model types; roadmaps that show trends
and highlight future directions; focused on technical aspects of one or two PdM steps;
do not consider the importance of domain expertise; not specific for PdM and therefore
not adapted to its characteristics; or are not developed to address industrial companies’
requirements. For these reasons, many PdM publications end up following their own
steps to address their use-cases.

The research on electronic databases reported no methodology for data-driven predic-
tive maintenance systems application that details: their design, development and imple-
mentation, defining the required steps and resources, while specifying how to combine
data-driven models with domain knowledge adapted to industrial use-case requirements.
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Chapter 4

Design of a methodology to guide
data-driven PdM life-cycle integrating

expert knowledge

This chapter proposes a methodology that guides the life-cycle of data-driven tech-
niques for predictive maintenance by integrating expert knowledge. This methodology
addresses the first specific objective of the thesis, and its validation is performed in
Chapter 5.

The schematic of the methodology is presented in Figure 4.1, containing the general
stages and main steps to guide manufacturing companies in the design, development
and deployment of data-driven PdM systems. It is open and modular, being flexible
and adaptable to address different industrial use-case requirements iteratively while
keeping simple to facilitate its implementation and understanding. Therefore, it enables
the addition of new steps adapted to each use-case requirements while permitting the
omission of the steps without asterisk, which are advisable yet not indispensable.

Moreover, this methodology presents the tasks required to complete the steps, the re-
quired worker profiles to succeed in its application, and specifies which deliverables are
generated by the end of each stage in Figure 4.1. Concretely, three main working pro-
files collaborate in the implementation of this methodology: business profile contributes
with business vision and leads problem definition; domain technician contributes with
domain expertise supervising the project and collaborating in tasks; and data-scientist
guides the project and handles the tasks related to data-driven model development,
deployment, and monitoring.

The complete step-by-step version of the methodology is presented in Figure 4.2. It
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Figure 4.1: Scheme of proposed data-driven PdM methodology. Consists of four stages and
their steps.

summarises methodology’s main steps, containing a complete visual scheme with all the
tasks, principal subtasks and relations that form steps of the methodology. Being an
open and modular methodology, its implementation is flexible and does not require the
adoption of all its steps, only the ones marked by an asterisk in the diagram. Moreover, it
contains the principal profiles involved in each stage and the deliverables like documents
and models produced at them.

The methodology is inspired by CRISP-DM data analysis methodology as described by
Chapman et al. [281], PdM standards and methodologies like the ones presented in the
article by Reliasoft Corporation [282], and the publications presented in Section 3.2. It
contains four main sequential groups, denominated stages: business analysis, resources
analysis, model development and model deployment and monitoring. These stages are
explained and described in sections.

Methodology’s iterative design facilitates and fastens models going into production, and
then promotes incremental iterations to enhance their performance.

4.1 Business analysis

Business analysis is the first stage of the methodology, which is composed by two steps.

• Business, product and process analysis.
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Figure 4.2: Detailed version of proposed data-driven PdM methodology, specifying its stages,
steps and tasks in a flow diagram. It also contains the required profiles and indicates deliver-
ables created at each stage.
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The first step is to perform business, product and process analysis adopting a
business vision by understanding the products and services the company offers,
its business model and how they are related to the manufacturing process. It
enables to prioritise among problems that address business requirements, such
as production parameters optimisation, quality control and choosing the suitable
maintenance strategy.

• Problem definition.

If previous step’s analysis results in prioritising maintenance optimisation, the
assets with highest impact have to be evaluated, starting with the most com-
mon and critical failure types identified with tools like FMEA [90] and FMECA
[91]. After that, the most suitable maintenance strategy for each asset has to be
evaluated: whether predictive maintenance, periodical maintenance or corrective
maintenance; thus completing problem definition. A good resource for this analysis
is the guideline by Rana, Kumar and Srivdya [277]. Finally, if predictive main-
tenance is the maintenance strategy to be implemented, then the methodology
advances to the second stage; which focuses on analysing use-case resources.

Business analysis is the only stage where the three required profiles for the methodology
work together for its completion: the business manager provides business perspective
and helps to define business requirements; the domain technician provides technical
and operating expertise; and the data scientist helps to guide this stage while learning
background from other profiles.

As a result of completing this stage, two documents can be created: Document 1.1
resources characteristics contains a summary of how business works, business model,
products and services, and how manufacturing process works; and Document 1.2 prob-
lem definition, which explains manufacturing critical assets ordered by impact, which are
maintenance requirements for these assets and components, and analysis of maintenance
strategy suitability for them.

4.2 Resources analysis

After understanding the business and defining use-cases, the second stage is resources
analysis for the problem.
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• Design and implement data collection process.

The first step is to design and implement data collection process. The data should
be collected initially under similar EOC that want to be modelled from the same
machines and assets through time. Comparisons among different machines/assets
of the same type, even if being built under the same specifications, is difficult
given differences in EOC, tolerances, adjustments, etc. EOC information is essen-
tial to give data-driven algorithms working context of the monitored assets, like
environmental perturbations or working conditions that can affect its performance
and result in anomalies or component degradation. Whereas monitored EOC can
boost model accuracy, there exist other relevant variables that are not controlled or
even monitored like environmental noise and disturbance, lack of sensors or their
misplacement. Missing information like this that influences the monitored process
adds uncertainty, and a result, the created PdM system will be less accurate.

In addition, sampling rate of variables is of utter importance. According to the
Nyquist-Shannon sampling theorem, a signal of unknown frequency locations has
to be sampled at least at 2 times its frequency in order to enable signal reconstruc-
tion, thus maintaining enough information to avoid non reversible information loss
by the aliasing effect, presented by Mishali and Eldar [283]. Anyway, collecting
more data than needed is preferable to collecting less than the stated, given in
oversampled data downscaling is possible, but under-sampled data cannot recon-
struct original data correctly. However, big data collection and storage results
into higher costs, so the collection strategy should be correctly designed to fit
use-cases requirements to reduce costs and computational time. The use of signal
processing techniques is encouraged to design a suitable data collection strategy
that addresses the use-case’s PdM characteristics. Signal processing techniques
can help to determine a suitable sampling frequency. Moreover, signal processing
techniques include filters such as IIR Filters, Chebysev, Butterworth or Bessel as
stated by Almaged and Hale [284], which can be used to reduce the bandwidth of
a signal that has a higher sampling frequency than required. When the sampling
rate of the variables is different, in order to enable data analysis in any timestep
for all available variables, timestep by imputation such as repeating last value or
interpolation can be useful.

• Data resources verification and pre-analysis.
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The second step is data resources verification and pre-analysis. It must be retrieved
from the storing device, usually the online platform or hard disk on Programmable
Logic Controler (PLC). After that, a preliminary data analysis has to be per-
formed using tools such as time-series or bi-variate plot visualisation, correlation
analysis, feature description and distribution plots. It is extremely important to
take into consideration that correlation does not mean causality and therefore,
avoid believing that two or more variables are related whilst this relation is caused
by external factors. For instance, these could be collected under same circum-
stances or were only modified at the same time by coincidence. This problem can
be avoided with the integration of theoretical and domain expertise to validate
aforementioned relations.

• Data collection re-definition.

The third step is data collection re-definition, where the integration on similar
machines in aspects such as sensor type, models or placement is standardised.
Moreover, the problem has to be re-evaluated considering the gathered data to
check its suitability. This stage may reveal that collected data is not adequate
for the defined use-case requirements and company characteristics, so iteration
between current and previous steps is necessary until these are addressed; per-
forming tasks like adding data sources or even revaluating the problem. Despite
the initial machine monitoring process may not collect the most representative
data for the designed task, this step helps to identify its gaps for further improve-
ment. In addition, this methodology enables model contribution maximisation
whilst minimising development effort; thus facilitating improvement by iterating
steps.

• Collected data validation.

The fourth step is collected data validation from data sources in general, and sen-
sors in particular. The procedure consists of asserting it is in the expected range
given sensor placement, sampling frequency, sensor type and related aspects. If
any deviation is detected, iterations between current and previous steps are nec-
essary to fix it. In addition, this step must be validated from domain technician
perspective, thus iterating between current stage and following one to enable val-
idation based on domain knowledge.
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• Domain knowledge analysis.

The fifth and last step of resources analysis stage is domain knowledge analysis to
gain insight about the use-case, its variable types, their physical meaning, how they
are collected and the relation among them, both theoretically and in real process.
This knowledge is essential for many steps such as data analysis, data preparation,
model selection or ranking, and facilitates the creation of simpler, more accurate
and easier to understand models. Nonetheless, even if domain knowledge is a
key resource to understand data, there are usually differences between theoretical
knowledge and collected data given the physical process is affected by many factors
of collection procedure and component variability. For this reason, it is important
to analyse if data behaves as theoretically expected and if does not, being able to
reason why. This can help discover problems in the data acquisition process.

Data scientist and domain technician profiles have to work together in this stage in
order to define use-case requirements and design the data collection process. Moreover,
the data scientist will learn domain knowledge to understand better relations among
variables and therefore facilitate data analysis and interpretation, combining domain
knowledge with data-driven techniques. Domain technicians will also help to validate
collected data and refine it until the obtained data is representative for the use-case.

By the end of this stage, two deliverable documents can be generated that may help in
the analysis of resources suitability for the use-case and detect gaps, thus guiding the
implementation of the methodology. Use-case requirements are collected in Document
2.1, whereas Document 2.2 contains information about resources to address them like:
description of available data and how data collection process works; information of data
pre-analysis with documentation of data and its characteristics, data visualisation plots,
sensor placement, or normal working range of variables; and data relation to physical
meaning and domain knowledge.

These documents can facilitate the understanding of use-case requirements linked to
its objectives, physical process, and data. Moreover, presentations composed by visual
plots and concise text descriptions are interesting to convey the results of data analysis
and resulting models to domain technicians and thus facilitate the communication to
acquire knowledge. Therefore, domain knowledge can be used to complement data and
resources analysis.
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4.3 Model development

This is the stage where the data-driven model of PdM system is designed, data is
prepared according to its requirements, it is created, and validated, obtaining as a
result a version ready for deployment. It assumes that, after performing a preliminary
data analysis and validation with domain expertise, the selected data subset contains
predictor variables that are related to target variable. Moreover, relationship among
variables is unknown given the complexity of physical systems.

Therefore, the model is created under the basis that predictor variables have the power
to predict target variables using an unknown function that the created model aims
to represent in this stage. Several examples of target variables for PdM are: anomaly
detection, diagnosis by RCA, health index calculation and prognosis, and RUL. Another
assumption is that the observed data is big enough and of sufficient quality to represent
those relations that can be generalised beyond the training process.

This stage has a more in-depth technical background than the rest to facilitate its
implementation, given a high number of questions and difficulties arise when dealing
with tasks related to data adaptation for the model, model selection and validation. To
facilitate the understanding of this section, it is divided in the following subsections:
Model development flow explains the flow of this stage’s steps, while Data preparation
extension and Model selection extension complement the information of corresponding
steps with technical information. The reader not interested in technical details can read
Model development flow and then move on to Model deployment and monitoring stage
in Section 4.4, to skip these two technical subsections.

4.3.1 Model development flow

• Model design for use-case requirements.

The first step of this stage is model design for use-case requirements. The ad-
dressed machine learning task must be chosen to accordingly, defining model re-
quirements that could better fit that task with current data characteristics, such
as classification, regression, clustering, one-class classification, etc. Then, state-of-
the-art research on data-driven predictive maintenance models should be carried
out to find commonly used data-driven architectures and models that could fit the
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problem and selected task, supported on articles like [121, 285].

• Data preparation for model requirements.

The second step is data preparation for model requirements, based on these pro-
cesses: cleaning, preprocessing, feature engineering and split into train and test
datasets. Commonly used data preprocessing techniques are: incorrect values
cleaning, encoding and discretisation, segmentation, feature scaling (including
normalisation and standardisation), noise reduction (reduce random variations
of sensor output that are not related to sensor input) and imbalance data han-
dling. Feature engineering can be done either extracting hand-crafted/traditional
features that are relevant for the problem, or by using algorithms like PCA or deep
learning to extract features automatically from preprocessed features. The first
type of features are easier to understand but require domain knowledge and are
not specifically designed for the problem. In contrast, the second type of features
are more difficult to understand but are trained directly from the data for the
problem, so these do not require manual design of features.

The extracted features should always be adapted to problem requirements and
characteristics such as time-series, for instance extracting them in time-windows
or cycles, to create features in new space where data context is easier to identify.
When there is less information or data available, domain expertise and theory can
help to gain additional insight or learn knowledge beyond the data. Data prepara-
tion is an essential step to achieve meaningful model results, and therefore, more
in-depth information is presented in the subsection Data preparation extension.

• Model selection.

The third step performs model selection, analysing state-of-the-art models and
evaluating which could better fit the characteristics defined in step one of current
stage. Moreover, the set of target variables must be chosen for the model and
think of how these are related to the PdM stage it will perform, adapted to data
characteristics like information level and additional resources like the available
domain knowledge. More than one type of model can be combined to create a
more robust model, thus complementing the gaps that only one model can have.
Furthermore, the training strategy for the model must be defined to assert the
model is robust to noise or changes in EOC by selecting the appropriate data
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train/test partition strategy or using cross-validation. In order to facilitate the
selection of a model that addresses the desired PdM stages, the subsection Model
selection extension explains how to create them, and which type of models are
most suitable for use-case data characteristics and requirements.

• Design validation strategy.

The fourth step is the design validation strategy that will be used to compare and
rank models in training and testing phases. It consists of choosing the most suit-
able metrics according to use-case characteristics, considering which are the target
variables and how the model is designed to fit them. In addition to the quan-
titative approach the validation metrics offer, additional qualitative comparison
strategies can be defined with domain technicians to integrate domain validation;
these strategies assert that models also address use-case peculiarities from techni-
cal perspective.

• Model creation and optimisation.

Hereafter, the model creation and optimisation takes place in step five, based on
the defined use-case requirements, prepared data, selected model and designed
validation strategy in current stage. The model is trained to map predictor vari-
ables to target variables with the objective to minimise the error of its estimations,
thus learning to relate them based on data. However, it must be constrained to
generalise from data beyond the training set; this way it will work with novel data
belonging to the same distribution.

• Model validation and ranking.

The sixth and last step of this stage is called model validation and ranking, where
validation metrics together with domain knowledge are used to evaluate, compare
and finally rank the generated models. This step enables to prioritise and validate
models in a systematised way, asserting that the chosen ones are the most suit-
able for the data and are aligned with use-case requirements; commonly, iterating
between the two last steps of this stage is necessary to achieve this suitability.
The Monte Carlo simulations technique can be used validate data-driven models
for PdM, as implemented by Ley and Orchard [286]. Once the model meets the
desired characteristics, it is ready for deployment.
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This model development stage is guided by data scientists, who use different data-
driven techniques to clean and prepare the data to create the chosen data-driven model.
Nonetheless, constant interactions with domain technicians are necessary to assert the
developed data-driven model addresses use-case requirements and ensure its estimations
are related to physical meaning. This facilitates diagnosis, increases trust of stakehold-
ers in the model, and ensures the model is created in a robust way; avoiding data biased
relations by validation with domain knowledge.

In this stage two deliverables are generated: Document 3.1 contains the decisions and
steps performed for data preparation and model development, gathering the following
aspects: definition of suitable model characteristics to address use-case requirements;
data preparation steps for the model; research on state-of-the-art models and reasons
for prioritising some models over others; definition of model validation strategy; and
definition of how domain knowledge is integrated into models, specifying how it guides
their development and validation. In addition, the deliverable 3.2 is the data-driven
Model trained and validated in training data, guided by domain technicians to integrate
domain knowledge.

4.3.2 Data preparation extension

The data-driven model should be chosen to address use-case and data requirements.
Accordingly, its performance, interpretability, processing time and many other charac-
teristics vary among use-cases, and are tied to their limitations and decisions undertaken
during the preparation. For instance, linear models are usually faster and easier to in-
terpret, but they have limitations when modelling non-linear data relations.

The most challenging task of PdM system development is to obtain a dataset that
is representative for the problem, preprocessed, and containing only features that are
relevant yet interpretable if possible. It is better to focus efforts on collecting better data
when the collected one is not good enough or little for the designed task, rather than
optimising a specific model to achieve a slightly higher accuracy. The reason behind
this statement is that even the most complex models capable of modelling any kind of
relationship are useless in a dataset that lacks of information on target variables, or
when these are not useful for the previously defined business problem.

Commonly, process data contains time-series signals, which can show characteristics
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like seasonality, stationarity and trend. Thus, observations of one variable are related
to observations of the same in different timesteps and cycles, which can be useful to
detect trends. This data is typically analysed together by taking chunks of specific size
of continuous observations, technique denominated as sliding window. After analysing
a specific time or cycles frame, the window advances to next chunk. Data can also be
divided and loaded into smaller datasets when it does not fit into computer or server
RAM, enabling to load and free memory at will. Some libraries that are specifically
designed for that task facilitate this implementation. In addition, many factors influence
performance of developed algorithms; the main ones are discussed below.

When modelled data belongs to different working conditions, these can be grouped by
similarity to be analysed together, or even create one model for each working mode.
The latter can improve accuracy while simplifying the model, but does not generate
common relations among data of different EOC. This issue may be solved by using only
one model instead of many and feeding it with different working condition data.

With the objective to create a model that adapts to use-case requirements, data pe-
culiarities, and in further stages be able to interpret its predictions or trust it, it is
necessary for data scientists to gain domain knowledge. However, many times they will
need the assistance of expert technicians for model interpretation or optimisation on
any step performed by following the predictive maintenance stages of the methodology.

4.3.3 Model selection extension

Selecting the most adequate machine learning task to solve for each use-case is not trivial.
This subsection aims to facilitate the analysis and choice of ML architectures given data
characteristics, and recommended ML type to solve the corresponding task presented
in Figure 4.3. The ML possibilities are described in incremental levels according to the
information companies have with regard to data.

The roadmap presented in this Figure can be used to select the correct model type to
address target steps of PdM roadmap (Figure 2.12). Moreover, this section describes
the characteristics of ML tasks for each PdM stage: anomaly detection, diagnosis, prog-
nosis, and mitigation. Data acquisition and preprocessing are two additional stages that
prepare data for PdM which are often overlooked. Despite this fact and being resource
demanding, these are necessary to obtain high-quality data and as a result accurate
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          Type: supervised
          Task: binary classification,
                    multiclass classification
                    supervised prognosis  

            Type: unsupervised, self-supervised
            Task: clustering,
                      compression reconstruction residuals, 
                      regression prediction error,
                      generative models' discriminator

Type = model type
Task = related machine learning task to solve

           Type: novelty detection, self-supervised
           Task: one-class classification
                     self-supervised prognosis

         Type: domain knowledge
         Task: knowledge embedding

L0
no data

          Type: semi-supervised
          Task: data augmentation,
                    generative
        * Enables validation of L2 models

L2
only correct

data

L3 any failure,
rest correct

L4 correct
and failure
classified

L1
data not

classified

Figure 4.3: Roadmap to assess in data-driven task and machine learning model selection
according to available data levels. Higher levels indicate higher information on collected data,
which enable more accurate results and possibilities to address PdM roadmap of Figure 2.12.

models.

Information about the capabilities of each data level in Figure 4.3, and which PdM steps
can address is explained in the following list:

• L0) the company lacks working historical data. Therefore, the only possible ap-
proach is using domain knowledge-based systems that embed prior theoretical
knowledge and expertise into the system.

• L1) unclassified data can only be treated in unsupervised way by clustering data-
driven systems, and self-learning by tracking reconstruction residuals using com-
pression techniques like autoencoder, calculating prediction error of regressors, or
by using discriminators of generative models.

• L2) domain technicians confirm that collected data belongs to normal working
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condition, so novelty detection techniques, commonly one-class classification algo-
rithms, are used to detect instances different or far from the already known. This
level also enables self-supervised prognosis, which can be used to identify changing
trends on machine condition by integrating domain expertise.

• L3) there are few failure observations classified and the rest are classified as correct
data, so semi-supervised algorithms are used, data-augmentation for imbalance
class data handling, and synthetic failure data generators. Monitoring few failures
of one failure type may not be enough to train a classification model, and therefore
more observations may be required. However, any failure data can be used to
validate and calibrate models trained on level two, obtaining more accurate and
robust models.

• L4) there is enough failure and non-failure data, therefore the problem is super-
vised. In this scenario, binary classification algorithms are used to classify failure
and correct observations, and when there are different types of failures classified in
training data, multi-class classification algorithms are used to differentiate them.
This supervised historical data has applications on supervised machine condition
prognosis to estimate how it will evolve, and therefore detect trends like degrada-
tion.

Each data level can use tasks of lower levels in addition to the ones of itself. The higher
level in the roadmap, the more complete and accurate predictions the model can achieve.
Machine learning tasks of data levels are used to solve predictive maintenance steps:

• Anomaly detection is commonly performed by classification models that classify
asset condition into faulty or correct, and some can even classify different types of
failures. However, these models can only be used when there are enough observa-
tions of the target failure types. In many cases, there is little or no failure data so
the common strategy in these scenarios is modelling asset normal behaviour and
detect anomalies when the data is different. There are three type of anomalies re-
garding the number of observations involved: individual observation denominated
as local, global which are formed by several observations, and context which are
not an anomalous by themselves but become anomalous when additional informa-
tion is given. The type of anomaly to be detected should be chosen according to
the use-case.
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• Diagnosis : once an anomaly has been detected, diagnosis should be performed to
analyse which components have been affected, in which way and to what extent.
Some possible common factors are measurement errors, changes in EOC, compo-
nent degradation while keeping correct working mode, failures and conditions that
can lead to them. A useful technique to detect failure causes is root cause analysis,
which is defined by Andersen et al. in the book [287] as “structured investigation
that aims to identify the true cause of a problem and the actions necessary to
eliminate it". It also and defines three levels of causes: symptoms, the first-level
causes that lead to the problem, and the higher level causes that lead to first-level
causes, where root cause is the origin.

The used diagnosis techniques have to adapt to use-case, its data requirements
and the implemented anomaly detection model. When correct and failure data
or even different type of failures is available, performing a classification of failure
types is straightforward. Conversely, when there is no failure data classified, this
step has to be performed in unsupervised or self-supervised ways, by combining
these types of machine learning models with domain expertise. These techniques
can make use of health indexes, which represent the percentage of deviation the
assets suffer with respect to past correct working data that could be related with
damage.

• Prognosis in PdM is based on remaining useful life models which estimate the
remaining time to failure of a component or asset according to working conditions
of that moment, based on its state and the detected and diagnosed anomalies.
These models can also provide a confidence bound of their estimation. Conversely,
when there is no historical run-to-failure data, data-driven prognosis models can
only perform health degradation monitoring and estimation by tracking health
index in a semi-supervised way.

• Mitigation: the last step consists of providing operators with data-driven notifica-
tions and recommendations to speed up and optimise maintenance. These should
be based on alarms and information gathered from previous PdM stages, contained
in a simple yet effective way to understand by domain technicians.

Table 4.1 presents how the integration of domain knowledge with data-driven systems
can help in each step of predictive maintenance methodology application, supported on
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the scheme presented in the review by Khan et al. [16].

All in all, no algorithm is better than the rest, their suitability depend on use-case and
data requirements. In addition, there can be more than one model suitable for the same
use-case. It is useful to analyse their specifications, and choose based on guidelines,
related reviews and state-of-the-art works like [24, 285]. Nonetheless, nowadays it is
common to combine different techniques to create a more complete architecture that
overcomes the gaps of containing algorithms, thus better addressing use-case challenges.
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Stage Domain knowledge Data-driven techniques Combined
Data
adquisi-
tion and
database
creation

Define relevant features to monitor accord-
ing to experience and theoretical back-
ground. Direct relation to physical mean-
ing. Assert collection is correct given
knowledge.

Feature relevance with respect to target
feature according to data.

Most relevant features selection. Knowl-
edge gain on process and understand it bet-
ter combining data and domain knowledge.

Data
prepara-
tion

Extract and select the most relevant fea-
tures to monitor according to domain
knowledge and relation to physical mean-
ing. Validate and clean data.

Preprocessing: automatic machine
learning based techniques to preprocess
data: encoding, data cleaning, scalling,
noise reduction, imbalance data han-
dling and not available data handling.
Automatic feature extraction, selection
and fusion.

Select and extract the most representative
features for the use-case and target variable
that could be understood by domain tech-
nicians or linked to physical process. It may
be automated by data-driven techniques,
previously guided and afterwards validated
by domain technicians.

Anomaly
detection

Help create the data-driven system. Then,
assert that anomaly detector works well
in preproduction, production and detect
changes in trends, helping to decide when
to retrain. They also enrich models’ output
with expertise.

Automatically detect anomalies based
on process and related data, comparing
it with historical database and embed-
ded knowledge.

Automatic data-driven anomaly detection
and verification based on experience and
theoretical background.

Diagnosis Validate the diagnosis performed by data-
driven system and complement it with ex-
pertise, theoretical background and add
relevant external information, i.e. collect-
ing additional EOC information not gath-
ered in the data.

Diagnose anomaly type if anomaly de-
tector is a multiclass classifier. Con-
versely, when the model is binary classi-
fier, unsupervised or semi-supervised, it
can outline the reasons or variable val-
ues that made it be anomaly, helping
technicians perform diagnosis.

ML extracts data and models correlations
to help in diagnosis, and domain techni-
cians use context and knowledge to validate
and complement algorithm predictions and
gain additional knowledge.

Prognosis Prognosticate degradation based on as-
set properties like materials, designed life-
cycle and working experience.

Prognosticate asset degradation by
tracking their health based on data,
monitoring how it changes with time.

Combine data and knowledge to perform
more accurate prognosis and gain knowl-
edge.

Decision
making
and miti-
gation

Plan and coordinate maintenance actions
supported on maintenance management
and manufacturing operation management
processes, using PdM system information
to address process requirements. This en-
ables moving towards a more optimised
maintenance.

Raise alarms, notify strange working
conditions and give recommendations
to prevent failures. In addition, advice
how to perform more optimal mainte-
nance by comparing current condition
with historical data.

Domain technicians investigate data-driven
alerts, recommendations and highlighted
data by comparison with previous events
and knowledge to interpret, understand and
validate their predictions. Based on these
resources, technicians create and execute
maintenance plan.

Table 4.1: Contributions of data-driven and domain knowledge in each PdM stage individually and combined.
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4.4 Model deployment and monitoring

The final stage of the methodology consists of preparing the model and taking the
necessary steps for its deployment to production.

• Deployment strategy definition.

The first step is deployment strategy definition to systematise and speed up the
action of putting models into production. Firstly, the most suitable location for
model must be selected, choosing whether it will be executed in cloud or a PLC in
the production plant or edge. Another relevant aspect is the execution periodicity,
which can be offline, on streaming, or periodical after performing a certain number
of cycles or working time. This strategy should also contain detailed steps to follow
for model deployment to production, which will provide with a framework that
facilitates model testing in production environment while avoiding mistakes.

• Model deployment to production.

The second step is model deployment to production. For that, first the developed
model must be tested in a preproduction environment that shares the character-
istics of the production environment. This enables to detect incompatibilities and
possible problems of the model in production without interrupting or damaging
that system, facilitating the deployment of the pretested model. Once the model
is running in production, it has to be tested by monitoring its performance with
new production data and maybe generating synthetic failures or degradation data
to check that it works correctly and raises alert messages.

• Analyse model alerts and mitigate problems.

The third step of this stage is to analyse model alerts and mitigate problems. It
aims to assert correct model performance in production, so the model has to work
correctly with novel production data. In case any problem or abnormality arises
in the process, it should be addressed with domain knowledge support until the
model works properly according to the defined requirements.

• Monitor model performance and correct working.

The fourth step is to monitor model performance and correct working by tracking
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its evolution and adaptability to production data with techniques like prediction
uncertainty, detection of changes in data such as EOC, and machine degradation
that should be reflected on data. When any of these indicators suggests that
the model is not working correctly with collected data, a more robust analysis
should be performed before accepting this conclusion. This analysis must combine
data-driven techniques and domain expertise to perform a complete evaluation
from both perspectives, gaining more insight and facilitating the cause detection
of incorrect working.

• Model retraining.

If the previous analysis concludes that the model is not working correctly, then the
fifth step of this stage and last step of the methodology must be performed: model
retraining. This step is supported on the conclusions of the abnormal working
analysis performed in the previous step, which will be used to define the tasks and
resources required to retrain the model. After the resources are collected and tasks
are performed to prepare the retraining, the process returns to the model creation
and optimisation step of the model preparation stage, where the model will be
adapted to new requirements and its development and deployment will continue
from this step.

In this last stage, domain technician and data scientist profiles have to work together to:
define the most suitable deployment strategy for the model in the use-case according to
its requirements and resources; deploy the model and validate it combining data-driven
metrics and domain knowledge; monitor its performance; and go back to retraining when
it stops working correctly to adapt to new working conditions.

During this stage, two deliverables are generated: deliverable 4.1 contains the Model
working in production that analyses production process data either on streaming or
periodically. This model has been tested to assert it works correctly in production, and
protocols to handle its alerts and retraining are collected in the deliverable 4.2. The last
deliverable is 4.2 Document, which defines the deployment steps necessary to take the
model generated in previous stage to production, containing: a protocol to test whether
the model is working correctly in production; a protocol to analyse and mitigate PdM
alerts the model generates, thus facilitating domain technicians the application of PdM
in the system; definition of how to monitor model performance in production using data-
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driven signals and domain knowledge to analyse and define when retraining is required;
and guidelines to define how the retraining process should take place.

As explained throughout this section, the methodology is iterative, which means that
backward steps are recommended to create a model that fits better use-case require-
ments. According to the previous argument, even when the model development has
finished and it is into production by the implementation of the last step, it can be fur-
ther improved and should be monitored to adapt to industrial evolving requirements.
However, even if there is no need for the model to be continuously under development,
it could have different versions as time goes by to adapt to new circumstances and
integrate novel knowledge.
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Chapter 5

Validation of the data-driven PdM
methodology in industrial

environments

The aim of this chapter is to validate the data-driven PdM methodology proposed in
Section 4 by its application in three industrial use-cases. This empirical validation
involves using the methodology to guide the life-cycle of data-driven PdM systems in
use-cases with diverse requirements, characteristics and maintenance objectives. The
first use case consists of modelling correct engine working data to detect anomalies in
run-to-failure aviation data; the second estimates and explains remaining useful life on
bushing testbed experiments; and the third use-case implements an adaptable semi-
supervised anomaly detection and diagnosis in press machine process data.

5.1 Semi-supervised anomaly detection and diagnosis

in simulated aerospace data

This section presents the implementation of the data-driven PdM methodology proposed
in this thesis on an aviation engine use-case. Engines are the principal components
of aircrafts, so their right maintenance is critical to ensure flight safety and reduce
maintenance costs.

This use-case focuses on the application of PdM’s anomaly detection stage on turbo-
fan engine data. This stage has been addressed by state-of-the-art semi-supervised
data-driven PdM models that learn from correct data to detect anomalous cycles. The
methodological steps implemented in this use-case for the PdM life-cycle management
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are contained in Figure 5.1, which ends with a functional model that fulfills use-case’s
requirements.

Figure 5.1: Diagram of methodology adoption in the turbofan use-case. The implemented
steps are indicated with a tick and not implemented ones with a cross.

5.1.1 Use-case definition

5.1.1.1 Process and dataset description

The data used for this use-case belongs to turbofan engine degradation simulation
dataset, released by the Nasa in the repository [267]. It has been created by gener-
ating run-to-failure engine data on a simulation environment, where each simulation
starts at a random point of the engine life where it works correctly, and monitors its
evolution until an anomaly happens and afterwards reaches the failure state.

According to Wikipedia [288], the turbofan is a widely used engine in aircraft propulsion.
It is composed by a turbo that generates mechanical energy from combustion, and a fan
that uses this mechanical energy to accelerate air rearwards. Its main components are
presented in Figure 5.2.

Firstly, the Business analysis stage has enabled to understand and analyse the turbofan
process. In addition, the objective to detect novel anomalies in engine data using semi-
supervised data-driven models has been set. Secondly, Resources analysis stage has
enabled to learn domain knowledge about the problem and assert that the monitored
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Figure 5.2: Scheme of main turbofan components by Frederick et al. [18]. The abbreviations
of the figure refer to the following terms: N1 fan spool speed, LPT low-pressure turbine,
LPC low-pressure compressor, HPC high-pressure compressor, N2 core spool speed and HPT
high-pressure turbine.

variables are suitable for the defined objective. Finally, in the Model development stage
different semi-supervised anomaly detection models have been developed, tested and
ranked according to their accuracy. The Model deployment and monitoring stage has
not been implemented in this use-case given that it is not required for being a simulated
dataset.

The database contains three operational variables: altitude, mach number and throttle
resolver angle. It is also composed by 21 sensors that measure temperature, pressure
and speed variables in engine’s different components, and variables related to coolant
and air flow. More information about this simulation database can be found in the
articles by Saxena et al. [269] and Frederick et al. [18].

This database has been widely used for research purposes given that its experiments
contain different operational conditions and develop different failure modes, and these
facilitate experimentation. The majority of state-of-the-art works on this dataset tackle
the problem supervisedly, using the number of cycles until each experiment ends as target
RUL variable. Conversely, this scenario rarely happens in industrial and manufacturing
environments given that industrial companies ensure their assets are working correctly
and try to prevent failures.
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The database contains 4 run to failure datasets. However, in this use-case only 2 datasets
have been used: the ones that contain the same EOC observations during each experi-
ment because these enable modelling engine’s condition evolution with time. Concretely,
the datasets F001 and F003 have been used, which share EOC but the first has only
one failure type and the latter contains two failure types.

5.1.1.2 Requirements and objectives

The objective of this use-case is to create a semi-supervised anomaly detection model
that learns from correct working machine data and detects novel failure types in a
simulated dataset. The model has to work with data of the same EOC correctly.

The anomaly detection models that have been validated in this simulated use-case are
used for further experimenting in the industrial process use-case explained on Section
5.3. Therefore, these algorithms must address several industrial requirements:

• Robustness: models are validated with different data splits using cross-validation.

• Damage estimation: in addition to anomaly or not anomaly label assessment,
models provide a damage index that increases with higher magnitude anomalies,
or a health index that decreases with higher magnitude anomalies.

• Accuracy/complexity trade-off: this use-case requires accuracy and simplicity,
therefore, complex models are only justified when achieving higher accuracy than
simpler ones. Moreover, withing a model architecture, simpler models are preferred
to complex ones to facilitate explainability.

5.1.1.3 Predictive maintenance techniques

The majority of state-of-the-art works use this dataset for prognosis, calculating the
remaining time to failure counting the number of cycles from each cycle to the last one
and using this variable as target. Nonetheless, this use-case is addressed in a semi-
supervised way in order to simulate industrial scenarios, where failure data is scarce.

The state-of-the-art and classical data-driven anomaly detection algorithms selected
for this use-case are PCA [289], ELM [50], OC-SVM [290], a CNN-based Autoencoder
(CNN-AE) [291], a CNN-based Variational AutoEncoder (CNN-VAE) [292] with the
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same structure of previous autoencoder but having a stochastic latent space, and a CNN-
based AutoEncoder combined with ELM in the latent space (CNN-AE-ELM) [293].

The algorithms PCA, ELM and OC-SVM have been executed and evaluated in two
ways. The first way has evaluated experiments’ observations individually, categorising
them between normal and anomalous classes. The other way consisted of using a rolling
window of length 30 and a slide of one to extract four simple traditional features for
all sensors: maximum, minimum, mean and variance. The CNN-AE and CNN-VAE
algorithms extract features that are adapted to the problem from preprocessed sensor
data, and use the reconstruction error for anomaly detection. In addition, CNN-AE-
ELM first trains a CNN-AE and then uses the encoder as feature extractor for ELM.
The parameters of anomaly detection algorithms are explained in Table 5.1, and deep
learning models’ architectures are contained in Figure 5.3.

Table 5.1: Parameters of semi-supervised data-driven anomaly detection algorithms used in
turbofan dataset.

Anomaly detection
model

Training parameters

PCA sensor num. components = 90%; loss func. = RMSE
PCA trad. features num. components = 90%; loss func. = RMSE
ELM sensor h_dim = 10; target = 1; loss func. = absolute difference
ELM trad. features h_dim = 10; target = 1; loss func. = absolute difference
OC-SVM sensor kernel = rbf; kernel coef. = 1/n_features; nu = 1%
OC-SVM trad. features kernel = rbf; kernel coef. = 1/n_features; nu = 1%

CNN-AE sensor

2 feature engineering layers CNN&maxpool&relu
flatten and fully connected relu
optimizer = adam(lr=0.001, betas=(0.9, 0.999), eps=1e-08)
early stopping, patience = 2
train loss = MSE; loss func = RMSE

CNN-VAE sensor Same as CNN-AE, maps stochastic latent space to normal
distribution (mean and std vectors)

CNN-AE-ELM sensor First train CNN-AE, then use encoder as feature extractor
for training an ELM; h_dim = 50.

These algorithms provide a damage index that increases with high magnitude anomalies,
except OC-SVM, which provides a health index that decreases with high magnitude
anomalies. For anomaly detection, a threshold on validation damage/health indexes is
set to categorise as anomalous any test instance that surpasses it. This work has tested
two techniques to set the anomaly detection threshold. The first has been the selection
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Figure 5.3: Scheme of three semi-supervised deep learning-based models for anomaly detec-
tion in turbofan dataset: CNN-AE, CNN-VAE and CNN-AE-ELM.

of the percentile 99 on correct instances under the assumption that 99% of training data
is correct, similar to the work by Rodriguez et al. [294]. The second way has used
the modified Z-score as proposed by Iglewicz et al. [295] and presented in Equation
5.1, where instances with values above 3.5 are categorised as anomalous [296]. In the
equation, MAD is the median absolute deviation, xi refers to each observation of the
variable, x̃ is the median of the variable, and Mi represents the modified Z-score value
of xi.

MAD = median(|xi − x̃|);

Mi =
0.6745(xi − x̃)

MAD

(5.1)
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5.1.2 Experimentation procedure

The initial stage of the use-case implementing the methodology is Business analysis,
which has been focused on understanding the turbofan process and defining use-case
objectives and requirements. Turbofan is a run-to-failure simulated engine dataset;
therefore, there is no business or manufacturing process to address. The objective of
this use-case is to detect novel behaviours by modelling normal working conditions with
semi-supervised anomaly detection data-driven models. The requirements of this use-
case have been aligned with the characteristics of industrial companies, aiming to achieve
a balance between model performance and complexity to facilitate the explainability of
models when it is required.

Afterwards, the Resources analysis stage has been implemented, which consists of down-
loading the data from NASA’s repository [267] to analyse and visualise it. Then, an
analysis on the variables has been performed to check that data values are in the expected
range, and analyse the relations among variables to learn domain knowledge about the
problem. The data is representative for the problem given that it has been specifically
designed to enable PdM in this use-case, monitoring variables that can indicate the
degradation of engines.

Then, the Model development stage has been performed. Initially, a selection of state-
of-the-art data-driven semi-supervised anomaly detection models for PdM has been per-
formed, defining model characteristics and adapting them to address use-case’s require-
ments and its data characteristics. In addition, the data has been prepared before it is
fed to the anomaly detection models based on their requirements, by removing constants,
standardising for PCA and z-scaling for the rest algorithms.

The validation strategy has been defined to simulate industrial environments where data-
driven PdM models are trained with correct machine data collected in a period of time,
and they are tested with data collected afterwards. The algorithms have been trained
to minimise the modelling error on training data, and then a threshold on damage and
health indexes was set on validation data to differentiate between normal and anomalous
observations. 80% of the experiments have been used to train and validate models using
a 10-fold cross validation, and they have been evaluated with the remaining 20% of the
experiments that have been held out for testing.
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Moreover, the data has been labeled to enable model training, validation and testing.
The first 100 observations of each experiment belong to the correct working class, the
last 25 observations are categorised as faulty, and observations between these classes are
labeled as degrading. These assumptions are supported on experiments’ run-to-failure
design, their length, and domain knowledge about engines which explains they require
several working cycles to degrade and derive into faulty state. In fact, only the last 20
cycles of each experiment have been used to check model performance in faulty data;
this ensures that even the anomaly detection models that require a window of sensor
data contain at least 5 cycles of anomalous observations when evaluating failure cycles.
These data split and labelling procedures are summarised in Figure 5.4.

Figure 5.4: Procedure to split the dataset into train, validation and test sets containing
correct and failure labels.

The semi-supervised data-driven anomaly detection PdM models selected for this use-
case and their parameters have been defined in Section 5.1.1.3. For model ranking,
the F2 score metric was selected to evaluate model performance on test data, which is
contained on Equation 5.2. The F2 score overweights recall over precision, penalising
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more errors in faulty cycles than in normal ones.

F2 = 5 · precision · recall
(4 · precision) + recall

(5.2)

This use-case ends with the development and ranking of anomaly detection models
that address use-case’s requirements. The Model deployment and monitoring stage of
the methodology has not been implemented given that the work is supported on an
evaluation dataset of the state-of-the-art and therefore, it does not require deployment.

5.1.3 Results

This section presents the results obtained after implementing the experimenting pro-
cedure of the previous subsection. Provided the anomaly detection models are trained
in a semi-supervised way, their parameters cannot be optimised for target classes. For
that reason, they have been trained using their default or commonly used parameters
in the state-of-the-art, as explained in Section 5.1.1.3. The results of anomaly detection
models on two turbofan datasets are presented in Table 5.2.

Table 5.2: Results of semi-supervised data-driven anomaly detection algorithms in two tur-
bofan datasets, evaluated with F2-score. Two anomaly detection thresholds are evaluated:
percentile 99 and modified z-score, indicated as p99 and M z-score respectively.

Anomaly detection model Dataset F001 Dataset F003
p99 F2 M z-score

F2

p99 F2 M z-score
F2

PCA sensor 0.02 0.00 0.57 0.45
PCA trad. features 0.34 0.28 0.73 0.73
ELM sensor 0.45 0.54 0.20 0.34
ELM trad. features 0.37 0.54 0.18 0.32
OC-SVM sensor 0.98 0.98 0.98 0.97
OC-SVM trad. features 0.86 0.82 0.94 0.94
CNN-AE sensor 0.98 0.98 0.92 0.96
CNN-VAE sensor 0.97 0.98 0.95 0.96
CNN-AE-ELM sensor 0.92 0.92 0.92 0.93

The models that obtained the highest F2 scores are based on deep learning and OC-
SVM. CNN-AE and CNN-VAE models obtain similar results on average, so the first is
preferable over the second given that the stochastic part of CNN-VAE adds complexity
to the network, being CNN-AE simpler. In addition, the model CNN-AE-ELM adds
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complexity to the CNN-AE by including an ELM in the latent space while obtaining a
little lower F2 score than the original model. Figure 5.5 presents the damage indexes of
the CNN-AE anomaly detection model in one experiment.

Figure 5.5: CNN-AE model’s damage index for anomaly detection in one turbofan experi-
ment. Cycle predictions are represented in blue dots, cycles up to green line are labeled as
correct, cycles beyond orange dashed line are labeled as anomalous even though labels be-
yond red line are used for failure evaluation, and black horizontal line indicates the anomaly
detection threshold set with percentile 99.

Regarding OC-SVM, both traditional features and sensor models obtain high F2 scores,
but OC-SVM sensor model achieves higher scores specially in the first dataset. Figure 5.6
shows health indexes of one experiment using the OC-SVM sensor model for anomaly
detection. This health index is similar to damage index, but it takes lower values
when assets are more damaged, surpassing the anomaly detection threshold with smaller
values. In contrast, the low F2 score values of PCA and ELM on sensor and traditional
features indicate they are unable to detect novel anomalies. Figure 5.7 shows the damage
indexes of one experiment using the PCA traditional sensor model for anomaly detection,
where most damage indexes are below the anomaly detection threshold.

The two techniques implemented for anomaly detection threshold selection have reported
similar F2-score metrics. Percentile 99 has the advantage of being easier to understand
than modified z-score, but selecting the most adequate percentile in a semi-supervised
way may be difficult. In contrast, modified z-score has the advantage of not requiring
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Figure 5.6: OC-SVM sensor model’s health index for anomaly detection in one turbofan
experiment. Cycle predictions are represented in blue dots, cycles up to green line are labeled
as correct, cycles beyond orange dashed line are labeled as anomalous even though labels
beyond red line are used for failure evaluation, and black horizontal line indicates the anomaly
detection threshold set with percentile 99.

parameter selection, which can facilitate its general application. However, interpreting
this metric is not straightforward, requiring more effort.

5.1.4 Discussion

This use-case focuses on the implementation of semi-supervised PdM data-driven mod-
els for anomaly detection in turbofan dataset. Its results cannot be compared with
the literature given the majority of publications work on the dataset by performing
prognosis, using the remaining useful life as label. Nonetheless, this work has selected
state-of-the-art and classical data-driven anomaly detection models for PdM with the
objective to facilitate comparison by training and testing them under the same criteria.

They have been trained to model correct engine data, and their performance has been
measured by using F2-score on correct and failure data on test experiments. The best
models are OC-SVM on sensor data, and deep learning based models: CNN-AE, CNN-
VAE and CNN-AE-ELM.
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Figure 5.7: PCA traditional feature model’s damage index for anomaly detection in one
turbofan experiment. Cycle predictions are represented in blue dots, cycles up to green line
are labeled as correct, cycles beyond orange dashed line are labeled as anomalous even though
labels beyond red line are used for failure evaluation, and black horizontal line indicates the
anomaly detection threshold set with percentile 99.

These selected models provided a damage index or health index that increases or de-
creases according to engines’ damage condition. Moreover, the two implemented ways
for anomaly detection threshold selection have worked correctly, where the percentile
technique has the advantage of being easy to understand, and the modified z-score has
more facility for generalisation.

The methodology proposed in this thesis has been used as guideline to implement each
step of this use-case, successfully covering the Business analysis, Resources analysis and
Model development stages. However, the Model deployment and monitoring stage has
not been implemented given that the simulated dataset was downloaded from a public
database and it did not require model deployment to production.

Even though domain technicians did not participate in the process, acquiring domain
knowledge by reading about the process and learning about sensors and data has helped
in many steps of the PdM life-cycle, including data preparation and model design. All
in all, this use-case has validated the first three stages of the proposed methodology in
a reference PdM simulation dataset.
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5.2 Remaining useful life estimation on bushing

testbed

This section presents the application of the methodology on a bushing testbed where
fatigue tests are performed to characterise bushings. Bushings enable the transmission
between linear and rotary motion, working like roller bearings in environments where big
loads are applied. They are a critical component of machine tools, so their maintenance
is essential to ensure right machine working condition.

The application of PdM on this use-case is the prediction of experiment remaining time
for each data observation, considering that components are useful until reaching fatigue
failure. This RUL model has been used to understand which are the features that have
more influence in the experiments’ remaining time and find relations among experi-
ments, helping to design better bushes by taking into account the importance metrics
of different design parameters. Figure 5.8 shows the methodological steps validated by
the implementation in this use-case, ending with the model deployment to production.

Figure 5.8: Diagram of methodology adoption in bushing testbed use-case. The implemented
steps are indicated with a tick and not implemented ones with a cross.

Firstly, the Business analysis step in this use-case enables to understand the testbed
and learn background about machine process. The objective of the use-case has been
defined as creating a data-driven model that estimates the RUL of bushing experiments
and explains its predictions to help discover the features that have more influence on
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bushing life. Secondly, the Resources analysis stage collects the data from the testbed,
performs an analysis on the dataset and enables to learn knowledge about the physical
process. Moreover, it selects the most representative features and asserts that the col-
lected variables are suitable for the use-case. Thirdly, Model development stage focuses
on developing a data-driven model that estimates the RUL of bushing experiments that
is robust to changes in EOC. The data is prepared for the model and its predictions are
explained using XAI techniques, which are interpreted by domain technicians. Finally,
in the Model deployment and monitoring stage, the developed model is deployed into
an industrial computer to gather the data from the bushing testbed and integrate its
predictions with the Human-Machine Interface (HMI). This way, operators can see the
RUL predictions of bushings in real time.

5.2.1 Use-case definition

5.2.1.1 Process and dataset description

The data collected for the research of this work is based on a set of experiments per-
formed in a fatigue testbed. Their aim is to find the characteristics under which bushings
are able to tolerate the biggest accumulated load, which equals to seeking characteristics
that make experiments last longer. The discovered optimal operational characteristics
will be extrapolated to real machines in order to improve their components’ working
life. This is the reason why testbed’s EOC are similar or proportional to real ones.

The testbed consists of a hydrodynamic journal bearing and a shaft that is rotating
inside it, presented in Figure 5.9. This system is used to reduce friction between moving
and static parts. The gap between them is lubricated with oil, enabling the hydrody-
namic state. The PhD dissertation by Hassasin [297] presents the underlying theory of
hydrodynamic bushings, and uses a testbed to apply high frequency vibration analysis
techniques for PdM.

Expert technicians can perform general approximate reasoning and predict when the ex-
periment will end just few seconds before failure occurs, by monitoring sensor variables
and analysing them based on domain knowledge. Taking into account the high dimen-
sionality of the data, they are not able to extract the influence of each variable in their
remaining time and neither they can predict the remaining life until last observations.
XAI techniques have been used to address this issue.

110



Figure 5.9: Bushing testbed.

The dataset consists of 576 experiments and 97 EOC variables. Some variables are
time-series data collected with a sampling rate of 1 sample per second. The remaining
are process variables composed of experiment characteristics and identifiers, so they are
constant for each experiment. The time-series variables have been collected from sensors
related to speed, load, temperature and lubrication. Furthermore, material quality has
been measured using testers.

Given the industrial nature of data, the same characteristics tested in different experi-
ments have different results. This happens due to differences in components’ manufac-
turing tolerances, environmental conditions, assembly adjustments etc.

The experimenting procedure consists of designing which characteristics to test in a set of
experiments. Firstly, an analysis is performed to determine which are the characteristics
that have high influence on bushings’ life based on domain knowledge. Then, mechanical
calculations are performed to estimate the bushings’ life for different configurations of
the selected characteristics. Finally, several of these configurations are selected and
tested in the bushing testbed to analyse their performance in a physical environment.
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In the experiments, the average duration is calculated to abstract from components’
manufacturing variability.

The dataset lacks of incorrect or unfinished experiments because expert technicians have
removed them.

5.2.1.2 Requirements and objectives

The main objective of this use-case is to estimate the remaining experiment life based
on process data and material characteristics. This can help to reduce the number of
experiments necessary to categorise each tested characteristic, helping domain techni-
cians to optimise experiment design strategy. It can also reduce the time and resources
needed to test each experimented characteristics by only focusing on the most relevant
variables.

To achieve that, the influence of variables in the duration of experiments has to be anal-
ysed, inferring knowledge. This process combines expert-knowledge and XAI techniques
to explain model’s decisions. Furthermore, explainability techniques are used to analyse
experiment characteristics grouped by feature relevance.

To sum up, the resulting PdM model is required to have an accuracy acceptable from
domain knowledge perspective. Moreover, the model must have the interpretability char-
acteristic so that domain technicians can understand model predictions and therefore
be able to trust it.

5.2.1.3 Predictive maintenance techniques

For PdM model selection, common ML regression models of state-of-the-art have been
selected with the exception of deep learning models, to fit the dataset and use-case
requirements. The models analysed in the dataset have been gaussian naive bayes, linear
support vector regressor, k-neighbors regressor, linear discriminant analysis, random
forest regressor and XGBoost regressor, using their default parameters for python’s
library scikit-learn. All models have been used for supervised regression problems and
they use different techniques to predict the target class.

Despite the last two models are tree-based algorithms, their differences have effect on
model explainability. Random forest regressor is a bagging ensemble method, which

112



underlies on the combination of less precise uncorrelated models to improve the precision
and generalisation in an assembled model. It aggregates many random regressor trees
trained with different features and data subsets, forming a forest. The regressions are
done by averaging tree regressions. XGBoost Regressor works similar to Random Forest,
ensembling trees to create a forest. Conversely, this is a boosting ensemble method,
which aggregates new trees to fix the errors generated by existing trees based on gradient
boosting method.

5.2.2 Experimentation procedure

The work conducted in this use-case has been guided by the methodology presented
in this thesis. The steps have been adopted to address use-case characteristics such us
understanding the process, dataset particularities, and explainability of predictions.

The first stage is Business analysis, to understand the relevance of bushing testbed and
the relation of the experiments performed on it with the stamping machines manufac-
tured by the company. Bushings are a critical component of press machines given that
their failures result into stops of the entire production line, and their high probability
of failure when the machine is working in improper conditions. Therefore, finding the
characteristics that improve the robustness of bushings and reduce the failure probabil-
ity is a priority. This objective is pursued with the fatigue experiments performed in
the bushing testbed, where the duration of an experiment is related with the robustness
of that bushing characteristics.

The business analysis stage enables to understand how the physical process works the-
oretically and practically. The objective of this use-case has been defined as modelling
the RUL of bushing experiments to predict the life of bushings according to their char-
acteristics and enable interpretation of this model. Consequently, this model permits to
learn insight about the data, and be analysed to infer the variables that influence the
experiments and how they are correlated.

The second stage is Resources analysis. The data has been collected from the testbed
and a preliminary data analysis has been performed to understand the data, diving into
the process combined with domain knowledge. After that, the data has been analysed
with statistical and visualisation tools and the best features for the objective of the use-
case have been selected with help of a domain technician. The data has been checked
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to be in its expected range, the relations of variables have been analysed and domain
knowledge has been learned to relate the variables with their physical meaning and
theoretical background. Therefore, this stage ensures that the dataset contains relevant
features that are related to the problem and that no additional data sources are required.

The third stage is Model development, which consists of generating the ML-based re-
maining life estimator by implementing ML steps. Preprocessing has been performed
by replacing each Not Available (N/A) value with the mean of that variable in the train
dataset, the categorical variables have been encoded and the decision to not normalise
or standardise the variables because the chosen model did not need it has been taken,
to keep the original magnitude and distribution of data. The dataset has been parti-
tioned for model training and testing in the following way: a 10-fold cross-validation
stage. It has also been used to analyse not only model prediction stability through data
partitions, but also to analyse the stability of data random splits; concretely 80% of
experiments for training and remaining 20% for testing.

After preprocessing, feature engineering has been performed. Feature selection has been
done to reduce the number of predictor features because having a high dimension of
correlated variables added complexity and information redundancy. Firstly, constant
variables have been removed. After that, correlation analysis has been created using
heatmaps and, together with expert knowledge technicians, derived variables have been
removed since they are combination of other variables, selecting only the sensor and
setting variables. After that, several feature selection techniques have been tested for
ranking and selection of the best features according to error scores.

Concretely, the following techniques have been used and compared: Recursive Feature
Elimination (RFE), to remove one feature at a time using default model feature im-
portance; selecting the most relevant feature incrementally using ELI5’s [9] black-box
feature importance for the model trained with all features, starting with the highest rel-
evant feature, then adding the second one, and so on and so forth until all features have
been selected; minimum Redundancy Maximum Relevance (mRMR) based on mutual
information [298], which maximises the relevance of selected features with the target
feature and at the same time minimises the redundancy among them; selecting the k-
best features according to mutual information and ftest indicators; and using lasso and
ridge linear regressors’ feature weights as importance for feature selection.

114



Feature extraction and dimensionality reduction methods can also be used to reduce
even more the dimensionality and enhance model performance, but these new features
are more difficult to understand than original process data. Therefore, these techniques
have been discarded, also supported on the fact that the dimensionality of selected
variables have also already been reduced to a small subset and the model performed
correctly with them.

The ML model selected for the work must be a regressor that, given the data observa-
tions of an experiment on a certain moment, predicts the number of seconds remaining
until it ends. During an experiment, the model receives data for each elapsed second,
which includes characteristics of the bushing and EOC data described in Section 5.2.1.1.
To train RUL models, the full data of training experiments has been used, and their
corresponding RUL data has been appended as target class. It is calculated by counting
the number of seconds until the experiment ends for each data observation.

After selection, model evaluation metrics have been chosen to measure the overall per-
formance of the model. Then, the model has been executed, analysed its accuracy has
been ranked using the chosen score, its explainability has been analysed, and iterated
in these steps until obtaining an acceptable model.

The explainability of this model has been computed and interpreted using local and
global explainability methods. Concretely, ELI5’s global explanations have been used to
analyse the global influence of each variable in model predictions together with expert
knowledge. This technique has been chosen since it removes a variable and analyses
model’s performance decrease. Local explanations have also been calculated using the
library LIME, where the contribution of each predictor to model output is calculated.
This is done by measuring how each variable contributes either positively or negatively
to the prediction, fitting a linear regression to its neighbour observations. The reason
for using linear models is that these are inherently interpretable, so they are used to
analyse the behaviour of small perturbations in the observations.

Another experiment has used the final model developed in the previous step and adapts
it to fit the data grouped by experiments of similar characteristics. First, a selection
of which experiment characteristics are interesting for data grouping based on similar-
ity has been performed. Afterwards, one model has been created for each group. The
objective is to create a model to analyse how feature relevance varies among models of
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different experiment groups, to find groups that share patterns. For that, the agglom-
erative clustering model has been chosen to rank features using the feature importance
calculated using the library ELI5, the same global explainability method used to rank
features in the previous stage. Model explanations have been analysed together with ex-
pert technicians, taking into account their theoretic mechanical knowledge and expertise
in order to test whether they are comparable or not.

The fourth and last stage is Model deployment and monitoring, which consists on de-
ploying the random forest model of 10 features to the experimental environment. First,
an industrial computer has been selected to deploy the model, given that it has con-
nection with the bushing testbed and therefore, model predictions can be integrated
with the HMI. For the deployment, an environment that contains the requirements to
execute the model has been prepared, the model and required preprocessing techniques
have been copied there and then the model has been tested to assert it works correctly
in the industrial computer. Then, the connection with the testbed has been established
to collect the data of experiments, estimate the RUL and return the prediction to HMI
so that the operator that performs experiments in the bushing testbed has access to
real-time predictions of the bushings’ RUL, according to their characteristics and EOC.

5.2.3 Results

The visual and analytical analyses of the dataset have helped to understand and identify
data characteristics and how fatigue experiments are performed. Moreover, a summary
data dictionary has been created in a table of 97 rows and 6 columns. Its columns
contain the following information of the recorded variables: name, type, unit, type
of feature, meaning and comments, and each row contained the information of each
recorded variable.

There is the need to measure the performance of the developed models for any ML
task in order to measure model precision for the desired task, allow comparisons among
different models, and assist in model optimisation, architecture selection and parameter
setting. Two common techniques for regression evaluation have been analysed: MAE
and RMSE. MAE is the normalised sum of all the absolute errors between real and
predicted values (2.2); and RMSE is the square root of the normalised sum of all the
squared errors between real and predicted values (2.3).
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The MAE metric is more intuitive to understand given that it indicates the absolute
error performed by the model on observations on average. In contrast, RMSE is more
sensitive to outliers than MAE [67], being interesting for some uses. Therefore, RMSE
has been chosen as a metric to train models so that they are more robust for outliers.
For model ranking, both metrics have been analysed, and for model overall performance
evaluation MAE has been chosen given it is easier to interpret and understand, even for
domain technicians.

Table 5.3 shows the aforementioned machine learning regression algorithms’ performance
on 10-fold cross-validation using the MAE and RMSE metrics.

Table 5.3: Model comparison before feature selection process.

Algorithm RMSE MAE
mean std mean std

Gaussian Naive Bayes 450.39 16.82 331.59 16.56
Linear Support Vector Regressor 421.14 208.67 300.69 137.16
K-Neighbors Regressor 258.57 20.65 163.44 13.20
Linear Discriminant Analysis 106.54 18.12 69.94 5.67
XGBoost Regressor 53.96 12.33 36.10 5.11
Random Forest Regressor 61.64 12.97 36.29 5.43

The models that have obtained the best results are the tree ensemble ones: Random
Forest and XGBoost. On average, XGBoost obtains better RMSE and slightly better
MAE than Random Forest. However, given their standard deviation, t test has been
used to analyse whether there is enough statistical evidence to assert that models’ per-
formance is different or not along 10 folds using MAE and RMSE metrics. The results
show there is not statistical evidence on performance metrics and therefore, the criteria
for choosing one model over the other switched to explaination facility, another require-
ment for the created model. Thus, Random Forest Regressor has been selected over
XGBoost Regressor given it is simpler and provides naive feature explanation by feature
importance, which makes it is easier to interpret.

Then, the chosen random forest’s robustness have been analysed by executing it with
20 random initialisation seeds over the mentioned 10 folds cross validation. The results
show it is stable along different folds with a average MAE of 35.89 and standard deviation
of 5.70. These results are accurate according to domain technicians, given experiment
duration is several hundreds of seconds and technicians can only estimate remaining
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life in experiments’ final observations. These results have been used to optimise further
experimentation, by splitting a random subset of 80% for training and 20% for testing
to iterate over feature selection enabling faster model ranking.

After performing feature selection using expert knowledge and evaluation of model fea-
ture importance, the result is a random forest regressor model executed on a subset of
10 original features that obtains a MAE of 41.29 on new split test data. Concretely,
five setting features, four sensor features and an operational feature have been selected.
Figure 5.10 shows the performance of the model during an average experiment. Table
5.4 shows the same experiments as Table 5.3 after performing feature selection, using the
same 10-fold cross validation and metrics for evaluation. Given the results are similar
for last two models, the selected 10 feature subset keeps representative information of
the original data, simplifying the problem and thus facilitating explainability.

Figure 5.10: Stage three’s final model remaining life prediction on an average fatigue test. x
axis indicates the number of observation whereas y axis indicates the remaining time in seconds.
The blue line indicates the real remaining life and the red signal indicates model’s remaining
life prediction.

Global explanations have been used to guide feature selection and also to understand
overall model performance by analysing feature importance. This enables feature rank-
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Table 5.4: Model comparison after feature selection, selecting the 10 most relevant features.

Algorithm RMSE MAE
mean std mean std

Gaussian Naive Bayes 299.25 20.50 215.83 13.28
Linear Support Vector Regressor 954.88 1332.73 770.48 1066.45
K-Neighbors Regressor 264.12 21.98 193.80 16.58
Linear Discriminant Analysis 187.56 15.86 140.57 12.71
XGBoost Regressor 52.54 9.68 36.29 4.32
Random Forest Regressor 58.36 11.86 38.25 4.80

ing and analysis of contribution to model prediction. Moreover, it has facilitated con-
trasting model overall performance with domain technicians conclusions according to
their expertise and analysis of experimenting results, which turns out to be similar.
Likewise, local explanations are used to analyse model behaviour by explaining predic-
tions of several experiments’ observations. Domain technicians have found applications
of local explanations on analysing how target variable is influenced by changes in se-
lected features. This could be used for experimental setting optimisation, achieving
better results with less parameter testing. Conversely, local explainability results could
be improved given linear models may not be able to model non-linear data correctly.

Local explanations have been extracted from the previous model using the library LIME.
Figure 5.11 shows how each feature affects model estimations given an experiment ob-
servation. On the top part, model’s prediction for the recorded data instance is shown;
in this case it is estimated to be 836 seconds. The Feature list shows names of pre-
dictor features in current observation ordered by importance. The bottom left graphic
shows how each feature of previous table affects the estimated value. The features are
ordered by local importance top to bottom, where value indicates how much influence
each has on current prediction, and the color indicates in which direction its change
affects model’s prediction.

Figure 5.12 shows the intrinsic feature importance provided by the random forest model.
In addition, Figure 5.13 shows feature importance calculated using ELI5. To obtain
global explanations, ELI5 uses the feature permutation technique, which consists of
randomly shifting only the values of one feature and not modifying the rest. Then,
model score changes between original and this data are analysed for each predictor
shifting, being an objective way to analyse which features are more important for the
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Figure 5.11: Local explanation of a remaining life prediction in an experiment observation.
The prediction equals the real value: 836 seconds.

model. Both techniques obtain similar global explanations, but the importance order
of the features varies in several cases. According to the figures, the first 5 variables
concentrate most of the model information, while the remaining 5 have less importance.

Figure 5.12: Intrinsic global explanation of remaining life predictor model. It shows feature
importance ordered from highest to lowest. The relevance magnitude is indicated in x axis.

To the already mentioned model of 10 features, automatic data-driven feature selection
techniques have been applied with the objective to select only the most relevant vari-
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Figure 5.13: Global explanation of remaining life predictor model using LIME. It shows
feature importance ordered from highest to lowest. The relevance magnitude is indicated in x
axis.

ables that still achieve an acceptable performance on the model. The feature selection
techniques and their results are summarised in Table 5.5. The results are ordered by
lowest to highest MAE of the chosen model with selected 5 features, and mean metrics
of each reduction steps from 10 to 3 features.

Table 5.5: Feature selection techniques tested to reduce dimensionality of model from 10 to
3 features using sklearn, mRMR and XAI-based methods.

Algorithm 5 features
MAE

10 to 3 features
mean MAE

RFE, model intrinsic feature importance,
step=1

45.74 57.37

Select most relevant incrementally, ELI5 fea-
ture importance, step=1

45.74 57.58

mRMR, using MIQ, reduce step=1 109.67 78.67
kbest, mutual info 112.02 103.16
kbest, ftest 191.46 127.36
select lassoCV 176.63 146.07
select ridgereg 218.13 176.38

Finally, these are the experiments performed in the fourth stage of the work, using the
data grouped under same characteristics of setting variables. First, importance scores
have been calculated from the model and they have been used as new variables to identify
defined groups. Using this data, an agglomerative clustering have been performed. Its
results have been analysed by cutting the dendrogram of Figure 5.14 into different cluster
sizes, from 2 to 10.
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Figure 5.14: Dendrogram of clustering feature importance score of models trained with data
grouped by process variables.

The dendrogram shows that two or three clusters could be clearly distinguished by set-
ting the maximum cluster distance to 100 and 60 respectively. To understand the clusters
in a visual way, a plot of experiment results has been created using two representative
variables. Figure 5.15 presents the results of choosing a cluster size of 3, where clusters
are disperse. Near group instances are expected to be in the same cluster, whereas far
instances are expected to be in different clusters. However, the fact that this does not
happen means that training one model for each group, and clustering based on model
feature importance does not provide additional information to domain technicians.

5.2.4 Discussion

This use-case implements a ML model that predicts accurately the remaining life of
experiments and gives global and local explanations in order to understand its predic-
tions. In this work, industrial process knowledge has been crucial for both accuracy and
interpretability goals.

The variable subset selection process has helped to simplify the developed model while
maintaining accuracy. Performance analysis has also been visualised using plots of each
experiment in test data. The analysis of top feature performance has concluded that
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Figure 5.15: Results of clustering experiments. x axis shows a feature related to fatigue and
y axis shows a experiment setting variable. Each ball represents a group of experiment data
and its color indicates the cluster assigned by the algorithm. The coloured lines that join these
balls identify experiment characteristics.

most relevant features are setting variables, given that four out of five most relevant
ones belong to this type and the rest are less important.

The application of XAI techniques on random forest has been successful. Global ex-
planations are accurate because the model performs a random shift of feature values.
However, local explanations have improvement potential given that there are categor-
ical variables whose change can have high impact on model’s output. Even so, global
and local explainability techniques have provided feature importance weights that are
interpretable in a similar way.

Regarding the model of third stage, it works correctly for the designed task. Its aim is
to estimate fatigue test life and infer knowledge about which are the variables that have
higher influence on it. The model has been deployed into a computer connected to the
PLC of bushing testbed, where technicians are able to see the predicted remaining life
of new fatigue tests. After that, the evolution of model performance should be tracked
and a retraining strategy will be defined in future stages of the work.

Conversely, the models generated for each group of experiments in the fourth stage have
not improved performance over the previous general model. A possible reason could be
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that there is much less data available for training each group model, which difficulties
their generalisation. Moreover, these models cannot be grouped by feature importance
because, as the clustering model has shown, the generated groups do not show any clear
relation.

The combination of data scientist mindset with expert knowledge has enabled the in-
tegration of complex data-driven models into an industrial use-case. This achievement
has been possible by the application of the methodology presented in this thesis. It
has enabled the combination of data-driven PdM models with XAI techniques, taking
advantage of expert knowledge to guide the PdM life-cycle: model creation, interpre-
tation and optimisation, in order to link its predictions with physical meaning. Global
and local understanding of model predictions have been performed, even in the case of
black-box ML models.

All the stages of the methodology have been validated and all its steps up to model
deployment to production, which in this case is the deployment to bushing testbed en-
vironment. The methodology has successfully adapted to interpretability requirements
of the prognosis model, facilitating the collaboration among working profiles.

Future research is promising to integrate explainable machine learning models to opti-
mise, automatise and assist knowledge discovery in industrial processes based on data.
This would bring the reduction in maintenance costs and improve machines’ availability,
performance and quality.

With the mentioned objectives in mind, future research in this field could move towards
obtaining an interpretability-accuracy trade-off. Accordingly, models should be accurate
enough to perform the selected task and at the same time interpretable. Thus, expert
technicians could infer knowledge, perform diagnosis and finally trust their predictions.
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5.3 Semi-supervised anomaly detection and diagnosis

in press machine data

This section displays the application of this thesis’ data-driven PdM methodology on
press machine data. Press machines are rotating machines that form input material
by cuts and deformations, and one of the biggest types of machine tools. They play
an important role in manufacturing processes, being a key component on stamping
production lines of metal-formed components. Their maintenance is critical to ensure a
right machine working condition, correct manufacturing quality, prevent downtime and
reduce costs.

This use-case implements a real PdM use-case, addressing industrial company’s require-
ments by modelling process data. This work is the most complete of the thesis, with
the additional difficulty of modelling real process data that is not controlled unlike
simulation and testbed data. Therefore, it validates the methodology application on a
production line of one industrial company. As explained in Figure 5.16, all methodolog-
ical steps have been implemented except for model deployment to production, which will
take place in the future.

Figure 5.16: Diagram of methodology adoption in stamping machine use-case. The imple-
mented steps are indicated with a tick and not implemented ones with a cross.

Firstly, the Business analysis stage has enabled to understand the business, stamping
process and how press machines work. In addition, the objective to develop semi-
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supervised anomaly detection and diagnosis data-driven models was set. Secondly, the
Resources analysis stage has enabled to collect, analyse and validate the data from
the industrial process. Thirdly, in the Model development stage, the AD and diagnosis
models have been developed, and AD model’s adaptability to changes in EOC has been
addressed using transfer learning. Finally, the Model deployment and monitoring stage
has enabled to define the deployment strategy, define the strategy to handle model
alerts for RCA, and define how to monitor the AD system to identify when it requires
retraining.

5.3.1 Use-case definition

5.3.1.1 Process data

The experimentation dataset used in this use-case has been collected from a press ma-
chine of a stamping production line, facilitated by a private company. Press machines
are machine tools that create metal-formed components by applying pressure, forming
input material with cuts and deformations. Figure 5.17 shows an image of press machine
and its main components.

Figure 5.17: Image of a servo press machine with its main components on the left, and slide
and ram scheme on the right, by Olaizola [19].

This use-case’s press machine has a conventional electrical drive, composed by an electric
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engine connected to a flywheel and clutch-brake mechanism, and crank and connecting
rod system that turns cinematic chain rotary movement into slide linear movement. The
slide moves perpendicular to the floor, going from the top dead centre (0◦) to bottom
dead centre (180◦) and then back to top dead centre (360◦), to complete the stamping
cycle of 360◦. The slide forms input material by stamping in the die, which is a two-part
element specifically designed to address the requirements of finished blank presented in
right part of Figure 5.17.

The data has been collected by sensors for each stroke, containing both single measure
and evolution variables. The dataset is composed by the following variables: 2 speed
sensors, 2 power consumption sensors, 6 force sensors and 2 position sensors.

With the objective of reducing industrial data variability to facilitate data analysis, data
has been grouped by similar environmental and operational conditions. This grouping
is achieved by filtering data by stroke identifier and workorders.

5.3.1.2 Requirements and objectives

An analysis on collected data reported no anomalies neither by machine users nor by
domain technicians. Therefore, 90% of collected data is assumed to be correct and
the remaining may have outliers. When only correct data is available and there is
no faulty data, according to the methodology, semi-supervised approach should be the
most suitable. The selected models should either analyse time-series sensor data, or use
time-based extracted features from sensor data and then perform AD on these features.

These are additional requirements the anomaly detection PdM model should address in
this use-case:

• Accuracy: high ability to differentiate correct and anomalous strokes.

• Novelty identifiability: ability to detect novel anomalies that were not available
for model training.

• Isolability: ability to distinguish different failure types.

• Explanation facility: ability to explain which data patterns made the model reach
each prediction.
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• Damage indication: when an anomaly is detected, a health index should be pro-
vided to help in damage severity analysis.

• Robustness to noise: ability to handle industrial sensor data.

• Adaptability and re-usability: ability to adapt to different workorder data of sim-
ilar EOC and continue working properly.

• Online data processing capability.

The objective of this work is to obtain a semi-supervised anomaly detection model
trained with correct condition machine data that identifies novel anomalies, where the
most accurate model among different state-of-the-art data-driven models is selected.
Afterwards, the diagnosis of these novel anomalies should be facilitated by the selected
model, assessing anomaly severity, grouping data by failure similarity, and highlighting
anomalies in data signals to help domain technicians identify their root cause. Finally,
the model should be reusable and adaptable to data variability, and it should have the
capability of real time execution.

5.3.1.3 Predictive maintenance techniques

The algorithms executed for anomaly detection are PCA [289], ELM [50],OC-SVM [290],
a Two Dimensional CNN-based AutoEncoder (2D-CNN-AE) [299] and null space [143].
The parameters for training all mentioned models are contained in Table 5.6, whereas
the architecture of 2D-CNN-AE and its details are presented in Figure 5.18.

The PCA, ELM and OC-SVM algorithms have been executed in two ways. The first
way has been training and performing predictions for cycle data of strokes, setting a
threshold on the loss using percentile, and then counting the number of cycle samples
surpassing the threshold and setting another threshold on this number to determine
if that stroke sample is anomalous or not. The other way has been the extraction
of statistical features for each sensor variable and then perform anomaly detection in
these features with a percentile threshold. The extracted features are: mean, variance,
maximum and minimum values. Null-space and 2D-CNN-AE use cycle data as input,
not requiring specific feature extraction.

For diagnosis by isolating failures on latent space features, t-distributed Stochastic
Neighbor Embedding (t-SNE) [300] has been used for visualisation of latent space vari-
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LATTENT SPACE

2D-CNN: k5x5; s3x3; f32
2D-maxpool: p3x3; s2x2

2D-CNN: k3x3; s2x2; f64
2D-maxpool: p3x3; s2x2

2D-upsampling: size 2x2
2D-CNN-transpose: k3x3; s2x2; f32

2D-upsampling: size 2x2
2D-CNN-transpose: k5x5; s3x3; f1

k = kernel size; s = strides; f = filters

2D convolution
2D Max-poolking
Batch normalisation
ReLU
Flatten / Unflatten
Linear
Upsampling
2D convolution transpose
Sigmoid

       speed_1                 power_1                  power_2                 speed_2

        force_1                    force_2                   force_3                    force_4

      position_1                force_5                  position_2                 force_6

       speed_1                  power_1                  power_2                    speed_2

        force_1                    force_2                     force_3                    force_4

      position_1                 force_5                    position_2                force_6

Figure 5.18: Architecture of 2D-CNN-AE and its parameters.

Table 5.6: Parameters for training anomaly detection models. Cycle and trad. feats refer to
the way and data used in anomaly detection models.

Anomaly detection
model

Training parameters

PCA cycle num. components = 90%; loss func. = RMSE
PCA trad. feats num. components = 90%; loss func. = RMSE
ELM cycle h_dim = 10; target = 1; loss func. = absolute diff.
ELM trad. feats h_dim = 10; target = 1; loss func. = absolute diff.
OC-SVM cycle kernel = rbf; kernel coef. = 1 / n_features; nu = 1%
OC-SVM trad. feats kernel = rbf; kernel coef. = 1 / n_features; nu = 1%
Null-space alpha = 5; beta = 5

2D-CNN-AE

2 FE layers of 2D CNN&maxpool&relu&flatten&FFNN
optimizer= adam(lr=0.001,betas=(0.9,0.999),eps=1e-08)
early stopping, patience = 2
train loss = MSE; loss func = RMSE(reduce=mean)

ables; Ordering Points To Identify the Clustering Structure (OPTICS) [301] algorithm
as a density-based clustering algorithm; GMM [302] as parametric clustering algorithm;
and SOM [303] to project data in a new space based on competitive learning.
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XAI techniques have enabled to track the loss throughout the 2D-CNN-AE model and
link it with variables. Its objective has been to analyse which input variables and
concretely which cycle points were causing the anomaly. For this purpose, the SHAP
[76] library is used, explaining predictions by stroke. Concretely, GradientExplainer has
been the selected method, which according to its documentation, Gradient explainer
combines Integrated Gradients [304], SHAP, and SmoothGrad [305] into a single expected
value equation.

Finally, model adaptability to same die data in new workorder, and to other die data have
been tested. First, the original model and threshold have been tested, and afterwards,
the experimented transfer learning by freezing convolutional layers and only retraining
inner linear layers. This procedure should be enough to adapt the model for data of
similar EOC, where convolutional layers are used as feature extractors and retraining
linear layers adjusts the model to data variations.

5.3.2 Experimentation procedure

The initial stage of the use-case is Business analysis, which comprises understanding the
business, how the manufacturing process works, and the components and operation of
stamping presses. Afterwards, the problem that this use-case has to address is defined,
focusing on modelling the stamping process. Concretely, the objective has been set
to detect anomalies on the stamping process using semi-supervised data-driven AD
models. The models have to adapt to changing EOC to continue working correctly
with novel data. Moreover, the diagnosis of detected anomalies must be addressed in a
semi-supervised way, supported on the developed AD models.

The second implemented stage is Resources analysis, collecting the data from the web
application that is connected to the CPS of the industrial plant. The data has been
analysed using statistics and visualisations, supported on domain knowledge to learn
about the process, validate that the data is representative for the use-case objective,
and ensure that monitored data is in the expected range. Consequently, the variables
that are aligned with the use-case are selected and validated.

The third stage of the use-case is Model development. The first task of this stage is
creating an anomaly detection model only trained with correct machine data. After-
wards, the selected anomaly detection model has been used for diagnosis, and finally,

130



its adaptation to data of different workorders and different dies has been analysed. All
the experiments are designed to address industrial use-case’s requirements and validated
with domain technicians.

Press machines are widely tested machines designed for durability and minimisation of
failure probability purposes. As a result, a press machine can work correctly during
months or years before the first failure arises, which difficulties the monitoring of failure
data. Therefore, to analyse the results from domain perspective, four synthetic failures
have been designed by modifying correct stroke data. Moreover, different versions of
each failure have been created by changing their magnitude. Synthetic failure types
and their variations are presented in Table 5.7, whereas Figure 5.19 presents visual
representations of those failures.

Table 5.7: Synthetic failures and corresponding signal modifications used for model validation.

Synthetic failure Signal modification and variations
Force increment, simulating harder input
material

Increase forces on 4 axis (+10%, +25%,
+50% and +100%)

Die miss-adjustment, simulating press
force anticipation

Anticipation of press force application
(50◦and 100◦)

Machine degradation, higher power con-
sumption for same forces

Increase power consumption (+10%, +25%,
+50% and +100%)

Unbalanced loads Exchange press input and press output forces

For data preparation, data has been first grouped by die ID and workorders, and then,
these data subsets have been used for experimenting. Each workorder contains process
data collected in a specific continuous time interval no longer than a week, which is
delimited by production working periods. This grouping system is suitable for press
machines given that each die works under similar operating conditions and performs the
same forming process.

Then data has been divided for model creation and validation based on industrial pro-
duction data order: first 80% strokes are used for training and validation, which are
further divided into 90% for training and 10% for validation, whereas last 20% are used
for testing. Afterwards, data has been preprocessed to prepare it for the PdM models,
and then their results have been compared. The models have been trained under the
assumption that after cleaning the dataset with domain technicians, at least 90% of
training data is correct and the remaining could have outliers.
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Figure 5.19: Two correct signals on the left, and the four synthetic failures on the right. Blue
signal represents normal stroke data and orange signal represents one corresponding synthetic
failure signal.

Next, a model evaluation and ranking strategy has been defined, which consists of using
F1 metric for overall performance analysis, and precision and recall for further analysis;
more information of these metrics is explained in Section 2.1.3. These metrics have been
selected because they evaluate errors based on the target failure class and work well with
imbalance datasets.

Validation has been complemented with a questionnaire to be filled by domain techni-
cians, which contains plots of 14 selected strokes among normal and synthetic failure
data. Its objective is to evaluate technicians’ capability to differentiate synthetic anoma-
lies by visual comparison with plots of correct strokes of the same signal. The survey
has been answered by 9 domain technicians with high expertise on the field. Figure 5.20
shows an example question of stroke data belonging to the form.

The final stage of this use-case is Model deployment and monitoring, whose all steps of
the methodology except Model deployment to production have been implemented; this
step will be implemented in a future work. Initially, the developed models are planned
to deploy into the cloud platform, consuming the process data uploaded to it for making
predictions. Then, the anomalous alerts are analysed by domain technicians, who can
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Figure 5.20: A sample of stroke question in the questionnaire for domain technicians.

use the developed diagnosis tools to identify the root cause of the anomaly and plan
the corresponding maintenance actions to restore the healthy process state. Moreover,
the adaptability of the AD model to changes in EOC has been ensured using transfer
learning. When the AD model stops working correctly even using transfer learning,
an analysis must be performed with domain technicians to determine its cause. This
analysis must determine if there is an anomaly on the process or, in contrary, the model
cannot adapt to EOC changes and therefore it requires retraining.

5.3.3 Results

This section describes and interprets the experimental results of this work. It is split into
three subsections to facilitate their presentation and interpretation: anomaly detection,
diagnosis and adaptability.

5.3.3.1 Anomaly detection

The first PdM stage is creating an anomaly detection system capable to distinguish
normal and anomalous working conditions on monitored assets. For this task, a data
subset collected in same workorder and die has been selected. This step has selected
data strokes that shared EOC, thus reducing data variability to facilitate model creation
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and validation.

After that, this dataset has been analysed with domain technicians using plots, cor-
relations, and univariate statistical measures such as mean, in order to discard any
anomalous stroke resulted by acquisition problems or missing data. Then, given mon-
itored variables are in different scales, data has been preprocessed before inputting to
selected algorithms according to their characteristics. Variables have been standardised
to have a mean of 0 and standard deviation of 1 before inputting data to PCA to max-
imise variance, whereas variables have been normalised in range [0, 1], bringing them to
the same range while keeping dispersion before inputting to the rest of algorithms.

Then, the algorithms presented in Section 5.3.1.3 have been executed under the assump-
tion that at least 90% of monitored strokes belonged to correct working condition, which
result in selecting the parameters of Table 5.6. The results of these algorithms using
F1-score per failure are collected in Table 5.8.

Table 5.8: F1 score per failure of anomaly detection models trained under the assumption
that at least 90% of training data is correct. CNN-AE’s p90 and p95 refer to the threshold
used for anomaly detection, indicating percentile 90 and percentile 95 of correct validation data
respectively.

Algorithm 1) Force increase 2) Force an-
ticipation

3) Power increase Switch
forces

10% 25% 50% 100% 120◦-
170◦

70◦-
170◦

10% 25% 50% 100%

PCA cycle 0.27 0.74 0.97 0.97 0.09 0.93 0.10 0.16 0.65 0.97 0.97
PCA feats 0.67 0.67 0.67 0.67 0.67 0.67 0.02 0.09 0.62 0.67 0.67
ELM cycle 0.17 0.21 0.24 0.25 0.18 0.21 0.15 0.15 0.15 0.16 0.23
ELM feats 0.07 0.22 0.68 0.76 0.23 0.52 0.06 0.06 0.07 0.07 0.91
OC-SVM cycle 0.67 0.68 0.68 0.68 0.66 0.66 0.66 0.66 0.66 0.66 0.68
OC-SVM feats 0.41 0.67 0.67 0.67 0.47 0.67 0.08 0.06 0.04 0.02 0.67
Null space 0.82 1.00 1.00 1.00 1.00 1.00 0.47 1.00 1.00 1.00 1.00
CNN-AE p90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
CNN-AE p95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

The results of Table 5.8 show that null-space and 2D-CNN-autoencoder are the algo-
rithms that work better than the rest on average, but autoencoder is even capable of
detecting the smallest versions of failures. After analysing its precision and recall, sev-
eral correct strokes have been being classified as failure, so the threshold could be better
adjusted than using percentile 90. For this task, a search for the best percentile thresh-
old on correct validation data from 1 to 100 has been performed, selecting the one that
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has obtained the best F1 score using synthetic failures of validation data. The best
threshold found for 2D-CNN-AE is by using percentile 95, achieving a F1 score of 0.99
for each failure type and thus outperforming the rest algorithms. Similarly, null-space
algorithm has achieved an average F1 score of 0.92, which is lower than autoencoder but
has the advantage of not requiring failure data for threshold selection. Both algorithms
also provide a damage index that takes higher values when they are fed with higher
magnitude synthetic failures.

The analysis of domain technician’s survey results shows that they are unable to detect
the smallest failures with force and consumption variations of 10%, or 50◦failure antic-
ipation. Conversely, they have precisely detected more notorious failures like force and
consumption with 50% and 100% variations, 100◦anticipation and switch forces. The
average F1 score of the survey is 0.82. This analysis validates algorithm’s results also
from domain perspective, obtaining comparable results to their expertise.

At this point, the online data processing capability of 2D-CNN-AE anomaly detection
model has been evaluated in a Nvidia 2080Ti graphics processing unit, which is mea-
sured by the mean time required calculate 10 stroke data. The autoencoder model was
used to make predictions of 50 stroke chunks, each containing 10 stroke data, and the
average elapsed time was 7 milliseconds. In addition, null space algorithm requires 20
milliseconds to process each stroke sample. This performance test has validated model’s
real time data processing capabilities.

5.3.3.2 Diagnosis

After performing anomaly detection, isolating different failure types and diagnosing their
root cause is the next stage of predictive maintenance. For this stage, clustering, visu-
alisation, projection and XAI techniques have been used in the 2D-CNN-AE anomaly
detection model of previous section given this achieved the best results overall.

The first experiment has required forward passing through the encoder of test correct
and test synthetic failure data, which turns each stroke into a 32 feature vector. Its
objective is to test the ability to differentiate failure types in this compressed space.
Initially, a 2 component t-SNE to feature vectors has been applied with the objective to
create a 2D space where clusters are visualised. This results in disperse clusters, so PCA
was has been introduced as dimensionality reduction while keeping data variability to
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facilitate t-SNE. PCA requires standadisation of features before input, and 6 components
were selected to keep 95% of initial variability. After PCA, these features have been
fed to t-SNE that is configured with 2 number of components, 10 learning rate, 10000
maximum iterations, and remaining parameters as default for sklearn. A grid search on
perplexity has been performed, which is a parameter that represents number of nearest
neighbors in manifold learning algorithms, so values from where 5-70 range in strides
of 5, and range 70-200 in strides of 10 have been tested. The original paper states that
typical perplexity values are between 5 and 50, but the results obtained in this range
are disperse and increasing perplexity resulted in more robust clusters.

The results show three groups of data where differentiation between increase forces and
increase power consumption failures are difficult given that failures with smallest data
variation (10%) are very near in the new space. The experiment has been repeated,
and then clustering has been performed using GMM with 4 number of clusters, with the
objective to isolate the 4 failure types in t-SNE’s embedded space of two dimensions. Low
values of perplexity increase data sparsity in the new space, whereas high values increase
cluster compactness. However, beyond a certain perplexity value, data distribution does
not change much and clusters remained stable, so this point has been selected for final
t-SNE results analysis. This point is achieved with perplexity of 145, which is shown
in Figure 5.21: it contains real failure labels on the left, whereas results of GMM with
4 number of clusters are presented in the right. Figure 5.22 summarises the pipeline of
clustering, projection and visualisation techniques used for diagnosis in this stage.

Figure 5.21: Two t-SNE space images, containing failure labels in the left part, and GMM
clustering labels in the right part.
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Figure 5.22: Diagnosis techniques used to visualise, project and cluster strokes into different
failure types.

This t-SNE diagnosis has clearly differentiated the four clusters except for several in-
crease forces (25% and 50%) strokes that have been assigned to power consumption
failure, which are still too close to the healthy data for the clustering algorithm to
differentiate between them. This technique has the additional advantage of enabling
results visualisation. However, given its difficulty for hyperparameter tuning without
the information of number of clusters and failure labels, it can be hard to implement
with semi-supervised models. Another disadvantage of t-SNE is its possibility to create
non-existent patterns on data given its adaptation to it.

To complement t-SNE experiments, another clustering algorithm has been applied to
latent space data after PCA, aiming at creating clusters that separate different failure
types automatically. The OPTICS density clustering algorithm has been selected for
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this task, and the minimum number of samples parameter from 20 to 140 was grid has
been searched to find the configuration where the algorithm detected 4 clusters. The
min num samples parameter that created 4 clusters is 80, and its results are presented
in Table 5.9.

Table 5.9: Clustering results using OPTICS algorithm configured with the hyperparameter
of minimum number of samples equal to 80, evaluated with precision (prec) and recall (rec)
metrics.

Number
clusters

1) Force
increase

2) Force
anticipa-
tion

3) Power
increase

4) Switch
forces

prec rec prec rec prec rec prec rec
outliers 0.40 0.72 0.20 0.72 0.41 0.74 0.00 0.00
1 0.25 0.09 0.00 0.00 0.75 0.26 0.00 0.00
2 0.00 0.00 1.00 0.28 0.00 0.00 0.00 0.00
3 1.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

According to Table 5.9, the failure switch forces is correctly isolated given the cluster 4
has a precision and recall of 1 for this failure type. Cluster 3 contains only instances of
force increase failure, but not all of them are gathered given the recall is lower than 1;
the remaining instances are assigned several to cluster 1 and the rest to outliers group.
Similarly, cluster 2 contains only force anticipation failure data, and the rest instances
are assigned to outliers group. In addition, cluster 1 contains mainly power increase
failure data, but it also contains some force increase instances, being an overlap of two
failures; the remaining power increase instances are assigned to outliers group. Finally,
the outliers group gathers an important number of instances belonging to force increase,
force anticipation and power increase failure types, but none of switch forces failure
type.

All in all, there is a small overlap between force increase and power increase failure types.
In addition, many force increase, force anticipation and power increase instances are
assigned to outliers group. At this point the results of clustering with lower min samples
have been analysed, which generate more clusters. This shows that lower magnitude
versions of each failure type have higher probability to be assigned together than higher
magnitude ones, which are correctly separated.

To continue diagnosis analysis, correct stroke data and the versions of highest magni-
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tude for each failure type have been projected to latent space using 2D-CNN-AE. These
feature vectors are afterwards z-scaled, and normalized in [0,1] range to have all vari-
ables in a comparable distribution and range. This data have been used to fit and be
transformed by a SOM, projecting 32 input neurons to a 20x20 feature space map, and
configuring its hyperparameters as: sigma=5, learning_rate=0.5, neighborhood func-
tion = bubble and random training of 6000. This map projects similar instances on
the original space to neurons that are near in the new space, which are represented in
light colors. It also projects different instances to different groups of neurons in the new
space, being separated with high distance neurons that are represented with dark colors.

The result of SOM is exhibited in Figure 5.23, which shows a clear separation among all
failure types, where instances of the same class belong to near and light color neurons,
and at the same time are separated with instances of other classes with high distance
dark color neurons. In addition, normal data is separated from failures by high distance
dark neurons, but at the same time. Few outlier samples are located in big distance
SOM cells; these belong to outlier strokes that were previously identified as outliers in
reconstruction error damage indexes.

The last diagnosis tool has been designed to facilitate fault diagnosis for domain tech-
nicians is based on XAI, given that deep learning models are not explanatory by them-
selves. A final layer has been added to the 2D-CNN-AE model of Figure 5.18 to calculate
the RMSE between reconstructed and input data, using the Equation 5.3. In the equa-
tion, n is the number of cycles in the stroke, i indicates a cycle index, m indicates total
number of features of the stroke, and j indicates feature index.

mean_squared_loss_of_featj =
∑n

i=1(yij − ŷij)2

n
;

loss =

 ∑m
j=1mean_squared_loss_of_featj

m

(5.3)

SHAP libraries’ GradientExplainer class has been fitted with samples of correct valida-
tion strokes and their losses, so that the explainer learns which is data normality. Then,
this explainer has been used to diagnostic anomalous strokes categorised by the anomaly
detection model. Thus, the explainer propagates each stroke’s loss gradient along all
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Figure 5.23: SOM of correct data and main failure types, represented by different forms and
colors in a 20x20 grid.

layers of the autoencoder until reaching the its input, where SHAP values of each input
feature for each cycle data point are estimated. Afterwards, the absolute value of this
SHAP value matrix are calculated, the maximum value of this new matrix is searched,
and all its elements are divided by the maximum to obtain a matrix of values between 0
and 1. Finally, this last matrix is used to plot an indicator of damage with original input
data by drawing red rectangles for each cycle data point, whose transparency is inversely
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proportional to matrix values. Thus, a matrix value near to 1 has little transparency
and will be clear, whereas values near to 0 will be hardly noticeable.

As Figure 5.24 shows, the developed diagnosis algorithm based on XAI is able to detect
which signals are causing the anomaly in a multivariate approach, and without being
previously trained for these failure types. The image shows original stroke data in
green, stroke data modified with one specified failure type in red, and the background
is shadowed in red with the explanation metric presented in previous paragraph. This
demonstrates that the algorithm is capable of detecting which features and concretely
in which cycle points the failure data is not normal. This tool will be used by domain
technicians to isolate anomalies detected semi-supervisedly.

Figure 5.24: Diagnosis using XAI on the same stroke with 4 failure types, shadowing feature’s
cycle data that cause them in red colour. The green and red signals correspond to a normal
stroke and its synthetic failure indicated in the subtitle, respectively.

This tool has also been used to diagnose several outliers detected in training data by the
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anomaly detection algorithm, aiming to analyse their root cause. Figure 5.25 segments
anomalous training points, and analyses one of these with the XAI-based diagnosis tool.
The main difference of this outlier with respect to normal points is the increase of power
consumption. This difference is clearly identified by the tool.

Figure 5.25: Right segment contains diagnosis of outliers in training data using XAI. Left
segment contains predictions of 2D-CNN-AE on train, validation, test and synthetic failure
data, and training outliers are outlined in a dashed circle. The green and red signals correspond
to a normal stroke and an outlier stroke, respectively.

5.3.3.3 Adaptability

At this point, model’s accuracy, novel identifiability, failure isolability, explanation fa-
cility, damage index estimation and online data processing capability have been tested.
The final requirement for the model is to be reusable, adapting to data changes over
time. This requirement has been tested using another data subset collected a week after
the subset used for anomaly detection and diagnosis, which belongs to the same die.

Firstly, the 2D-CNN-AE model trained in Section 5.3.3.1 has been loaded and executed
in the subset of data of the same die 7 days later, calculating F1 score using correct
and all failure types on test data. The model does not work well with new data without
being modified, obtaining an average F1 score of 0.77 on failure data. At this point,
transfer learning experiments have been executed, expecting the model to adapt to new
data given it belonged to similar EOC than data used for training the model. Transfer
learning has been applied by only training linear layers of the model while keeping
original convolutional layers.
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The results showed that only 10 strokes are required for model retraining and 5 strokes
for validation to achieve a F1 score of 1 in all failure types. Figure 5.26 contains images of
damage indexes on test correct data before and after retraining, showing that all indexes
moved below the anomaly threshold after transfer learning. This means that threshold
adaptation is not required when internal layers of the autoenconder are retrained for
new data of the same die.

Figure 5.26: Damage indexes of correct test data before (left) and after transfer learning
(right) using 2D-CNN-AE model in data of same die one week later. Horizontal black line
represents the anomaly detection threshold.

These experiments show that transfer learning enables model reusability for data of the
same die along different time periods. Retraining only linear layers of the model requires
less data, training resources, and achieves better results than training the whole model
from zero.

Finally, the ability of model adaptability to other die using transfer learning has been
tested, by executing previous experiments with data of other die. When executing
the model without retraining, all damage indexes are far above the anomaly threshold.
Afterwards, transfer learning has been performed on linear layers with all training and
validation strokes of this new die dataset, given that using a small number for retraining
result in fast overfitting. After this transfer learning, damage indexes have been analysed
and they are still far beyond the anomaly threshold, which indicate that different dies
require different anomaly threshold.

Thus, the anomaly detection threshold has been adjusted in the retrained algorithm,
using the techniques and procedure presented in Section 5.3.3.1 to facilitate comparisons.

143



Percentile 90 and percentile 95 thresholds have been calculated on correct validation data
of the new stroke data, and their performance for anomaly detection has been tested
using correct and failure test data of the new stroke. This analysis is presented in Figure
5.27, which contains train, validation, test correct and test failure damage indexes before
and after transfer learning. None of these thresholds work correctly given that damage
indexes on training and validation data are smaller than the ones for test correct data.
Therefore, all test samples, either correct and failure, are above the selected thresholds,
which is caused by model overfitting that is unable to differentiate anomalous and correct
strokes.

Figure 5.27: Damage indexes of train, validation, test correct and test failure test data
before (left) and after transfer learning (right) using 2D-CNN-AE model in data of different
die. Correct damage indexes are represented in orange and failure damage indexes in red.
Horizontal black line represents the anomaly detection threshold before transfer learning and
dashed blue line splits data by each failure type. Horizontal brown and purple lines represent
percentile 90 and percentile 95 AD thresholds respectively, but only the purple line is visible
given their values are near and they overlap in the figure.

All in all, transfer learning works correctly to adapt the model for data of the same die
in different periods of time. However, it does not work to adapt the model trained with
data of one die to data of different die. The reason is that data of the same die is collected
for the same forming process and under similar operating conditions, but different dies
perform different forming processes and have different operating conditions. Therefore,
one model for each die should be created, but then they could be reused over time.
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5.3.4 Discussion

In this use-case, an accurate semi-supervised deep learning-based anomaly detection
model only trained with correct working machine data of production press machine
data has been developed. It outperforms statistical semi-supervised anomaly detec-
tion models like PCA and null-space, and traditional machine learning models such as
OC-SVM and ELM. This deep learning model can be executed online, monitoring the
stamping process to identify anomalous strokes and avoid machine failures.

However, one drawback of deep learning models is their difficulty to be interpreted, given
they are black box models. Therefore, several diagnosis tools have been developed to
facilitate domain technicians in the identification of possible machine failure types once
anomalies are detected. For that purpose, the encoder part of the autoencoder has been
used to extract stroke features and obtain a 32 feature vector to experiment diagnosis.
This data has been used with OPTICS and GMM techniques to cluster failure types,
t-SNE for 2D projection and visualisation, and SOM for projection to new space using
competitive learning. These techniques have successfully isolated different failure types
with latent space features, even though these novel failures were not available for model
training.

XAI techniques have also been integrated for diagnosis, demonstrating their ability to
detect which signal parts of stroke data are responsible for causing the anomaly. In
addition, a visual diagnosis tool based on XAI that highlights damaged signals has been
created, with the objective to assist domain technicians in the diagnosis of failure causes
based on their expertise.

In addition, this use-case has demonstrated that transfer learning enables model adapt-
ability to data variations of same die in different workorders, which allows reusing models
with small adjustments. In contrast, each die requires a model specifically trained for
it, since their process and operational conditions are different and therefore, transfer
learning does not work.

Following the methodology for data-driven PdM implementation presented in this thesis
has facilitated the design and implementation of this use-case. Likewise, it has promoted
the collaboration of business, domain technician and data-scientist profiles during the
process. One relevant example is the validation of developed models, which has been
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supported on domain knowledge by a questionnaire, synthetic failure creation, and in-
terview for results evaluation. The methodology has successfully guided the project, and
by adapting its tasks to use-case characteristics, the developed algorithms have correctly
addressed use-case requirements.

All in all, this work that combines clustering, visualisation, projection and XAI tech-
niques with a deep learning model designed to meet industrial requirements, has resulted
in obtaining a high accurate yet explainable model. Future research will continue with
the analysis of machine condition evolution over time and monitoring model perfor-
mance.

Even though each industrial use-case has its own requirements and data characteristics,
the techniques implemented in this work can be reused in other PdM use-cases after
adaptations. This work’s contributions on semi-supervised anomaly detection, semi-
supervised diagnosis, and adaptability with transfer learning can increase stakeholders’
confidence on developed models, facilitating the adoption of machine learning and deep
learning-based predictive maintenance systems in industrial environments.
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Chapter 6

Conclusions and future research lines

This chapter presents the main outcomes achieved on this thesis. Section 6.1 outlines
the work accomplished during the realisation of the research work. Moreover, as a result
of completing this investigation new future research lines open up, which could be taken
up as research projects. These future lines are described in Section 6.2.

6.1 Conclusions

The research of this thesis focused on the design and validation of a modular methodol-
ogy for data-driven predictive maintenance that integrates domain knowledge to system-
atise their life-cycle in industrial environments. The proposed methodology is supported
on existing data-driven PdM methodologies, standards, and architectures. It is com-
posed of the stages, steps and tasks required to design and develop data-driven PdM
systems. The methodology’s steps are specific to guide industrial companies, although
they are general enough to provide the flexibility to adapt to different use-case require-
ments.

The methodology has been validated empirically with its implementation on three in-
dustrial use-cases: aircraft engine simulation, bushing testbed and press machine of a
production line. It has systematised the life-cycle of data-driven PdM on each use-case,
adapting to their requirements to address their corresponding industrial needs.

The first use-case turbofan (Section 5.1) validates the methodology by its application
to develop semi-supervised data-driven anomaly detection models as part of PdM in
the benchmark maintenance dataset. This use-case has validated the business analysis,
resources analysis and model development stages of the methodology, but the deploy-
ment and monitoring stage was not implemented since the dataset was obtained from
a challenge that does not have a running environment. As a result of this use-case, a
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CNN autoencoder and OC-SVM algorithms were developed, which achieved a F2 score
of 0.98 in the first dataset and 0.92 and 0.98 F2 scores in the third dataset, respectively.
These algorithms obtain more accurate results than the other statistical and machine
learning models developed for this use-case.

The second use-case bushing testbed (Section 5.2) validates the proposed methodology
to create supervised RUL models. Several state-of-the-art data-driven algorithms are
developed including statistical and traditional machine learning models, but excluding
deep learning models to facilitate model explainability. Domain knowledge is used for
feature selection and model interpretation supported on explainable artificial intelligence
techniques that provided local and global explanations. XAI is also used to select
the most relevant features based on data characteristics. Then, the selected model is
a random forest regressor that uses the 10 most important features to estimate the
remaining useful life of bushing tests, which achieves a RMSE of 61.64 and MAE of
36.29 seconds. Finally, this model is deployed to an industrial PC where it processes the
data of bushing testbed, estimates the RUL of the experiment and sends the prediction
to the operator’s PC for visualisation. Domain technicians consider that this model’s
accuracy for the target application is suitable considering the average duration of fatigue
experiments.

The third use-case, real machine (Section 5.3), validates the methodology on a press
machine of a production line, covering all the stages and steps except for the model
deployment to production step. This last step will be covered by uploading the model to
the cloud platform in the future. In this use-case, a semi-supervised deep learning model
based on the autoencoder structure achieved the best results for anomaly detection
on a dataset of synthetic failure data created by modifying normal strokes. This two
dimensional autoencoder achieved an average F1 score of 0.99 on data of the same die
and workorder. Further steps of the experimentation consisted of perfoming diagnosis
on the detected anomalies based on HITL, combining the anomaly detection model with
clustering, projection, visualisation and XAI techniques. These techniques enabled to
differentiate failure types semi-supervisedly. Furthermore, the model’s adaptability to
changes in EOC for data of the same die was successfully implemented using transfer
learning, showing the potential of this technique for model reusability.

Finally, the adaptability of the methodology has been validated, demonstrating its ro-
bustness to address different industrial use-cases’ requirements. Integrating the busi-
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ness profile in the PdM life-cycle enabled to create PdM systems aligned with industrial
requirements from business perspective. Moreover, adding domain knowledge by inte-
grating HITL in the PdM system life-cycle, combined with clustering, projection and
XAI techniques enabled to understand models’ individual predictions and general be-
haviour. This process helps to create data-driven models whose behaviour can be linked
to the physical meaning. Therefore, domain technicians can trust more complex data-
driven PdM systems, which facilitates the implementation of these models in production
environments.

6.2 Future research

This thesis has contributed to the data-driven PdM field, specially by providing a
methodology for model life-cycle management supported on domain expertise. There
are two additional contributions to the field regarding the integration of model explain-
ability and model adaptability. Even so, there are still open issues that can be addressed
as future research lines. The following subjects are outlined as future works, which are
related to the proposed methodology and the technological research performed in this
thesis.

• Analyse if the data-driven PdM methodology is applicable in other scopes be-
yond industrial environments. Validating its applicability to other fields such as
telecommunications, computing or electric equipment could extend the methodol-
ogy’s scope of application.

• Monitor the evolution of the prognosis model’s performance in the bushing testbed,
evaluating its adaptability to changes in EOC and new experiments. When its
performance declines, model retraining should be designed and implemented.

• As no real failure was available, synthetic failure types used in the third use-case of
this thesis were based on domain knowledge. However, simulating the machine’s
failure types with digital twins may result into failure data that is more similar to
real production failures. In addition, finding the limit of magnitude change that
each synthetic failure type requires for the AD model to label them anomalous,
and adapting model’s threshold to learn from novel anomalies will facilitate further
research.
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• Deploy the press machine’s anomaly detection model to analyse its performance
in production. The possible alerts should be analysed by a domain technician
supported on the diagnosis techniques that were developed in the use-case, to
evaluate the anomalies and relate them with their failure causes.

• Evaluate how the transfer learning works on the press machine use-case with data
collected on longer periods of time. This could model the wear of the die, and help
to define when the model requires retraining or adjustments to continue working
correctly.
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