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Abstract 

Drilling is a continuous cutting process where two or more cutting edges remove the material, 

to obtain the desired feature. During the chip evacuation, it generally rubs against the generated 

surface. Thus, the roughness obtained differs from other machining processes such as turning 

or milling. Therefore, surface roughness can be different from the analytically expected one. In 

this research work, an analysis of the cutting conditions where a level of roughness is expected 

to meet specific requirements has been carried out. 600 holes were made with two different tool 

geometries on steel without modifying the cutting conditions. When analysing the surface 

generated, certain variability in the roughness profiles obtained can be observed. External 

signals to the machine tool were acquired with sensors (cutting forces, vibrations, and acoustic 

emissions) as well as internal signals (spindle power, spindle torque in the Z-axis, spindle 

current and positions, speeds, accelerations, and jerk of the tool tip in the three axes of the 

machine). The most representative statistical features of the signals regarding roughness were 

selected using correlation analysis. Besides that, the hierarchical clustering of statistical features 

of the external and internal signals of the process was compared with clusters obtained using 

roughness parameters. Results show that clusters appear using signals highly related to the 

roughness parameters obtained from the measured profiles, confirming a mapping between the 

acquired signals during the machining process and the roughness of the holes. 

Keywords: Drilling; Surface roughness; Clustering, PCA. 

1 Introduction 

The control and monitoring of machining processes is an area of research with years of 

experience with increasing decision-making achievements. The most studied problem is tool 

wear [1–5], which, given the variability in the different operations involved in machining, can 

be manifested in different signals such as cutting forces [6,7], vibrations [8,9], acoustic 

emissions [10,11] or spindle power [12,13]. The tool condition can have a remarkable influence 

on surface integrity and thus, in component life. Generally, the surface integrity (surface 

roughness, residual stresses, or material damage) is linked to the tool condition, and the use of 

virtual metrology which can achieve real-time and complete on-line inspection can be of great 

help in terms of saving time and resources, as well as for decision making. The increase in 

demand for components with more precise finishes means that quality inspection of machined 

parts is becoming more critical and must be carried out with greater precision. This is a 

challenge for repetitive parts that must meet certain requirements, but for small batches 

production of high benefit components as well. Decisions regarding critical events that may 
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occur during a process should be made as quickly as possible. The automation tasks for the 

quality control of components acquire a significant role since they increase the production of 

components demanding some given requirements.[14] 

Drilling is a cutting process where one, two or three cutting edges remove the desired material 

volume to produce a hole. The material removal in drilling is continuous, but the drill bit is 

confined inside the feature generated during the process. In this process, although most of the 

material is removed by the major cutting edges, it is the minor cutting edge that generate the 

desired surface. Thus, some problems are present, (i) the amount of heat going to the cutting 

tool is higher than other machining processes as the proper cooling of cutting edges is more 

complex, (ii) the surface roughness generated by the drill is modified by the chip generated and 

more complicated to be measured. However, hole making is usually performed, followed by 

the component finishing operations, in the final stages of the whole machining process chain of 

the component process and thus an error can produce a scrap component. Thus, systems that 

allow the interpretation and classification of the generated surface could help obtain a more 

robust production of components. 

Surface roughness is a widely used indicator of technical requirements of a component [15]. 

The parameters that can be obtained from the surface roughness profile are shown in Table 1. 

These parameters are explained in detail by Gadelmawla et al. [16].  

Table 1 Roughness parameters from the profile measured on the surface of the component (ISO 4287-1997 [17])  

Name Description Unit 

Ra Average roughness of profile µm 

Rq Root-Mean-Square roughness of profile µm 

Rt Maximum peak to valley height of roughness profile µm 

Rz Mean peak to valley height of roughness profile µm 

Rmax Maximum peak to valley height of roughness profile within a sampling length µm 

Rp Maximum peak height of roughness profile µm 

Rv Maximum valley height of roughness profile µm 

Rc Mean height of profile irregularities of roughness profile µm 

Rsm Mean spacing of profile irregularities of roughness profile µm 

Rsk Skewness of roughness profile  

Rku Kurtosis of roughness profile  

Rdq Root-Mean-Square slope of roughness profile  

Rt/Rz Extreme Scratch/Peak value of roughness profile, (>=1), higher values represent 

larger scratches/peaks 

 

 

Among all these parameters, the most used one is Ra. However, this parameter alone does not 

explain the entire roughness profile for the machining process. Fig 1 a) shows two different 

roughness profiles with the same Ra and different skewness, Fig 1 b) shows two different 

roughness profiles with the same Ra and different kurtosis. Most of the standard machining 

processes produce surfaces with asymmetric (non-Gaussian) profiles. Turning and shaping 

generate rough surfaces with positive skewness. Whereas grinding, honing and milling generate 

rough surfaces negative skewness and high kurtosis, surface with negative skewness always 

has a larger contact area ratio [18]. Wern et al. [17] show that this process generates a negative 

skewness and a high kurtosis in the case of drilling processes. Amor et al. [19] showed that 

profiles with the same level of roughness Ra and different degree of skewness -Rsk- do not have 

the same contact properties. They also showed that the negative skewness and the lower value 

of Ra are advisable to achieve a high normal contact stiffness. The profile with positive 

skewness shows a smaller support area. However, the negative skewness profile can lead to 
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fracture propagation and therefore, can have a negative effect on the fatigue life of a component. 

Thus, it is important to consider more than one parameter among those obtained from the 

roughness profile to have a clear reference of the requirements to be fulfilled by the machined 

component.  

a)  b)  
Fig 1 Surface roughness profiles with same Ra parameter a) different skewness distributions b) different kurtosis 

distributions. (extracted from [20] [16]) 

From the list of roughness parameters shown in table 1, Rt, Rmax, Rp and Rv take into account 

a single value of the whole measured roughness profile. On the other hand, Ra, Rq, Rz, Rc, Rsm, 

Rsk, Rku are more descriptive values of the roughness distribution. Rdq is the only hybrid 

parameter. This parameter can be obtained by calculating all the slopes between every two 

successive points of the profile and calculating the average of these slopes. Mechanical 

properties such as friction, elastic contact, reflectance, fatigue crack initiation and 

hydrodynamic lubrication affect this parameter [20].  

The dominant process parameter is the feed rate. In the literature, the increase in feed rate is 

related to increased roughness due to increased feed marks or plastic deformation because of 

the load on the cutting edge [21,22]. Fig 2 shows the drilling process and the generated surface. 

At each spindle revolution, each cutting edge removes half of the material programmed for the 

feed per revolution. Tool wear may be one of the causes for the generated surface to be affected, 

although there is no direct relationship between these two parameters. The diameter is slightly 

reduced towards the shank end of the drill bit, which is known as "back taper", which prevents 

friction and heat (represented as the β angle). The review made by Thakur et al. [23] shows 

cases where the roughness is better even with a worn tool explaining this phenomenon by the 

displacement of the trailing edge, which acts as a cleaner to reduce the peaks of the generated 

surface in turning processes. However, this is only valid in cases where the flank wear is 

uniform. Other types of tool wear, such as chipping of the cutting edge, adhesion or attrition, 

cause a worsening of surface roughness.  

 

Fig 2 Drilling process and the generated surface where θ is the point angle and β represents the difference between the 

body clearance diameter and drill diameter called back taper 
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Regarding surface finish monitoring systems, Garcia Plaza et al. showed various advanced 

signal processing techniques for surface roughness prediction in turning process. such as signal 

spectrum analysis employing vibration signals [24] Wavelet packet transform employing 

cutting force signals [25] and compared also non-advanced signal processing methods and 

advanced signal processing methods on vibration signal [26], showing the superiority of the 

second one. On these works they used 270 roughness measurements for training and 90 

roughness measurements for testing the multivariate regression models. Akincioǧlu et al. [27] 

were conducting a study on steel to predict the Ra parameter. They used different cutting 

conditions for each hole they make, so they do not consider the phenomena that could appear 

during the drilling of holes under established cutting conditions. 32 holes were drilled, 26 were 

used for the learning phase and 6 for the testing phase obtaining RMSE= 0.010594.  

Most of these works consulted in the literature are based on supervised learning. Furthermore, 

most works used as learning data the cutting conditions used, assuming that the same roughness 

will always be obtained at specific cutting conditions. The use of signals external (Cutting 

forces, vibrations, or acoustic emissions) or internal (Spindle power or current) to the machine 

could deal with the classification of roughness. However, the systematic measurement of the 

roughness of a component could be a problem since it is time expensive. Most works are based 

on changing the cutting conditions, but few repetitions are made with each condition, not 

achieving a good generalisation. In extended machining time, the probability of an undesirable 

phenomenon and a resulting defective component is high. These are still a low number of 

observations for implementing a real roughness monitoring system based on machine learning 

supervised classification algorithms. This low number of observations shows the difficulty in 

measuring and preparing data for a monitoring system of the roughness in drilling processes. 

Besides that, the mentioned works did not consider various roughness parameters such as Rsk 

or Rku, which explain the non-Gaussian nature of a roughness profile. Roughness 

characterisation based on additional parameters can give more information, and a model can 

show a greater generalisation of the obtained data. Regarding signals, both external and internal 

process signals contain information about the transient and non-transient events of the cutting 

process. Therefore, methodologies that help to understand and extract information from these 

signals can help to speed up the process of building models that allow the prediction of the 

roughness of a machining process. 

From another perspective, most of the work observed focuses on supervised learning. This 

implies the measurement and extraction of the variables to be monitored before the learning 

phase. On the other hand, clustering is an unsupervised method that allows the understanding 

of groups and improves the knowledge about the process, dealing with unlabelled data and 

trying to explain groups created from this data. The clustering algorithm groups the 

observations in subsets of data, and similar observations are grouped, while observations with 

differences belong to different groups. Clustering methods organise the observations into an 

efficient representation that characterises the target population of the sample [28]. 

Unsupervised methods can be divided into two groups, hierarchical or partitioning methods. 

Hierarchical methods, build the groups by dividing the observations recursively. The result is a 

dendrogram representing the groupings of observations and their level of similarity. 

Partitioning methods create an initial partition and reallocate observations from one group to 

another. These methods usually require the number of groups to be selected previously. The 

hierarchical methods are divided into two groups, agglomerative methods, which consider each 

of the observations as an independent cluster and group them and divisive methods, which 

consider the whole set of observations as a cluster and separate them into subgroups. Among 

the agglomerative methods, different inter-group proximity measures may show more or less 
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interpretable results in the same group of observations In [29] hierarchical clustering methods 

can be consulted. 

PCA allows to reduce a big feature space 𝑑 into lower feature space 𝑘, where 𝑘 < 𝑑, preserving 

the original 𝑑 dimensional space information. Each 𝑘 dimensions will be transformed as linear 

combinations of 𝑑 dimensional feature space.  This allows the identification of the dominant 

features from the original d dimensional space as well as a more analytical visualization of the 

results. A more detailed explanation of this method can be found on [30]. 

Mingoti and Lima [31] compared different partitioning and hierarchical clustering algorithms, 

SOM (Self Organizing Map) networks, Fuzzy c-mean, K-means and hierarchical agglomerative 

clustering on simulated overlapped data and with outliers. In the study, they showed that Fuzzy 

c-means behaves well concerning the other partitioning algorithms. Regarding hierarchical 

agglomerative algorithm, among the different measures used of inter-group proximity, they 

showed that the Ward method is the one that obtains the most stable behaviour. Diaz-Rozo et 

al. [32] used both hierarchical and partitioning clustering algorithms to diagnose the state of a 

spindle. Xiaoli and Zhejun [33] used fuzzy partitioning algorithms to classify different levels 

of tool wear in boring operations. Partitional Around Medoids (PAM) algorithm was used by 

Li et al. [34] for tool wear state clustering in milling operations showing its superiority over k 

means and fuzzy c means algorithms based on cutting force signal. Zhou et al. [35] used 

vibration signal time-frequency features and fuzzy c means algorithm to classify 3 roughness 

Ra ranges in the drilling operation. Kubišová et al. [36] used hierarchical clustering to compare 

original surface roughness with replicated surface roughness based on Euclidean distances of 

various roughness parameters showing that it can be a good tool for replicability measurements 

of obtained surface profiles. 

To sum up, the different methods used for interpretation of results based on unsupervised 

learning have not been widely used for monitoring purposes in the field of machining. These 

methods allow the extraction of knowledge and accelerate decision making without the 

systematic measurement of interest parameters in the industry. Regarding the roughness 

obtained, it is necessary to interpret the distribution of the data obtained from the surface for a 

better interpretation and compliance with the requirements depending on each sector. The 

comparison of similarity between the different roughness parameters and the statistical features 

extracted from the signals can lead to the interpretation of surfaces and the variation between 

them.  

In this paper, the authors study hierarchical clustering methods to obtain indicators that 

approximate the measured roughness distributions. The methodology followed in this analysis 

is, first, to obtain the statistical features of the internal and external signals that are related to 

roughness parameters obtained in the Alicona profilometer for some of the samples. Then, a 

clustering of the measured roughness parameters is performed using many parameters extracted 

from the roughness profile. By means of a correlation analysis between statistical features of 

the acquired signals and the obtained roughness parameters, those signals that maintain a high 

linear correlation are identified. Once the relevant parameters are identified, a clustering is 

carried out in a wider space of observations.  

In the following sections, the experimental set-up is first presented. Then, the feature extraction 

method used is showed and how a suitable feature subset was selected. After that, the clustering 

results for hole surface properties assessment are shown. Finally, the concluding remarks are 

presented. 
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2 Methodology 

This section explains the work carried out for the determination of roughness obtained during 

drilling processes using internal signals and sensor data. Specifically, the experimental set-up 

used, the roughness measurements obtained from each of the holes and projections using PCA 

after the groups identified with different roughness levels by the hierarchical clustering 

algorithm. 

2.1 Experimental set-up 

The tests were carried out on a Lagun vertical milling machine tool. Two different tool 

geometries were used (R204.6D and BH04.5D), and a total of 600 holes were produced with 

each tool, the tool geometry and the cutting conditions used with each of them can be observed 

in Table 2. The cutting edge radius and the wedge angle were measured at the periphery of the 

tool before starting the tests. During the tests, the tool was inspected on the lip and outer corner 

of the point with a frequency of 20 holes in a Leica DMS1000 macroscope with no evidence of 

tool wear. The workpiece material was a 35CrMo4 steel. 

Table 2 Tool geometries and cutting conditions used during the tests 

Drill type R204.6D BH04.5D 

Cutting edge 

  

Drill periphery 

  

Drill geometry 

  
Helix angle = 30o Helix angle = 15o  

Coating = TiAlN Coating = TiAlN 

Cutting edge radious (r)= 15µm Cutting edge radious (r)= 7µm 

Wedge angle (γ)= 55o Wedge  angle (γ)= 80o 

Point angle = 140o Point angle = 140o 

Cutting conditions 

Vc=100 m/min; 3978 RPM Vc=70 m/min; 2785 RPM 

f=0.15 mm/rev f=0.15 mm/rev 

Ø=8 mm Ø=8 mm 

Through hole depth=5 mm Through hole depth=5 mm 

Coolant = None  Coolant = None 
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A Kistler 8152C acoustic emission sensor with a Sampling Frequency (Fs) of 1 MHz, a PCB 

J356A45 triaxial accelerometer with a Fs=25.6 kHz and a Kistler 9123 4-component rotational 

dynamometer with a Fs of 10 kHz were installed for signal acquisition. Besides, several internal 

CNC signals were collected at 250 Hz sampling frequency, concretely: TV2 (Z-axis motor 

torque), TV50 (spindle motor power feedback), TV51 (active power supplied by the drive) and 

TV3 (power percentage used with respect to the maximum power available in the servo system. 

The tool tip position and its derivatives (tool tip speed, acceleration and jerk) where acquired 

in the three axes together with the spindle speed and feed rate. The acquisitions were made for 

every 5 holes.  

For the simultaneous acquisition of the signals, the threshold (PFI0) was configured in the 

acquisition cards so that when the internal acquisition started, the external signals would start 

to be collected simultaneously. An analogue output (ao0 of the CNC) of the machine tool was 

used to obtain a threshold at the time of the acquisition, and this allows to obtain both internal 

and external signals simultaneously. The surface of the workpiece is Z=0 mm, when the position 

of the tool tip is Z=1 mm, the command is given to start the simultaneous acquisition on the NI 

USB 6361 and NI cDAQ 9178 acquisition cards. The experimental set-up and acquisition 

system used can be seen in Fig. 3. The internal signals of the machine were acquired at the CNC 

itself while the external signals were acquired in an external PC. 

a)  

b)  
Fig 3 a) Experimental set-up and b) acquisition system 
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2.2 Surface roughness measurements  

After the tests, 6 holes were cut and measured in the Alicona profilometer per each of the tools 

used to observe variability in the roughness level obtained. These holes were selected at 

random, scattered over time. From the holes made with the straight-edge tool (BH04.5D), holes 

181, 182, 183, 287, 381 and 581 were selected. From the holes made with the curved-edge tool 

(R204.6D), holes 45, 196, 306, 310, 411 and 521 were cut.  

All these holes have been cut from the middle in two parts, each of these parts has been 

measured by a cross-section, obtaining two measurements for each of the holes. Each of the 

measurements is 7.16 º of the hole perimeter. There is an example of the measurement of the 

holes in Fig. 4. 

a)  

b)  

c)  
Fig 4 Example of Alicona measurements for hole 196 of curved edge tool and hole 287 for straight edge tool a) Hole 

cutting and measurement process b) 1st and 2nd  measurement of hole number 287 made with BH04.5D tool c) 1st and 2nd 

measurement of hole number 196  made with R204.6D tool 

All the parameters shown in Table 1 were obtained for every measurement made, even though 

many of these parameters are highly correlated and do not provide extra information. However, 

the use of only the Ra measurement for the characterisation of the roughness quality of a surface 

was not sufficient. A selection process was carried out that adequately described the generated 

surface and will be explained in section 2.3.  
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2.3 Acquired signal segmentation and feature extraction 

Regarding the acquired external and internal signals, different drilling process phases were 

identified, depending on the tool tip position of the drilling process, as shown in Fig 5 a). Within 

these phases, signals are most stable in phase 3. In phase 2, the tool begins to penetrate the 

material until the height of the drill tip is entirely within the material. In phase 4, the tool tip 

starts to emerge from the bottom of the workpiece material and the signals start to attenuate by 

the loss of contact between the tool and the workpiece. Once in phase 5, the tool descends to a 

point where the burr is minimised outside the hole. Depending on how the drilling cycle has 

been programmed, phase 6 keeps the tool at the lowest point for a while. During the retraction 

of the tool, two phases have been considered, phase 7, that corresponds to the tool path where 

the periphery of the tool tip is below the working material and phase 8, which corresponds to 

the path taken by the tool as long as the periphery of the tool tip is completely out of the drilled 

hole. 

Changing the spindle RPM affects the sampling frequency of the acquired signals. Taking the 

sampling frequency of the cutting forces as a reference (10kHz) with the R204.6D tool at a 

speed of 3978 rpm, the sampling frequency per revolution was 150 samples/rev. While with the 

BH04.5D tool at a speed of 2785 rpm, 215 samples/rev. This means that with the R204.6D tool 

30% less data is acquired than with the BH04.5D tool. 

The signals acquired have been segmented, and only the part belonging to phase 3 (Hole 

making) of the drilling of a hole has been retained. Specifically, the signals have been 

segmented from the moment the periphery of the tool tip is entirely inside the material until the 

tool tip starts emerging from the bottom of the material. Fig 5 b) is an example of the different 

signals acquired for phase 3.  

a)  
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b)  
Fig 5 Segmented signals a) Tool tip position and each drilling stage b) Acquired signals of the third stage of the drilling 

process for both tool geometries 

As part of the first stage,  and to eliminate some noise introduced by the machine in the vibration 

signals, signals have been filtered with a low pass Butterworth filter of order 10 with cut-off 

frequency Fc=3600 Hz and a bandpass filter with Fc1=4000 Hz and Fc2=6000 Hz, using these 

signals separately. On the one hand, we have the vibrations that happen below 3600 Hz (named 

ACC(x-y-z)_1) and in the other hand, vibrations in the sub-band 4000-6000 Hz (named ACC(x-

y-z)_2). Six vibration signals overall, two for each signal acquired on each of the three axes. 

These 15 signals are available for the clustering of the holes and after extracting eight statistical 

features for each one, mean, rms, standard deviation, maximum, minimum, kurtosis, skewness 

and variance, 120 statistical features are finally available. In a previous work [14], the authors, 

using the same features, analysed the linear relationships between internal and external signals.  

The workpiece features (roughness measurements) and sensor signals were obtained from the 

drilling process to be related to the physical phenomena observed during measurements. The 

main steps in this analysis can be seen represented on Fig. 6.  

 

Fig 6 Statistical feature selection of external and internal signals for hole surface anomaly detection 

https://www.google.com/search?client=firefox-b-d&channel=crow2&sxsrf=ALeKk03-b-SmCkUfU2G_KOQvL-jbc_vlUg:1586706447418&q=butterworth&spell=1&sa=X&ved=2ahUKEwim2aSRnuPoAhWvy4UKHdweAsYQkeECKAB6BAgSECo
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Roughness parameters with linear relations are removed (those having a coefficient above 

99%). After that, only statistical features of the acquired signals with correlation coefficient 

above 90% to these roughness parameters are selected.  

To evaluate the suitability of these statistical features for the automatic identification of 

workpiece contact properties, hierarchical clustering is carried out: (i) first only considering the 

selected surface roughness parameters and then, (ii) only considering the statistical features that 

belong to the roughness measured holes and which are correlated with the roughness parameters 

used in the previous step. Finally, the similarity between the dendrograms created on both steps 

are compared. 

For the creation of the bottom-up dendrograms in hierarchical clustering, both when using 

roughness parameters and when using clustering with features extracted from internal signals 

and/or sensors, the Euclidean distance was used between points/observations and the Ward's 

minimum variance method for linkage purposes, in which the fusion of two clusters is based on 

the size of an error sum-of-squares criterion. The AHC algorithm used corresponds to the 

implementation of the command “hclust” that can be found in the R  programming language 

library named “stats”.  

Using the clusters generated, the rest of the holes are projected on these clusters using PCA to 

see if they are representative of the extended population of holes.  

3 Results and discussion 

3.1 Roughness parameters selection and clustering  

To classify the deviation on the machined surface roughness profiles, hierarchical clustering 

was used, using initially 6 measured holes for each of the tools. The clusters were created from 

the roughness parameter data obtained from the measurements in the Alicona system after the 

tests. As many of these parameters were highly related, those variables that are highly correlated 

were removed. Then, parameters have been normalised so that they have an average equal to 0 

and standard deviation 1 (µ=0, σ=1).  

Starting from 13 roughness variables Ra, Rp, Rv, Rsm, Rsk, Rku, Rdq Rq, Rt, Rz, Rmax, Rc, 

Rt/Rz, 4 variables were identified that are not correlated with the rest Ra, Rp, Rsk, Rdq nor 

between them, and common to both tools. and 3 specific to each tool, neither correlated with 

the rest nor between them, therefore clustering process uses 7 parameters for each tool, as it can 

be seen in Table 3. 

Specifically, for the holes made with R204.6D, the parameters Rt, Rmax, Rt/Rz, Rz, Rc, Rq have 

been neglected and not taken into account in the analysis. For the holes made with the BH04.5D 

tool, Rt, Rmax, Rt/Rz, Rp, Rv, Rku are the parameters that were neglected. Cutting the 

dendrogram to create two clusters, identified holes 196 and 287 as distinct from the rest of the 

holes for tools R204.6D and BH04.5D respectively. Table 3 shows the dendrograms for the 

measured holes corresponding to each tool. 
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Table 3 Uncorrelated surface parameters and their respective dendrograms for both tools 

 

The y-axis shows how similar the observations or groups of observations are. Each connection 

of two groups is represented in the graph by dividing a vertical line into two vertical lines. The 

vertical position of the division, shown by the horizontal bar, gives the distance (dissimilarity) 

between two groups. As shown in Table 3, holes 196 and 287 are remarkably different from the 

rest of the observations for tools R204.6D and BH04.5D, respectively. 

In figure 7, after clustering, the 6 observations are shown according to sample number and 

roughness parameters coloured according to the cluster they belong to and labelled with the 

corresponding hole number. Each observation represents the average of the two measurements 

made on each of the holes.  

a)  

b)  
Fig 1 Analysing roughness parameters individually through clustering results a) BH04.5D b) R204.6D 

For every hole made with each of the tools, two types of surface profiles have been observed. 

On the one hand, in hole 287, made with tool BH04.5D, there were marks that did not 

correspond to the tool feed rate (surface tearing) and holes with no visible damage have been 

Common 

parameters 

Ra, Rp, Rsk, Rdq 

Tool specific 

parameters 

Rku, Rv, Rsm Rc, Rq, Rz 

Dendrogram 
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observed. In hole 196, made with the tool R204.6D, deep feed marks were seen compared to 

the rest of the holes. These observed phenomena caused the roughness to be affected at certain 

points of the process. 

Discarding the damaged surface values (hole 196 for R204.6D and hole 287 for BH04.5D) the 

average Ra values are 0.71 µm and 0.78 µm for R204.6D and BH04.5D tools respectively 

showing a negligible increase in roughness mean value. 

3.2 Signal statistical feature selection and clustering of measured holes  

For selecting the most representative signals regarding roughness, correlation analysis has been 

carried out with respect to the filtered roughness parameters among all the statistical features 

obtained from the signals. Statistical features with correlations to roughness measures above 

90% are selected and neglected below 90%. Table 6 shows features with a high correlation 

coefficient with one or more roughness parameters. 

Table 4 Correlations higher than 90% between acquired signal statistical features and roughness measured parameters. 

Blank cells are those with a correlation of over 90%, while shaded cells are those with a correlation of less than 90%. a) 

R204.6D tool measured holes b) BH04.5D tool measured holes 

a) R204.6D Ra Rp Rv Rsm Rsk Rku Rdq 

Fy_skew 0.81 0.45 0.84 0.91 -0.89 0.82 0.21 

ACCx1_min -0.89 -0.75 -0.86 -0.81 0.78 -0.92 -0.56 

ACCx1_kurt 0.94 0.76 0.91 0.79 -0.78 0.96 0.68 

ACCy2_skew 0.93 0.68 0.92 0.79 -0.77 0.97 0.7 

AE_kurt 0.93 0.67 0.91 0.81 -0.77 0.88 0.61 

TV2_max 0.63 0.96 0.48 0.40 -0.24 0.67 0.81 

TV3_min 0.82 0.31 0.89 0.96 -0.98 0.71 0.04 

b) BH04.5D Ra Rq Rz Rp Rc Rsk Rdq 

Mz_mean 0.03 -0.11 0.14 0.20 -0.01 0.33 0.91 

ACCy_max 0.06 -0.04 0.24 0.32 0.08 0.26 0.97 

ACCx2_mean -0.76 -0.76 -0.82 -0.93 -0.81 -0.62 -0.55 

ACCx2_rms -0.82 -0.86 -0.81 -0.94 -0.87 0.75 -0.33 

ACCz2_rms -0.84 -0.93 -0.81 -0.81 -0.90 0.96 0.08 

ACCz2_min 0.75 0.84 0.71 0.62 0.81 -0.93 -0.26 

TV50_mean 0.23 0.11 0.34 0.43 0.21 0.12 0.96 

TV50_max 0.21 0.09 0.32 0.43 0.19 0.13 0.95 

 

Both, the roughness parameters and the statistical features of the acquired signals are filtered 

differently for each tool, as the phenomena observed in the roughness profiles are also different. 

In the holes made with the R204.6D tool, more visible feed marks are seen (Fig 4), which causes 

the roughness to increase, having a negative impact on the profile skewness value. In the worst 

case scenario measured with the BH04.5D tool (hole 287), surface tearing can be seen, which 

highly increases the Ra value.  

In a next step, the statistical features of the signals shown in Table 4 were the inputs for another 

hierarchical clustering to compare the similarities shown by these statistical features and those 

obtained from the roughness parameters in Table 3. Table 5 shows the dendrograms obtained 

as a result of this process. 

Table 5 Clustering of measured holes using the signal statistical features of signals shown in Table 4 
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3.3 Hierarchical clustering in a bigger observation space  

Following with the proposed methodology, hierarchical clustering has been applied to the entire 

set of observations made for each of the tools using the signal statistical features during the 

selection of variables, to see how accurately the selected signals can predict the differences 

between the profile distributions. Fig. 8 shows the dendrograms obtained for the holes made 

with each of the tools, in the dendrograms two groups can be seen clearly. 

a)  
b)  

Fig 7 Dendrograms using the statistical features of all the holes for each of the cutting tools used 

During the assignment of the clusters, the Si (silhouette coefficient) of each one of the 

observations has been evaluated. The silhouette coefficient (Si) measures how similar an object 

i is to the other objects in its own cluster compared to those in the neighbouring cluster. Those 

observations with a silhouette coefficient below 0 have been taken to the nearest neighbour; 

this operation is carried out recursively until all the observations assigned to a given cluster 

have a Si higher than 0. 

3.4 Visualisation of obtained clusters and evaluation of the principal components 

of the clusters 

For the display of the clusters, the principal component analysis (PCA) was used. Fig. 9 shows 

the two main components for the holes made with each of the tools. The colours show each of 

the clusters. More information on the PCA can be found in Annex A.2. 

a)   b)   
Fig 8 Visualisation of two principal components for obtained clusters a) R204.6D tool b) BH04.5D tool 

According to the dendrogram for tool R204.6D in Fig 9 a), groups 1 and 2 are closer to each 

other while for BH04.5D tool, the clusters are well separated. 

R204.6D BH04.5D 
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For tool R204.6D, holes 45, 196, 411 belongs to cluster 2 while holes 306, 310, and 521 belongs 

to cluster 1. Holes 45 and 411 that was supposed to be in cluster 1 fall in cluster 2, the holes are 

in the boundary of the two clusters, so they are more confusing, this is discussed below in Fig 

13. Regarding tool BH04.5D hole 287 belong to group 1 (green), the rest of the measured holes 

belongs to group 2. 

To find out which variables have the most significant variability in each of the dimensions, the 

percentage of the variance of each of the dimensions obtained in the principal component 

analysis and the contribution of each of the variables in the two principal components have been 

obtained. This can be seen in Fig 10. 

a)  d)  

b)  
e)  

c)  f)  

Fig 9 Principal component analysis a) Percentage of explained variance for R204.6D tool b) Contribution of each 

statistical feature to Dim1 of R204.6D tool c) Contribution of each statistical feature to Dim2 of R204.6D tool d)Percentage 

of explained variance for BH04.5D tool e) Contribution of each statistical feature to Dim1 of BH04.5D tool f) Contribution of 

each statistical feature to Dim2 of BH04.5D tool 

In the holes made with the R204.6D tool, in the first dimension, the kurtosis value of the 

vibrations in the X-axis at low frequencies (ACCx1_kurt) and the minimum of the same signal 

(ACCx1_min) are the ones that have the greatest contribution. In the second dimension 

TV2_max, TV3_min, AE_kurt and Fy_skew are the ones that have the most significant 

contribution. 

The holes made with the BH04.5D tool, the statistical features ACCx2_rms, ACCz2_rms, 

ACCz2_min and ACCy_max are the ones that contribute most to the first dimension. In this 

tool the vibration signals are more affected by what happens on the surface of the working 

material. In the second dimension, TV51_max and TV51_mean have an equal contribution. 

The ACCx2_mean feature has a null contribution; this was expected since the centre of the 

vibration signal is around 0, so this feature could be removed to reduce the feature space. 

In table 6 the centroids of each of the clusters can be seen for R204.6D tool. The centroids are 

the mean value of each of the variables for each of the clusters and explain the effect that the 

roughness has suffered on that particular variable. The contributions of each of the variables to 

dimensions 1 and 2 of the principal component analysis can also be seen in the table.  
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Table 6 Cluster centroids for R204.6D tool drilled holes and feature contribution to each dimension 

Cluster Holes 

Dim2 Dim1 Dim1  Dim2 Dim2 Dim2 

Fy_skew 

(15%) 

ACCx1_min 

(49%) 

ACCx1_kurt 

(49%) 

ACCy2_skew 

(-) 

AE_kurt 

(21%) 

TV2_max 

(34%) 

TV3_min 

(24%) 

1 45,196,411 -0.158 -0.172 0.169 -0.030 -0.296 -0.199 -0.400 

2 306,310,521 0.269 0.293 -0.288 0.051 0.505 0.339 0.682 

 

The same procedure can be seen in table 7 for tool BH04.5D. 

Table 7 Cluster centroids for BH04.5D tool drilled holes and feature contribution to each dimension 

Cluster Holes 

Dim1  Dim1 Dim1 Dim1 Dim2 Dim2 

ACCy_max 

(19%) 

ACCx2_mean 

(-) 

ACCx2_rms 

(37%) 

ACCz2_rms 

(36%) 

ACCz2_min 

(35%) 

TV50_mean 

(49%) 

TV50_max 

(49%) 

1 183,381,181, 
182,581 

0.376 -0.027 0.550 0.509 -0.433 0.051 0.065 

2 287 -0.818 0.06 -1.198 -1.109 0.943 -0.112 -0.141 

 

To analyse the compactness of each of the clusters, the intra-cluster distance has been measured. 

For this purpose, the mean of the distances from the observations to the centroid of their cluster 

is calculated. Besides, the distances of the holes considered for measurement to the centre of 

the clusters have been measured. This information can be seen in tables 8 and 9. The numbers 

in bold are the distances to the clusters to which each hole belongs. 

Table 8 Intra cluster distance and distance between measured holes and cluster centroids R204.6D tool 

Cluster Intra cluster distance 
Distance between measured holes and cluster centroids 

Hole 45 Hole 196 Hole 306 Hole 310 Hole 411 Hole 521 

1 2.14 2.069 3.426 1.576 1.448 1.844 1.157 

2 2.57 1.588 2.533 1.773 1.871 1.345 1.713 

 

In the case of tool R204.6D, holes 45 and 411 belong to cluster 2, and are located at the 

boundary of the clusters, as shown in Fig 13 a). These were expected to be in cluster 1, and as 

they are located in a boundary region between two clusters the correct assignment is more 

complicated. 

Table 9 Intra cluster distance and distance between measured holes and cluster centroids BH04.5D tool 

Cluster Intra cluster distance 
Distance between measured holes and cluster centroids 

Hole 181 Hole 182 Hole 183 Hole 287 Hole 381 Hole 581 

1 2.252 2.268 2.224 1.206 3.226 2.221 2.417 

2 3.499 3.355 2.982 3.360 1.430 4.109 3.067 

 

Concerning the BH04.5D tool, cluster 1 is the most compact and cluster 2 show an increase in 

the mean values of the distances of their corresponding observations. The randomly selected 

holes for this tool apparently, are more central to their cluster centroids.  

3.5 Validation of obtained clusters 

To validate the obtained clusters, a new branch of holes has been selected again to validate the 

process. 

The clusters obtained for the BH04.5D tool are shown in Fig. 11. In this case, all the holes 

measured for the validation correspond to their respective clusters. Fig 11 a) shows the clusters 

in the first two main components of the signal features considered for creating the clusters. Fig 

11 b) shows the dendrogram of the roughness parameters obtained from the profiles measured 
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in Alicona. The mapping made between the statistical features of the signals and the measured 

holes matches 100% of the total measured holes. 

a)  b)  
Fig 10 Validation data for BH04.5D (straight edge) tool, a) Obtained clusters from sensor data in two principal 

component space of the selected features, labels in black are the holes used for the cluster creation, labels in blue are the holes 

measured after the clusters were created b) Obtained clusters from surface measurement data (green and red colours express 

the clusters of the figure a). 

Equations 1 and 2 show the linear combinations of the two principal components used to display 

the obtained clusters in Fig 11 a).  

The equations obtained from the principal component analysis are used to translate a hole into 

the 2 dimensions presented in Fig 11 a). Having the following normalised features for hole 271; 

ACCx2_rms=-1.372, ACCz2_rms=-0.279, ACCz2_min=1.007, ACCy_max=-0.898, 

TV50_max=0.846, TV50_mean=0.998, and using these values and equations 1 and 2 this point 

can be projected in the new space substituting the values in both equations, obtaining a point 

with the following values, Dim1=1.74 and Dim2=1.27. A new hole made under the same 

conditions can be quickly located on the map following the same procedure. 

𝐷𝑖𝑚1 = −0.51 · 𝐴𝐶𝐶𝑥2𝑟𝑚𝑠 − 0.51 · 𝐴𝐶𝐶𝑧2𝑟𝑚𝑠 + 0.5 · 𝐴𝐶𝐶𝑧2𝑚𝑖𝑛 − 0.44 · 𝐴𝐶𝐶𝑦𝑚𝑎𝑥 [1] 

𝐷𝑖𝑚2 = 0.69 · 𝑇𝑉50𝑚𝑎𝑥 + 0.69 · 𝑇𝑉50𝑚𝑒𝑎𝑛 

 

[2] 

To establish the space covered by the selection of the statistical features, the corresponding area 

to the two principal components 𝐴 = 55.45 and the area corresponding to the holes measured 

for the creation of the clusters 𝐴(181,182,183,287,381,581) = 11.82 has been calculated. 

Overall, 21% of the area has been covered and the distance between two clusters, that is, the 

inter-cluster distance is 3.014. Fig. 12 shows the measured surfaces and their corresponding 

roughness profiles. Fig 12 a) shows a surface where some kind of error has been observed, in 

this case, surface tearing. Fig 12 b) shows a surfaces that is free of visible defects. 

a)  

b)  
Fig 11 Hole surfaces and surface profiles obtained with BH04.5D tool a) Observed surface tearing b) Free damage 

surface 
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With respect to tool R204.6D, Fig 13 a) shows the clusters from the features of the acquired 

signals and the boundary between the two clusters. Fig 13 b) shows the dendrogram made with 

the roughness parameters obtained from the profiles. 

a)  

b)  

Fig 12 Validation data for R204.6D (curved edge) tool, a) Obtained clusters from sensor data in two principal component 

space of the selected features and holes in clusters boundaries b) Obtained clusters from surface measurement data. Red colour 

corresponds to cluster 1 and green colour to cluster 2. 

The dendrogram shows that holes 45, 411 and 376 (marked in green) belongs to cluster 2 

although they were expected to be in cluster 1. In the zoom made in Fig 13 a) it can be observed 

that these holes belong to the cluster boundary. 

Equations 3 and 4 show the linear combinations of the two principal components used to display 

the obtained clusters in Fig 14 a). 

𝐷𝑖𝑚1 = 0.69 · 𝐴𝐶𝐶𝑥1𝑚𝑖𝑛 − 0.68 · 𝐴𝐶𝐶𝑥1𝑘𝑢𝑟𝑡 

 

[3] 

𝐷𝑖𝑚2 = 0.55 · 𝐴𝐸𝑘𝑢𝑟𝑡 + 0.46 · 𝐹𝑦𝑠𝑘𝑒𝑤 + 0.41 · 𝑇𝑉3𝑚𝑖𝑛 + 0.41 · 𝑇𝑉2𝑚𝑎𝑥 + 0.34 · 𝐴𝐶𝐶𝑦2𝑠𝑘𝑒𝑤  [4] 

The area corresponding to the two principal components 𝑖𝑠 𝐴 = 107.45 and the area 

corresponding to the holes measured for the creation of the clusters is 

𝐴(45,196,306,310,411,521) = 6.02. Therefore, 5.6% of the area has been covered. The inter-

cluster distance is 1.65. Fig. 14 shows the measured surfaces and their corresponding roughness 

profiles. Fig 14 a) more visible feed marks can be seen whereas in Fig 14 b) a lower surface 

roughness is seen with no visible feed marks. These feed marks do not show a trend in terms of 

the time series in which the holes have been made and could be due to other factors such as a 

built-up edge on the periphery of the tool. 

a)  

b)  
Fig 13 Hole surfaces and surface profiles obtained with R204.6D tool a) Observed feed marks b) Free of feed marks 
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In the BH04.5D tool, the area covered by the measured holes is more extensive than in the 

R204.6D tool, and better result is obtained, achieving a better separation between the clusters.   

The creation of a supervised learning system requires the measurement of a large number of 

observations. The feasibility of this depends on the resources and time available. Obtaining 

classification models of roughness, in case of not having internal or external signals or only 

having process parameters is a complex task. Several parameters influence the roughness of a 

component and influence the signals that can be collected during an operation. In this work, we 

show a methodology that can create descriptors of the roughness obtained by measuring a small 

sample of the set of observations to be evaluated. Although it is not an exact value of roughness, 

the descriptors are based on different parameters of the measured profile to create a model 

capable of classifying each of the holes made without the need for physical measurement. As 

in the work done by Kubišová et al. [36] the use of hierarchical clustering is highly valued to 

obtain information about the replicability of surfaces under specific cutting conditions. 

The area covered by the holes measured on the map of the principal components plays an 

essential role in the methodology developed. It was found that with the R204.6D tool some of 

the holes were in the cluster boundary, while with the BH04.5D tool all the holes measured, 

both prior and for the validation, were identified in 100% of the measured cases on each 

respective cluster. The former presents less amplification in the roughness parameters measured 

in the laboratory in those holes classified as faulty, while the latter presents roughness 

parameters amplified to almost twice. 

There is no direct effect on the features of a given signal directly related to the roughness profile 

of a component. As can be the case with tool wear, which has been shown that the increase in 

thrust force in drilling processes is very closely related to the tool wear curve [37]. Although 

many works show an increase in roughness values as well as tool wear, some temporal event in 

the middle of the process may cause the surface of the component to be damaged or the 

roughness value to increase during the same tool condition. This study shows that with two 

different cutting tools blocking the cutting conditions, surface roughness variations can be seen 

without tool wear. 

The works consulted to date only contemplate the parameter Ra for monitoring the roughness 

of a given component [38,39], as seen in Djebala et al. [40] other roughness parameters can 

describe the fatigue or assembly properties. The Rsk value of a roughness profile can be of great 

importance; thus, an excessively negative skewness could lead to early fracture occurrence. 

However, it can be beneficial for assembly. Conversely, a positive skewness can lead to 

assembly problems and be beneficial for components where long useful life is expected. 

Therefore, the system proposed in this work has the benefit of using several roughness profile 

parameters. This leads to a better interpretation of the surface property characteristics of a 

component depending on the sector for which it is being manufactured. 

The chip is fan-shaped on the R204.6D tool, which occurs when the chip is broken before a 

complete revolution; this is the ideal chip in drilling processes and the one that is best evacuated 

[41]. On the BH04.5D tool, the chip is somewhat longer and is a mixture of fan-shaped and 

conical, presenting a higher difficulty in the evacuation, and therefore could lead to surface 

tearing on the machined surface. 

The feed marks shown on the hole surface profile from R204.6D tool which makes roughness 

mean value to increase with this specific tool can be regarded to wedge angle of 55º which is a 

narrower angle than the BH04.5D tool. Conversely, on tool BH04.5D, with a wedge angle of 

80º and a more positive rake angle can facilitate the chip rubbing against the generated surface, 

and thus, to surface tearing appearing. 
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The surface tearing observed in the holes made with tool BH04.5D (straight edge) could be due 

to chip clogging. The phenomenon has been observed in the first half of the hole in all cases 

(Z< 2.5 mm), which suggests that it is the part of the surface that experiences the most damage 

during drilling.  

Concerning the descriptors (categories) created, it is possible that for each of the tools used in 

other cutting conditions, there are other possible phenomena not visualised in the measurements 

made under the cutting conditions used. Tool wear, which is not analysed in this study, could 

also lead to the appearance of other types of defects that cause the machined surface to be 

negatively affected. So it is of interest to analyse the phenomena that may appear to decrease 

the limitations of this system. The statistical features related to the roughness profiles shown 

could change. Thus, a study of different cutting conditions and different tool conditions that 

increase the space of variables used and, consequently, creating a greater number of clusters is 

of interest. 

4 Conclusions and future work 

In this work, hierarchical clustering of holes is made with two different tools to describe the 

surface roughness obtained. For the characterisation of the roughness of the machined 

components, several surface profile parameters measured in the Alicona profilometer were 

used. Once the statistical features of the signals collected during the drilling of holes have been 

identified, clustering is carried out for 600 holes. The major contribution of this work results in 

the development of a new methodology capable of giving a descriptor of the quality of the 

surface generated in drilling processes based on the least number of measurements possible 

through the use of hierarchical clustering and internal and external signals to the cutting process. 

The result is a virtual metrology system for a more extensive set of holes than those physically 

measured. The following are the main conclusions: 

• There was no tool wear identified during the tests. However, there was a variation in 

roughness. Events that occur at specific points in the cutting process cause the surface 

profile of the machined component to be affected. Therefore, in certain processes tool 

wear is not directly related to surface roughness. However, end-of-life tests should be 

carried out to evaluate the relationship between wear and surface roughness. 

• The events or phenomena observed on the machined surface that appear using two tool 

geometries are different. Consequently, the signals used to characterise the roughness 

result to be different, avoiding the use of the same variables to characterise the surface 

generated in the drilling processes. 

• Clustering algorithms used with signals can approximate the roughness obtained and 

perform a classification of the holes without the need to measure a large number of 

them. In this way, a roughness estimation can be obtained by measuring just a few holes 

and projecting them in the signal space. 

• The area covered with the measurements on the data observation space is of great 

relevance for a good mapping of the roughness parameters using the data gathered 

during the process. As can be seen with the R204.6D tool, not all the erroneous holes 

have been identified in their respective clusters, while with the BH04.5D tool, 100% 

have been identified. 

• Each of the two tools used generates a surface with different contact properties. Tool 

R204.6D shows feed marks per revolution on surfaces where the mean value of the 

roughness profile is increased. In contrast, tool BH04.5D shows surface tearing on 

surfaces where the Ra value is increased. Besides, tool R204.6D generates lower thrust 

force than BH04.5D tool due to smaller rake angle. The amplification of the roughness 
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parameters of the individual tools influences the signal features, which makes it possible 

to identify the differences in the changes of the roughness profile distribution. 

• Further research will focus on employing one-class classifiers. This would help to 

discriminate those surface distributions that present deviations from the contact 

properties expected to be achieved in a specific process.  
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