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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Industry 4.0 has raised the expectations on productivity, automation, and resource efficiency of manufacturing systems. This paper proposes a 
digital twin framework for the simulation and optimization of production lines and cells that can be used in the design and operation stages. The 
framework is supported by an architecture that connects manufacturing and machine tool data (digital shadow), the discrete event simulation 
model and the optimization engine, allowing for a variety of functionalities to plan and manage the production system. A use case is provided to 
demonstrate this framework, implemented in an automated line for the manufacturing of railway axles. 
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1. Introduction 

Industry 4.0 [1] builds upon the advances in Information and 
Communications Technology (ICT), automation, 
manufacturing technologies and integration of engineering to 
develop future manufacturing systems. The implementation of 
this paradigm intrinsically involves an increased digitalization 
and complexity of manufacturing systems. 

One of the consequences of the implementation process of 
this paradigm has been the generation of vast amounts of 
manufacturing data. Data is seen as the new oil of digital 
manufacturing, where data gathered from the production line 
and the shopfloor is further used to perform more accurate 
system modeling, and simulation [2]. 

At the same time, factories are developing into intelligent 
environments in which the gap between the real and digital 
world is shrinking. The Digital Twin concept has a lot to 
contribute to manufacturing and Industry 4.0 [2]–[4], creating 
digital counterparts of real processes, products and production 
systems. 

Attention has been paid to the development and 
implementation of ICT technologies, although it is also 
recognized that Industry 4.0 will require a business 
transformation process with implications in operations 
management [5]. A necessary next step would be to identify 
new applications and services to provide value to shop 
managers and technicians, in order to manage better and 
optimize the performance of production systems and assets. 
Digital twins should therefore be oriented to these applications. 

It is important to mention that the digital twins will also open 
new opportunities for the providers of these systems, both 
machine tool builders, original equipment manufacturers 
(OEMs) and system integrators, in their servitization strategy 
[6]–[8]. 

This article focuses on the production digital twin and 
provides a framework for configuring and implementing digital 
twins in the design and operation of production systems. 
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1.1. Design and operation of production systems 

The design of manufacturing and production systems is a 
complex process [9]. Moreover, production systems are 
becoming more complex due to the following competitive and 
context characteristics and trends [10]–[12]: 1) greater 
variability of product, 2) shorter product life cycles, 3) variable 
product routing, 4) minimization of the lot size, 5) flexibility in 
equipment and processes, 6) advanced automation and smart 
control systems, 7) cyber-physical systems. 

Traditional sequential design methods do not adapt well to 
these new requirements, where the complexity of the systems 
increase as well as development and commissioning times are 
becoming shorter. Digital twins have been proposed to enable 
the interaction of mechanic, electric, software and 
programmable logic control (PLC) design in the early stage of 
the development of cyber-physical manufacturing systems [13]. 
During use stage, the production systems usually undergo 
modifications in products and configurations that increase the 
difference between the initial digital model and real production 
system [14]. Digital twins can fill this gap in the operation of 
manufacturing systems [3], [12]. 

At the system level, the design of production systems is a 
very complex task which involves making multiple trade-offs 
and decisions. Aware of these complexity, simulation based 
optimization and discrete event  simulation models have been 
proposed to support in this process [15]–[17]. 

Moreover, these manufacturing systems also present 
complexities in the operations management, regarding 
planning, scheduling, and improvement activities. The 
production digital twin should therefore support production 
managers maximizing the performance of their production 
systems. 

This paper proposes a framework for the implementation of 
Digital Twin at the system level, based on simulation and 
optimization, to be used for the design and operation of 
complex manufacturing systems. 

1.2. Structure 

The remainder of this paper is organized as follows. Section 
2 proposes the state-of-the-art, which has been divided in two 
sub-sections: a) the digital twin concept and b) simulation and 
optimization of production systems. The 3rd section shows the 
production digital twin framework, explaining the elements 
and possible architectures. A demonstration of this framework 
is explained in Section 4. Finally, conclusions and future work 
are summarised in Section 5. 

2. State of the art 

2.1. Digital Twin 

The Digital Twin [3] has received increasing attention from 
industry and academia. Using the definition provided by Stark 
[6], "a digital twin is the digital representation of a unique asset 
(product, machine, service, product-service system), that alters 
its properties, condition and behavior by means of models, 
information and data". The elements of the Digital Twin 

according to [13] are the Digital Master, the Digital Shadow 
and their linkage. Conceptually, the Digital Master would be 
related to the Digital Factory, which is based on the software 
tools and methodologies that allow to design, simulate and 
optimize products and their production systems [18]. The 
second major element of the Digital Twin is the Digital 
Shadow, composed of operational data collected by Industry 
4.0 technologies (OPC-UA, Big Data, among others) [19]–
[21]. 

The Digital Twin of the manufacturing system is defined by 
Kunnath [22] as a data-oriented representation of all elements 
of the manufacturing equipment system, the material flow 
system, the value stream system, the operating materials 
system and the human resource  system. This definition 
includes therefore the main systems that should be modelled in 
the model. 

Regarding the level of integration of the data flows, 
Kritzinger [23] presents an evolutionary categorization 
between the Digital Model, the Digital Shadow and the Digital 
Twins, where they differ in the automation of the data. The 
Digital Model would be similar to the standard simulation 
model, where there is no automatic data integration. A step 
forward in the automation of data integration would be the 
Digital Shadow, where it further exists an automated one-way 
data flow between the physical and digital objects. This paper 
introduces The Digital Shadow as the combination of the 
elements from physical to digital, a concept that differs from 
the Digital Shadow defined by [6]. Finally, the Digital Twin 
would require bi-directional integration between the physical 
and digital object, and vice versa. 

The digital twin of a production plant can be hierarchically 
classified according to its scope. Qi [20] and Tao [21] divide 
the digital twin into three different levels: unit level, system 
level, system of system (SoS) level. The unit level is the 
smallest unit in the production plant, and it represents the 
equipment on the field (i.e. sensors, actuators, devices). The 
system digital twin is composed of multiple unit level digital 
twins (i.e. production line, shop floor, factory) and the SoS 
digital twin is composed of multiple system level digital twins 
(i.e. cross company platform). In the same way, D. Guo et al. 
[24] proposes a unified digital twin at object level, product 
level and system level where the digital twin of the assembly 
process is also detailed. 

Machine/process twin data can be used for monitoring [25], 
[26], health, wear estimation and parameter optimization [27], 
[28]. Focused on manufacturing systems, the applications of 
the digital twins mentioned in literature are [12], [23], [29], 
[30]: production planning and scheduling, maintenance, layout 
planning, engineering design, process control and traceability. 

2.2. Simulation and optimization of production systems 

Among different simulation approaches, discrete event 
simulation (DES) is well suited to modeling manufacturing 
systems [31]–[33]. Discrete event simulation is a popular 
technique for modelling and analysis of manufacturing systems 
[31], [34]–[36], both in design and operation stages, with more 
detailed applications such as: system design and facility layout, 
improvement and optimization of production flows [37], 
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production planning and control [38], [39], scheduling, 
maintenance, performance analysis. A complete and thorough 
review of these applications is provide in [35]. 

A more novel approach is the integration of optimization in 
simulation [15], [16], [36], [40]. Optimization enhances the 
capabilities of simulation for decision making. Simulation 
based optimization allows to find the optimal or nearly optimal 
solution in the case of conflicting objectives. Such conflicts 
may require real time or near real time response when the 
system is operational. Thus, symbiotic simulation systems [41], 
[42] and online simulations [43] have been proposed in the 
literature to enable real time optimization and decision making 
over the physical system. This is achieved by linking 
optimization and decision maker engines to the digital twin 
model. However, the latter should be continuously 
synchronized with the real system to make accurate decisions. 

Regarding data requirements, one of the problems 
traditionally reported when using DES is the time and cost 
invested in collecting input data [44], and the quality of the data 
[45]. Senington [16] proposes a linked data approach for the 
automatic extraction of data and information to feed plant 
simulation models. Precisely, the Digital Twin overcomes 
these limitations, since it is based on the connection between 
the real data of the physical system and the digital model, 
performing this task in an automated way. 

3. Production Digital Twin Framework 

3.1. Proposed framework 

This section details the digital twin framework presented in 
Fig. 1. On the left side of the framework, the digital twin is 
shown, whereas on the right side, the real smart factory is 
depicted. The digital twin has been divided in the digital model 
and the digital shadow [13], [23], whereas the digital shadow 
is created through the monitoring of the real plant, with 
different production elements. In this way, four different 
quadrants have been represented, and the related connection 
interfaces between them. 

Based on the previous hierarchy proposals, our framework 
considers a unified multi-level digital twin that describes the 
machine/process twin at the unit level and the production twin 
at the system level, with the purpose of optimizing system level 
performance. 

The framework distinguishes between the components and 
functions/applications to perform by the twins, both by the 
digital shadow and the digital model, at different hierarchy 
levels. The digital shadow is responsible for the following 
functions: traceability, current state gathering and model input 
data estimation, which can be applied to both the system as well 
as the machine/process level. 

 

Fig. 1. Production digital twin framework 

The envisaged components for building the shadow from the 
shop-floor Internet of Things (IoT) gateways and cyber-
physical systems (CPS) would be data analytics for parameter 
extraction and repositories for data storage. 

On the other hand, the digital models fulfil at the system and 
machine/process level. System level functionalities are the 
design validation, production and maintenance 
planning/scheduling, bottleneck identification, system 
improvement and system optimization. The main system 
components are the DES simulation software and the 
optimization engine. Going down the hierarchy, machine and 
process components would enhance simulation models with 
optimization capability, and oriented in a broad sense to the 
following functionalities: machine/process key performance 
indicator (KPI) estimation (process time among others) or 
estimation of damage, wear, or errors (health status, vibrations, 
or thermal displacements). 

During the design stage, OEMs build in an iterative way the 
production digital model, beginning with more conceptual 
models. This digital model could be fed with historical data, 
estimations or synthetic data provided by machine level digital 
models. 

Conceptually, the production digital twin could therefore be 
updated by gathering data both from the real plant (real->digital 
connection, through the IoT gateways) or from the lower 
machine/process level (digital-> digital). 

 

3.2. Proposed architecture 

The proposed architecture for the deployment of the 
framework is shown in Fig. 2. Manufacturing data is gathered 
directly from the shop floor through an IoT gateway. This data 
could be related to any piece of equipment, such as machine, 
handling device or control system. The IoT gateway collects 
data and sends them to the cloud storage. 

The cloud storage is a cloud-based database capable of 
managing huge amount of data, as well as ordering them 
according to certain indicators. Moreover, an interoperable 
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mechanism has been integrated to share data through a secured 
and encrypted API REST. 

 

 

Fig. 2. Proposed architecture 

Data stored in the cloud is retrieved by an algorithm built up 
on the engineering PC. This data is then processed to generate 
behavioral models of real machines using statistical approaches. 
Likewise, once the models are built by the algorithm, the results 
are stored in a local lightweight database (e.g., SQLite). This 
algorithm is continuously updating the data parameters for 
process modelling. Based on the monitored data, new product 
references and flows could be detected. 

Finally, a function has been developed to load the 
parameters stored in the lightweight database into the 
simulation object. The discrete event simulation input data is 
updated each time the software starts up. 

4. Use case: railway axle production line 

This framework has been partially demonstrated through a 
use case in a production line related to the manufacturing of 
railway axles. The production line includes the following 
operations of the axles: identification/marking, manufacturing 
(turning and grinding) and non-destructive testing (NDT). This 
line has been developed by a machine tool manufacturer 
located in the north of Spain, which offers complete and 
automated solutions. The line is composed of 6 equipment 
units, entrance conveyor, exit conveyor, a linear gantry and in 
most of the cases single buffer for each of the machines. 

The original installation of the line was commissioned with 
the following ICT and control elements: Programmable logic 
control (PLC) and computer numeric control (CNC) for single 
equipment (machine tools with CNC and PLC, where some 
other machines are PLC controlled) and a control and 
monitoring system. This control and monitoring system would 
be between layer 2 and 3 of the ISA 95 automation pyramid. 
Machines are connected with the gantry handling equipment. 
The gantry is upper connected to a server, in which the 
monitoring and control system, and its supporting database are 
located. 

The line control is located in the gantry, where axle potential 
movements are decided in response to machine states and 
priorities. 

The line has undergone Industry 4.0 retrofitting, beginning 
with the installation of machine monitoring gateways to 
increase current capabilities of the monitoring and control 

system. In a broader sense, the implementation of the gateways 
has been the basis for the OEM to maximize the value provided 
to the customer of the line throughout the whole machine 
lifecycle. The carried-out activities are listed below, classifying 
them by activities related to the implementation of the Digital 
Shadow and the ones related to the Digital Model: 
• Implementation of the Digital Shadow 
− Installation of machine gateways to gather CNC/PLC 

variables. 
− Implementation of a cloud platform for machine level 

process and state functionalities, which are related but 
go beyond production functionalities. 

− Business Intelligence (BI) visualization of machine, 
process, and production data in web format. 

− Implementation of Python based data analytics to 
estimate indicators based on the cloud variables: 
estimation of part type process time (distribution per 
axle reference, mean and standard deviation), 
estimation of setup times (from reference x to y), 
estimation of failure indicators. 

• Implementation of the Digital Model: 
− Building the DES simulation model in Tecnomatix 

Plant Simulation. 
− Development of the optimization algorithm in Python, 

as well as the communication with the simulation 
engine. The implemented algorithm has been a single-
objective genetic algorithm for permutation without 
repetition to find the best sequence of axles. 

− Implementation of functionalities: production and 
maintenance planning (2 weeks production execution), 
sequence optimization based on setup time reduction. 

The implementation of the Digital Twin framework has 
been demonstrated with data transmission from the plant to the 
model (Digital Shadow concept in Kritzinger [23] 
classification). At this point, it is not expected that the digital 
model will automatically change ERP scheduling information 
as a result of a model simulation. 

 

Fig. 3. Monitoring of machine-gantry handling states for process (machining) 
time estimation over 6 hours of production 

Machine level state signals have been visualized and 
analyzed for the estimation of raw machining time, isolating it 
from any other time related to the loading and unloading 
process by the gantry system. This information has also been 
linked to the axle reference to estimate the average process time 
by reference type. 

As an example, the evolution of these signals over 6 hours 
is shown in Fig. 3. This figure is one of the visualization objects 
provided by the BI system, with the possibility to zoom in/out 
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the timescale. Every set of signal peaks involves a sequence of 
unloading a finished part and loading the next part at a machine. 
The machining time would be the time between the end of axle 
loading and the next request for unloading the axle. 

 

Fig. 4. Detail of unloading and loading sequence 

A detailed view of the unloading and loading sequence is 
provided in Fig. 4. These variables are directly mapping PLC 
variables of a certain machine. The sequence begins when both 
unloading request (MS_Unload_Request) and loading signals 
(MS_Unloading) turn to 1. Unloading request signal switches 
to 0 if the gantry is able to perform the task. Once the unloading 
is complete, the machine launches a load request 
(MS_Load_Request) and this signal switches to 1. In this case, 
the gantry is not able to immediately attend the job, since it 
must finish the previous task, leaving the axle in the required 
location. However, if the gantry is able to accept the loading 
job, MS_Loading will switch to 1. The sequence ends when 
both MS_Load_Request and MS_Loading are set back to 0. 

It is worth mentioning the importance of defining the PLC 
variables in a proper way, certainly considering the control 
needs, but also taking into account the variables or required 
signals to define KPIs . These are key elements for building the 
digital twins. This issue can be well addressed by the OEM 
machine tool manufacturers, who are responsible for the design 
and integration of the pieces of equipment (including PLCs and 
CNCs), following a bottom-up approach that links machine and 
equipment level data to the upper level of production system 
towards the digital twin. 

The presented Digital Twin framework will allow 
production managers to simulate, understand and improve the 
shop performance. Overall performance is aimed to 
significantly improve based on the simulation of the digital 
model and the digital shadow, implemented as a web interface 
that offers system and single equipment information with 
business intelligence capabilities. 

5. Conclusions 

This paper starts from the premise that production systems 
are increasingly complex both in design and operation. Digital 
and Industry 4.0 technologies are called to improve the 
management and performance of production systems. DES 
simulation and Digital Twin literature have been reviewed to 
clarify concepts and applications to propose the Production 
Digital Twin framework. The framework has been explained, 
as well as an architecture for its implementation. 

The Digital Twin enhances, and links data based and model-
based capabilities in such a way that can open up new 

servitization opportunities for suppliers (OEMs or system 
integrators). It is important that these OEMs have a broader 
perspective when selecting PLC and control signals, not only 
for control purposes but also for monitoring and building 
digital twins. 

On the other hand, production managers will have more 
tools to virtually test their facilities, brought to the market in a 
user-friendly way, and turning in more knowledge-based 
decision-making approach. 
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