
PH.D. DISSERTATION

Towards data-driven predictive maintenance for
industrial robots

Author:

Unai IZAGIRRE AIZPITARTE

Supervisors:

Dr. Urko ZURUTUZA ORTEGA

Dr. Luka ECIOLAZA ECHEVERRIA

Applied Engineering PhD Program

Computer and Electronics Department

Faculty of Engineering

Mondragon Unibertsitatea

Arrasate
April 2021





Familiari esker eta familiarentzat.





Acknowledgments

I want to thank my supervisors Urko Zurutuza and Luka Eciolaza for all their help,

advice and reviews during the course of my PhD degree. I also want to thank to my

colleagues Javi, Iñigo, Markel, Julen and Oscar for they support. Your company made

the PhD much more enjoyable in the good times and much more bearable in the bad

ones.

I want to specially thank Imanol Andonegui for his constant and clear advises,

for his outstanding implication, as well as for the technical support. This PhD thesis

would not have been possible without him. I will always be grateful for what you have

done these years and admire the passion and rigour with which you face any scientific

challenge.

Muchas gracias a todos los compañeros de la planta de montaje bruto de Mercedes-

Benz Vitoria Ani, Suber, Mónica, Fede, Pascual, Luis, Arantza, Armentia y Bazán,

por haberme hecho sentir uno más del equipo. Gracias a Aniceto Alonso por la gran

implicación, el conocimiento y la ayuda que me ha ofrecido todo este tiempo. A Javier

Bustamante por los consejos, la creatividad y por definir siempre un horizonte claro

hacia donde avanzar. Y en especial a Jon, Adrian y Toni, por todos los momentos

compartidos en el día a día, tanto dentro de la fábrica como fuera de ella.

Azkenik, eskerrik beroenak familiari. Zuen laguntzari esker izan dut indarra tesia

bukatzeko eta tesiaren aurretik eta geroago etorriko direnei ere aurre egiteko. Eskerrik

asko beti erreferente izateagatik. Eta zuri Mai, bihotzez, distantzia ezerezean uztea

lortzen duzu beti. Mila esker guztiagatik.

iii





Declaration

Hereby I declare that this document is my original authorial work, which I have

worked out on my own. All sources, references, and literature used or excerpted

during elaboration of this work are properly cited and listed in complete reference to

the due source.

Unai Izagirre Aizpitarte

Arrasate, April 2021

v





Abstract

The automation of industry in general and the use of industrial robots in assembly

lines in particular has considerably increased in the last two decades. Although

industrial robots have received significant attention from academic research, there

is a lack of contributions focused on the predictive maintenance of these complex

systems. In the era of the fourth industrial revolution, improvements in industrial

sensorization, data analysis and cyber-physical infrastructures, allow to address the

predictive maintenance of industrial robots from a data-driven perspective. This

research work reports on experimental evidence of reliable data-driven techniques

for the predictive maintenance of industrial robots. This thesis presents four main

contributions: the diagnosis of the health status of an industrial robot using vision-

based techniques, the feasibility of using torque sensors to diagnose the conditions of

industrial robots in real industrial environments, the optimization of the standby pose

of robots with genetic algorithms and the design and implementation of a practical

data acquisition network for real world industrial scenarios, respectively.

keywords:
Industrial robots, Predictive Maintenance, Prognosis and Health Management, Energy

Efficiency, Data Analysis, Cyber-Physical Systems, Industry 4.0
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Laburpena

Industria automatizazioak orokorrean eta zehazki muntaketa-kateetan robot industri-

alen erabilerak gorakada handia izan du azken bi hamarkadetan. Nahiz eta mundu

akademikoak sakon jorratu duen robotika, ikerketa hutsune nabaria dago sistema

konplexu hauen mantenketaren arloan. Gaur egungo sentsorizazio teknologiek, dat-

uen analisiak eta infraestruktura ziber-fisikoen aurrerakuntzek, ikerketa hutsune hau

betetzeko datuen analisian oinarritutako soluzioak proposatzea ahalbidetzen dute.

Lan honetan jorratzen den ikerketa robot industrialen mantenketa prediktiboan datza.

Horretarako, datuen analisian oinarritutako ikerketaz baliatuz. Tesian zehar hurrengo

lau ekarpen nagusi aurkeztuko dira: Robot industrialen osasun egoeraren diagnosia

ikusmen teknikak erabiliz, torke sentsoreen erabilgarritasunaren azterketa roboten os-

asunaren diagnosirako, roboten itxarote posizioaren optimizazioa algoritmo genetikoak

erabiliz eta industrian inplementagarria den roboten monitorizaziorako sare arkitektura

baten diseinu eta inplementazioa.

keywords:
Industrial robots, Predictive Maintenance, Prognosis and Health Management, Energy

Efficiency, Data Analysis, Cyber-Physical Systems, Industry 4.0
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Resumen

La automatización de la industria en general y el uso de robots industriales en líneas

de montaje en particular ha aumentado considerablemente en las últimas dos décadas.

Aunque los robots industriales hayan recibido una atención significativa por parte del

mundo académico, existe una cierta falta de contribuciones en cuanto al mantenimiento

predictivo de estos complejos sistemas. En la era de la cuarta revolución industrial,

las mejoras en tecnologías de sensorización, el análisis de datos y las infraestructuras

ciber-físicas permiten abordar este problema con soluciones basadas en el análisis de

datos. Este trabajo de investigación se centrará en el estudio y desarrollo de técnicas de

análisis de datos para avanzar en el mantenimiento predictivo de los robots industriales.

La tesis presenta cuatro contribuciones principales: El diagnóstico del estado de salud

de un robot industrial mediante técnicas de visión, la viabilidad de utilizar sensores

de par motor para diagnosticar las condiciones de los robots industriales en entornos

reales, la optimización de la posición de espera de los robots con algoritmos genéticos

y el diseño e implementación de una arquitectura de red práctica para la adquisición

de datos de robots en escenarios industriales reales.

keywords:
Industrial robots, Predictive Maintenance, Prognosis and Health Management, Energy

Efficiency, Data Analysis, Cyber-Physical Systems, Industry 4.0
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Foundation and Context





Chapter 1

Introduction

This thesis is grounded on two main pillars: The evolution of maintenance in the

manufacturing industry as a consequence of the fourth industrial revolution and the

prediction of mechanical faults in industrial robots. These two pillars describe, on

the one hand, the context in which this research work takes place and on the other

hand, the particular use case in which the study focuses. Since the advent of first

cyber-physical systems, the automation and monitoring of industrial processes and

machinery has grown accordingly. With this regards, maintenance strategies have

undergone a drastic evolution.

Historically, maintenance was only performed correctively. After detecting a fault

or a malfunction, the machine was repaired or removed from the production line and

a new one was introduced [66]. As the knowledge of the industrial processes and

components increased, the corrective maintenance was slowly replaced by Preventive

Maintenance (PM). PM builds upon the theory that maintenance should be performed

before the fault and not after. All in all, adopting a preventive maintenance strategy

leaded to a big change for the industry as maintenance was no longer a passive work,

but an active one. In PM, the knowledge of the behaviour of a machine or component

is used to schedule maintenance activities and prevent future failures. Nowadays the

reality of manufacturing industry is that preventive and corrective maintenance are

still the most widely used strategies.

However, the continuous monitoring of machinery using robust and reliable sen-

sors, is changing the way maintenance work is scheduled: from traditional knowledge

and mathematical model-based preventive maintenance, to data acquisition and real

condition-driven Predictive Maintenance (PdM). Instead of relying on fixed schedules,

it is now possible to monitor the health status of a certain component or system by

analysing acquired sensor data and to identify future trends in order to diagnose a

potential future fault. Therefore, this all enables a more efficient maintenance, which

is only applied when needed [25].
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1. INTRODUCTION

Prescribing maintenance solutions for the predicted failures has recently become a

new promising research field [40]. The main idea of this new method is not only to

predict a certain failure but also to suggest an optimal set of maintenance actions as a

response. This new maintenance strategy is called Prescriptive Maintenance (PsM).

Maintenance and Industry 4.0 are naturally merging, giving birth to Maintenance 4.0

as argued by Galar et. al in [20].

According to the International Federation of Robotics (IFR), the worldwide op-

erational stock of industrial robots has increased year by year since 2009 and it is

expected to keep increasing 1.1.

Even though industrial robots are a fundamental part for assembly lines, there

is a significant lack of scientific research in predictive or prescriptive maintenance

for robots compared to other industrial components such as bearings, gears, electric

motors, etc. The complexity of an industrial robot makes it difficult to predict a

mechanical fault using the traditional mathematical model-driven approaches.

Although some researchers have mentioned the feasibility of using data-driven

approaches for robot PdM, there is still no consensus on how to address the issue

i.e. Which sensors work best for a particular scenario and robot type? Which data

acquisition techniques are more robust for a real industrial environment? Which

methodology should be applied to acquire reliable data? Are questions that will have

to be responded in order to achieve an optimal maintenance policy for industrial robots.

Therefore, this thesis works around these questions to shed some light in the field of

industrial robot predictive maintenance.

Figure 1.1: Operational stock of industrial robots according to the International
Federation of Robotics (IFR).
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Part II

Research Topic





Chapter 2

Research Topic

The main goal of the thesis is to advance in the predictive maintenance of industrial

robots. As the literature review of the following chapter illustrates, data-driven

approaches show promising results. Thus, the research will be focused on data-driven

solutions for industrial robot predictive maintenance. This chapter defines the research

hypotheses and the technical objectives to be completed.

2.1 Hypotheses

The following list enumerates the hypotheses of the research work:

1. Visual-based monitoring systems provide enough accuracy to detect deviations

beyond the tolerance limits of industrial robots.

2. Torque sensors can effectively be used to detect medium and long term mechanical

deterioration in industrial robot joints.

3. An inefficient standby pose significantly decreases the remaining useful life of an

industrial robot.

4. Optimising an industrial robot’s standby pose can significantly reduce its energy

consumption in a production line.

5. Common industrial assets offer enough technology to effectively assess the health

status of industrial robots in real world production lines.

2.2 Objectives

The following list enumerates the technical objectives to be accomplished to answer

to all the previously exposed hypothesis:

7



2. RESEARCH TOPIC

1. To perform a critical review of the state of the art in industrial robot predictive

maintenance.

2. To select the most promising sensing methods for an effective industrial robot

health assessment.

3. To design and implement experiments to validate the feasibility of the selected

methods.

4. To propose a methodology for the detection and prediction of industrial robot

failures.

5. To study the relationship between the standby or Home pose of robots and their

failures.

6. To optimise the standby pose of an industrial robot in order to extend it’s remaining

useful life and reduce it’s energy consumption.

7. To develop a practical and reliable data acquisition network infrastructure that

stores industrial robot signals to assess their health status.

2.3 Brief description of the publications and
contributions

The research work is assembled in a total of four articles. Three of them have already

been published and the fourth is currently (December, 2020) undergoing a peer review

process. Each research article focuses on accomplishing on one or two technical

objectives and ultimately answers to at least one of the hypothesis listed above.

Article 1: Towards manufacturing robotics accuracy degradation assessment:
a vision-based data-driven implementation (Accepted 07 July 2020, Robotics and

Computer Integrated Manufacturing)

In this manuscript we study the feasibility of using visual-based data-driven

solutions for robot health assessment. The main contribution resides on the use of

binary squared fiducial markers to detect robot pose degradation. We monitored a

faulty robot and succeeded to identify the joint that induced the pose deviation using

fiducial markers. In addition, we trained machine learning models to predict the

deviation of the end tool using images captured by a camera located in one side of the

robot. Answering to the first hypothesis of the thesis, these results show that binary

8



2.3. Brief description of the publications and contributions

squared fiducial markers do indeed offer enough precision to detect deviations beyond

the tolerance limits of industrial robots.

Article 2: A Methodology and Experimental Implementation for Industrial
Robot Health Assessment via Torque Signature Analysis (Accepted 03 November

2020, Applied Sciences)

In the second article we study the feasibility of joint torque signals to assess

medium and long term degradation in industrial robot joints. We analyse and compare

torque signals in healthy and faulty robot joints with different loads. Moreover, we

perform an exhaustive mechanical inspection to identify the root cause of the robot

failure. Finally, with the knowledge acquired from the experiments and the mechanical

inspection carried out, we present a practical methodology based on torque signature

analysis to assess the health status of industrial robots in real world production lines.

This article answers to the second hypothesis of the thesis. The results demonstrate

that torque sensors can effectively be used to detect medium and long term mechanical

deterioration in industrial robot joints.

Article 3: Torque-based methodology and experimental implementation for
industrial robot standby pose optimization (Accepted 09 October 2020, The Inter-

national Journal of Advanced Manufacturing Technology)

The main contribution of the third article resides on the optimization of the

standby pose of industrial robots for RUL enhancement and energy consumption

reduction. We perform a descriptive analysis of robot data captured in an automotive

body shop assembly line and conclude that the standby pose of industrial robots has

a significant impact in the reduction of the RUL of these complex systems. The

standby pose of industrial robots has been traditionally ignored by researchers and

practitioners. However, a non-optimal standby pose reduces the RUL of industrial

robots in manufacturing assembly lines. We implement an evolutionary optimization

algorithm to find an optimal standby pose for industrial robots that effectively reduces

the torque applied by robot joints. The results of the article answer to the third

and fourth hypotheses. The second and third articles demonstrate that an inefficient

standby pose increases the temperature of the joints and therefore decreases the RUL

of industrial robots in real world production lines. In addition, we show that optimising

the standby pose of industrial robots significantly reduces their energy consumption.

Article 4: A practical and synchronized data acquisition network architec-
ture for industrial robot predictive maintenance in manufacturing assembly lines
(Under peer review, IEEE Transactions on Industrial Informatics)

9



2. RESEARCH TOPIC

The fourth article answers to the fifth and last hypothesis. It presents a practical

data acquisition network architecture for industrial robots. The contribution is a

necessary preliminary step towards an effective predictive maintenance for these

complex systems. The proposed architecture and methodology uses well-known

industrial assets to acquire robot signals in a synchronized, clean and scalable way. The

data acquisition is synchronized with the robot routines in order to detect anomalies

and identify possible malfunctions. We implement the architecture in a real automotive

assembly line and the results show that it can automatically acquire reliable robot

signals and effectively assess the health status of industrial robots in real world

scenarios.
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Chapter 3

Literature review

The following chapter provides a literature review and a theoretical background

for the thesis. It will also be helpful to understand the path followed throughout

the research work. This chapter begins by analysing the characteristics of different

maintenance strategies. It will then briefly describe industrial robot fundamentals,

with a special focus on maintenance. Afterwards, some remarkable model-driven

and data-driven approaches for condition monitoring will be presented. The chapter

highlights the differences and the similarities between these two approaches. The

last section will review the most relevant academic contributions in industrial robot

condition monitoring. Finally, the last section will summarize the main conclusions

and will critically discuss the state of the art.

3.1 From corrective to prescriptive maintenance

Manufacturing industry has undergone a remarkable change in its maintenance strategy.

Corrective, preventive, predictive and prescriptive maintenance are the four main

strategies that the industry has applied to face the inevitable deterioration of industrial

assets. In today’s manufacturing companies, several or even all four of them need to

coexist. Although predictive and prescriptive maintenance are gaining relevance, it is

necessary to keep in mind that industrial components keep failing every day. Hence,

it is still essential to prepare for those eventual failures and to apply corrective and

preventive maintenance.

3.1.1 Corrective Maintenance

Corrective Maintenance (CM) focuses on making sure that the installation (assembly

line, processes, machinery, personnel, etc.) is in the best possible situation to properly

react to the eventual failure, even though no action is taken until the failure occurs [4].

D.S. Dhillon proposed the following steps to apply an effective CM strategy [13]:
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1. Fault recognition.

2. Localization of the failure.

3. Diagnosis.

4. Repair of the affected component/s or item/s.

5. Checkout and returning the system to normal behaviour.

The purpose of CM is to minimize the Mean Corrective Maintenance Time

(MCMT) [13] which is given by

Tmcm =

∑
λjTcmj∑
λj

(3.1)

where:

Tmcm = Mean Corrective Maintenance Time,

Tcmj = Corrective maintenance time of the jth equipment/system element,

λj = Failure rate of the jth equipment/system element.

By definition CM is performed after the failure and it is a reactive action. In

an ideal world where all the equipment’s failures can be prevented or predicted CM

would not be needed [59]. As nowadays reality is yet far from there, concrete actions

and policies are still vital for manufacturers to react efficiently to unexpected failures.

Bevilacqua et al. emphasized in [4] the importance of corrective maintenance after

analysing the best maintenance strategies for an oil refinery.

3.1.2 Preventive Maintenance

PM is always applied before the failure. It comprises the set of actions and decisions

taken to keep the equipment and the installation in the best possible state in order

to avoid failures. An effective PM finds the balance between keeping the machinery

healthy by performing maintenance interventions and reducing the cost of these

interventions. The fewer PM activities are executed, the lower the cost. However,

reducing PM activities increases the risk of an unexpected failure.

It is fundamental for maintenance engineers and personnel to know and understand

the life cycle of an asset to schedule maintenance activities. Moreover, as maintenance

resources are limited, it is crucial to optimize the scheduling of those activities. The

optimization of PM intervention scheduling is one of the most important aspects of an

effective PM strategy [14]. Several academic surveys have reviewed the contributions

in optimal PM policy [62, 63, 41, 12].

14
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3.1.3 Predictive Maintenance

PdM has emerged as a consequence of two main factors. On the one hand, the lack of

effectiveness of PM, i.e. if PM actions are executed too prematurely, it becomes highly

inefficient. On the other hand, the recent technological advances allow the robust

acquisition and analysis of large amounts of data. Which permits to implement Big

Data infrastructures and advanced data analysis techniques and assess the predictive

maintenance of complex systems from a data-based perspective. These two factors

are deeply rooted in the Industry 4.0 philosophy and are paving the way towards the

future of maintenance. The merge of the Industry 4.0 paradigm with the maintenance

world has recently created the Maintenance 4.0 concept.

The estimated cost for unnecessary or inappropriate preventive maintenance is up

to 60.000 million dollars per year only in the U.S. [43]. This represents the 33% of

the total maintenance cost of the country [43]. The purpose of PdM is to improve the

efficiency of maintenance by capturing data with sensors, extract tendencies and assess

the health status of the machines. Therefore, a PdM based strategy acts whenever the

real conditions of the machinery require it, wasting as few resources as possible in

unnecessary interventions.

There are three main steps that have to be followed to implement an effective

PdM strategy: Root Cause Analysis (RCA), anomaly detection and Remaining Useful

Life (RUL) prediction. With RCA, the main source of a given failure is identified. The

objective of this first step is to detect the cause of a given failure [34] and determine

the best ways in which changes in that particular cause of failure can be monitored.

When the cause of a failure is identified and effectively monitored, it is time to detect

anomalies in the monitored data. The objective of the second step (anomaly detection)

is to detect anomalies in the monitored data to infer deviations in the normal behaviour

of a given system and infer impending failures. An in depth survey of anomaly

detection techniques and use cases can be found in [10]. Finally, once the RCA

and anomaly detection phases are completed, the third step estimates the remaining

useful life of the monitored asset and predicts failures based on historical data and

the knowledge acquired in the previous steps. An overview of remaining useful life

prediction techniques can be found in [47] and [56].

The success of each step is directly conditioned by the previous steps. If the root

cause for a given failure cannot be identified, it is very difficult to monitor the health

status of a given asset. Following the steps, if the health status of an asset cannot be

monitored, it is not possible to detect anomalies or deviations in its normal behaviour

and finally predict future failures. Therefore, the overall quality of a PdM system,

directly depends on the effectiveness of its individual steps.
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In the last decade there has been a remarkable increment in predictive maintenance

research contributions, mainly divided into two groups: scientific reports that frame

the role of predictive maintenance, define the methodology and analyse theoretical

aspects of this field [64, 69, 58, 35]. And publications that present successful PdM use

cases e.g. wind turbines [21, 33], induction motors [32, 7], bearings [2, 19, 22], etc.

3.1.4 Prescriptive Maintenance

The current digital transformation is pushing the maintenance of the industrial assets

beyond predictive maintenance. According to Anari et al. [1] PsM extends prediction

of failures. Sensing technology, expert knowledge and predictive analytics are reaching

the point where decision-making support systems can be built to suggest optimal

course of action to take in real time, based on the current state of the assembly line

[46]. Hence, PsM focuses on suggesting what maintenance actions to take, based

on the current state of the machinery, historical data analysis and expert knowledge

modelling.

Matyas et al. suggested methodologies in [40] for an effective PsM implementation

but real application in assembly lines will require more work by researchers and

practitioners. Recently, Karner et al. [30] presented an industrial PsM use case for a

steel plate manufacturer.

3.2 Model-driven approaches for condition
monitoring

Physical model-driven condition monitoring depends on mathematical models that

describe the behaviour of a system. These mathematical models are built by domain

experts based on their knowledge and historical data. As illustrated in figure 3.1,

sensor data is compared with model-generated data. If the information of the sensor

and the physical model is inside certain limits, it is assumed that the system has a

normal behaviour. When a certain threshold is exceeded, there is something unusual

happening in the system. However, in order to build models that describe complex

and non-linear systems, there are some assumptions that have to be considered such

as constant speeds, lubricant temperatures, constant loads, etc. These necessary

assumptions might distance the behaviour of the model from the real system.

To mention some remarkable model-driven based contributions, Kacprzynski et

al. developed a physical model for gas turbine condition monitoring and prognosis

[29]. Oppenheimer et al. developed a physical model for cracked rotor shafts [48].

Echavarria et al. used wind turbine models for fault diagnosis [16, 17] and Feng et
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Figure 3.1: Physical model-driven maintenance.

al. implemented wind turbine gearbox models in [18]. Finally, Cheng et al. built

planetary gearbox models in [11].

3.3 Data-driven approaches for condition monitoring

Data-driven approaches rely on statistical and/or machine learning methods to extract

patterns and trends on historical and real time sensor data in order to predict possible

future failures. This method does not require any mathematical model, so there are no

assumptions or approximations made. Data-driven techniques for machine condition

monitoring, are mainly divided between statistical and machine learning approaches.

However, the process followed in the two approaches is essentially the same. First of

all, the features that describe the behaviour of the system are identified and collected

with sensors. Then, statistical and/or machine learning analysis is performed with

these data features to detect patterns and trends. Finally, this data patterns are analysed

to assess the health status of the machinery and predict possible failures, malfunctions

or anomalies.

3.3.1 Statistical based condition monitoring

Statistical techniques study the statistical characteristics (mean, median, variance,

etc.) of the features obtained and thus describe their normal or expected behaviour.

When there are deviations that exceed predefined limits, it is assumed that the current

behaviour of the system is anomalous.

Heng et al. [27] studied the application of sound pressure and vibration signals

to detect defects in a rolling element bearing using well known statistical parameters

such as the crest factor and the distribution of moments including kurtosis and skew.

Zhao et al. [71] used multivariate empirical mode decomposition (EMD) for rotating

machinery condition monitoring. Sohn et al. [57] monitored a fast patrol boat

with statistical pattern recognition. They used time series analysis combining Auto-
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Regressive (AR) and AR eXogenous (ARX) as inputs and an outlier analysis with

the Mahalanobis distance measure. Gearbox condition monitoring has also been

monitored using statistical methods such as Kernel principal component analysis [26]

or local mean decomposition [38]. Si et al. [56] conducted an extensive review of

recent modelling developments for estimating the RUL using statistical data driven

approaches.

Although statistical based techniques may not be as suitable as machine learning

techniques for highly non-linear systems, they are faster to compute and therefore

are useful when a fast response is needed. Moreover, statistical based techniques are

white box methods. In the sense that all the results can be clearly traced and explained.

This is not always the case with machine learning methods.

3.3.2 Machine learning based condition monitoring

Machine learning based condition monitoring uses machine learning algorithms to

extract features, identify patterns and trends in the data, and predict the future be-

haviour of the analysed system. Machine learning algorithms learn to describe the

behaviour of the monitored system, creating a model based on the collected data. Once

a machine learning model is selected, the first step is the Training phase. In this first

phase, the model is created and optimized with the training data. Then the accuracy of

the model is tested in the Testing phase, which consists on measuring the predictive

accuracy of the model using previously unseen data.

Depending on how the Training phase is performed, machine learning algorithms

are subdivided into two groups: unsupervised algorithms and supervised algorithms.

Unsupervised algorithms do not need any additional information about the data they

are modelling. They are able to create a model from raw data. Unsupervised learning

is mainly used for clustering and anomaly detection. For condition monitoring, a

typical approach would be to create a normal behaviour cluster that would include all

the data obtained when the machine is in a healthy state. Then, once the algorithm is

trained to identify the healthy behaviour, the algorithm would detect any new incoming

data that does not fit in the cluster. This would mean that the machine is not acting in

the same way as in its normal state. This method was used for bridge structural health

monitoring by Khoa et al. [31] or for an induction motor fault detection system in

[55] and [49]. Another way to use unsupervised algorithms is for feature extraction.

When there is too much sensor information, these algorithms can be used to detect the

most relevant features [36, 37] or perform dimensionality reduction [23].

Supervised algorithms differ from unsupervised algorithms in the way they create

the model. While unsupervised algorithms require only raw data to describe the
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behaviour of a system, supervised algorithms need some extra information about the

data. When implementing supervised algorithms, the training of the algorithm has to

be supervised. Explicitly identifying which data corresponds to healthy machines and

which data corresponds to faulty machines. Thus, the algorithm will learn to identify

if new data belongs to the first group or to the second. This type of algorithms are

called supervised classification algorithms. Widodo et al. [67] published a survey

about the use of a well-known machine learning algorithm called Support Vector

Machine (SVM) for classification in machine condition monitoring and fault diagnosis.

Deep Belief Learning based health status classification was used in [60] for aircraft

engine health diagnosis and electric power transformer health diagnosis.

Supervised algorithms can also be used for non-linear regression (supervised

regression models). In this case the algorithm outputs a numerical value instead

of classifying the input into different groups. The numerical value can be used in

condition monitoring as a representation of the health status of the machinery or even

to predict it’s RUL. Saha et al. [54] proposed this method for battery health monitoring.

Bohouche et al. [8] used online Support Vector Regression (SVR) for speed rolling

condition monitoring. Support Vector Regression was also used by Benkedjouh et

al. [3] for cutting tool machine RUL prediction. Yang et al. [70] used regression

models to predict several steps ahead of the current machine condition using Decision

Trees and Neuro-Fuzzy systems. Finally, the modelling of a normal behaviour and the

identification of anomalies based on deviations can also be performed with a supervised

learning approach. Following this approach, a one-class supervised learning model

was proposed by Michau et al. [42] to model critical and complex systems under

limited information.

3.4 Industrial robot fundamentals for maintenance

In this section, I will mention some basic yet important aspects for industrial robot

maintenance. The most common robots used in the manufacturing industry are robots

with 6 Degrees of freedom (DOF). These robots are designed to withstand years of

continuous work and handle loads up to 200kg. Industrial robots are made up of two

parts: the controller and the physical structure of the manipulator chain. This thesis

focuses on the physical structure of the manipulator rather than on the Controller

The physical structure is mainly comprised of metallic rigid-bodies and revolute

movable components, hereafter referred as links and joints, respectively. Most com-

mon robotic arm manipulators are comprised of six joints and each one of thses joints

has a brushless electric motor connected to a complex speed reducing gear box. The
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Figure 3.2: Industrial robot schematic (ABB IRB 6400 model).

links are rigid metal pieces that connect the joints serially, forming the structure of

the robot. An schematic of a 6 DOF industrial robot is shown in figure 3.2. Physical

failures in an industrial robot can therefore occur in any joint, in the speed reducers,

in the motors, in the electrical connections or in the links.

The motors and the speed reducers are different in all the joints. The first two

joints (the ones closer to the robot base) are specifically designed to work with higher

loads than the rest of the joints. The reason is that they support the dynamical coupling

of the whole manipulator body. Although it might be reasonable to assume that the

first joints suffer more friction than the rest and thus are more prone to failure, the

empirical evidence of an automotive plant with more than 600 industrial robots shows

the opposite. In this automotive plant, the historical data of the industrial robot’s

failures collected for more than twenty years shows that 98,51% of the robot joint

failures occurs in the 5th and 6th joints. Therefore, this thesis will make special

emphasis on diagnosing and studying the failures of those two joints.

The speed reducers of the joints are high precision reduction gears (see figure

3.3). Although the design of the reducers is different for each joint, all of them share

important tribological aspects that are explained in the following paragraphs in order

to better understand the degradation process of industrial robots.

The true contact between two solid materials occurs at certain points, not on the

entire apparent surface. These points at which actual contact takes place are called

asperities. Figure 3.4 shows two solid surfaces before being in contact and after
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Figure 3.3: Nabtesco RV-N reduction gear. An example of speed reducers used in
robot joints [45].

making contact when a certain load is applied. In general, the contact of two materials

creates elastic deformations on the surfaces and the material returns to its initial

state after deformation. However, plastic deformation my also occur in asperities

[5]. Therefore the material might not always return to its initial state and thus be

permanently deformed.

In robot joints, the contact surfaces are not in direct contact because of the lubrica-

tion. Therefore, wear is caused by fatigue and to by abrasion or adhesion. The fatigue

of the surface, is caused by the stress transmitted through the lubricant membrane. This

fatigue wear occurs long before there is significant material detachment or attachment.

With this regards B. Bhushan suggests in [5] to calculate the RUL of well lubricated

components as a function of revolutions and not by measuring the amount of debris

or material detachment. It is important to realise that wear is not a property of the

material such as friction, but the response of a system to certain conditions. Therefore,

all the characteristics of the system, robot trajectory, load, speed, temperature, type of
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Figure 3.4: Asperities before a load is applied (up) and after applying a certain load
(down) [68]

lubrication, design of the reducers, etc. have a certain impact on the wear of a robot.

3.5 Industrial robot condition monitoring

Although health status analysis for industrial robots has not been studied as extensively

as other machinery or industrial components such as motors, gearboxes, gears, etc.

There are some studies that address the problem building mathematical models and

others by implementing data analysis. The mathematical model of a robot has some

inherent inaccuracies. When building such models, there are some assumptions and

approximations that have to be made, such as constant speeds, the weight of the loads,

the temperature of the lubricant, etc. [9]. These necessary approximations distance the

model from the real behaviour of the robot. Therefore, data-driven approaches might

be more suitable for these complex systems [50]. In addition, the expansion of the

Industrial Internet of Things (IIoT) and Big Data in the era of smart manufacturing

continue to push the way towards useful and reliable data analysis solutions [61].

A.A. Jaber [28] developed an embedded system for industrial robot condition

monitoring using accelerometers on the flange of the robot. He also addressed the

lack of research in industrial robot condition monitoring compared to other industrial

components. He detected a mechanical failure in the gears of the robot joints, removing

gear teeth and comparing the vibration data captured before and after removing them.

The drawback of using accelerometers for robots in real assembly lines is that it is

hard to isolate external vibrations from vibration caused by the robot’s malfunction.
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To try to overcome this issue, acoustic emission sensors were used in [39] to detect

a faulty rolling bearing on a welding robot joint. Both accelerometers and acoustic

emission sensors are intrusive in the sense that they have to be attached to the structure

of the robot. This can become a serious inconvenience in real assembly lines, because

a sudden detachment of one of these sensors could cause a defect in the quality of the

manufactured product or even stop the production line.

Lubricant or wear debris analysis is also commonly used for industrial robot joint

condition monitoring. It consist on analysing the wear particles inside the oil that

lubricates the joints. As extensively illustrated in [5], any mechanical element working

in contact with another mechanical element will deteriorate regardless of design. The

deterioration of the robot joints produces metallic debris in the lubricant and therefore

the deterioration grade of the joint’s gearboxes can be estimated by analysing the

amount of metallic debris. However, this method has some drawbacks such as the

requirement of an advanced laboratory equipment, the time required for the analysis,

and the need to completely stop the robot in the production line [15].

Qiao et al. [50, 52, 51] recently proposed a new methodology for robot health

assessment based on vision-based tracking. They suggested to attach a known 3D

object to the flange of the robot and using a vision-based tracking system with cameras

to diagnose the repetitiveness and thus health of the robot. They also remark the need

to analyse the robot as a whole in a holistic way, in order to build an effective health

assessment methodology. In other words, the need to assess the health status of the

robot as a unique complex system rather than analysing its components separately.

Bittencourt et al. studied in [6] the feasibility of using torque data for industrial

robot and repetitive machinery condition monitoring. However, instead of measuring

the torque at the joints, they estimated it by measuring the consumed electric current.

The torque required in each joint is directly proportional to the current flowing through

the motors in each joint. Thus, the higher the torque that the robot requires to

manipulate a given load, the more electric current each joint will require. In their

study, Bittencourt et al. used kernel density estimates and the Kullback-Leibler

distance calculation to detect deviations in the repeatability of a robot’s joint torque

[6]. They considered both real data from accelerated wear tests and data obtained with

simulations.

3.6 Critical review

Maintenance is evolving as condition monitoring technologies do. The development of

better sensors, better data acquisition infrastructures and data analysis techniques drive
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this evolution. Although there is a lot of literature devoted to condition monitoring

and Prognosis and Health Management (PHM) for industrial components, industrial

robots have not received as much attention. The main reason for this gap lies on the

complexity of industrial robots. The complexity and non-linearity of these complex

systems, make it difficult to address the problem with a traditional physical model

based approach.

The interaction between the different components inside the robot and the great

versatility offered by the robots themselves with different tools, trajectories, etc. create

a highly non-linear system. Moreover, the behaviour and health status at each joint

has a high impact on the whole kinematic chain.

Data-driven approaches offer a solution regardless of the physical model. Instead,

data-driven models focus on the analysis of patterns and trends in data collected by

sensors. The feasibility of this approach to identify patterns and predict trends in

non-linear systems has already been demonstrated. In addition, recent contributions in

the detection of failures and CM of industrial robots with data-driven approaches [28]

have shown promising results.

Accelerometers have been used in CM for a wide variety of machines and com-

ponents. However, trajectory dynamics in which a 6 DOF industrial robot operates

are much greater than a common industrial mechanical component. Furthermore,

the constant external vibrations of a real assembly line can make it very difficult in

practice to distinguish between vibrations caused by an internal failure of the robot

and vibrations caused by external elements.

Acoustic emission sensors can be used to deal with external vibration problems, but

they are expensive and can be intrusive for deployment in a real industrial environment.

Just in the same way as accelerometers, if these sensors are installed on the outside

part of the robot’s armature, there is a risk of detachment and they could end up falling

into the production line.

In this sense, torque sensors are much less intrusive and there is no risk for

them to fall into the production line, as they are installed inside the robot’s structure.

Torque sensors measure the effort of the joints. Hence, a mechanical deterioration that

increments the effort of a joint, is expected to produce an unusual behaviour in the

applied torque. Torque deviation analysis seems to be a very promising strategy to

diagnose the health status of the joints and predict future failures.

Another way to approach the diagnosis of the health status of an industrial robot

is to measure it’s repeatability or it’s positional deviations. As suggested by Qiao et al.

[50] vision-based position measuring systems could in principle diagnose the accuracy

of an industrial robot. The vision-based approach needs external equipment such as
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cameras or laser trackers to measure the position of the robot. Nevertheless, they do

not require additional sensors attached to the robot’s structure.

According to the literature review carried out in this chapter, the author con-

cludes that torque sensors and vision-based accuracy measuring inspections are very

promising approaches for industrial robot predictive maintenance and health moni-

toring. Therefore, following chapters will focus on developing data-driven predictive

maintenance approaches for industrial robots, based on torque measurements and

vision-based techniques.
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Chapter 4

Results

This chapter presents and discusses the obtained results. These results are organized

according to the logical path followed throughout the thesis. In the first two sections,

vision-based and torque-based solutions are implemented and evaluated according to

their accuracy and feasibility to assess industrial robot health status. Then, a special

attention is given to robot standby pose optimization, as a non-optimal standby pose

is demonstrated to have a severe impact in the reduction of the remaining useful life

of industrial robots in real manufacturing assembly lines. Finally, a practical and

automated data acquisition network architecture is proposed and implemented in a

real automotive assembly line as a necessary step forward towards the implementation

of effective large-scale predictive maintenance strategies in the context of Industry

4.0. The network architecture reported to effectively acquire synchronized robot data

signals, which is essential to easily detect robot faulty states.
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4.1 Accuracy degradation assessment: a
vision-based data-driven implementation

In this section we report on a vision-based data-driven methodology for industrial

robot health assessment. Based on the conclusions extracted from the literature

review, the first approach towards industrial robot’s health assessment will consist on

a vision-based data-driven measuring system. The following sections will provide an

experimental evidence of the usefulness of the methodology on a system comprised

of a 6-axis industrial robot, two monocular cameras and five binary squared fiducial

markers.

In the experimental implementation, a fiducial marker system tracks the deviation

of the end-effector of an industrial robot along a fixed non-trivial trajectory. The

trajectory deflection is monitored using three gradually increasing weights attached

to the end-effector. When the robot is loaded with the maximum allowed payload,

a deviation of 0.77 mm is identified in the Z-coordinate of the end-effector. In

addition, five supervised learning regression models are trained to predict the final

pose of the robot. Such models predict the deviation of the end-effector, using the

pose estimation provided by the visual tracking system. As a result of this study,

the procedure is proven to be a stable, robust, rigorous and reliable tool for robot

trajectory deviation estimation and it even allows to identify the mechanical element

producing non-kinematic errors. In summary, the proposed methodology is therefore

a novel approach that uses fiducial marker based vision systems to assess the accuracy

degradation and repeatability of an industrial robot with different loads.

The experiments were carried out using a 6 Degrees of Freedom (DOF) industrial

robotic manipulator ABB IRB 120, which maximum payload was limited to 3 Kg.

The robot has an slight looseness in the gear of the second joint, which is expected to

cause a certain lack of precision. We placed fiducial markers at the rigid links of the

robot, as shown in Fig. 4.1. To track the position of these fiducial markers and avoid

occlusions during the robot trajectory we used two monocular cameras as it is shown

in Fig. 4.2.

The camera labelled as camera A (see Fig. 4.2) calculates the pose of these markers

located on the side-viewed links of the manipulator, i.e. markers 1, 2, 3 and 4. While

camera B, calculates the pose of the end-effector. An independent platform was build

to isolate the cameras from the robot and prevent mechanical vibrations. A flat halogen

red lamp illumination and a non-collimated red diode bright field illumination were

used to optimize image acquisition on A and B cameras, respectively.

During the experimental data acquisition, the robot executes a closed non-trivial
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Figure 4.1: The experimental setup show-
ing the markers used to track the relative
pose of the manipulator.
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Figure 4.2: The position of the cameras
and the coordinate system of the end-
effector.

trajectory and meantime cameras A and B capture images of the markers at fixed

time-stamps. The experimental procedure is schematically depicted in Fig. 4.3.

We conducted a total of three experiments following this same process. We

increased the weight attached to the end-effector in each of the experiments to study

the behaviour of the manipulator using different loads. The first experiment was

Figure 4.3: Flow chart of the experimental procedure.
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carried out without any extra load, leaving the flange free. In the second and third

experiments the load was 1.5 Kg and 3 Kg (the maximum payload), respectively. Each

experiment saves 1500 images. After completing the experiments, we obtained three

datasets with the positions (X, Y and Z) and rotations (Rx, Ry and Rz) of all these

markers.

The analysed data contains the position in millimeters (X, Y and Z) and the

rotation in radians (Rx, Ry and Rz) of every marker (see Figure 4.1). Those values are

obtained from the images and stored in the datasets. Figure 4.4 shows the dispersion

of the coordinates of the end-effector using boxplots and scatter plots. Each dot in

the scatter plot represents the actual position deviation (in Z and Y coordinates) of

the end-effector. The coloring of the graphs represents the transient status of the

experiments, from dark blue dots (the deviation of the flange when the experiment

starts) to brown dots (the deviation of the flange when the experiment ends). The data

shown in the first boxplot and scatter plot corresponds to the first experiment. The

data of the second and third experiments is shown in the second and third boxplots

and scatter plots respectively.

As it is shown in figure 4.4, the greatest dispersion occurs in the Ztool coordinate (Z

axis in the tool coordinate frame, figure 4.2) in the 3 cases. In the first two experiments

the end-effector has an ascending tendency and in the third experiment, when the load

equals the maximum payload, the end-effector descends in the negative Z direction.

Note that the deviation in the Z coordinate increases significantly as weight is added

to the flange. The robot deviated the most from its initial position (0.77 mm) in the

third experiment.

To foresee the source of the pose deviation in the Z coordinate, an analysis of the

R-squared was conducted where Rε[0, 1] and

R2 = 1− SSres
SStot

. (4.1)
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Figure 4.4: Deviation in the flange of the robot in the X, Y and Z coordinates with
0Kg, 1.5Kg and 3Kg respectively.

SSres is given by

SSres =
∑
i

(fi − ȳ)2 (4.2)

where ȳ is the mean of observed values associated to fi predicted or modeled values.

SStot is the total sum of squares and it is given by

SStot =
∑
i

(yi − ȳ)2. (4.3)

The vertical displacement of the robot in the Z coordinate is controlled by joints

2 and 3, so the deviation must be originated in one of those two joints (or in both of

them). To identify the origin of the deviation, the coordinates of the first four markers

that are related to the robot’s vertical movements have been compared with the flange’s

displacement in Z. The Rz , X and Y coordinates of the markers, as it can be seen in

figure 4.1, are in charge of directing the movement of the flange in it’s Z coordinate.

In summary, the R-square coefficient between Rz , X and Y coordinates of the first

four markers and the Z coordinate of the flange were calculated. The results are shown

in tables 4.1, 4.2 and 4.3.

Rz & flange Z X & flange Z Y & flange Z

Marker 1 0.037 0.002 0.003
Marker 2 0.308 0.316 0.345
Marker 3 0.038 0.037 0.117
Marker 4 0.009 0.108 0.030

Table 4.1: R-squared values between first 4 markers’ Rz , Z and Y and flange’s Z.
(0Kg)
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Rz & flange Z X & flange Z Y & flange Z

Marker 1 0.053 0.226 0.264
Marker 2 0.010 0.248 0.273
Marker 3 0.135 0.110 0.263
Marker 4 0.245 0.398 0.234

Table 4.2: R-squared values between first 4 markers’ Rz , Z and Y and flange’s Z.
(1,5Kg)

Rz & flange Z X & flange Z Y & flange Z

Marker 1 0.028 0.001 0.061
Marker 2 0.576 0.682 0.667
Marker 3 0.142 0.504 0.376
Marker 4 0.538 0.623 0.368

Table 4.3: R-squared values between first 4 markers’ Rz , Z and Y and flange’s Z.
(3Kg)

In the first experiment, marker 2 obtains the highest R-square values (table 4.1)

with a significant difference. In the second experiment, markers 2 and 4 score the

highest scores (table 4.2). Finally, in the third experiment, marker 2 is again the

marker with highest coefficient values (table 4.3). This results show that markers 2

and 4 have the greatest relationship with the deviation of the flange. The marker 2

scores the most significant relationship with the flange compared to the rest of the

markers specially when the flange is left free with no load attached to it or when the

load is the maximum.

These results are in line with expectations, as markers 2 and 4 are the two most

separate markers from the points where the vertical movement of the robot originates

(joints 2 and 3) as can be seen in figure 4.1. Which means that, a rotation in joint

2 will be more noticeable in marker 2 than in marker 1, even though it affects both

markers’ pose.

As a result of the analysis, joint 2 was identified as the origin of the flange

deviation. The reasons that led us to that conclusion were: first of all, if the deviation

was originated in joint 3, there would be no correlation between marker 2 and the final

deviation of the flange. This correlation would only be appreciable in the 4th marker,

which is not the case. Second, if the source of the deviation were both joints (2 and

3) in a similar way, marker 4 would have a much higher correlation with the flange

than marker 2, because the deviation of both joints could be appreciable in this 4th

marker (the deviation of the 3rd joint plus the deviation propagated from the 2nd joint).
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Figure 4.5: Predictions of the flange’s Z coordinate position and real values with 0,
1.5 and 3kg of load respectively.

Therefore, the fact that it is mainly the 2nd marker the one that scores the greatest

R-squared coefficient values in most of the cases and with different loads, suggests

that the source of the deviation in the Z coordinate of the flange is located in the 2nd

joint.

After evaluating the relationship between the poses of the robot’s side markers and

the deviation of the flange, six regression models were trained to predict the position

of the flange in the Z coordinate. We trained the models using the information of the

pose of the four markers (the position and the rotation inX Y and Z of every marker)

as independent variables and the position in the Z coordinate of the flange as the

dependent variable to be predicted.

In figure 4.5 a comparison of the actual position of the flange in the Z coordinate

and the position predicted by the models that obtained the highest accuracy is presented

(bayesian ridge in the first experiment and random forest in the second and third).

To evaluate the prediction accuracy of the models, the Mean Absolute Error (MAE)

and the Root Mean Squared Error (RMSE) were calculated. MAE and RMSE are both

widely used metrics for error measuring in statistics. MAE is given by

MAE =

∑n
i=1 |yi − xi|

n
(4.4)

and RMSE by

RMSE =

√∑n
i=1(yi − xi)2

n
(4.5)

where yi is the set of predicted values and xi is the set of real values.

To see whether our models captures the behaviour of the system or not, we

established a baseline prediction by calculating the moving average of the real data.

That is, we calculated the RMSE and MAE errors we would obtain if we used the

moving average value to predict the position of the flange in the Z coordinate. As

previously mentioned, we optimized the window size of the moving average model to
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Figure 4.6: Learning curve of the moving average windows size in the experiment
with 1,5Kg of load.

chose the window with the highest prediction accuracy for every experiment. We then

compared the results with the rest of the models. In figure 4.6 we show the learning

curve of the moving average obtained by reducing the RMSE error as the window

size increases (second experiment). When the window size is about 40, the RMSE

error stops decreasing and the model does not score better results. This value obtained

by optimizing the windows size is then compared with the results of the rest of the

models. The comparison is shown in tables 4.4, 4.5 and 4.6.

RMSE MAE

Moving Average 0.04162 0.03094
Random forest 0.02540 0.02152

SVR 0.04148 0.03477
LASSO 0.03946 0.02883

Multi-layer perceptron 0.15250 0.12415
Bayesian ridge 0.02763 0.02140

Table 4.4: Error of the trained models with no extra load.
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RMSE MAE

Moving Average 0.08142 0.064390
Random forest 0.06557 0.02152

SVR 0.07154 0.05670
LASSO 0.08391 0.06806

Multi-layer perceptron 0.17636 0.13704
Bayesian ridge 0.06648 0.05297

Table 4.5: Error of the trained models with 1,5Kg.

RMSE MAE

Moving Average 0.16102 0.13129
Random forest 0.09765 0.02152

SVR 0.10546 0.08506
LASSO 0.15757 0.12729

Multi-layer perceptron 0.28744 0.23893
Bayesian ridge 0.08845 0.07093

Table 4.6: Error of the trained models with 3Kg.

The effectiveness and feasibility of some of the implemented models can be seen

both in the graphs and in the improvement of the error with respect to the baseline

error in the tables. The Random Forest, Support Vector Regression and Bayesian

Ridge models obtain the best results and the error of the moving average is improved

in the three cases. Multi-Layer Perceptron obtains the worst results.
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4.2 Methodology and experimental implementation
for industrial robot health assessment with
torque signature analysis

As concluded in the literature review, both vision-based and torque measuring systems

are promising approaches for robot predictive maintenance and health assessment.

After presenting a vision-based approach in the previous chapter, we will now proceed

to study the feasibility of a torque measuring based methodology for industrial robot

joint health assessment.

The main idea of this approach is to analyze the data collected with torque sensors

when the robots are in a healthy state. This data will be then compared with data

extracted from mechanically damaged robots. The objective is to conclude whether

torque sensors are useful for diagnosing and predicting medium-long term mechanical

deterioration in industrial robots or not. The feasibility of the methodology will be

tested with a real industrial use case by analysing a healthy industrial robot and a

damaged one. Furthermore, an in depth mechanical inspection will be performed in

order to detect the origin of the mechanical deterioration.

4.2.1 Experimental Design and Implementation

An experiment was carried out to compare the torque applied by a faulty robot joint

and a healthy one. If the mechanical wear has a significant effect in the effort of the

joint, the hypothesis is that the faulty joint would require higher torque than a healthy

joint to execute a given trajectory. Therefore, the methods selected to identify a faulty

joint should focus on measuring the increment of the torque applied in the robot joints,

whether they are statistical methods or machine learning models. Figure 4.7 describes

the process of the experimental procedure carried out. First, a faulty robot wrist

was removed from an automotive assembly line after years of uninterrupted work.

The faulty robot caused a sudden stop in the production line and it was replaced by a

new one. The experiment was performed using a 6 DOF industrial robot (ABB IRB

6400r), two robot wrists (the faulty wrist and the new one), two loads representing

the 15% and 90% of the maximum payload of the robot and four torque sensors, two

sensors for each wrist, located in the 5th and 6th joints. These sensors are factory

built-in torque sensors and the robotic systems uses them in the control feedback-loop.

The ABB IRB 6400r is a widely used industrial robot in the automotive industry with

a maximum payload of 200Kg.

A non-trivial fixed trajectory was programmed in order to excite the robot joints.

First of all, the faulty wrist was installed in the ABB robot in a laboratory facility, out
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of the production line. Then, the programmed trajectory was executed three times with

three different loads each time. The loads represented the 0%, 15% and 90% of the

maximum payload of the robot. We executed the trajectories and collected the torque

data with a sampling rate of 100 ms. Afterwards, the faulty wrist was removed and

the new one installed in the same ABB robot. The trajectory was repeated again three

times with the same three different loads in each repetition. Therefore we collected

the data of the torque applied in the 5th and 6th joints throughout the six trajectory

executions (three with the faulty wrist and tree with the new wrist).

Figure 4.7: flowchart of the experimental procedure carried out.

After completing all these trajectories, torque signals were acquired and stored

in csv files following the format specified in Table 4.7. The signals were stored as

floating point numbers and using the standard unit (Nm) for the torque. We used the

TCP/IP communication protocol to connect with the robot controller and capture the

torque signals, which is an Industry 4.0 communication standard. The TCP/IP protocol

is suitable for Industry 4.0 and Big Data scenarios, as it is able to interconnect large
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number of devices [65]. Some researchers have used the OPC-UA communication

protocol [44] which is built on top of TCP/IP for data acquisition in industrial

scenarios. The data shown in Figures 4.8 and 4.9 disclose an evident increment in the

torque of the faulty wrist’s 5th joint. This increment is clearly appreciable in all the

three experiments and throughout the execution of the whole trajectory, therefore the

effort required by the motor of the 5th joint was higher than expected with any of the

three loads and in any robot pose or movement. In contrast, the torque of the 6th joint

does not change significantly in any experiment.

Table 4.7: Example of the torque data captured by one robot in one experiment E.g.
The column name Torque_joint_5_A refers to the torque acquired in the 5th joint of
robot A (faulty robot).

Observation Time (s) Torque_Joint_5_A (Nm) Torque_Joint_6_A (Nm)

1 0 0.819 -1.045
2 0.100 4.08 2.109
3 0.200 9.007 4.323
4 0.300 10.118 6.137

. . . . . . . . . . . .

The increment in the torque is measured by first calculating the absolute value of

the acquired signals. The absolute value of the torque in each joint is then integrated

to calculate the total amount of torque applied throughout the whole trajectory in all

the experiments. Once the total applied torque is calculated, the percentage of increase

between the two wrists is calculated. Tables 4.8 and 4.9 show the results of the 5th

and 6th joints respectively.

Table 4.8: Total torque of the 5th joint of the new and faulty wrists. Load 1, Load 2
and Load 3 represent the 0%, 15% and 90% of the maximum payload respectively.

New (Nm) Faulty (Nm) Increase

Load 1 19,567 42,830 118.88%
Load 2 21,224 46,451 118.86%
Load 3 62,235 124,703 100.37%
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Figure 4.8: Torque values of the 5th joint in a faulty wrist and in a healthy wrist with
different loads and same trajectory.

Figure 4.9: Torque values of the 6th joint in a faulty wrist and in a healthy wrist with
different loads and same trajectory.

Table 4.9: Total torque of the 6th joint of the new and faulty wrists. Load 1, Load 2
and Load 3 represent the 0%, 15% and 90% of the maximum payload respectively.

New (Nm) Faulty (Nm) Increase

Load 1 17,910 19,039 6.31%
Load 2 20,852 19,982 −4.17%
Load 3 28,671 28,970 1.04%

The increment in the torque is homogeneous, i.e., The torque increases in the

whole trajectory and not only in certain movements or positions. The fact that the

torque increases in the whole trajectory and not only in certain poses, reveals that the

deterioration affects to the entire movement of the joint. The results also show that at

the time of the failure, the electric consumption of joint 5 in the faulty wrist was at

least twice as high as expected for a healthy joint.

Although the acquired data effectively detects the wear in the joint, the detected

increment is not enough on its own to deduce a root cause of the fault. Thence, we
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conducted a root cause analysis with an in-depth mechanical inspection in order to

identify the cause.

4.2.2 Root Cause Analysis of the Faulty Joint

Mechanical Inspection

The first step of the mechanical inspection consisted on disassembling the faulty

wrist. The 5th joint of the wrist is composed of an electric motor and a speed reducer.

First, we inspected the gears of the speed reducer, shown in Figure 4.10. We did

not find any evidence of wear or pitting in the surface of the gears and there was no

apparent damage in the gears that could cause the significant increment detected in the

torque. The lubricant oil of the reducer was extracted and analysed in the process of

disassembling the faulty wrist. We confirmed that the lubricant was within the quality

tolerance limits as no metallic debris was found in the oil.

Afterwards, we examined the motor of the 5th joint. An increment such as the

one detected in the experiment could be caused due to a significant decrease in the

motor’s coil resistance. We measured the resistance of the coil using an ohmmeter and

compared it with the resistance of the coil of a new motor. The resistance values in

both coils were identical. Hence, the motor’s coil was dismissed as the cause of the

joint fault.

After analysing the condition of the speed reducer and the motor, we inspected

the brake of the motor. The brake of the 5th joint is a permanent magnet brake that

stops the motor when the robot is shut down or when an emergency stop is required.

As illustrated in the schematic of Figure 4.11 this kind of brakes have three main

parts: a metallic armature, a field coil and a neodymium (NdFeB) permanent magnet.

The brake works in the following way: when the robot shuts down or makes an

emergency stop, there is no voltage applied to the coil and the permanent magnet

attracts the armature, stopping the rotation of the motor. In contrast, if the robot

controller applies 24V to the field coil of the brake, it produces a magnetic field

compensating the magnetic field created by the permanent magnet and the motor is

released.

We measured the resistance of the brake’s coil and compared it with the resistance

of a completely new coil. In both cases the values reached 15.4 Ω. Therefore, the coil

of the brake could not be the cause of the detected torque increment.

Finally, we inspected the permanent magnets of the brake. The permanent magnets

used in this brake are squared NdFeB magnets. We noticed a slight deformation in

the corners of the magnets, as some magnetic particles were detached from them. We
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Figure 4.10: Mechanical inspection of the gears, bearings and motors of the wrist.

Figure 4.11: Schematic of the motor brake.

found the particles filling the space where the magnets are located. Figure 4.12 shows

the permanent magnets inside the brake of the faulty joint compared to a completely

new brake. In addition, Figure 4.12 shows that the colouring of the brake’s armature

was changed. These kind of stainless steel armatures, have a metallic light silver

colour when manufactured. However, the inspected brake had a reddish coloring as a

consequence of oxidation.

We performed two tests to diagnose the health status of the permanent magnets.

The first test consisted on measuring the M(H) hysteresis curve of the magnets. Then,

we magnetized the permanent magnets and measured again the M(H) hysteresis curve

after the magnetization. The results of the tests are shown in Figure 4.13.

There is a 24% loss from 0.814 T before magnetization to 1.071 T after the mag-
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Figure 4.12: The motor brake of the faulty joint and its permanent magnets (left)
compared to a completely new motor brake (right).

Figure 4.13: Magnetic hysteresis curve of the motor brake’s permanent magnet before
(blue) and after (green) magnetization.

netization. This significant magnetic field loss has a direct impact in the malfunction

of the motor’s brake. As a consequence, the brake constantly resists the movement of

the motor. This produces the torque increment in the 5th joint throughout the whole

trajectory identified in Section 4.2.1.

The second test consisted on measuring the magnetic hysteresis curve at different

temperatures. Figure 4.14 shows the different M (H) curves at 26, 80, 100 and

120 °C and Table 4.10 shows the magnetic properties of the permanent magnet at

these temperature regimes. Br (T) is the residual induction or flux density, that is the

magnetic induction corresponding to zero magnetizing force in a magnetic material

after saturation. Hci (kA/m) is the intrinsic coercive force of a material and indicates
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Figure 4.14: Magnetic hysteresis curve of the permanent magnet at 26 (green), 80
(brown), 100 (orange) and 120 °C (red).

its resistance to demagnetization.

There are two additional considerations that have to be taken into account. The tech-

nical specifications of the 5th joint’s motor indicates that the surface temperature of

the motor can reach up to 140 °C. Therefore, the temperatures inside the motor brake

could be even higher than the temperatures reached in the test. Moreover, in the

recently published work by M. Haavisto [24] the time dependent demagnetization of

NdFeB permanent magnets is extensively investigated. She experimentally proved that

this type of magnets can be demagnetized if exposed to higher than 80 °C for a long

period of time. This conclusion is especially relevant for industrial robots working in

assembly lines for years uninterruptedly.

These results of the tests, the mechanical inspection carried out, the state of the

motor brake, as well as the previously mentioned PhD dissertation [24], give us enough

evidence to conclude that the temperatures inside the motor of the 5th joint of the robot,

reached high enough temperatures for sufficient time to produce a magnetization loss

in the permanent magnets of the motor brake. This caused the failure in the wrist and

the increased torque values shown in Section 4.2.1.

4.2.3 The Health Assessment Program Methodology

Based on the results of the previous sections, we propose a methodology for diagnosing

the health status of industrial robot joints with torque signature analysis. The diagram

representing the methodology can be seen in Figure 4.15. The main idea behind the

proposed methodology is that a joint that suffers a mechanical degradation will require
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Table 4.10: Magnetic properties of the permanent magnet at the measured tempera-
tures.

T (°C) Br (T) Hci (kA/m)

26 1.071 1531
80 1.013 976.9

100 0.9957 833.4
120 0.9668 678.5

higher torque to execute a certain trajectory than a healthy one. As the time goes by,

the mechanical elements attached to the motor (i.e., The brake and the reducer) will

inevitably suffer mechanical deterioration. This will require higher effort to execute

the same trajectory. To illustrate the methodology, let’s say that a robot R1 executes a

certain program P1 and needs to apply torque T1 in a joint to complete the trajectory.

If there is any mechanical deterioration, the system will be less efficient, but the robot

controller will make sure that this deterioration does not affect the accuracy of the

robot. Even if the accuracy remains invariant, to finish the same program P1 the

required torque now (T2) will be higher than before (T2 >T1).

We therefore propose to use a specific trajectory-tool combination in the robots of

the production line to assess their current health status. As described in the diagram

of Figure 4.15 robots will execute a predefined non-trivial trajectory with a known

load and they will require a certain amount of torque in each joint to complete this

trajectory. To acquire torque data in all the joints, the trajectory must use the whole set

of joints comprising the robot manipulator. We will call Health Assessment Program

(HAP) to that predefined trajectory-load combination. These two specifications will

always have to remain unchanged in order to make a fair comparison of the results.

However, an advantage of the methodology is that the precise shape, center of mass

and inertia of the load are not required to be known or modeled.

The first step is to execute the trajectory with the robot attaching the corresponding

load. The torque of each joint will be recorded during the the whole process, producing

a digital signature of the torque of each joint. This initial torque data or signature will

be used as a reference for that particular robot. This initial data will be stored with

an identification number of the robot. Whenever we want to analyse the mechanical

deterioration of the joints of that robot, we will run the HAP again and compare the

previously stored values with the recently acquired ones. If there is no change in the

torque values, we can conclude that there is no significant mechanical deterioration in

the joints yet. In contrast, if there is some increase in the torque of a certain joint, it will

mean that the motor of that joint is requiring more effort than expected. The proposed
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Figure 4.15: Diagram of the proposed methodology. First, the trajectory and tool are
defined. Then, the program is executed and torque data is acquired. The recorded
data is stored in a server as a reference along with the robot’s ID. The process is
periodically repeated and the new signals are compared with previously recorded ones
to diagnose a possible deterioration.

methodology is applicable to any joint or industrial robot and it is not necessary to

take the robot off the production line to diagnose it. Which is a significant advantage

compared to existing condition monitoring techniques.
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4.3 Genetic algorithms for industrial robot standby
pose optimization

After analysing the feasibility of visual and torque based methodologies for industrial

robot health assessment, the following section will highlight the importance of the

standby pose in industrial robots. Section 4.2 showed that the overheating of the

motors can demagnetize the magnets of the brakes. When a robot waits on the

assembly line before working on the next product, the motors inside the joints hold

the standby pose of the robot. the effort of the motors and therefore their temperature

is determined by the weight of the tool, the shape of the tool and the pose of the robot.

Some robots spend a large portion of the total operational time waiting for the next

product. If this waiting is done in an inefficient standby pose it can lead to unnecessary

overheating, decreasing the RUL of the joints. Moreover, the extra effort required to

hold a non-optimal pose produces unnecessary electric consumption.

There are three main methods to reduce the temperature of industrial robot joints:

decreasing the weight of the tool, optimizing the trajectory or optimizing the standby

pose. This thesis will be focused on the third method, as a preliminary study conducted

in a real automotive manufacturing line demonstrates its influence in the reduction

of the robots lifetime. The standby pose is also commonly called Home pose. As

mentioned before, it is the stationary pose of the robots when they wait for the next

product in an assembly line. While the robots wait, the motors inside the joints apply

torque to hold the tool in the pose they are programmed to. The amount of torque

required in each joint will be higher or lower depending on the programmed pose and

the tool.

Minimizing the total torque applied by the robot in a standby pose, reduces the

temperature of it’s joints and the required electric consumption. Hence, first of all it

increases the remaining useful life of it’s joints and secondly, it reduces the electric

consumption. Although sustainability has not been considered in the optimization

of industrial processes until very recently, in the last few years there is an increasing

need to reduce the electric consumption in factories and transforming the industry to a

more sustainable sector.

4.3.1 Preliminary study

Researchers and practitioners have paid little attention to the efficiency of the standby

pose of industrial robots compared to the efficiency of the trajectories. However, in

real manufacturing assembly lines, industrial robots spend between 20% and 80% of

the total operational time waiting in a stationary or standby pose for the next product,
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depending on their work regime. In this section, as well as in section 4.3.4 we will

highlight the importance of optimizing the robot pose in real industrial scenarios.

There are two main reasons to optimize the standby pose of industrial robots. The

first reason is to increment the useful life of industrial robots. If the effort of a joint is

reduced, the electric current of its motor and thus its temperature will also decrease.

The temperature directly affects the useful life of the components inside the joints,

such as the permanent magnets of the brakes, the wires of the coils, etc.

The second reason, is that there is a significant electric consumption saving

potential. As a consequence of the climate crisis, there is an increasing need to reduce

energy consumption in industry. As the use of robots in manufacturing production

lines increases, it is necessary to develop and implement methods that minimize the

electrical consumption of these systems. By minimizing joint torque, the motors inside

the joints require less electric current to hold a stationary pose. As a result, the total

electric consumption of assembly lines could be significantly reduced, especially in

highly automated factories e.g. Automotive body shop assembly lines.

A preliminary study was conducted in a real automotive production line by col-

lecting the historical failure data of 621 industrial robots to illustrate the importance

of the standby pose in robot failures. The data collected consists of the pose of robot

joints while being stationary and information about whether the robot had a failure

in a particular joint or not. In table 4.11 we show the difference in the mean standby

orientation of the fifth joint of all the robots. The data in the first row corresponds to

robots that have failed in the fifth joint and the second row corresponds to robots that

have never failed. We measured the orientation in degrees, which ranges between 0◦

and 90◦. Figure 4.16 shows and schematic of an industrial robot wrist (5th and 6th

joints) and a representation of the angles used in the study. As shown in the figure, 0◦

represents absolute verticality to the ground in the 5th joint and 90◦ represents total

horizontality to the ground.

Orientation of 5th joint (°)
With failure 71.39

Without failure 62.22

Table 4.11: Standby orientation mean with recorded historical failures and without
failures in the fifth robot joint.

These preliminary results show that robots waiting in a standby pose closer to the

horizontal plane with reference to the ground, tend to fail more frequently in the 5th

joint than robots whose stationary pose is closer to the vertical plane.
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Figure 4.16: Schematic of the 5th and 6th joints (wrist) of a robot and the correspond-
ing degrees used to represent the verticality and horizontality of the 5th joint.

Figure 4.17: Diagram of the data acquisition modules.

4.3.2 Experimental implementation

We optimized the standby pose of a Kuka KR3 robot and used The Robot Operating

System (ROS) [53] as a communication and control interface between the robot and

a laboratory computer. We used real-time communication with a frequency of 12ms

in order to ensure a reliable data acquisition process. The genetic algorithm was

developed from scratch with the Python programming language. The architecture of

the data acquisition process is shown in figure 4.17.

The experimental process starts by defining a set of 40 random joint angles (the

initial population) in the Genetic algorithm module. These angles are sent to the

main controller, which moves the robot to the first random pose and waits until the

movement has finished. When the robot reaches the desired pose, the controller waits

approximately half a second for the robot to stabilize and then, it captures the torque

of all the six joints for another half a second. We calculate the median of the captured

torques in each joint to eliminate non-gaussian noises, frequent in non-linear and

dynamic industrial machinery. These torque values are stored in a file alongside the
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angles of the joints and the scored fitness value. The fitness value is calculated based

on the total torque applied to hold the current pose. The more torque is applied,

the higher the fitness score. Therefore, the genetic algorithm selects the angles with

the lowest fitness score. In each epoch or iteration, the best 20 individuals (poses)

are selected as the parents of the next generation. The next generation is created

by crossover, mixing the genes (joint angles) of the selected parents. A mutation

ranging between 0 and 0.05 radians is randomly introduced in every 1 out of 4 new

individuals to maintain genetic diversity and avoid local minima. Following this

process iteratively, each generation of individuals reduces the torque applied by the

robot compared to the previous generation until the algorithm converges in an optimal

solution.

Our methodology allows to easily apply physical constraints to the search space

of the genetic algorithm. The constraints are implemented for two main reasons: to

avoid the collisions between the robot and nearby physical obstacles and to avoid

singularity poses. The algorithm rejects the angles that are in conflict with the physical

constraints i.e. every new generation of poses that the algorithm creates is checked to

ensure that the new individuals satisfy the specified constraints. The constraints are

defined by calculating the forward kinematics equations of the industrial robot with

every new generation of individuals.

Although we decided to minimize the total torque of the robot, it is also possible

to minimize the torque of a certain joint or group of joints, or even to implement a

multi-objective optimization algorithm with multiple objectives to optimize e.g. to

maximize the torque of a joint while minimizing the torque of another one. In our

case, we developed a multi-objective minimization algorithm to minimize both the

sum of the torques in joints 1, 2 and 3 and the sum of the torques in joints 4, 5 and 6

separately.

4.3.3 Results

Each of the two optimization objectives i.e. sum of torques in joints 1, 2 and 3, and

sum of torques in joints 4, 5 and 6, had its own fitness function. Figure 4.18 shows the

fitness function of the two optimization objectives (Fitness1 and Fitness2) throughout

the whole optimization process, as well as the sum of these two fitness functions

(FitnessTot).

The genetic algorithm minimizes faster the fitness functions in the first 100 it-

erations than in the rest of the process. Afterwards, from iteration 100 to iteration

200 the fitness functions are minimized slower reaching a convergence point. Finally,

the genetic algorithm reaches an optimal solution and converges approximately in
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Figure 4.18: Fitness function value of joints 1, 2 and 3 (Blue), joints 4, 5 and 6
(Orange) and the sum of the two fitness values (Green).

the 200th iteration. Figure 4.19 shows the angles of each joint in radians while the

optimization algorithm was executing. The lines in the figure represent the joint angles

in each iteration, until the algorithm eventually finds the optimal standby pose.

The optimal standby pose in which the robot applies the minimum torque to hold

the pose is shown in figure 4.20. The achieved pose is logically coherent, as the robot

reaches a pose of equilibrium. The center of gravity of the whole systems stays as

close as possible to the base of the robot. Therefore, the motors of the joints require

the minimum amount of effort to hold the optimized pose.

The methodology is applicable to any robot and tool configuration. Every robot

and tool will have its own optimal pose depending on the dimensions and center of

gravity of the whole system. The algorithm will find the minimum torque-demanding

pose regardless of the attached tool and without any additional code modification. To

demonstrate the applicability of the methodology in different robots, we optimized the

standby pose of a large ABB IRB 6400r industrial robot, following the same process

described in this manuscript.

The optimization potential is more appreciable with large industrial robots, as

they carry very heavy loads in assembly lines. Figures 4.21, 4.22 and 4.23 show the

robot with a load of 140 kg in the default standby pose, in an extended pose and in the

optimized pose respectively. The total torque applied in these three poses is shown in

table 4.12. The robot applies 3.27 times more torque in the extended pose than in the
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Figure 4.19: The angle value (rad) of each joint while the optimization algorithm was
in execution. The angles of joints 1 and 6 were removed from the figure for clarity.

Figure 4.20: The optimal standby pose obtained by minimizing the total torque applied
by the joints with the multi-objective genetic algorithm.

optimal pose. This increment in the torque is a key factor for robot maintenance as

pointed out in section 4.3.1, especially for highly critical robots such as those located

in assembly line bottlenecks.
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Figure 4.21: Standard
pose.

Figure 4.22: Extended
pose.

Figure 4.23: Optimized
pose.

pose Applied torque (Nm)
Standard 7.764
Extended 17.413
Optimized 5.333

Table 4.12: Torque required by an ABB IRB 6400r robot with a load of 140Kg in
three different poses.

4.3.4 Implementation in a manufacturing assembly line

We implemented the methodology in a real automotive manufacturing assembly line

to measure the real optimization potential on industrial production working conditions.

We selected a robot that had a particularly high failure frequency compared to the rest

of the robots. In addition, the workstation of this robot was identical to an adjacent

station. Which means that the work of this particular station was duplicated in another

contiguous station and the robots of both stations executed the same work in parallel.

These conditions allowed us to optimize the waiting pose of one robot and compare

it’s torque minimization with respect to the robot that executed the same work in the

contiguous station.

The selected robot had a spot welding gun attached to the flange and carried a

total load of 165.7 Kg. We optimized the standby pose of the robot by implementing

the presented methodology. The pose in which the robot waits for the next product

was therefore modified to minimize the total torque applied in the joints. The period

of time that robots spend waiting for the next product on automotive assembly lines

depends on many factors: the state of the assembly line, the production rate, the

trajectories that the robots have to execute, their location on the line, etc. Hence, the

influence of the standby pose optimization on the energy efficiency and the increase

of the robot’s RUL will also depend on all these factors that determine its working

regime.

Once we optimized the pose, we monitored the torque of all the joints in both
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Figure 4.24: Total torque of the optimized and non-optimized robots respectively.
The red circles identify examples of periods of time in which the robots wait in their
standby pose.

robots (the optimized robot and it’s homologous in the contiguous workstation).

The monitoring was carried out over approximately two hours in normal production

conditions. Figure 4.24 shows the total torque applied (the sum of the torque of the 6

joints) by the optimized and non-optimized robots.

The torque minimization potential is significant as shown in the figures. The

circles indicate specific periods of time in which the robots wait in a standby pose.

The standby pose highly influences the median and mean values of the total torque in

industrial robots. The median and mean values of the total torque in the optimized

robot were 11.28 Nm and 18.56 Nm respectively. In contrast, the median and mean

values of the non-optimized robot were 25.38 Nm and 27.06 Nm respectively, which

implies a 31.37% reduction of the average total torque applied by the optimized robot

in normal production conditions. It is evident from these results that the optimization

of the standby pose can significantly affect the total torque applied by industrial robots
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in real world scenarios and therefore requires special attention from maintenance

personnel.
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4.4 A practical and synchronized data acquisition
network architecture for industrial robot
predictive maintenance in manufacturing
assembly lines

This section presents a network architecture and a methodology for industrial robot

data acquisition. It consists on a non-intrusive and scalable robot signal extraction

architecture, easily applicable in real manufacturing assembly lines. All the infras-

tructure needed for the implementation of the architecture is based on traditional

well-known industrial assets. The data acquisition is synchronized with the execution

of robot routines using common Programmable Logic Controllers (PLC) to obtain

comparable data batches. A network architecture that acquires comparable and struc-

tured data over time, is a crucial step to advance towards an effective predictive

maintenance of these complex systems, in terms of effectively detecting time depen-

dent degradation. The architecture is implemented and tested in a real automotive

manufacturing assembly line. The results show the potential of the solution to detect

robot joint failures in real world scenarios.

4.4.1 Data acquisition network architecture

Figure 4.25 shows the architecture of the proposed network. The network is divided

in five layers: data acquisition, control, external sensors, robot metadata, data storage

and analysis and visualization layers. One of the benefits of the proposed solution is

that the implementation of the architecture does not require additional infrastructure

than the usual found in a conventional automated production line.

Data acquisition layer

The data acquisition layer is the subnet that records the data from the robots and stores

it in the data server. Nowadays robot controllers can send internal signals through

TCP socket communication to an external receiver. This feature has to be enabled in

the controller by specifying the internal signals to collect e.g. speed, resolver angle,

torque, etc.

The signals can be acquired on demand. When the socket communication is

enabled in the robot controllers, the data can be transmitted continuously or on

demand when an external agent establishes connection. In our case, the data server

decides when to start and end the acquisition and from which robot.
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Figure 4.25: The data acquisition network architecture. The control layer is used to
synchronize the acquisition of robot signals with additional external sensors, as well
as with the executed routines.

Control layer

Depending on the work they have to perform, the PLCs know which routine is each

robot executing and when. This is crucial to synchronize the data acquisition and it is

the core of our proposal.

The difference between collecting data continuously and on demand is essential

when the purpose of the data collection is to build predictive models. Specially for

industrial robots, as their behaviour changes drastically depending on the routine they

are executing. If the data acquisition process is done in a way in which every stream

of data has a certain robot and routine assigned to it, the data will be comparable and

representative of that particular robot and routine binomial.

Therefore, this architecture enables the data recording either continuously or

discontinuously and synchronized. Each of these forms has its benefits. On the one

hand, if the data is collected continuously, it describes the entire operational behavior

of the robot. Including all the routines and the periods in which the robot waits

standstill for the execution of the next routine. Depending on the robot, this standstill

waiting time can be even longer than the actual execution of it’s routines.

On the other hand, if the data is discontinuously and synchronously collected,

the acquisition is only be performed when the robots execute certain routines. As

a result, there is no recording while the robot waits standstill, but the data from a
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certain routine is directly comparable over time. This ability to compare the data of

a robot-routine binomial over time is the key enabler for detecting anomalies and

predicting medium and long-term wear. Therefore, the implementation of a data

acquisition network architecture that supports both continuous and synchronized data

extraction is a necessary preliminary step for building feasible predictive models.

External sensors layer

The signals collected from the data acquisition layer consist of internal robot signals.

However, if there is more information to be recorded with additional external sensors,

the data captured with the external sensors will be transmitted trough this layer.

Examples of additional external sensors could be acoustic emission sensors, oil debris

sensors, thermal images, etc.

A powerful benefit of the proposed architecture is that even if the external sensors

are not intelligent enough to capture data on demand, the server will know which

information stream coming from the external sensors merges with the internal robot

signals of the data acquisition layer. The merging is possible by using the timer of the

control layer to save the data that is acquired online with the external sensors. In this

way, the control layer establishes the exact period of time when the data acquisition

has to be performed in both layers. This synchronization is possible by using the PLCs

of the control layer.

Robot metadata layer

The robot’s metadata is used to classify the data acquired in the rest of the layers. The

metadata contains information of the tool that each robot is holding and its weight,

their maximum payload, the standby or waiting pose of each robot, the history of

faults and its frequency, etc. The signals recorded in a faulty state of a given robot can

be very similar to those recorded in the healthy state of another one. Therefore, By

adding the metadata, it is possible to compare the acquired data between robots that

have similar working regimes and therefore detect anomalies in robots that should be

behaving in the same way.

Data storage and analysis layer

The data storage and analysis layer consists of a server responsible for storing and

analysing the data acquired from the data acquisition, additional sensors and robot

metadata layers. The server communicates with the PLCs to decide when to start

collecting the data in each robot and merges the acquired signals with the appropriate
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additional information. As mentioned in the control layer section, although we

propose to collect the data on demand, it is also possible to monitor and store the data

continuously e.g. if we want to store the behaviour of a robot uninterruptedly both

when it executes routines and when it waits in a standby pose. The diagram of the

database that stores robot signals and robot metadata is shown in figure 4.26. Where

each table stores the following information:

� Routines: Defines which routine is recorded in each robot.

� Robot_Signals: Defines which signals are recorded in each robot (resolver angle,

speed or torque).

� Robot_Description: Stores the metadata of each robot (ID number, IP address,

model, location in line, load, date of last failure, attached tool, etc.)

� Data_Raw: Stores the data that comes directly from the Data acquisition layer.

We do not clean or process the data before storing it in this table.

� Statistical_Summaries: After processing the data stored in the Data_Raw table,

we store the results of the statistical analysis and summaries of each routine in

this table. Each line of the table saves an statistical descriptive summary of all the

acquired raw data.

� RUL_Estimation: Finally, once the data analysis is carried out, the results of the

Remaining Useful Life (RUL) are calculated using the current health status of each

robot and it’s historical failure records. This table stores a RUL estimation for each

robot based on the results of the data analysis.

In our case, the data analysis is implemented in the same server where the data is

stored. However, it is also possible to separate these functionalities in two different

servers, one for data storage and the other one for the data analysis and model

implementation, as long as the communication between each other is guaranteed.

Visualization layer

The visualization layer consists in data visualization software and infrastructure. It

visualizes the results extracted from the analysis and the predictions calculated with

the models. Our architecture permits to analyse and visualize robot data at two

independent levels: at an individual scale with predictive maintenance models and

RUL estimation for individual robots, and at a general scale with a global visualization

of the robot fleet.
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Figure 4.26: Diagram of the implemented database that stores the robot signals and
metadata in the data server.

4.4.2 Implementation in an automotive body shop assembly line

The proposed network was implemented in an automotive manufacturing body shop

assembly line. Manufacturing assembly lines are highly automated and hundreds of

industrial robots work uninterruptedly separated in working cells. The PLCs in the

control layer are able to manage several working cells simultaneously via INTERBUS

or PROFINET protocols. A significant advantage of the solution is that the hardware

required for the infrastructure already exists in any common automated assembly line.

Therefore, the implementation is mainly based on software development to enhance

the functionalities of the current infrastructure. In the presented use case, the only

additional hardware asset added was a data server.

Infrastructure implementation

The first step is to code the signal recording and the TCP socket server in the robot

controllers. Modern robot controllers integrate a TCP server to enable a socket-based

signal acquisition. We collected the torque signals of the six joints in each robot. The

signal acquisition rate is also configurable and it depends on the frequency in which

we want to transmit the data.

The second step is to create a set of variables in the PLCs to inform the data server

about the beginning and the end of the routines. These variables update their values

exactly at the same time as the robot starts the routine, synchronizing in this way the

data acquisition and creating comparable data batches.
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Figure 4.27: Continuous data acquisition of Robot 1.

Two main programs were implemented in the data server: one to read the variables

of the PLCs and the other to handle the communication with the robot controllers.

As mentioned above, the communication with the robot controller is performed via

socket by implementing a TCP client in the server. The client connects to a remote

TCP server (the robot controller) when the PLC notifies the start of a given routine.

When the data acquisition finishes, the received signals are merged with additional

information coming form external sensors and databases. The language in which the

models and the visualization of the results are implemented in the Data storage and

analysis layer, depends on the software available in each company. However, the

proposed architecture will remain invariant regardless of these differences.

We started by implementing the architecture in two robots inside the same working

cell, before scaling up the solution to more cells and robots. When collecting the data,

we checked that the TCP packets were not saturating the network and we ensured

that the memory and the processor of the robot controllers where operating as usual.

Thus, we ensured that the data acquisition did not have any negative impact in the

production line before scaling up the architecture. We tested different transmission

frequencies and none of them saturated the network.

4.4.3 Results

The data was collected in two ways. First without synchronizing the acquisition

with the routines, collecting the data continuously without interruption. Afterwards,

synchronizing the data collection with the PLCs. Figures 4.27 and 4.28 show the

signals collected without synchronization. The signals correspond to two hours of data

acquisition of two industrial robots (Robot 1 and Robot 2) while working in several

routines and waiting standby. The graphs show the torque of the six joints of each

robot.
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Figure 4.28: Continuous data acquisition of Robot 2.

Even though the robots execute different trajectories, both of them are ABB irb

6400r robots with a maximum payload of 200 Kg and they both have a 104 Kg spot

welding gun attached to their flange. Note the difference in the behaviour of the

two robots, not only between the working and waiting time, but also in the torque of

each joint. As expected, the execution of different working regimes completely alters

the behaviour of the joints and makes the generalization and comparison between

these two robots unfeasible. In addition, by acquiring data in this way without

synchronization, there is no clear distinction between the routines that each of them

executes. The continuous data acquisition does not separate the different routines

and therefore there is no way to compare them over time and detect deterioration or

anomalies. In order to identify the wear of a robot, it is essential to be able to compare

routines over time, and this is not possible if the routines cannot be separated.

In contrast, figures 4.29 and 4.30 show data acquired in two different moments

(T1 and T2) of the same robot (Robot 2) executing the same routine. These two

graphs demonstrate the ability of our approach to automatically identify and separate

data from specific routines. The torque data shown in 4.29 and 4.30 were acquired

with the proposed architecture to demonstrate the possibility of achieving comparable

data by using the control layer. The data acquisition is not programmed for any

specific moment in time, but it starts automatically when the robot starts executing the

specified routine. The proposed data acquisition procedure is an effective solution to

the problem exposed in the previous paragraph with the continuous data acquisition.

The control layer effectively identifies the routine and the data server divides the

signal streams in separated robot-routine binomials. As a result, the obtained signals

are much more comparable over time and an eventual health degradation assessment

is easier to address. One of the key benefits of this architecture is that data collection

is performed at the same time in all the data sources. The result of this data acquisition

63



4. RESULTS

Figure 4.29: Synchronized data acquisition of Robot 2 (joints 5 and 6) executing
routine X in time T1.

Figure 4.30: Synchronized data acquisition of Robot 2 (joints 5 and 6) executing
routine X in time T2.

procedure is a time series dataset that represents the behaviour of a given robot-routine

binomial.

As explained above, it is hard to identify anomalies in the behaviour of a robot if

there is no clear distinction between different routines and working conditions. Each

robot requires a different effort in each joint. Thus, in order to compare real production

line data of a given robot over time and predict possible failures, it is necessary to first

distinguish between routines and then diagnose the robot’s evolution.

Once we are able to isolate individual trajectories, we can begin calculating

summary statistics of the trajectories. The objective of summary statistics is to

condense the maximum amount of information of the trajectories in the smallest

amount of data. These summaries will be used for long-term condition monitoring

and predictive maintenance. Table 4.13 shows the summary statistics of the torque

signal applied by the fifth motor of a monitored industrial robot in production. The

summaries are stored along with the robot’s ID number and the trajectory’s ID. In
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Robot_ID Trajectory_ID Average_Torque Maximum_Torque Variance_Torque
508 502 4.76 8.74 1.80
508 502 4.79 8.27 1.62
508 502 4.90 8.91 1.74
508 502 4.99 8.73 1.82
508 502 4.76 8.58 1.74
508 502 4.61 8.12 1.77
508 502 4.83 8.42 1.62

Table 4.13: Example of summary statistics of the acquired trajectories. Each row
represents the statistical summary (median, average, maximum and variance) of the
torque data applied by the same motor of a robot in production.

Figure 4.31: Synchronized acquired torque of the failing sixth joint.

this table we do not show all the columns of the dataset for readability and clearness

reasons. The complete set of information that we summarize for each torque and joint

angle signal is as follows: Date and time of the data acquisition, an id number of the

robot, an id number of the motor, an id number of the trajectory, the median value, the

average value, the maximum value, the 3rd quartile, the variance and the skewness.

The decision of which statistical analysis to choose will be based on the data and the

objective of the analysis. The effectiveness of predictive maintenance strategies for

industrial robots will strongly rely on the robustness of these summaries.

We scaled the proposed architecture to twenty robots in the production line and

started acquiring synchronized data. After a couple of weeks monitoring, one of

the robots had a failure in the reducer of the sixth joint that stopped the production.

The robot required a total replacement of the sixth joint. Figure 4.31 shows the data

acquired some days before and after the replacement of the sixth joint.

By synchronizing the data acquisition, it is easily appreciable the change in the
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torque applied by a robot joint before and after a joint failure. The torque was much

higher before the joint replacement as a consequence of the unusual friction caused by

the degraded reducer. After replacing the failing joint, the monitored torque signal

stabilized and the peak values decreased significantly.

Figure 4.31 shows an example of the applicability of the presented solution to

build a practical and reliable data acquisition infrastructure to detect and eventually

predict robot joint failures. One-class classification models could be trained to model

a healthy joint behavior after the replacement of the joint. In this way, the model

would detect anomalies based on the torque applied by the joint and identify unusual

torque increments for that particular robot-trajectory configuration.
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Chapter 5

Conclusions

This chapter summarizes the main conclusions of the dissertation, the contributions to

knowledge and proposes recommendations for future work. In this chapter special

attention will be given to the hypotheses exposed in chapter 2 in order to confirm or

deny them. Overall, this thesis covers the gap between research done in laboratory

and industry-oriented contributions for industrial robot predictive maintenance. There

is a considerable gap between research in predictive maintenance for simple industrial

assets (bearings, gearboxes, coils, etc.) and complex systems such as industrial robots.

Moreover, the contributions focused on robot predictive maintenance, have been

mainly implemented in laboratory-controlled conditions. This thesis, is in essence a

step forward towards a reliable predictive maintenance solution for industrial robots

in real world large scale industrial scenarios.

The following list enumerates the hypothesis exposed at the beginning of the thesis

and responds to each one of them, based on the obtained results.

1. Visual-based monitoring systems provide enough accuracy to detect deviations

beyond the tolerance limits of industrial robots.

Chapter 4 section 4.1 showed that it is possible with nowadays vision techniques

to have enough precision to detect deviations of the robot’s end-effector below it’s

repeatability tolerances. The binary square fiducial markers used in this research

work offer a robust and reliable measuring solution for assessing robot’s end-

effector deviations. Moreover, tracking the position of the robot’s structure with

fiducial markers can also identify the joint that is producing the deviation.

However, it should be mentioned that although this solution has been successfully

implemented in laboratory, the applicability of vision-based techniques in real

industrial scenarios is more difficult due to factors such as air contamination by

dust and general dirt. Vision-based techniques rely on the quality of the captured
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images. Hence, the air quality and the required cleanliness is a crucial factor that

could be difficult to achieve in real industrial scenarios.

2. Torque sensors can effectively be used to detect medium and long term mechanical

deterioration in industrial robot joints.

A torque monitoring approach can be used for industrial robot condition monitoring

and predictive maintenance. Although the information of the torque is used in

robots to detect collisions, excessive loads, etc. It can also be used to analyse mid

and long term mechanical failures. The methodology and experimental implemen-

tation presented in chapter 4 section 4.2 gives a detailed description of how torque

sensors can be used for that purpose. This sensors are not disturbed by external

noise and the installation is made inside the robot’s structure, which makes them

suitable for a real production line environment. Moreover, they do not need the

robot to be stopped or removed from the production line in order to record the data.

The data acquisition can be done online while the robot works. Finally, torque

sensors are not influenced by dirt or dust such as vision-based solutions and may

therefore be more suitable for a large scale industrial implementation.

3. An inefficient standby pose significantly decreases the remaining useful life of an

industrial robot.

The motors of the joints are one of the most fragile parts of industrial robots.

The motors can reach high temperatures and eventually wear out the permanent

magnets of the breaks, as shown in chapter 4 section 4.2. Several factors influence

the temperature of the joints: The ambient temperature, the load, an inefficient

waiting position, the trajectory, the state of the lubricant, etc. Chapter 4 section

4.3 shows that robots with a mechanical failure in their 5th joint, tend to have a

more horizontal standby position (9.17°on average). The position in which the

robot waits in the production line is a fundamental factor which has received little

attention from both researchers and practitioners. Optimizing the waiting position

of industrial robots can increase their remaining useful life, especially the ones that

spend most of their operational time waiting for the next product.

4. Optimising an industrial robot’s standby pose can significantly reduce its energy

consumption in a production line.

The optimization of the standby pose can reduce significantly the electric consump-

tion of the robot joints. Depending on the weight and the shape of the tool, and

the pose of the robot, the electric consumption can be reduced to less than a half

compared to a non-optimized standby pose. An optimal pose can be achieved for
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any robot with any tool by using an optimization algorithm and measuring the

torque or the electric current as explained in chapter 4 section 4.3.

5. Common industrial assets offer enough technology to effectively assess the health

status of industrial robots in real world production lines.

The communication between PLCs and industrial robot controllers can be synchro-

nised to acquire data each time the robots execute previously defined trajectories.

In this way, the data acquired is comparable over time and can be analysed to

detect deviations caused by mechanical wear. Section 4.4 proposes a network

architecture that can effectively detect medium and long term mechanical failures

in real production line scenarios using common industrial assets.
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Chapter 6

Contributions to knowledge

The following list enumerates the main contributions to knowledge of the thesis:

� Binary squared fiducial markers can detect deviations above the repeatability toler-

ance limits of an industrial robot.

� The methodology proposed in section 4.2 can detect medium-long term mechanical

deterioration in an industrial robot joint, as long as the deterioration increments the

torque needed in any joint of the robot.

� In order to build a machine learning model for fault prediction in industrial robots,

torque sensors are be the most reliable data sources. As any relevant mechanical

wear in a joint will cause an unusual increment in the torque of that joint.

� One of the most common failures in industrial robots of automotive plants is

caused by overheating. The prolonged excessive heating of the fifth joint’s motor

demagnetizes the permanent magnets of the motor’s brake. The demagnetization

causes unusual friction in the brake and an increment in the torque applied by the

joint. This is a cyclic process, as the increment in the torque needed to move the

motor, causes more electric current to flow through the motor and thus increases

the overheating in the joint.

� The result of the demagnetization is twofold. On the one hand, when the robot

moves (brakes released) the brake exerts resistance to the movement of the motor,

increasing the torque required to reach the desired position. On the other hand,

when the robot stops (with the brakes activated) and if the demagnetization is severe

enough, the permanent magnets do not apply sufficient force to hold the joint’s

position and the joint slowly moves towards the ground attracted by gravity.

� Robots in assembly lines may have very inefficient standby or waiting poses, which

produce excessive overheating. The angle in which the fifth joint holds the tool
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attached to the robot can be as determinant as the weight of the tool to cause an

overheating in the motor of the fifth joint.

� Optimization algorithms such as genetic algorithms (section 4.3) can be used to

optimize the standby pose of any robot with any tool attached to it. As long as the

torque or the electric current of the joints are monitored.

� The inherent intelligence of robot controllers and their communication with com-

mon PLCs and data servers offer enough technology to build a network architecture

capable of collecting synchronized and clean data for robot health status assessment

in real world production lines.

� If an industrial robot suffers mechanical degradation and deviates from its normal

behavior, motor torque signals will gradually increase. By synchronizing the data

acquisition of the robot signals with the execution of the routines, it is possible to

build a monitoring system that detects the deviation of those signals and infer a

mechanical deterioration.
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Chapter 7

Recommendations for Future
Work

This section suggests possible future lines of work based on the results of the thesis.

One of the greatest benefits of Big Data infrastructures and data analysis techniques

is the possibility of extracting useful information in large networks and varied data

sources such as those found on assembly lines. Extracting synchronized and structured

data from many robots to feed machine learning algorithms, opens up a wide range of

possibilities for the prescriptive maintenance of these assets.

Ideally, there should be no need for a specific routine such as the one proposed in

section 4.2 to diagnose the health status of a robot. Based on a reliable data acquisition

infrastructure, data analysis and machine learning models might be able to identify

a deviation in the health status of a given robot and predict a failure regardless of

it’s current trajectory or tool. Therefore, further research is needed in order to fully

automatize a predictive maintenance solution.

In this regards, future lines of work could be focused on building data based

models by collecting structured data with the proposed network architecture e.g. If the

acquired data is comparable, anomaly or novelty detection algorithms could be used

to detect a deviation in the normal behaviour of a given robot. In addition, future work

will also address the challenging task of determining the level of generalization that a

predictive maintenance model for industrial robots should have and which algorithms

are able to achieve robust models of such such a complex and non-linear behaviour.

Another interesting continuation of the presented thesis would be to create clusters

of robots by grouping them according to their internal signals and metadata information

such as the weight of the tool, the time spent in production, the robot type, etc. In

this way, it might be possible to define clusters of robots by their normal or expected

behaviour and identify robots that are operating outside the boundaries of what it is

expected from them. This would permit to identify anomalous behaviour in robots
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without prior additional information.

Finally, the monitoring of robot signals (position, speed and torque of the joints)

can also be used to build the dynamic model of a given robot. These dynamic models

are able to calculate the torque required by a robot given a certain tool and trajectory

configuration. Hence, it would be possible to predict the effort that a robot would

require even before installing it in the production line if the trajectory and tool are

known. Moreover, with this methodology, it would also be possible to optimize the

standby pose and the trajectory of industrial robots in a new production line from the

design phase.
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Publications





Chapter 8

Publication 1: Towards
manufacturing robotics accuracy

degradation assessment: a
vision-based data-driven

implementation.
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A B S T R A C T

In this manuscript we report on a vision-based data-driven methodology for industrial robot health assessment.
We provide an experimental evidence of the usefulness of our methodology on a system comprised of a 6-axis
industrial robot, two monocular cameras and five binary squared fiducial markers. The fiducial marker system
permits to accurately track the deviation of the end-effector along a fixed non-trivial trajectory. Moreover, we
monitor the trajectory deflection using three gradually increasing weights attached to the end-effector. When the
robot is loaded with the maximum allowed payload, a deviation of 0.77mm is identified in the Z-coordinate of
the end-effector. Tracing trajectory information, we train five supervised learning regression models. Such
models are afterwards used to predict the deviation of the end-effector, using the pose estimation provided by
the visual tracking system. As a result of this study, we show that this procedure is a stable, robust, rigorous and
reliable tool for robot trajectory deviation estimation and it even allows to identify the mechanical element
producing non-kinematic errors.

1. Introduction

Industrial robots are designed to be very robust and can withstand
many years of uninterrupted operation. However, like any mechanical
element working in contact with another mechanical element, an in-
dustrial robot will eventually deteriorate regardless of its design [1].
This deterioration process can last for years but once it begins to occur,
it can quickly evolve to an irreversible failure. A large body of literature
has been devoted to the development of Prognosis and Health Man-
agement (PHM) technologies of the individual components comprising
industrial robots, such as gearboxes [2,3] or electric motors [4,5]. Sa-
manta et al. [6] presented a system to monitor and predict machine
conditions using soft computing techniques and a neuro-fuzzy system.
They considered five different component faults to illustrate the effec-
tiveness of the proposed solution: gear wear, gear tooth chipping, gear
tooth crack, gear pitting and shaft misalignment. In contrast, the as-
sessment of the health status at the system level has hitherto remained
being an unexplored research challenge [7]. Noticeably, the modelling
of a robot joint comprises still a hard endeavour. Considering the non-
linear behaviour of elastic-plastic friction interaction between rigid
components, which are strongly dependent on inertial and acceleration
dynamics, makes numerical exploration of health monitoring in robots
extremely complicated, even when clustered computational resources

are utilized [8]. In the light of this complexity, often the mathematical
analyses used to estimate the degradation level of these components
rely on a simplified dynamic modeling of the real problem, such as
assuming constant speeds of operation [9], ignoring the temperature of
the system [10], simplifying the effect of the friction [11], etc. All in all,
these assumptions make the results of the models differ from reality.
With this regards, there is a critical need to develop new methodologies
to explore the deterioration of an industrial robot, considering the en-
tire mechanical system, regardless of the mechanical status of a parti-
cular component comprising the robot [7]. This rapidly emerging re-
search field can pave the way to enhance the precision and monitor the
degradation of heavy load handling industrial robots, such as the ones
used in the automotive and aerospace industry [7].

In recent years, there have been several approaches to address this
problem. Physics-based simulation models and digital twins have been
proposed in [12,13] for industrial robot predictive maintenance and
remaining useful life (RUL) estimation. Luo et al. [14] proposed a hy-
brid approach based on a model-based digital twin and a data-based
digital twin. They proved the feasibility of the hybrid digital twin ap-
proach in a cutting tool life prediction use case. Data-driven approaches
have been increasingly used for condition monitoring and predictive
maintenance of industrial robots. Kokkalis et al. [15] and Papanastasiou
et al. [16] monitored the torque and the current in robot joints for
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collision detection and human-robot collaboration. Former studies used
accelerometers to identify the degradation of an industrial robot
[17–19]. In [20] a laser tracker was used to identify the pose of the
robot end-effector and then control its deviation. The technique called
Visuo-Motor Control was used in [21] to control an industrial robot by
acting on robot’s motors depending on the deviation of the end-effector.
Instead of using a laser tracker, they used a camera-based vision system.
In their work, as well as in the ones carried out by Quiao et al. in
[22,23] the researchers used two cameras to obtain the coordinates of
the end-effector.

Vision based technologies have been widely used to improve robotic
systems in manufacturing processes. Recently, a vision-based metho-
dology was proposed in [24] and implemented alongside machine
learning classification models in [25] to handle randomly placed
complex parts. Stereo cameras were used in [26] to correct the path of
industrial robots in welding operations. Xu et al. [27] further improved
the precision of image processing in seam tracking and carried out a
systematic study of the application of computer vision technology in
robotic GTAW and GMAW. Tsai et al. [28] constructed a vision-based
path planning method for a golf club head robotic welding system.

The vision-based solutions for industrial robots proposed so far,
have been mainly focused on product quality and process improvement.
This manuscript aims to cover the gap in the implementation of vision-
based techniques and machine learning models for industrial robot
health assessment. In this work, we present a novel approach in which
we study the feasibility of using fiducial marker based vision systems to
assess the accuracy degradation and repeatability of an industrial robot
at different loads. We trained five supervised learning regression
models to predict the deviation of the robot’s end-effector using the
data provided by monocular cameras. After training the models, we
tested their prediction accuracy using that data provided by both
cameras.

The manuscript is structured as follows: in the next section we de-
scribe the used materials, the experimental setup and the procedure
followed. Section 3 presents the obtained results and we conclude with
a brief discussion and a summary of the contributions in Section 4.
Finally, we identify the future lines of work in 5.

2. Experimental setup and procedure

2.1. Pose estimation using fiducial markers

Monitoring the trajectory deflection of an industrial manipulator
requires combining the kinematics of the mechanical unit with the in-
formation acquired using external sensing devices, such as visual
tracking systems comprised of a set of cameras and fiducial markers.
Binary square fiducial markers have become a popular tool in numerous
computer vision applications such as augmented reality, 3D re-
construction and robotics. In manufacturing, augmented reality tech-
niques have been used to facilitate human-robot interaction [29] and
robot path programming [30]. Augmented reality permits to consider
the dynamic constraints of robotic systems and overcome traditional
path programming drawbacks for unskilled workers[29].

Nevertheless, the advanteges of using fiducial markers as external
surrogates for motion monitoring of the robot are manyfold; they allow
estimating the position of a monocular camera with minimal cost, high
robustness, and high speed, i.e., they bestow both accuracy against
noise and robustness against outliers. Specifically, in this manuscript,
we address the shortcomings of robot pose estimation by tracking ca-
librated ArUco markers [31,32] which dynamically trace the trajectory
followed by a robot. An in depth explanation of the marker detection
process used in our work can be found in [32]. In summary, marker
detection process consists of four steps: Image segmentation, contour
extraction and filtering, marker code extraction and subpixel corner
refinement, respectively. In the first step, the marker detection algo-
rithm uses temporal information to speed up the image segmentation

process using a global thresholding method, preventing convolution
operations required by e.g. the adaptative border detection used in
[31]. Subsequently, a contour following algorithm is applied to the
thresholded image. Formerly computed contours are then filtered by
fitting them to a four corner convex polygon. Next, the algorithm bi-
narizes these contours and determines whether the selected contours
are valid markers or not. If the contours are indeed valid markers, the
last step estimates the pose of each marker with subpixel accuracy.
Once the markers are detected, the pose of each marker in the image is
calculated.

2.2. Materials and setup

The experiments were carried out using a 6 Degrees of Freedom
(DOF) industrial robotic manipulator ABB IRB 120, which maximum
payload is limited to 3 Kg. Our robot has an slight looseness in the gear
of the second joint, which is expected to cause a certain lack of preci-
sion. We placed fiducial markers at the rigid links of the robot, as shown
in Fig. 1. To track the position of these fiducial markers and avoid
occlusions during the robot trajectory we used two monocular cameras
as it is shown in Fig. 2. The cameras were two mvBlueCOUGAR-X
Gigabit Ethernet industrial cameras, model 102n with 2MP resolution.
We used 12mm focal length camera lenses which first and second order
Brown-Conrady [33] radial and tangential distortion coefficients are

Fig. 1. Fiducial markers attached to the robot in the experimental setup.

Fig. 2. Cameras A and B and the coordinate system of the end-effector.
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-0.298340, 0.114099 and -1.054507e-05, -0.000599 respectively. These
cameras are multiplatform and compatible with the OpenCV open-
source library. Any industrial camera with similar characteristics is
adequate for the described experiment, as the illumination condition
are controlled. The images are taken when the robot is under stationary
regime. Therefore, no special minimum frame-rate is required for the
image acquisition.

The camera labelled as camera A (see Fig. 2) calculates the pose of
these markers located on the side-viewed links of the manipulator, i.e.
markers 1, 2, 3 and 4. While camera B, calculates the pose of the end-
effector. An independent platform was build to isolate the cameras from
the robot and prevent mechanical vibrations. A flat halogen red lamp
illumination (model LND-600A-DF) and a non-collimated red diode
bright field illumination (model LDR2) were used to optimize image
acquisition on A and B cameras, respectively. In addition, we covered
the entire experimental setup with a black opaque fabric to ensure that
the lightning conditions remained unchanged throughout the whole
experiment.

2.3. Experimental procedure

During the experimental data acquisition, the robot executes a
closed non-trivial trajectory and meantime cameras A and B capture
images of the markers at fixed time-stamps. The experimental proce-
dure is schematically depicted in Fig. 3.

First, the robot executes a repetitive trajectory and time-stamped
images of the markers are taken and stored. Each trajectory lasts 40
seconds. At the end of this trajectory, the robot returns to the starting
point and one photo is taken with each camera. A photo to capture one
side of the robot and the other to capture the end-effector. The first four
markers will be used to monitor the position deviation from the first
joint to the fourth. The fifth marker is used to detect the position of the
end-effector. The kinematics of the end-effector are therefore calculated
using the fiducial markers. The deviation of the robot corresponds to
the relative changes in position and orientation of the kinematics ac-
quired with the markers throughout the experiment. The images ac-
quired using both cameras are stored until the end of the experiment.
Subsequently, we calculate the position and orientation data of each
marker shown in the set of images acquired during the data acquisition

operation. When all the data about the position and orientation of each
marker are obtained, we can proceed to the deviation analysis and the
machine learning model creation, training and testing. We created the
machine learning models and trained them to solve a supervised non-
linear regression problem. The predictions of each model were later
tested and compared to evaluate their accuracy.

The reason for training the models to solve a supervised non-linear
regression problem, is that in real world scenarios, it is often difficult to
obtain images of the robot’s end-tool to compute its relative position.
With this regards, we tested the accuracy of the models to identify the
deviation of the end-effector using the camera located in one side of the
robot. The hypothesis is that knowing the deviation of the end-effector
using the fifth marker, and the pose of the robot using the rest of the
markers, the deviation of the end-effector can be predicted using only
the data of the pose of the first four markers. Without any need of the
camera B. We used the estimated set of robot pose data to train five
supervised learning regression models. These models then predict the
robot’s end-effector deviation using the information of the pose of the
first 4 markers and we evaluate the accuracy of the predictions.

We conducted a total of three experiments following this same
process. We increased the weight attached to the end-effector in each of
the experiments to study the behaviour of the manipulator using dif-
ferent loads. The first experiment was carried out without any extra
load, leaving the flange free. In the second and third experiments the
load was 1.5 Kg and 3 Kg (the maximum payload), respectively. Each
experiment saves 2000 images. After completing the experiments, we
obtained three datasets with the positions (X, Y and Z) and rotations
(Rx, Ry and Rz) of all these markers.

2.4. Software implementation

The software modules were all implemented in the same computer
and the architecture of the software implementation is shown in Fig. 4.
We used the open-source Robot Operating System (ROS) for the co-
ordination between the robot trajectory execution and the image ac-
quisition. The images were taken using the OpenCV [34] python li-
brary. After finishing the data acquisition, the coordinates of each
marker in each image were obtained with the ArUco library and stored
in csv datasets. The machine learning models were trained using these
csv datasets without any preprocessing. The columns of the datasets
consisted on six floating-point numbers for every fiducial marker. Three
floating-points for the positions (X, Y and Z) and three floating-points
for the rotations (Rx, Ry and Rz). Therefore, the total amount of columns
in the datasets were 30 (6 for each of the 5 markers). The rows of the
datasets (2000 for every experiment) were randomly split, selecting the
80% of the rows (1600) for training and the remaining 20% (400) for
testing.

We trained five prediction models to estimate and compare their

Fig. 3. Flow chart of the experimental procedure. Fig. 4. Architecture of the implemented software modules.
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accuracy. We implemented the models using Python and the Scikit-
learn library [35]. The following list enumerates the implemented
models and the main chosen hyperparameters:

• Random Forest: Number of trees = 1000; maximum depth =
none; minimum samples to split = 2; split criterion = Mean
Squared Error (MSE).

• Support Vector Regression: Kernel = rbf; Kernel coefficient
(gamma) = auto; regularization parameter (C) = 1.0; epsilon = 0.1.

• Lasso: Alpha = 1.0; fit intercept = True; tolerance of the optimi-
zation = 0.0001.

• Multi-Layer Perceptron: Number of hidden layers = 1; nodes in
hidden layer = 100; activation function of hidden layer = relu;
learning rate = 0.001.

• Bayesian Ridge: Maximum iterations = 300; tolerance = 0.001.

We implemented a moving average model to predict the position of
the end-effector in order to establish a baseline error. The moving
average model was optimized by selecting the window size that max-
imized its prediction accuracy. The prediction accuracy of the opti-
mized moving average was then used as a baseline performance to test
the accuracy of the machine learning models. In this way, we were able
to test the feasibility of the models for the presented use case.

The only hyperparameter that was optimized was the window size
of the moving average model. The decision of not optimizing the rest of
the hyperparameters was taken mainly to prove the applicability of
supervised learning models, as the obtained result could only improve
after hyperparameter optimization. We used the raw data of the co-
ordinates to train the models without normalization.

3. Results

The analysed data contains the position in millimeters (X, Y and Z)
and the rotation in radians (Rx, Ry and Rz) of every marker (see Fig. 1).
Those values are obtained from the images and stored in the datasets.
The final datasets are therefore comprised of 30 columns (6 coordinates
for each marker) and 2000 rows for each experiment. Fig. 5 shows the
dispersion of the coordinates of the end-effector using boxplots and

scatter plots. Each dot in the scatter plot represents the actual position
deviation (in Z and Y coordinates) of the end-effector. The coloring of
the graphs represents the transient status of the experiments, from dark
blue dots (the deviation of the flange when the experiment starts) to
brown dots (the deviation of the flange when the experiment ends). The
data shown in the first boxplot and scatter plot corresponds to the first
experiment. The data of the second and third experiments is shown in
the second and third boxplots and scatter plots respectively.

As it is shown in Fig. 5, the greatest dispersion occurs in the Ztool
coordinate (Z axis in the tool coordinate frame, Fig. 2) in the 3 cases. In
the first two experiments the end-effector has an ascending tendency
and in the third experiment, when the load equals the maximum pay-
load, the end-effector descends in the negative Z direction. Note that
the deviation in the Z coordinate increases significantly as weight is
added to the flange. The robot deviated the most from its initial position
(0.77mm) in the third experiment.

To foresee the source of the pose deviation in the Z coordinate, an
analysis of the R-squared was conducted where Rϵ[0, 1] and= −R SS

SS
1 .res

tot

2
(1)

SSres is given by∑= −SS f y( ¯)res
i

i
2

(2)

where ȳ is the mean of observed values associated to fi predicted or
modeled values. SStot is the total sum of squares and it is given by∑= −SS y y( ¯) .tot

i
i

2

(3)

The vertical displacement of the robot in the Z coordinate is con-
trolled by joints 2 and 3, so the deviation must be originated in one of
those two joints (or in both of them). To identify the origin of the de-
viation, the coordinates of the first four markers that are related to the
robot’s vertical movements have been compared with the flange’s dis-
placement in Z. The Rz, X and Y coordinates of the markers, as it can be
seen in Fig. 1, are in charge of directing the movement of the flange in
it’s Z coordinate. In summary, the R-square coefficient between Rz, X

Fig. 5. Deviation in the flange of the robot in the X, Y and Z coordinates with 0Kg, 1.5Kg and 3Kg respectively.
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and Y coordinates of the first four markers and the Z coordinate of the
flange were calculated. The results are shown in Tables 1, 2 and 3.

In the first experiment, marker 2 obtains the highest R-square values
(Table 1) with a significant difference. In the second experiment,
markers 2 and 4 score the highest scores (Table 2). Finally, in the third
experiment, marker 2 is again the marker with highest coefficient va-
lues (Table 3). This results show that markers 2 and 4 have the greatest
relationship with the deviation of the flange. The marker 2 scores the
most significant relationship with the flange compared to the rest of the
markers specially when the flange is left free with no load attached to it
or when the load is the maximum.

These results are in line with expectations, as markers 2 and 4 are
the two most separate markers from the points where the vertical
movement of the robot originates (joints 2 and 3) as can be seen in
Fig. 1. Which means that, a rotation in joint 2 will be more noticeable in
marker 2 than in marker 1, even though it affects both markers’ pose.

As a result of the analysis, joint 2 was identified as the origin of the
flange deviation. The reasons that led us to that conclusion were: first of
all, if the deviation was originated in joint 3, there would be no cor-
relation between marker 2 and the final deviation of the flange. This
correlation would only be appreciable in the 4th marker, which is not
the case. Second, if the source of the deviation were both joints (2 and
3) in a similar way, marker 4 would have a much higher correlation
with the flange than marker 2, because the deviation of both joints

could be appreciable in this 4th marker (the deviation of the 3rd joint
plus the deviation propagated from the 2nd joint). Therefore, the fact
that it is mainly the 2nd marker the one that scores the greatest R-
squared coefficient values in most of the cases and with different loads,
suggests that the source of the deviation in the Z coordinate of the
flange is located in the 2nd joint.

After evaluating the relationship between the poses of the robot’s
side markers and the deviation of the flange, six regression models were
trained following a supervised learning process to predict the position
of the flange in the Z coordinate. We trained the models using the in-
formation of the pose of the four markers (the position and the rotation
in X, Y and Z) as the predictor variables and the position in the Z co-
ordinate of the flange as the target variable. Which resulted in a total of
24 floating-point predictor variables (6 coordinates for each of the 4
markers) and a single floating-point target variable.

In Fig. 6 we show a comparison of the actual position of the flange
in the Z coordinate and the position predicted by the models that ob-
tained the highest accuracy (bayesian ridge in the first experiment and
random forest in the second and third).

To evaluate the prediction accuracy of the models, the Mean
Absolute Error (MAE) and the Root Mean Squared Error (RMSE) were
calculated. MAE and RMSE are both widely used metrics for error
measuring in statistics. MAE is given by

= ∑ −=MAE
y x
n

i
n

i i1
(4)

and RMSE by

= ∑ −=RMSE
y x
n

( )i
n

i i1
2
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where yi is the set of predicted values and xi is the set of real values.
To see whether our models capture the behaviour of the system or

not, we established a baseline prediction by calculating the moving
average of the real data. That is, we calculated the RMSE and MAE
errors we would obtain if we used the moving average value to predict
the position of the flange in the Z coordinate. As previously mentioned,
we optimized the window size of the moving average model to chose
the window with the highest prediction accuracy for every experiment.
We then compared the results with the rest of the models. In Fig. 7 we
show the learning curve of the moving average obtained by reducing
the RMSE error as the window size increases (second experiment).
When the window size is about 40, the RMSE error stops decreasing and
the model does not score better results. This value obtained by opti-
mizing the windows size is then compared with the results of the rest of
the models. The comparison is shown in tables 4, 5 and 6.

The effectiveness and feasibility of some of the implemented models
can be seen both in the graphs and in the improvement of the error with
respect to the baseline error in the tables. The Random Forest, Support
Vector Regression and Bayesian Ridge models obtain the best results
and the error of the moving average is improved in the three cases.
Multi-Layer Perceptron obtains the worst results. The authors believe

Table 1
R-squared values between first 4 markers’ Rz, Z and Y and flange’s Z. (0Kg).

Rz & flange Z X & flange Z Y & flange Z

Marker 1 0.037 0.002 0.003
Marker 2 0.308 0.316 0.345
Marker 3 0.038 0.037 0.117
Marker 4 0.009 0.108 0.030

Table 2
R-squared values between first 4 markers’ Rz, Z and Y and flange’s Z. (1,5Kg).

Rz & flange Z X & flange Z Y & flange Z

Marker 1 0.053 0.226 0.264
Marker 2 0.010 0.248 0.273
Marker 3 0.135 0.110 0.263
Marker 4 0.245 0.398 0.234

Table 3
R-squared values between first 4 markers’ Rz, Z and Y and flange’s Z. (3Kg).

Rz & flange Z X & flange Z Y & flange Z

Marker 1 0.028 0.001 0.061
Marker 2 0.576 0.682 0.667
Marker 3 0.142 0.504 0.376
Marker 4 0.538 0.623 0.368

Fig. 6. Predictions of the flange’s Z coordinate position and real values with 0, 1.5 and 3kg of load respectively.
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that the volume of the data (less than five thousands rows) might not be
enough to properly train a neural network model.

4. Conclusions

The aim of this work is twofold. First, is to experimentally test the
feasibility of vision-based data driven techniques to analyse the health
status of an industrial robot. The second objective is to train a regres-
sion model to predict the deviation of the end-effector. The main idea of
this second objective is to predict the deviation of the end-effector using
only the deviation data provided by one camera (A).

The results demonstrate that binary square fiducial markers can

reliably be used for the above mentioned purpose. This technique offers
a more economical solution than others such as laser tracker pose es-
timation. In our case, we verified that, the Z coordinate of the flange is
the one that deviates the most and that this deviation increases as the
load reaches the maximum payload of the manipulator.

The described procedure can also be used to detect the joint that is
producing the deviation. Although the proposed procedure is able to
effectively locate the faulty joint, further investigation will be required
in order to elaborate a root cause analysis of the failure causing the
deviation.

Finally, the feasibility of using supervised learning models to detect
deviations in the end-effector with data captured from one side of the
robot is tested. The results are promising, as several models are able to
improve the baseline error of the moving average in all the experi-
ments. The results are even more relevant if we take into account that
we did not optimize the hyperparameters of the models. The proposed
approach could also be used in future works for RUL estimation. The
authors believe that the combination of the presented approach with
other sources of information such as the electrical current or the torque
of the motors, could significantly help in assessing the health status and
deterioration of an industrial robot.

5. Future work

The integration of the proposed solution with already existing
health assessment solutions is an interesting future line of work. The
integration of multiple health assessment approaches could be used to
develop reliable root cause analysis and RUL estimation solutions for
industrial robots.

The implementation of the proposed solution in a real production
line environment is another identified future line of work. Vision-based
techniques strongly depend on lighting and dirt conditions. However,
these conditions are much more difficult to control in real production
lines than in research labs. Therefore, further work is required to build
a more robust solution capable of working in real industrial conditions.

A limitation of the presented work is that the deviation of the flange
is not analysed in the entire trajectory. Augmented reality techniques
such as the one used in this work permit to track the position of the
markers in movement with live video recordings. Thus, a deviation in
the dynamic behavior of the end-effector could be detected using the
marker detection with live video recordings. However, the accuracy
required to detect the deviation of an industrial robot is harder to
achieve when it is moving than when it is stopped. Hence, further re-
search is required to extrapolate the proposed solution to full trajectory
tracking.
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Abstract: This manuscript focuses on methodological and technological advances in the field of
health assessment and predictive maintenance for industrial robots. We propose a non-intrusive
methodology for industrial robot joint health assessment. Torque sensor data is used to create a digital
signature given a defined trajectory and load combination. The signature of each individual robot
is later used to diagnose mechanical deterioration. We prove the robustness and reliability of the
methodology in a real industrial use case scenario. Then, an in depth mechanical inspection is
carried out in order to identify the root cause of the failure diagnosed in this article. The proposed
methodology is useful for medium and long term health assessment for industrial robots working in
assembly lines, where years of almost uninterrupted work can cause irreversible damage.

Keywords: PHM; industrial robots; Industry 4.0; predictive maintenance

1. Introduction

In recent decades, research in industrial robots focused mainly on improving manufacturing
processes, optimizing trajectories, improving accuracy, etc. However, predictive maintenance and
health assessment of robots, has not received as much attention [1,2]. From a maintenance point of view,
industrial robots are a complex kinematic chain comprised of several mechanical components that have
been extensively studied individually: Motors, speed reducers, gears and bearings just to cite some.
Notwithstanding, the union of all these components in a single system and its maintenance as a whole,
significantly increases the complexity of failure prediction. In general, health assessment techniques for
machinery can be classified in two main groups: physical model-based and data-driven [3]. The former
uses deterministic mathematical models to describe the expected behavior of a given system and
compares this expected behavior with the real behavior. The latter, analyses data captured with sensors
and applies statistical and machine learning methods to detect patterns and predict behavior.

Model-based approaches have been widely used to detect failures in industrial components [4–6].
Unfortunately, it is often difficult to implement an analytical model that accurately describes the
behavior of such complex systems. In order to build an analytical model of an industrial robot, there are
some approximations and assumptions that have to be made such as constant speeds, temperature
of the lubricant, loads, etc. [7]. These necessary approximations distance the model from the real
behavior of the system, thus data-driven approaches can be more accurate for industrial robot health
assessment [1]. In addition, the expansion of the Industrial Internet of Things (IIoT) and Big Data
technology in the era of smart manufacturing [8] is pushing the way towards the implementation of
reliable data analysis solutions for predictive maintenance.

Appl. Sci. 2020, 10, 7883; doi:10.3390/app10217883 www.mdpi.com/journal/applsci
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Data-based monitoring and IoT solutions are rapidly emerging and transforming the
manufacturing industry into an industrial Big Data environment [9]. Several research groups have
addressed the issue of monitoring the mechanical condition of machine-tools and industrial robots
with data-driven approaches [10–13]. Mourtzis et al. [14] developed a holistic framework for milling
and CNC machine tool modelling using the OPC-UA communication standard. They implemented
a data acquisition device in order to integrate machine-tools without connectivity in their solution.
Vogl et al. [15] proposed a multi-sensor system for machine tool axes monitoring and degradation
assessment. A.A. Jaber [2] developed an embedded system for industrial robot condition monitoring
using accelerometers at the flange of the robot. He detected a mechanical failure in the gears of the
robot joints and emphasized the need for more research in the field of robot predictive maintenance.
The drawback of using this approach for robots in a real assembly line is that it is hard to isolate external
vibrations from vibration caused by the robot’s failure. To overcome this issue, acoustic emission
sensors were used in [16] to detect a faulty rolling bearing on a welding robot joint. An important
issue to take into account with both accelerometers and acoustic emission sensors, is that they are
intrusive in the sense that they have to be attached to the structure of the robot. This can be a drawback
in real assembly lines because a sudden detachment of one of these sensors could cause either a stop
in the production line, or a defect in manufactured products. Lubricant or wear debris analysis is also
commonly used for industrial robot joint health assessment. It consist on analysing the wear particles
inside the oil that lubricates the joints. As illustrated in [17], any mechanical element working in contact
with another mechanical element will deteriorate and degrade regardless of the design. A disadvantage
of analysing wear debris in the lubricant is that it needs advanced laboratory equipment and it is
highly time consuming. In addition, this method also needs the robot to be completely stationary [18].

According to the author’s knowledge, there is only one article that suggests using torque data
of industrial robot joints to assess their health status. Bittencourt et al. studied in [12] the feasibility
of using torque data for industrial robot and repetitive machinery condition monitoring. However,
they did not measure the torque with sensors. Instead, they calculated the torque by estimating it from
the electric current. The electric current in the motors is directly proportional to the torque required
by each joint. The higher the torque, the more electric current each joint will require. In their study,
Bittencourt et al. used kernel density estimates and the Kullback-Leibler distance to detect deviations
in the repetitivity of an industrial robot joint’s torque [12]. They considered both real data from
accelerated wear tests and simulated data. Industrial robots are presently manufactured with a torque
sensor installed in each joint and therefore, no additional torque sensor needs to be installed. Moreover,
torque data is also useful to monitor and control the energy consumption of the robots. A deteriorated
robot joint should require higher torque to accomplish a specific task compared to a healthy robot joint.
However, the feasibility of torque sensors to detect medium and long-term mechanical deterioration in
industrial robot joints has not been proven and it remains unclear.

The novelty of the paper resides in three main contributions. First, we show the effectiveness
of joint torque monitoring to detect motor brake failures inside robot joints. We perform an in depth
mechanical inspection to find the root cause of a frequent failure of high payload industrial robots.
Second, we emphasize the influence of the standby pose of industrial robots in the reduction of their
RUL by analysing a dataset with more than 600 robots. Last but not least, we present and validate
a methodology for industrial robot health assessment using torque sensors. The proposed methodology
is based on the conclusions extracted from the experiments and the mechanical inspection carried out.
The methodology proposed in this paper is applicable to any kind of 6 Degree-of-freedom (DOF) robot
with any kind of load. The data is acquired in a non-intrusive way, as torque sensors are located inside
the structure of the manipulator.

The manuscript is structured as follows: Section 2 describes the experiment carried out, as well as
the obtained results. In Section 3 we perform an in depth root cause analysis of the mechanical fault
detected in the experiment. Section 4 analyses a possible cause of the reduction of the remaining useful
life of the robots and suggests preventive measures to enlarge their RUL. In Section 5 we propose
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a methodology to monitor the health status of industrial robots based on the experiments explained in
previous sections, and finally Section 6 sums up the main conclusions and future lines.

2. Experimental Design and Implementation

We designed an experiment to compare the torque applied by a faulty robot joint and a healthy
one. If the mechanical wear has a significant effect in the effort of the joint, our hypothesis is that the
faulty joint would require higher torque than a healthy joint to execute a given trajectory. Therefore,
the methods selected to identify a faulty joint should focus on measuring the increment of the torque
applied in the robot joints, whether they are statistical methods or machine learning models. Figure 1
describes the process of the experimental procedure carried out. First, a faulty robot wrist was removed
from an automotive assembly line after years of uninterrupted work. The faulty robot caused a sudden
stop in the production line and it was replaced by a new one. The experiment was performed using
a 6 DOF industrial robot (ABB IRB 6400r), two robot wrists (the faulty wrist and the new one),
two loads representing the 15% and 90% of the maximum payload of the robot and four torque sensors,
two sensors for each wrist, located in the 5th and 6th joints. These sensors are factory built-in torque
sensors and the robotic systems uses them in the control feedback-loop. The ABB IRB 6400r is a widely
used industrial robot in the automotive industry with a maximum payload of 200 Kg.

Figure 1. Flowchart of the experimental procedure carried out.

A non-trivial fixed trajectory was programmed in order to excite the robot joints. First of all,
the faulty wrist was installed in the ABB robot in a laboratory facility, out of the production line.
Then, the programmed trajectory was executed three times with three different loads each time.
The loads represented the 0%, 15% and 90% of the maximum payload of the robot. We executed the
trajectories and collected the torque data with a sampling rate of 100 ms. Afterwards, the faulty wrist



Appl. Sci. 2020, 10, 7883 4 of 14

was removed and the new one installed in the same ABB robot. The trajectory was repeated again
three times with the same three different loads in each repetition. Therefore we collected the data of
the torque applied in the 5th and 6th joints throughout the six trajectory executions (three with the
faulty wrist and tree with the new wrist).

After completing all these trajectories, torque signals were acquired and stored in csv files
following the format specified in Table 1. The signals were stored as floating point numbers and
using the standard unit (Nm) for the torque. We used the TCP/IP communication protocol to connect
with the robot controller and capture the torque signals, which is an Industry 4.0 communication
standard. The TCP/IP protocol is suitable for Industry 4.0 and Big Data scenarios, as it is able to
interconnect large number of devices [19]. Some researchers have used the OPC-UA communication
protocol [9] which is built on top of TCP/IP for data acquisition in industrial scenarios. The data
shown in Figures 2 and 3 disclose an evident increment in the torque of the faulty wrist’s 5th joint.
This increment is clearly appreciable in all the three experiments and throughout the execution of the
whole trajectory, therefore the effort required by the motor of the 5th joint was higher than expected
with any of the three loads and in any robot pose or movement. In contrast, the torque of the 6th joint
does not change significantly in any experiment.

Table 1. Example of the torque data captured by one robot in one experiment e.g., The column name
Torque_joint_5_A refers to the torque acquired in the 5th joint of robot A (faulty robot).

Observation Time (s) Torque_Joint_5_A (Nm) Torque_Joint_6_A (Nm)

1 0 0.819 −1.045
2 0.100 4.08 2.109
3 0.200 9.007 4.323
4 0.300 10.118 6.137

. . . . . . . . . . . .

The increment in the torque is measured by first calculating the absolute value of the acquired
signals. The absolute value of the torque in each joint is then integrated to calculate the total amount
of torque applied throughout the whole trajectory in all the experiments. Once the total applied torque
is calculated, the percentage of increase between the two wrists is calculated. Tables 2 and 3 show the
results of the 5th and 6th joints respectively.

Table 2. Total torque of the 5th joint of the new and faulty wrists. Load 1, Load 2 and Load 3 represent
the 0%, 15% and 90% of the maximum payload respectively.

New (Nm) Faulty (Nm) Increase

Load 1 19,567 42,830 118.88%
Load 2 21,224 46,451 118.86%
Load 3 62,235 124,703 100.37%

Table 3. Total torque of the 6th joint of the new and faulty wrists. Load 1, Load 2 and Load 3 represent
the 0%, 15% and 90% of the maximum payload respectively.

New (Nm) Faulty (Nm) Increase

Load 1 17,910 19,039 6.31%
Load 2 20,852 19,982 −4.17%
Load 3 28,671 28,970 1.04%
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Figure 2. Torque values of the 5th joint in a faulty wrist and in a healthy wrist with different loads and
same trajectory.

Figure 3. Torque values of the 6th joint in a faulty wrist and in a healthy wrist with different loads and
same trajectory.

The increment in the torque is homogeneous, i.e., The torque increases in the whole trajectory and
not only in certain movements or positions. The fact that the torque increases in the whole trajectory
and not only in certain poses, reveals that the deterioration affects to the entire movement of the joint.
The results also show that at the time of the failure, the electric consumption of joint 5 in the faulty
wrist was at least twice as high as expected for a healthy joint.
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Although the acquired data effectively detects the wear in the joint, the detected increment is not
enough on its own to deduce a root cause of the fault. Thence, we conducted a root cause analysis
with an in-depth mechanical inspection in order to identify the cause.

3. Root Cause Analysis of the Faulty Joint

3.1. Mechanical Inspection

The first step of the mechanical inspection consisted on disassembling the faulty wrist. The 5th
joint of the wrist is composed of an electric motor and a speed reducer. First, we inspected the gears of
the speed reducer, shown in Figure 4. We did not find any evidence of wear or pitting in the surface of
the gears and there was no apparent damage in the gears that could cause the significant increment
detected in the torque. The lubricant oil of the reducer was extracted and analysed in the process of
disassembling the faulty wrist. We confirmed that the lubricant was within the quality tolerance limits
as no metallic debris was found in the oil.

Figure 4. Mechanical inspection of the gears, bearings and motors of the wrist.

Afterwards, we examined the motor of the 5th joint. An increment such as the one detected in the
experiment could be caused due to a significant decrease in the motor’s coil resistance. We measured
the resistance of the coil using an ohmmeter and compared it with the resistance of the coil of a new
motor. The resistance values in both coils were identical. Hence, the motor’s coil was dismissed as the
cause of the joint fault.

3.2. Analysis of the Motor Brake

After analysing the condition of the speed reducer and the motor, we inspected the brake of the
motor. The brake of the 5th joint is a permanent magnet brake that stops the motor when the robot
is shut down or when an emergency stop is required. As illustrated in the schematic of Figure 5 this
kind of brakes have three main parts: a metallic armature, a field coil and a neodymium (NdFeB)
permanent magnet. The brake works in the following way: when the robot shuts down or makes
an emergency stop, there is no voltage applied to the coil and the permanent magnet attracts the
armature, stopping the rotation of the motor. In contrast, if the robot controller applies 24V to the
field coil of the brake, it produces a magnetic field compensating the magnetic field created by the
permanent magnet and the motor is released.
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Figure 5. Schematic of the motor brake.

We measured the resistance of the brake’s coil and compared it with the resistance of a completely
new coil. In both cases the values reached 15.4 Ω. Therefore, the coil of the brake could not be the
cause of the detected torque increment.

Finally, we inspected the permanent magnets of the brake. The permanent magnets used in this
brake are squared NdFeB magnets. We noticed a slight deformation in the corners of the magnets,
as some magnetic particles were detached from them. We found the particles filling the space where
the magnets are located. Figure 6 shows the permanent magnets inside the brake of the faulty joint
compared to a completely new brake. In addition, Figure 6 shows that the colouring of the brake’s
armature was changed. These kind of stainless steel armatures, have a metallic light silver colour when
manufactured. However, the inspected brake had a reddish coloring as a consequence of oxidation.

Figure 6. The motor brake of the faulty joint and its permanent magnets (left) compared to a completely
new motor brake (right).
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We performed two tests to diagnose the health status of the permanent magnets. The first test
consisted on measuring the M(H) hysteresis curve of the magnets. Then, we magnetized the permanent
magnets and measured again the M(H) hysteresis curve after the magnetization. The results of the
tests are shown in Figure 7.

Figure 7. Magnetic hysteresis curve of the motor brake’s permanent magnet before (blue) and after
(green) magnetization.

There is a 24% loss from 0.814 T before magnetization to 1.071 T after the magnetization.
This significant magnetic field loss has a direct impact in the malfunction of the motor’s brake.
As a consequence, the brake constantly resists the movement of the motor. This produces the torque
increment in the 5th joint throughout the whole trajectory identified in Section 2.

The second test consisted on measuring the magnetic hysteresis curve at different temperatures.
Figure 8 shows the different M (H) curves at 26, 80, 100 and 120 °C and Table 4 shows the magnetic
properties of the permanent magnet at these temperature regimes. Br (T) is the residual induction or
flux density, that is the magnetic induction corresponding to zero magnetizing force in a magnetic
material after saturation. Hci (kA/m) is the intrinsic coercive force of a material and indicates its
resistance to demagnetization.

Figure 8. Magnetic hysteresis curve of the permanent magnet at 26 (green), 80 (brown), 100 (orange)
and 120 °C (red).
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Table 4. Magnetic properties of the permanent magnet at the measured temperatures.

T (°C) Br (T) Hci (kA/m)

26 1.071 1531
80 1.013 976.9
100 0.9957 833.4
120 0.9668 678.5

There are two additional considerations that have to be taken into account. The technical
specifications of the 5th joint’s motor indicates that the surface temperature of the motor can reach up to
140 °C. Therefore, the temperatures inside the motor brake could be even higher than the temperatures
reached in the test. Moreover, in the recently published work by M. Haavisto [20] the time dependent
demagnetization of NdFeB permanent magnets is extensively investigated. She experimentally proved
that this type of magnets can be demagnetized if exposed to higher than 80 °C for a long period of
time. This conclusion is especially relevant for industrial robots working in assembly lines for years
uninterruptedly.

These results of the tests, the mechanical inspection carried out, the state of the motor brake,
as well as the previously mentioned PhD dissertation [20], give us enough evidence to conclude that
the temperatures inside the motor of the 5th joint of the robot, reached high enough temperatures
for sufficient time to produce a magnetization loss in the permanent magnets of the motor brake.
This caused the failure in the wrist and the increased torque values shown in Section 2.

4. The Influence of the Standby Pose in Robot Failures

In real automotive manufacturing production lines, there is substantial difference in the waiting
and working time of the robots depending on their process and location. Some of them execute
trajectories almost uninterruptedly, while others spend most of the time waiting. The most active robots
work approximately 85% of the total operative time and the most inactive robots only around 20%.

In the previous section, we identified the root cause of the wrist failure in the demagnetization
of the motor magnets. This demagnetisation, as well as the oxidation of the brake, is produced by
a relatively high temperature prolonged over long periods of time. In this section, we analyse two
factors that strongly influence the overheating in industrial robot wrists: the pose in which the robots
wait for the next product and the load they carry.

We collected a dataset with more than 600 robots of a real manufacturing assembly line to analyze
the influence of the load and the waiting pose in robot wrist failures. The information stored in the
dataset was structured in three columns: the mechanical failures of the 5th joint in the last 15 years
(57 failures in total), the load of the robots and the orientation of their 5th joint. The orientation of
the 5th joint represents the verticality of the joint. As illustrated in Figure 9 if the joint is completely
vertical to the ground, the orientation will have a value of 0 and if the joint is completely horizontal
to the ground, the value of the orientation will be 90. Therefore, when we talk about the orientation,
we are refering to the verticality of the 5th joint when the robot waits stationary for the next product.
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Figure 9. Orientation value in the dataset represents the verticality or horizontality of the 5th joint.

Figures 10 and 11 show the difference in distribution in the load and standby orientation of
the 5th joint of more than 600 industrial robots. The boxplots are grouped by robots that never had
a mechanical failure in that joint (0) and robots that did fail (1). These boxplots show that robots that
had a failure in the 5th joint tend to work with higher loads and hold the load in a more horizontal
pose. The differences in the load and orientation are shown in Table 5. There is a difference of 29.71 Kg
in the mean of the load between the robots that have failed and the robots that have not failed yet.
The mean of the standby orientation of the 5th joint is 9.17 ° closer to the parallel of the ground for
robots that have failed.

These results show that both the carried load and the orientation of the 5th joint while waiting
have a significant impact in the RUL of industrial robot wrists. The fifth joint of the robot requires more
effort to hold a heavier load and to hold a given load in a more horizontal orientation. Thus, this effort
results in a higher torque that the motor must apply, which increases the current in the motor coil and
the temperature of the motor.

Table 5. Standby orientation and load means with recorded historical failures and without failures.

Orientation (°) Load (Kg)

With failure 71.39 148.5
Without failure 62.22 118.79

Figure 10. Mean load of robots without recorded failures (0) and with failures (1).
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Figure 11. Mean standby orientation no recorded failures (0) and with failures (1).

5. The Health Assessment Program Methodology

Based on the results of the previous sections, we propose a methodology for diagnosing the
health status of industrial robot joints with torque signature analysis. The diagram representing
the methodology can be seen in Figure 12. The main idea behind the proposed methodology is
that a joint that suffers a mechanical degradation will require higher torque to execute a certain
trajectory than a healthy one. As the time goes by, the mechanical elements attached to the motor
(i.e., The brake and the reducer) will inevitably suffer mechanical deterioration. This will require higher
effort to execute the same trajectory. To illustrate the methodology, let’s say that a robot R1 executes
a certain program P1 and needs to apply torque T1 in a joint to complete the trajectory. If there is any
mechanical deterioration, the system will be less efficient, but the robot controller will make sure that
this deterioration does not affect the accuracy of the robot. Even if the accuracy remains invariant,
to finish the same program P1 the required torque now (T2) will be higher than before (T2 > T1).

Figure 12. Diagram of the proposed methodology. First, the trajectory and tool are defined. Then,
the program is executed and torque data is acquired. The recorded data is stored in a server as
a reference along with the robot’s ID. The process is periodically repeated and the new signals are
compared with previously recorded ones to diagnose a possible deterioration.

We therefore propose to use a specific trajectory-tool combination in the robots of the production
line to assess their current health status. As described in the diagram of Figure 12 robots will execute
a predefined non-trivial trajectory with a known load and they will require a certain amount of torque
in each joint to complete this trajectory. To acquire torque data in all the joints, the trajectory must
use the whole set of joints comprising the robot manipulator. We will call Health Assessment Program
(HAP) to that predefined trajectory-load combination. These two specifications will always have to
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remain unchanged in order to make a fair comparison of the results. However, an advantage of the
methodology is that the precise shape, center of mass and inertia of the load are not required to be
known or modeled.

The first step is to execute the trajectory with the robot attaching the corresponding load.
The torque of each joint will be recorded during the the whole process, producing a digital signature
of the torque of each joint. This initial torque data or signature will be used as a reference for that
particular robot. This initial data will be stored with an identification number of the robot. Whenever
we want to analyse the mechanical deterioration of the joints of that robot, we will run the HAP again
and compare the previously stored values with the recently acquired ones. If there is no change in the
torque values, we can conclude that there is no significant mechanical deterioration in the joints yet.
In contrast, if there is some increase in the torque of a certain joint, it will mean that the motor of that
joint is requiring more effort than expected.

The proposed methodology is applicable to any joint or industrial robot. In addition programming
the HAP as an additional trajectory to the usual routine of the robots is enough. It is not necessary to
take the robot off the production line to diagnose it. Which is a significant advantage compared to
existing condition monitoring techniques.

6. Discussion and Conclusions

We reported a methodology for industrial robot health assessment. The methodology was
validated experimentally comparing the torque of two robot wrists. These results show that torque
sensors provide reliable information to detect mechanical deterioration of an industrial robot’s joint.
We carried out the comparisons with different loads and the increment in the torque was clearly
appreciable with the three tested loads. Therefore, the methodology is proved to be useful with any
load configuration. The recorded torque data shows an homogeneous increase in the faulty wrist.
The source of the malfunction was located in the permanent magnets of the motor brakes with an in
depth mechanical inspection. We measured the magnetic field of the permanent magnets and the
hysteresis curves showed a 24% of magnetic field loss in the permanent magnets of the faulty joint.
The effect of this magnetic field loss can be effectively detected with the proposed methodology.

A direct conclusion of the work is that the electrical consumption of the faulty joint was
approximately twice that of a healthy joint. Therefore, even if a robot does not show any apparent
malfunction it might still be working in conditions which are far from ideal due to mechanical
deterioration and fatigue. The proposed method could help manufacturers to monitor not only the
mechanical condition of the robot joints but also the electrical over-consumption i.e., Detecting the most
energy-consuming robots or work cells. Controlling the energy consumption of robots is a fundamental
factor to achieve sustainable factories and to reduce pollution.

Another significant advantage of the methodology is that torque measurement is done inside
the robot’s physical structure. As we mentioned in the introduction, if a sensor or a wire installed
in the outside part of the robot’s structure detaches and falls into the production line, it could cause
significant damage to the product being manufactured or even stop the production line. Therefore,
since torque sensors are inside the robot’s physical structure, this possible inconvenience is dismissed.
Last but not least, the methodology is applicable to any industrial robot, as long as the acquired data
is compared with robots of the same model. Hence, our approach does not depend on the robot
manufacturer or the robot type. It only depends on the programmed trajectory and the carried load,
which are both configurable by researchers and practitioners.

A limitation of the presented work is that the detection of torque deviation depends on
a pre-defined tool and trajectory configuration. Therefore, if either of these two characteristics change,
torque signals would also inevitably change and the data regarding the monitored robot should be
readjusted. Another limitation of the presented work is that the execution of the Health Assessment
Program requires the robot to momentarily stop its normal production behavior to execute a pre-defined
trajectory and acquire the correct torque signals.
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An identified future line of work is to implement machine-learning models to detect anomalies in
the torque of robot joints with different tool and trajectory configurations. Although our approach
requires a specific trajectory and tool configuration for the data to be comparable, a machine-learning
model might be flexible enough to detect deviations with different trajectory and tool configurations
and extrapolate the behavior learned in one use case to the rest. Another interesting future line of work
would be to use the proposed methodology to train predictive models to estimate the RUL of industrial
robots in real production line conditions. Our methodology effectively detects deviations from the
normal behavior of robot joints in real world scenarios, but further research is needed to accurately
assess the RUL of the monitored robotic systems. Finally, torque data monitoring could also be used to
find an optimal standby pose of industrial robots in order to minimize the effort of the joints. Based on
the observed influence of the waiting pose in the wrist failures (Section 4). An optimal standby pose
for a given robot model and tool, could minimize the effort and thus torque and temperature of the
joints, increasing their RUL and optimizing the energy consumption.
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Abstract
This manuscript reports on a novel methodology and experimental implementation for industrial robot standby pose
optimization. First, we analyze the influence of the standby pose of robots in the reduction of their useful life by conducting
a preliminary study in an automotive assembly line. Afterwards, we propose a novel methodology to optimize the standby
pose of industrial robots by minimizing the torque applied in the joints. The results show that the methodology can reduce
by 31.37% the average torque applied by a 200-kg-payload, 6 degree-of-freedom industrial robot in normal production
conditions. In addition, we demonstrate that the methodology is robot model and tool invariant, by implementing the
presented solution in a Kuka KR3 and two ABB IRB 6400r robots with different tools. The benefits of optimizing the standby
pose of industrial robots in manufacturing assembly lines are twofold. First, it reduces the stress and temperature of the
joints, increasing the remaining useful life. Second, it offers the possibility of substantially reducing the energy consumption
of the production line, as the time spent by industrial robots in a standby pose can reach up to 80% of their total operational
time.

Keywords Pose optimization · PHM · Industrial robots · Genetic algorithms · Sustainable manufacturing

1 Introduction

Industrial robots have been used for decades in the
manufacturing industry. The efficiency and accuracy of
these complex systems have improved substantially and
their high repeatability and robustness are enabling the
automatization of more industrial processes year by year.
However, like any other machine, industrial robots are prone
to failure regardless of their robustness. These failures
usually occur after years of normal operational behavior
and are difficult to predict due to the complexity and
non-linearity inherent in robotic systems. The complexity
of industrial robots and the low frequency of failures
make it difficult to precisely address the root cause of a
certain failure and to establish standards for robot condition
monitoring. However, there are some known factors that
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1 Electronics and Computer Science department,
Mondragon Unibertsitatea, Mondragón, Spain

2 Système Robotiques et Interactifs, UPSSITECH,
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negatively affect the Remaining Useful Life (RUL) of
industrial robots.

The overheating of robot joints is one of the most
common sources of failure. A relatively high temperature
in the motor of a joint over a long period can produce a
motor brake failure. Thus, controlling the temperature of the
joints is a key maintenance measure for industrial robots,
especially for those subjected to very demanding working
regimes.

There are three main methods to reduce the temperature
of industrial robot joints: decreasing the weight of the
tool, optimizing the trajectory (e.g., reducing the speed), or
optimizing the standby pose. In this article, we will focus
on the third method. The standby pose is the stationary
pose of the robots when they wait for the next product
in an assembly line. While the robots wait, the motors
inside the joints apply torque to hold the tool in the pose
they are programmed to. Depending on the pose and the
tool, the amount of torque applied by each joint will be
different. Minimizing the total torque applied in a standby
pose reduces both the temperature of its joints and the total
electric consumption.

Sustainability has not been considered in the optimiza-
tion of industrial processes until very recently. However, in
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the last few years, there is an increasing urge to reduce the
electric consumption in factories and turn the industry into
a more sustainable sector. In this context, the optimization
of robot trajectories to reduce the energy consumption is
a growing research field. Paes et al. [9] presented a sys-
tematic methodology for an energy-optimal path planning
in an ABB industrial robot. They also addressed the need
for further research to integrate the standby pose of the
robots in the optimization procedure. Brossog et al. [1] pro-
posed a dynamic model for a 6 degree-of-freedom (DoF)
industrial robot working in an assembly line and analyzed
its power consumption as well as its dynamic behavior.
They also surveyed in Brossog et al. [2] the state of the art
in industrial robot energy consumption and concluded that
most of the contributions propose predictions based on sim-
ulation models. Gadaleta et al. [4] conducted an in-depth
review of the state-of-the-art concerning eco-design and
eco-programming methods in industrial robots. However,
according to the authors’ knowledge, all the contributions
that minimize energy consumption in robotic systems focus
on trajectory optimization.

Unfortunately, the reality of manufacturing assembly
lines is not as flexible as research laboratories. In real
assembly lines, every robot has to execute a defined
trajectory in its working cell. Therefore, the constraints
of the work carried out in each station might not always
permit optimizing the trajectory to its maximum extent. In
addition, even though industrial robots spend a substantial
portion of the total operational time waiting stationary
in the work cell and consuming energy meanwhile, the
standby pose optimization has not received much attention
from researchers or practitioners. Recent contributions
analyze the impact of the pose in the stiffness of the
robotic system. Xiong et al. [12] proposed a stiffness-
based pose optimization of an industrial robot for five-axis
milling. Lin et al. [5] presented a robot pose optimization
methodology based on robotic performance indexes. Torque
fluctuation minimization and force balancing have also been
extensively addressed. Zhang and Chen [14] minimized
the torque fluctuation using a simple PD controller and
a mass redistribution scheme by optimizing the design
variables of the feedback control gains and the dimensions
of links. Ouyang and Zhang [8] adjusted the kinematic
parameters (AKP) to minimize the torque fluctuation and
the joint forces. They demonstrated that the AKP was
ently better than other force balancing methods such as
the counterweights. However, regarding failure prediction
and RUL estimation, there is no research contribution that
studies the influence of the standby pose in industrial robot
failures.

In this manuscript, we implement genetic algorithms
to optimize the pose of industrial robots by acquiring
online internal torque data. Genetic algorithms have been

widely used for the optimization of industrial processes.
These algorithms are simple to implement and efficient
for multivariate optimization problems. Fleming and Chip-
perfield [3] extensively studied the applicability of genetic
algorithms in engineering, specially in job shop scheduling,
robotics, and aerodynamics. Mitra and Gopinath [7] imple-
mented a multiobjective genetic algorithm for an industrial
grinding operation. Man et al. [6] focused in the applica-
bility of genetic algorithms for control and signal process-
ing. Yıldız [13] proved the effectiveness of genetic algo-
rithms for the optimization of milling operations. Recently,
Wang et al. [11] optimized the torque of a robot joint using
genetic algorithms in the context of building a cost-effective
haptic system, comprising a haptic environment and its
corresponding robot.

As mentioned above, although the optimization of robot
trajectories is a growing research field, the standby pose of
industrial robots in real production environments has been
largely omitted by researchers and practitioners. The lack
of studies that reflect the impact of the standby pose in
reducing the RUL of industrial robots might be a plausible
cause for this gap. Therefore, the objective of our work
is, on the one hand, to emphasize the importance of the
standby pose in the reduction of the RUL and, on the
other hand, to offer a practical pose optimization solution
that can be applied regardless of the robot model or the
attached tool in real-world scenarios. Apart from decreasing
the RUL, optimizing the standby pose of heavy payload
industrial robots could significantly reduce the overall
energy consumption of highly automated assembly lines,
e.g., in the automotive or aeronautical industry.

In Section 2, we motivate our contribution by explaining
the importance of optimizing the standby pose of industrial
robots in manufacturing assembly lines. Section 3 describes
the infrastructure of the experiment and the implemented
optimization algorithm. We present the results of the
experiment in Section 4; and in Section 5, we show the
actual torque optimization potential in a real automotive
manufacturing assembly line. Finally, Section 6 summarizes
the conclusions and proposes future lines of work.

2Motivation

The optimization of the standby or waiting pose consists
of finding the optimal stationary pose in which the robots
wait for the next product in an assembly line. The optimal
pose depends on the robot model and the attached tool. In
our case, we will use the torque applied in each joint of
the robot to measure the effort of the joints. The objective
of the optimization algorithm will therefore be to minimize
the total torque applied in the joints when the robots are
stationary. In real manufacturing assembly lines, industrial
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Fig. 1 Diagram of the data acquisition modules

robots spend between 20 and 80% of the total operational
time waiting in a stationary or standby pose for the next
product, depending on their work regime. However, both
researchers and practitioners have paid little attention to the
efficiency of the standby pose of industrial robots and much
more to the efficiency of the trajectories. In this section, as
well as in Section 5, we will emphasize the importance of
optimizing the robot pose in real industrial environments.

There are two main reasons to optimize the standby
pose of industrial robots. First, there is a significant
electric consumption saving potential. As a consequence
of the climate crisis, there is an increasing need to reduce
energy consumption in industry. As the use of robots in
manufacturing production lines increases, it is necessary to
develop and implement methods that minimize the electrical
consumption of these systems. By minimizing joint torque,
the motors inside the joints require less electric current
to hold a stationary pose. As a result, the total electric
consumption of assembly lines could be significantly
reduced, especially in highly automated factories, e.g.,
automotive body shop assembly lines.

The second reason is to increment the useful life of
industrial robots. If the effort of a joint is reduced, the
electric current of its motor and thus its temperature will
also decrease. The temperature directly affects the useful

Table 1 Standby orientation mean with recorded historical failures and
without failures

Orientation of the 5th joint (◦)

With failure 71.39

Without failure 62.22

life of the components inside the joints, such as the
permanent magnets of the brakes and the wires of the coils
(Fig. 1).

We conducted a preliminary study by collecting the
historical failure data of 621 industrial robots in a real
automotive production line to illustrate the importance of
the standby pose in robot failures. The data collected
consists of the pose of robot joints while being stationary
and information about whether the robot had a failure in a
particular joint or not. In Table 1, we show the difference
in the mean standby orientation of the fifth joint of all
the robots. The data in the first row corresponds to robots
that have failed in the fifth joint and the second row
corresponds to robots that have never failed. We measured
the orientation in degrees, which ranges between 0◦ and 90◦.
Figure 2 shows and schematic of an industrial robot wrist
(5th and 6th joints) and a representation of the angles used
in the study. As shown in the figure, 0◦ represents absolute
verticality to the ground in the 5th joint and 90◦ represents
total horizontality to the ground.

Fig. 2 Schematic of the 5th and 6th joints (wrist) of a robot and
the corresponding degrees used to represent the verticality and
horizontality of the 5th joint
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These preliminary results show that robots waiting in a
standby pose closer to the horizontal plane with reference to
the ground tend to fail more frequently in the 5th joint than
robots whose stationary pose is closer to the vertical plane.

3 Experimental implementation

We optimized the standby pose of a Kuka KR3 robot and
implemented The Robot Operating System (ROS) [10] as a
communication and control interface between the robot and
a laboratory computer. We used real-time communication
with a frequency of 12 ms in order to ensure a reliable data
acquisition process. The genetic algorithm was developed
from scratch with the Python programming language. The
architecture of the data acquisition process is shown in
Fig. 1.

The experimental process starts by defining a set of 40
random joint angles (the initial population) in the Genetic
algorithm module. These angles are sent to the main
controller, which moves the robot to the first random pose
and waits until the movement has finished. When the robot
reaches the desired pose, the controller waits approximately
half a second for the robot to stabilize, and then it captures
the torque of all the six joints for another half a second. We
calculate the median of the captured torques in each joint
to eliminate non-Gaussian noises, frequent in non-linear
and dynamic industrial machinery. These torque values are
stored in a file alongside the angles of the joints and the

scored fitness value. The fitness value is calculated based on
the total torque applied to hold the current pose. The more
torque is applied, the higher the fitness score. Therefore, the
genetic algorithm selects the angles with the lowest fitness
score. In each epoch or iteration, the best 20 individuals
(poses) are selected as the parents of the next generation.
The next generation is created by crossover, mixing the
genes (joint angles) of the selected parents. A mutation
ranging between 0 and 0.05 radians is randomly introduced
in every 1 out of 4 new individuals to maintain genetic
diversity and avoid local minima. Following this process
iteratively, each generation of individuals reduces the torque
applied by the robot compared to the previous generation
until the algorithm converges in an optimal solution.

Our methodology allows easily applying physical con-
straints to the search space of the genetic algorithm. The
constraints are implemented for two main reasons: to avoid
the collisions between the robot and nearby physical obsta-
cles and to avoid singularity poses. The algorithm rejects the
angles that are in conflict with the physical constraints, i.e.,
every new generation of poses that the algorithm creates is
checked to ensure that the new individuals satisfy the spec-
ified constraints. The constraints are defined by calculating
the forward kinematics equations of the industrial robot with
every new generation of individuals.

Although we decided to minimize the total torque of
the robot, it is also possible to minimize the torque of
a certain joint or group of joints, or even to implement
a multiobjective optimization algorithm with multiple

Fig. 3 Fitness function value of
joints 1, 2, and 3 (blue); joints 4,
5, and 6 (orange); and the sum
of the two fitness values (green)
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Fitness2
FitnessTot

Fi
tn
es
s

Time

2068 Int J Adv Manuf Technol (2020) 111:2065–2072



objectives to optimize, e.g., to maximize the torque of a joint
while minimizing the torque of another one. In our case,
we developed a multiobjective minimization algorithm to
minimize both the sum of the torques in joints 1, 2, and 3
and the sum of the torques in joints 4, 5, and 6 separately.

4 Results

Each of the two optimization objectives, i.e., sum of torques
in joints 1, 2, and 3, and sum of torques in joints 4, 5,
and 6, had its own fitness function. Figure 3 shows the
fitness function of the two optimization objectives (Fitness1
and Fitness2) throughout the whole optimization process, as
well as the sum of these two fitness functions (FitnessTot).

The genetic algorithm minimizes faster the fitness
functions in the first 100 iterations than in the rest of
the process. Afterwards, from iteration 100 to iteration
200, the fitness functions are minimized slower reaching a
convergence point. Finally, the genetic algorithm reaches an
optimal solution and converges approximately in the 200th
iteration. Figure 4 shows the angles of each joint in radians
while the optimization algorithm was executing. The lines
in the figure represent the joint angles in each iteration, until
the algorithm eventually finds the optimal standby pose.

The optimal standby pose in which the robot applies the
minimum torque to hold the pose is shown in Fig. 5. The
achieved pose is logically coherent, as the robot reaches
a pose of equilibrium. The center of gravity of the whole

Fig. 5 The optimal standby pose obtained by minimizing the total
torque applied by the joints with the multiobjective genetic algorithm

systems stays as close as possible to the base of the robot.
Therefore, the motors of the joints require the minimum
amount of effort to hold the optimized pose.

The methodology is applicable to any robot and tool
configuration. Every robot and tool will have its own
optimal pose depending on the dimensions and center
of gravity of the whole system. The algorithm will find
the minimum torque-demanding pose regardless of the
attached tool and without any additional code modification.
To demonstrate the applicability of the methodology in

Fig. 4 The angle value (rad) of
each joint while the
optimization algorithm was in
execution. The angles of joints 1
and 6 were removed from the
figure for clarity
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Fig. 6 Standard pose

different robots, we optimized the standby pose of a
large ABB IRB 6400r industrial robot, following the same
process described in this manuscript.

The optimization potential is more appreciable with large
industrial robots, as they carry very heavy loads in assembly
lines. Figures 6, 7, and 8 show the robot with a load of
140 kg in the default standby pose, in an extended pose, and
in the optimized pose respectively. The total torque applied
in these three poses is shown in Table 2. The robot applies
3.27 times more torque in the extended pose than in the
optimal pose. This increment in the torque is a key factor for
robot maintenance as pointed out in Section 2, especially for
highly critical robots such as those located in assembly line
bottlenecks.

5 Implementation in amanufacturing
assembly line

We implemented the methodology in a real automotive man-
ufacturing assembly line to measure the real optimization
potential on industrial production working conditions. We

Fig. 7 Extended pose

Fig. 8 Optimized pose

selected a robot that had a particularly high failure fre-
quency compared to the rest of the robots. In addition, the
workstation of this robot was identical to an adjacent sta-
tion. Which means that the work of this particular station
was duplicated in another contiguous station and the robots
of both stations executed the same work in parallel. These
conditions allowed us to optimize the waiting pose of one
robot and compare its torque minimization with respect to
the robot that executed the same work in the contiguous
station.

The selected robot had a spot welding gun attached to the
flange and carried a total load of 165.7 kg. We optimized
the standby pose of the robot by implementing the presented
methodology. The pose in which the robot waits for the next
product was therefore modified to minimize the total torque
applied in the joints. The period of time that robots spend
waiting for the next product on automotive assembly lines
depends on many factors: the state of the assembly line,
the production rate, the trajectories that the robots have to
execute, their location on the line, etc. Hence, the influence
of the standby pose optimization on the energy efficiency
and the increase of the robot’s RUL will also depend on all
these factors that determine its working regime.

Once we optimized the pose, we monitored the torque
of all the joints in both robots (the optimized robot and its
homologous in the contiguous workstation). The monitoring
was carried out over approximately 2 h in normal production
conditions. Figure 9 shows the total torque applied (the

Table 2 Torque required by an ABB IRB 6400r robot with a load of
140 kg in three different poses

Pose Applied torque (Nm)

Standard 7.764

Extended 17.413

Optimized 5.333
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Fig. 9 Total torque of the optimized and non-optimized robots respectively. The red circles identify examples of periods of time in which the
robots wait in their standby pose

sum of the torque of the 6 joints) by the optimized and
non-optimized robots.

The torque minimization potential is significant as shown
in the figures. The circles indicate specific periods of time
in which the robots wait in a standby pose. The standby
pose highly influences the median and mean values of the
total torque in industrial robots. The median and mean
values of the total torque in the optimized robot were
11.28 Nm and 18.56 Nm respectively. In contrast, the
median and mean values of the non-optimized robot were
25.38 Nm and 27.06 Nm, respectively, which implies a
31.37% reduction of the average total torque applied by
the optimized robot in normal production conditions. It
is evident from these results that the optimization of the
standby pose can significantly affect the total torque applied
by industrial robots in real-world scenarios and therefore
requires special attention from maintenance personnel.

6 Conclusions and future work

Although academic research has given little attention to
the pose in which industrial robots wait, the standby pose
directly influences the RUL and the electric consumption
of these machines. We implemented a genetic algorithm
to minimize the total torque of three different industrial
robots. The results demonstrate that the difference in the
total torque applied by a non-optimized standby pose can
be up to 3.26 times higher than an optimized standby pose
in a heavy payload industrial robot. The methodology is
implemented to optimize the pose of an ABB IRB 6400r
in real production conditions and its total applied torque
is reduced by a 31.37%. A remarkable advantage of the
methodology is its flexibility. It is robot model and tool
invariant and the optimization is applicable to individual
joints as well as to the entire robotic system. In addition,
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the genetic algorithm permits to add constraints in its search
space to avoid nearby obstacles. This might be especially
useful for real-world scenarios, where industrial robots
work in very limited workstations.

Further research is needed to accurately quantify the
impact of a non-optimized standby pose in the RUL of
industrial robots. A long-term study on the influence of the
standby pose in the reduction of their RUL could path the
way toward an effective predictive maintenance strategy for
these complex systems. In future work, the possibility of
modifying the trajectory or the standby pose of a robot to
minimize the effort of a particular joint that is showing signs
of imminent failure might prove important. If the effort on
a failing joint can be reduced by minimizing the applied
torque, maintenance personnel may have more time to plan
interventions and reduce the impact on production. Finally,
it would also be an interesting topic for future studies to
propose a multiobjective optimization algorithm that would
not only consider the total applied torque, but also the final
state and location of the robots in the assembly line to
facilitate a more efficient production time.
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A practical and synchronized data acquisition
network architecture for industrial robot predictive

maintenance in manufacturing assembly lines

Abstract—This manuscript presents a network architecture
and a methodology for industrial robot data acquisition. We
propose a non-intrusive and scalable robot signal extraction
architecture, easily applicable in real manufacturing assembly
lines. All the infrastructure needed for the implementation of
the architecture is comprised of traditional well-known industrial
assets. We synchronize the data acquisition with the execution of
robot routines using common Programmable Logic Controllers
(PLC) to obtain comparable data batches. A network architecture
that acquires comparable and structured data over time, is a
crucial step to advance towards an effective predictive mainte-
nance of these complex systems, in terms of effectively detecting
time dependent degradation. We implement the architecture in
a real automotive manufacturing assembly line and show the
potential of the solution to detect robot joint failures in real
world scenarios.

Index Terms—Cyber-Physical Systems, Industry 4.0, Predictive
Maintenance, Industrial robots, IIoT

I. INTRODUCTION

THE world’s most industrialized economies are currently
undergoing the so called fourth industrial revolution or

Industry 4.0. This revolution covers a wide variety of techno-
logical developments such as: the digitalization of factories,
the implementation of Big Data and advanced analytics solu-
tions, the Internet of Things (IoT), the development and in-
tegration of new Cyber-Physical Systems (CPS), Smart cities,
predictive maintenance policies, etc. In this manuscript, we
will be focusing on two areas of Industry 4.0 in manufacturing:
the evolution of CPS and data-based predictive maintenance.

Before we dig deeper into the issue, it is necessary to
clarify the distinction between Industry 4.0 and CPS. CPS
refers to a physical system controlled by communication
networks and software. In the manufacturing industry, all the
physical processes of the assembly line such as industrial
robots, welding machines, cooling systems, etc. are controlled
by industrial communication networks, centralized servers
and Programmable Logic Controllers (PLC). Industry 4.0 in
contrast, covers the evolution of traditional cyber-physical
systems, as well as recently introduced concepts such as the
implementation of Industrial Internet of Things (IIoT), Big
Data infrastructures, machine learning models, etc. Thus, the
evolution of CPS is a part of the whole framework of Industry
4.0.

In this context, traditional CPS are evolving to overcome
new industrial challenges related to heterogeneous data acqui-
sition and manipulation. This evolution can be separated into
two fundamental categories [1]: system infrastructure and data
analysis. The former refers to the network infrastructure itself
and it’s evolution, whereas the latter focuses on the analysis

of the data, including statistical analysis or the training and
testing of machine learning models.

The network architecture proposed in this article, is framed
in the evolution of traditional cyber-physical systems within
the Industry 4.0 paradigm and it is focused on the sys-
tem infrastructure. The data acquisition methods, as well
as the transformation and integration of heterogeneous data
are three identified research challenges [2]. Traditional CPS
were designed and implemented way before the concept of
Industry 4.0 was introduced and these challenges arose as
a consequence. Thus, to effectively implement data analysis
in real industrial environments, it is necessary to first design
and implement data acquisition, transformation and integration
mechanisms that are coherent with the global framework of
Industry 4.0.

Even though industry is making efforts to adapt to this
new reality, the Prognosis and Health Management (PHM) of
complex machinery is a challenging task and very few cases
do in fact succeed in real life [3]. One of the main reasons
behind this difficulty is that real machines are exposed to much
more conditions than tested in laboratory. Even if we have a
fleet of similar machines as it is the case of industrial robots,
each individual will evolve and degrade differently, due to its
unique work regime and environment.

In the last few years, several contributions have proposed
condition monitoring and predictive maintenance solutions for
industrial robots based on both analytical models [4], [5] and
data-driven [6], [7], [8], [9] approaches. Nevertheless, the
maintenance of industrial robots in manufacturing plants is
yet either corrective (after a failure) or preventive (periodic
joint lubricant checks for wear debris detection). In fact, there
is no consensus about which is the most reliable methodol-
ogy for industrial robot condition monitoring and predictive
maintenance at production line scale. In other words, there is
no clear approach or methodology to implement a predictive
maintenance solution for a fleet of industrial robots in a real
manufacturing assembly line.

On the one hand, the intelligence inherent in industrial
robots can be very useful to overcome CPS challenges, as
it offers the possibility of monitoring data in a synchronized,
clean and structured way. On the other hand, the evolution of
CPS and the implementation of Industry 4.0 technologies can
help to advance towards an effective predictive maintenance
policy for industrial robots. Therefore, the network architecture
that we propose emphasizes the importance of the integration
between the evolution of CPS and industrial robot mainte-
nance strategies. Taking in this way a step forward towards a
pragmatic predictive maintenance policy for industrial robots
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in real industrial environments.
Bittencourt et al. [10] monitored a robot joint in a real

accelerated wear test. They validated a methodology to detect
a deviation in the monitored torque, caused by an increased
friction in the joint. Their methodology assumes that the
monitored data batches collected under a repetitive behavior
are directly comparable when there is no fault and will vary
otherwise. Therefore, in order to extrapolate the methodology
to a real world scenario, it is essential to collect the data
synchronously so that the batches are comparable.

The novelty of our manuscript resides on the description
of a network architecture and methodology required as a
preliminary step to carry out a reliable and practical PHM for a
fleet of industrial robots in a real industrial environment. The
proposed solution is especially useful for highly automated
assembly lines.

The article is structured as follows: section II analyses the
characteristics of complex industrial system condition monitor-
ing. Section III describes the main differential characteristics
of industrial robots and their advantages and disadvantages.
In section IV we propose an architecture for an effective and
synchronized data acquisition of a fleet of industrial robots
and we describe the methodology in section V. Afterwards,
we implement the proposed solution in a real automotive
manufacturing assembly line and present the results in VI.
Finally in section VII we summarize the main conclusions
and define future lines of work.

II. COMPLEX INDUSTRIAL SYSTEM CONDITION
MONITORING

Complex industrial systems work with critical processes and
the failure of one of these systems often results in a significant
economic loss for companies. Maintenance personnel carry out
regular preventive maintenance tasks to keep these systems in
the best possible condition and avoid eventual failures. As a
consequence, complex industrial systems do not fail so often
and there is not much representative data of failure states,
which makes the training of data-driven models for health
monitoring even more challenging.

Although these factors hinder the implementation of data-
driven predictive models, the following contributions demon-
strate the applicability of machine learning algorithms for
PHM in complex industrial PHM use cases. Leahy et al. [11],
[12] diagnosed wind turbine faults using machine learning
models. Widodo et al. [13] implemented a support vector
machine (SVM) and a relevance vector machine (RVM) for
battery health prognostics. Pecht [14] defined a road-map for
implementing PHM in electronic systems and emphasized the
inaccuracy of traditional failure prediction models based on
constant failure rates.

The absence of faulty operating conditions does not allow
to train models with a supervised learning approach, where a
percentage of the data is classified as healthy and the rest as
faulty. As pointed out by Michau et al. in [15], unsupervised
one-class classification can effectively deal with the diversity
of the operating conditions of complex industrial systems.
They proposed to first learn the healthy state of complex

machinery using unsupervised models and then calculate the
difference between the healthy and the current monitored state
to detect deviations and possible failures. This approach only
uses data of the healthy status of a machine to train the models,
assuming the lack of faulty data that characterizes complex
industrial systems.

In some cases like in assembly line industrial robots, the
large number of assets form fleets. A factory-scale PHM
solution should be able to extrapolate the healthy conditions
learned in certain robots to create a generalized solution for
the rest of the fleet’s individuals. Collecting data from a fleet
of complex systems, as in the case of industrial robots, can
help to analyse and compare a wide variety of conditions that
would be very difficult to cover with only a few individuals.
However, in order to collect representative data of a fleet of
robots, it is necessary to first design and implement a reliable
network architecture that supports this data acquisition.

III. PREDICTIVE MAINTENANCE FOR INDUSTRIAL ROBOTS

Contributions on the predictive maintenance of industrial
robots have been mainly focused on the selection of auspicious
sensors and methodologies that address the PHM of individual
industrial robots. Quiao et al. [16] warns about the importance
of approaching the predictive maintenance of robotic systems
from a holistic point of view, as a whole system and not
by analysing their components individually. The interaction
between the components within the robot, makes the behaviour
of the system as a whole, distinct from that of the components
monitored separately e.g. the behaviour and the environment
of an electric motor is different when it is working attached to
the ground, isolated and at constant speeds or moving inside a
robot joint, with changing accelerations, loads, temperatures,
torques, etc.

Some of the characteristics that differentiate industrial
robots from other industrial systems are beneficial to build
data-based predictive maintenance solutions. On the one hand,
robotic systems permit to record structured data by monitoring
internal signals. Which is a great inherent advantage over less
sensorized industrial systems. Nowadays robot controllers are
able to record information of the joints using factory built-in
sensors and send the data through socket communication to
an external server.

In addition, in highly automated assembly lines, industrial
robot fleets can reach up to several hundred individuals and
each one of them is a potential source of information. As
mentioned before, the knowledge extracted in a given robot
might be extrapolated to the rest of the fleet. Moreover, as
all the robots working in a manufacturing production line
are connected to a control network, it is possible to use this
network to automatize and synchronize the data acquisition of
an entire robot fleet in manufacturing production lines.

On the other hand, the main drawback for implement-
ing data-based predictive maintenance solutions for industrial
robots, is the complexity of the system. Robotic systems are
highly configurable, both in terms of the trajectories they
execute and the wide variety of tools they can use. Hence,
while the behaviour of a robot with a certain path and tool may
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be representative of impending failure, the same behaviour in
another robot with another path and tool may be representative
of a healthy state.

IV. DATA ACQUISITION NETWORK ARCHITECTURE

The network architecture is shown in figure 1. We divided
it in five layers: data acquisition, control, external sensors,
robot metadata, data storage and analysis and visualization
layers. The implementation of the architecture does not require
additional infrastructure than the usual found in a conventional
automated production line as we explain in section VI.

A. Data acquisition layer

The data acquisition layer is the subnet that records the
data from the robots and stores it in the data server. Nowadays
robot controllers can send internal signals through TCP socket
communication to an external receiver. This feature has to be
enabled in the controller by specifying the internal signals to
collect e.g. speed, resolver angle, torque, etc.

The signals can be acquired on demand. When the socket
communication is enabled in the robot controllers, the data can
be transmitted continuously or on demand when an external
agent establishes connection. In our case, the data server
decides when to start and end the acquisition and from which
robot.

B. Control layer

Depending on the work they have to perform, the PLCs
know which routine is each robot executing and when. This
is crucial to synchronize the data acquisition and it is the core
of our proposal.

Fig. 1: The data acquisition network architecture. The control
layer is used to synchronize the acquisition of robot signals
with additional external sensors, as well as with the executed
routines.

The difference between collecting data continuously and on
demand is essential when the purpose of the data collection is
to build predictive models. Specially for industrial robots, as
their behaviour changes drastically depending on the routine
they are executing. If the data acquisition process is done
in a way in which every stream of data has a certain robot
and routine assigned to it, the data will be comparable and
representative of that particular robot and routine binomial.

Therefore, this architecture enables the data recording either
continuously or discontinuously and synchronized. Each of
these forms has its benefits. On the one hand, if the data
is collected continuously, it describes the entire operational
behavior of the robot. Including all the routines and the periods
in which the robot waits standstill for the execution of the next
routine. Depending on the robot, this standstill waiting time
can be even longer than the actual execution of it’s routines.

On the other hand, if the data is discontinuously and
synchronously collected, the acquisition is only be performed
when the robots execute certain routines. As a result, there is
no recording while the robot waits standstill, but the data from
a certain routine is directly comparable over time. This ability
to compare the data of a robot-routine binomial over time is
the key enabler for detecting anomalies and predicting medium
and long-term wear. Therefore, the implementation of a data
acquisition network architecture that supports both continuous
and synchronized data extraction is a necessary preliminary
step for building feasible predictive models.

C. External sensors layer

The signals collected from the data acquisition layer consist
of internal robot signals. However, if there is more information
to be recorded with additional external sensors, the data
captured with the external sensors will be transmitted trough
this layer. Examples of additional external sensors could be
acoustic emission sensors, oil debris sensors, thermal images,
etc.

A powerful benefit of the proposed architecture is that even
if the external sensors are not intelligent enough to capture data
on demand, the server will know which information stream
coming from the external sensors merges with the internal
robot signals of the data acquisition layer. The merging is
possible by using the timer of the control layer to save the
data that is acquired online with the external sensors. In this
way, the control layer establishes the exact period of time when
the data acquisition has to be performed in both layers. This
synchronization is possible by using the PLCs of the control
layer.

D. Robot metadata layer

The robot’s metadata is used to classify the data acquired in
the rest of the layers. The metadata contains information of the
tool that each robot is holding and its weight, their maximum
payload, the standby or waiting pose of each robot, the history
of faults and its frequency, etc. The signals recorded in a faulty
state of a given robot can be very similar to those recorded
in the healthy state of another one. Therefore, By adding the
metadata, it is possible to compare the acquired data between
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robots that have similar working regimes and therefore detect
anomalies in robots that should be behaving in the same way.

E. Data storage and analysis layer

The data storage and analysis layer consists of a server
responsible for storing and analysing the data acquired from
the data acquisition, additional sensors and robot metadata
layers. The server communicates with the PLCs to decide
when to start collecting the data in each robot and merges
the acquired signals with the appropriate additional informa-
tion. As mentioned in the control layer section, although we
propose to collect the data on demand, it is also possible to
monitor and store the data continuously e.g. if we want to
store the behaviour of a robot uninterruptedly both when it
executes routines and when it waits in a standby pose. The
diagram of the database that stores robot signals and robot
metadata is shown in figure 2. Where each table stores the
following information:

• Routines: Defines which routine is recorded in each robot.
• Robot_Signals: Defines which signals are recorded in

each robot (resolver angle, speed or torque).
• Robot_Description: Stores the metadata of each robot (ID

number, IP address, model, location in line, load, date of
last failure, attached tool, etc.)

• Data_Raw: Stores the data that comes directly from the
Data acquisition layer. We do not clean or process the
data before storing it in this table.

• Statistical_Summaries: After processing the data stored in
the Data_Raw table, we store the results of the statistical
analysis and summaries of each routine in this table. Each
line of the table saves an statistical descriptive summary
of all the acquired raw data.

• RUL_Estimation: Finally, once the data analysis is carried
out, the results of the Remaining Useful Life (RUL) are
calculated using the current health status of each robot
and it’s historical failure records. This table stores a RUL
estimation for each robot based on the results of the data
analysis.

In our case, the data analysis is implemented in the same
server where the data is stored. However, it is also possible to
separate these functionalities in two different servers, one for
data storage and the other one for the data analysis and model
implementation, as long as the communication between each
other is guaranteed.

Fig. 2: Diagram of the implemented database that stores the
robot signals and metadata in the data server.

F. Visualization layer

The visualization layer consists in data visualization soft-
ware and infrastructure. It visualizes the results extracted from
the analysis and the predictions calculated with the models.
Our architecture permits to analyse and visualize robot data at
two independent levels: at an individual scale with predictive
maintenance models and RUL estimation for individual robots,
and at a general scale with a global visualization of the robot
fleet.

V. DATA ACQUISITION PROCESS

The data acquisition process is illustrated in figure 3. The
process starts in the data server, by selecting the robot and rou-
tine to be monitored. The server checks in the corresponding
PLC the status of the robot (Robot-1 in the sequence diagram)
and it waits until the PLC confirms that the routine has started
(routine X in the sequence diagram).

Fig. 3: Sequence diagram of the data acquisition process.
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The PLC sends a signal to the robot to start the routine and
simultaneously confirms the start to the data server. When the
server receives the confirmation signal from the PLC, it opens
the TCP/IP socket communication with the robot controller
and starts receiving the robot signals. The signals that the
controller captures and sends have to be previously coded in
the controller, as well as the transmission frequency (ranging
from 1ms to 100 or 500ms). When the robot finishes the
routine, it sends a message to the PLC and the PLC sends
another one to the server to stop the data acquisition. Finally
the server closes the socket communication with the robot
controller, finishing the data acquisition process.

In the TCP/IP socket communication, the robot controller
acts as a TCP server while the data server acts as a TCP client.
The controller opens the communication port and waits until
the server connects to receive the data. The server, connects
to the robots when the PLC confirms that the robot has started
to execute a certain routine, as explained above. In this way,
the server assigns a signal stream to an specific robot-routine
combination, clearly separating between different working
regimes. A remarkeble benefit of this architecture is that the
signal acquisition is carried out in a network separated from
the control layer. The collected signals do not pass through
the PLCs in their way to the data server and therefore, there
is no risk of saturating the control network or the PLCs. After
storing the signals in the data server, additional information
from external data sources (external sensors or databases) can
be added to the collected signal streams. The synchronization
with the PLCs allows collecting data from external sensors at
the same time of the execution of the routine.

VI. IMPLEMENTATION IN AN AUTOMOTIVE BODY SHOP
ASSEMBLY LINE

We implemented the network architecture in an automotive
manufacturing body shop assembly line. Manufacturing as-
sembly lines are highly automated and hundreds of industrial
robots work uninterruptedly separated in working cells. The
PLCs in the control layer are able to manage several working
cells simultaneously via INTERBUS or PROFINET protocols.
The hardware required for the proposed infrastructure already
exists in any common automated assembly line. Therefore, the
implementation is mainly based on software development to
enhance the functionalities of the current infrastructure. In our
case, the only additional hardware asset we added was the data
server.

A. Infrastructure implementation

The first step is to code the signal recording and the
TCP socket server in the robot controllers. Modern robot
controllers integrate a TCP server to enable a socket-based
signal acquisition. We collected the torque signals of the
six joints in each robot. The signal acquisition rate is also
configurable and it depends on the frequency in which we
want to transmit the data.

The second step is to create a set of variables in the PLCs
to inform the data server about the beginning and the end
of the routines. These variables update their values exactly at

the same time as the robot starts the routine, synchronizing
in this way the data acquisition and creating comparable data
batches.

We implemented two main programs in the data server:
one to read the variables of the PLCs and the other to
handle the communication with the robot controllers. As
mentioned above, the communication with the robot controller
is performed via socket by implementing a TCP client in the
server. The client connects to a remote TCP server (the robot
controller) when the PLC notifies the start of a given routine.

When the data acquisition finishes, the received signals
are merged with additional information coming form external
sensors and databases. The language in which the models and
the visualization of the results are implemented in the Data
storage and analysis layer, depends on the software available
in each company. However, the proposed architecture will
remain invariant regardless of these differences.

We started by implementing the architecture in two robots
inside the same working cell, before scaling up the solution to
more cells and robots. When collecting the data, we checked
that the TCP packets were not saturating the network and
we ensured that the memory and the processor of the robot
controllers where operating as usual. Thus, we ensured that
the data acquisition did not have any negative impact in the
production line before scaling up the architecture. We tested
different transmission frequencies and none of them saturated
the network.

B. Results

We collected the data in two ways. First without synchroniz-
ing it with the routines, collecting the data continuously with-
out interruption. Afterwards, synchronizing the data collection
with the PLCs. In figures 4 and 5 we show the collected signals
without synchronization. The signals correspond to two hours
of data acquisition of two industrial robots (Robot 1 and Robot
2) while working in several routines and waiting standby. The
graphs show the torque of the six joints of each robot.

Even though the robots execute different trajectories, both
of them are ABB irb 6400r robots with a maximum payload
of 200Kg and they both have a 104Kg spot welding gun
attached to their flange. Note the difference in the behaviour
of the two robots, not only between the working and waiting
time, but also in the torque of each joint. The execution
of different working regimes completely alters the behaviour
of the joints and makes the generalization and comparison
between these two robots unfeasible. In addition, by acquiring
data in this way without synchronization, there is no clear
distinction between the routines that each of them executes.
The continuous data acquisition does not separate the different
routines and therefore there is no way to compare them over
time and detect deterioration or anomalies. In order to identify
the wear of a robot, it is essential to be able to compare
routines over time, and this is not possible if the routines
cannot be separated.

In contrast, figures 6 and 7 show data acquired in two
different moments (T1 and T2) of the same robot (Robot 2)
executing the same routine. These two graphs demonstrate the
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Fig. 4: Continuous data acquisition of Robot 1.

Fig. 5: Continuous data acquisition of Robot 2.

Robot_ID Motor_ID Trajectory_ID Median_Torque Average_Torque Maximum_Torque Variance_Torque
508 5 502 4.76 4.34 8.74 1.80
508 5 502 4.79 4.43 8.27 1.62
508 5 502 4.90 4.54 8.91 1.74
508 5 502 4.99 4.61 8.73 1.82
508 5 502 4.76 4.52 8.58 1.74
508 5 502 4.61 4.28 8.12 1.77
508 5 502 4.83 4.62 8.42 1.62

TABLE I: Example of summary statistics of the acquired trajectories. Each row represents the statistical summary (median,
average, maximum and variance) of the torque data applied by the same motor of a robot in production.

ability of our approach to automatically identify and separate
data from specific routines. The torque data shown in 6 and 7
were acquired with the proposed architecture to demonstrate
the possibility of achieving comparable data by using the
control layer. The data acquisition is not programmed for any
specific moment in time, but it starts automatically when the
robot starts executing the specified routine. The proposed data
acquisition procedure is an effective solution to the problem
exposed in the previous paragraph with the continuous data
acquisition.

The control layer effectively identifies the routine and the
data server divides the signal streams in separated robot-
routine binomials. As a result, the obtained signals are much
more comparable over time and an eventual health degradation
assessment is easier to address. One of the key benefits of this
architecture is that data collection is performed at the same
time in all the data sources. The result of this data acquisition
procedure is a time series dataset that represents the behaviour

Fig. 6: Synchronized data acquisition of Robot 2 (joints 5 and
6) executing routine X in time T1.

of a given robot-routine binomial.
As explained above, it is hard to identify anomalies in the

behaviour of a robot if there is no clear distinction between
different routines and working conditions. Each robot requires
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Fig. 7: Synchronized data acquisition of Robot 2 (joints 5 and
6) executing routine X in time T2.

a different effort in each joint. Thus, in order to compare real
production line data of a given robot over time and predict
possible failures, it is necessary to first distinguish between
routines and then diagnose the robot’s evolution.

Once we are able to isolate individual trajectories, we can
begin calculating summary statistics of the trajectories. The
objective of summary statistics is to condense the maximum
amount of information of the trajectories in the smallest
amount of data. These summaries will be used for long-
term condition monitoring and predictive maintenance. Table
I shows the summary statistics of the torque signal applied by
the fifth motor of a monitored industrial robot in production.
The summaries are stored along with the robot’s ID number
and the trajectory’s ID. In this table we do not show all the
columns of the dataset for readability and clearness reasons.
The complete set of information that we summarize for each
torque and joint angle signal is as follows: Date and time
of the data acquisition, an id number of the robot, an id
number of the motor, an id number of the trajectory, the
median value, the average value, the maximum value, the 3rd
quartile, the variance and the skewness. The decision of which
statistical analysis to choose will be based on the data and
the objective of the analysis. The effectiveness of predictive
maintenance strategies for industrial robots will strongly rely
on the robustness of these summaries.

We scaled the proposed architecture to twenty robots in the
production line and started acquiring synchronized data. After
a couple of weeks monitoring, one of the robots had a failure in
the reducer of the sixth joint that stopped the production. The
robot required a total replacement of the sixth joint. Figure
8 shows the data acquired some days before and after the
replacement of the sixth joint.

By synchronizing the data acquisition, it is easily apprecia-
ble the change in the torque applied by a robot joint before
and after a joint failure. The torque was much higher before
the joint replacement as a consequence of the unusual friction
caused by the degraded reducer. After replacing the failing
joint, the monitored torque signal stabilized and the peak
values decreased significantly.

Figure 8 shows an example of the applicability of the
presented solution to build a practical and reliable data acqui-
sition infrastructure to detect and eventually predict robot joint
failures. As described in section II, one-class classification
models could be trained to model a healthy joint behavior after

Fig. 8: Synchronized acquired torque of the failing sixth joint.

the replacement of the joint. In this way, the model would be
trained to detect anomalies based on the torque applied by the
joint and identify unusual torque increments for that particular
robot-trajectory configuration.

VII. CONCLUSIONS AND FUTURE WORK

The purpose of this work is to present a network architecture
capable of collecting data from industrial robots in a robust,
reliable and clean way, in order to implement predictive
maintenance models afterwards. The architecture only uses
well known industrial assets and thus it requires no extra
infrastructure investment for an automated manufacturing as-
sembly line. Based on PLC and robot controller programming,
industrial robots can benefit from the intelligence of their own
controllers to send structured signal data to an external server.
The proposed solution also takes into account additional
external sensors or databases that could be included in the
network to extend the information of the monitored robots.

The main benefit of this architecture is that the synchroniza-
tion of the data acquisition separates the information obtained
by each robot in each routine automatically. This permits to
compare the behaviour of a robot in the same routine over
time and predict possible failures in an easier way than by
capturing continuous data without synchronization. In this
way, the final goal of building predictive maintenance models
for complex industrial systems like industrial robots becomes
more realistic.

After implementing the architecture, the next step is to
further analyse the data collected under different working
regimes. The eventual robot failures will also be very valuable
in order to train and test predictive maintenance models. The
training and testing of these models is independent from the
data acquisition layer. Hence, the proposed architecture will
remain unchanged regardless of the data analysis strategy
carried out. Future lines of work will focus on building
machine learning models capable of modelling healthy robot
behaviour using the proposed architecture e.g. If the acquired
data is comparable, anomaly or novelty detection algorithms
could be used to detect a deviation in the normal behaviour of
a given robot. Future work will also address the challenging
task of determining the level of generalization that a predictive
maintenance model for industrial robots should have and
which algorithms are able to robustly model such a complex
and non-linear behaviour.
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