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Abstract: There is an increasing trend in the industry of knowing in real-time the condition of their
assets. In particular, tool wear is a critical aspect, which requires real-time monitoring to reduce costs
and scrap in machining processes. Traditionally, for the purpose of predicting tool wear conditions in
machining, mathematical models have been developed to extract the information from the signal of
sensors attached to the machines. To reduce the complexity of developing physical models, where an
in-depth knowledge of the system being modelled is required, the current trend is to use machine-
learning (ML) models based on data from the tool wear. The acoustic emission (AE) technique has
been widely used to capture data from and understand the real-time condition of industrial assets
such as cutting tools. However, AE signal interpretation and processing is rather complex. One of
the most common features extracted from AE signals to predict the tool wear is the counts parameter,
defined as the number of times that the amplitude of the signal exceeds a predefined threshold.
A recurrent problem of this feature is to define the adequate threshold to obtain consistent wear
prediction. Additionally, AE signal bandwidth is rather wide, and the selection of the optimum
frequencies band for feature extraction has been pointed out as critical and complex by many authors.
To overcome these problems, this paper proposes a methodology that applies multi-threshold count
feature extraction at multiresolution level using wavelet packet transform, which extracts a redundant
and non-optimal feature map from the AE signal. Next, recursive feature elimination is performed
to reduce and optimize the vast number of predicting features generated in the previous step, and
random forests regression provides the estimated tool wear. The methodology presented was tested
using data captured when turning 19NiMoCr6 steel under pre-established cutting conditions. The
results obtained were compared with several ML algorithms such as k-nearest neighbors, support
vector machines, artificial neural networks and decision trees. Experimental results show that the
proposed method can reduce the predicted root mean squared error by 36.53%.

Keywords: tool wear; machine learning; wavelet packet transform; acoustic emission; condition
monitoring; predictive maintenance

1. Introduction

Tool wear is a complex phenomenon due to its high variability. It is an important
feature for machining processes monitoring because it affects the surface roughness, dimen-
sional accuracy and the cutting process itself, as the amount of energy needed to remove
the metal directly depends on the degree of tool wear [1].

Tool wear is generated as a result of chemical, thermal and mechanical interactions
between the tool and workpiece materials. These interactions are the cause of the two main
types of tool wear that can define the end of tool-life: flank wear (Vb) and crater wear [2].
The effectiveness of the process is commonly linked to the degree of flank wear. Therefore,
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this variable is taken as a wear indicator for the industry. It has been widely studied that the
increase in flank wear makes an increase in the cutting forces [3], which directly drives to an
increase in the power consumption of the machine tool. Furthermore, flank wear not only
affects the forces and power consumption, but also modifies the contact dynamics between
the tool and the material to be cut. As described in the review published in [4], acoustic
emissions (AE) are widely employed for monitoring flank wear in turning processes.

AE is a phenomenon whereby transient elastic waves are generated by, e.g., plastic
deformation, crack propagation, erosion, corrosion, impact, or leakage [5]. Applications
of AE for non-destructive testing are found in numerous industries, including refineries,
pipelines, power generation (nuclear or other), aircraft, offshore oil platforms, paper mills
and structures (bridges, cranes, etc.) [6]. In the last three decades AE has centered the
attention of researchers for its sensitivity in monitoring interacting surfaces in the field
of tribology such as the processes present in machining. Liang et al. [7] described the
following possible sources of AE during cutting processes:

(a) Plastic deformation during the cutting process in the workpiece;
(b) Plastic deformation in the chip;
(c) Frictional contact between the tool flank face and the workpiece resulting in flank wear;
(d) Frictional contact between the tool rake face and the chip resulting in crater wear;
(e) Collisions between chip and tool;
(f) Chip breakage;
(g) Tool chipping and fracture.

Frequency content of AE signals generated in friction processes covers a broad fre-
quency range, between 50 kHz and 1 MHz [8]. Since the distance and the existence of joints
between the AE source and sensor are critical due to the high attenuation of the signals, the
preferred mounting location of the AE sensor is the cutting tool or workpiece. However,
in real applications, the sensor must be mounted in the tool holder due to the ephemeral
nature of the cutting tool and workpiece.

In the literature, several research works have been carried out to diagnose the con-
dition of the tool in turning processes based on AE signals. An extensive review study
that presents the research activities using the AE signals to monitor and control various
machining processes is presented in [9]. Jose et al. [10] studied the impact of wear on force
and AE signals in turning processes of D2 steel concluding that AE parameters increased
proportionally with tool wear. One of the most widespread features used in diagnosis and
prognosis using AE signals is the counts, defined as the number of times the amplitude
exceeds a pre-set voltage (threshold level) in a given time. This feature has been used
and investigated extensively, for example in bearing and gear fault diagnosis applications.
However, the use of this feature in machining applications is very limited. The main
barrier of using this feature is the fact that determining the threshold levels has been at
the discretion of the researcher and in most cases, and the values are probably selected
depending on intuition and/or experience on the particular test-rig or machine [11]. The
threshold is often set above the noise level that allows to distinguishing AE events from the
background noise. However, the noise level can vary according to the operational condition
of the machine within the machining process. It has been pointed out that the threshold
level would have to be calibrated for each specific machining condition and the selection of
a threshold level for the AE count rate is usually arbitrary [12]. Das et al. [13] stated that, as
the threshold is usually subjectively selected, variation is observed among different testing
conditions and researchers. Due to such variation, the derived damage indicators might
not be sufficiently accurate for engineers to make optimal real-time data driven decisions.
Kwak et al. [14] applied a counts parameter to monitor a grinding process. In this case, the
authors set the threshold as 20 mV to extract the counts feature, which was determined by
a preliminary experiment. However, in this research as in many others [15,16] the authors
did not mention the specific methodology used to select the optimum threshold level to
extract this feature.
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Wavelet transform (WT) is a well-known technique where useful information from the
signal can be extracted at different frequency scales. It is frequently applied to AE signals
as a pre-processor to decompose the signal in frequency bands before feature extraction
is performed and has been successfully applied to AE signals in different scenarios [17].
This process is known as multiresolution analysis (MA). Benkedjouh et al. [18] presented a
new intelligent method for tool wear condition monitoring based on continuous wavelet
transform (CWT) and blind source separation (BSS) techniques. They concluded that the
proposed CWT-BSS method can effectively reflect the performance degradation of cutting
tools for the milling process. Hong et al. [19] presented a novel tool wear monitoring
method for determining the state of a micro-end mill using wavelet packet transforms
and Fisher’s linear discriminant. The recognition results were compared with those of an
energy-based monitoring technique and found that the method proposed could determine
the tool state more accurately for both normal wear and premature failure of micro-end
mills. Leng et al. [20] showed that the RMS value of the AE signals and the energy of
the wavelet packet are correlated with the tool wear in drilling process. However, in
many cases, the number of features extracted at MA was redundant and non-optimal [21],
limiting the capability of predictors to estimate the tool wear.

To reduce the error incurred by machine learning (ML) regression models, feature
selection techniques are an efficient tool to select the meaningful information from pre-
dicting variables. These techniques can be structured into three categories: filter, wrapper
and embedded methods, depending on how they combine the feature selection procedure
with the construction of the learning model [22]. Recursive feature elimination (RFE) is
a popular embedded method, and it is much more robust to data over-fitting than other
feature selection techniques. Deshpande et al. [23] successfully applied RFE based on
logistic regression as a feature selection tool with AE sensor and ML frameworks to classify
different wear categories simulated with a customized pin-on-disc tribometer.

The theory that predicts condition and wear based on signals captured in real-time
is known as prognostics and health management (PHM). These methods can be split
into three categories: physic-based, classical model-based and data-driven prognostics.
Classical model-based prognostics refer to approaches based on mathematical models
of system behavior derived from physical laws or probability distribution. For example,
model-based prognostics include methods based on Wiener and gamma processes, hidden
Markov models (HMMs), Kalman filters, and particle filters. Examples of the application
of model-based prognostics for tool wear using AE can be found in [24–27]. One of the
drawbacks of using model-based prognostics, as well as physic-based models, is that
an in-depth knowledge of the physics involved in the process is required. On the other
hand, data-based models use approaches that develop predictive models based on ML
algorithms such as autoregressive models, artificial neural networks (ANN) or support
vector machines (SVM) and random forest (RF). The main benefit of these types of models is
that an in-depth knowledge of the physics involved in the process is not required. To date,
several ML algorithms have been applied successfully to AE signals for tool wear prediction
such as SVM and ANN. Li et al. [28] compared the performance of several ML methods
such as ANN and random forests (RF) to predict tool wear in a milling process. They
concluded that RF generates more accurate predictions than other ML methods. However,
in this research as well as other publications reviewed by the authors, the predicting
variables used as input to the ML predictors were the traditional statistical features, such
as RMS, maximum value, standard deviation, etc. from the complete frequency spectrum,
which may not be optimal and could limit the accuracy of the models.

The main objective of this work is to present a novel methodology for tool wear
prediction based on AE signals, proposing four steps with associated ML algorithms and
parameter configuration guidelines. This novel technique combines wavelet packets for
MA, and feature extraction of both RMS and counts at different thresholds at different WPT
nodes. The proposed methodology also presents RFE to remove redundant and highly
correlated variables generated by multiresolution and multi-threshold feature extraction, to
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reduce the prediction error. One of the advantages of the proposed method is the reduction
of the complexity of setting the optimum threshold level for the count parameter identified
in the literature. Several ML methods are compared to obtain the lowest error for flank
tool wear prediction. The results obtained using this novel method are compared with
traditional feature extraction methods and ML regressors. The optimum segmentation is
investigated to predict tool flank wear. In addition, a brief analysis on the difference of the
AE signal patterns in the time-domain and frequency-domain is presented in both low and
high tool flank wear condition.

2. Materials and Methods
2.1. Methodology Proposed

This section presents the methodology for tool wear prediction using WPT, multireso-
lution (MR) feature extraction feature extraction, RFE and RF. The methodology is depicted
in Figure 1 and described as follows:

Step 1—Wavelet packet decomposition: MA is applied to the AE signal using WPT to
extract the features presented in step 2 at a different frequency resolution.

Step 2—MR feature extraction: From each WPT node, numerous features xi,j, where i
is the number of observations and j the number of features, are extracted. These are counts
parameters at different thresholds and RMS. This feature extraction technique is presented
in Section 2.1.2.

Step 3—Dimensionality reduction using RF-RFE: Since the volume of predictors
xi,j extracted from step 2 is extremely high and redundant, by using RF-RFE algorithm,
correlated and redundant features are eliminated reducing the number of predictors xi,k,
where k ≤ j. This algorithm decreases the prediction time of ML algorithms and reduces
the prediction error.

Step 4—Flank tool wear prediction using RF regressive model: The features selected
from the WPT nodes using RF-RFE (xi,k) and the measured tool flank wear yi are used
to train and test a RF regression algorithm. The methodology is evaluated using root
mean squared error (RMSE) metric. The results are compared with ANN, SVM, K-nearest
neighbors (KNN) and decision trees (DT).

The description of the processing tools for each step is presented in the following sections.

2.1.1. Wavelet Packet Decomposition

The WT is a mathematical tool, which transforms sequential data in the time axis to
the spectral data in both time and frequency [29]. In contrast with sinusoids, wavelets are
localized in both the time and frequency domains, so wavelet signal processing is suitable
for non-stationary signals, whose spectral content changes over time.

The CWT is a decomposition of an input function using scaled and translated versions
of a wavelet function known as mother wavelet. Mathematically the wavelet coefficients
are extracted using the function below:

WTψ{x}(a, b) = x, ψa,b =
∫

x(t)ψa,b(t)d(t) (1)

where ψa,b is the mother wavelet.
The DWT is the analogous mathematical tool of CWT for discrete functions. It is

used for digital signal analysis. The DWT consists of identifying the parameters cke
dj,k, k ∈ N, j ∈ N of the equation:

f (t) =
∞

∑
k=−∞

ckφ(t− k) +
∞

∑
k=−∞

∞

∑
j=0

dj,kψ(2jt− k) (2)
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where φ(t) and ψ(t) are the function known, respectively, as father wavelet and mother
wavelet. The father wavelet is in fact a scaling function that depends on the mother wavelet.
The φ(t) and ψ(t) can be calculated as sequences h = {hn} n ∈ Z and g = {gn} n ∈ Z:

hn = 〈ψ1,n, ψ0,0〉eψ(t) =
√

2 ∑
nZ∈

hnφ(2t− n) (3)

and
gn = 〈φ1,n, φ0,0〉eφ(t) =

√
2 ∑

nZ∈
hnφ(2t− n) (4)

Figure 1. Graphical description of the proposed methodology.

These two sequences are the base of the DWT.
The common procedure of applying the DWT is through a filter bank where the

filter determined by the coefficients h = {hn} n ∈ Z corresponds to a high-pass filter and
g = {gn} n ∈ Z corresponds to a low-pass filter.

The filters h and g are linear operators that can be applied to a digital input signal x as
a convolution:

c(n) = ∑
k

g(k)x(n− k) = g ∗ x (5)

and
d(n) = ∑

k
h(k)x(n− k) = h ∗ x (6)

The signal c(n) is known as approximation and d(n) as detail.
It is possible to repeat the filters shown in Equations (6) and (7) generating a cascade

of high-pass and low-pass filters. This tree is known as a filter bank. However, this
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decomposition filter may not be precise enough to obtain necessary information from the
signal. A more detailed frequency resolution can be obtained by implementing WPT to the
signal. In a similar way to the DWT, the WPT tree is obtained by:

c2p
j+1[m] =

√
2

∞

∑
n=−∞

g[n− 2m]cp
j [n] (7)

c2p+1
j+1 [m] =

√
2

∞

∑
n=−∞

h[n− 2m]cp
j [n] (8)

where j is the depth of the node and p indexes the nodes in the same depth, every cp
j

with p even is associated to approximations and every cp
j with p odd is associated to

details. The WPT is a generalization of the wavelet decomposition that offers further
decomposition. Consequently, it provides better frequency resolution for the decomposition
of the signal [30].

The number decomposition levels investigated in this study was 3 to have a com-
promise between frequency resolution and computation efficiency since increasing the
number of levels increases exponentially the computation required. A total of 15 wavelet
nodes were extracted. The WPT decomposition level, nodes and corresponding frequency
ranges proposed are presented in Figure 2. As the sampling frequency (fs) to capture
the AE signal was set at 1 MHz, the bandwidth used to decompose the AE signal using
WPT was 500 kHz, which met the Nyquist frequency (fs/2). It is expected that for most
cases the decomposition proposed could achieve optimum results, nevertheless, for other
applications the decomposition levels can be expanded or reduced for specific computing
and accuracy constraints.

Figure 2. WPT levels, nodes and corresponding frequency bands.

2.1.2. Multiresolution Feature Extraction

This process consists of the extraction of features at MR level and using different
thresholds for count feature extraction. Counts were calculated as the number of times
that the amplitude of the signal exceeds a predefined threshold. For this particular dataset,
10 different count features were calculated at different thresholds (i.e., 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000 mV) in order to have enough resolution and range (from 1 mV to 1 V) since
the AE events and background noise at different WPT nodes had different amplitudes. It
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was expected that this distribution of thresholds could be adequate for most cases, however,
this value list could be expanded according to the AE signal levels. Furthermore, RMS
values were extracted at each WPT node. The RMS of a signal Xn is defined as follows:

RMS =

√
1
n ∑n

i=1(xi)
2 (9)

where n is the number of samples of the signal and xi the samples values. In total 165 fea-
tures were extracted at MR level, 150 count features (15 WPT and 10 different thresholds)
and 15 RMS features; 1 per WPT node. Additionally, traditional features from the complete
time domain signal were calculated, i.e., crest factor (CF), peak value, RMS, kurtosis and
counts extracted at an arbitrary threshold, set at 0.2 V, but these features were only used
as a comparison for the proposed methodology. The nomenclature used for the features
extracted was Feature_WPTnode. For the counts feature, since it was extracted using
several thresholds the nomenclature was C_Threshold _WPTnode. For example, for the
feature counts with threshold 0.01 V, in the WPT level 2, and node 7, the nomenclature was
Counts_0.01_C7

2 .

2.1.3. RF-RFE Dimensionality Reduction

High-dimensional data often contain a lot of redundant and irrelevant information,
which reduce the efficiency of the predictive models for classification [31]. In order to
build efficient and effective predictive models, it is, therefore, necessary to select a subset
with the most discriminative features. In this study, the redundant and highly correlated
set of features generated at MA level in the previous step were reduced and optimized
using the RFE. The RFE technique implements a backward selection of the AE features by
ranking their importance to an initial model using all the predictors and ranks features
according to its importance [32]. It is a greedy optimization procedure used to find the
superlative performing subset of features. RFE requires a model to estimate the ranking of
the input features. Compared with other models such as SVM or logistic regression, used
in [23], RF has been proven to be more effective, which can use fewer features to get higher
classification accuracy [33]. Thus, RFE based on RF (RF–RFE) is a feature selection method
that combines RF to estimate the error for each recursive feature deleted, and RFE whose
process is explained as below (see Figure 3).

Figure 3. Pseudo-code of recursive feature elimination process.
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2.1.4. Random Forests Regression

The framework of predicting tool flank wear using an RF is illustrated in Figure 4.
The optimum feature map estimated by the RF-RFE algorithm is split into train and testing.
Then these two arrays of data are used as an input for a RF regressor. The RF algorithm was
initially developed by Breinmann [34]; it is an ensemble method that constructs a forest
decision trees from bootstrap samples of a training dataset. When coming to predictions,
each tree predicts a class, and the class with the most votes is the one selected by the model.
A comprehensive tutorial on RFs can be found in [35].

Figure 4. Schematic of tool wear prediction using RF.

In a normal decision tree, all training data and all features are used to train the model.
However, to minimize correlations between different trees in random forests, two main
techniques are used:

Bagging: Decision trees are sensitive to the data they are trained with. For that reason,
many sub-samples with replacements are created from the training dataset, and each of
them is used to train a decision tree. Given a dataset, D = {(x1, y1), (x2, y2), . . . ., (xn, yn)},
bagging generates B new training datasets Di of size N by sampling from the original
training dataset D with replacement. The number of regression trees B is a parameter
specified by the users. Bagging reduces variance and avoids overfitting. In this research, a
RF is constructed using B = 250 regression trees.

Use of different features: In a normal decision tree, when a feature must be selected in
a node, all features are considered. However, in random forest, just one among a random
subset of features is selected.

One of the major advantages of the random forest classifier over other decision tree
methods is that the fully-grown trees are not pruned [36]. Breiman [37] suggests that as the
number of trees increases, the generalization error always converges even without pruning
the trees. The number of features used at each node to generate a tree and the number
of trees to be grown are two user-defined parameters that can be optimized for each case.
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Finally, the metric used to evaluate the performance of the methodology is RMSE, which is
defined as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (10)

where ŷl is the predicted value, yi the observed values and n the observed sample size.

2.2. Experimental Procedure

The experimental procedure was based on a conventional 3D turning operation, as
is the most common machining procedure for wear testing, which was performed in a
Danumerik CNC lathe. In this case, a cylindrical bar of length 250 mm and diameter
60 mm was clamped to the chuck of the spindle, which gave the rotational movement to
the workpiece. The machining was performed by a longitudinal movement of the tool
towards the workpiece (see Figure 5). The rotation speed of the workpiece (N) and the
feed movement of the tool (F) are dependent on the cutting conditions selected for the tests.
All the trials were performed in dry conditions at fixed cutting conditions, with a cutting
speed (Vc) of 200 m/min, a feed rate (fv) of 0.1 mm/rev and a depth of cut (ap) of 2 mm.

Figure 5. Schematic representation of the turning process and location of AE sensor.

The material employed for the tests was 19NiMoCr6 steel. Concerning the cutting
tools, P25 grade uncoated inserts were employed, reference Widia TPUN160308TTM. These
were clamped to a Widia CTGPL2020K16 tool holder, which gave an effective rake and
clearance angle of 5◦ and 6◦, respectively, with a positioning angle of 90◦.

The AE were recorded with a Kistler 8152B sensor coupled with a Type 5125B condi-
tioning system. This was magnetically attached to the tool holder, as shown in Figure 5. The
fs was set at 1 MHz, using a National Instrument cDAQ-9171 with an analog input module
NI-9223. The AE signal was filtered using a Butterworth high-pass filter with cutting
frequency fc = 20 kHzand order 4 to reduce the mechanical noise of the process [38]. The
magnitude response of the filter is shown in Figure 6.

Figure 6. Magnitude response of the Butterworth filter applied to AE signals.
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The cutting procedure was as follows:

(1) Machining of a predefined length of the workpiece, commonly 1/3 of the available
length (70 mm).

(2) Cleaning of the tool insert to remove adhered material and to enable a correct mea-
surement of tool wear.

(3) Tool wear measurement using an Alicona Infinite Focus G4 profilometer. This pro-
filometer permits the 3D measurement of the wear in the flank (flank wear).

(4) Restart the process (1)–(3) until wear in the flank face exceeds a value of 300 µm.
(5) Figure 7a shows 3D data sets of the evolution of tool wear of one of the repetitions,

obtained with the Alicona Infinite Focus G4. To establish flank wear (Vb) from each
captured 3D geometry of the worn tool, the profile of the mid plane of the contact
section was extracted. The localization and an example of a profile are shown in
Figure 7b. The measured wear mode, Vb, is specified in the profile.

Figure 7. Wear measurement strategy with Alicona Infinite Focus G4: (a) 3D topology of worn tool and (b) extracted 2D
profile of worn tool.

Due to the high variability that wear has in machining operations, the number of
repetitions carried out was 12 per tool, to develop predictive models with a high degree of
confidence. A total of 5 tools were degraded until the flank wear reached 250 µm.

3. Results

Figure 8a displays the time-domain AE signal associated with 0 and 250 µm wear
(maximum investigated). It clearly shows a remarkable difference. While 0 µm has no
sign of high amplitude AE shots associated with discrete AE events the plot of 250 µm
wear shows numerous discrete AE events of different amplitude above the continuous AE
levels in the entire signal. This change in the pattern is associated with tool wear, where
several AE sources could be present, such as increased frictional contact between the part
and the tool or plastic deformation. Contrary, continuous AE signal remains at similar
levels. Figure 8b shows the frequency-domain signal obtained applying FFT to the previous
signals. The frequency pattern of no wear condition shows a low-frequency content, with
most of the energy in the range 20–60 kHz, which is associated with a continuous AE signal.
There is also relatively high energy in the ranges 80–110 kHz, 170–190 kHz and low energy
around 350 kHz. The spectrum obtained in a high-wear condition (250 µm) shows similar
amplitude at lower frequencies (20–60 kHz). However, the energy in the band 80–110 kHz
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is highly increased as well as the band around 350 kHz. There is also an increased energy
content in the band 200–300 kHz. The energy above 400 kHz is extremely low in both cases.
From the analysis of both time-domain and frequency-domain signal we can extract that
the pattern changes significantly with varying wear level and is mainly associated with
discrete high-frequency AE events.

Figure 8. (a) Time-domain and (b) frequency-domain signals captured from tool with Vb = 0 µm and Vb = 250 µm.

Figure 9 displays the decomposition of the previous signal (250 µm wear) using WPT
in three levels

(
C0

3 − C7
3
)

using Daubechies_11 wavelet. It shows that the discrete AE
events have different characteristic frequencies. While some of the events are evident in a
particular band, some are not obvious in others. Therefore, extracting the counts parameter
at MR level can provide an advantage by detecting the different events regardless of
frequency content.

Figure 9. The eight nodes of the AE signal extracted from WPT 3-level decomposition.
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Figure 10 displays a scatter of counts extracted using 50 mV threshold at WPT node
C7

3 , which corresponds to 312.5–375 kHz, against flank wear, calculated for 1 s AE signal
segments (637 segments in total) for the five tools investigated in this study. It shows very
low dispersion up to approximately 90 µm wear. In this range, there is also no variation of
counts against wear, which indicates low sensitivity for flank tool wear. From 90 µm until
the maximum wear investigated, 250 µm, there is an evident increasing trend of counts
with high dispersion. Figure 10b shows the same variables but applying moving average
(k = 10), reducing the dispersion to observe the trend clearly.

Figure 10. Scatter plot of counts versus flank wear (a) original and (b) applying moving average filter.

The optimum segment size was evaluated for 5 different segment durations, ranging
from 0.1 to 2 s. Figure 11 shows the results obtained which shows that the RMSE error
decreases from 0.1 to 1 s, increasing afterwards using 2 s segments, with 1 s being the
optimum segment size.

Figure 11. RMSE in predicting tool flank wear vs segment length.

To evaluate the performance of the methodology proposed, the accuracy of the ML
models were assessed introducing three different sets of predicting variables using 1 s
segment length, determined as the optimal. Firstly, traditional AE features from the
complete AE spectrum (WPT was not applied), i.e., kurtosis, peak, RMS, crest factor and
counts. These features served as a baseline comparison of the proposed method since they
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have been traditionally used to predict tool wear by other authors [28,39]. Secondly, all
165 features extracted at MR level were utilized to predict flank wear. Finally, the variables
identified by the RFE-RF algorithm as optimum predictors from all 165 features extracted
were used. Table 1 shows a summary of the features used in the ML models to predict
flank tool wear for the three cases investigated. Since the method is non-deterministic, the
optimum features were evaluated 50 times using RFE-RF, obtaining that the most repeated
set of features were RMS_C2

2 , Counts_0.05_C3
3 , Counts_0.05_C7

3 , Counts_0.1_C1
3 . Thus, the

number of predictors was reduced from 165 to 4. It should be noted that none of the
features from the WPT level 0 (complete spectrum) were selected as optimal predictor
by the RFE-RF. This points out the importance of using WPT to increase the accuracy
of prediction.

Table 1. Features selected for each feature cluster.

Traditional Features MR Extracted Features Selected Features by RFE_RF

RMS, CF, Peak_
Kurtosis, Counts_0.2 All (165 in total)

RMS_C2
2 , Counts_0.05_C3

3 ,
Counts_0.05_C7

3 ,
Counts_0.1_C1

3

In total 673 observations were used to train and test the ML models. The data of
two out of the five tools tested were used for testing, while the observations of the other
three tools were used for training. The models were trained and tested 10 times varying
randomly the data used for testing and training, keeping the ratio of data acquired from
three tools for training and two for testing and the results presented are the mean of the
individual results. The choice of hyper-parameters for the different regressors investigated
was chosen based on an extensive grid search. Figure 12 shows the RMSE obtained using
the different ML models and features. Generally, the highest RMSE was obtained using
traditional features as predictors, followed by all features extracted from MR feature
extraction. The lowest RMSE obtained was 29.91 µm by using RF (number of trees 250)
for the MR feature extraction using the optimum features selected by RFE-RF method.
Using the traditional features, the lowest RMSE obtained was 47.13 µm by using the RF
regressor (N = 250). Thus, using the proposed methodology, the RMSE was reduced by
17.22 µm, which corresponds to a 36.53% drop. In addition, the use of RF-RFE reduced the
RMSE significantly, from 39.12 µm using KNN regressor with all MR features to 29.91 µm
using optimal features, which corresponds to a 23.54% drop. These results demonstrate
the importance of using both WPT prior to feature extraction and RF-RFE for selecting
optimal features.

Figure 12. RMSE error in flank tool wear prediction using different ML models and different set of predicting features
(lower is better).
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Figure 13 shows a scatter plot of predicted vs real wear using both traditional features
and MR feature extraction with RFE-RF feature selection method. It clearly shows a
significant reduction in the deviation from the red line (RMSE 0 µm) in the latter case.
It is worth noting that the RMSE error in low wear condition is higher (predicts nearly
constant wear of 50 µm) which is attributed to a flat relationship up to approximately
90 µm displaying the scatter plot of Counts_0.05_C7

3 vs. wear shown in Figure 10.

Figure 13. Predicted wear using RF versus real wear in using both (a) traditional features and (b) MR feature extraction
(RF-RFE) technique.

4. Conclusions

In this paper, the prediction of flank tool wear in a turning process was conducted
by using a novel methodology for AE signals. The performance of the novel method
was measured comparing the results with traditional AE features. Several regressive ML
algorithms, including RF, SVM, ANN, KNN and DT were investigated to obtain the lowest
RMSE predicting flank tool wear. The experimental results have shown that by using the
proposed methodology, the RMSE is reduced from 47.13 to 29.91 µm, which corresponds
to a 36.53% drop.

One of the most common features extracted from AE signals to predict the tool wear
is the counts parameter, defined as the number of times that the amplitude of the signal
exceeds a predefined threshold. In the literature, the threshold for extracting this feature
is usually set arbitrarily, and no mention of the methodology is detailed. Thus, its value
may not be optimum in most cases. Applying the methodology proposed in this paper, an
in-depth knowledge of the technique is not required by the operator to set the threshold, as
it relays on the RF-RFE technique to select the optimum threshold and frequency band to
predict tool wear.

According to the results obtained using RF-RFE technique, among all the features
extracted, the RMS in the band 250–500 kHz, the counts parameter in the band 62.5–125,
125–187.5 and 312.5–375 kHz are the best predictors of tool flank wear. The authors
emphasize the use of counts as a reliable feature to predict tool wear, as three out of
four optimum features ranked by RF-RFE algorithm correspond to this feature and very
few publications were found by the authors that make use of this feature in machining
applications, in contrast to other applications, such as bearing or gear health diagnosis.
The optimum frequencies and thresholds may vary in different scenarios according to
different parameters such as sensor sensitivity, noise, sensor installation, couplant type,
distance from sensor to the source of AE, etc. For this reason, the application of RF-RFE for
each scenario is expected to be critical. On modern CNC machines, various workpieces
are processed with different tools and cutting modes. As it is expected to obtain different
AE patterns such as frequency content and amplitude for each process, the methodology
proposed must be applied to all of them independently, so the algorithm can learn optimum
features, frequencies and patterns of each process.
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The sensitivity of AE for predicting flank tool wear is worse at wears lower than
90 µm. The main variation of the AE signal with increasing wear is the increase in number
of high amplitude and high frequency discrete events rather than continuous AE levels.
Finally, the segmentation size for this particular use case was investigated and 1 s length
provides the best results for predicting tool flank wear.

Future extension of this work may include the evaluation of the methodology pro-
posed using variable cutting conditions such as cutting speed and feed per revolution to
investigate whether it still outperforms traditional procedures under varying operational
conditions. In addition, the presented methodology has been developed and validated to
monitor tool flank wear. However, crater wear, chipping and intense self-oscillation are
also critical indicators of machining process. The application of the proposed methodology
will be evaluated for predicting these parameters in future investigations. Finally, the use
of further parameters extracted wavelet nodes, along with RMS and counts used in this
research, will be evaluated in future extensions of this work.
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