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Abstract: The need to manufacture more competitive equipment, together with the emergence of the
digital technologies from the so-called Industry 4.0, have changed many paradigms of the industrial
sector. Presently, the trend has shifted to massively acquire operational data, which can be processed
to extract really valuable information with the help of Machine Learning or Deep Learning techniques.
As a result, classical Condition Monitoring methodologies, such as model- and signal-based ones
are being overcome by data-driven approaches. Therefore, the current paper provides a review of
these data-driven active supervision strategies implemented in electric drives for fault detection
and diagnosis (FDD). Hence, first, an overview of the main FDD methods is presented. Then, some
basic guidelines to implement the Machine Learning workflow on which most data-driven strategies
are based, are explained. In addition, finally, the review of scientific articles related to the topic is
provided, together with a discussion which tries to identify the main research gaps and opportunities.

Keywords: condition monitoring; data-driven; electric drive; fault detection; electric traction; fault
diagnosis; machine learning

1. Introduction

Research on Condition Monitoring (CM) and maintenance of electric drives has been
a field of activity for decades. Generally, electric drives control software including algo-
rithms, strategies, or routines aimed at actively monitoring their operation by supervising
possible system faults. For this purpose, traditionally, model- and signal-based techniques
have been used. The former method is based on an analytical redundancy generated by
the mathematical model that replicates the operational behaviour of the system under
investigation. The latter is based on the analysis of different signals acquired from the
real system to identify specific characteristics that indicate anomalies in the equipment.
Normally, most of the referred solutions were implemented as on-board or embedded
routines in the control software application of the electric drive.

However, the recent advent of Industry 4.0 and the new digital technologies such
as Big Data (BD), the Internet of Things (IoT), Cloud Computing (CC) and Artificial
Intelligence (AI) have completely changed the paradigm for actively monitoring industrial
equipment among which are electric traction systems. An example of the change in this
paradigm is the emergent importance of operational data. Owing to the improvement of
its availability and the different tools to manage it, presently really valuable information
can be extracted from huge amount of datasets. That is why, in many different applications,
data-driven strategies have been implemented in order to actively supervise industrial
equipment. At the same time, it is important to mention that the aforementioned digital
technologies are being offered more as a service than as a product. Therefore, it is no
longer justified to increase the cost (memory and computational capacity) of an embedded
traction control unit because its health management functionalities, when current AI, CC,
and communication technologies allow remote data processing at a much lower cost and
greater flexibility.
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As an example related to those data-driven fault diagnosis approaches developed in
electric drives, some manufacturers already have different IoT-, Cloud-, and Big Data-based
health management platforms in the market. Table 1 summarizes the aforementioned main
digital platforms in the electric drive sector.

Table 1. Cloud-based monitoring platforms for maintenance in electric traction sector.

Manufacturer Application Cyber-Physical Platform Cyber-Space Tool

Alstom [1–3] Railway HealthHub Google Cloud
Bombardier [3–5] Railway Optiflo IBM Cloud

Siemens Mobility [3,6] Railway Railigent AWS

Hitachi [7] Railway Lumada Hitachi Smart
Cloud

CAF [8] Railway LeadMind AWS
KONE [9,10] Vertical transport (Elevators) KONE CARE IBM Cloud

Thyssenkrupp Elevator [11,12] Vertical transport (Elevators) MAX Azure Cloud
Otis [13] Vertical transport (Elevators) Otis ONE Azure Cloud

Siemens Gamesa [14] Energy gen. (Wind power) Pythia -
Vestas [15,16] Energy gen. (Wind power) - TIBCO Spotfire

Although this digital paradigm has become a key point in industry, especially in
power traction, due to the increase of e-mobility applications, and power generation, three
main challenges have been identified:

• Adaptation of AI to industry (consumer AI vs. industrial AI).
Although AI is well established in the business sector, in the industry still has much
to do. The main difference between consumer/business AI and industrial AI is data
origin. In the business sector, AI models are fed with human-generated data which is
closer to being valuable information than raw data. However, in industry, AI is fed
with sensor/machine-generated data. Thus, most of the time, it means working with
time-series, which are difficult and more complicated to manage because they need to
be processed extensively. More issues related to the characteristics of industrial data
were identified in [17,18]:

– Lack of faulty data: Industrial applications are designed not to be prone to failures.
Therefore, it is difficult to find data samples to model operation under abnormal
events. This lack of faulty samples is an important drawback to develop efficient
industrial AI models.

– Lack of good quality data: Data from sensors is noisy, has outliers and contains
missing values. Apart from that, in the same system, data of different charac-
teristics and domains (different value ranges, sampling frequencies and origins)
are collected. This is the reason of being difficult to manage in comparison to
business or consumer datasets.

• Boosting the collaboration between data analysts and system analysts (Domain
knowledge vs. Data Analytics).
In [19,20] six key elements (ABCDEF) for Industrial AI are identified: Analytics
technology (A), Big data technology (B), Cyber technology (C), Domain Know-how
(D), Evidence (E) and Feedback (F). While the first three are usually the domain of a
data analyst, the last three are fundamental to ensure the success of any AI strategy.
However, many times their presence is not assured. Knowledge of the application
is fundamental to understand the system and the problem, knowing which data to
collect and understanding the physical meaning of the variables. Thus, there is a need
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to unify the knowledge and to create communication channels between system and
data analysts.

• Electric drive complexity (Onboard vs. Remote architectures).
As mentioned above, electric traction sector is increasingly tending to provide active
remote monitoring solutions. For this, the standardized architecture is the one where
the onboard equipment only collects and sends raw data. Subsequently, CC platforms
carry out data analytics and execution of the supervision models. However, with the
increasing data volume generated by sensors, it is clear that sending raw data directly
to the cloud is less and less viable. This has reinforced the need for edge-computing. It
refers to an architecture in which each subsystem can collect, preprocess, analyze and
even execute AI models. As described in Figure 1, there are several alternatives, but
clear solution has not been found yet. However, edge-computing is seen as a suitable
alternative for transportation applications where assets are geographically distributed,
with a large number of fleets and components, high-speed data streams and dynamic
environments [2,6,20,21].
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Figure 1. Condition Monitoring and health management architectures applied in electric drives [22].

All these challenges can be found in the monitoring process of a traction electric
drive. Figure 2 shows the most common structure of this system. In general terms, it is
composed of an energy source, an input energy conversion step, a DC-Link, an output
energy conversion step and an electric machine, these subsystems can be treated as the core
of any electric traction application. Furthermore, sensors and the Traction Control Unit
(TCU) can be understood as the brain of each application. Moreover, it is worth mentioning
that this subsystem structure has been used to organize the scientific documentation review
about the topic.

Considering the aforementioned points, this article aims to review the implementation
of data-driven active supervision strategies in each of the electric drive architecture subsys-
tems. The main objective is to identify a trend in the use of the different FDD strategies
in electric traction applications, focusing on those based on Machine Learning and Deep
Learning. The rest of this paper is organized as follows. Section 2 introduces the meaning
of actively supervising any industrial equipment, as well as its corresponding standard.
Section 3 analyzes the basic theory of the Machine Learning workflow, going a bit on Deep
Learning too. Section 4 reviews the applications of data-driven approaches in electric
drives. Finally, the discussion about the topic is carried out in Section 5 and concluding
remarks are drawn in Section 7.
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Figure 2. Block diagram of a generic architecture of an electric drive.

2. Fundamentals of Active Supervision in Electric Drives

Modern industry has developed a trend to design and manufacture equipments with
high sophistication, complexity, and capacity that generally increase their Life Cycle Costs
(LCC). As a result, and with the aim of producing industrial systems with higher competi-
tiveness in the market, companies have develop greater awareness in key aspects such as
Reliability, Availability, Maintainability and Safety, which the four of them compose the
RAMS philosophy [23–26]. These key aspects generally are focused on reducing abnormal
operating conditions of industrial systems to avoid their negative consequences [27,28].
Therefore, it is interesting to actively supervise industrial equipment, in order to control
their operation and perform anomaly detection and identification tasks, or even predict
the health status of their components.

Supervision is understood as the set of actions executed with the purpose of ensuring
the correct operation of any system [29]. Presently, there are different standards, such
as ISO 13374 [30–33] or CRISP-DM [34,35], which describes a modular architecture to
supervise and monitor industrial equipment. Concretely, Figure 3 shows the block diagram
presented in the ISO standard.

Thermal imaging 

(Thermal cameras)

Electric signals 

(Current, voltage, etc.)

Mechanical signals 

(Accelerometers)

Acoustic signals 

(Acoustic sensors)

Sensors

Figure 3. Block diagram of the ISO 13374 Condition Monitoring standard architecture [30].
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It can be said that every active supervision strategy will contain three common blocks
which namely are the Data Acquisition (DA), Data Manipulation (DM) and the Advisory
Generation (AG). In other words, some kind of information should be acquired from
somewhere, for example sensors, transducers, etc. Consequently, this information usually
should be preprocessed in order to optimize the knowledge value. In addition, of course,
at the end of this process, certain information must be delivered to the system maintenance
personnel, designers, users, etc. However, the blocks ((SD), (HA) and (PA)) inside the
dotted red box in Figure 3 depend, to a large extent, on the supervision methodology chosen.
This means that the modular architecture, and thus the active supervision strategy, can be
limited only to Detection tasks (check if a fault has happened in the system, via alarms). It
can be partially extended until Diagnosis tasks (know what and where has happened in
the system). Or even, it can be extended totally until Prognostics levels (identify what will
happen in the near future, the so-called Remaining Useful Life (RUL) estimation).

There are four main methodologies to implement these last functionalities:

• Signal-based methodology: The main objective of a SB method is to analyze fault symp-
toms (s) in the real signals acquired from the systems under investigation such as
current, voltage, vibrations, etc. In a nominal state, the acquired signals correspond
to certain frequency, amplitude and ripple features (ŷ) whereas in faulty states these
indicators differ from the nominal ones [36,37]. That is why with the help of expert
knowledge, it can be identified whether a fault is presented or not in the system (see
Figure 4). It is important to know that the existing SB methods can be categorized
depending on their feature typologies: Time domain techniques, frequency domain
techniques and time/frequency domain techniques [38].

• Model-based methodology: This method aims at generating an analytical redundancy
through a mathematical model that replicates the physical behaviour of the real
system. The MB strategy executes the analytical model in real-time, in parallel to the
real system and with the same measured inputs. After that, the mathematical model
output (ŷ) is compared with the output of the real system (y), generating residual
signals (r) which will determine if there is a fault in the system using a residual
evaluator [36], as it can be seen in Figure 5. According to [36,39,40], there are three
different model-based approaches: the parameter estimation approach, the parity
space approach and the observer-based approach.

• Data-driven methodology: The basis of DD methods is to take advantage of large amount
of historic datasets acquired from the system under investigation by means of Machine
Learning or advanced statistical models [36,41]. These algorithms learn from data
in order to discover hidden patterns (p) represented in the information redundancy
among the system variables (see Figure 6). It can be said that this approach is the
recent alternative for active supervision in those systems, which are too complex to
have an explicit analytic model or signal symptoms of faulty behaviour. It is worth
mentioning that the information redundancy added to AI techniques make possible to
build a complete CM platform, from data acquisition (DA) to prognostics assessment
(PA) levels.

• Hybrid methodology: As the aforementioned active supervision techniques have their
pros and cons, a new trend has emerged, which tries to integrate together these com-
plementary methods in order to achieve a better performance [41,42]. It is commonly
agreed that hybrid schemes would provide better solutions to a complex system. In
other words, hybrid CM methods aim to enhance the supervision results by leveraging
the advantages and avoiding the limitations of their consisting approaches.

Table 2 collects the most important advantages and disadvantages of the different
aforementioned methodologies.
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Figure 4. Schematic of the signal-based fault detection and diagnosis methodology.

Residual 

Generator

Real

System

Mathematical 

Model

Sensors

Residual 

Evaluator

x y

r

ŷ

Figure 5. Schematic of the model-based fault detection and diagnosis methodology.
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Figure 6. Schematic of the data-driven fault detection and diagnosis methodology.

To sum up, on the one hand, the limitations of SB and MB methodologies are the
excessive requirement of expert knowledge and their limitations to implement all the
functionalities from the ISO architecture. On the other hand, the main drawback of the
data-driven method is the availability of the data itself. However, the improvement of the
data manipulation and communications, as well as the trend of acquiring data in every
company make data-driven strategies a hot topic in present research.



Sensors 2021, 21, 4024 7 of 33

Table 2. Advantages and disadvantages of the active supervision methodologies.

Advantages Disadvantages

Signal-based • Simple
• Fast

• Expert knowledge required
• Symptoms similar in different faults
• Limited to detection/diagnosis tasks

in ISO
• No attention to the dynamic be-

haviour of the system

Model-based • Accurate in simple systems
• Easy to reach analytical redundancy

• Expert knowledge required
• Many uncertainties difficult to be de-

fined analytically
• Limited to diagnosis tasks in ISO

Data-driven • Accurate if data available
• Extend ISO to Prognostics Assess-

ment

• High amount of data required
• Need for data storage platform
• High computational capacity

3. Fundamentals of the Machine Learning Workflow

This section provides an explanation of the standardized workflow to develop a
data-driven fault detection and diagnostic (FDD) strategy based on Machine Learning
algorithms, for actively supervising electric drives.

Although sometimes it is thought that implementing these solutions consists only of
selecting and optimizing a Machine Learning algorithm, many other operations have to be
carried out in order to develop efficient approaches. As Figure 7 shows, this methodology
can be split in four main stages, which namely are the acquisition and raw data organization
steps, the raw data preprocessing step, the Machine Learning model design and the
implementation and integration in the application [43–45].
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and organization

Raw data 

preprocessing

ML model selection 

and training

Implementation 

and integration 

Sensorization

Data bases

File structure

Raw data mining

Feature 

extraction

Feature selection

Model training
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Scalable system

Hardware or 

sofware impl.

Figure 7. Machine Learning standardized workflow [43].

3.1. Acquisition and Raw Data Organization

In this first stage, the massive raw data acquisition is performed, as well as its saving
and organization in a structured way. This step is very important because the quality and
the quantity of the data gathered will directly determine how good the FDD model can be.
The raw data acquisition involves reading and saving data from different sources, not only
from online streaming sensors directly installed in the system under investigation, but also
from offline databases such as historic datasets from local or cloud data servers.
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It is worth mentioning that in order to build a ML-based solution, which generalizes
every health condition of an industrial equipment, both healthy and faulty data must be
acquired. However, as mentioned before, this is an important problem that DD methodol-
ogy must deal with. In most of the industrial applications, the observed data volume for
nominal or healthy operations far exceeds the observed data volume for an anomalous or
faulty status, which will cause great difficulties in conducting the model training. Owing
to the unbalanced datasets, it is especially necessary to acquire more data under fault
status scenarios or apply data augmentation techniques, which will make the entire dataset
more balanced [18]. A well-established example of data augmentation is synthetic data
generated from simulation via the so-called Digital Twins [46,47].

Likewise, it is not only important to collect such data. Where and how to store it is
also of crucial importance. The standardized storage place has usually been local servers
(Local databases), but in recent decades the tendency is to use services in the cloud (cloud
databases) because of their improvement and flexibility. Moreover, the data should be
stored in a structured way in order to be more efficiently accessible.

3.2. Raw Data Preprocessing

After acquiring and organising the raw data, the next step is preprocessing it. That
means, data manipulation and transformation for consumption in Machine Learning
algorithms. In general, this step can be divided into two levels of preprocessing. On the
one hand, the general raw data preprocessing and on the other hand, the specific feature
preprocessing or Feature Engineering.

• General raw data preprocessing: This level of preprocessing involves data cleaning, which
is all about filtering messy data, detecting outliers and missing values, and applying
normalization [48,49] and even segmentation [50,51]. Furthermore, it is important
to know that data exploration is a technique that will help general preprocessing by
combination of manual methods and automated tools such as data visualizations,
charts, etc. to understand what is in a dataset. After refining the raw dataset, the
volume of data will be considerably smaller. This makes easier to manage it during
the Feature Engineering step.

• Feature Engineering: Once the raw data have been reduced and cleaned, Feature Engi-
neering should be applied in order to modify the dataset into appropriate information
for feeding the ML algorithm. Particularly, Feature Engineering can be split into two
main tasks, Feature Extraction (FE) and Feature Selection (FS).
The main objective of Feature Extraction is to transform raw data into numerical
features that can be processed by the ML algorithm, while preserving the information
in the original dataset. ML algorithms do not always work so well on raw data,
that is why extracting new numerical features from historic dataset variables yields
better results. This task performance is directly related to domain expertise and solid
understanding of the data, that is why expert knowledge is really required. Feature
Extraction can be accomplished manually, via time, frequency and time/frequency
domains transformations such as mean, maximum/minimum, standard deviation,
kurtosis, as well as, more advance domain transformations such as Fast Fourier
Transform (FFT) or even Wavelet and Short Time Fourier Transform (STFT) approaches.
At the same time, FE can be also performed automatically using specialized algorithms
such as Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA),
or Independent Component Analysis (ICA) [52–54].
Usually, a huge number of features can be obtained from the FE stage. Unfortunately,
not all features are meaningful and contain hidden patterns about the equipment
under investigation. That is why some of them are redundant or irrelevant. These
features should be removed by means of Feature Selection techniques [52]. The
main objectives of applying these methods are the accuracy improvement in the
ML model, the overfitting risk reduction of the algorithm, and a considerable speed
up in the training step. When speaking about overfitting, it means that a trained
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model corresponds too closely to a particular dataset, which may therefore fail to fit
additional data or predict future observations reliably [55,56]. Therefore, this second
task of Feature Engineering tries to rank the importance of the extracted features in
the dataset by applying certain evaluation criteria, while discarding less important
variables. FS mechanisms are divided in three groups: Wrapper, Filter, and Embedded
methods [57].

3.3. Machine Learning Model Design

Once the most important features have been selected, it is time to choose the most ap-
propriate Machine Learning topology and algorithm to build the active supervision strategy.

Machine Learning is a subset of AI which enables computers to act and make data-
driven decisions to carry out certain tasks. Its main applications can be summarized in
collaborative filtering, automatic translation, speech recognition, face identification, as
well as different fault diagnosis and maintenance tasks [58]. The core of these data-driven
methods are algorithms that are designed in a way that they can learn and improve over
time when exposed to new data [59–61].

ML algorithms can deal with different problem topologies and applications. The typi-
cal ML classification shown in scientific publications such as [60–64] is the one presented
in Figure 8.
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Figure 8. Machine Learning algorithms topology.

• Supervised Learning: Supervised ML algorithms are supported by an established
set of data and a certain understanding of how that data is organised. That is to
say, data samples have assigned labels that define the meaning of the input/output
relationship [65], as it can be seen in Figure 9.
However, the most challenging problems in supervised models is that they require
labelled data. One has to spend time labelling the samples, which is expensive and
time-consuming.

• Unsupervised Learning: Unsupervised ML algorithms arise when the problem contains
a large amount of unlabelled historic data. That means that it only contains the features
subset, no label characteristic is available [65] (see Figure 10). Thus, understanding
the meaning behind this problem requires algorithms that can find and classify data
instances into groups by their similarities based on distance or statistic metric [61,66].
Clustering is the most used Unsupervised approach. With it, objects or samples with
similar parameters or characteristics are grouped together in “clusters”.

• Semi-supervised Learning: Most of the application domain suffers from not having suffi-
cient labelled data whereas unlabelled data are available cheaply. Semi-supervised
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Learning addresses this problem and act as a half way between supervised and un-
supervised learning [67,68]. Normally, first, these type of algorithms use the limited
set of labelled samples to train themselves, resulting in “partially trained” models.
After that, the partially trained models label the unlabelled dataset. In addition, fi-
nally, the pseudo-labelled and labelled datasets are combined, in order to train a new
algorithm that joins both the descriptive and predictive aspects of supervised and
unsupervised learning.
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Figure 9. Schematic block-diagram of the supervised ML approach.
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Figure 10. Schematic block-diagram of the unsupervised ML approach.

As said before, in this third step of the workflow, the Machine Learning topology
should be selected and the algorithm should be trained and validated in order to leave it
ready to integrate into the required application [62,69,70]. For that, the specific procedure
shown in Figure 11 should be followed [71].

In the Model Selection phase, an empirical comparison of algorithms of the same
topology is performed and the approach with best results is selected. This phase is divided
into two sub-phases. On the one hand, in the first sub-phase (Model Learning), algorithms
of similar characteristics (supervised, unsupervised, etc.) are trained with the training
sub-dataset. This means adjusting their internal parameters during the learning phase.
On the other hand, in the second sub-phase (Model Validation), hyperparameters are
optimized and the different algorithms are validated with the validation sub-dataset.
Validation means, evaluating algorithms performance by different criteria. The most
common indicators are the Confusion Matrix for classification problems and the Root Mean
Square Error (RMSE) for regression approaches [72].
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Figure 11. Training/Testing process for a ML algorithm.

Finally, in the Model Assessment phase the trained and selected algorithm is checked
in a real environment under new unseen data, the so-called testing sub-dataset. If this last
evaluation is positive, the ML model will be ready to be implemented in the application.

In addition, it is important to mention that the most efficient way to carry out this
training and testing process is to use independent sub-datasets at each stage. That means
that a historic dataset achieved from preprocessing step of the workflow should be split
into three sub-datasets, which are training, validation and testing sub-datasets, as was
said before (see Figure 11). Normally, between 60–70% of the historic dataset is saved for
training tasks. The rest 20–30% is split in two equal parts for creating the Validation and
Testing sub-datasets.

3.4. Implementation and Integration in the Application

In this last step of the ML workflow, trained and validated models are integrated into
company pipelines. In the case of a data-driven active supervision strategy, this step means
that ML algorithms are integrated in the CM structure from Figure 3. However, several
tasks need to be performed before a data-driven solution is fully operational. Some of the
aspects to be taken into account are:

• The ML workflow may not be developed using industrial tools. It is common to use
research or academic tools (such as Matlab) in the training and validation phases.
Hence, during the deployment, algorithms need to be adapted to different platforms.

• Following the previous point, visualization tools need to be developed. In the design
phases, specialized tools are used to analyze in detail the performance and operation
of the algorithms.

• The deployment architecture must be selected between the solutions given in Figure 1.

4. Data-Driven Active Supervision Strategies in Electric Drives

In this section, a review of scientific documentation focused on data-driven active
supervision techniques applied in electric traction systems is presented. As a way of
covering as many publications as possible and give consistency to the review, a structured
material collection was carried out. Therefore, this review is defined by the next points:
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• The collected material is composed of scientific papers, from many data bases such as
Web of Science, Scopus, Google Scholar, etc. in which the main area of study matches
with data-driven fault detection, diagnosis and prognosis approaches performed in
electric drives.

• The searching has been limited by dates, only documentation published between 2010
and the present has been taken into account.

• The publications have been classified by application type, component under investi-
gation, ML type, ML algorithm, preprocessing techniques and data sources.

• Finally, the literature has been organized depending on the electric drive subsystem
they belong to, taking as reference the general architecture defined in Figure 2.

Therefore, it is important to take into account that the aim of this review is to analyze
the present studies and research about this topic, in order to identify the main challenges
around it, to be able to define new investigations gaps for future developments.

4.1. Energy Source

In electric drives, the energy source can be based on different topologies such as
batteries, electric grid, catenaries, super/ultra-capacitors, etc. which depend mainly on the
application.

In the railway sector, catenaries or overhead contact lines (OCL) are treated as part
of the infrastructure section. This means that this component should be considered out of
the electric traction system of a rolling stock itself. However, owing to its relevance in the
performance of the system and its continuous interaction with the pantograph, they have
been taken into account in this review.

To start with, ref. [73] reviews the state of practice and the state of the art of Prognostics
and Health Management (PHM) strategies for OCL systems. Key sensors, monitoring
parameters, state detection algorithms, diagnostics approaches and prognostics models are
reviewed. Additionally, future challenges and technical needs are highlighted, such as the
need for standardizing sensors, improving in data storage platforms, and boosting hybrid
FDD strategies.

In the case of ref. [74], a brief comparison between the traditional methods used to
detect faults in catenaries and the more sophisticated ones is presented. It remarks that
traditional ones were carried out through foot inspections and inspection trolleys fitted
with cameras, proving to be inefficient and time consuming when analysing the data.
However, with the advance of AI and new sensing techniques, smart supervision systems
based on ML techniques have been implemented. As an example, the paper analyzes the
interaction between the pantograph and contact wire (CW) by using accelerometers and
non-contact infrared thermometers. The acquired field data are transmitted to the cloud
for preprocessing and storage. Moreover, an unsupervised learning method based on the
k-Means clustering algorithm is built in Matlab, which reaches satisfactory results.

Furthermore, ref. [75] focuses on catenary-pantograph interactions, especially in
electric arcs. The general block diagram of the designed data-driven active supervision
strategy is based on three SVM classifiers fed with current and voltage signals from
pantographs, working as an ensemble method. At the end, a fuzzy integral technique is
used to synthesize the results obtained by the individual classifiers reaching 95.64% of
accuracy in electric arcs’ detection tasks.

When focusing only in the pantograph device, it is clear that one of the main problem-
atic events is the carbon contact strip wearing. An example of this event analysis is ref. [76],
which develops a RUL prediction of the pantograph carbon contact strip (PCCS) via linear
regression combined model. For that, wear data from Guangzhou Metro are acquired and
preprocessed, reaching acceptable predictive properties.

Eventually, in terms of energy storage systems (ESS) such as batteries and super/ultra-
capacitors, plenty of studies have been carried out in levels of fault detection and diagnostic
or even in prognostics ones. On the one hand, as reviews such as [77,78] say, fault diagnosis
of batteries is an important task in the battery management system (BMS). It is responsi-
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ble for detecting early faults and providing control actions to minimize their effects, to
ensure the safe and reliable operation of the ESS. On the other hand, research such as in
refs. [79–81] concludes that RUL prediction of batteries has become the hot topic in elec-
tronic PHM, because it is helpful to reduce failure rates and maintenance costs.

However, an exhaustive analysis of the existing alternatives is outside the scope of
this review, since the ESS sector is large enough to warrant an independent analysis.

4.2. DC Link

The DC link subsystem makes the union between the input and the output energy
conversion subsystems using a bus capacitor bench. Other elements can be added to
this capacitor bench to actively control the flow of energy, such as the crowbar and the
grounding circuit.

In the case of the crowbar, the influence of AI is not usual. No scientific papers have
been found concerning maintenance strategies of this protection element. The main reason
for that can be the simplicity and the discontinued use of the component, since it is only
used in braking mode and not in every application.

In respect to the grounding circuit, a single paper was found [82]. The research goes
over a data-driven FDI method to avoid grounding faults and consequent short circuits. In
this case, the Canonical Correlation Analysis (CCA) supervised algorithm is applied for
fault detection, and then fault isolation and visualization techniques are proposed based
on DC link current and voltage data from a test-bench.

However, as review [83] transmits, a large number of scientific publications studied
CM strategies in capacitor benches during last two decades. Most of the research is based
on signal-based methodologies. Taking refs. [84–86] as example, the main strategy in
this approach is to detect changes in the equivalent series resistance (ESR) and in the
capacitance of the component via the analysis of voltage and current measurements, in
order to detect the life-cycle status and permit preventive maintenance of the component.

Nevertheless, a tendency can be observed from 2015 until now, where research raised
attention in data-driven active approaches. For example, a data-driven method for capaci-
tors based on an Artificial Neural Network (ANN) algorithm is proposed in ref. [87]. It is
applied to a back-to-back converter case study to estimate the capacitance value change
of the DC-link capacitor. Data for training and validating the model is achieved from
simulations in Matlab/Simulink software.

The case of ref. [88] presents a fault detection and identification method for the
capacitor ageing faults in DC filters of power converters. This strategy is based on the
adaptive neuro-fuzzy inference system (ANFIS) algorithm. The inputs to this model are
input voltage of the converter, as well as the voltages across the DC filters. The output of
the ANFIS unit is used as an index to identify the capacitor ageing fault. Then, it locates the
fault within the two DC filters installed in the power converter. Another recent example is
ref. [89], where an online failure detection method for a DC-link electrolytic capacitor in a
converter, using a Support Vector Regression technique, was proposed.

Table 3 gathers the analyzed papers concerning data-driven fault detection and diag-
nosis models applied over the DC link subsystem.

Table 3. Data-driven FDD application examples in DC-link subsystem.

Ref. Faulty Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[82] GND fault vdc, iin and iout t-domain CCA Test-bench
[87] C reduct. iin and iout t-domain ANN Simu.
[88] Cap. ageing vin and vdc t-domain ANFIS Simu.
[89] C reduct. i and v t and f -domain SVR Simu.
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4.3. Energy Conversion Step

In the energy conversion steps (input and output), the power converters are normally
based on power semiconductors, which are exposed to high thermal and electrical stress
in electric drive applications. Repeated impact of energy during the IGBT’s or Diode’s
switching and blocking makes the power converter more vulnerable to failures, such as
open-circuit (OC) and short-circuit (SC). Therefore, supervision of this subsystem has been
studied for years.

Until 2010, signal-based and model-based techniques were the most applied method-
ologies. On the one hand, signal-based methods such as current trajectory and instan-
taneous frequency analysis, considered in refs. [90,91], were applied because of their
simplicity and low computational load in detection supervision levels. On the other hand,
the model-based techniques were more precise and easier to implement in diagnostic
tasks after the mathematical model generation [92]. Nevertheless, as the complexity of the
systems have increased, the work required in calculating these new mathematical models
have not been feasible.

That is why, from 2010 to the present, data-driven active supervision strategies have
been investigated because of the improvement of data accessibility, storage and compu-
tational capacity. One of the first works implementing data-driven methods in power
electronics semiconductors supervision is ref. [93], which with the help of model-based
simulations, detects and identifies IGBT OC faults from voltages and current signals via
ANN. Additionally, supported by simulations in Matlab, ref. [94] develops an IGBT OC
diagnosis model based on a SVM. As peculiarity, in this research the current signals are
preprocessed with wavelet transform in order to achieve new input features to the model.

In ref. [95] not only the OC fault mode is analyzed, but also SC faults are distinguished
via an ANN algorithm. In this case, voltage, current and torque variables are preprocessed
to calculate new statistical features such as maximum, minimum, standard deviations, etc.

Furthermore, in ref. [96], a basic test-bench with an electric drive attached to a
microcontroller is built. The main objective of this test-bench is the massive data generation
(healthy and faulty). In this research, new features are extracted with FFT from output
inverter voltage, and then the most relevant ones are selected with PCA method. Finally, a
Bayesian Network is developed to diagnose OC faults.

However, research developed from 2016 until now focused more on Deep Learning ap-
proaches. As an example, ref. [97] questions both model-based and basic ML architectures
because they need to build complex mathematical models or extract features from sensor
signals manually. To solve these problems, the paper proposed a new DL method for IGBT
OC fault diagnosis based on a Convolutional Neural Network. This end-to-end algorithm
extracts comprehensive information from converting current signals into pixelated images.
It is worth mentioning that faulty and healthy data for training the CNN is acquired from
simulations in Matlab/Simulink.

Another example of DL application is ref. [98], where a fault identification in traction
inverter based on Deep Wavelet Neural Network (DWNN) and Deep Support Vector
Machine was suggested. The method uses the DWNN to automatically mine and compress
hidden fault information from the simulated current signals and after that Deep Support
Vector Machines (DSVM) are trained to integrate the recognition results.

Similar to previous examples, in ref. [99], a robust fault diagnosis strategy for open
switch faults isolation in a five-phase conventional inverter was designed. An adaptive
Self-Recurrent Wavelet Neural Network (SRWNN) as a non-linear system identifier pro-
vides the fault detection scenario. Then, it is followed by a classifier to locate the fault.
Discriminant Analysis and SVM have been implemented to identify the fault location. In
this research, the proposed method was also evaluated by experimental results obtained
from a lab prototype.

To sum up, all the analyzed scientific papers referring Data-driven FDD techniques in
inverters of electric drive applications are shown in Table 4.
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Table 4. Data-driven FDD application examples in energy conversion subsystem.

Ref. Faulty
Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[94] OC iabc Wavelet SVM Simu.
[96] OC vabc FFT and PCA Bayessian Net. Simu. and Test-bench

[100] OC iabc - Ensemble
method Simu.

[95] OC and SC vabc, iabc and Tem t-domain ANN Simu.
[93] OC vabc, iabc and Tem t-domain ANN Simu. and Test-bench

[101] OC iabc and Clark i t and f -domain ANN Test-bench
[102] OC iabc Wavelet SVM Simu.
[103] OC and SC Gate sig. - KPCA Test-bench
[97] OC iabc Image converter CNN Simu.

[98] OC iabc - DWNN and
DSVM Simu.

[99] OC iabc and Gate sig. - SRWNN and
SVM Simu. and Test-bench

[104] OC iabc t-domain Random Forest Test-bench
[105] OC vabc - CNN Simu.
[106] OC iabc t and f -domain ANN Simu. and Test-bench
[107] OC iabc FFT and ReliefF ANN Simu.

4.4. Electric Machine

In the case of the electric machine subsystem, plenty of scientific publications have
been found. This can be for many reasons. On the one hand, the electric machine can
be categorised as the nucleus of electric drive application, because it is the device which
generates the motion. On the other hand, it is one of the most expensive and complex part
among all the components.

Traditionally, signal-based methods have had a wide application in Condition Monitor-
ing for electric machines, both in electrical and mechanical faulty events. Reviews [108–110],
and PhD thesis [111] summarized the different applied methodologies. Moreover, model-
based diagnostic methods have been also used simultaneously with signal-based
method. In this case, reviews such as [112,113] make a general mapping of this strat-
egy in electric machines, and scientific applications such as [114–117] develop different
model-based methods.

Even so, concerning the last decade, data-driven techniques were implemented to
assist in active supervision tasks. As an example from 2010, ref. [118] performed the
complete workflow of a Machine Learning based active supervision methodology for
electric machines. It classified winding inter-turn SC and rotor eccentricity faults based on
a Multi-Layer Perceptron (MLP). Later, ref. [119] analyzed electric machine health status
not in steady state, but in speed transient state. In this case, stator current signals have
been preprocessed by wavelet transform and PCA algorithm to achieve new input features
for the Decision Tree model.

However, not only electric signals are analyzed in electric machine diagnosis, refs. [112,120]
analyzed stator and rotor faults via vibration signals from accelerometers installed in test-
benches. The research compared k Nearest Neighbours, MLP and Radial Basis Function
(RBF) algorithms performance after preprocessing vibration signals with discrete wavelet
transform (DWT) and genetic algorithm (GA). The latter calculates statistical features and
principal components from vibration signals to feed an ANN algorithm. Furthermore,
research where acoustic signals [121,122] or even thermal imaging [123] are analyzed, can
be found in the bibliography.
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Although every research shown until now reached diagnosis classification accuracies
above 90%, they depended strongly on expert knowledge, especially in preprocessing steps
such as feature selection and extraction. Thus, from 2016 to the present, Deep Learning
workflow has been studied in different publications. As mentioned before, Deep Learning
models substitute the time-consuming preprocessing steps by end-to-end algorithms which
work directly with quasi-raw data, accelerating the workflow and approaching to real-
time maintenance strategies. For example, ref. [124] trained a Deep Belief Network
(DBN) with vibration data from an electric machine. This algorithm is a probabilistic
generative model formed by Restrictive Boltzmann Machines (RBM), which can model
high-dimensional and non-linear data via multiple layers, thus can reduce training error
and improve classification accuracy.

In ref. [125], stator and rotor faults were analyzed with CNNs. It is important to
mention that in this case, CNN training periods are reduced because the Transfer
Learning approach has been applied. This recent philosophy takes advantage of
parameters and hyperparameters from previous trained CNN of similar applications.
Refs. [126–128] are other examples were end-to-end algorithms were used to actively
supervise electric machines, Sparse Autoencoders combined with SVM (SAE-SVM), CNN
and DNN respectively.

Table 5 collects the papers which perform a data-driven fault detection and diagnosis
methodology in electric machine.

Table 5. Data-driven FDD application examples in electric machine subsystem.

Ref. Faulty Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[129] Rotor and stator Power t-domain and LDA SVM Test-bench
[124] Rotor and stator Vibration f -domain DBN Test-bench
[126] Rotor and stator Vibration - SAE-DNN Test-bench

[130] Brok. rotor bar iabc
t, f -domain and

Pearson Corr.
NB, kNN, AdaBoost,

SVM and ANN Test-bench

[120] Rotor and stator Vibration DWT and GA kNN, MLP and RBF Test-bench
[131] Broken rotor bar iabc t-domain SVM, kNN and MLP Test-bench
[132] Rotor and stator iabc t-domain and DWT ANN Simu.

[118] Winding inter-turn
SC and rotor eccen. iabc t-domain and PCA MLP Test-bench

[133] Rotor and stator Vibration - CDFL-SVM Test-bench
[50] Turn-to-turn SC iabc and vabc FFT and Fisher corr. kNN, NB and SVM Test-bench

[123] Broken rotor bar
and faulty rings

Thermal
imaging MoASoID imaging kNN, kMeans and

ANN Test-bench

[127] Rotor and stator Vibration and
iabc

Wavelet DCNN Test-bench

[125] Rotor and stator Vibration Wavelet CNN (Transfer
Learning) Test-bench

[134] Rotor and stator Vibration Wavelet CNN Test-bench
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Table 5. Cont.

Ref. Faulty Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[135] Rotor and stator Vibration t-domain, PCA, LDA
and Fisher corr. ANN Test-bench

[122] Broken rotor bar and
faulty rings Acoustic f -domain kNN and ANN Test-bench

[136] Stator winding SC iabc Clark transform ANN Test-bench

[119] Stator winding SC
and broken rotor bar iabc Wavelet and PCA Decision Tree Test-bench

[137] Rotor eccentricity iabc FFT ANN Test-bench
[138] Rotor Vibration PCA CNN Test-bench
[128] Rotor iabc EMD DNN Test-bench
[139] Rotor and stator Vibration and iabc t-domain and FFT Decision Tree and kNN Test-bench
[140] Generic iabc - LSTM-FCN Test-bench
[141] Rotor and stator Vibration - DNN Test-bench
[142] Rotor and stator iabc and vabc FFT kMeans Simu.
[143] Inter-turn SC iabc - CNN Simu.
[144] Blocked air inlet Thermal imaging - SVM and kNN Test-bench

4.5. Mechanical Subsystem

In this scientific documentation review, the mechanical subsystem is the one that
concentrates the highest amount of scientific publications. Specifically, among all the
components that compose the subsystem, bearings are the most analyzed elements. For
example, reviews such as [145–148] affirm that this vulnerable element has been studied
for a long time. In general terms, they analyzde both ML and DL approaches for detection
and diagnostics tasks, as well as, for prognostics tasks applied in bearings.

Based on the carried out analysis, it can be seen that from 2010 to 2015, the ML
workflow was the basis of the data-driven active supervision techniques applied in bearings.
Next publications are examples of this period of time. Ref. [149] develops a FDD strategy
based on a SVM classifier applied in bearings of a three-phase induction motor. In this
case, data are acquired from accelerometers installed in a test-bench, and preprocessed via
Continuous WT to improve the training dataset quality.

Moreover, ref. [150] proposed a binary classifier based on an ANN. This algorithm
is tested with experimental data obtained via the phase current measurements when the
machine is in healthy state and having cracked bearing fault. It concludes that the success
of a classifier depends very much on the effectiveness of the extracted features more than
in the algorithm itself.

Furthermore, in ref. [151] a monitoring scheme applied to diagnose local defects,
raceway faults and also, distributed anomalies in bearings was presented. For that, first, the
most significant statistical time domain features are computed from vibration signals. Then,
in order to comprehend and visualize features behaviour better, Curvilinear Component
Analysis, a non-linear preprocessing technique was applied. Finally, a Hierarchical Neural
Network structure was used to perform the classification stage between classes.

However, from 2015 until now, DL architectures have been the most popular in bearing
active supervision strategies. Clear examples of this change are next scientific publications.
Refs. [152,153] researched the design of CNN-based end-to-end methods that take raw
signals as inputs. The only difference between both publications is that the former uses as
input image the frequency spectrum of the vibration time-series, whereas the latter uses
the STFT of those vibrations signals. It is important to mention, that in both cases the
dataset has been taken from a public dataset provided by Case Western Reserve University.
It consists of vibration signals collected at 12 kHz or 48 kHz for normal and damaged
bearings with single-point defects under four different motor loads.

In the case of ref. [154], it faces the noise drawback in vibration signal from bearings
to develop an effective data-driven FDD methodology. It uses the Deep Autoencoder
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algorithm to denoize input signals before putting them into the Neural classifier. This
denoizing step improves classification accuracy of bearing faults until values above 99%.

At the same time, and taking advantage of the DL’s strengths, strategies based on
acoustic signals or thermal imaging have been applied for diagnosing faults in the me-
chanical subsystem of electric drives. As an example, on the one hand, ref. [155] proposes
a CNN-based classification method for diagnosing bearing faults under variable shaft
speeds using acoustic signals. These signals are represented by spectrograms to obtain as
much information as possible in the time–frequency domain. On the other hand, ref. [156]
worked in a new framework based on small labelled infrared thermal images used to
train CNNs.

Apart from fault detection and diagnosis strategies, prognostics techniques to compute
the RUL of bearings are also being developed. As an example, ref. [157] dealt with the
problem of CBM applied to the predictive maintenance of train axle bearings based on
multi-sensors data collection, with the purpose of maximizing their RUL. For that, SVR
algorithm is trained and tested with real data. Additionally, ref. [158] worked on a data-
driven approach for the RUL estimation of rolling bearings based on a SVR algorithm. In
this case, multiple statistical features in time and frequency domain are extracted from the
run-to-failure experiments by the PRONOSTIA public dataset provided by the FEMTO-ST
institute in France.

To end with this subsystem review, it is important to mention that apart from bearings,
data-driven active supervision strategies also are focused on the gearbox. Some examples
are refs. [159,160], which based their diagnosis abilities in CNN models trained with
vibration signals acquired from test-benches.

Table 6 collects the most important papers concerning data-driven active supervision
strategies applied in mechanical subsystem.

Table 6. Data-driven FDD application examples in mechanical subsystem (Bearings and Gearbox). Prat I.

Ref. Faulty Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[161] Hole and scratch iabc, ω and vabc FFT CNN, DT, RF, NB, SVM,
kNN Test-bench

[152] Ball, inner and outer race Vibration FFT CNN Test-bench

[162] Ball, inner and outer race Vibration Variational Mode
Decomposition DBN Test-bench

[153] Ball, inner and outer race Vibration STFT CNN Test-bench
[163] Ball, inner and outer race Vibration Sparse Filtering Softmax Regression Test-bench

[151] Generic faults Vibration t-domain, DA and
CCA MLP Test-bench

[164] Generic faults Vibration - CNN Real data

[165] Generic faults Thermal
imaging Wavelet SVM Test-bench

[166] Generic faults Leakage i PCA kNN Test-bench

[149] Generic faults Vibration Wavelet SVM and ANN Simu. and
Test-bench
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Table 6. Cont.

Ref. Faulty Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[167] Ball, inner and outer race Vibration t and f -domain ANN, Rule-based Method,
SVM and kNN Test-bench

[157] Ball Temperature and
vibration - SVR Test-bench

[168] Ball, inner and outer race Vibration STFT CNN and LSTM Test-bench
[169] Ball, inner and outer race Vibration FFT DNN Test-bench
[170] Ball, inner and outer race Audio t and f -domain kMeans and kNN Test-bench

[171] Ball, inner and outer race Vibration EEMD, t and
f -domain WNN Simu.

[154] Ball, inner and outer race Vibration Wavelet and
Autoencoder ANN Test-bench

[172] Ball, inner and outer race Vibration - Autoencoder and Softmax Test-bench
[125] Ball, inner and outer race Vibration Wavelet CNN Test-bench
[150] Generic faults iabc Ambiguity plane ANN Test-bench
[173] Ball, inner and outer race Vibration t and f -domain Ensembl. SVM Test-bench
[155] Generic faults Acoustic STFT CNN Test-bench
[174] Ball, inner and outer race Acoustic Wavelet CNN Test-bench
[175] Ball, inner and outer race Vibration STFT CNN Test-bench
[158] Ball, inner and outer race Vibration Wavelet SVR Test-bench
[176] Inner race and outer race Vibration Autoencoder DBN Test-bench
[156] Ball, inner and outer race Thermal imaging Autoencoder CNN Test-bench
[177] Inner race and outer race Thermal imaging Wavelet and PCA SVM, LDA and kNN Test-bench
[48] Generic faults - t-domain Gaussian Regression Real data
[175] Ball, inner and outer race - STFT CNN Test-bench
[178] Ball, inner and outer race Vibration t-domain kNN Test-bench
[179] Tooth fracture and wear iabc f -domain SVM Test-bench
[160] Tooth fracture and wear Vibration Wavelet CNN, SVM and ANN Test-bench

[180] Tooth fracture, pitting and
wear

Vibration and
acoustic t and f -domain CNN Test-bench

[181] Inner and outer race iabc Genetic Alg. kNN, DT and RF Test-bench

[182] Generic faults iabc and
vibration

Autoencoder and
LDA ANN Test-bench

[183] Ball, inner and outer race Vibration FFT Extreme Learning Machine Test-bench

4.6. Sensors

Although the function of sensors is very wide, the majority of the reviewed research
analyze sensors which are used for control operations. For example, in ref. [184] a new data-
driven incipient fault detector methodology was proposed via Neural Network algorithms
for phase current, speed and DC link voltage sensors. It incorporates preprocessing algo-
rithms such as PCA or Kullback–Leibler divergence (KLD) to extract important information
from the acquired data.

Furthermore, ref. [185] developed a SVM based fault detection and diagnosis strategy
applied in High-Speed Trains applications. On it, the fault detectability of data from a test-
bench is improved via PCA preprocessing methods. Additionally, studies such as [186,187]
develop generic faults diagnosis strategies for sensors, based on Extreme Learning Machine
and kNN algorithms, respectively. Both studies are focused on current and speed signal
measurements acquired from simulations and test-benches.

However, few studies focused on sensors used in protection or monitoring tasks.
For example, ref. [188] demonstrated that ML techniques such as kNN can be used to
classify generic sensor faults from a strain gauge used in aviation application. It is worth
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mentioning that it is the only research found that tests the ML model against field data.
Moreover, ref. [189] analyzed temperature sensor performance installed in a converter
package from a traction application. It develops a SVM based classifier to detect and
diagnose faults such as erratic, drift, hard-over, spike, and stuck by inserting them in a
simulation run in Matlab. In this case, preprocessing tasks have been carried out in order
to extract features in time domain via basic statistics methods.

Table 7 summarizes papers which perform a ML based data-driven fault detection
and diagnosis methodology.

Table 7. Data-driven FDD application examples in sensors.

Ref. Faulty Event Meas. Signal Feat. Sel./Extr. Algorithm Data Source

[190] Bias and offset iabc, ω and vdc - MPCA Test-bench

[186] Stuck, noise and offset iabc, ω and vdc -
Extreme
Learning
Machine

Simu. and
Test-bench

[191] Generic faults iabc t-domain ANN Simu. and
Test-bench

[192] Bias and offset iabc, ω and vdc and
Tem

CCA and KLD CNN Test-bench

[185] Bias and offset iabc, ω and vdc PCA SVM Simu. and
Test-bench

[184] Bias and ramp iabc PCA and KLD ANN Test-bench
[193] Ramp, stuck and offset iabc, ω and vdc - DeepPCA Test-bench
[187] Generic faults iabc an ω PCA ANN and kNN Simu.
[194] Bias and offset iabc, ω and vdc - PCA Test-bench
[188] Generic faults Strain gauge - kNN Real data
[189] Generic faults Temperature t-domain SVM Simu.

[195] Generic faults vabc and vdc -
Extreme
Learning
Machine

Test-bench

[196] Stuck, noise, gain and
offset iabc, ω and vdc t and f -domain

Extreme
Learning
Machine

Simu. and
Test-bench

5. Discussion

This section presents the main discussion of the review of the ML- and DL-based
solutions for actively supervise electric drives. These results have been divided in points in
order to facilitate their understanding.

• First, taken the aforementioned bibliography into account, it is important to under-
stand the tendency of the different FDD methodologies applied in electric drives
during last decades, in order to understand the background and the future lines
about this topic. Therefore, as a result, this review shows that until 2010, model- and
signal-based methods were the most applied strategies by researchers. However, due
to the development of the Industry 4.0, as well as the enhancement in the accessibility
to large amount of datasets, from 2010 to the present, solutions based on data-driven
methods has been the most studied and developed. Compared with the classical
techniques, DD active supervision strategies have a greater scope, as they can em-
brace more functional levels of ISO 13374. While MB or SB techniques cover until the
State Detection or even Health Assessment level, data-driven ones can also help at
Prognostics Assessment and Advisory Generation tasks.
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• Furthermore, it is important to know that these DD strategies have been supported
by Machine Learning algorithms, which have been developed with the standardized
workflow analyzed in Section 3. Nevertheless, ML algorithms have suffered limi-
tations when trying to reach real-time diagnosis because of some time-consuming
manual stages. That is why, from 2015 until the present, Deep Learning end-to-end
architectures have become the hot topic among the researchers.

• Concerning the analyzed workflow, although the ML algorithm selection, training
and testing step (3rd step) looks like the most laborious step of the workflow, data
acquisition and preprocessing steps can be considered to be the bottleneck of the
complete development procedure. Therefore, DL approaches try to overcome the
presented limitations. The workflow for this new solution removes the middle feature
engineering step, building end-to-end Deep Neural Networks. This means that new
features do not have to be selected manually by experts, instead they are computed
automatically by adding hidden networks to the traditional Artificial Neural Networks
(see Figure 12).

• The main drawback of DL approaches is not only the lack of interpretability, but also
the lack of ability to explain specific phenomena. This is a disadvantage for diagnostic
applications, where cause-effect relationships need to be identified, so that you can
correct or reconfigure systems or even change designs. When an algorithm integrates
all the steps by itself and does not give any information about the features or the
sources of a faulty event, it is difficult to implement the feedback key element of
Industrial AI explained in Section 1.

• At the same time, Section 4 shows evidence of the usage of data-driven FDD method-
ologies in fault diagnosis of electric drive subsystems and components. It collects
applications from sectors such as railway, aviation, electric and hybrid vehicle, eleva-
tors, energy generation and electric grid.

• Another result obtained from the review is that DD active supervision strategies have
been applied in most components of the electric drive generic architecture. However,
according to the literature, the number of works dedicated to each subsystem depends
strongly on the analyzed component. As it can be seen in Figure 13, sensors, electric
machines and mechanical subsystem (bearings) are the ones with higher numbers of
scientific papers.
It can be said that solutions based on ML and DL are applied in the most complex
and expensive components in terms of maintainability. For example, on the one
hand, power electronics (inverters, rectifiers, etc.) or passive components (DC-link
capacitors, filter inductors, braking resistors) are usually designed for the whole
Life Cycle of the systems. Hence, maintenance actions are limited and faults should
not appear. On the other hand, electric machines and bearings are components that
need extensive maintenance. Thus, active supervision continues being an open topic
for research.

• Moreover, most of the analyzed applications are developed with simulation or test-
bench data sources. Little research shows solutions validated in real industrial envi-
ronments with field data, as can be seen in Figure 14.
As it has been mentioned in the introduction, one of the challenges of the Industrial
AI is the lack of faulty event samples when facing real environment applications.
Therefore, in most research, training AI models require supplementing real data with
synthetic samples from simulations or test-benches. It is clear that real systems are
designed not to fail, that is why faulty data are scarce. As a result, the dataset becomes
unbalanced and it will cause great difficulties in conducting model training. In order
to overcome this limitation, much of the research has been working on simulation and
test-bench environments to acquire synthetic balanced datasets. Owing to the fact that
it is much easier to develop a controlled failure scenario, which will not damage the
operation of the real application.



Sensors 2021, 21, 4024 22 of 33

• Furthermore, in electric drives, sensors used for monitoring have different sources and
characteristics making the data acquisition heterogeneous and challenging. However,
the most used variables are vibration for diagnosing mechanical failures and current or
voltage for analysing electrical failures. Although the results of the review show this,
it is worth mentioning that if the main objective is to reduce the Life Cycle Costs of the
on-line CM strategy, the most efficient approach is to use the sensors already installed
for control and protection tasks of the electric drive as data source for training the ML
algorithms, and likewise not adding more sensors that increase the initial investment.
Among the most used sensors are current, voltage, speed sensors, etc. It is true that
at the level of fault diagnosis, sensors such as accelerometers, acoustic and thermal
cameras can better identify the origin of the fault. However, their implementation is
not economically feasible because it increases the costs of the electric drive that already
suffers many market pressures for acquisition cost. In turn, adding these sensors
increases the cost of maintenance. As a result, it is understood that these sensors
have greater opportunities in the quality control of the manufacturing processes of
the equipment and in the periodic inspection scheduled off-line.

• Finally, looking at the casuistry of failure modes addressed in the literature, it has been
seen that most proposals are closely related to failures at the component level (bearing
failures, shot-circuits or broken rotor bars, for example). However, there is a wider
field of research related to failure modes at the subsystem or even, system level (control
instabilities, undesired interaction between energy conversion steps, loss of comfort
in the system user, etc.). These are cases that are difficult to emulate in simulation
or laboratory environments because more than one subsystem interacts under given
conditions. It is in these cases, at the application level, with complex industrial
systems, which escapes expert knowledge, that Artificial Intelligence (both ML or DL)
and the use of Big Data have the greatest potential compared to other techniques.
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and integration
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Figure 12. Deep Learning workflow.
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Figure 13. Percentage of developed research per subsystem of the electric drive architecture.
* Batteries and Super/Ultra-capacitors have not been analyzed because they have potential to be
studied independently.
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Figure 14. Percentage of developed research per data source.

6. Future Research Directions

Taking in mind this results, in next lines future challenges or investigation lines in
which our research area will be focus on, are going to be explained:

1. Knowing that one of the main drawbacks of these data-driven fault diagnosis strate-
gies, in real industrial applications, is the lack of faulty data (Unbalanced dataset),
future research should work on dataset balancing techniques. An alternative to
this challenge could be the synthetic data generation, via Hardware-in-the-Loop
simulations, which should replicate as best as possible the real application under
investigation, and also, should be compatible with the little field data available when
training the ML algorithms. The second objective is to get closer to real applica-
tions building test-benches where different faulty scenarios can be forced, in order to
generate efficient training datasets.
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2. Another interesting future line is the perspective change when facing failure modes
analysis. As mentioned before, failures are currently studied from a faulty component
or subsystem point of view, and in most cases only faulty effects on the analyzed sub-
systems are considered. However, the interaction between subsystems and focusing
on a complete system environment can be interesting. This way, new faulty events
and improvements can be found.

3. At the same time, another interesting objective is to try boosting unsupervised ML
or even DL strategies, owing to the fact that they are considered to be a hot topic at
present. These approaches can overcome the laborious task of raw dataset labelling,
which many times is really expensive and time consuming.

4. Finally, and concerning the last stage of the ML/DL standard workflow, the integra-
tion of the data-driven fault diagnosis approaches in the Life Cycle of any industrial
equipment needs further research. The main idea in here is to think how this approach
can be established to obtain as much profit as possible, not only in the operation and
maintenance stage of the equipment, but also during the design and the integration
phases. Figure 15 shows an example of integration of the Condition Monitoring
strategy in the “V” shape Life Cycle of an industrial system. Each stage should
benefit from the knowledge acquired thanks to massive data collection and analysis,
and at the same time, design tools such as simulations should help training fault
diagnosis algorithms

General idea and 

planning

Risk analysis and 

system 

requirements

Implementation

Integration in the 

system and 

validation

Detailed design

Functional 

architecture design

Operation and 

maintenance

Move away and 

replacement

Testing Unit

MiL 

simulation

SiL 

simulation

HiL 

simulation

ML/DL-based fault 

diagnosis strategy

Figure 15. V model refresenting the Life Cycle of an industrial system.

7. Conclusions

This review focused on data-driven active supervision strategies implemented in
electric drives, which add value to the systems, improving their competitiveness in the
market. Furthermore, this publication provides general guidelines to develop the Machine
Learning workflow, which can be considered to be the brain of the complete active supervi-
sion approach. At the same time, the analyzed scientific documentation is evidence of the
importance that data-driven methods are acquiring in the maintenance and health manage-
ment tasks not only in electric traction systems, but also in the industry and in other sectors
such as chemistry or economy. However, in order to settle these techniques problems such
as unbalanced datasets, speed-up trainings or even DL algorithm understanding should be
overcome. For that, solutions such as hybrid active supervision methods, semi-supervised
algorithms, or data augmentation techniques could be interesting.
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FDD Fault detection and diagnosis
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BD Big Data

IoT Internet of Things

CC Cloud Computing

AWS Amazon Web Services

TCU Traction Control Unit

LCC Life Cycle Cost

SB Signal-based

MB Model-based

DD Data-driven

FFT Fast Fourier Transform

STFT Short Time Fourier Transform
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ANN Artificial Neural Network
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