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Abstract: This manuscript focuses on methodological and technological advances in the field of
health assessment and predictive maintenance for industrial robots. We propose a non-intrusive
methodology for industrial robot joint health assessment. Torque sensor data is used to create a digital
signature given a defined trajectory and load combination. The signature of each individual robot
is later used to diagnose mechanical deterioration. We prove the robustness and reliability of the
methodology in a real industrial use case scenario. Then, an in depth mechanical inspection is
carried out in order to identify the root cause of the failure diagnosed in this article. The proposed
methodology is useful for medium and long term health assessment for industrial robots working in
assembly lines, where years of almost uninterrupted work can cause irreversible damage.
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1. Introduction

In recent decades, research in industrial robots focused mainly on improving manufacturing
processes, optimizing trajectories, improving accuracy, etc. However, predictive maintenance and
health assessment of robots, has not received as much attention [1,2]. From a maintenance point of view,
industrial robots are a complex kinematic chain comprised of several mechanical components that have
been extensively studied individually: Motors, speed reducers, gears and bearings just to cite some.
Notwithstanding, the union of all these components in a single system and its maintenance as a whole,
significantly increases the complexity of failure prediction. In general, health assessment techniques for
machinery can be classified in two main groups: physical model-based and data-driven [3]. The former
uses deterministic mathematical models to describe the expected behavior of a given system and
compares this expected behavior with the real behavior. The latter, analyses data captured with sensors
and applies statistical and machine learning methods to detect patterns and predict behavior.

Model-based approaches have been widely used to detect failures in industrial components [4–6].
Unfortunately, it is often difficult to implement an analytical model that accurately describes the
behavior of such complex systems. In order to build an analytical model of an industrial robot, there are
some approximations and assumptions that have to be made such as constant speeds, temperature
of the lubricant, loads, etc. [7]. These necessary approximations distance the model from the real
behavior of the system, thus data-driven approaches can be more accurate for industrial robot health
assessment [1]. In addition, the expansion of the Industrial Internet of Things (IIoT) and Big Data
technology in the era of smart manufacturing [8] is pushing the way towards the implementation of
reliable data analysis solutions for predictive maintenance.
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Data-based monitoring and IoT solutions are rapidly emerging and transforming the
manufacturing industry into an industrial Big Data environment [9]. Several research groups have
addressed the issue of monitoring the mechanical condition of machine-tools and industrial robots
with data-driven approaches [10–13]. Mourtzis et al. [14] developed a holistic framework for milling
and CNC machine tool modelling using the OPC-UA communication standard. They implemented
a data acquisition device in order to integrate machine-tools without connectivity in their solution.
Vogl et al. [15] proposed a multi-sensor system for machine tool axes monitoring and degradation
assessment. A.A. Jaber [2] developed an embedded system for industrial robot condition monitoring
using accelerometers at the flange of the robot. He detected a mechanical failure in the gears of the
robot joints and emphasized the need for more research in the field of robot predictive maintenance.
The drawback of using this approach for robots in a real assembly line is that it is hard to isolate external
vibrations from vibration caused by the robot’s failure. To overcome this issue, acoustic emission
sensors were used in [16] to detect a faulty rolling bearing on a welding robot joint. An important
issue to take into account with both accelerometers and acoustic emission sensors, is that they are
intrusive in the sense that they have to be attached to the structure of the robot. This can be a drawback
in real assembly lines because a sudden detachment of one of these sensors could cause either a stop
in the production line, or a defect in manufactured products. Lubricant or wear debris analysis is also
commonly used for industrial robot joint health assessment. It consist on analysing the wear particles
inside the oil that lubricates the joints. As illustrated in [17], any mechanical element working in contact
with another mechanical element will deteriorate and degrade regardless of the design. A disadvantage
of analysing wear debris in the lubricant is that it needs advanced laboratory equipment and it is
highly time consuming. In addition, this method also needs the robot to be completely stationary [18].

According to the author’s knowledge, there is only one article that suggests using torque data
of industrial robot joints to assess their health status. Bittencourt et al. studied in [12] the feasibility
of using torque data for industrial robot and repetitive machinery condition monitoring. However,
they did not measure the torque with sensors. Instead, they calculated the torque by estimating it from
the electric current. The electric current in the motors is directly proportional to the torque required
by each joint. The higher the torque, the more electric current each joint will require. In their study,
Bittencourt et al. used kernel density estimates and the Kullback-Leibler distance to detect deviations
in the repetitivity of an industrial robot joint’s torque [12]. They considered both real data from
accelerated wear tests and simulated data. Industrial robots are presently manufactured with a torque
sensor installed in each joint and therefore, no additional torque sensor needs to be installed. Moreover,
torque data is also useful to monitor and control the energy consumption of the robots. A deteriorated
robot joint should require higher torque to accomplish a specific task compared to a healthy robot joint.
However, the feasibility of torque sensors to detect medium and long-term mechanical deterioration in
industrial robot joints has not been proven and it remains unclear.

The novelty of the paper resides in three main contributions. First, we show the effectiveness
of joint torque monitoring to detect motor brake failures inside robot joints. We perform an in depth
mechanical inspection to find the root cause of a frequent failure of high payload industrial robots.
Second, we emphasize the influence of the standby pose of industrial robots in the reduction of their
RUL by analysing a dataset with more than 600 robots. Last but not least, we present and validate
a methodology for industrial robot health assessment using torque sensors. The proposed methodology
is based on the conclusions extracted from the experiments and the mechanical inspection carried out.
The methodology proposed in this paper is applicable to any kind of 6 Degree-of-freedom (DOF) robot
with any kind of load. The data is acquired in a non-intrusive way, as torque sensors are located inside
the structure of the manipulator.

The manuscript is structured as follows: Section 2 describes the experiment carried out, as well as
the obtained results. In Section 3 we perform an in depth root cause analysis of the mechanical fault
detected in the experiment. Section 4 analyses a possible cause of the reduction of the remaining useful
life of the robots and suggests preventive measures to enlarge their RUL. In Section 5 we propose
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a methodology to monitor the health status of industrial robots based on the experiments explained in
previous sections, and finally Section 6 sums up the main conclusions and future lines.

2. Experimental Design and Implementation

We designed an experiment to compare the torque applied by a faulty robot joint and a healthy
one. If the mechanical wear has a significant effect in the effort of the joint, our hypothesis is that the
faulty joint would require higher torque than a healthy joint to execute a given trajectory. Therefore,
the methods selected to identify a faulty joint should focus on measuring the increment of the torque
applied in the robot joints, whether they are statistical methods or machine learning models. Figure 1
describes the process of the experimental procedure carried out. First, a faulty robot wrist was removed
from an automotive assembly line after years of uninterrupted work. The faulty robot caused a sudden
stop in the production line and it was replaced by a new one. The experiment was performed using
a 6 DOF industrial robot (ABB IRB 6400r), two robot wrists (the faulty wrist and the new one),
two loads representing the 15% and 90% of the maximum payload of the robot and four torque sensors,
two sensors for each wrist, located in the 5th and 6th joints. These sensors are factory built-in torque
sensors and the robotic systems uses them in the control feedback-loop. The ABB IRB 6400r is a widely
used industrial robot in the automotive industry with a maximum payload of 200 Kg.

Figure 1. Flowchart of the experimental procedure carried out.

A non-trivial fixed trajectory was programmed in order to excite the robot joints. First of all,
the faulty wrist was installed in the ABB robot in a laboratory facility, out of the production line.
Then, the programmed trajectory was executed three times with three different loads each time.
The loads represented the 0%, 15% and 90% of the maximum payload of the robot. We executed the
trajectories and collected the torque data with a sampling rate of 100 ms. Afterwards, the faulty wrist
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was removed and the new one installed in the same ABB robot. The trajectory was repeated again
three times with the same three different loads in each repetition. Therefore we collected the data of
the torque applied in the 5th and 6th joints throughout the six trajectory executions (three with the
faulty wrist and tree with the new wrist).

After completing all these trajectories, torque signals were acquired and stored in csv files
following the format specified in Table 1. The signals were stored as floating point numbers and
using the standard unit (Nm) for the torque. We used the TCP/IP communication protocol to connect
with the robot controller and capture the torque signals, which is an Industry 4.0 communication
standard. The TCP/IP protocol is suitable for Industry 4.0 and Big Data scenarios, as it is able to
interconnect large number of devices [19]. Some researchers have used the OPC-UA communication
protocol [9] which is built on top of TCP/IP for data acquisition in industrial scenarios. The data
shown in Figures 2 and 3 disclose an evident increment in the torque of the faulty wrist’s 5th joint.
This increment is clearly appreciable in all the three experiments and throughout the execution of the
whole trajectory, therefore the effort required by the motor of the 5th joint was higher than expected
with any of the three loads and in any robot pose or movement. In contrast, the torque of the 6th joint
does not change significantly in any experiment.

Table 1. Example of the torque data captured by one robot in one experiment e.g., The column name
Torque_joint_5_A refers to the torque acquired in the 5th joint of robot A (faulty robot).

Observation Time (s) Torque_Joint_5_A (Nm) Torque_Joint_6_A (Nm)

1 0 0.819 −1.045
2 0.100 4.08 2.109
3 0.200 9.007 4.323
4 0.300 10.118 6.137

. . . . . . . . . . . .

The increment in the torque is measured by first calculating the absolute value of the acquired
signals. The absolute value of the torque in each joint is then integrated to calculate the total amount
of torque applied throughout the whole trajectory in all the experiments. Once the total applied torque
is calculated, the percentage of increase between the two wrists is calculated. Tables 2 and 3 show the
results of the 5th and 6th joints respectively.

Table 2. Total torque of the 5th joint of the new and faulty wrists. Load 1, Load 2 and Load 3 represent
the 0%, 15% and 90% of the maximum payload respectively.

New (Nm) Faulty (Nm) Increase

Load 1 19,567 42,830 118.88%
Load 2 21,224 46,451 118.86%
Load 3 62,235 124,703 100.37%

Table 3. Total torque of the 6th joint of the new and faulty wrists. Load 1, Load 2 and Load 3 represent
the 0%, 15% and 90% of the maximum payload respectively.

New (Nm) Faulty (Nm) Increase

Load 1 17,910 19,039 6.31%
Load 2 20,852 19,982 −4.17%
Load 3 28,671 28,970 1.04%
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Figure 2. Torque values of the 5th joint in a faulty wrist and in a healthy wrist with different loads and
same trajectory.

Figure 3. Torque values of the 6th joint in a faulty wrist and in a healthy wrist with different loads and
same trajectory.

The increment in the torque is homogeneous, i.e., The torque increases in the whole trajectory and
not only in certain movements or positions. The fact that the torque increases in the whole trajectory
and not only in certain poses, reveals that the deterioration affects to the entire movement of the joint.
The results also show that at the time of the failure, the electric consumption of joint 5 in the faulty
wrist was at least twice as high as expected for a healthy joint.
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Although the acquired data effectively detects the wear in the joint, the detected increment is not
enough on its own to deduce a root cause of the fault. Thence, we conducted a root cause analysis
with an in-depth mechanical inspection in order to identify the cause.

3. Root Cause Analysis of the Faulty Joint

3.1. Mechanical Inspection

The first step of the mechanical inspection consisted on disassembling the faulty wrist. The 5th
joint of the wrist is composed of an electric motor and a speed reducer. First, we inspected the gears of
the speed reducer, shown in Figure 4. We did not find any evidence of wear or pitting in the surface of
the gears and there was no apparent damage in the gears that could cause the significant increment
detected in the torque. The lubricant oil of the reducer was extracted and analysed in the process of
disassembling the faulty wrist. We confirmed that the lubricant was within the quality tolerance limits
as no metallic debris was found in the oil.

Figure 4. Mechanical inspection of the gears, bearings and motors of the wrist.

Afterwards, we examined the motor of the 5th joint. An increment such as the one detected in the
experiment could be caused due to a significant decrease in the motor’s coil resistance. We measured
the resistance of the coil using an ohmmeter and compared it with the resistance of the coil of a new
motor. The resistance values in both coils were identical. Hence, the motor’s coil was dismissed as the
cause of the joint fault.

3.2. Analysis of the Motor Brake

After analysing the condition of the speed reducer and the motor, we inspected the brake of the
motor. The brake of the 5th joint is a permanent magnet brake that stops the motor when the robot
is shut down or when an emergency stop is required. As illustrated in the schematic of Figure 5 this
kind of brakes have three main parts: a metallic armature, a field coil and a neodymium (NdFeB)
permanent magnet. The brake works in the following way: when the robot shuts down or makes
an emergency stop, there is no voltage applied to the coil and the permanent magnet attracts the
armature, stopping the rotation of the motor. In contrast, if the robot controller applies 24V to the
field coil of the brake, it produces a magnetic field compensating the magnetic field created by the
permanent magnet and the motor is released.
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Figure 5. Schematic of the motor brake.

We measured the resistance of the brake’s coil and compared it with the resistance of a completely
new coil. In both cases the values reached 15.4 Ω. Therefore, the coil of the brake could not be the
cause of the detected torque increment.

Finally, we inspected the permanent magnets of the brake. The permanent magnets used in this
brake are squared NdFeB magnets. We noticed a slight deformation in the corners of the magnets,
as some magnetic particles were detached from them. We found the particles filling the space where
the magnets are located. Figure 6 shows the permanent magnets inside the brake of the faulty joint
compared to a completely new brake. In addition, Figure 6 shows that the colouring of the brake’s
armature was changed. These kind of stainless steel armatures, have a metallic light silver colour when
manufactured. However, the inspected brake had a reddish coloring as a consequence of oxidation.

Figure 6. The motor brake of the faulty joint and its permanent magnets (left) compared to a completely
new motor brake (right).
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We performed two tests to diagnose the health status of the permanent magnets. The first test
consisted on measuring the M(H) hysteresis curve of the magnets. Then, we magnetized the permanent
magnets and measured again the M(H) hysteresis curve after the magnetization. The results of the
tests are shown in Figure 7.

Figure 7. Magnetic hysteresis curve of the motor brake’s permanent magnet before (blue) and after
(green) magnetization.

There is a 24% loss from 0.814 T before magnetization to 1.071 T after the magnetization.
This significant magnetic field loss has a direct impact in the malfunction of the motor’s brake.
As a consequence, the brake constantly resists the movement of the motor. This produces the torque
increment in the 5th joint throughout the whole trajectory identified in Section 2.

The second test consisted on measuring the magnetic hysteresis curve at different temperatures.
Figure 8 shows the different M (H) curves at 26, 80, 100 and 120 °C and Table 4 shows the magnetic
properties of the permanent magnet at these temperature regimes. Br (T) is the residual induction or
flux density, that is the magnetic induction corresponding to zero magnetizing force in a magnetic
material after saturation. Hci (kA/m) is the intrinsic coercive force of a material and indicates its
resistance to demagnetization.

Figure 8. Magnetic hysteresis curve of the permanent magnet at 26 (green), 80 (brown), 100 (orange)
and 120 °C (red).
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Table 4. Magnetic properties of the permanent magnet at the measured temperatures.

T (°C) Br (T) Hci (kA/m)

26 1.071 1531
80 1.013 976.9
100 0.9957 833.4
120 0.9668 678.5

There are two additional considerations that have to be taken into account. The technical
specifications of the 5th joint’s motor indicates that the surface temperature of the motor can reach up to
140 °C. Therefore, the temperatures inside the motor brake could be even higher than the temperatures
reached in the test. Moreover, in the recently published work by M. Haavisto [20] the time dependent
demagnetization of NdFeB permanent magnets is extensively investigated. She experimentally proved
that this type of magnets can be demagnetized if exposed to higher than 80 °C for a long period of
time. This conclusion is especially relevant for industrial robots working in assembly lines for years
uninterruptedly.

These results of the tests, the mechanical inspection carried out, the state of the motor brake,
as well as the previously mentioned PhD dissertation [20], give us enough evidence to conclude that
the temperatures inside the motor of the 5th joint of the robot, reached high enough temperatures
for sufficient time to produce a magnetization loss in the permanent magnets of the motor brake.
This caused the failure in the wrist and the increased torque values shown in Section 2.

4. The Influence of the Standby Pose in Robot Failures

In real automotive manufacturing production lines, there is substantial difference in the waiting
and working time of the robots depending on their process and location. Some of them execute
trajectories almost uninterruptedly, while others spend most of the time waiting. The most active robots
work approximately 85% of the total operative time and the most inactive robots only around 20%.

In the previous section, we identified the root cause of the wrist failure in the demagnetization
of the motor magnets. This demagnetisation, as well as the oxidation of the brake, is produced by
a relatively high temperature prolonged over long periods of time. In this section, we analyse two
factors that strongly influence the overheating in industrial robot wrists: the pose in which the robots
wait for the next product and the load they carry.

We collected a dataset with more than 600 robots of a real manufacturing assembly line to analyze
the influence of the load and the waiting pose in robot wrist failures. The information stored in the
dataset was structured in three columns: the mechanical failures of the 5th joint in the last 15 years
(57 failures in total), the load of the robots and the orientation of their 5th joint. The orientation of
the 5th joint represents the verticality of the joint. As illustrated in Figure 9 if the joint is completely
vertical to the ground, the orientation will have a value of 0 and if the joint is completely horizontal
to the ground, the value of the orientation will be 90. Therefore, when we talk about the orientation,
we are refering to the verticality of the 5th joint when the robot waits stationary for the next product.
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Figure 9. Orientation value in the dataset represents the verticality or horizontality of the 5th joint.

Figures 10 and 11 show the difference in distribution in the load and standby orientation of
the 5th joint of more than 600 industrial robots. The boxplots are grouped by robots that never had
a mechanical failure in that joint (0) and robots that did fail (1). These boxplots show that robots that
had a failure in the 5th joint tend to work with higher loads and hold the load in a more horizontal
pose. The differences in the load and orientation are shown in Table 5. There is a difference of 29.71 Kg
in the mean of the load between the robots that have failed and the robots that have not failed yet.
The mean of the standby orientation of the 5th joint is 9.17 ° closer to the parallel of the ground for
robots that have failed.

These results show that both the carried load and the orientation of the 5th joint while waiting
have a significant impact in the RUL of industrial robot wrists. The fifth joint of the robot requires more
effort to hold a heavier load and to hold a given load in a more horizontal orientation. Thus, this effort
results in a higher torque that the motor must apply, which increases the current in the motor coil and
the temperature of the motor.

Table 5. Standby orientation and load means with recorded historical failures and without failures.

Orientation (°) Load (Kg)

With failure 71.39 148.5
Without failure 62.22 118.79

Figure 10. Mean load of robots without recorded failures (0) and with failures (1).
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Figure 11. Mean standby orientation no recorded failures (0) and with failures (1).

5. The Health Assessment Program Methodology

Based on the results of the previous sections, we propose a methodology for diagnosing the
health status of industrial robot joints with torque signature analysis. The diagram representing
the methodology can be seen in Figure 12. The main idea behind the proposed methodology is
that a joint that suffers a mechanical degradation will require higher torque to execute a certain
trajectory than a healthy one. As the time goes by, the mechanical elements attached to the motor
(i.e., The brake and the reducer) will inevitably suffer mechanical deterioration. This will require higher
effort to execute the same trajectory. To illustrate the methodology, let’s say that a robot R1 executes
a certain program P1 and needs to apply torque T1 in a joint to complete the trajectory. If there is any
mechanical deterioration, the system will be less efficient, but the robot controller will make sure that
this deterioration does not affect the accuracy of the robot. Even if the accuracy remains invariant,
to finish the same program P1 the required torque now (T2) will be higher than before (T2 > T1).

Figure 12. Diagram of the proposed methodology. First, the trajectory and tool are defined. Then,
the program is executed and torque data is acquired. The recorded data is stored in a server as
a reference along with the robot’s ID. The process is periodically repeated and the new signals are
compared with previously recorded ones to diagnose a possible deterioration.

We therefore propose to use a specific trajectory-tool combination in the robots of the production
line to assess their current health status. As described in the diagram of Figure 12 robots will execute
a predefined non-trivial trajectory with a known load and they will require a certain amount of torque
in each joint to complete this trajectory. To acquire torque data in all the joints, the trajectory must
use the whole set of joints comprising the robot manipulator. We will call Health Assessment Program
(HAP) to that predefined trajectory-load combination. These two specifications will always have to
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remain unchanged in order to make a fair comparison of the results. However, an advantage of the
methodology is that the precise shape, center of mass and inertia of the load are not required to be
known or modeled.

The first step is to execute the trajectory with the robot attaching the corresponding load.
The torque of each joint will be recorded during the the whole process, producing a digital signature
of the torque of each joint. This initial torque data or signature will be used as a reference for that
particular robot. This initial data will be stored with an identification number of the robot. Whenever
we want to analyse the mechanical deterioration of the joints of that robot, we will run the HAP again
and compare the previously stored values with the recently acquired ones. If there is no change in the
torque values, we can conclude that there is no significant mechanical deterioration in the joints yet.
In contrast, if there is some increase in the torque of a certain joint, it will mean that the motor of that
joint is requiring more effort than expected.

The proposed methodology is applicable to any joint or industrial robot. In addition programming
the HAP as an additional trajectory to the usual routine of the robots is enough. It is not necessary to
take the robot off the production line to diagnose it. Which is a significant advantage compared to
existing condition monitoring techniques.

6. Discussion and Conclusions

We reported a methodology for industrial robot health assessment. The methodology was
validated experimentally comparing the torque of two robot wrists. These results show that torque
sensors provide reliable information to detect mechanical deterioration of an industrial robot’s joint.
We carried out the comparisons with different loads and the increment in the torque was clearly
appreciable with the three tested loads. Therefore, the methodology is proved to be useful with any
load configuration. The recorded torque data shows an homogeneous increase in the faulty wrist.
The source of the malfunction was located in the permanent magnets of the motor brakes with an in
depth mechanical inspection. We measured the magnetic field of the permanent magnets and the
hysteresis curves showed a 24% of magnetic field loss in the permanent magnets of the faulty joint.
The effect of this magnetic field loss can be effectively detected with the proposed methodology.

A direct conclusion of the work is that the electrical consumption of the faulty joint was
approximately twice that of a healthy joint. Therefore, even if a robot does not show any apparent
malfunction it might still be working in conditions which are far from ideal due to mechanical
deterioration and fatigue. The proposed method could help manufacturers to monitor not only the
mechanical condition of the robot joints but also the electrical over-consumption i.e., Detecting the most
energy-consuming robots or work cells. Controlling the energy consumption of robots is a fundamental
factor to achieve sustainable factories and to reduce pollution.

Another significant advantage of the methodology is that torque measurement is done inside
the robot’s physical structure. As we mentioned in the introduction, if a sensor or a wire installed
in the outside part of the robot’s structure detaches and falls into the production line, it could cause
significant damage to the product being manufactured or even stop the production line. Therefore,
since torque sensors are inside the robot’s physical structure, this possible inconvenience is dismissed.
Last but not least, the methodology is applicable to any industrial robot, as long as the acquired data
is compared with robots of the same model. Hence, our approach does not depend on the robot
manufacturer or the robot type. It only depends on the programmed trajectory and the carried load,
which are both configurable by researchers and practitioners.

A limitation of the presented work is that the detection of torque deviation depends on
a pre-defined tool and trajectory configuration. Therefore, if either of these two characteristics change,
torque signals would also inevitably change and the data regarding the monitored robot should be
readjusted. Another limitation of the presented work is that the execution of the Health Assessment
Program requires the robot to momentarily stop its normal production behavior to execute a pre-defined
trajectory and acquire the correct torque signals.
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An identified future line of work is to implement machine-learning models to detect anomalies in
the torque of robot joints with different tool and trajectory configurations. Although our approach
requires a specific trajectory and tool configuration for the data to be comparable, a machine-learning
model might be flexible enough to detect deviations with different trajectory and tool configurations
and extrapolate the behavior learned in one use case to the rest. Another interesting future line of work
would be to use the proposed methodology to train predictive models to estimate the RUL of industrial
robots in real production line conditions. Our methodology effectively detects deviations from the
normal behavior of robot joints in real world scenarios, but further research is needed to accurately
assess the RUL of the monitored robotic systems. Finally, torque data monitoring could also be used to
find an optimal standby pose of industrial robots in order to minimize the effort of the joints. Based on
the observed influence of the waiting pose in the wrist failures (Section 4). An optimal standby pose
for a given robot model and tool, could minimize the effort and thus torque and temperature of the
joints, increasing their RUL and optimizing the energy consumption.
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