Learning frequent behaviours of
the users in Intelligent

Environments

mn

MONDRAGON
UNIBERTSITATEA

A thesis submitted
n fulfillment of the requirements for the degree of
Doctor of Philosophy

ASIER AZTIRIA GOENAGA
(Mondragon Unibertsitatea)

Supervised by Alberto Izaguirre and Juan Carlos Augusto

September 16, 2010

Mondragon Goi Eskola Politeknikoa,
Department of Computer Science and Electronics,

Mondragon Unibertsitatea

Ama ta Attes.

Abstract

Intelligent Environments (IEs) are expected to support people in their daily
lives. One of the hidden assumptions in IEs is that they propose a change of
perspective in the relationships between humans and technology, shifting from a
techno-centered perspective to a human-centered one. Unlike current computing
systems where the user has to learn how to use the technology, an IE adapts its
behaviour to the user, even anticipating his/her needs, preferences or habits.

For that, the environment should learn how to react to the actions and needs of
the users, and this should be achieved in an unobtrusive and transparent way. In
order to provide personalized and adapted services, it is clear the need of knowing
preferences and frequent habits of users. Thus, the ability to learn patterns of
behaviour becomes an essential aspect for the successful implementation of IEs.
In that sense, a perfect learning system would gain knowledge about everything
related to users that would help the environment act intelligently and proactively.

The efforts in this research work are focused on discovering frequent behav-
iours of the users. For that, it has been designed and developed the Learning
Frequent Patterns of User Behaviour System (LFPUBS) that, taking into ac-
count all the particularities of IEs, learns frequent behaviours of the users.

The core of the LFPUBS is the Learning Layer that unlike some other compo-
nents is independent of the particular environment in which the system is being
applied. On the one hand, it includes a language that allows the representation
of discovered behaviours in a clear and unambiguous way. On the other hand,
coupled with the language, an algorithm that discovers frequent behaviours has
been designed and implemented.

Finally, LFPUBS was validated using data collected from two real environ-
ments. Results obtained in such validation tests showed that LFPUBS was able
to discover frequent behaviours of the users. Moreover, some improvements were

identified for future versions of the system.

Resumen

Los Entornos Inteligentes (EIs) tratan de facilitar las actividades diarias a las
personas que se encuentran en €él. El concepto de Entornos Inteligentes supone
un cambio radical en las relaciones entre los usuarios y la tecnologia. El cambio
consiste en que se pasa desde una perspectiva centrada en la tecnologia a una
perspectiva centrada en el usuario. A diferencia de los sistemas actuales donde el
usuario se tiene que adaptar a la tecnologia, ahora, esta es la que se adapta a las
preferencias, costumbres o gustos del usuario.

Los entornos inteligentes deberan aprender cudles son los comportamientos
frecuentes de los usuarios para asi adaptarse a los usuarios y proveer servicios
personalizados. De este modo, la capacidad de aprendizaje se convierte en un
requisito indispensable para dichos entornos.

El objetivo de este trabajo de investigacién es desarrollar un sistema que
aprenda de forma automadtica, los comportamientos frecuentes de los usuarios
de entornos inteligentes. Para ello, se ha disenado y desarrollado el Learning
Frequent Patterns of User Behaviour System (LFPUBS), que teniendo en cuenta
todas las particularidades de dichos entornos, descubre tales comportamientos.

El niicleo del LFPUBS es la capa de Aprendizaje que a diferencia de otros
componentes es independiente del entorno donde esté siendo aplicado el sistema.
Dicha capa, por un lado incluye un lenguaje que permite representar los patrones
de una forma clara y no ambigua y por otro, en concordancia con el lenguaje,
incluye el algoritmo que descubre dichos patrones.

Finalmente, LFPUBS ha sido validado utilizando los datos recogidos en dos
entornos inteligentes reales. Los resultados obtenidos durante esos experimentos
permitieron comprobar que LFPUBS es capaz de descubrir los comportamientos
frecuentes de los usuarios. Ademds, mejoras para futuras versiones del sistema

fueron identificadas.

Laburpena

Ingurune Adimentsuek bertan bizi diren pertsonei beren egunerokotasunean
laguntzea dute helburu. Kontzeptu berri honek pertsona eta teknologiaren arteko
erlazioan aldaketa bat dakarki berarekin, teknologiari garrantzia ematetik pertso-
nengan oinarritzera. Horrela, orain arteko sistemekin alderatuz, non pertsonek
teknologia nola erabili ikasi behar duten, orain teknologia (ingurunea) bera da
pertsonengana egokitu behar dena. Horretarako, inguruneak bertan dauden pert-
sonen behar, ohitura, etab. ezagutu behar ditu.

Jakintza guzti hori ordea, pertsonak inondik inora gogaitu gabe lortu behar du
inguruneak. Pertsona bakoitzari dagozkion edo nahi dituen zerbitzuak emateko
inguruneak pertsona horren ohiko jokabideak jakitea behar du. Orduan, ingu-
rune horrek ikasketa prozesu bat jarraitu behar du, non, pertsona horien ohiko
jokabideak era automatiko eta garden batean lortuko dituen.

Ikerketa lan honen helburua horixe izan da, ingurune adimentsu bateko pert-
sonen ohiko jokabideak era automatiko eta garden batean deskubrituko dituen
sistema bat disenatu eta garatzea. Gainera, garatutako sistema horrek, Learning
Frequent Patterns of User Behaviour System (LFPUBS), ingurune adimentsuen
berezitasun guztiak hartzen ditu kontutan.

LFPUBS-en barruan berebiziko garrantzia du Ikasketako geruzak, zein ez da-
goen sistema aplikatzen ari den ingurunearen menpe. Geruza horretan bi osagaik
merezi dute aparteko aipamena, alde batetik, ikasitako jakintza era garbi batean
adieraztea ahalbidetzen duen hizkuntzak, eta beste alde batetik, jakintza bera
deskubritzen duen algoritmoak.

Azkenik, esan beharra dago LFPUBS balioztatua izan dela benetako bi in-
gurune adimentsuetan jasotako datuekin. Lortutako emaitzek garbi adierazten
dute LEFPUBS-ren gaitasuna ohiko jokabideak deskubritzeko garaian. Gainera,
emaitzen analisi sakon batek LFPUBS-ri buruzko hobekuntzak argitaratzeko balio

izan du.

Agradecimientos

Dokumentu honek azkenengo lau urteetan egindako lana laburbiltzen du, eta holako
denbora tarte batek, eta batizpat holako lan batekin zabiltzanean, jende askoren laguntza
dakar berarekin. Lagundua izateak eskertzea zor duenez:

Lo primero de todo, querria agradecer a mis dos directores de tésis: Alberto Izaguirre
y Juan Carlos Augusto. Gracias Tito por darme esta oportunidad. A ti Juan, no se cémo
agradecerte todo lo que has hecho por mi, por tu dedicaciéon y por todo lo que me has enseniado
sin pedir ni esperar nada a cambio. Y como no, por como me acogiste en mi estancia por
tierras irlandesas.

I made an internship during this thesis at the School of Computing and Mathematics of
University of Ulster, where I could meet wonderful researchers and make really good friends.
Thanks Paul, Gearoid, Simon, Anthony, Bronagh, David, Anyela,...

I would really like to thank Diane J. Cook at Washington State University, for allowing
us to use the data they collected in their Intelligent Environments to validate our system.

Unibertsitatean izandako lankideak, lagunak azken finean, ezin ba ahaztu. Behar izan
dudanean, azkenengo momenturaino, laguntzeko prest agertu diren guzti horiei, Aitor, Tker
eta departamentu guztiei.

Azkenik, zuei ze esan. Atte, ama, arreba, amama, Ainhoa ta kuadrilakuek. Zuentzako ez

dago hitzik, zuei naizena zor dizuet, besteik gabe.

xii

Contents

Contents xiii

1 Introduction 1
1.1 Intelligent Environments (IEs) 2
1.2 Motivation L 4

1.2.1 Different types of knowledge about the user 5
1.2.2 Advantages/Disadvantages of Learning Frequent Behaviour)
1.2.3 Intelligent Environments’ Special Features 6
1.3 Hypothesis, Objectives and Limitations 10
1.4 Methodology e 11
1.5 Thesisoutline 13

2 State of the Art 15

2.1 Artificial Neural Network 16
2.1.1 Applications 16
2.1.2 Strengths and Weaknesses 0. 17

2.2 Classification techniques 17
2.2.1 Applications 17
2.2.2 Strengths and Weaknesses 18

2.3 Fuzzy Logicrules L 18
2.3.1 Applications 19
2.3.2 Strengths and Weaknesses L. 20

2.4 Associated sequence discovery o oo 20
2.4.1 Applications 20
2.4.2 Strengths and Weaknesses, 21

2.5 Instance-Based Learning o oL 21
2.5.1 Applications 22
2.5.2 Strengths and Weaknesses oL 23

2.6 Reinforcement Learning L o oL 23
2.6.1 Applications 23
2.6.2 Strengths and Weaknesses, 24

2.7 SUMMATY e 25

3 General Architecture

3.1 Transformation Layer
3.1.1 Inference of simple actions
3.1.2 Inference of complex actions L.
3.1.3 Splitting actions into sequences

3.2 Learning Layer e

3.3 Application Layer
3.3.1 Applications of extracted knowledge
3.3.2 Applications based on specific learning processes
3.3.3 Imteraction system

3.4 Graphical User Interface 0o

3.5 SUMIMATY . . v v v v et e e e e e e e e

4 Learning Frequent Behaviours:

the Pairwise Approach

4.1 Introduction e
4.2 Architecture of the Learning Layer
4.3 Representing patterns with Lrrppyps - - - - - - o o o o oo oo
4.3.1 Event Definition
4.3.2 Condition Definition
4.3.3 Action Definition
4.4 Learning patterns with ApppuBs - - -« -« v v o o o o e
4.4.1 Identifying Frequent Relations
4.4.2 Identifying Time Relations
4.4.3 Identifying Conditions oL
4.5 SUMMATY .« v v v vt e s e e e e e e

5 Learning Frequent Behaviours:
the Action Map Approach

5.1 Introduction
5.2 Representing patterns with Lpppyps - - -« -« o o o o oo oo
5.2.1 Evolution of the Lrrpuss - - - « v« « o o o o e
5.3 Learning patterns with ALppuBs - -« « « « « v o v i i e
5.3.1 Identifying Frequent Sets of Actions
5.3.2 Identifying Topology
5.3.3 Identifying Time Relations
5.3.4 Identifying Conditions oL
5.4 SUmMmary e e e

6 Validation

6.1 Validation Environments and Collected Data
6.1.1 MavPad Environment
6.1.2 WSU Smart Apartment Environment

Xiv

27
28
28
29
30
31
31
31
32
33
35
35

37
37
39
39
40
40
41
41
42
46
o1
54

55
95
56
56
58
98
62
71
73
i

6.2 Pairwise Approach L 83

6.2.1 Validating the Pairwise Approach with the MavPad dataset 83
6.2.2 Validating the Pairwise Approach with the WSU Smart Apartment
dataset L 88
6.3 Action Map Approach 90
6.3.1 Validating the Action Map Approach with the MavPad dataset 90
6.3.2 Validating the Action Map Approach with the WSU Smart Apartment
dataset L 98
6.4 Comparing both Approaches: The final Discussion 103
6.4.1 Modelling Frequent Behaviours: A comparison 103
6.4.2 Identifying Time Relations: A comparison 104
6.4.3 Identifying Conditions: A comparison 106
6.4.4 Runtime of different stepso oL 106
6.5 SUMINATY o v ot e e e e e e e e 107
7 Conclusions and Further Research 109
7.1 Conclusions e e e e e e e 109
7.2 Contributions 112
7.3 Relevant Publications L oo 112
7.3.1 International Journals oL 113
7.3.2 Book Chapters 113
7.3.3 International Conferences 113
7.4 Future Worko 114
7.4.1 Improving the State of the Art 114
7.4.2 Improving the Architecture 114
7.4.3 Improving the Action Map Approach 114
7.4.4 Improving the Validation 115
7.4.5 More General Improvements 115
7.5 Final Remarks e 116
8 Appendix 125
Bibliography 171

XV

xvi

List of Figures

1.1
1.2
1.3

3.1
3.2

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12

Major trends in Computingo

Michael’s morning ritual represented in a sequence 9
Schematic view of the research process. 12
Three-layered global architecture. 27
Initial screen of the Graphical User Interface. 36
Selecting the Approach by means of the GUL. 38
Essential components of the Learning Layer 39
Set of steps to be performed by the learning algorithm.. 42
Defining the minimum confidence and support levels. 43
Information about the discovered Frequent Relations. 45

Selecting the algorithm to use in order to identify quantitative Time Relations. 47

Defining the allowed deviation for the ‘Basic Algorithm’. 48
Time Distances between occurrences of ‘Shower Off’ and ‘BathroomFan On’ . 49
Information about the discovered Time Relations.. 50
Covered and non-covered tables with calendar and context information 53
Information about the discovered Conditions. 53
Differences between the outputs of both approaches. 56
Steps to be performed by the learning algorithm. 58
Defining the basic minimum confidence, extra actions’ minimum confidence

and minimum similarity levels. oL 59
Information about the discovered Frequent Sets. 62
Defining the parameters to identify repetitive actions. 64
Defining the parameters to identify unordered subsets of actions. 65
The basic representation of Michael’s behaviour. 66
Michael’s behaviour with repetitive actions. 68
Michael’s behaviour with unordered subsets of actions. 68

Michael’s behaviour without considering the Allowed Maximum Granularity
parameter. L Lo e e e e e e 69
Michael’s behaviour considering the Allowed Maximum Granularity parameter. 69

Graphical representation of the topology. 71

xvii

5.13 ‘Shower Off - BathroomFan On’ and ‘Shower Off - BathroomLights Off’ tables

with calendar and context information L. 75
5.14 Graphical representation of the topology. 7
6.1 MavPad sensors on objects, context and motion sensors [You05]. 80
6.2 WSU Smart Apartment motion sensors [Coo08]. 81
6.3 Percentage of the Patterns with Time Relations. 86
6.4 Percentage of the Patterns with Conditions. 87
6.5 Percentage of the Patterns with Time Relations. 97
6.6 Percentage of the Patterns with Specific Conditions. 97
6.7 Both approaches’ runtimes for the task of modelling frequent behaviours. . . 104
6.8 Both approaches’ runtime considering the task of identifying Time Relations. 105
6.9 The runtime of different steps of the Pairwise Approach. 106
6.10 The runtime of different steps of the Action Map Approach. 107

xviii

List of Tables

2.1 Strengths and weaknesses of Learning Techniques 26
6.1 Actions involved in each ADL. 82
6.2 Number of patterns obtained in different trials. 84
6.3 Number of patterns with Time Relations (out of total patterns and the per-
centage) obtained in different trials. L0000 84
6.4 Number of patterns with Conditions (out of total patterns and the percentage)
obtained in different trials.o oo 85
6.5 The number of patterns that remain with different confidence levels. 87
6.6 The number of patterns obtained in different trials and the Experiments’ run-
times (in milliseconds). Lo Lo 91
6.7 Experiments’ runtimes (in milliseconds) when discovering the Topology of Fre-
quent Sets. L. L e 93
6.8 The number of Action Patterns with Time Relations, the percentage of the
total and the experiments’ runtimes (in milliseconds) obtained in different trials. 94
6.9 The number of Action Patterns with Specific Conditions, the percentage of the
total situations that required this and the Experiments’ runtimes obtained in
different trials. 95
6.10 The runtime of different steps of the Arrppyps. . - 102

Xix

XX

Indice de acronimos

A AL Ambient Assisting Living

ADL Activity of Daily Living

A1 Artificial Intelligence

ALZ ActiveLeZi

AmlI Ambient Intelligence

ANN Artificial Neural Network

associatedSeT associated sensor triggering

CBR Cuase-Based Reasoning

ECA FEvent Condition Action

EM FEzxpectation-Mazimization

GUI Graphical User Interface

HCI Human-Computer Interaction

IBL Instance-Based Learning

IBM International Business Machines Corporation
ID3 [terative Dichotomiser 3

IE Intelligent Environment

k-NN £k Nearest Neighbour

LFPUBS Learning Frequent Patterns of User Behaviour System
mainSeT main sensor triggering

MavHome Managing an Adaptive Versatile Home
ML Machine Learning

PC Personal Computer

Xxi

PDA Personal Digital Assistant

WSU Washington State University

xxii

CHAPTER 1

Introduction

Throughout history, human beings have been characterized by their ability to develop new
tools that have allowed their survival in adverse environments. Scientific and technological
breakthroughs in the past decades have totally changed the lifestyle of the current generation
from previous generations. Many of those developments were aimed at improving the quality

of life, either by facilitating daily tasks or by increasing safety.

The current generation will not be an exception. In fact, a large number of those advances
are occurring now, in a more or less unperceived ways, and they are influencing our daily life.
Slowly and silently, technology is becoming interwoven in our lives in the form of a variety

of devices that are beginning to be used by people of all ages [Aug09].

The miniaturization process of electronics has made a wide range of small computing
devices available, thereby making it possible to embed sensing and computing capabilities in
many different objects like home appliances (e.g., washing machines and microwave ovens),
ordinary objects (e.g., mirrors and chairs) or electronic devices (e.g., mobile phones and
PDAs). Mark Weiser [Wei91] predicted a trend (See Figure 1.1) in the use of computers,
suggesting an evolution to a new paradigm, where computers would disappear by becoming
embedded in different types of objects. In the first generation of computers, a machine
(mainframes) was shared by many highly trained programmers. Later, it became possible
for many people, not necessarily with a high levels of training, to have access to a Personal
Computer (PC). Currently, many people have access to several computing devices such as
PCs, mobile phones or PDAs. All indications point to the continuation of this trend, making
an environment possible wherein the user is surrounded by many devices/objects with sensing

and computing power.

This new paradigm is a source of new problems and opportunities that demand new
solutions. One of the most attractive solutions is developing Intelligent Environments (IEs),

which would be aimed at facilitating users’ daily tasks as well as increasing their safety.

Before defining objectives, methodologies or techniques, it is important to clarify the
meaning of some terms used within this work that might lead to misunderstandings. The
possibility of confusion arises because of the large variation in the uses of terms contained in
this work, such as intelligence or learning, which makes it difficult to provide a unique and
clear definition. In order to avoid misunderstandings and clarify the meanings of such terms

in this work, a definition is given first.

18
— Mainframe{one computer, many pecple)
= PC(one person, one computer)

14 - = Ubiquitous Computing(one person,
many computers)

16+

12+

104

1940 ©
1945
18950
1955
1960
1965
1970
1975
1980
1985
1980
1945
2000
2005

Figure 1.1: Major trends in Computing

1.1 Intelligent Environments (IEs)

Many different terms have been suggested in reference to environments that intelligently
support people in their daily lives. Many authors have equated some of these terms without
considering subtle details that make a significant difference.

The term Disappearing computer, introduced by Weiser [Wei91], was the first notion
to refer to the possibility of embedding devices with sensing and computing power in the

environment.

The most profound technologies are those that disappear. They weave them-

selves into the fabric of everyday life until they are indistinguishable from it.

The notion of a disappearing computer is directly linked to the notion of Ubiquitous Com-
puting [Wei93], or Pervasive Computing [Sah03] as IBM later called the phenomenon. These
two terms mainly refer to environments where technology, i.e., embedded computers, is spread
widely throughout the environment. As Augusto points out [Aug07b] Ubiquitous! /Pervasive?
systems emphasize the physical presence and availability of resources, but they miss a key
element: the explicit requirement of intelligence.

Being aware of the need for intelligence to achieve a real environment that sensibly sup-
ports people in their daily lives, new terms that aim to extend the idea of Ubiquitous Com-

puting one step further have been suggested. In that sense, Ambient Intelligence (AmlI)

L Ubiquitous: adj. present, appearing, or found everywhere (The Oxford Pocket Dictionary of Current
English;2006)
2 Pervasive: adj. (esp. of an unwelcome influence or physical effect) spreading widely throughout an

area or a group of people (The Oxford Pocket Dictionary of Current English; 2006)

[Duc01; Aug07a] is one of the most well-known terms to suggest a multidisciplinary approach
that covers many areas of research in order to achieve intelligent environments. Ambient In-
telligence is mainly a term used in Europe; similar developments in the U.S.A and Canada
are referred as Smart Environments or Intelligent Environments.

Many different types of environments can be enriched with Intelligent Environments sys-
tems. Sometimes, descriptions of these enriched environments are confused with terms like
Intelligent Environments or Ambient Intelligence, but they should properly be described as
some possible implementations. The most extensively explored class of examples of this type
of environments are the Smart Homes [Aug06a]. Other environments that could be enriched
by Intelligent Environments systems include Smart Cars and Smart Classrooms.

One of the most promising areas for potential enrichment by Intelligent Environments
systems are health-related environments. These environments fall under the description
Ambient Assisting Living (AAL) systems 3, and they look to enhance the quality of life of
people through the applications of Intelligent Environments systems for healthcare and well
being in general. For example it is well known that the majority of elderly people prefer
to live in their own houses independently as long as possible [Fri05]. AAL systems aim to

achieve this goal in the following ways:
e Extending the time people can live in their preferred environment;
e Maintaining the health and functional capability of the elderly individuals;
e Promoting better and healthier lifestyles for individuals at risk;
e Supporting carers, families and care organizations.

This research work considers the term Intelligent Environments (IEs) better defines the
characteristics of this type of environments. Henceforth, this research work will use this term

to refer to environments that proactively and sensibly support people in their daily lives.

Scenarios

Let us consider two scenarios that illustrate two different IEs that make the life of the users
easier and safer.

Scenario 1: Michael is a 60-year-old man who lives alone and enjoys an assistance
system that makes his daily life easier. On weekdays, Michael’s alarm goes off a few minutes
after 08:00 a.m.; approximately 10-15 minutes later, he usually steps into the bathroom. At
that moment, the lights are turned on automatically. On Tuesdays, Thursdays and Fridays,
he usually takes a shower; Michael prefers the temperature of the water to be around 24-26
degrees Celsius in the winter and around 21- 23 degrees Celsius in the summer. When he
finishes taking a shower, the fan of the bathroom is turned on if the relative humidity level of
the bathroom is high (in Michael’s case >70%). Before he leaves the bathroom he turns off
the fan and the lights.

3The ambient assisted living joint programme, http://www.aal-europe.eu

When he goes into the kitchen the radio turns on so that he can listen to the news while he
prepares his breakfast. When he is preparing his breakfast the system reminds him that he has
medicine to take. He leaves the house 15-20 minutes after having breakfast. At that moment,
all the lights are turned off, and safety checks are performed in order to detect potentially
hazardous situations in his absence (e.g., checking if the stove is turned on), and if needed,

the house acts accordingly (e.g., turning the stove off).

Scenario 2: Sarah is a 75-year-old woman who is frail and therefore needs help to carry
out daily tasks like getting dressed or having a shower. Fortunately, she lives in a modern
building where people live in separate apartments and share the communal services of nursing-
care, rehabilitation, entertainment etc. The staff members know (through previous reports
generated by the environment) that Sarah usually likes having a shower just after getting up;
so when Sarah’s alarm goes off, nurses are ready to help her. Regarding her rehabilitation,
Sarah has the freedom to choose what type of exercises she wants to do. Specialized staff
members, after monitoring and detecting Sarah’s preferences, design a personalized treatment
program highly suited to her needs and preferences. On Tuesday and Thursday nights she likes
watching her favourite sitcom, so she goes to bed around 11:00 p.m.; other nights, she goes
to bed around 10:00 p.m..

Staff members are concerned about Sarah’s recent behaviour because the system has de-
tected that although she takes pills every day, she takes them immediately before having lunch,
which is not desirable for their mode of action. Finally, doctors are concerned because there
are some indications that show that she could be in the first stage of Alzheimer’s disease. In
order to confirm or disprove these suspicions, they decide to check if she undertakes repetitive
tasks in short periods of time or shows signs of disorientation (e.g., going back repetitively to

places where she has been).

1.2 Motivation

One of the hidden and most important assumptions in IEs is that they propose a transition
from techno-centered systems to human-centered systems. IEs suppose a change of roles in
the relationships between human and technology. Unlike current computing systems where
the user has to learn how to use the technology, an IE adapts its behaviour to the user, even
anticipating his/her needs, preferences or habits.

For that shift to take place, an environment should learn how to react to the actions and
needs of the user, and this goal should be achieved in an unobtrusive and transparent way.
Due to the complexity of IEs (hardware, software and networks must cooperate in an efficient
and effective way to provide a suitable result to the user), initial developments have been
focused upon the needs associated with hardware and network as supporting infrastructure.
This focus has resulted in a simple automation that implements a reactive environment, that
does not taken into account the personalized and adaptive features of IEs. There exist sensing
systems that are, wrongly considered to be intelligent because they act over the user using

manually predefined patterns of behaviour.

Such missclassifications can be perfectly exemplified by considering the activation of the
fan in the bathroom in Michael’s example. When Michael has a shower, the fan can always be
activated independently of the relative humidity level, it can be activated when the relative
humidity level exceeds a certain level or it can never be activated. If the environment uses a
pre-defined rule to activate a device, the general rule does not take into account the prefer-
ences of the user, or else the rule is defined by someone who knows the user’s preferences. In
the first case, the environment does not fulfil the requirements of adapting the environment
to specific users and providing personalized services; whereas in the second case, such an
adaptation is achieved only by disturbing the user or another person. The ideal environment

adapts itself to Michael’s preferences and habits without disturbing him.

In order to provide personalized and adapted services, the requirement of knowing the
preferences and frequent habits of users is clear. Thus, the ability to learn patterns of
behaviour becomes an essential aspect for the successful implementation of IEs, because
knowing such patterns allows the environment to act intelligently and proactively. In IEs,
learning means that the environment has to gain knowledge about the preferences, needs and
habits of the user in order to better assist the user [Gal06; Lea06].

1.2.1 Different types of knowledge about the user

As previously stated, a perfect learning system should gain knowledge about everything
related to users that would help the environment act intelligently and proactively. Knowledge
about users can cover types of information with very different natures. Users’ preferences
for devices defined by quantitative values (e.g., Michael prefers the temperature of the water
to be around 24-26 degrees Celsius in the winter) or needs (e.g., Sarah has to take a pill)
are useful pieces of knowledge about the user. However, the current work believes that, at
first, knowledge of the users’ frequent behaviours better defines users and allows IEs to act

intelligently.

A frequent behaviour, initially, can be initially defined as a set of actions and/or activities
that a user usually performs under certain conditions. Michael’s morning habits are an
example of it, where actions like ‘Alarm On’, ‘Bathroom On’, ‘Shower On’, ... are related in
a specific way (e.g., ‘Shower On’ comes after ‘Bathroom On’), and they occur under certain

conditions (e.g., ‘Shower On’ occurs only on Tuesdays, Thursdays and Fridays).

1.2.2 Advantages/Disadvantages of Learning Frequent Behaviour

Assuming that human beings perform behaviours based on habits, it could be inferred that
patterns describing past and present behaviours will define future behaviours as well. In
that sense, discovered patterns can be used for many different purposes, depending on the

objectives of each particular environment.

Advantages

Michael’s example shows how the environment, knowing his frequent behaviours, can act
proactively to make his life easier and safer. In this case, acting proactively means the
environment can automatically turn the lights and the fan on and off, turn the radio on and
so on. The automation of actions and/or devices can be considered as positive side effects
that can be obtained once the environment has learned his frequent habits.

In Sarah’s case, patterns are not used to automate actions or devices, but they are used
to understand her behaviour and act in accordance with it. From Sarah’s perspective, the
staff members are always at the correct place and time. On the other hand, the knowledge of
the habits of different patients allows the staff members to organize their time in an efficient
way and to provide more personalized services to patients. The understanding of ordinary
patterns also allows the detection of unhealthy habits (e.g., taking pills immediately before
having lunch).

Making the environment more efficient in terms of saving energy (e.g., turning the fan
on only when the relative humidity level is >70%) or increasing safety (e.g., turning off the
stove or issuing an alarm whenever Michael leaves it on) are other dimensions of daily life

that can be supported by an IE because of knowledge it has discovered.

Disadvantages

As with any newly proposed methodology, the IE vision is not without criticisms. For
example, there are concerns regarding a loss of privacy [Aug09] or fear of an increasingly
individualized society. These criticisms have previously been applied to Computer Science as
a whole. Clearly, the importance and complexity of users in IEs require that human aspects
must be taken into account during the learning process.

Behavioural patterns (e.g., when the user usually leaves home and when he/she will
return) are usually considered personal and sensitive. These patterns should therefore be
stored securely to prevent public access and preclude potentially disastrous consequences

(e.g., a criminal accessing the information).

1.2.3 Intelligent Environments’ Special Features

Learning systems, i.e., systems that automatically discover new knowledge, are being devel-
oped or used in many different areas. However, each area has different objectives, needs and
features that influence the learning process. In that sense, IEs have some features that serve
to differentiate them from other environments. In what follows, the most important features

that influence the process of learning are analysed.

Importance of the User

Users are the focus of any development in IEs, and the fact that the environment is techno-

logically rich must not require any extra effort by the users to obtain benefits from the IEs

6

[Mul04; Doo06]. In other words, the learning process must be accomplished as unobtrusively

as possible while remaining transparent to the user. These requirements imply that:

e Data have to be collected by means of sensors installed either on standard devices or

in the environment.

e System actions relating to the user must be performed to maximize the user’s satisfac-

tion.

e The user’s feedback must be collected either through the normal operation of ordinary
devices (e.g., the light switch) or through friendly interfaces such as multimodal user

interfaces (e.g., voice and image processing technologies) [Coe98; Par06; Tur07].

Collected Data

The importance of sensing increases when considering the learning process. The data col-
lected from the sensors will greatly influence the learning process, and all patterns will depend
upon the data captured. This dependency is hindered by technical problems associated with
the gathering and interpretation of the data collected by sensors.

First, data will be typically collected in a continuous way from different information
sources. Integrating data from different sources usually presents many challenges, because
different sources will use different recording styles and different devices will have different
possible statuses [Wit05]. Finally, as in other areas of computing, finding out how to ap-
propriately accommodate the common phenomena of ‘noisy’ data with missing or inaccurate
values is another important challenge.

Moreover, it is also necessary to consider the nature of the collected data. The first aspect
to be considered is the nature of raw data. Sometimes, raw data are not meaningful and a
combination of different sources of raw data is necessary to recognize meaningful activities
(for further details, see Section 3.1).

Another aspect to consider is that different types of sensors provide information of dif-
ferent natures that can be used for different purposes in the learning process. Some sensors
provide direct information about the actions of the user (e.g., a sensor installed in the bath-
room’s light switch provides direct information about when someone switches on the light).
Other sensors provide information about the environment itself (e.g., a temperature sensor
installed in the bathroom). Other types of sensors to be considered are those that provide
information about the health and emotional status of the user (e.g., sensors that capture pa-
rameters like heart rate). Finally, externally gathered information can be included to enrich
data collected from sensors. Externally gathered information will typically be domain-related
knowledge, such as the medical background of patients, preferences of the user specified in
advance by the user or calendar information (e.g., when the user goes on holiday). It is worth
noting that in this work sensors that provide information about the health and emotional

status and externally gathered information are not considered.

7

Let us consider a brief example of data collected in Michael’s environment is:

Devices’ activations
(date;device;status;value)

2008-10-20
08:02:12; Alarm;on;100
08:15:55; Bathroom;on; 100
08:15:57; BathroomLights;on; 100
08:17:10; Cabinet;on;100
08:17:15; Mouthwash;on; 100
08:17:16;Cabinet;off;0
08:19:23; Cabinet;on;100
08:19:29; Towel;on;100

2008-10-21
08:10:50; Alarm;on; 100
08:23:18; Bathroom;on; 100
08:23:20; BathroomLights;on;100
08:23:58; Cabinet;on; 100
08:24:02; Mouthwash;on;100
08:24:08; Cabinet;off;0

Other sensors
(date;device; status;value)

2008-10-20
08:02:14; TempBathroom;on;18
08:05:19; HumBathroom;on;65
08:18:42; TempBathroom;on;19
08:18:40; TempBathroom;on; 20
08:22:07; HumBathroom;on;66
08:27:19; TempBathroom;on;18
08:28:20; HumBathroom;on; 70
08:29:27; TempBathroom;on;19

2008-10-21
08:11:41; TempBedroom;on;22
08:12:50;, HumBathroom;on;50
08:21:25; TempBathroom;on;19
08:22:49; TempBathroom;on; 20
08:24:21; HumBathroom;on;53
08:25:18; TempBathroom;on; 22

Spatio-temporal aspects of the collected data also play an important role in the learning
process. Every act of a person situated in an environment has both spatial and temporal
elements. The spatial information of an act is given by the location of either devices (e.g.,
the light switch) or users (e.g., motion in the bathroom), whereas temporal information is
given by the timestamp of each action. Various authors have highlighted the importance of
considering both spatial and temporal aspects of IEs [Aug04; Aug06b; Got06; Azt08].

Representation of the Discovered Knowledge

Depending on the objectives of each environment, different representations can be demanded.
For example, if the only goal is to automate, i.e., to provide an output given certain inputs
(e.g., switch on the light given the current situation), the environment does not require a
representation of the patterns that can be understood by the user. However, most of the time

the representation of the user’s patterns is relevant. In these cases, a human-understandable,

8

i.e., comprehensible, representation of the patterns is an essential feature for the success of
the system.

Moreover, it may be necessary for the system to explain the decisions it makes to the
user. For instance, the system could explain to Michael that it has turned on the light in the
bathroom because it has strong evidence of his habit to do so. At other times, the output
of the learning process must be integrated into a bigger system or must be combined with
other types of knowledge in order to make good high level decisions.

Representing frequent behaviours by means of sequences of actions (Action Maps) seems
to be a promising approach. Figure 1.2 shows part of Michael’s morning habits represented
by means of an Action Map. This type of representation allows inter-relations between
actions (e.g., ‘Bathroom On’ and ‘BathroomLights On’). At the same time, it allows the
representation of time relations using relative time references instead of absolute times (e.g.,
‘Shower Off’; 4 seconds later; ‘BathroomFan On’). Finally, conditions are necessary to
further describe the occurrence of events in this sequences. General Conditions help to
contextualize the whole sequence (e.g., ‘On weekdays between 8 a.m. and 9 a.m.’), whereas
Specific Conditions describe the conditions under which an action is performed or not (e.g.,

‘BathroomFan On’ only if the relative humidity level is >70%).

Alarm BathLights Mouthwash Bathroom
on on on off
start end
®) terJI 5s } 1S,I after _| ®
Towel Cabinet Shower
Bathroom Cabinet Cabinet on off off BathLights
on on 0, » off g, after off
%, after Fan on
%O,Qs% $
Ty Y 9, Cabinet Gel Shower %”A g &
U O
8 on on on)0} Fan
off

Day of week > On weekdays
Time of day > [08:00 a.m. — 09:00 a.m.]

Figure 1.2: Michael’s morning ritual represented in a sequence

Scheduling the Learning Process

As mentioned in Section 1.2, this work is focused on discovering frequent patterns of behaviour
from data collected by sensors. Even so, the development of a complete IE demands other
considerations.

On the one hand, it is desirable for the system to act as intelligently as possible from
the very beginning, i.e., even when it is just beginning to collect data. Typically, actions
performed at this point will not be as intelligent or efficient as those performed after learning
the patterns of the user, and minimal services can be expected at this stage.

On the other hand, once patterns have been discovered, it seems clear that those patterns

must be continuously revised and updated because:

e The user can change his/her preferences or habits (e.g., Sarah now prefers other types

of exercises for her rehabilitation),
e New patterns could appear (e.g., Sarah has started receiving visitors on the weekends),

e Previously learned patterns were incorrect (e.g., the system wrongly concluded that

Sarah likes going to bed at 9:00 p.m.).

This adaptation process could mean the modification of parameters in a pattern discovered
previously, adding a new pattern or even deleting a pattern. This sustained process will last
throughout the lifetime of the environment. To achieve this constant revision effectively, the
user’s feedback is essential.

It can be concluded that an ideal IE needs to consider, at least, three learning periods.
During the first period, the IE looks to act as intelligently as possible without patterns while
starting to gather data. During the second period, the IE must learn the users’ frequent
behaviours. Finally, while the system is acting in accordance with patterns previously learned,
it must update those patterns continuously. As stated previously, this work focuses on the

second period, when the IE learns the frequent behaviours of the users.

1.3 Hypothesis, Objectives and Limitations
Based on the changing role of IEs the central hypothesis of this work is:

Users’ frequent behaviours can be learned in an unobtrusive and transparent
way in order to provide environments with the intelligence and the ability to

adapt to users’ habits.
In order to validate the hypothesis, the general goal of this research work is:

To design and implement a system that learns users’ frequent behaviours in

an unobtrusive and transparent way.
This objective can be divided into several more focused sub-objectives:

e To design a general architecture for learning in IEs, making clear the dependency of

each module on specific environments or applications.
e To define a language that represents users’ frequent behaviours.

e To design and implement an algorithm, that learns frequent behaviours. It is necessary

to identify the necessary steps and design an architecture for such an algorithm.

e To design and implement an interaction framework that allows the system to interact

with end users in applications that involve learnt patterns.

e To validate the system using data collected from real environments.

10

Besides achieving the objectives mentioned above, the system should satisfy the following

requirements:

e Environment-independent: The components that discover and represent the user-
knowledge, i.e., the language and the algorithm, should be independent of any particular
environment. Thus, the system should ensure that these elements are not designed and
developed based on particular needs of certain environments. In order to adapt it to
specific environments the system should provide additional means to transform both

the collected data and the discovered knowledge.

e Efficiency: The system must verify its ability to satisfy the following requirements when

discovering frequent behaviours:

— Frequency: The definition of a frequent behaviour may vary. Thus, the system
must guarantee that it discovers all those behaviours that occur more frequently

than the demanded minimum frequency threshold.

— Response Time: Depending on particular environments, how long the system
takes to discover frequent behaviour may or may not be critical. Therefore, it is
impossible to define a specific response time for the system. Even so, the system
must provide mechanisms that allow a user of the system to prioritize response

time over quality of knowledge.

The system to be developed does not learn all types of knowledge about users. Limitations

of the designed system regarding the discovery of knowledge include the following:

e The system does not learn preferences of the users for a specific device. Thus, it would
not learn that Michael likes to set the temperature of the water around 24-26° degrees

Celsius in the winter and around 21-23° degrees Celsius in the summer.

e The system does not learn relationships between environmental conditions. In other
words, it does not discover relationships between context sensors (e.g., temperature
or humidity) that indicate the status of the environment. There could be interesting
relationships (e.g., if the external temperature is >30°C and the window is open, then
the living room relative humidity level is >70%) that relate environmental conditions,
but they are not considered in this initial work, because they do not provide any

information about users.

e Regarding different periods in the system’s lifecycle, it does not consider the processes
of providing intelligence in the absence of learned patterns or the process of updating

those patterns.

1.4 Methodology

Similar research goals can be sought in completely different ways depending on aspect of the

context of research including the availability of infrastructures, the accessibility and proximity

11

of experts, synergies with ongoing research projects and so forth. Because of our research

context, we designed a research strategy based on the following activities:

1. Update our knowledge by reviewing recent and state-of-the-art publications, and at-

tending congresses.

2. Design and develop the different parts of the model and architecture enlarging the scope

gradually in an iterative process.
3. Experiment on and evaluate the system.

4. Attend congresses and workshops to present partial results and to learn of existing

state-of-the-art advancements.

5. Network with experts in congresses, in meetings, via email, and by visiting other re-

search centres?.
6. Redesign the system with the feedback obtained from all the above means.

7. Develop and deploy the final system for learning frequent behaviours in real world-like

scenarios to gather results.

8. Disseminate the obtained knowledge and experiences to the research community.

Figure 1.3 illustrates graphically this research procedure, including the major activities,

as well as the inputs and outputs that contributed to the final results.

Review
state-of-the-art

Feedback from
experimentation

/ \

Update Solution
Knowledge Design

Experimentation Validation

Congresses, Feedback from Publicaciones and Publications
journals, etc. expert prototypes

Figure 1.3: Schematic view of the research process.

4The author was a visiting Ph.D. student during one year at the School of Computing and Mathematics
of University of Ulster

12

Underlying this research process is the action-research methodology composed of five

different phases:
e Diagnosing: identifying the problem.
e Action planning: considering possible courses of action.
e Taking action: selecting a course of action.
e Evaluating: analysing the consequences of the course of action.
e Specifying results: identifying general findings.

These phases will be applied for all of the outlined research activities with the aim of

providing rigor, reflexive critiques and continuous challenges.

1.5 Thesis outline

The thesis is divided into seven chapters and a number of appendices.

Chapter 1 (the current chapter) outlines the motivation, hypothesis and goals of the
research, as well as the methodology.

Chapter 2 analyses different Machine Learning techniques and the work carried out by dif-
ferent research groups using such techniques. The strengths and weaknesses of each technique
are discussed. A comparative table is provided at the end of the chapter.

The architecture designed for the learning system is introduced in Chapter 3, clearly
separating those components that are dependent on particular environments from those that
are environment-independent.

Chapter 4 provides the first approach developed to learn frequent behaviours of users.
This first approach is focused on discovering frequent pairwise relations that describe his/her
behaviour. For this approach, an environment-independent language and algorithm have
been developed.

A further development of the first approach is explained in Chapter 5. This second
approach discovers frequent behaviours without any limitation on the number of actions
involved. This developments demands improvements to both the language and the algorithm.

Chapter 6 provides a description of different tests carried out to validate the system
and the results. The validation is performed using different datasets collected from two real
environments.

Finally, Chapter 7 draws the conclusions of this research work. The hypothesis and
goals are revisited, and the major contributions are outlined and several issues are discussed.
Future avenues of research and challenges are also sketched, and the chapter ends with some
final remarks.

The thesis also includes some appendices that provide more information about technical
aspects of the work such as the type of data used by the system, the specifications of the

developed language or patterns discovered in different validations tests.

13

14

CHAPTER 2

State of the Art

IEs, as a technological paradigm, have the potential to make a significant impact upon daily
human life by positively altering the relationship between humans and technology. The area
of IEs has attracted a significant number of researchers, and some applications are already
being deployed with different degrees of success. Taking into account the complexity of IEs
systems (hardware, software and networks must cooperate in an efficient and effective way
to provide a suitable result to the user), each project has focused upon different aspects of
such complex architectures. In that sense, it is understandable - and even logical - that the
first developments have been focused upon needs that require hardware and networking as
supporting infrastructure. This focus has resulted in simple automations that implement
reactive environments. However, it is necessary to give more importance to the intelligence
component because of its relevance for achieving the core aspects of IE systems.

Although many researchers to date have noted the importance of the learning [Fri05;
Aug06b; Das06; Ram08] little emphasis has been placed in general upon the subject. In that
sense, the objective of the current work, i.e., learning users’ frequent behaviours, is essential
for providing intelligence to the environments. Although little emphasis has been placed in
this particular subject, notable exceptions can be found.

Artificial Intelligence (AI) [Rus03] has been identified as the area that will provide IEs with
intelligence [Aug07b]. AI, understood in its broad sense, encompasses areas like agent-based
software, robotics and machine learning. Understood broadly and considering the objective of
the current research, Machine Learning (ML) techniques have shown their ability to extract
knowledge in many different areas.

On one hand, hundreds of papers and even books [Mit97; Wit05] relating to ML topics
have been published. On the other hand, a survey relating learning skills to IEs is not
available, even though some surveys on different IE topics have been published [Jia04; Pan06;
Co0007]. Thus, this chapter reviews the research work carried out in IEs using ML techniques
in order to gain knowledge about users’ behaviours.

A brief analysis of different applications developed by different groups shows that current
applications are very specific with focused goals. In addition to analysing the knowledge
learned in each application, strong and weak aspects of each ML technique used in the
applications is analysed. Such an analysis also considers the special features of IEs (see
Section 1.2.3).

ML techniques have also been used for other necessary tasks in IEs, such as activity
recognition or anomaly detection. However, the current work focuses on learning users’

frequent behaviours. Therefore, the strengths and weaknesses of different ML techniques will

15

only be analysed in relation to that goal.

2.1 Artificial Neural Network

Artificial Neural Networks (ANNs) were inspired by the observation that biological learning
systems are built of very complex webs of interconnected neurons [Mit97]. As a rough analogy,
ANNSs might be described as being built out of a densely interconnected set of simple units,

where each unit takes a number of real-valued inputs and produces a single real-valued output.

2.1.1 Applications

The aim of the system developed by Mozer et al.[Moz95] and installed in the Adaptive House
was to design an adaptive control system that considers the lifestyle and energy consumption
of the inhabitants. Such an environment was provided with different types of sensors (tem-
perature, light status, illumination and so on) that reported the state of the environment.
Moreover, the system had the ability to control the status of the lights, the water heater
and the gas furnace. Based on this environment and using a feed-forward neural network,
they developed two applications. The first application, an ‘occupancy predictor’, predicted
the expected amount of time spent in the home by the inhabitants in the next 30, 60 or 90
minutes. The second one, a ‘zone anticipator’, predicted whether a particular was going to
be occupied in the coming two seconds, so that the lights were turned on prior to a zone
being entered.

Chan et al.[Cha95] developed an application in order to assess whether a situation was
normal or abnormal. For this application, they assumed an elderly person had fairly repetitive
and identifiable habits. Training ANNs with these regular habits, they were able to detect
discrepancies to his/her usual behaviour. After validating this application in an institution
for elderly and disabled people, they claimed that the system had 90% chance of providing
correct predictions.

These works were amongst the first reports on applications for IEs in which user patterns
were considered. Other authors have continued using ANNSs to provide personalized services.

Campo et al. [Cam06] developed a system that calculated the probability of each area of
the home being occupied at a given moment based on continuous observation of the users’
habits.

Boisvert and Gonzalez Rubio [Boi99] also used ANNs to develop an intelligent thermostat.
Learning about the behaviour of the occupants, the objective of this application was to reduce
the number of interactions with the user and eliminate the need for users to learn how to
program the device. Additionally, the thermostat reduced energy consumption by turning
off whenever occupants were absent. Thus, people who have fairly foreseeable behavioural
patterns significantly reduced (9-16%) their energy consumption by using a prototype of this
thermostat.

Finally, see [Beg06] for a survey focused on ANNs for Smart Homes.

16

2.1.2 Strengths and Weaknesses

Most of the authors that have used ANNs for the learning process highlight their ability to
generalize as well as their robustness when faced with complex data (e.g., noisy or missing
values). In order to clarify the strengths and weaknesses of ANNs, Michael’s scenarios will
be used as an example.

Due to the capacity of ANNs to manage complex data and create complex models, a sys-
tem based on ANNs will provide correct responses in situations such as turning on the lights
when Michael goes into the bathroom or getting the shower ready on Tuesdays, Thursdays
and Fridays. There are already systems (see applications mentioned above) that use ANNs to
predict the presence of the user or the occurrence of an action. In that sense, ANNSs are one
of the techniques that better accommodate the complexity (type of data, data inconsistency
etc.) of IEs.

However, ANNs have an important limitation related to their black box nature; their
internal structure is not human-readable. Thus, the system would be able to turn on the
light, but it would not be able to explain, in a comprehensible way, how it inferred such an
output. If understanding users’ frequent behaviours is considered as essential (e.g., Sarah’s
scenario) ANNs faces an insuperable difficulty. Even if the understanding is not the main
objective, the central role that the user plays in IEs, makes the development of a complete

learning system based only on ANNs quite difficult.

2.2 Classification techniques

Classification techniques are practical methods for inductive inference. The idea behind
classification techniques is to infer a solution or consequent based on a set of conditions or
antecedents. Decision trees and classifications rules are the most well-known classification
techniques. Decision trees represent the inferred knowledge by means of a tree where each
node defines a condition and each leaf a solution, whereas classification rules represent the
knowledge by means of ‘IF ... THEN ..." rules.

2.2.1 Applications

The group that works on the environment named ‘SmartOffice’ [Gal01] was the first to identify
the use of rules in order to act proactively. SmartOffice was comprised of 50 sensors (cameras
and microphones) and 3 actuators (a video projector and two speakers). Given these sensors
and actuators, the researchers used a set of predefined rules to integrate different components
into a coherent application. One of the main reasons rules were used in this application was
because they allowed the addition, deletion or modification of rules without influencing other
rules. Thus, they guaranteed scalability of the system.

The SmartOffice group continued to use classification techniques in IEs. In order to
justify the use of classification techniques, they pointed out that ‘a user is only willing to
accept an intelligent environment offering services implicitly if he understands and foresees

its decisions’ [Brd05]. Taking as a starting point a pre-defined context model, they identified

17

situations where examples indicated different reactions for such situations. Thus, it was
necessary to define under what conditions a reaction would or would not take place. With
the knowledge that decision trees were able to perform classifications, they experimented
with FIND-S, Candidate Elimination and ID3 methods, finding the last to be the best.
Stankovski and Trnkoczy [Sta06] also analysed the possibility of using Decision Trees in
Smart Homes. The application they proposed was the detection of abnormal situations by
means of Decision Trees. Based on the assumption that events that usually happened in a
Smart Home may be considered normal events, they induced a decision tree. Then, each new

situation was analysed and the decision tree determined whether it was abnormal or not.

2.2.2 Strengths and Weaknesses

Firstly, it is worth mentioning that both classification techniques considered in this section
have the same characteristics with regards to IEs. Thus, their strengths and weaknesses will
be considered together.

One of the main advantages of these classification techniques for IEs is the way they
represent knowledge. Due to their human-readable representation, extracted knowledge can
be used by a third party to understand a user’s behaviour, as well as to explain to the user
the decisions made by the system.

As mentioned in one of the applications, classification techniques can be very useful for
discovering conditions where certain actions follow other specific actions. For example, in
Michael’s case, the environment would realize that following the action of ‘Shower off’, some-
times he turns on the fan in the bathroom and sometimes he does not. Using classification
techniques, the environment would be able to discover that the action ‘BathroomFan On’
follows the action ‘Shower Off” if the relative humidity level in the bathroom is >70%.

Although classification techniques have been proposed for discovering abnormal or haz-
ardous situations (in Michael’s case the environment would be able to detect when Michael
leaves the stove on when leaving the house), this system would generate many false positives.
These false positives occur because all new situations would always be identified as abnormal.

The advantages of representing a user’s behaviour by means of rules are clear. Even so,
a single rule does not give any sense of sequence to the actions, so something else is required

to discover and represent a user’s behaviours by means of sequences.

2.3 Fuzzy Logic rules

Fuzzy sets, a term introduced by Lofti A. Zadeh [Zad65], are those sets whose elements have
degrees of membership. Unlike binary logic, where an element either belongs to a set or does
not, fuzzy logic permits a graded assessment of the membership of elements in a set. This
type of variability allows the use of linguistic variables (e.g., temperature, height or speed)
that facilitate the definition of rules and facts.

Systems with fuzzy variables represent the learned knowledge by means of ‘IF ... THEN ...’

rules. The main difference when compared to classification techniques is that the rules defined

18

using fuzzy variables can better match IEs’ inherent characteristics.

2.3.1 Applications

Researchers at Essex’s iDorm lab focused on the problem of learning and were one of the
most active groups in this area [Hag04] [Doc05]. Their objective was to develop learning
and adaptation techniques for embedded agents. To that end, they developed a test bed,
iDorm (later on iDorm?2, iSpace and iSpace2), where seven input sensors were monitored
(e.g., internal /external light level or bed pressure) and ten output actuators were controlled
(e.g., desk and bed side lamps or window blinds).

Their initial efforts were focused on developing an unsupervised approach for extracting
fuzzy rules and membership functions from data to develop a fuzzy controller that would
model the user’s behaviours. The data were collected by monitoring the user in the environ-
ment over a period of time. The learned controller provided an inference mechanism that
produced output control responses based on the current state of the inputs. They defined a

five phases approach to create a fuzzy controller.

e Monitoring the user and capturing input/output data.

e Extraction of the fuzzy membership functions from the data. To achieve this extrac-
tion, they used a double-clustering approach [Cas02], combining fuzzy-C-means and

hierarchical clustering.

e Extraction of fuzzy rules from the recorded data. The extraction approach used was
based on an enhanced version of the Mendel Wang method [Wan92] developed by
L.X. Wang [Wan03].

e Control of the environment by the agent controller environment on behalf of the human

according to his/her desires.

e Adaptation mechanism. Whenever the user was dissatisfied with the agent’s actions,
he/she could always override the agent’s control responses by simply altering the manual
control of the system. When this occurred, the agent adapted its rules online or added

new rules based on the new user preferences.

They validated their fuzzy approach by performing experiments in which a user lived
in the iDorm for a period of five consecutive days. They collected 408 instances of data
from the user’s interactions in the iDorm over the initial three-day period, and the agent
initially learned 186 rules from that data. Over the next two days, the agent added 120
new rules during the adaptation process, the researchers compared the offline performance
of their approach to three other soft-computing-based techniques: genetic programming, the
adaptive-neuro fuzzy inference system [Jan93|, and the multilayer perceptron neural network.

Analysing the results, the researchers realised their approach generated too many rules.
This weaknesses was due to the fact that the agent related actions to the global situation of

that moment, and the number of possible global situations was excessively large. Thus, they

19

made an improvement [Dum08] that identified relevant and important associations between
actions, so that irrelevant aspects of the rules (and, by extension, some rules as well) could
be removed. In an experiment carried out in the same environment, this change allowed for
a 91% reduction in the number of rules.

Vainio et al. [Vai08] also used fuzzy rules to represent habits of a user. In contrast to the
approach followed in the iDorm project, these authors manually constructed the membership
functions and used reinforcement learning to replace old rules in order to prevent single

overriding events from having too large an impact.

2.3.2 Strengths and Weaknesses

The nature of rules generated in this way will be similar to those rules obtained using the
classification techniques described in the previous section. They are considered more robust
when dealing with data of a continuous nature (e.g., temperature, humidity and time). In
Michael’s case, for those actions performed when the global situation was similar (e.g., by
taking a shower on Tuesdays, Thursdays and Fridays), the controller would provide a correct
output.

Due to the multiplicity of sensors and the number of different situations that can be gen-
erated when combining sensors, it seems clear that relating actions only to global conditions
(without relating actions to other actions) will result in an excessive number of generated
rules with very little meaning. In Michael’s case, it is clear that the action of turning on the
lights in the bathroom is typically associated with the action of going into the bathroom.
Thus, it is essential to discover frequent relations between actions. Even so, the system does

not relate actions in sequences of actions, but instead only discovers pairwise relations.

2.4 Associated sequence discovery

A sequence defines a set of actions/activities that are inter-related. Most of the time, that
relation is interesting because it is frequent. Thus, association techniques, e.g., algorithms like

Apriori [Agr95], have been developed to discover frequent relations between any attributes.

2.4.1 Applications

The group working on the MavHome and Casas projects was one of the most active groups in
this field of research. The first applications developed by this group were focused on building
universal models, represented by Markov models, to predict future locations or activities
[Rao04] [Coo07]. The researchers made notable improvements by developing applications to
discover daily and weekly patterns [Hei02]. Additionally, they constructed an application
with the ability to infer abstract tasks automatically and identify corresponding activities
that were likely to be part of the same task [Rao04].

However, the major contributions of this research group have been their research on dis-

covering frequent relations between events [Jak07a] [Jak07b]. After collecting data, they first

20

identified temporal relations that occurred among events, and they then applied association
rule mining techniques to focus on the event sequences and temporal relations that frequently
occurred. They used the temporal relations between events as a basis for reasoning to per-
form anomaly detection and prediction of events. In order to define temporal relations, they
used Allen’s temporal logic [All84], which produced fairly intuitive sequences of actions.
Once their new approach was developed, they tested it using a dataset collected from
the MavLab smart workplace [You05], which contained two months of data. Additionally,
they generated a synthetic data set containing about 4000 events representing two months of
activities. Then, using their previous approach, ActiveLeZi (ALZ)) [Gop04], they compared
the prediction accuracy with and without temporal rules. There was 1.86% prediction per-
formance improvement in the real data and 7.81% improvement in the synthetic data using

the temporal rules.

2.4.2 Strengths and Weaknesses

The knowledge discovered by associating actions/activities can easily be represented in a
comprehensible way. Moreover, relating such events temporally provides a sequential rep-
resentation that is one of the most promising representations in IEs (see Section 1.2.3). In
Michael’s case, the system would be able to detect that he first gets up, then goes into the
bathroom and then turns on the light. As stated previously, this representation produces
intuitive sequences of actions, allowing the system to detect anomalies as well as to predict
future events.

Although this is one of the most promising approaches, a few aspects that need improve-
ment can be noted. First, this system does not determine that a group of activities is part
of the same sequence but rather detects relations separately (relating actions in a pairwise
manner). Second, this system only considers Allen’s temporal logic relations (which define re-
lations qualitatively), thereby ruling out quantitative relations. Thus, the term ‘after’ means
that Michael goes into the bathroom and then he turns on the lights; however, the likely
delay between one action and the next cannot be measured. Defining relations by means of
quantitative values allows the system to automate actions, which is impossible with purely
qualitative values (e.g., the system knows that turning the lights on comes after a given event,
but it does not know if is the time delay is 2 seconds, 5 minutes or 2 hours after the first
event). Finally, it is worth mentioning that this method does not discover conditions; such
a concept is, in fact, very useful if two activities are related in different ways. In Michael’s
case, the relation ‘Shower Off, after, BathroomFan On’ occurs only if the bathroom’s relative
humidity level is >70%, so that conditions should be considered in order to provide more

accurate patterns of his behaviour.

2.5 Instance-Based Learning

In contrast to learning methods that construct a general, explicit description of learned

knowledge, instance-based learning (IBL) methods simply store the data. Generalizing be-

21

yond these data is postponed until a solution to a new situation is required. Each time a new
situation is encountered, its relationship to the previously stored examples is examined in
order to decide the best solution for the new situation. IBL methods are sometimes referred
to as ‘lagy’ learning methods.

IBL can be considered as a family of learning algorithms that includes methods like
k-Nearest Neighbour (k-NN) learning or Case-Based Reasoning (CBR).

2.5.1 Applications

The MyCampus group at Carnegie Mellon University [Sad05] developed some interesting
applications for IEs using CBR. Their main objective was to provide a set of services to
enhance everyday campus life. Thus, applications for recommending services (e.g., where
to eat or public transportation) or for reminding users about tasks were developed. One of
the most interesting services was a message filtering service, which allowed a user to specify
preferences as to when he/she wanted to see different types of messages based on the nature
of the message (i.e., subject and sender). In addition, users could provide feedback to help
the system refine the preferences they originally entered.

In the first iteration, users had to specify their message filtering preferences (‘a priori
preference’) for different categories of messages. Based on this static information the system
filtered the messages and then participants were asked to review each individual message they
had received and indicate what the ideal filtering action for that message should have been
(‘a posteriori preference’). Analysis of the results collected during the experiment showed
that users were only satisfied with the 50% of the messages they received.

Seeing the poor results obtained by using ‘a priori’ preferences, the group implemented
a CBR module, which attempted to learn preferences for individual users based on their
feedback. The CBR module considered each message as a new case, and the user expressed
his/her a posteriori preference for processing that message. Whenever a new case came arose,
they used Aha’s Nearest Neighbourhood algorithm [Aha91], as adapted by Cercone and Chan
[Cer99]. Experiments carried out with the CBR showed an accuracy of over 80%, a significant
improvement in the quality of the filtering decisions.

Apart from the MyCampus project, some other researchers have also used CBR to acquire
knowledge about users. Kushwaha et al. [Kus04] proposed an intelligent agent for ubiqui-
tous computing environments (UT-AGENT), which had the objective of determining users’
information requirements and helping them by providing a task of interest. They stored the
user’s behaviour as cases, and new queries were classified according to its similarity with
previous recorded queries.

Recently San Martin et al. [San09] used the K-Nearest Neighbours (k-NN) algorithm in
order to act intelligently in an IE. They monitored users’ actions, saving the context (activity,
location, sensor values etc.) each time the user set the value for a parameter. Thus, the first
time that the user configured a parameter, it was taken as a new type of preference, i.e.,
a new case, so that these new parameters comprised the training set. They used the k-NN

algorithm because, unlike other algorithms that need a large set of training data to obtain

22

sufficiently precise results, k-NN is able to offer accurate results if new cases are similar to
the training examples. San Martin et al. evaluated their approach using synthetic data, and
they considered the response time of the system as an important measurement to decide if
the approach was feasible for IEs. Their evaluations showed that the response time of their
initial approach was unacceptable in some situations.

Finally, see [Lea06] and [Gal06] for a survey and new possible opportunities regarding

using CBR techniques for Smart Homes.

2.5.2 Strengths and Weaknesses

Considering the use of IBL techniques in Michael’s scenario, their strengths and weaknesses
will be clarified. Given a situation similar to one stored previously, the system would act
properly because IBL techniques provide similar solutions to similar problems/situations
without any initial model. Thus, when Michael goes into the bathroom, the system would
compare that situation to previous ones and correctly turn on the lights. The same response
would occur for other situations similar to previous occurrences (e.g., by having a shower on
Tuesdays, Thursdays and Fridays).

However, the use of IBL techniques has some limitations. As this process infers a solution
for each specific situation, it does not create a model that represents patterns. Therefore, it
would not be possible to extract a general pattern indicating the behaviour of Michael to turn
on the lights after going into the bathroom. Further, as each situation can be represented by
means of a large number of parameters, the matching process could be very difficult because
there are no clues regarding the importance of each parameter in each situation. Considering
Michael’s habit of having a shower, if we consider the parameter ‘day of the week’, it seems
clear when he takes a shower and when he does not. However, other parameters (e.g., light
level or temperature) that would shape the pattern differently could also be considered,

making the process of matching difficult.

2.6 Reinforcement Learning

Each time the environment performs an action, reinforcement learning algorithms consider
a reward or penalty provided by users or supervisors, which indicates the desirability of the
action. The task of the environment is to modify its knowledge to produce the greatest

cumulative reward.

2.6.1 Applications

Some of the groups mentioned in the previous sections, such as the Adaptive Home (See
Section 2.1.1) and SmartOffice (See Section 2.2.1) groups, have added a module to provide
the environment with the ability to adapt. All have employed reinforcement learning.

As seen in Section 2.1.1 Mozer et al. developed a system that predicted whether a zone

in the house would be occupied. In addition to this system, these researchers developed

23

other methodologies, using the Q learning algorithm [Wat92] for lighting regulation. The
system controlled the status of the lights (on/off) and their intensity. Starting with the
assumption that the inhabitant had no preferences for the device setting, the system tried
to minimize energy consumption as long as the inhabitant did not express discomfort. Once
the system received feedback from the user, it tried to balance user’s preferences with energy
consumption.

The SmartOffice group has also used reinforcement learning in their research work [Zai08].
Their main objective was to construct automatically a context model by applying reinforce-
ment techniques, where the user gave rewards by expressing his/her satisfaction with the
system’s actions. They employed this approach because systems developed so far have prob-
lems when considering the users and their needs. The problems they mention are listed

below:

e The behaviour of the system was completely incoherent at the beginning and needed

time to converge.
e The user did not want to wait the time required to train the system.

e The user’s habits may change over time and the environment should integrate these

changes quickly.

Thus, starting with a pre-defined set of actions, they adapted that knowledge progressively
to its particular user using the Q learning algorithm. In doing so, the default behaviour
made the system ready-to-use whereas learning was a life-long process. They validated it in

a simulated environment, converging after 195 actions.

2.6.2 Strengths and Weaknesses

In Michael’s example, if we consider that the system already has a model (either defined
manually or learned by means of previously mentioned techniques), reinforcement learning
techniques can be used in order to adapt such patterns. Let us hypothesize that learned
patterns define that the shower must be ready every weekday. Every time Michael does not
have a shower would be a penalty for the system, i.e., it would be considered as negative
feedback. After collecting feedback, reinforcement learning would change the pattern and
adapt it to Michael’s new preferences, i.e., to have the shower ready only on Tuesdays,
Thursdays and Fridays.

Still, the use of this technique demands a set of initial patterns that ideally should be
learned automatically instead of from pre-defined models (which could annoy users and even
make difficult the process of learning habits without any bias). Although other techniques
have the same limitation, the inherent difficulty in reinforcement learning is interpreting
user’s feedbacks; this is particularly important for reinforcement learning because this system

is based mainly on the interpretation of this feedback.

24

2.7 Summary

Analyses of different techniques clearly show that each one has specific strengths and weak-
nesses for the task of learning user’s patterns in IEs. As Muller noted [Mul04] ‘the overall
dilemma remains: there does not seem to be a system that learns quickly, is highly accu-
rate, is nearly domain independent, does this from few examples with literally no bias, and
delivers a user model that is understandable and contains breaking news about the user’s
characteristics’.

The solution may rely on the combination of most of them, taking advantage of the
strengths of each technique. In order to serve as a guide for that, Table 2.1 summarizes the
strengths and weaknesses of each technique relative to IEs considering the different learning

stages defined in Section 1.2.3.

25

s¥oRqP9]

Surpuejsiepun

1500 [erodus)

soousnbes mou Juippe

S)OIJUOD PIOA®R

S)OIJUOD PIOA®R

qiomijou

syuow
-uoIIAUL
d 01 Surmnjonysal 01 Surmnjon)sal o1} JO SULIM)ONIISAT SOSSOUNBIAN
ue Teuoljeinduwo uaYM SIDTJFUOD DGISSO,
ur sen o puel e 2 s sty Taissod saxmmboay saxmboy soammboyg orwreuk(
ur sesury)
109y
Iosn o suiejjed jo no so[nI Areorureul
s i Hwed o s seouanbes aSueyd < 1 san1 a8uryd 10 et P s 0% 8899014
M SurjorIajul $9OUR)SUI 0} UOIIN[OS ® o3ueyDd 10 93970 suoInou sy18uoaa
R B it sar o3 B 10 939[op ‘ppe 09 Asery 1 PP 9)9[9p ‘ppe 03 Aseq A s uorjesdepy
sutojred sydepy Surpraoad jo Aqiqrssoq ‘ppe 03 Asery Surppe jo A1iqissod
suoryeral
surored el A[uo suorye[or Auo suorye[ol mndino ered
[epow & saxmbayy awrg aAryejrguenb SOSSOUNBIAN
[eIoULS JO UOI3BAID ON UoTyenIIG-yUoAH UoTyenIIG-yUoAH o[qepeoI-uewni] ON Pa399110D
auyoep 09 9[qreu) wouy
§89001J
SUOT)R[OI oUITY suoryenys UoToRIIXH
senbruyoey seTjuIR)IaOUN SUOTYTPUOD
aA1RIIRND SI9A00SI(xo1dwoo [epowt uragjed
[IO I0J UOI}RULIOJUT 09 3snqoy ‘gndyno Jo s1an00s1(q “Indino syj)SuaIlg
‘squoAe Surje[ar pue ozI[erauss
0 92INO0S d[(ISSO o[qepeaI-URWN a[qepeaI-TRWN
3 1qssod SO[NI S9jRISULL) [aep H aep H 01 Ljoede)
4 ndjno
ouo [oeo Jo adurjrodwr
1 3 * : Sururer) Sururer) Sururer) s[qepesai-uemwniy suroyed
[epow ' saxmnbey pue 49s seinqrijye SOSSOUNBIAN JnoyjIm
10J eyep sarmboy 10y eyep salmboy I0J eyep sarmbayy oN ‘Sururery :
981e] 0} PAT}ISUDG Surureor|
10} eyep sermboy :
polieg
Hoys
[‘Sururel) I0j peeu oN — [[[syp8uaIlg
sassau
Surures Suruaes sonbruyos Jomio
; T) 1 Kaanoosi(g aouanbag so[nua o130] Azznyg raes) A N eeM
JUSUWIaDI0JUIOY peseg oouejsuy uo1jedyIsse[d) [eanapN [eIOYI}IY /sysBusayg
mwﬁdﬁgﬂuﬁﬁ wﬁﬁ\aﬁoﬁ JO sossouyrom puv mﬂuwgwﬁ,m ‘T°C @I9®%L

26

CHAPTER 3

General Architecture

One of the main characteristics of IEs is the key role that the user plays as the focus of the
entire process, from the beginning to the end. In other words, the process starts by collecting
data about the user and the environment in which the user is situated, and it finishes by
acting intelligently for the user. The variety of user types that can be involved in each IE, and
the multitude of potential objectives of each particular environment demands an exhaustive

analysis of all components to be included.

This research suggests an architecture for learning users’ frequent behaviours that distin-
guishes those aspects of the learning process related to particular environments in which each
particular environment requires a different treatment (environment-dependent), from those
aspects that can be generalized for all types of environments (environment-independent). The
system proposed in the current work, Learning Frequent Patterns of User Behaviour System
(LFPUBS), is based on a three-layered architecture that takes into account all aspects related
to the learning process. Figure 3.1 shows the global architecture of the LFPUBS.

User

}
‘ Transformation Layer ’

}

L Learning Layer J
}
[Application Layer]
}
User

Figure 3.1: Three-layered global architecture.

27

3.1 Transformation Layer

The objective of the first layer is to transform raw data, i.e., data collected from sensors,
into useful information for the learning layer. In addition to dealing with missing or noisy
data, the features of IEs demand some specific transformations. Most of the transformations
carried out to get useful information are environmentally dependent. Therefore, although
some general transformations can be defined, different environments will demand different
transformations. In the following, different types of transformations will be suggested based

on the data shown in Section 1.2.3.

3.1.1 Inference of simple actions

Once data from sensors have been collected, an important task is to infer meaningful in-
formation from this raw data. Sometimes the information provided by sensors is already

meaningful. An example is below:

from

2008-10-20T08:15:57, SwitchBathroomLights, on, 100
it is inferred
2008-10-20T08:15:57, BathroomLights, on, 100

In this case, the action itself is meaningful because the action of the user can be directly
inferred from it. However, there are other actions that are quite difficult to infer from the
simple activation of a sensor. For example, the inference of the simple action ‘Go into the
Bathroom’ is not possible from the activation of a simple sensor, so it must be inferred
by combining different actions. The following example shows that there is a motion in the
corridor, followed by the RFID tag installed in the door of the bathroom detecting the
presence of Michael and finally there is motion in the bathroom. It can be inferred that
Michael has entered the bathroom. Thus, the transformation of those three actions into only

one meaningful action allows the addition of meaning to the sequence of raw data items.
from
2008-10-20T08:15:54, Motion Corridor, on, 100
2008-10-20T08:15:55, Bathroom RFID, on, Michael
2008-10-20T08:15:55, Motion Bathroom, on, 100
it is inferred
2008-10-20T08:15:55, Bathroom, on, 100

28

The most basic way of inferring these actions is by means of templates. Templates define
which actions must be combined as premises as well as which constraints must be considered.
The importance of each action in the template is different, so that actions can be labelled
either as mandatory or as optional. As far as constraints are concerned, they can affect the
order of the actions or the duration. The template for the action ‘Go into bathroom’ is
defined as:

‘Go into Bathroom (Bathroom, On, 100)’
Actions:
Motion Corridor (Mandatory)
RFID Detection (Mandatory)
Open Door (Optional if already open)
Motion Bathrooom (Mandatory)
Constraints:
Order
Motion Corridor <RFID Detection <Open door <Motion Bathroom
Time
ThotionBathroom — T MotionCorridor < 3S€g.

The objective of these first transformations is to make all actions meaningful by the end of
this first step. It is clear that the definition of templates depends on particular environments
because they are defined in terms of particular sensors installed in the environment and by the
set of actions to be identified. This initial step of inferring meaningful actions is important
because once such actions are identified the rest of the learning process will depend upon

them.

3.1.2 Inference of complex actions

After inferring from raw data to simple actions, all actions considered later are meaningful.
Once simple actions have been inferred, a similar process can be carried out in order to infer
complex actions such as ‘Make coffee’ or ‘Take a pill’. This inference might be necessary
because simple actions do not always represent the type of actions to be analysed.

As in inferring simple actions, the most basic method for inferring complex actions is
the use of templates, with one difference. Whereas the former transformation combines raw
data, inferring complex actions combines simple actions. The ‘Make coffee’ action’s template
could be defined as:

29

‘Make Coffee (MakeCoffee, On, 100)’
Actions:
Put Kettle on (Optional)
Open Cupboard (Optional)
Get Coffee (Mandatory)
Take a cup (Mandatory)
Open fridge (Optional)
Get Milk (Optional)
Constraints:
Time
Trirstaction — TLastAction < dmin.

Combining different actions into only one action does not make it impossible to define
its internal structure. For example, in retrieving all the cases labelled as ‘Make coffee’, a
particular learning process can be carried out in order to detect if there is a pattern that

defines how the user makes coffee.

3.1.3 Splitting actions into sequences

In addition to providing meaning, other aspects of the data must be considered. One of these
aspects is that data will be collected in a continuous way from sensors, so that they will be
represented as a string of actions with a temporal ordering but without any extra structure
or organization. The aim of the third transformation is to structure the data collected from
sensors according to the meaning of the actions.

In that sense, many different organizations can be suggested. The approach proposed here
assumes that the user carries out actions in a sequenced way, and such actions are mainly
influenced by prior and later actions. Thus, the string of actions is split into sequences, but
instead of using a quantitative window-width, a more flexible criteria that determines the
end of one meaningful sequence and the beginning of a new one is used. For instance, going
to bed and staying for more than 2 hours or going out and staying out for more than 30
minutes are considered as ‘landmarks’ that demarcate sequences.

This task is environment-dependent because different environments will demand different

criteria. For example, a criterion defined for a Smart Home will not make sense in a Smart

Car.

30

3.2 Learning Layer

The objective of this layer is to transform the information coming from the Transformation
Layer into knowledge to be used by the Application Layer. This layer is the core of the
system, i.e., the layer that makes it possible to discover frequent behaviours of the users.

In addition to being the layer that allows the environment to discover users’ frequent be-
haviour, the importance of this layer is enhanced because of its independence from particular
environments. Unlike the Transformation and Application Layers, the Learning layer is not
dependent on particular environments, so that it can be used in any environment without
any modification in its design.

As mentioned in the introduction of this chapter, the architecture suggested in the current
work tries to separate those aspects dependent on particular environments from those that
are not. In that sense, the Transformation Layer is the responsible for making sense of the
data collected from sensors, so that the Learning Layer works with meaningful data. Once the
Learning Layer extracts knowledge from those data, the Application Layer is the responsible
for interpreting and adequately using that knowledge in particular environments. Thus, the
Learning Layer is free of any external influence.

The design and the implementation of the components of this layer are the core of this
research. Throughout this work, two different approaches for learning users’ frequent behav-
iours have been developed. The first, named the ‘Pairwise Approach’, discovered those pairs
of actions that frequently occurred in the behaviour of the user. The second approach, named
the ‘Action Map Approach’, discovered sets of actions (without any limitation in the number
of actions) that frequently occurred in the behaviour of the user. It can be said that the
latter approach extends the former by adding new functionalities that better fit the features

of IEs. These two approaches are explained in Chapter 4 and Chapter 5, respectively.

3.3 Application Layer

Once pieces of knowledge about users’ frequent behaviours have been learned, they can be
used for different purposes. This use will be mainly influenced by the objectives of partic-
ular environments. In what follows, some of the most promising applications are proposed.
Additionally, an interaction system that facilitates the use of that knowledge in different

applications is proposed.

3.3.1 Applications of extracted knowledge

The scenarios described in Section 1.1 show some desired applications.

Michael’s scenario suggested that discovered frequent behaviours could be used in order
to automate the activation/deactivation of devices. For instance, if the environment knows
that on weekdays between 8 a.m. and 9 a.m., Michael turns on the lights of the bathroom
2 seconds after he goes into the bathroom, it can act to proactively anticipate Michael’s

actions in those cases. It is worth noting that standard and comprehensible representation

31

of patterns allows the translation of those patterns into any type of model, such as Markov
models or finite state machines which can be used to automate actions.

Another interesting application for patterns of behaviour, as suggested by Sarah’s scenario
suggested, is helping provide understanding of users’ frequent behaviours in order to detect
unhealthy habits or provide help and support for his/her daily tasks. In Sarah’s case, even
though the house looks after her, the patterns will not be shown to her but to one of the
carers. A representation of patterns and related actions must be comprehensible to make
understanding them easier. Knowing when Sarah ordinarily has a shower or when she likes to
go to bed allows staff members to act in unobtrusive and more efficient ways. Staff members
can also detect potentially bad or unhealthy habits. Let us consider that one of the patterns
shows that Sarah usually takes pills immediately before having lunch. Staff members know
that it is better for her to take the pills just following lunch. Thus, they can persuade Sarah
to change her habits.

3.3.2 Applications based on specific learning processes

Up to now, the learning process has been focused on discovering users’ frequent behaviours
without determining particular steps of the learning process. However, some applications
can demand specific learning processes. Let us consider the situation where Sarah’s carers
are worried because they have detected some indications that could show that she is in
the first stages of Alzheimer’s disease. Repetitive tasks and disoriented behaviours could be
interpreted as a signal of this condition, but these indicators are not discovered by the system
because they occur infrequently. In these cases, the learning process should be modified in
order to identify these particular patterns. For instance, in this case two modifications would

be required:
e The threshold to consider a pattern as frequent must be lower.

e Because repetitive tasks and disoriented behaviours entail a repetition of tasks or visited
places, patterns could be included or ruled out by checking for the existence of loops
in the sequence. A loop can mean that the user carries out the same tasks or visits the

same places many times.

Sarah’s carers also want to know if she uses the computer to keep in touch with her son,
who lives in another country. Her use of computers is not frequent enough to appear in
any frequent pattern, but a specific learning process that focuses on the use of a computer
can discovery it. Thus, other types of specific learning processes can be specialized for the
performance of specific actions or use of specific devices. In Sarah’s case, the specific action
would be the use of a computer. To address this case, the following modifications to the

learning system would be needed:
e The threshold to consider a pattern as frequent must be lower.

e Only patterns that include the use of a computer would be considered, ignoring all

other patterns.

32

In general, these specific learning processes allow a focus on specific aspects that would
not be discovered if the system only considers frequent patterns. In Sarah’s case for instance,
discovering these sorts of patterns helps staff members confirm or disprove their suspicions
about Sarah’s behaviour regarding the incidence of Alzheimer’s disease or contact with rela-

tives.

3.3.3 Interaction system

An important aspect of IEs has to do with their interaction with users [Aug07b], a key
element in the process of efficiently applying the extracted knowledge. One pressure is to
reduce the Human-Computer Interaction (HCI) because the system is supposed to use its
intelligence to infer situations and user needs. On the other hand, a diversity of users may

need or voluntarily seek direct interaction with the system.

Given the importance of users for the success of an IE, it is essential that there be a friendly
and easy way for the user to interact with the environment. The ability of HCI systems to
understand and react to human behaviours has been widely analyzed [Sha07; Agh09]. Many
types of interactions are feasible. For instance, there are HCI systems based on keyboards,
PDAs or touch screens. These types of HCI systems can be very useful in some environments,
but they can discriminate against many users of IEs. For example, the elderly and those with
mobility restrictions may not be able to use some of these systems adeptly. Thus, in this
research work, a speech-based interaction system has been chosen because it provides IEs

with a more natural way of interacting with all types of users.

As a first approach, a speech-based HCI system has been developed. The goal of this sys-
tem was to allow users to give their feedback about discovered behaviours before using these
patterns of behaviour to automate the activation/deactivation of devices. Thus, beginning
with the knowledge discovered by the Learning Layer, the speech-based HCI system allows

users to accept, delete or refine the patterns for automation.

Technical Aspects

In the process of developing a speech-based HCI system, a speech synthesizer and a speech
recognizer are necessary. The chosen speech synthesizer has been FreeTTS 1.2 ! while Sphinx-
4 2 has been chosen as the speech recognizer. Both FreeTTS and Sphinx-4 make the interac-
tions with the user easier by providing easy to use tools. Complications arise mainly due to
changing nature of IEs. For example, the interaction system cannot know beforehand which
devices are in the environment, so that grammars for the recognizer must be created and

loaded dynamically to connect the interaction module with a specific environment.

Thttp:/ /freetts.sourceforge.net/docs/index.php
2http://cmusphinx.sourceforge.net /sphinx4,/

33

HCI system for automating devices

The HCI system developed for automating devices shows the user the knowledge discovered
by the Learning Layer. Such knowledge is represented based on a standard language defined
in the Learning Layer (for further details see Section 4.3 and Section 5.2), which ensures a
standard representation of all frequent behaviours.

The aim of this first approach is to allow the user, for as long as he/she wants, to
decide whether he/she wants the environment to use the discovered patterns to automate
the activation/deactivation of devices.

Once the user confirms that he/she wants to interact, the environment displays all the
patterns discovered in the Learning Layer. Let us consider Michael’s behaviour of turning
on the fan when he finishes taking his shower if relative humidity level in the bathroom is
higher than 70%.

System: Occurs Shower is off Then turn on the Bathroom fan j seconds after If
Bathroom relative humidity level is >70%

System: Do you want to accept, refine or delete it?

Accepting a pattern means that the user accepts it as useful, and therefore the envi-
ronment will use it to automate devices (the fan of the bathroom in this case). If the user
chooses to delete the pattern, it will not be used to automate the action. Finally, the user can
choose to refine a pattern if he/she considers it to be useful pattern but that it requires some
modification. In this case, the interaction system must guide the user through the pattern
to find out exactly what needs to be changed. Let us consider the situation where Michael
wants to turn the fan on even when relative humidity level is lower than 70% (let us consider
when the relative humidity level is higher than 50%). The interaction could proceed along

the following lines:
System: Choose the part of the pattern you want to refine: FEwvent, Condition or
Action
User: Condition
System: The Condition part was: Bathroom relative humidity level is >70%
System: The attribute was ‘Bathroom relative humidity level’. Do you want to modify
it? (yes/no)
User: No
System: The value was 70%. Do you want to change it? (yes/no)
User: Yes
System: Please, say the new value as a percent
User: 50
System: Do you want to confirm 50 as the new value? (yes/no)
User: Yes

This HCI system has been conceived to get the user’s feedback and provide the environ-

34

ment with a set of patterns that can be safely used to act proactively. Thus, accepted and

modified patterns will be stored while deleted patterns will not.

Other applications of speech-based HCI systems

Different environments and different objectives require the development of different interac-
tion systems. In Sarah’s scenario, allowing the user to decide what patterns the environment
may use to automate devices does not make sense, because the main objective of the environ-
ment is to allow staff members to understand her behaviour. In this case, an interesting HCI
system would be one that allows staff members to label Sarah’s behaviours as ‘normal’; ‘haz-
ardous’ or ‘unhealthy’, so that when new situations match behaviours labelled as ‘hazardous’
or ‘unhealthy’, the system can warn staff members about these situations. For instance, if
staff members label the behaviour of taking a pill before having lunch as ‘unhealthy’, the
next time Sarah shows that behaviour the system would warn staff members.

The methodology to develop an HCI system where users’ frequent behaviours are involved
is the same in all applications. Depending on the nature and the objectives of each environ-
ment, it will be necessary to modify the possible questions as well as the options given to
the user, but the technology will remain untouched in all the applications. In other words,
the developed HCI system can be easily adapted in many different ways to suit the needs of

different users and different environments.

3.4 Graphical User Interface

In order to facilitate the use of the LEFPUBS, in parallel to the architecture, a Graphical User
Interface (GUI) has been developed. Its main objective is to allow the user of the LFPUBS to
design the learning process that will be carried out. Some of the components of the LFPUBS
allow the user of the LFPUBS to design the learning process based on the requisites (runtime,
complexity of the knowledge to discover etc.) of different applications. Figure 3.2 shows the
first screen of the GUI in which the user can load the data to be analysed. In the following
chapters, how the GUI allows one to modify different parameters will be shown when such

concepts are explained.

3.5 Summary

The first objective of the architecture designed for the LFPUBS is to cover all aspects of the
system from data collection to applying the knowledge discovered by the system. Because
LFPUBS will be applied in different environments (Smart Homes, Smart Cars, Smart Class-
rooms etc.) and for different types of users (elderly people, students, people with disabilities
etc.), it is clear that the LFPUBS should somehow consider the particularities of each of
them.

The main objective of the designed architecture was to separate the environment-

dependent aspects that will require a different treatment in each particular environment,

35

Learning Frequent Patterns of User Behaviour System
File Edit
Loading Data | Preprocessing Data | Frequent Sets | Topology | Time Relations | Conditions

LFPUBS

Leaming Frequent Pattems of User Behaviour System

|0pemng WELISmartApartment. data H ["] Open aFile... ‘

© Pairwise Approach ® Action Map Approach

Figure 3.2: Initial screen of the Graphical User Interface.

from those environment-independent aspects that can be generalized for all types of environ-
ments. To that end, the main effort was focused on designing an architecture that allows the
development of an environment-independent Learning Layer.

Finally, a 3-layered architecture was designed. The objective of the first layer, the Trans-
formation Layer, is to transform raw data into meaningful data, i.e., to infer actions/activities
of the user from raw data collected from sensors. This layer is clearly environment-dependent
because it is highly influenced by the types of sensors installed in the environment and the
actions/activities to be identified.

The core of the system is the Learning Layer, which has the objective of discovering the
frequent behaviours of the user starting from data output from the Transformation Layer.
This layer is environment-independent because the Transformation Layer fills the gap be-
tween the particular environment and the LFPUBS. Once knowledge has been discovered
the Application Layer is the responsible for applying it to the particular environment.

Thus, the aim of the Application Layer is to employ the knowledge discovered by the
Learning Layer in particular environments. The specific applications will mainly depend
on the particular purposes of the particular environments. Therefore this layer is also
environment-dependent.

Finally, in order to allow the user of the LFPUBS to define the parameters of different

components of the architecture, a GUI has been developed.

36

CHAPTER 4

Learning Frequent Behaviours:

the Pairwise Approach

A three-layered general architecture for the LFPUBS has been defined in Chapter 3. To-
gether with the general architecture, the objectives and functionalities of Transformation and
Application Layers have also been explained. It can be said that the Transformation Layer
fills the gap from the real world to the LFPUBS, whereas the Application Layer fills the
opposite gap, from the LFPUBS to the real world. However, the core of the LFPUBS is the
Learning Layer, which makes it possible to transform data into knowledge, i.e., it is the layer
that discovers the frequent behaviours of the user.

Aside from the key role that the Learning Layer plays in the process of providing the
environments with intelligence, its importance is increased because of its independence of
particular environments. Therefore, the architecture of the layer, as well as all of the com-
ponents developed within this layer, must consider all types of possibilities that can come up
when dealing with users’ behaviours.

As mentioned in Section 3.2, two different approaches for the LFPUBS have been devel-
oped in this research work. LFPUBS’s GUI allows the selection of any of the approaches (see
Figure 4.1). The first approach, which is the basis for the second approach, is focused on
only learning about the pairwise relations between the actions of the user. In this chapter,
different aspects of the Learning Layer for this Pairwise Approach are explained in more
detail.

4.1 Introduction

This first approach is focused on discovering frequent relations between simple actions. This
implies that such relations do not involve more than two actions (that is why they are called
pairwise relations).

To make this idea clear, let us consider Michael’s scenario. His morning habits involve
a set of actions that he frequently performs together. In the process of discovering frequent
relations between the actions of the user, this first approach would discover a frequent relation
between the actions ‘Alarm On’ and ‘Bathroom On’. Then, as another frequent relation it
would discover that the action ‘Bathroom On’ is related to the action ‘BathroomLights On’.
In this sense, it should be mentioned that once frequent relations have been discovered, this

first approach also discovers the time relation between both actions as well as the conditions

37

I Learning Frequent Patterns of User Behaviour System

L I | Frequent Sets | Topology | Time Relations | Conditions

[

O Pairwise Approach @® Action Map Approach
‘buemng WSUSmanApartment data. H 1) Open a File... 1
____________on]
® Pairwise Approach 0 Action Map Approach

Figure 4.1: Selecting the Approach by means of the GUL

under which such a relation is true.

As mentioned in Section 1.2.3, different sensors provide different types of data that define
different aspects of users’ behaviours. Therefore, the nature of different pieces of information
must be taken into account in the learning process. Thus, the LFPUBS considers three main

different groups of information in this first approach:

e (type A) Information about the actions of the users. This information can be directly
provided by sensors installed in objects (devices, furniture, domestic appliances etc.)
or inferred by combining different pieces of information in the Transformation Layer
(for further details see Section 3.1).

e (type C) Context information. Some sensors provide information about context, but
not about actions of the user. Temperature, light and smoke sensors are examples of

type C sensors.

e (type M) Motion information. This information can be used to infer where the user is
(in the bedroom, outside the house or elsewhere). This type of information is mainly

used in the Transformation Layer to infer the actions of the user.

It is clear that other types of information already exist, such as those that indicate the
health status of the user or alarm pendants, which could be interesting in IEs. The inclusion
of other types of sensors is being considered for future versions of the system.

In the following sections, let us assume that a small example of the data collected for

Michael’s case is shown in Appendix A.

38

4.2 Architecture of the Learning Layer

Being an environment-independent layer, the architecture as well as different modules must
be designed and developed taking into account all of the characteristics of the different

environments. The architecture proposed for this layer is depicted in Figure 4.2.

User

&

!

Transformation Layer

\

§ Algorithm

s (Asrpuns) qg’r%
o =
= D 5
- 3 g <
3 (Set of Patterns -

-

/
<

l

Application Layer

!

User

Figure 4.2: Essential components of the Learning Layer

The underlying idea is the separation of the representation of the discovered patterns
from the process of discovering per se. The core of the representation module is a language
(Lrrpups) that provides a standard conceptualisation of the patterns so that the environ-
ment is able to represent all type of patterns that can occur in the environment. On the
other hand, the process of discovering is based on an algorithm (Aprpyps) that taking into
account all of the characteristics of the IEs attempts to discover frequent patterns.

In the following sections, these two modules of the Learning Layer will be explained in

more details.

4.3 Representing patterns with L;rpyps

Because of the complexity of IEs, defining a language that allows the environment to represent

discovered patterns in a clear and unambiguous way is difficult but necessary. The language

39

integrated within the LFPUBS is based on ECA (Event-Condition-Action) rules [Aug04].
Besides providing a standard way of representing patterns, it makes sure those patterns are
clearly specified and enables other technologies to check their integrity [Aug07c].

In the same way as ECA rules, L rpyps basically relates two actions (defined by the
ON and THEN clauses) and the specific conditions (defined by the IF clause) under which
that relation occurs. Finally, unlike basic ECA rules, L rpyps allows the environment to
define the time relation between both actions. Considering Michael’s behaviour of turning

on the fan in the bathroom; using L1, rpyps it would be represented as follows:

(Pattern 0)
ON occurs (Shower, O0ff,t0)
IF context (Bathroom relative humidity level (>,70%))
THEN do (On, BathroomFan, t) when t = t0 + 4s

For the complete specification of L1 ppyps, see the Appendix B.

4.3.1 Event Definition

The part of the pattern defined by the ON clause defines the event that occurs and triggers
the relationship specified by the pattern. From this point on, the action that triggers the
pattern will be called the associated sensor triggering (associatedSeT).

The components of the Event Definition are the device (‘Shower’) implied in the action,
the nature of the action (‘Off’) and the timestamp of such an action (‘t0’). As patterns
relate users’ behaviours, the ON event must be the effect of a user’s action. In this case, such
actions are collected by means of A-type sensors. In Michael’s case, the Event Definition is
defined as

ON occurs (Shower, Off,t0)

4.3.2 Condition Definition

The IF clause defines the necessary conditions under which the action specified in the THEN
clause is the appropriate reaction to the event listed in the ON clause. Because it is almost
impossible for an Event-Action relation to be true under any condition, appropriate condi-
tions are necessary to represent accurate patterns. Below, some examples of conditions are

provided:

(Condition 1)
IF context (Living room temperature (<,20°C))

(Condition 2)
IF context (TimeOfDay (>,20:30:00))

(Condition 3)
IF context (DayOfWeek (=, Tuesday))

40

Conditions are defined by means of attribute-value pairs. Whereas the ON and THEN
clauses define the actions of the user, the conditions must specify the status of the environ-
ment at that moment, such that the information involved in that clause must be related to

the context. Thus, L rpyps has two possible ways to define the conditions:

e Information coming from C-type sensors (e.g., ‘Relative humidity level’ (Pattern 0) or

‘Temperature’ (Condition 1))
e Calendar information (e.g., ‘Time of Day’ (Condition 2) or ‘Day of Week’ (Condition 3))

The possible values of such attributes depend on the nature of each attribute. In that

sense, L1 rpyps considers two types of values:
e Qualitative values (e.g., ‘Tuesday’ (Condition 3))

e Quantitative values (e.g., ‘20°C’ (Condition 1) or ‘20:30:00’ (Condition 2))

4.3.3 Action Definition

Finally, the THEN clause defines the action that the user usually carries out given the ON
clause and given the conditions defined in the IF clause. It is made up of the triggered action,
called the main sensor triggering (mainSeT) and the Time Relation between the Event and
Action situations. The mainSeT contains the device implied in the action (‘BathroomFan’)
and the nature of the action (‘On’).

The Time Relation can be either quantitative (Action 1) or qualitative (Action 2), with

the usefulness of each type of relation being different.

(Action 1)
THEN do (On, BathroomFan, t) when t = t0 + 4s

(Action 2)
THEN do (On, BathroomFan, t) when t is after tO

Compared to qualitative relations, quantitative relations provide higher quality informa-
tion because it is possible to use them for other purposes. One of those additional purposes is
the automation of devices, which is possible with quantitative relations. Consider Michael’s
behaviour of turning on the fan 4 seconds after having a shower. If such a relation was defined
by means of a qualitative term like ‘after’; the system would not be able to infer when it had
to turn on the fan because it would not have known whether the time delay was 4 seconds,
5 minutes or 2 hours. However, using quantitative relations (4 seconds in Michael’s case)

allows the system to turn on the fan at the right time.

4.4 Learning patterns with A;rpyps

Coupled with L rpyps, an essential component in the Learning Layer is the algorithm

(Arrpups) that discovers the frequent behaviours of the users. In order to coordinate with

41

L1 rpups and discover complete and unambiguous patterns, Ay ppyps must consider all of
the different aspects defined by the language.

Therefore, the Arrpyps, will somehow have to be able to discover pairs of actions that
frequently occur together as well as identifying if possible, a quantitative Time Relation
between them. Finally, A;rpyps must also be able to discover the set of conditions (defined
by the IF clause) for which the pattern is true.

The different steps to be performed by Ayrpyps in order to discover the frequent be-

haviours of the users are depicted in Figure 4.3.

Learning Algorithm (4,,,.,.)

Identifying frequent Identifying Time Identifying
pairwise relations Relations Conditions

Figure 4.3: Set of steps to be performed by the learning algorithm.

The same idea represented by means of a pseudo algorithm is as follows:

Arrpups Algorithm

For each action (type A), consider it as mainSeT
Identify the associatedSeT's of type A (See Section 4.4.1)
For each frequent relation (mainSeT-associatedSeT')
Identify possible quantitative Time Relations (See Section 4.4.1)

Identify Conditions using context/calendar information (See Section 4.4.3)

Emphasizing A-type sensors as mainSeT follows from the fact that they represent the
actions of the users, so discovering frequent relations between them will define the frequent
behaviours of the users. Considering the data shown in Appendix A, information provided by
‘Alarm’, ‘Bathroom’, ‘BathroomLights’, ‘Shower’, ‘BathroomFan’, ‘Cabinet’ and ‘Tap’ would
be type A information, whereas ‘TempBathroom’ and ‘HumBathroom’ would be type C
information. Using those data to clarify different concepts, the following section will explain

the main three steps of the A;ppyps in more detail.

4.4.1 Identifying Frequent Relations

The aim of this first step is to discover those pairs of actions that frequently occur together,
i.e., consecutively. In that sense, if the specific action of a user frequently precedes another
specific action, it defines a frequent behaviour of such a user.

For this process, all of the different actions (A-type information) that occurred in the
environment are considered. For each one of them, the system considers all of the occurrences

of such an action and it collects the action that precedes each one of its occurrences. The

42

aim is to discover whether the action considered by the system is frequently preceded by a
specific action. If the system discovers that there is an action that frequently precedes the
action in question, it defines a frequent relation where the two actions are considered as the
associatedSeT and the mainSeT, respectively.

The list of possible associatedSeTs for each mainSeT is obtained through a similar ap-

proach to the Apriori method for mining association rules [Agr95], with only two differences:

e The possible associations are limited to the mainSeT.

e The result do have a sense of sequence because it is known in advance that the mainSeT

follows the associatedSeT.

As in every association mining process, the minimum support and the confidence level
must be provided manually. Developed GUI allows the definition of such parameters (see
Figure 4.4). The support is defined as the number of times that the mainSeT occurs, whereas
the confidence level is a percentage value that shows how frequently the relation occurs among

all of the occurrences of the mainSeT. The confidence level is defined by:

conf(X =Y) =supp(X UY)/supp(X) (4.1)

B Learning Frequent Patterns of User Behaviour System

File Edit

Loading Data_| Preprocessing Data | Frequent Sets | Topology | Time Relations | Conditions

Set Demanded Minimum Levels for Frequent Sets Frequent Sets
Select aFrequent Set

Select a Frequent Set

Demanded Minimum Confidence Level (%)

= o |

Find Out FrequemSequences: |

Demanded Minimum Support

o

Figure 4.4: Defining the minimum confidence and support levels.

Next, all of these concepts will be clarified using data collected from Michael’s scenario (see
the data in Appendix A), and the process of identifying frequent relations will be explained
step by step.

43

Identifying Frequent Relations in Michael’s scenario

Considering Michael’s data, the aim of this first step is to discover whether his behaviour
shows some frequent relations between the actions he performs. For this example, let us
consider a minimum support of four occurrences and a confidence level of 20%.

In this first step, Arrppups considers all of the different actions (A-type). For each
occurrence of these actions, it collects the previous action. After that, the support and the
confidence level for each relation are calculated. For instance, the action ‘BathroomFan On’
occurs four times, so it fulfils the demanded minimum support. The previous action in those
four occurrences was ‘Shower Off’, so its confidence level is of 100%. The relation of the

action ‘BathroomFan On’ would be represented as follows:
‘BathroomFan On’ (support: 4) is preceded by ‘Shower Off” (4 times; Conf: 100%)
Thus, in Michael’s case, this first step would yield as a result the following list of actions
with their previous actions.
‘Alarm On’ (sup:10) is preceded by —
‘Bathroom On’ (sup:10) is preceded by ‘Alarm On’ (10; Conf: 100%)
‘Bathroom Off” (sup:10) is preceded by ‘BathroomLights Off’ (10; Conf: 100%)
‘BathroomLights On’ (sup:10) is preceded by ‘Bathroom On’ (10; Conf: 100%)

‘BathroomLights Off” (sup:10) is preceded by ‘BathroomFan Off’ (4; Conf: 40%)
‘Tap Off’ (1; Conf: 10%)
‘Shower Off” (2; Conf: 20%)
‘Cabinet Off’ (2; Conf: 20%)
‘BathroomLights On’ (1; Conf: 10%)

‘Cabinet On’ (sup:15) is preceded by ‘BathroomLights On’ (9; Conf: 60%)
‘Cabinet Off’ (6; Conf: 40%)
‘Cabinet Off” (sup:14) is preceded by ‘Mouthwash On’ (7; Conf: 50%)
‘Cabinet On’ (1; Conf: 7%)
‘Gel On’ (3; Conf: 21.5%)
‘Towel On’ (3; Conf: 21.5%)
‘Mouthwash On’ (sup:8) is preceded by ‘Cabinet On’ (8; Conf: 100%)
‘Towel On’ (sup:6) is preceded by ‘Cabinet On’ (3; Conf: 50%)
‘Gel On’ (3; Conf: 50%)
‘Gel On’ (sup:6) is preceded by ‘Cabinet On’ (3; Conf: 50%)
‘Towel On’ (3; Conf: 50%)
‘Shower On’ (sup:6) is preceded by ‘Cabinet Off” (6; Conf: 100%)
‘Shower Off” (sup:6) is preceded by ‘Shower On’ (6; Conf: 100%)
‘BathroomFan On’ (sup:4) is preceded by ‘Shower Off’ (4; Conf: 100%)
‘BathroomFan Off” (sup:4) is preceded by ‘BathroomFan On’ (4; Conf: 100%)
‘Tap On’ (sup:1) is preceded by ‘Cabinet Off’ (1; Conf: 100%)
‘Tap Off’ (sup:1) is preceded by ‘Tap On’ (1; Conf: 100%)

44

Once support and confidence levels are calculated, only those relations whose support and

confidence levels are greater than the demanded minimum levels are considered as Frequent

Relations. After this first step, the two actions involved in the relation define the ON and

THEN clauses of a pattern. In Michael’s case, when assuming a minimum support of four and

a minimum confidence level of 20%, there are 20 patterns. Besides defining the parameters,
the GUI allows the user of the LFPUBS to see the identified Frequent Relations and the

information of each one of them (see Figure 4.5).

Frequent Relations
Select a Frequent Relation

Total number of frequent Relations: 20

Select a Frequent Relation
Freq

Frequent Relation 1

N Frequent Relation 2

Selected Frequent Relation's Info Frequent Relation 3

Frequent Relation 4

Actions: Frequent Relation 5

Frequent Relation 6
Frequent Relation 7

Number of Actions: 2

Set of Actions:
Alarm on; Bathroom on;

Set of Sequences where the frequent set occurred:
0 16 26 40 48 64 80 88 104 109

a1

Figure 4.5: Information about the discovered Frequent Relations.

Some of them, represented using the L1, rpups, are shown below as examples (all patterns

are defined in Appendix C).

(Pattern 1)

ON occurs (Alarm, On,tO)
IF --—-

THEN do (On, Bathroom, t)

when ---

(Pattern 3)

ON occurs (Bathroom, On,t0)

IF ---

THEN do (On, BathroomLights, t)

when ---

(Pattern 2)

ON occurs (BathroomLights, 0ff,t0)
IF --—-

THEN do (0ff, Bathroom, t)

when ---

(Pattern 4)

ON occurs (BathroomFan, 0ff,t0)
IF -—-

THEN do (Off, BathroomLights, t)

when ---

45

(Pattern 5) (Pattern 6)

ON occurs (Shower, 0ff,t0) ON occurs (Cabinet, Off,t0)

IF --—- IF —---

THEN do (0ff, BathroomLights, t) THEN do (Off, BathroomLights, t)
when --- when ---

C...)

(Pattern 19) (Pattern 20)

ON occurs (Shower, 0ff,t0) ON occurs (BathroomFan, On,t0)

IF --—- IF ---

THEN do (On, BathroomFan, t) THEN do (0ff, BathroomFan, t)
when --- when ---

Pattern representation clearly shows that only ON and THEN clauses are defined after
this first step, and even in the THEN clause, the Time Relation is not yet defined. Therefore,
other steps are necessary to discover patterns that completely define the frequent behaviours

of the users.

4.4.2 Identifying Time Relations

The step of ‘Identifying Frequent Relations’ discovers those frequent relations hidden in the
data, and it provides a first representation of them. This first representation implies a first
definition of a temporal relation because the ON and THEN clauses define a temporal order
of the actions, as the action defined by the THEN clause is preceded by the action defined
by the ON clause. In this sense, patterns implicitly use a qualitative relation defined by the
term ‘after’.

As stated in Section 4.3.3, qualitative relations allow one to understand the logical order of
the actions. Even so, such patterns would provide higher quality information if the relations
were defined, if possible, by means of a quantitative relations. Therefore, the objective of this
step is to discover quantitative Time Relations in order to better define users’ behaviours.
For that purpose, the LFPUBS includes two different algorithms.

Before applying any algorithm, the first task is to collect the necessary data. The relations
to study are already defined by the patterns discovered in the previous step. Thus, for each
pattern the system collects the Time Distances of all occurrences in which the associatedSeT
is followed by the mainSeT.

Once the Time Distances are collected, the next step is to identify possible quantitative
time relations. For that purpose, the LFPUBS includes two algorithms - the ‘Basic Algorithm’
and the ‘EM Algorithm’ - so that the user of the system may choose either of them to
identify such quantitative relations. Both algorithms are based on the same idea of grouping

occurrences by taking into account their similarity and deciding whether a group represents

46

a quantitative Time Relation. Such parameters can also be defined using the GUI (see

Figure 4.6).

equent Patterns of User Behay

L I | Frequent Sets | Topology | | Conattions |

ed Time Relation

Node Name: 1_1

Previous Action: 0_0 Frequency.
Time Relation 0: 57.09994711548792
Paticular Instances: 0,1, 3,4,5,6,8, 9,10,11,1Z

,16,17,18,18, 20,21, 23]

Set Parameters for Discovering Time Relations

Demanded Minimum Confidence level for a Time Relation (%) 50

® EM Algorithm O Basic Algorithm

Restore Default Values ‘ | Discover Time Relations

Figure 4.6: Selecting the algorithm to use in order to identify quantitative Time Relations.

‘Basic Algorithm’ for Identifying Time Relations

Many different algorithms can be proposed as a basic algorithm for discovering quantitative
Time Relations. The LFPUBS proposes a very basic algorithm, which groups collected Time
Distances by taking into account the similarity between them. The process of creating groups

is defined by the following algorithm.

Basic Algorithm for Identifying Time Relations

Randomly select an initial Time Distance
Create a new group for that initial Time Distance
For each Time Distance
Calculate if it is within any existing group (See below for further details)
If it is, Then Include it in the group and recalculate the parameters
of the group
If it is not, Then Create a new group and calculate the parameters

of the group

To determine whether a Time Distance falls within an existing group, each group has a
range that defines what Time Distances it covers. Such a range is established by the following:

Tisi 0 (4.2)

[min, maz] = T £ (T x tolerance) where T =
n

tolerance = tolerated deviation from T (%); a; = time distance of an element; and n = number

of elements

47

If a Time Distance does not fulfil the requirements to join any group, a new group is
created using that value as the group’s mean value. Every time a new value is added to a
group, the mean value and the range of that group are recalculated.

Once the groups are created, it is clear that not all al the groups define interesting
quantitative Time Relations. For this reason, a minimum confidence level must be established
in this case too, so that only those groups that cover more instances than the minimum
established by the confidence level define a quantitative Time Relation. In such cases, the
mean value of the group is treated as the quantitative Time Relation. In ‘Basic Algorithm’
case, the GUI, apart from allowing the definition of the minimum confidence level, allows the

definition of the deviation from the mean value (see Figure 4.7).

B Learning Frequent Patterns of User Behaviour System
File Edit
L I | Frequent Sets | Topology |~ | Conditions

Selected Time Relation

3

INode Name: 11

Previous Action: 0_0 Frequency”
Time Relation 0: 57.09994711548792
Particular Instances: (0,1, 3, 4,5,6,8,9,10,11, 1%

15,16,17,18,19, 20, 21,23]

Set Parameters for Discovering Tlm eatlo
Demanded Minimum Confidence level for a Time Relation (%) a0
© EM Algorithm @ Basic Algorithm
Allowed Deviation for Time Relations (%) 50
Restore Default Values y | Discover Time Relations I

Figure 4.7: Defining the allowed deviation for the ‘Basic Algorithm’.

‘EM Algorithm’ for Identifying Time Relations

Besides the ‘Basic Algorithm’, the LFPUBS includes another algorithm that creates clusters
of Time Distances based on the Expectation-Maximization (EM) algorithm [Hog05]. The
basic idea of the EM algorithm is to estimate the maximum likelihood between parameters.
An important advantage of this algorithm is that it automatically calculates the necessary
number of groups and includes each occurrence in its corresponding group.

Once groups are created by the EM algorithm, the process of deciding what groups defines

a quantitative Time Relation is he same as the ‘Basic Algorithm’.

Identifying Time Relations in Michael’s scenario

Consider again Michael’s data and the Frequent Relations found in Section 4.4.1. The ob-

jective of this step is to define possible quantitative Time Relations for such patterns. Let

48

us consider the ‘Pattern 19’, which shows how Michael usually turns on the fan after taking

a shower. The collected Time Distances between both actions are depicted in Figure 4.8.

o1 02 o3 04
(Sequence 1) | (Sequence 5) (Sequence 6) {Sequence 8)

-
00:00:04 00:00:03 00:05:34 00:00:05
BathroomFan On [(4s)] [(35)] [(3345)] (55)]
\

Shower Off [

Figure 4.8: Time Distances between occurrences of ‘Shower Off” and ‘BathroomFan On’

Considering these Time Distances, the process of making groups using the ‘Basic Algo-

rithm’ is as follows (let us assume 50% as the tolerance percentage):

(Sequence 1, 4s); There is no group; create(group0, T (4s), range: [2,6])
Tolerance = 4 + (4 * 0.5)

(Sequence 5, 3s); 3=[2,6]; join(group0, Z (3.5s), range: [1.75,5.25])
Tolerance = 3.5 £ (3.5 * 0.5)

(Sequence 6, 334s); 334+£[1.75,5.25]; create(groupl, T (334s), range: [167,501])

Tolerance = 334 + (334 * 0.5)
(Sequence 8, 5s); 5=[1.75,5.25]; join(group0, T (4s), range: [2,6])

Tolerance = 4 + (4 * 0.5)
At the end of this task, two groups (‘group 0’ and ‘group 1) are created, which cover

three and one occurrences, respectively. In order to extract quantitative Time Relations,
the LFPUBS checks whether the confidence level of different groups is over the demanded
one (let us say 50% in this case). It is clear that ‘group 0’ represents a quantitative Time
Relation because it covers 3 out of 4 occurrences (75%), whereas ‘group 1’ does not. Thus,
in this case the mean value of ‘group 0’ defines a quantitative Time Relation (see Figure 4.9

for its representation in the GUI), creating a pattern like the following:

(Pattern 19)
ON occurs (Shower, O0ff,t0)
IF -—-
THEN do (On, BathroomFan, t)
when t = t0 + 4 s.

If no quantitative relation exists that covers enough occurrences, the pattern will keep be-
ing defined using the qualitative term ‘after’. Using Michael’s data and the ‘Basic Algorithm’,

at the end of this step, Michael’s frequent behaviours are defined as follows:

49

B Learning Frequent Patterns of User Behaviour System
File Edit

Loading Data | Preprocessing Data | Frequent Sets | Topology | Time Relations | Conditions |

Set Parameters for Discovering Time Relations.

® Basic Algorithm

© EM Algorithm
‘Allowed Deviation for Time Relations (%)

[| [mscover

Select Time Relations to see /

Select a Sequence

e

Show Selected Time Relation

Node Name: BathroomFan On

Previous Action: Shower Off
Time Relation: 4 seconds

(I

Figure 4.9: Information about the discovered Time Relations.

(Pattern 1)

ON occurs (Alarm, On,tO)

IF --—-

THEN do (On, Bathroom, t)
when t is after tO

(Pattern 3)

ON occurs (Bathroom, On,t0)

IF --—-

THEN do (On, BathroomLights, t)
when t = t0 + 2s

(Pattern 5)

ON occurs (Shower, 0ff,t0)

IF -—-

THEN do (0ff, BathroomLights, t)

when t is after tO

(Pattern 19)

ON occurs (Shower, 0ff,t0)

IF -—-

THEN do (On, BathroomFan, t)
when t = t0 + 4s

(Pattern 2)
ON occurs (BathroomLights, 0ff,t0)
IF ---
THEN do (Off, Bathroom, t)
when t = t0 + 1s

(Pattern 4)

ON occurs (BathroomFan, O0ff,t0)
IF —--—-

THEN do (0ff, BathroomLights, t)

when t is after tO

(Pattern 6)

ON occurs (Cabinet, 0ff,t0)

IF ——-

THEN do (0ff, BathroomLights, t)

when t is after tO

(Pattern 20)

ON occurs (BathroomFan, On,t0)
IF ——-

THEN do (Off, BathroomFan, t)

when t is after tO

50

So far, only exact quantitative values have been considered, but other types of quantitative
relations such as ranges (e.g., ‘10-15 minutes’) are being considered for future versions of the

system.

4.4.3 Identifying Conditions

Once the Frequent Relations and the Time Relations are discovered, it is clear that those
patterns represent the frequent behaviours of the users in a comprehensible way. Even so,
although such patterns are supported by the occurrences of such relations, it is possible that
they do not represent all of the occurrences of the actions implied in the patterns, such that
conditions are necessary in those cases. There are primarily two reasons to confirm the need

to include conditions to obtain accurate patterns:

e The discovered Time Relations do not cover the Time Distances of all occurrences. For
instance, the Time Relation discovered for ‘Pattern 19’ covered 3 out of 4 occurrences,
so there is an occurrence (Os in that case) of such a relation that is not represented

correctly by that Time Relation and extensively by the pattern.

e There is a high probability that occurrences of associatedSeT exist that are not covered
by such a relation. For instance, considering again ‘Pattern 19’, the action ‘Shower Off’
occurred six times, whereas the action ‘BathroomFan On’ followed this action only four
out of those six occurrences. Therefore, there were two occurrences of ‘Shower Off’

(Sequence 3 and Sequence 10) that were not followed by the action ‘BathroomFan On’.

The importance of discovering conditions is enhanced if the patterns are going to be used
to automate future activation/deactivation of devices. If a device is going to be activated
based on the relation defined by the pattern, there could be occurrences of associatedSeT
that are not covered by the pattern. For instance, if every time there is a ‘Shower Off” action
the environment turns on the fan 4 seconds afterwards, there is a probability that Michael
will not like it.

Using Context and Calendar Information for Identifying Conditions

As mentioned above, there are at least two reasons for discovering conditions. By having two

different sources for conditions, different approaches can be considered.

e Discovering conditions by considering all different sources together. In other words, this
approach combines all occurrences that are not covered by the pattern and discovers

conditions for all those cases.

e Discovering conditions by considering different sources as independent. First, it dis-
covers conditions for those occurrences of associatedSeT that are not covered. Then, it
discovers conditions for those Time Distances that are not covered. Finally, it combines

both sets of conditions to get the final conditions.

ol

The LFPUBS uses the second approach; it discovers two types of conditions and then it
combines them to define the final conditions.

In both cases, for the purpose of discovering conditions, two tables - covered and non-
covered - are created. In the covered table, those occurrences that are correctly classified by
the pattern appear, together with the calendar and context information collected when such
occurrences happened. The same information for occurrences in which the patterns fails is
registered in the non-covered table.

Once the tables are created, separating both tables by using the information they contain
allows one to discover conditions. In that sense, the task of separating can be solved by treat-
ing it as a classification problem. The JRip Algorithm [Wit05] was used to accomplish this
task. A small modification was needed because JRip provides rules only for the objective of
separating both classes (covered and non-covered), whereas for users’ patterns, it is desirable
to obtain conditions that define the occurrences of the covered class. Thus, the LFPUBS
always obtains a set of rules that indicates under what conditions the pattern is true, instead

of a mix of rules that indicate when it is true and when it is not.

Identifying Conditions in Michael’s scenario

In Michael’s case, previous steps discovered a set of patterns that represented his frequent
behaviours. Even so, the need for conditions in order to make these patterns more accurate
is clear. The behaviour represented by ‘Pattern 19’ is a clear example of this. In this case,
there are different sources of conditions, but let us consider the occurrences of ‘Shower Off’
(associatedSeT) that are not covered by ‘Pattern 19’ as an example to show how the LFPUBS
discovers conditions.

The relation described by ‘Pattern 19’ is supported by four occurrences (Sequence 1,
Sequence 5, Sequence 6 and Sequence 8) in Michael’s data. Even so, there are two occurrences
of the action ‘Shower Off’ (Sequence 3 and Sequence 10) that are not followed by the action
‘BathroomFan On’. Thus, covered and non-covered tables are created using calendar and
context information collected when the corresponding occurrences of ‘Shower Off” occurred.
The covered and non-covered tables created for this case are depicted in Figure 4.10.

Because these tables contain few instances, the covered and non-covered classes can be
separated in many different manners. Even so, the most efficient manner is using the con-
text information Bathroom relative humidity level (‘Hum. Bathroom’). Thus, the condition

obtained in this case is as follows (see Figure 4.11 for its graphical representation):
IF context (Bathroom relative humidity level (>,70%))

The Time Relation discovered for ‘Pattern 19’ also needs to define other conditions
because it does not cover all of the Time Distances that occurred between the actions
‘Shower Off” and ‘BathroomFan On’. In this case, the condition discovered for the rela-
tion between associatedSeT and mainSeT also separates the covered and non-covered tables
created for the Time Distances. Therefore, it is not necessary to add any new condition. If
this was the case, the conditions obtained for those cases should be added to the existing

ones.

52

covered non-covered
'z 4
Sequence 1|Sequence 5| Sequence 6| Sequence 8 Sequence 3|Sequence 10

time of day| 08:29:37 08:29:28 08:30:39 08:23:29 time of day| 08:28:18 08:29:07
day of week| Monday Friday Monday | Wednesday day of week|Wednesday Friday

Temp. Temp.

Bathroom 1° 22 2 17 Bathroom 22 18
Hum. Hum.
65

\Bathroom 72 75 7 78) \athroom 69)

Figure 4.10: Covered and non-covered tables with calendar and context information

I Learning Frequent Patterns of User Behaviour System

Tile it
(LoamgData |

g Data | Froauent Sets | Topology | Time Reations | Contions

et Parameters for Discovering Conditions
Demanded Relation Percentage (%) >iU F tHum. Bathraom) > 70
Demanded Minimum Confidence (1) 4]
e
Select Conditions to see
Snerts el [t - /
0 i 2 3 +
B : aaf : 2|
[e [onmwaror, exconeanon| > ns [|

IF (Hum. Bathroom) =

Show Selected Conditions

70

Figure 4.11: Information about the discovered Conditions.

Once conditions are discovered, Michael’s frequent behaviours are represented by consid-

ering all the clauses. After this last step, Michael’s habits are represented by the following

patterns:

(Pattern 1)

ON occurs (Alarm, On,t0)

IF context ()

THEN do (On, Bathroom, t)
when t is after tO

(Pattern 3)

ON occurs (Bathroom, On,t0)

IF context ()

THEN do (On, BathroomLights, t)
when t t0 + 2s

(Pattern 2)

ON occurs (BathroomLights, 0ff,t0)
IF context ()

THEN do (0ff, Bathroom, t)

t0 + 1s

when t

(Pattern 4)

ON occurs (BathroomFan, 0ff,t0)
IF context ()

THEN do (0ff, BathroomLights, t)

when t is after tO

93

(Pattern 5)

ON occurs (Shower, 0ff,t0)

IF context (Bathroom humidity
level (<,70%))

THEN do (0ff, BathroomLights, t)

when t is after tO

(Pattern 19)
ON occurs (Shower, 0ff,t0)
IF context (Bathroom humidity
level (>,70%))
THEN do (On, BathroomFan, t)
when t = t0 + 4s

4.5 Summary

The first approach (Pairwise Approach) developed within the LFPUBS focuses on discovering

(Pattern 6)

ON occurs (Cabinet, 0ff,t0)

IF context (DayOfWeek (<>,Tuesday
Thursday, Friday))

THEN do (0ff, BathroomLights, t)

when t is after tO

(Pattern 20)
ON occurs (BathroomFan, On,t0)
IF context ()

THEN do (0Off, BathroomFan, t)

when t is after tO

pairwise relations that define the frequent behaviours of the users.

On the one hand, a language (Lrrpups), based on ECA rules that allows the system
to represent patterns in a clear and unambiguous way has been developed. On the other
hand, coupled with £ rpyps, an algorithm (Azrppyps) that discovers the patterns has been
developed. A rpyups consists of three steps that are used to discover frequent relations that
relate users’ frequent behaviours with their corresponding Time Relations and Conditions.

In the process of developing both modules, because the Learning Layer was an

environment-independent layer, all of the components developed within this layer had to

allow one to define and discover all of the possibilities that can come up in an IE.

o4

CHAPTER b5

Learning Frequent Behaviours:

the Action Map Approach

Patterns discovered by the Pairwise Approach represent the frequent behaviours of the users.
They represent such behaviours by means of small and independent pieces of knowledge:
small because each pattern only relates two actions and independent because the knowledge
represented by different patterns is not related in any way.

Although pairwise relations provide interesting knowledge, it is clear that the behaviours
of the user are better defined by considering all of the actions that the user frequently performs
together. Thus, the second approach (Action Map Approach) developed in this research
work attempts to discover the frequent behaviours of the users without any limitation in
the number of actions involved in the pattern. Unlike the first approach, the Action Map
Approach represents all of the actions involved in the behaviour together. The differences

between the two approaches are clearly shown in Figure 5.1.

5.1 Introduction

This second approach can be thought of as an evolution of the Pairwise Approach. Its
advantages are clear because it provides patterns (Action Maps) that represent complete
behaviours of the users. Thus, it facilitates the understanding of such behaviours. It shares
some aspects with the Pairwise Approach, although other aspects needed to be modified.
Those common aspects will be outlined next, while those aspects that needed to be modified
will be explained in more details in the subsequent sections.

Regarding the data coming from the Transformation Layer, this second approach is also
focused on the actions performed by the user. Therefore, the actions to be considered will be
those defined by A-type information, whereas C-type information will continue to be used to
define conditions.

A similarity between both approaches is the general architecture of the Learning Layer.
The architecture depicted in Figure 4.2 remains the same. This second approach for the
LFPUBS is also based on a language (L rpups) and an algorithm (Aprpyps), although in
both components the internal architecture varies when compared with the first approach.

In the next sections, the new versions of L rpyps and Arrppyps are explained in more
details.

%)

Pairwise Approach

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Alarm Bathroom BathLights Bathroom Shower

on on on Fan on on
after 2s. after after HumLevel < 70%
after
Bathroom BathLights Cabinet Bathroom Bathroom

on on on Lights off Lights off
Action Map Approach
Action Map 1
Alarm BathLights Mouthwash Bathroom
on on on off
start end
ter J aﬂer.l
O T 1 {]
Bathroom Cabinet Cabinet LI Cobinst Shows) BathLights
on on o) off e, o off off after off
»20 2l after
/70® l/@so, Fan on "
Uy, 9, &
ey Y528 Cabinet Gel Shower/Yo,,)Nj“ﬂ"/fz;\
Us 7 on on on S
Qo Fan
ff
Day of week > On weekdays °
Time of day > [08:00 a.m. — 09:00 a.m.]

Figure 5.1: Differences between the outputs of both approaches.

5.2 Representing patterns with L;rpyps

The goal of the new version of L, rpyps is to allow the system to represent Action Maps that
describe the frequent behaviours of the users. Unlike the first approach in which a pattern
related only two actions, in this new version a pattern represents a whole behaviour as well
as the general conditions under which such a pattern occurs.

In that sense, a frequent behaviour is defined by means of an Action Map, which contains
all of the specific relations between actions. In other words, an Action Map is created relating
actions in pairs, and each of those relations is called an Action Pattern, which are defined by
means of ECA rules. The complete Action Map is then created by linking different Action

Patterns. However, some differences exist that must be considered.

5.2.1 Evolution of the L;rpyns

In the process of creating Action Maps, it is necessary to define a start and an end point.
For that, L rpups allows one to define Action Patterns in which the ON clause contains
the action start and the THEN clause contains the action end. Considering the Figure 5.1,

these starting and ending Action Patterns would be defined as follows:

56

(Action Pattern 1) (Action Pattern n)

ON occurs (start,--,t0) ON occurs (simple, (Bathroom,0ff),t0)
IF context () IF context ()
THEN do (simple, (On,Alarm),t) THEN do (--,end,t)

when --- when ---

Regarding the nature of the actions, some behaviours of the users indicate that they carry
out the same actions but in an unordered way. Going back to Michael’s scenario, the data
shown in Appendix A indicate that he sometimes gets a towel first and then the gel, and
other times he first gets the gel and then the towel. In order to facilitate an understanding
of those behaviours, L1 rpyps allows the system to define unordered subsets of actions. In
Michael’s case, the Action Pattern that involves such an unordered subset would be defined

as follows:

(Action Pattern n)
ON occurs (unordered, ((Towel,On)&(Gel,0On)),t0)
IF context ()
THEN do (simple, (0ff, Cabinet),t)
when t = t0 + 1s

The last difference to be considered is related to the conditions. In the Pairwise Approach,
it was clear that the IF clause defined under what conditions the relation defined by the
pattern was true. In the Action Map Approach, because a pattern represents much more
information, different types of conditions are necessary.

On one hand, there are Specific Conditions for each Action Pattern that define when the
relation defined by such an Action Pattern is true. Such conditions can be considered as
equivalent to the conditions defined in the Pairwise Approach, and they are represented in
the IF clause.

On the other hand, apart from the conditions for specific relations defined by Action
Patterns, the complete behaviour represented by the Action Map must also be contextualised
too, using either context or calendar information. In that sense, L1 rpyps allows one to use
both types of information; using the syntax to define General Conditions equal to the syntax
used to define Specific Conditions. Consider Michael’s morning habit. It occurs on weekdays

between 8 a.m. and 9 a.m., so the General Condition would be defined as follows:

(General Condition)

context (DayOfWeek (=,Monday,Tuesday,Wednesday,Thursday,Friday)) &
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<:09:00:00))

For the complete specification of Ly rpyps see Appendix D.

o7

5.3 Learning patterns with A;rpygs

It is clear that the Action Map Approach has some advantages with respect to the Pairwise
Approach. It discovers and represents the behaviours of the users as a unique map of action.
In that sense, L rpyps has already been modified to allow the representation of those
new patterns (See Section 5.2). The component that needs more modifications is Ay rpups
because discovering complete sets of frequent behaviours demands that new steps be added
and existing ones be modified.

The architecture of Ay rpyps for the Action Map Approach is depicted in Figure 5.2.

Learning Algorithm (1, ..,
c Identifyt/iggt Identifying Identifying Time Identifying
requent Sets Topology Relations Conditions
of Actions

Figure 5.2: Steps to be performed by the learning algorithm.

The same idea represented by means of a pseudo-algorithm is given below:

Arrpups Algorithm
Identify Frequent Sets of Actions (See Section 5.3.1)
For each Frequent Set

Identify the Topology (See Section 5.3.2)

For each Action Pattern

Identify possible quantitative Time Relations (See Section 5.3.3)
Identify Specific Conditions using context/calendar information (See Section 5.3.4)
Identify General Conditions (See Section 5.3.4)

Below, each one of the steps is explained in more detail. Some of the steps are new,

whereas others are similar to those explained in the Pairwise Approach (Chapter 4).

5.3.1 Identifying Frequent Sets of Actions

The objective of this step is to discover the sets of actions that frequently occur together
(Frequent Sets). The idea is the same as the step labelled ‘Identifying Frequent Relations’

of the Pairwise Approach, with only two differences:

e The number of actions involved in a Frequent Set is not limited.

e Frequent Sets of actions discovered at this stage do not define any order of the actions
within the Action Map.

This task of identifying Frequent Sets is actually divided into three sub-tasks. As shown
in Figure 5.3, LFPUBS allows the definition of the parameters considered in such sub-tasks.

o8

B Learning Frequent Patterns of User Behaviour System

Set Demanded Minimum Levels for Frequent Sets

A Demanded Minimum Confidence Level (%)
Ay
70
S
sel Demanded Minimum Level for Extra Actions (%)

o

Demanded Minimum Length Similarity for Extra Instances (%)

o

Restore Default Values |

| Find Out Frequent Sequences I

Figure 5.3: Defining the basic minimum confidence, extra actions’ minimum confidence and

minimum similarity levels.

Identifying Basic Frequent Sets of Actions

The underlying idea of this first sub-task is both simple and efficient. Defining a demanded
minimum level (minimum confidence level), it discovers all those sets of actions that occur
more times than the minimum level. These sets of actions are treated as Basic Frequent Sets.
The set of Sequences in which the Basic Frequent Set is present is also identified. To discover
Basic Frequent Sets in large amounts of data, the Apriori algorithm [Agr95] was used.

The sets discovered in such a way are frequent, but because of IEs’ complexity, considering
only those Basic Frequent Sets does not take into account all of the particularities that occurs.
Because of the large amount of data and the defined minimum confidence level, some actions
and some Sequences that are not included in a Basic Frequent Set could add interesting
information.

Thus, taking the Basic Frequent Sets discovered in this sub-task as a starting point, it is

necessary to go a step further and extend them to get sets of actions that better define the
frequent behaviours of users.
Identifying extra actions for Frequent Sets

Once the Basic Frequent Sets have been discovered, an aspect to consider for each Basic

Frequent Set is whether there is any action that was not discovered as frequent taking into

59

account all the Sequences, but it is frequent enough when considering only those Sequences
where the Basic Frequent Set occurs. In other words, the goal of this task is to discover
whether there is any Eztra Action that frequently happens in those particular Sequences.

As in the previous sub-task, a minimum confidence level must be defined, and the process
to discover such Extra Actions is the same. The only difference is that instead of all of the
Sequences, only those Sequences in which the Basic Frequent Set is present are considered.

The Frequent Sets are created by adding these Extra Actions to the respective Basic
Frequent Sets.

Identifying occurrences that support Frequent Sets

For the following steps of Arrpups (e.g., ‘Identifying Topology’), it is essential to know
in which Sequences a Frequent Set is present. Although initially considering only those
Sequences identified in the task of ‘Identifying Basic Frequent Sets’ seems like enough, other
Sequences could also provide interesting information. There could be Sequences in which
most of the actions of a Basic Frequent Set are present, but as they do not contain all of the
actions, they are not considered.

Being aware that small deviations could mean a loss of information, a strategy to reduce
the impact of such deviations has been designed. It is based on a parameter (similarity level)
that indicates (as a percentage) the minimum number of actions of a Basic Frequent Set to
be included in a Sequence in order to consider such a Sequence interesting. Thus, not only
those Sequences that have all of the actions (similarity level = 100%) of the Basic Frequent
Set would be considered interesting, but also those Sequences in which the similarity level is

over the demanded level.

Identifying Frequent Sets of actions in Michael’s scenario

Let us consider again the data depicted in Appendix A. The goal of this first step is to
discover which sets of actions Michael frequently carries out together.

The first step is to identify the Basic Frequent Sets. To do this, it is necessary to define
a minimum confidence level (let us consider 70%). Demanding a confidence level of 70%
indicates that a set of actions must occur in at least 70% of the total Sequences. To discover
such sets of actions, the Apriori algorithm is used. It is based on the idea of discovering
Frequent Sets through evolving frequent subsets. In Michael’s case, for a confidence level of

70%, the only set of actions that is frequent is made up of the following actions:

‘Alarm On’; ‘Bathroom On’; ‘Bathroom Off’; ‘BathroomlLights On’; ‘BathroomLights Off’;
‘Cabinet On’; ‘Cabinet Off’; ‘Mouthwash On’

This set of actions is present in eight out of ten Sequences (confidence level: 80%); all
but Sequence 9 and Sequence 10.

Once the Basic Frequent Sets are discovered, Extra Actions and occurrences that support
the Basic Frequent Sets must be identified. As stated above, the process of discovering Extra

Actions the process is the same as identifying Basic Frequent Sets but only those Sequence in

60

which the Basic Frequent Set is present are considered. Thus, in Michael’s case, only those
eight Sequences (Sequence 1, Sequence 2, Sequence 3, Sequence 4, Sequence 5, Sequence 6,

Sequence 7 and Sequence 8) are considered. The confidence level of the rest of the actions is:
‘Towel On’ (Conf: 5/8 (62.5%))
‘Gel On’ (Conf: 5/8 (62.5%))
‘Shower On’ (Conf: 5/8 (62.5%))
‘Shower Off” (Conf: 5/8 (62.5%))
‘BathroomFan On’ (Conf: 4/8 (50%))
‘BathroomFan Off’ (Conf: 4/8 (50%))
‘Tap On’ (Conf: 1/8 (12.5%))

‘Tap Off” (Conf: 1/8 (12.5%))

In this case, let us consider a minimum confidence level of 50%. The set of actions that

are frequent and therefore considered Extra Actions are:
‘Towel On’; ‘Gel On’; ‘Shower On’; ‘Shower Off’; ‘BathroomFan On’, ‘BathroomFan Off’

Adding the Extra Actions to those actions involved in the Basic Frequent Set, the Frequent

Set is created.

Frequent Set 1

‘Alarm On’; ‘Bathroom On’; ‘Bathroom Off’; ‘BathroomLights On’; ‘BathroomLights Off’;
‘Cabinet On’; ‘Cabinet Off’; ‘Mouthwash On’; ‘Towel On’; ‘Gel On’; ‘Shower On’;
‘Shower Off’; ‘BathroomFan On’, ‘BathroomFan Off’

Once Frequent Sets have been discovered, it is necessary to identify those Sequences in
which the Frequent Sets are present. This is essential because the information (e.g., the order
of the actions or the Time Distances) contained in such Sequences is essential for the next
steps of the Apppyps. It is clear that the eight Sequences in which the Basic Frequent Set is
present must be considered, but apart from those Sequences, there could be other Sequences
(e.g., Sequence 9 or Sequence 10) that do not contain all of the actions of the Basic Frequent
Set but do contain most of them and therefore could contain interesting information. In order
to discover such extra Sequences a similarity level is defined. Let us consider a similarity level
of 75% in this case. Thus, considering that the Basic Frequent Set involves eight actions, all of

those Sequences that involve at least six out of those eight actions are considered interesting.

In Michael’s case, Sequence 10 involves all of the actions of the Basic Frequent Set except
the action ‘Mouthwash On’, so its similarity level is of 87.5% (7 of 8). The information
contained in such a Sequence will also be used in later steps. In comparison, Sequence 9 only
involves 5 actions of the Basic Frequent Set (62.5%); therefore the information it contains
will not be considered.

Thus, the final output of this first step in Michael’s scenario is (the same Frequent Set

represented by the GUI can be seen in Figure 5.4):

61

Frequent Set 1

Actions: ‘Alarm On’; ‘Bathroom On’; ‘Bathroom Off’; ‘BathroomLights On’; ‘Bathroom-
Lights Off’; ‘Cabinet On’; ‘Cabinet Off’; ‘Mouthwash On’; ‘Towel On’; ‘Gel On’; ‘Shower On’;
‘Shower Off’; ‘BathroomFan On’; ‘BathroomFan Off’;

Sequences: Sequence 1; Sequence 2; Sequence 3; Sequence 4; Sequence 5; Sequence 6; Se-

quence 7; Sequence 8; Sequence 10;

Frequent Sets
Select a Frequent Set

Total number of Frequent Sets: 1

Select a Frequent Set Frequent Set 0 H

Selected Frequent Set's Information

Actions:

Number of Actions: 14

Set of Actions:

Alarm on; Bathroom on; BathroomLights on; Cabinet on; Mouthwash on; Cabinet
off. BathroomLights off: Bathroom off; Towel on; Gel on; Shower on; Shower off:
BathroomFan on; BathroomFan off;

Set of Sequences where the frequent set occurred
{1 - B B Rl 1o B]

Figure 5.4: Information about the discovered Frequent Sets.

5.3.2 Identifying Topology

The step ‘Identifying Frequent Sets’ discovers which sets of actions frequently occur together.
In order to properly model the user’s behaviours defined by such sets of actions, it is necessary
to define the order of such actions. That is the goal of this step, to discover the frequent order
(defined as Topology) of the actions in the behaviour of the user. The actions involved in
the behaviour and the Sequences that contain the information are provided by the previous
step, ‘Identifying Frequent Sets’.

In this context, representing the user’s behaviours by means of Action Maps makes them
easier to understand and makes it possible to use them in tasks such as prediction or au-
tomation of future actions. Even so, as stated in Chapter 2, few groups have dealt with this
problem in IEs. Because of this, other meaningful domains in which user’s actions have been
used to extract models of behaviour have been analysed. In that sense, one of the closest

domains is the area of Workflow Mining [Wei01l; Aal04; Wen07] in which process models

62

are discovered from event logs. Both domains are equal, with the only difference being that
instead of event logs, Aprpyps considers the actions of the user.

Even so, because of the nature of IEs, some modifications to the Workflow Mining al-
gorithm must be considered. Next, the different aspects that need to be considered are

explained.

Basic Methodology

The only goal of this first step is to represent the input data in an Action Map, keeping all of
the actions as well as all of the relationships. Although this step does not discover anything,
at this point, it is important to highlight that it provides the first formal representation of
the behaviour based on the £ rpyprs in which the ON and THEN clauses of different Action

Patterns are defined.

Repetitive Actions

Unlike other domains in which an action is unique and there is no more than one occurrence
of each action per Sequence, in IEs, there could be different occurrences of the same action.
In fact, the nature of repetitive occurrences will probably be different because the user can
do the same action with different purposes.

Initially, identifying repetitive actions and creating different instantiations of them seems
like it could make it difficult to understand the behaviour. Quite the contrary, creating
different instantiations of the same action facilitates the understanding of the behaviour
because they simplify the complexity of the Topology.

Considering the possible existence of more than one instance of the same action, a method-
ology to automatically discover such situations has been developed. Its objective is, on the
one hand, to decide how many instances of each action are necessary, and on the other hand,
to define the nature of particular actions in different Sequences.

This methodology is based on the idea that the meaning, and by extension, the nature of
an action is mainly defined by the previous and next actions. In other words, the occurrence
of an action is related to the previous and next actions because the set of those actions
will probably follow a specific objective. Thus, the nature of different actions is defined by
creating groups of actions that take into account the similarities among the previous and
next actions of their occurrences.

In that sense, the first decision to make is to choose the number of previous and next
actions to be considered. The LFPUBS allows the user of the system to select up to four
actions to be considered. The greater the number of actions to be considered, the more
accurate the definition of the nature will be. Of course, it can have a negative impact in the
runtime of the process.

Once the number of previous and next actions to consider has been decided, the LFPUBS

includes two different techniques to create groups:

63

e Manually define the number of groups or clusters to create, considering a.) the average
number of occurrences of an action in a Sequence and b.) the maximum number of

occurrences of an action in a Sequence.

e Automatically define the number of groups or clusters using the EM algorithm [Hog05].

From this point on, once different instances of the same action are created, they are
treated as different actions, and each particular occurrence is labelled by taking into account
the group it belongs to.

All the parameters mentioned above, such as the number of previous/next actions to

consider or technique to create groups, can be defined using the GUI (see Figure 5.5).

L I | Frequent Sets | Topology | Time Relations | Conditions |
Set Parameters for Topology Discovering Topology Representation
Unordered Subsets of Actions:
B soectosomemce [somaneco v,
Demanded Minimum Level for Origin (%) 25
] |

‘Select Granularity for the Topology

evel for Destiny (%) |25 |

Demanded Minimum Balanced Level (%) 50
Nature of Repetitive Actions
- Number of Previ and Next Acti: to consider
01 ® 2 o3 o4
Initial Number of Clusters
© Automatic Definition of Necessary Number of Clusters
Top E © Maximum Number of Actions

® Average Number of Actions

Consider Nature of Previous Actions

® Yes O No

Restore Default Values

Figure 5.5: Defining the parameters to identify repetitive actions.

Unordered Subsets of Actions

Different works of the Workflow mining area also propose the idea of parallel subsets of
actions. In that sense, the LFPUBS is aimed at detecting those actions that occur at a
specific moment that are represented by means of a timestamp. Simple actions do not have
duration, so the occurrence of parallel actions is impossible. Even so, the idea of parallel
actions can be applied to discover unordered subsets of actions. An unordered subset of
actions represents a set of actions in which it has not been possible to define an order for
such actions.

Michael’s scenario offers a typical example of this. When he opens the cabinet, sometimes

he gets the towel first and then the gel, and other times the order is reversed. As in the

64

parallel actions of Workflow mining cases, the representation of unordered sets of actions
shows bidirectional relationships between such actions.
To decide whether a bidirectional relationships (let us say between A and B) must be

considered as an unordered set of actions, the LFPUBS includes a set of parameters:

o Minimum Level for Origin (%). The percentage of occurrences of A followed by B out

of the total occurrences of A must be higher than the demanded minimum level.

(A — B)/(OccurrencesA) > Minimum Level for Origin. (5.1)

o Minimum Level for Destiny (%). The percentage of occurrences of B followed by A

out of the total occurrences of B must be higher than the demanded minimum level.

(B — A)/(OccurrencesB) > Minimum Level for Destiny. (5.2)

o Minimum Balanced Level (%). The percentage of occurrences of A followed by B out of
the occurrences of B followed by A (and vice versa) must be higher than the demanded

minimum level.

((A— B)/(B— A)&((B — A)/(A — B)) > Minimum Balanced Level. (5.3)

The GUI allows the definition of such parameters (see Figure 5.6).

i I | Frequent Sets | Topology | Time Relations | Conaitions |

Set Parameters for Topology Discovering Topology Representation

Unordered Subsets of Actions

S omemyibe o Chmtoee Demanded Minimum Level for Origin (%) 25

Consider Nature of Previous Actio
® Yes O No

Demanded Minimum Level for Destiny (%) 25

Demanded Minimum Balanced Level (%) 50

| Restore Default Values]

Figure 5.6: Defining the parameters to identify unordered subsets of actions.

Thus, all those bidirectional relationships that fulfil all the demanded levels are considered

as unordered subsets of actions; each subset is treated as a unique action.

65

Granularity and Allowed Maximum Granularity

Once the behaviours of the user have been discovered and represented, the LFPUBS allows
the user of the system to select the granularity of the Action Map. In this way, the user of the
system can choose the complexity of the Action Map he/she wants the system to show. The
selected granularity indicates the threshold for the relationships. Thus, relationships with
a lower frequency than the threshold will not be represented. Therefore, a high granularity
will provide a more general representation of an Action Map, whereas a low granularity will
provide a more complex representation of it.

Selection of the granularity allows the user of the system to see Action Maps with different
complexities, depending on his/her interests. It is clear that selecting granularities without
any limit can result in illogical Action Maps in which actions are not related to any other
action or Action Maps in which there is no path from start to end.

To avoid illogical representations, the LFPUBS includes the heuristic ‘Uniform-cost
search’ [Rus03], which calculates the maximum granularity (Allowed Mazimum Granular-
ity) that guarantees at least one path from start to end. Thus, the system does not allow
the user to select a higher granularity level than this parameter, making sure that the Action

Maps maintains a minimum logic in all cases.

Identifying Topology in Michael’s scenario

Considering Michael’s data (see Appendix A), only one Frequent Set was discovered by the
‘Identifying Frequent Sets of Actions’ step. The objective of this step is to identify in what
order Michael usually carries out such a set of actions. First, all of the different actions as
well as all of the relationships between actions are represented by the ‘Basic Methodology’.

The output is depicted in Figure 5.7.

Alarm BathLights Mouthwash Shower Fan Fan Bathroom
on on on on on off off

Bathroom Cabinet ———————» Cabinet Shower 2 BathLights
on on 6 3 off — 8 off T % off
3 3 3
3
3
Towel Gel
on on

Figure 5.7: The basic representation of Michael’s behaviour.

As stated above, the Basic Methodology parses the Frequent Sets into L ppyps. In that
sense, the behaviour represented at this point covers all of the possible relationships defined

by the data. An example of the status of an Action Pattern at this stage is shown below:

(Action Pattern 2)

ON occurs (simple, (Alarm,On),tO)

IF context ()

THEN do (simple, (On,Bathroom),t) when ---

66

Once the initial representation is done, the next step is to define the nature of the repet-
itive actions. The only actions that are repeated in a Sequence are the actions ‘Cabinet On’
and ‘Cabinet Off’. To discover the nature of each one of the occurrences of those actions, the
previous and next actions of each occurrence must be analysed. Let us consider the action
‘Cabinet On’ and two previous and two next actions to explain the process that discovers
the nature of each occurrence. In total, there are 15 occurrences of the action ‘Cabinet On’

and the previous and next actions of each one of them are as follows:

Previous 2 Previous 1 Next 1 Next 2
0.1 (S1) Bathroom On Lights On Mouthwash On Cabinet Off
0.2 (S1) Mouthwash On Cabinet Off Towel On Gel Oft
0.3 (S2) Bathroom On Lights On Mouthwash On Cabinet Off
0.4 (S3) Bathroom On Lights On Mouthwash On Cabinet Off
0.5 (S3) Mouthwash On Cabinet Off Gel On Towel Off
0.6 (54) Bathroom On Lights On Mouthwash On Cabinet Off
0.7 (S5) Bathroom On Lights On Mouthwash On Cabinet Off
0.8 (S5) Mouthwash On Cabinet Off Gel On Towel Off
0.9 (S6) Bathroom On Lights On Mouthwash On Cabinet Off
0.10 (S6) Mouthwash On Cabinet Off Towel On Gel Off
O.11 (S7) Bathroom On Lights On Mouthwash On ~ Cabinet Off
0.12 (S8) Bathroom On Lights On Mouthwash On ~ Cabinet Off
0.13 (S8) Mouthwash On Cabinet Off Towel On Gel Off
0.14 (S10) Bathroom On Lights On Cabinet Off Cabinet On
0.15 (S10) Cabinet On Cabinet Off Gel On Towel Off

Let us consider that the number of possible different groups is defined by the average of
the occurrences in a Sequence (two in this case). Next, a clustering algorithm is used in order
to decide which group each one of the occurrences belongs to. In this case, because of the
similarities between different occurrences, it is clear that there is a group which covers the
Occurrences 1, 3,4, 6, 7,9, 11, 12 and 14, whereas the second group covers the Occurrences 2,
5,8, 10, 13 and 15. Once groups are defined, a particular instantiation of that action is created
for each group. Thus, in Michael’s case, there will be two different ‘Cabinet On’ actions
(‘Cabinet(1) On’, ‘Cabinet(2) On’). From this point on, each of the particular occurrences
is related to either ‘Cabinet(1) On’ or ‘Cabinet(2) On’ actions, depending on the group they
belong to. The same thing happens with the action ‘Cabinet Off’.

Once the nature of repetitive actions is defined, the representation could vary. In Michael’s
case, the representation of his behaviour, taking into account repetitive actions, can be seen

in Figure 5.8:

Regarding possible unordered subsets of actions, only one bidirectional relationship exists
that involves the actions ‘Towel On’ and ‘Gel On’. Let us consider the following minimum

values for the parameters:

67

Alarm BathLights Mouthwash Bathroom
on on on off

start end
9 9 9 8 8 3 9 9
O { J
. . Towel 3 Cabinet(2) Shower .
Bathroom Cabinet(1) 1 Cabinet (1) on ——— off off BathLights
on on > off 6 3 2 off
6 3 6 6 4
3 4 4
Cabinet(2) 3 Gel Shower
on on on
Fan Fan
on off

Figure 5.8: Michael’s behaviour with repetitive actions.

Minimum Level for Origin: 25%
Minimum Level for Destiny: 25%
Minimum Balanced Level: 50%

The values of the relationship between ‘Towel On’ and ‘Gel On’ are:

Minimum Level for Origin: 50% (3/6)
Minimum Level for Destiny: 50% (3/6)
Minimum Balanced Level: 100% (3/3) & 100% (3/3)

Taking into account these values, it is clear that such a bidirectional relationship defines
an unordered subset of actions that includes the actions ‘Towel On’ and ‘Gel On’. In that
sense, as mentioned in Section 5.2.1, L rpyps allows the system to define an unordered
subset of actions; for example, the Action Pattern that relates such an unordered subset

with the action ‘Cabinet Off’ is represented as:

(Action Pattern n)
ON occurs (unordered, ((Towel,On)&(Gel,0On)),t0)
IF context ()
THEN do (simple, (0ff, Cabinet),t)
when t = t0 + 1s

The final topology of Michael’s behaviour, considering unordered subsets of actions, is

depicted in Figure 5.9.

Alarm BathLights Mouthwash Bathroom

start on on on off d
59|9|9|9|s|s| 3 _|9_|9en.
1 1 I 1 I 1 Towel Cabinet(2) Shower .
Bathroom Cabinet(1) 1 Camnetu‘)s on off off 2 BathLights
on on > off _I/' off
e | & Je |6 Z 4
I 1 T 1 1 4
Cabinet(2) Gel Shower
on on on
Fan Fan
on off

Figure 5.9: Michael’s behaviour with unordered subsets of actions.

68

Finally, it is necessary to identify the Allowed Maximum Granularity that ensures that
there will be a path from start to end. Let us assume that the LFPUBS allows the user of
the system to select any granularity and he/she chooses ‘5, such that all relationships with
a frequency under ‘5’ would be removed. As can be seen in Figure 5.10, the representation

of Michael’s behaviour would lose its sense, making it difficult to understand it logically.

Alarm BathLights Mouthwash Bathroom
tart on on on off d
s en
9 9 9 9 8 8 9 9
O { J
. . Towel Cabinet(2) Shower)
Bathroom Cabinet(1) Cabinet(1) on off off BathLights
6
on on off \Ai & JI & -I & { & I off
Cabinet(2) Gel Shower |
on on on Fan Fan
on off

Figure 5.10: Michael’s behaviour without considering the Allowed Maximum Granularity

parameter.

Considering Michael’s case, the need of identifying the Allowed Maximum Granularity is
clear. In Michael’s case, using the ‘Uniform-cost search’ heuristic, the LFPUBS discovered
that the Allowed Maximum Granularity is of ‘4’. Thus, the user of the LFPUBS will not
be able to select a granularity level higher than ‘4’. Michael’s behaviour representation

considering the Allowed Maximum Granularity is depicted in Figure 5.11.

Alarm BathLights Mouthwash Bathroom
tart on on on off d
S en
9 9 9 9 8 8 9 9
(©] {]
. . Towel Cabinet(2) Shower |
Bathroom Cabinet(1) Cabinet(1) on off off BathLights
on on off <8 off
\AI : =II : =II : ‘% : I 4)
4 ‘ /
Cabinet(2) Gel Shower \'|
on on on Fan Fan
on off

Figure 5.11: Michael’s behaviour considering the Allowed Maximum Granularity parameter.

Once Topologies of different Frequent Sets have been identified, they are represented by
means of L1 rpyps (see Figure 5.12 for its graphical representation). Time Relations as well
as particular and general Conditions are not yet discovered at this stage, but the relationships
between actions (defined by ON and THEN clauses) can be defined. Michael’s behaviour can

be represented by means of Action Patterns as follows:

69

(Action Map 1)

(Action Pattern 0) (Action Pattern 1)
ON occurs (start,--,t0) ON occurs (simple, (Alarm,0On),t0)
IF context () IF context ()
THEN do (simple, (On,Alarm),t) THEN do (simple, (On,Bathroom),t)
when --- when ---
(Action Pattern 2) (Action Pattern 3)
ON occurs (simple, ON occurs (simple,
(Bathroom,0On) ,t0) (BathroomLights,0On) ,t0)
IF context () IF context ()
THEN do (simple, (On,BathroomLights),t) THEN do (simple, (On,Cabinet),t)
when --- when ---
...
(Action Pattern 14) (Action Pattern 15)
ON occurs (simple, ON occurs (simple,
(Shower,0ff),t0) (BathroomFan,0On) ,t0)
IF context () IF context ()
THEN do (simple, (On,BathroomFan),t) THEN do (simple, (0ff,BathroomFan),t)
when --- when ---
(Action Pattern 16) (Action Pattern 17)
ON occurs (simple, ON occurs (simple,
(BathroomFan,0ff),t0) (BathroomLights,0ff),t0)
IF context () IF context ()
THEN do (simple, THEN do (simple,
(0ff ,BathroomLights) ,t) (0ff ,Bathroom) ,t)
when --- when ---

(Action Pattern 18)

ON occurs (simple,
(Bathroom,0ff) ,t0)

IF context ()

THEN do (--,end,t)

when ---

70

Unordered Subsets of Actions.
oemmscammnisooton 00 2|

'Demanded Minimurm Level for Destiny (%)

Figure 5.12: Graphical representation of the topology.

5.3.3 Identifying Time Relations

It is clear that the Topology defines a first temporal representation of the frequent behaviour
by means of qualitative relations (using the term ‘after’). The objective of this step is to
discover frequent quantitative Time Relations between the actions defined by each one of the
Action Patterns.

Similarities between this step and the same step of the Pairwise Approach are evident.
In both cases, the problem and the objective are the same. Therefore the solution applied in

the Pairwise Approach can be directly used in this case too. There are only two differences:

e It does not make sense to define a Time Relation in those Action Patterns in which

either start or end actions are involved.

e In cases of unordered subsets of actions, the timestamp of either the first or the last

action is considered.

The Action Map Approach includes both algorithms (‘Basic Algorithm’ and ‘EM Algo-

rithm’) explained in Section 4.4.2.

Identifying Time Relations in Michael’s scenario

Considering the Action Patterns defined by the Topology discovered in the previous step,
the objective of this step is to identify frequent quantitative Time Relations. Let us consider

‘Action Pattern 14’ which shows how Michael usually turns on the fan after taking a shower.

71

The same example is considered in Section 4.4.2. The process is the same as the one explained
in that section, and the results are the same also.

represented as follows:

Thus, ‘Action Pattern 14” would be

(Action Pattern 14)

ON occurs (simple, (Shower,0ff),t0)

IF context ()

THEN do (simple, (On,BathroomFan),t)
when t = t0 + 4s

Once possible quantitative Time Relations have been discovered using the ‘Basic Algo-
rithm’, Michael’s behaviour would be represented as (note that their graphical representation
is the same as in the Pairwise Approach, which can be seen in Figure 4.9):

(Action Map 1)

(Action Pattern 0) (Action Pattern 1)

ON occurs (start,--,t0)
IF context ()

ON occurs (simple, (Alarm,On),tO)

IF context ()
THEN do (simple, (On,Alarm),t)

when ---

THEN do (simple, (On,Bathroom),t)
when t is after tO

(Action Pattern 2) (Action Pattern 3)

ON occurs (simple, ON occurs (simple,

(Bathroom,0On) ,t0)
IF context ()

(BathroomLights,0On) ,t0)
IF context ()
THEN do (simple, (On,BathroomLights),t) THEN do (simple, (On,Cabinet),t)

when t = t0 + 2s when t is after tO

(Action Pattern 14) (Action Pattern 15)

ON occurs (simple,

(Shower,0ff),t0)
IF context ()

ON occurs (simple,

(BathroomFan,0On) ,t0)
IF context ()
THEN do (simple, (On,BathroomFan),t)
when t = t0 + 4s

THEN do (simple, (0ff,BathroomFan),t)
when t is after tO

72

(Action Pattern 16) (Action Pattern 17)

ON occurs (simple, ON occurs (simple,
(BathroomFan,0ff),t0) (BathroomLights,0ff),t0)
IF context () IF context ()
THEN do (simple, THEN do (simple,
(0ff,BathroomLights) ,t) (0ff ,Bathroom) ,t)
when t is after tO when t = t0 + 1s

(Action Pattern 18)

ON occurs (simple,
(Bathroom,0ff) ,t0)

IF context ()

THEN do (--,end,t)

when —---

5.3.4 Identifying Conditions

Once Topology and Time Relations have been identified, Action Maps represent user’s behav-
iours in a comprehensible way. Even so, a final step that identifies the Specific and General
Conditions for each Action Map is necessary in order to create accurate representations of
the behaviours of the user.

On one hand, it is clear that all of the relations represented in an Action Map are sup-
ported by a number of occurrences. In that sense, a particularity to treat could be the case
in which an action is followed by two (or more) different actions. These situations indicate
that after an action, the user sometimes carries out one action and other times he/she carries
out some other action. In an Action Map, these situations are easily identified because these
situations are represented as splitting points from which more than one relation is created.
In those cases, it is necessary to identify under what conditions each of those relations is
true.

On the other hand, it is necessary to define the general context in which an Action Map
occurs. General Conditions refer to calendar and context information that allow the user of
the system to understand under what conditions the whole Action Map occurs.

Next, both processes of identifying Specific and General Conditions are explained in more
detail.

Identifying Specific Conditions for Action Patterns

As stated above, different occurrences of an action can be followed by different actions defining
different relations. These situations can be easily identified by analysing the different Action
Patterns. Being aware that each Action Pattern defines a relation, if a specific action is
the ‘Event Definition’ portion (defined by the ON clause) in more than one Action Pattern,
such an action is followed by different actions (defined by the THEN clauses of such Action

73

Patterns). Graphically, these situations are easy to identify because they are splitting points
from which more than one path starts.

Once such situations are identified, the process of identifying conditions for each relation
is the same as the ‘Identifying Conditions’ step of the Pairwise Approach. The only difference
is that instead of creating only two tables, in this case, as many tables as there are different
relations must be created, i.e., one table for each possible relation. Then, conditions that
separate different tables are discovered using the classification algorithm JRip [Wit05].

The conditions discovered at this stage represent the conditions under which a relation
defined by an Action Pattern is true. Thus, such conditions are used to define the IF clause
of different Action Patterns.

Identifying General Conditions for Action Maps

The concept of General Conditions is a new concept that did not exist in the Pairwise
Approach. It refers to those context or calendar conditions that define the occurrences of
different Action Maps. In this research work, only calendar information (‘Time of Day’ and
‘Day of Week’) has been considered, although L1, rpyps also allows one to represent General
Conditions using context information.

In order to identify General Conditions, a simple algorithm has been developed. It is
based on identifying the period of time, both in terms of ‘Time of Day’ and ‘Day of Week’,
that covers all of the occurrences of such an Action Map. To do this, the timestamps of the
first and the last actions of each occurrence are retrieved, and then starting from an empty
value for both parameters, they are adapted in order to cover all of the occurrences. The
adaptation technique is based on a simple rule that enhances the limits of the range to cover
all of the occurrences.

This first version provides quite simple and ‘excessive’ conditions. For future version,

some improvements are already being considered.

Identifying Conditions in Michael’s Scenario

Considering the Action Map that represents Michael’s morning behaviour, the process of
discovering Specific and General Conditions is explained next.

The need for Specific Conditions is clear in two situations. On one hand, the ‘Cabi-
net(1) Off” action can be followed by either ‘Cabinet(2) On’ or ‘BathroomLights Off” actions.
On the other hand, the action of ‘Shower Off’ can be followed by either ‘BathroomFan On’
or ‘BathroomLights Off” actions.

Let us consider the Specific Conditions needed for the relations of ‘Shower Off’ with
the actions ‘BathroomFan On’ and ‘BathroomLights Off’. In this case, as there are two
possible relations two tables are created - one for each possible relation. Thus, context and
calendar information collected when occurrences of ‘Shower Off’ were followed by the action
‘BathroomFan On’ (Sequence 1, Sequence 5, Sequence 6 and Sequence 8) are recorded in the

table ‘ShowerOff-BathroomFanOn’. In the same way, information collected when occurrences

74

of ‘Shower Off” were followed by the action ‘BathroomLights Off” are recorded in the table
‘ShowerOff-BathroomLightsOff’. Both tables are depicted in Figure 5.13.

Shower Off — BathroomFan On Shower Off — BathroomLights On
'z 4
Sequence 1|Sequence 5| Sequence 6| Sequence 8 Sequence 3[Sequence 10
time of day| 08:29:37 08:29:28 08:30:39 08:23:29 time of day| 08:28:18 08:29:07
day of week| Monday Friday Monday | Wednesday day of week|Wednesday Friday
Temp. 19 - 21 17 Temp. 22 18
Bathroom Bathroom
Hum. Hum.
65
Eathroom 7 75 7 8 Y, @athroom 69)

Figure 5.13: ‘Shower Off - BathroomFan On’ and ‘Shower Off - BathroomLights Off” tables

with calendar and context information

There are different ways of separating both tables because of the small number of Se-
quences considered in Michael’s case. Even so, the condition that better separates both
tables is the context information Bathroom relative humidity level (‘Hum. Bathroom’). For
the relation ‘Shower Off’-‘BathroomFan On’, the Specific Condition defined by the Aprpuyps
is:

IF context (Bathroom relative humidity level (>,70%))
In contrast, for the relation ‘Shower Off’-‘BathroomLights Off’, the specific condition is:
IF context (Bathroom relative humidity level (<,70%))

The other situation that needs Specific Conditions also contains two relations, so two
tables are created in this case as well; one for the relation ‘Cabinet(1) Off’-‘Cabinet(2) On’
and another one for the relation ‘Cabinet(1) Off’-‘BathroomLights Off’. In this case, the
condition that better separates both tables is the calendar information ‘Day of Week’, creating
the following condition for the relation ‘Cabinet(1) Off’-‘Cabinet(2) On’:

IF context (Day of week (=, (Tuesday, Thursday, Friday)))

Regarding General Conditions, both ‘Time of Day’ and ‘Day of Week’ information for the
first and last actions of each Sequence are collected. Below, this information is shown for all

Sequences collected in Michael’s case.

(0]

First Action’s First Action’s Last Action’s Last Action’s

‘Time of Day’ ‘Day of Week’ ‘Time of Day’ ‘Day of Week’

Sequence 1 08:02:12 Monday 08:33:41 Monday
Sequence 2 08:10:50 Tuesday 08:27:04 Tuesday
Sequence 38 08:06:19 Wednesday 08:36:10 Wednesday
Sequence 4 08:16:39 Thursday 08:36:02 Thursday
Sequence 5 08:05:40 Friday 08:39:12 Friday
Sequence 6 08:03:47 Monday 08:47:06 Monday
Sequence 7 08:10:39 Tuesday 08:24:46 Tuesday
Sequence 8 08:03:47 Wednesday 08:25:57 Wednesday
Sequence 10 08:10:27 Friday 08:36:38 Friday

Considering the attribute ‘Time of Day’, the LFPUBS starts from the information for
Sequence 1 and creates a range of time. To do this, it takes the starting and ending time of
the first Sequence’s actions and creates a range, rounding off these values respectively. To
round off, periods of time 15 minutes in length have been considered. Considering Sequence

1, for Michael’s case, the created range is:
Time of Day: [08:00:00 - 08:45:00]

Next, the LFPUBS verifies, one by one, whether the information for the rest of the
Sequences is covered by that range. If it is, the range is not modified. However, if the range
does not cover any of the Sequences, the range is enhanced to cover those Sequences as well.
In Michael’s case, all of the Sequences are covered by the given range, except Sequence 6,
whose last action’s ‘Time of Day’ (08:47:06) is not covered. In this case, the range is enhanced

up to 09:00:00, creating new general conditions for ‘Time of Day’:
Time of Day: [08:00:00 - 09:00:00]

Once all Sequences are covered by the range, it is used to define part of the General

Condition. In Michael’s case, the Condition addressing the attribute ‘Time of Day’ is:
context (TimeOfDay(>,08:00:00)) & context (Time0fDay(<:09:00:00))

Regarding the ‘Day of Week’ attribute, the process of identifying such a condition is the
same. The only difference is that instead of enhancing the range, all different days during
which a Sequence occurred are added to the list. In Michael’s case, there is at least one
Sequence in the following days of the week:

Day of Week: Monday; Tuesday; Wednesday; Thursday; Friday;

Finally, this condition is added to the previous conditions to create General Conditions.

Thus, in Michael’s case the General Conditions is:

(General Condition)

context (DayOfWeek (=,Monday,Tuesday,Wednesday,Thursday,Friday)) &
context (TimeOfDay(>,08:00:00)) & context (Time0fDay(<:09:00:00))

76

Graphical representation of different conditions can be seen in Figure 5.14.

it | Frequent Sets | Topology | Time Relations | Conditions |

Set Parameters for Discovering Conditions

Demanded Relation Percentage (%) 60

Demanded Minimum Confidence (>1) M

| RestoreDetaun Vaiues | | Discover Condtions
~ Select Conditions to see

Selecta Sequence | Sequence 0 -

Show Selected Conditions

(General Conditions)

IF (DayOfVeek) = (Monday, Tuesday,Wednesday, Thursday, Friday)) &

IF (TimeOMay) = (08:00:00) & IF (TimeOfDay) = (09:00:00)

(Specific Conditions)
IF (Hum. Bahtroom) = 70

| »

41

Figure 5.14: Graphical representation of the topology.

5.4 Summary

The Action Map Approach is an evolution of the Pairwise Approach. Its objective is to

discover and represent whole behaviours of the users, without any limitation on the number

of actions involved in a pattern.

To do this, both L, rpyps and Afrpyps have needed modifications. £ rpyps has been
modified to allow the system to represent a whole behaviour in a unique pattern. In the case
of the algorithm, Ay rpyps has been modified to discover the sets of actions that define the
frequent behaviours and specially to identify the frequent order of such actions. Moreover,

the nature of the conditions is different, so both L, rpyps and Afrpyps have been adapted

as well.

7

78

CHAPTER 6

Validation

In order to validate the system developed in this research work, the LFPUBS was applied
to datasets collected from two real environments. Some of the validations were general,
whereas other were focused on validating specific steps of the Ay rpyps. In addition, both
approaches defined in Chapter 4 and Chapter 5 were validated using the same datasets,

allowing the comparison of the results.

6.1 Validation Environments and Collected Data

The validation process was carried out using different datasets collected from two real environ-
ments (MavPad and WSU Smart Apartment). Below, both environments will be explained
in more detail, defining the number and types of sensors, the actions and activities to be

identified in each one of the environments and so on.

6.1.1 MavPad Environment

The MavPad is an on-campus student apartment located at University Village on the Uni-
versity of Texas at Arlington’s campus [You05]. The apartment consists of a living/dining
room combination, a kitchen, a bathroom, a large bedroom, and a walk-in closet. The sensors

installed in MavPad are:

e 25 sensors on objects such as lamps, lights or outlets.
e 45 context sensors such as light, temperature or humidity.

e 36 motion sensors distributed in all of the rooms.

Sensors installed on objects indicate the actions of the users over such objects. Thus, for
example, the ‘A1’ sensor indicates the status of the ceiling light installed in the living room,
‘B6’ indicates the status of the bathroom’s fan and ‘C8’ the status of the bedroom’s table
lamp.

Different types of context sensors are installed in the kitchen, living room, bathroom
and bedroom. Thus, for example, ‘S1’ detects the light level of the living room, ‘S82’ the
temperature of the bedroom and ‘S139’ detects the humidity level of the bathroom.

Finally, motion sensors are installed through all of the rooms of the environment. The

objective of the sensors is to detect where the user is in each moment.

79

The distribution of different sensors through MavPad can be seen in Figure 6.1. The
sub-figure (a) shows the sensors installed on objects while sub-figure (b) shows the context

and motion sensors.

RoomM@yuny
11'x 156

Sensor Key

@ Motion

(©) Light

@ Temperalure

(B Humidity

i DNING ROOM _Ag MING { S ®) Reed Switch
D/ - / (&) smoke

@ Gas

Figure 6.1: MavPad sensors on objects, context and motion sensors [You05].

The dataset used to validate the LFPUBS was collected in three different time periods:
Trial 1 (spanning 15 days), Trial 2 (spanning almost 2 months) and Trial 3 (spanning 3
months). It is worth mentioning that the frequent behaviours hidden in such trials were not
known in advance because the users behaved as they liked. In addition, the data collected in

each trial was totally independent from the other trials’ data.

6.1.2 WSU Smart Apartment Environment

The testbed WSU Smart Apartment is an environment created at Washington State Univer-

sity [Coo08]. The sensors installed in it are:

80

e 14 sensors on objects such as phone, medicine container or cabinet.
e 27 motion sensors.

Sensors installed on objects are aimed at detecting different actions of the participants.
There are sensors that detect when the user takes the phone book (‘108’), the phone (‘as-
terisk’), the medicine container (‘106’) or item sensors (‘I01°-’I05°) for products like oatmeal,
raisins, brown sugar, bowl or measuring spoon. There are also sensors to detect the use of
water or the burner.

Regarding the motion sensors, their objective is to detect where the participants are
located. The distribution of different motion sensors through the WSU apartment can be

seen in Figure 6.2.

©
®
IS

[

—)
S

T
<

|

|

®

—)

@
=
@

g o @&
£
® @
e\|=—
®

ool
_—J
10

-
g5

LA
),

l
. - |
J Al & /. el
A | q f [y

| b

e P &e

Figure 6.2: WSU Smart Apartment motion sensors [Coo08].

Unlike the MavPad environment, where the frequent behaviours hidden by different trials
were unknown, data collected in the WSU Smart Apartment represented participants per-
forming the same five ADLs (Activities of Daily Living) in the apartment, so the frequent
behaviours that the LFPUBS should discover were known in advance. The five tasks were:

e Make a phone call. The participant moved to the phone in the dining room, looked a
specific number in the phone book, dialled the number, and listened to the message.
The recorded message provided cooking directions, which the participant summarised

on a notepad.

81

e Wash hands. The participant moved into the kitchen sink and washed his/her hands
in the sink, using hand soap and drying their hands with a paper towel.

e Cook. The participant cooked a pot of oatmeal according to the directions given in the
phone message. To cook the oatmeal the participant had to measure water, pour the
water into a pot and boil it, add oats, then put the oatmeal into a bowl with raisins

and brown sugar.

e Eat. The participant took the oatmeal and a medicine container to the dining room
and ate the food.

e (Clean. The participant took all of the dishes to the sink and cleaned them with water

and dish soap in the kitchen.
As stated above, the data collected from the WSU Smart Apartment showed participants
performing the above-mentioned five ADLs. The actions involved in each one of the activities

are shown in Table 6.1.

Table 6.1: Actions involved in each ADL.

Make a

phone call

‘PhoneBook On’ —>‘Phone On’ —>‘Phone Off’

‘Wash
‘Water On’ —>‘Water Off’
hands
‘Cabinet On’ —>‘Raisins On’ —>‘Oatmeal On’
—>‘MeasuringSpoon On’ —>‘Bowl On’ —>‘Sugar On’
Cook

—>‘Cabinet Off’ —>‘Water On’ —>‘Water Off” —>‘Pot On’
—>‘Burner On’ —>‘Burner Off’

‘Cabinet On’ —>‘Medicine On’ —>‘Cabinet O’
Eat —>‘Water On’ —>‘Water Off” —>‘Cabinet On’
—>‘Medicine Off” —>‘Cabinet Off’

Clean ‘Water On’ —>‘Water Off’

82

6.2 Pairwise Approach

As described in Chapter 4, the objective of the first approach was to discover frequent
pairwise relationships between the actions performed by the user. Thus, the first version of
the LFPUBS was validated using data collected from both of the real environments described

above. Below, the knowledge discovered in both cases is described in more detail.

6.2.1 Validating the Pairwise Approach with the MavPad dataset

As stated above, the data collected from MavPad were collected in three different trials.
Given the possibility of configuring the LFPUBS, different tests were carried out by using
different minimum confidence levels (25%, 50%, 75% and 100%). The minimum confidence
level defines the number of occurrences (as a percentage) demanded for a relationship to
consider it frequent (for further details see Section 4.4.1). To discover as many patterns as
possible the minimum support parameter was eliminated and the minimum confidence level
was used as a unique parameter to determine whether a relation was frequent.

Because of the nature of the data, some steps of the learning process could be better
validated than others. Regarding the ‘Identifying Frequent Relations’ step, the number and
the nature of the patterns to be discovered were unknow, so at this point, the tests were
only able to confirm that the LFPUBS was able to discover Frequent Relations in unknown
datasets. The number of Frequent Relations discovered with each minimum confidence level,
together with the runtime of that experiment, is defined in Table 6.2. It is worth noting that
as expected, the runtime of each experiment directly depends on the number of Frequent
Relations discovered in it. When it was impossible to discover any Frequent Relation (because
of the high (100%) confidence level demanded in the experiment), the runtime was almost

imperceptible because the algorithm could not create candidates for it.

Once Frequent Relations were discovered, the next step was to identify possible quan-
titative Time Relations. To do that, the chosen algorithm was the ‘Basic Algorithm’. In
this case, it was also impossible to foresee the quantitative Time Relations to be discovered.
However, it was possible to extract interesting information. Table 6.3 shows the number of
patterns in which it was possible to discover a quantitative Time Relation compared with
the total number of patterns and the runtime. Regarding the runtime, it is directly propor-
tional to the number of relations to analyse and the number of particular Time Distances to
consider in each one of them. In those cases in which it was impossible to discover Frequent
Relations (see Trial 1, Trial 2 and Trial 3 with confidence level of 100%), it was not necessary

to calculate any Time Relation.

Once Frequent Relations and Time Relations were identified, the step of ‘Identifying Con-
ditions’ discovered the necessary conditions to understand when each pairwise relationship
becomes true. As in the previous steps, the Conditions to be discovered were not known

in advance; however, the number of patterns in which it was possible to identify conditions

83

Table 6.2: Number of patterns obtained in different trials.

Trial 1 Trial 2 Trial 3
Confidence
Total Patterns Total Patterns Total Patterns
Level
25% 16 40 20
° (78 ms) (1347 ms) (204 ms)
50% 5 18 10
° (70 ms) (188 ms) (157 ms)
5% 1 5 6
° (41 ms) (69 ms) (98 ms)
100% 0 0 0
° (31 ms) (31 ms) (31 ms)

Table 6.3: Number of patterns with Time Relations (out of total patterns and the percentage)

obtained in different trials.

Trial 1 Trial 2 Trial 3
Confidence Patterns with Patterns with Patterns with
Level Time Relations Time Relations Time Relations
259 14 (14/16 (87.5%)) 34 (34/40 (85%)) 18 (18/20 (90%))
° (312 ms) (1420 ms) (504 ms)
50% 4 (4/5 (80%)) 16 (16/18 (89%)) 8 (8/10 (80%))
° (267 ms) (412 ms) (359 ms)
75% 1(1/1 (100%)) 4 (4/5 (80%)) 4 (4/6 (67%))
° (58 ms) (265 ms) (106 ms)
No Time No Time No Time
100%

Relations needed

Relations needed

Relations needed

shows the LEPUBS’s ability to discover them (See Table 6.4). As expected, in this case too,

the runtime directly depends on the number of conditions to discover.

84

Table 6.4: Number of patterns with Conditions (out of total patterns and the percentage)

obtained in different trials.

Trial 1 Trial 2 Trial 3
Confidence Patterns with Patterns with Patterns with
Level Conditions Conditions Conditions
95% 12 (12/16 (75%)) 33 (33/40 (82.5%)) 15 (15/20 (75%))
° (2541 ms) (7582 ms) (4529 ms)
50% 3 (3/5 (60%)) 14 (14/18 (78%)) 4 (4/10 (40%))
° (1847 ms) (2841 ms) (2147 ms)
5% 1(1/1 (100%)) 3 (3/5 (60%)) 2 (2/6 (33%))
° (58 ms) (1024 ms) (1129 ms)
No Conditions No Conditions No Conditions
100%
needed needed needed

Finally, three of the patterns discovered in different trials are shown as an example (all
patterns can be seen in Appendix F). The first pattern shows how at night (between 1:06 a.m.
and 2:46 a.m.), the user switched on the luxo lamp as soon as (0 seconds) he/she turned off

the bedroom light. This pattern was discovered in Trial 1 with a confidence level of 25%.

(Pattern 1 --> Trial 1, Confidence level: 25%)
ON occurs (BedroomLight, 0ff,t0)
IF context ((time (>,1:06:44) &
(£,2:46:32)))
THEN do (On, BedroomLuxol, t) when t = t0 + Os

Another pattern shows how the user in Trial 2 switched off the luxo lamp after (30 seconds
after) switching on the bedroom light if the light level of the bedroom was at a certain level
(between 52 and 143) from 19:19 p.m. on.

(Pattern 2 --> Trial 2, Confidence level: 50%)
ON occurs (BedroomLight, On,tO)
IF context ((time (>,19:19:49)) &
(Bedroom light level (>,52)) &
(Bedroom light level (<,143)))
THEN do (0Off, BedroomLuxo2, t) when t=t0+30s

Finally, a very frequent pattern (>75%) discovered in Trial 3 shows how long the user
took (115 seconds) to switch off the lights at night.

85

(Pattern 3 --> Trial 3, Confidence level: 75%)
ON occurs (LivingRoomLight, On,tO0)
IF context ((time (>,22:10:27)))
THEN do (0Off, LivingRoomLight, t) when t=t0+115s

Discussion and trends

Because the frequent behaviours hidden in the data collected from MavPad were unknown,
it can be said that the MavPad environment could be one of the real environments where the
LFPUBS will be applied in the future, where it is impossible to define any previous knowledge
to facilitate the process of learning. The results provided by the LFPUBS in different trials
can be analysed in order to detect possible trends.

On one hand, it is interesting to analyse the possibility of identifying quantitative Time
Relations and Conditions in the Frequent Relations discovered by the first step. Taking into
account the percentages shown in Tables 6.3 and 6.4, the possibility of discovering quantita-
tive Time Relations and Conditions depending on the demanded minimum confidence level

are shown in Figures 6.3 and 6.4.

120
100 -
801 é —— Trial 1
= 60 ——Trial 2
40 . —— Trial 3
20 -
0 T T
25% 50% 75% 100%
Demanded Minimum Corfidence Level

Figure 6.3: Percentage of the Patterns with Time Relations.

Regarding the percentage of the patterns in which it was possible to define a quantitative
Time Relation and/or Conditions, in both cases, there was no clear trend that indicated how
those percentages could vary, depending on the demanded minimum confidence level. In any
case, they indicate that it is possible to define quantitative Time Relations and Conditions
in most of the cases (87% and 78% respectively). It is worth emphasizing that the lack of
Frequent Relations when considering a confidence level of 100% made it impossible to define
quantitative Time Relations and Conditions, and therefore to calculate the percentage for
such situations.

On the other hand, it is interesting to analyse the nature of the patterns in terms of

frequency, i.e., the number of patterns that remain being frequent when a higher confidence

86

120

100 -
80 1 —— Trial 1
£ 60 - —— Trial 2
40 - ——Trial 3
20 -
0 . .

25% 50% 75% 100%
Demanded Minimum Corfidence Level

Figure 6.4: Percentage of the Patterns with Conditions.

level is demanded. Table 6.5 summarises the percentages of patterns that remain from the
confidence level of 25% to 50% and from 50% to 75%. The minimum confidence level of 100%
is ruled out because there are no patterns that achieve this level.

Table 6.5: The number of patterns that remain with different confidence levels.

Trial 1 Trial 2 Trial 3

% of patterns that remain
from 25% to 50% 31% 45% 50%

Confidence Level

% of patterns that remain
from 50% to 75% 20% 27% 60%

Confidence Level

A trend that can be extracted in relation to the confidence level of patterns is that in most
of the trials, less than half of the patterns discovered with a confidence level of 25% remain
frequent with a confidence level of 50%. The percentage decreases when the confidence level
increases to 75%. Trial 3 is the exception to such a trend because 60% of the total patterns
discovered with a confidence level of 50% remain frequent with a confidence level of 75%. A
high number of patterns with low frequency levels shows that most of the behaviours of the
users were not performed with a monotonous regularity. In fact, this conclusion is reinforced
by the fact that there was no a pattern with a confidence level of 100%.

In conclusion, it can be said that the MavPad data show a real environment where the
user was not biased to behave in a certain way. Even so, the LFPUBS was able to discover

frequent behaviours, although most of them were discovered with a low confidence level.

87

In addition, it was demonstrated that the LFPUBS was able to discover quantitative Time

Relations as well as Conditions in a high percentage of the cases.

6.2.2 Validating the Pairwise Approach with the WSU Smart
Apartment dataset

Unlike MavPad, participants of the WSU Smart Apartment behaved in a predefined way, so
it was known in advance what knowledge the LFPUBS should discover. It can be thought of
as an acid test, especially for the step ‘Identifying Frequent Relations’ because the sequence
of activities to be carried out by the users was defined and the LFPUBS should discover the
Frequent Relations defined by that sequence. Time Relations could also be identified, but the
time spans between different actions were not defined in advance. Finally, it was not possible
to discover Conditions because of the lack of context sensors that provided information about
the status of the environment. Below, each one of the steps will be explained in more detail.

The objective of the ‘Identifying Frequent Relations’ step was to discover the relations
defined by the sequence of actions described in Table 6.1. Considering a minimum confidence
level of 60%, it discovered 23 Frequent Relations. Within those 23 patterns, there were the
17 Frequent Relations that described the performance of the 5 ADLs. To avoid misunder-
standings about the number of Frequent Relations to be discovered, it must be noticed that
the performance of those 5 activities demanded that some sets of actions be repeated (for
example, ‘Water On’ - ‘Water Off’), but such relationships, although they were repeated in
different activities, were identified as a unique Frequent Relation because the Pairwise Ap-
proach does not consider different instantiations of the same action. Some of the Frequent

Relations that were found are shown below:

(Pattern 1)

ON occurs (Phone Book, 0On,t0)
IF -

THEN do (On, Phone, t) when —-—

(Pattern 15)

ON occurs (Cabinet, On,t0)

IF -

THEN do (On, Medicine, t) when --

(Pattern 17)

ON occurs (Cabinet, On,tO0)

IF -

THEN do (Off, Medicine, t) when --

(Pattern 2)

ON occurs (Phone, 0On,tO)

IF -

THEN do (0Off, Phone, t) when —-

(Pattern 16)

ON occurs (Medicine, 0On,t0)

IF -

THEN do (0Off, Cabinet, t) when —-

(Pattern 18)

ON occurs (Medicine, 0ff,t0)

IF -

THEN do (Off, Cabinet, t) when —-

88

Most of the patterns were logical relationships such as ‘after speaking on the phone, he
hangs up the phone’ (See Pattern 2). Apart from those trivial relations, some other interesting
relationships were also discovered, for example, the set of patterns (See Patterns 15-18) that
shows how the users carried out the activity of taking their medicine.

Although the main contribution of this dataset was to validate the first step of the algo-
rithm, it was also used to discover possible quantitative Time Relations. Unlike the Frequent
Relations, quantitative Time Relations were not known in advance. Therefore, as in the
MavPad environment, the only possible validation was to check the ability of the LFPUBS
to discover such Time Relations. In that sense, it was able to define quantitative Time Rela-
tions in 16 out of 23 Frequent Relations (70%) that described the 5 ADLs. Below, previously

shown patterns with the discovered Time Relations are shown:

(Pattern 1) (Pattern 2)

ON occurs (Phone Book, On,t0) ON occurs (Phone, On,t0)

IF - IF -

THEN do (On, Phone, t) THEN do (0ff, Phone, t)
when t = t0 + 57s when t = t0 + 50s

...

(Pattern 15) (Pattern 16)

ON occurs (Cabinet, On,t0) ON occurs (Medicine, On,t0)

IF - IF -

THEN do (On, Medicine, t) THEN do (0ff, Cabinet, t)
when t = t0 + 2s when t is after tO

(Pattern 17) (Pattern 18)

ON occurs (Cabinet, On,t0) ON occurs (Medicine, 0ff,t0)

IF - IF -

THEN do (0ff, Medicine, t) THEN do (0ff, Cabinet, t)
when t = t0 + 2s when t = t0 + 2s

It is clear that the discovered Time Relations cannot be compared to anything to check
their correctness. Even so, they can provide some interesting information such as the fact
that users needed around 50 seconds to get the cooking instructions (Pattern 2).

Finally, because of the lack of context sensors, it was not possible to discover conditions
that defined the occurrences of each pattern. By default, all patterns were considered as true

under any condition.

Discussion and trends

The objective of this test was to guarantee that the LFPUBS was able to discover the Frequent
Relations hidden in the dataset. In that sense, it was able to discover such patterns, and it

was even able to discover quantitative Time Relations in 70% of the patterns.

89

Interesting conclusions can be extracted by analysing the nature of the discovered knowl-
edge and the way it is represented. On one hand, it is clear that the users’ behaviours are
better described by relating user’s actions among themselves instead of relating users’ actions
to global situations. On the other hand, it is clear that users’ behaviours could be better
described by means of Action Maps that represent the whole behaviours of the users without

any limitation on the number of actions involved in each behaviour.

6.3 Action Map Approach

The analysis of the results obtained when applying the Pairwise Approach to different
datasets showed that users’ behaviours would be better described if the number of actions
involved in a pattern were not limited to two actions. Thus, the Pairwise Approach evolved
into the Action Map Approach, described in Chapter 5.

To validate this new approach, the same datasets used for the Pairwise Approach were
considered. In this way, the output provided by the new approach was compared to the

output provided by the first approach, and the advantages were identified.

6.3.1 Validating the Action Map Approach with the MavPad
dataset

In this case too, the data collected in the three trials were used to validate the new approach
of the LFPUBS. The objective of this validation process was twofold. The fist objective was
to check if the Action Map Approach was able to discover users’ frequent behaviours, and
the second objective was to compare the knowledge extracted in this case with the knowledge
extracted when using the Pairwise Approach.

The objective of the first step, ‘Identifying Frequent Sets of Actions’, was to discover
those sets of actions that were more frequent than a demanded minimum confidence level. In
order to be able to provide a clear comparison between both approaches, the LFPUBS was
run by considering the same minimum confidence levels as in the Pairwise Approach (25%,
50%, 75% and 100%). In this case, the number of Frequent Sets to be discovered was also
unknown because of the unbiased nature of the data. The number of Frequent Sets discovered
in each trial, considering different minimum confidence levels, is shown in Table 6.6. Unlike
the Pairwise Approach, the runtime of each experiment is not directly related to the number
of Frequent Sets discovered in each experiment. In this case, the number of actions involved
in each Frequent Set has a higher influence in the runtime than the number of Frequent
Sets. This is because the most time consuming step of the Apriori algorithm (Candidate

Generating step) is strongly influenced by the number of action it has to deal with.

For example, one of the Frequent Sets discovered in the Trial 1 with a minimum confidence
level of 50% shows that the user performed the actions of ‘BedroomLight On’; ‘Bedroom-
Light Off’, ‘BedroomLuxol On’ and ‘BedroomLuxol Off’ together (all Frequent Sets can be
seen in Appendix H).

90

Table 6.6: The number of patterns obtained in different trials and the Experiments’ runtimes

(in milliseconds).

Trial 1 Trial 2 Trial 3
Confidence
Total Patterns Total Patterns Total Patterns
Level
959 8 3 1
° (156 ms) (219 ms) (153 ms)
50% 4 1 1
° (78 ms) (188 ms) (68 ms)
75% 1 1 1
° (62 ms) (93 ms) (56 ms)
100% 0 0 0
° (35 ms) (35 ms) (35 ms)

The number of Frequent Sets does not provide interesting information by itself. For that,
it was necessary to discover the topology of each Frequent Set. Identifying the topology of
different Frequent Sets implied the discovery of repetitive actions and unordered subsets of
actions as well as identifying the Allowed Maximum Granularity for each Frequent Set (see
Section 5.3.2 for the definition of these concepts).

Although some aspects of the process could not be validated, a comparison between the
knowledge discovered by both approaches showed an interesting conclusion. The relations
showed by different topologies were compared to the Frequent Relations discovered by the
Pairwise Approach, and all of the relations (100%) represented by the different Topologies
were also identified as Frequent Relations by the first approach.

The opposite statement, i.e., that all of the Frequent Relations were included in the
Topologies, cannot be guaranteed. This is because Frequent Relations were discovered with-
out considering any minimum support level. If a relation reached the demanded confidence
level, it was considered a Frequent Relation even though it occurred very few times. In con-
trast, in the case of Frequent Sets, the minimum confidence level also worked as the minimum
support level, so that an action had to fulfil both demanded minimum levels to be included
in a Frequent Set. That is the reason why all of the Frequent Relations are not included in
the Topologies.

Considering the Frequent Set that involved the actions of ‘BedroomLight On’, ‘Bedroom-
Light Off’, ‘BedroomLuxol On’ and ‘BedroomLuxol Off’; the topology discovered for this
set of actions shows that the user first turned on the room light. Then sometimes he/she

first turned off the room’s light before turning on the luxo lamp, and other times he/she

91

first turned on the luxo lamp and then turned off the room light. This behaviour is repre-
sented by means of a unordered subset that groups the actions of ‘BedroomLight Off’ and
‘BedroomLuxol On’. Finally, the user turned off the luxo lamp.

Once topology was defined, it was possible to represent such a behaviour by means of the

Lrrpuss (See Appendix H for the complete representations of all Action Maps).

(Action Map 1)

(Action Pattern 0)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t) when --

(Action Pattern 2)

ON occurs (simple, (BedroomLight,0On),t0)

IF context ()

THEN do (unordered, ((0ff,BedroomLight)&(0On,BedroomLuxol)),t) when --

(Action Pattern 3)
ON occurs (unordered, ((BedroomLight,0ff)&(BedroomLuxol,0n)),t0)
IF context ()
THEN do (simple, (0ff,BedroomLuxol),t) when --—

(Action Pattern 2)

ON occurs (simple, (BedroomLuxol,0ff),t0)
IF context ()

THEN do (--,end,t) when --

Table 6.7 shows the runtime of different experiments when considering the step of ‘Iden-
tifying Topology’. The runtime of each experiment depends on many different parameters
such as the number of actions involved in the Action Map, the number of repetitive actions
or the number of unordered subsets of actions. An special mention deserves the Action Map
discovered in the Trial 3. Considering confidence levels of 25%, 50% and 75%, in all those
cases only one Frequent Set was discovered by the first step. Besides, the runtimes are equal,
which could be an indication that the discovered Frequent Sets, as well as their topologies,

are equal (see Appendix H for further details).

Regarding the Time Relations, they were calculated using the ‘Basic Algorithm’. Com-
pared with those Time Relations discovered in the first approach, the only difference was
that the number of Time Relations increased because of repetitive actions. Moreover, some
quantitative Time Relations can vary a little when they deal with unordered subsets of ac-
tions because in such cases, the Time Relations are calculated by taking into account the

first occurrence of any of the actions involved in the subset. Table 6.8 shows the number of

92

Table 6.7: Experiments’ runtimes (in milliseconds) when discovering the Topology of Frequent
Sets.

Trial 1 Trial 2 Trial 3
Confidence
Total Patterns Total Patterns Total Patterns

Level
25% 172 ms 5750 ms 47 ms
50% 63 ms 5234 ms 47 ms
75% 47 ms 625 ms 47 ms
100% No Topology needed | No Topology needed | No Topology needed

Time Relations (and the percentage they represent) discovered in each trial. In this case too,
the runtime of each experiment is directly related to the number of relations to be analysed
and the number of particular Time Distances to consider in each one of them. For example,
this last aspect is essential to understand the runtimes of Trial 1 and Trial 2, because in both
situations the number of relations to analyse were equal (56), but the number of particular
Time Distances to consider was higher in Trial 2. Finally, in some situations there was not
any relation to analyse. There could be two reasons for that, on one hand, because it was not
discovered any Frequent Set (e.g., Trial 1, Trial 2 and Trial 3 with confidence level of 100%).
On the other hand, it could be because all the actions of the Frequent Set were included in
an unordered subset of actions (e.g., Trial 1 with confidence level of 75% and Trial 3 with
confidence level of 25%, 50% and 75%).

Considering the same Action Map presented above, once Time Relations were discovered,

it was represented as follows:

(Action Map 1)

(Action Pattern 0)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t) when --

(Action Pattern 2)

ON occurs (simple, (BedroomLight,0On),t0)

IF context ()

THEN do (unordered, ((0ff,BedroomLight)&(0On,BedroomLuxol)),t)
when t = t + 346s

93

(Action Pattern 3)

ON occurs (unordered, ((BedroomLight,0ff)&(BedroomLuxol,0n)),t0)
IF context ()

THEN do (simple, (0ff,BedroomLuxol),t) when t = t + 227s

(Action Pattern 2)

ON occurs (simple, (BedroomLuxol,0ff),t0)
IF context ()

THEN do (--,end,t) when --

Table 6.8: The number of Action Patterns with Time Relations, the percentage of the total

and the experiments’ runtimes (in milliseconds) obtained in different trials.

Trial 1 Trial 2 Trial 3
Action Patterns Action Patterns Action Patterns
Confidence) .) . . .
with Time with Time with Time
Level] . R
Relations Relations Relations
5% 48 (48/56 (86%)) 43 (43/56 (T7%)) No Time
° (844 ms) (2071 ms) Relations needed
18 (18/22 (82%)) 5 (5/7 (71%)) No Time
50% .
(437 ms) (1651 ms) Relations needed
75% No Time 5 (5/7 (71%)) No Time
° Relations needed (578 ms) Relations needed
No Time No Time No Time
100% . . .
Relations needed Relations needed Relations needed

Finally, Specific and General Conditions were discovered. In some cases, for example with
‘Action Map 1°, it was not necessary to discover Specific Conditions because there was no
situation in which an action was followed by two different actions. In contrast, in other Action
Maps, it was necessary to define Specific Conditions. Table 6.9 shows the percentage of times
in which it was possible to discover Specific Conditions when situations required this. The
runtime of these experiments does not directly depend on the number of situations in which
conditions were needed, but it was more influenced by the amount of data to be considered
in each one of them. That is why Trial 2 experiments’ runtimes were higher than Trial 1

experiments’ runtimes, although the situations that required conditions were not more.

94

Table 6.9: The number of Action Patterns with Specific Conditions, the percentage of the

total situations that required this and the Experiments’ runtimes obtained in different trials.

Trial 1 Trial 2 Trial 3
Confidence Action Patterns Action Patterns Action Patterns
Level with Conditions with Conditions with Conditions
25% 7 (7/10 (70%)) 6 (6/9 (67%)) No Conditions
° (500 ms) (1015 ms) needed
50% 2 (2/3 (67%)) 1(1/2 (50%)) No Conditions
° (188 ms) (1062 ms) needed
No Conditions 1(1/2 (50%)) No Conditions
75%
needed (156 ms) needed
No Conditions No Conditions No Conditions
100%
needed needed needed

Concerning the number and the percentage of the Specific Conditions discovered in each
trial, it is worth noting that they cannot be compared to the Conditions discovered in the
Pairwise Approach, because in the Action Map Approach Specific Conditions were discov-
ered only when a situation required it, whereas in the Pairwise Approach, Conditions were
discovered for each Frequent Relation.

Regarding General Conditions, because of the ability of the algorithm to generalise, it
was possible to discover General Conditions for all of the Action Maps. For example, the
LFPUBS discovered that the Action Map described above occurred between 08:00 a.m. and
04:15 a.m. of the next day. Once General Conditions were discovered, ‘Action Map 1’ was
represented as follows (See Appendix H for the complete representation of all of the Action
Maps).

(Action Map 1)

(General Condition)
context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<:04:15:00)) |
context (TimeOfDay(>,08:00:00)) & context (Time0fDay(<:23:59:59))

(Action Pattern 0)
ON occurs (start,--,t0)
IF context ()

THEN do (simple, (On,BedroomLight),t) when --

95

(Action Pattern 2)

ON occurs (simple, (BedroomLight,0On),t0)

IF context ()

THEN do (unordered, ((0ff,BedroomLight)&(0On,BedroomLuxol)),t)
when t = t + 346s

(Action Pattern 3)

ON occurs (unordered, ((BedroomLight,0ff)&(BedroomLuxol,0n)),t0)
IF context ()

THEN do (simple, (0ff,BedroomLuxol),t) when t =t + 227s

(Action Pattern 2)

ON occurs (simple, (BedroomLuxol,0ff),t0)
IF context ()

THEN do (--,end,t) when --

Discussion and trends

The objective of this validation process was twofold. The fist objective was to check if
the Action Map Approach was able to discover users’ frequent behaviours, and the second
objective was to compare the knowledge extracted in this case with the knowledge extracted
when using the Pairwise Approach.

It is clear that Action Maps, when compared with the knowledge provided by the pairwise
relationships, facilitates the understanding of the users’ behaviours. In this sense, the main
concern was to guarantee that representing users’ behaviour by means of Action Maps did
not result in discovering different knwoledge. This was the most important aspect in the
validation of the first two steps that discovered Frequent Sets and their Topologies. Once
the results provided by the Action Map Approach were analysed, it could be said that all of
the relationships (100%) defined by the topologies were also identified as Frequent Relations
by the Pairwise Approach.

Regarding the Time Relations, Figure 6.5 shows, for each trial, the percentage of different
Action Patterns in which quantitative Time Relations were identified. It is worth noting that
in some cases it was not necessary to identify Time Relations, so that such situations will not
be depicted in the figure. These situations occur because either there was not any Frequent
Set (e.g., Trial 1, Trial 2 and Trial 3 with confidence level of 100%) or all the actions were
grouped in an unordered subset of actions (e.g., Trial 1 with confidence level of 75% and
Trial 3 with confidence level of 25%, 50% and 75%). Analysing the percentages showed in
the figure, it can be concluded that they do not indicate any clear trend that shows how such
a percentage varies as a function of different minimum confidence levels. Although it seems
that the percentage of Action Patterns with Time Relations decreases when the demanded

minimum confidence level is higher, such a trend cannot be generalised.

96

100
90 -
80 -
70 -
60 - —— Trial 1
50 - — Trial 2
40 4 —Trial 3
30 -
20 -
10 4

%

25% 50% 75% 100%
Demanded Minimum Confidence Level

Figure 6.5: Percentage of the Patterns with Time Relations.

The percentages of Specific Conditions also demonstrate the ability of the Action Map
Approach to discover Specific Conditions when needed. On average, it was able to identify
Specific Conditions in 69% of the cases. The trend that shows how such percentages evolved
depending on the different minimum confidence levels considered in different trials is depicted
in Figure 6.6. In this case too, it was not necessary to discover Specific Conditions in some

of the experiments, and therefore it was not possible to define the percentages for such cases.

50 —— Trial 1
3= 40 A ——Trial 2
30 4 ——Trial 3

25% 50% 75% 100%
Demanded Minimum Confidence Level

Figure 6.6: Percentage of the Patterns with Specific Conditions.

The Action Map discovered in Trial 3 deserves a special mention. Only one Action Map
was discovered in Trial 3, a very frequent Action Map that remained frequent even for a
confidence level of 75%. The special characteristic of this Action Map was that neither Time
Relations nor Specific Conditions were needed. Although it is surprising, this fact has a

very simple explanation; the different occurrences of the Action Map did not show a clear

97

topology, so all of the actions were included in an unordered subset of actions. The relations
within an unordered subset of actions are not defined, so it was impossible to define Time
Relations and Specific Conditions for such cases. The same thing happened with the Action
Map discovered in Trial 1 for a confidence level of 75%.

At the moment, General Conditions provide very general information. Because General
Conditions must cover all of the particular occurrences of the Action Maps, most of the
time, they are so general that they do not separate the occurrences of different Action Maps.
Undoubtedly this step of the LFPUBS is an aspect to improve in future versions of the

system.

6.3.2 Validating the Action Map Approach with the WSU Smart
Apartment dataset

Finally, the Action Map Approach was also validated using the data collected from the WSU
Smart Apartment. As mentioned above, these data showed different participants performing
5 ADLs in a specific order. Thus, this validation was an acid test for the step of ‘Identifying
Topology’ that had to model such a behaviour.

The objective of the first step, ‘Identifying Frequent Sets of Actions’, was to discover the
set of actions involved in the different ADLs. Each particular Sequence showed a participant
performing the five ADLs, so the same actions were involved in most of the particular Se-
quences. Thus, even for a high confidence level (for example, 60%), all of the actions involved

in the ADLs, shown in Table 6.1, were identified as frequent.

Frequent Set 1: ‘PhoneBook On’, ‘Phone On’, ‘Phone Off’, ‘Water On’, ‘Water Off’,
‘Cabinet On’, ‘Cabinet Off’, ‘Raisins On’, ‘Oatmeal On’, ‘MeasuringSpoon On’, ‘Bowl On’,
‘Sugar On’, ‘Pot On’, ‘Burner On’, ‘Burner Off’, ‘Medicine On’, ‘Medicine Off’.

Once the set of actions involved in the Action Map was identified, the next step was to
discover the frequent order of such actions. In that sense, the particularity of this dataset was
that, although the order of all of the actions was not clearly defined, the order of activities
defined it in some way. The first difficulty faced was to identify repetitive actions because
the same action could be performed as part of different activities. For example, the actions
‘Water On’ and ‘Water Off’ were involved in activities such as ‘Wash hands’, ‘Cook’, ‘Eat’
and ‘Clean’. The nature and the purpose of such actions in each one of the activities is
different; therefore, identifying repetitive actions was an important step to correctly model
users’ behaviours. In the case of the actions ‘Water On’ and ‘Water Off’ the LFPUBS
was able to define that four different “Water On’ and ‘Water Off” actions were needed (See
Appendix I for the complete definition of the Action Map and repetitive actions).

It is true that different participants performed the same activities in the same order, but
this does not imply that they all performed all of the actions in the same order. For example,
when it came to cooking, some of them took out the raisins first and then the oatmeal, and
others did the opposite. This is proof that although the order of activities was defined in

advance, unordered subsets of actions could exist and have to be identified. Considering

98

the parameters defined below, only three unordered subsets were discovered. The first one
included the actions ‘Cabinet On’ and ‘Cabinet Off’, the second one included the actions
‘Oatmeal On’ and ‘Raisins On’, whereas the last one included the actions ‘Cabinet On’,

‘Burner Off” and ‘Water Off’ (See Appendix I for the complete definition).

e Minimum Level for Origin: 25%
e Minimum Level for Destiny: 25%

e Minimum Balanced Level: 50%

Once repetitive actions and unordered subsets of actions were identified, it was possible
to define the topology that modelled participants’ behaviour. The first part of the behaviour

was defined as follows (the complete behaviour is detailed in Appendix I).

(Action Map 1)

(Action Pattern 0)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,PhoneBook),t) when --

(Action Pattern 2)

ON occurs (simple, (PhoneBook,0n),t0)
IF context ()

THEN do (simple, (On,Phone),t) when --

(Action Pattern 3)

ON occurs (simple, (Phone,0On),t0)

IF context ()

THEN do (simple, (Off,Phone),t) when --

(Action Pattern 4)

ON occurs (simple, (Phone,0ff),t0)

IF context ()

THEN do (simple, (On,Water),t) when --

(Action Pattern 5)

ON occurs (simple,(Water, On),t0)

IF context ()

THEN do (simple, (0ff,Water),t) when --

99

As in any Action Map, the topology itself defined the qualitative Time Relations. To
discover quantitative Time Relations, the ‘Basic Algorithm’ was used. Considering all of the
relations defined by the Topology, the ‘Basic Algorithm’ was able to identify quantitative
Time Relations in 25 out of 29 (86%) cases.

Compared with the quantitative Time Relations discovered in the ‘Pairwise Approach’
(See Section 6.2.2), two important conclusions can be extracted. First, when a relation did not
involved either repetitive actions or actions involved in unordered subsets, the Time Relations
discovered by both approaches were the same (for example, the Time Relation discovered
for the relationship between ‘PhoneBook On’ and ‘Phone On’ was 57 seconds in both cases).
Second, if either a repetitive action or an action involved in an unordered subset was present
in the relationship, the discovered Time Relations varied slightly. This is because in the
Action Map Approach, if repetitive actions existed, particular occurrences were considered,
depending on the repetitive actions they belonged to, whereas in the Pairwise Approach all
of the occurrences were considered together. A clear example of this was the relationship
between the actions ‘Water On’ and ‘Water Off’. In the ‘Pairwise Approach’; all of the
occurrences of that relationship were collected together and the quantitative Time Relation
was calculated by taking into account all of those occurrences. In contrast, in the Action Map
Approach, more than one ‘Water On’ and ‘Water Off” action was defined, so each process
of discovering quantitative Time Relations was run by only considering the corresponding
occurrences in each one of them. The other situation in which quantitative Time Relations
varied slightly between the results of both approaches occurred when considering unordered
subsets of actions. These slight variances are due to the fact that when dealing with unordered
subsets of actions, it is considered the first occurrence of any of the actions involved in the
subset is considered, whereas in the Pairwise Approach, this possibility was not considered.
The representation of the Action Map once Time Relations were defined was as follows (see

Appendix I for the complete definition of all Action Maps):
(Action Map 1)

(Action Pattern 0)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,PhoneBook),t) when --—

(Action Pattern 2)

ON occurs (simple, (PhoneBook,0n),t0)

IF context ()

THEN do (simple, (On,Phone),t) when t = tO + 57s

100

(Action Pattern 3)

ON occurs (simple, (Phone,0On),t0)

IF context ()

THEN do (simple, (0ff,Phone),t) when t = tO + 50s

(Action Pattern 4)

ON occurs (simple, (Phone,0ff),t0)

IF context ()

THEN do (simple, (On,Water),t) when t is after tO

(Action Pattern 5)

ON occurs (simple, (Water, On),t0)

IF context ()

THEN do (simple, (Off,Water),t) when t = t0 + 23s

...

In this case too, Specific and General Conditions were identified. Regarding the Specific
Conditions, it is true that very few situations demanded Specific Conditions (only three).
Besides, the lack of context information meant Specific Conditions could only be identified
using calendar information. It is worth noting that using only calendar information, it was
possible to identify conditions in two out of three (67%) cases. Even so, it should also be said
that the discovered conditions were not very meaningful because it seems clear that different
participants did not perform in different ways because of aspects such as ‘Time of Day’ or
‘Day of Week’, but rather some other context aspect such as temperature or light level was
influencing their behaviour.

The identified General Conditions indicated when the participants performed such actions.
Thus, it was discovered that all of the actions were carried out on weekdays between 10:45 a.m.
and 18:15 p.m.. The final representation of the Action Map was as follows (see Appendix I
for the complete definition of all Action Maps):

(Action Map 1)

(General Condition)
context (TimeOfDay(>,10:45:00)) & context (Time0fDay(<:18:15:00)) &
context (DayOfWeek(=, (Monday,Tuesday,Wednesday,Thursday,Friday)))

(Action Pattern 0)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,PhoneBook),t) when --

101

(Action Pattern 2)

ON occurs (simple, (PhoneBook,0n),t0)

IF context ()

THEN do (simple, (On,Phone),t) when t = tO + 57s

(Action Pattern 3)

ON occurs (simple, (Phone,0On),t0)

IF context ()

THEN do (simple, (Off,Phone),t) when t = tO + 50s

(Action Pattern 4)

ON occurs (simple, (Phone,0ff),t0)

IF context ()

THEN do (simple, (On,Water),t) when t is after tO

(Action Pattern 5)

ON occurs (simple, (Water, On),t0)

IF context ()

THEN do (simple, (0ff,Water),t) when t = t0 + 23s

...

Finally, Table 6.10 shows the runtime of each of the steps of the algorithm.

Table 6.10: The runtime of different steps of the Ay rpups.

Identifying Frequent Identifying Identifying Time Identifying
Sets of Actions Topology Relations Conditions
297 ms 969 ms 750 ms 422 ms

Discussion and trends

This validation process was mainly focused on the step of ‘Identifying Topology’ because the

order of the actions involved in the Action Map were known in advance. Besides, repetitive

actions as well as unordered subsets of actions had to be identified.

Within an Action Map, the definition of repetitive actions facilitated the understanding of

the behaviour, separating the occurrences of the same action that had different meanings. At

the same time, this meant that the number of relationships increased, influencing the runtime

of the ‘Identifying Time Relations’ step. Although initially it can seem like a disadvantage,

repetitive actions provide an important advantage when it comes to identifying quantitative

102

Time Relations, because repetitive actions made it possible to better identify the nature of
particular occurrences, grouping such occurrences based on their similarities. The percentage
of relations in which it was possible to identify a quantitative Time Relation increased from
70% in the Pairwise Approach up to 86% in the Action Map Approach.

The process of identifying Specific Conditions showed that it is possible that such con-
ditions are able to separate the occurrences of different actions, but they do not provide a

meaningful explanation if the nature of the actions is analysed.

6.4 Comparing both Approaches: The final Discussion

Validating both approaches using the same datasets allows one to compare the results and
highlight the strengths and weaknesses of each approach. Each step of the Pairwise Approach
will be compared to its equivalent in the Action Map Approach. All of them will be evaluated

according to the following aspects:

e Advantages over the other approach.
e Efficiency in its task.

e Runtime.

6.4.1 Modelling Frequent Behaviours: A comparison

The first objective of the Arrpyps was to discover the actions that defined the frequent
behaviours of the users. In the Pairwise Approach, this first task was carried out by the
‘Identifying Frequent Relations’ step, whereas in the Action Map Approach, it demanded the
execution of two steps: ‘Identifying Frequent Sets of Actions’ and ‘Identifying Topology’.

The main difference between the two approaches is defined by this first task. The Pairwise
Approach models the frequent behaviours of the users by means of pairs of actions, so the
topology is only represented by the relation between those two actions. In contrast, the
Action Map Approach does not limit the number of actions involved in a pattern; therefore,
it needs to identify the topology that defines how such actions are frequently related.

The difference between the two approaches is clear; the Pairwise Approach provides in-
dependent pieces of knowledge, while the Action Map Approach provides complete represen-
tations of the behaviours. Moreover, some aspects considered in the Action Map Approach,
such as repetitive actions and unordered subsets of actions, facilitate comprehension instead
of adding complexity to the patterns. This is because the Pairwise Approach considers all
of the activations of a sensor as equal, whereas the Action Map Approach defines the nature
of each particular activation, depending on the purpose of such an action. For example in
the WSU Smart Apartment data, creating different instantiations of some actions clearly
facilitated the identification of the frequent behaviour’s topology.

Regarding the Frequent Relations discovered in the Pairwise Approach and the relation-

ships defined as frequent by the topologies identified by the Action Map Approach, it must

103

be said that for both datasets, all of the relationships (100%) defined by the topologies were
also identified as Frequent Relations by the Pairwise Approach. This demonstrates that the
outputs provided by both approaches are consistent between them.

Regarding the runtime for the MavPad dataset, Figure 6.7 shows the runtime of different
experiments as a function of different confidence levels. The data shown in Sections 6.2 and
6.3 have been summarised by taking into account the runtime of all of the trials together. A
first analysis clearly shows that the main difference between the runtime of both approaches
occurs in the step of ‘Identifying Topology’ because the runtimes of the steps ‘Identifying
Frequent Relations’ and ‘Identifying Frequent Sets of Actions’ are very similar. The second
conclusion that can be extracted is that in both approaches, the runtime strongly depends
on the number of discovered Frequent Relations or Frequent Sets as well as the number of
actions involved in the case of Frequent Sets. That is why the runtime is almost imperceptible

when considering a minimum confidence level of 100%.

Runtime of each step
7000
6000 - — P airwise Approach
» 5000 (Frequent Relations)
2 Action Map Approach
8 4000 - (Frequent Sets of Actions)
.g 3000 - — — —-Action Map Approach
= (Topology)
= 2000 Action Map Approach
1000 - (Total)
0
25% 50% 75% 100%
Demanded Minimum Confidence Levels

Figure 6.7: Both approaches’ runtimes for the task of modelling frequent behaviours.

6.4.2 Identifying Time Relations: A comparison

When it comes to identifying quantitative Time Relations, the objective and the process
were the same in both approaches. However, previous steps established some differences that
influenced the process of identifying quantitative Time Relations.

First of all, in the Action Map Approach, it is not necessary to discover any type of Time
Relations among the actions involved in an unordered subsets of actions.

The identification of repetitive actions also influences the process of discovering quanti-
tative Time Relations. On one hand, the number of relations to be analysed increases. The
number of relationships discovered when considering the WSU Smart Apartment dataset is
an example of this. In the Pairwise Approach, 23 relationships were defined in total, whereas

when considering repetitive actions, the number increased to 29. However, the main influence

104

of the identification of repetitive actions was noticed in the accuracy of the quantitative Time
Relations. Defining different instantiations of the same action allows the system to group
particular occurrences based on their similarities, so Time Relations discovered for each one
of those groups will be more accurate than the Time Relation identified when considering
all of the particular occurrences together. A clear example of this is the relation between
the actions ‘Water On’ and ‘Water Off” discovered in the WSU Smart Apartment dataset.
In the Pairwise Approach, only one Frequent Relation defined this relationship, so all of
the Time Distances collected between both actions were used to identify the quantitative
Time Relation. In fact, it was impossible to identify a quantitative Time Relation for such a
relation. In contrast, in the Action Map Approach, considering the repetitive actions, four
relationships between the actions ‘Water On’ and ‘Water Off” were created (one for each one
of the following activities: ‘Wash hands’, ‘Cook’, ‘Eat’ and ‘Clean’). Thus, particular Time
Distances were grouped based on their similarities and discovered Time Relations were more
accurate. In this case, it was possible to define a quantitative Time Relation in three out of

those four cases.

When it comes to efficiency, the same algorithm is used in both approaches, so it does
not make any sense to compare them in terms of efficiency. Any possible small differences

would only come from the previous steps.

Finally, considering the experiments’ runtime with the MavPad dataset (See Figure 6.8),
some conclusions can be extracted. As expected, the runtime of the Action Map Approach
was a little higher because the consideration of repetitive actions created more relationships
to be analysed. In this step, the runtime depends on the number of Time Relations to be

analysed and the amount of data related to each one of the relations.

3500

3000 -
» 2500 - —
2 m— Pairwise Approach
S 2000 - (Time Relations)
E 1500 - — Action Map Approach
E 1000 (Time Relations)

500 -
D T
25% 50% 75% 100%
Demanded Minimum Confidence Level

Figure 6.8: Both approaches’ runtime considering the task of identifying Time Relations.

105

6.4.3 Identifying Conditions: A comparison

Although in both approaches the objective of this step was to contextualise the discovered
patterns, the nature of the Conditions demanded by each approach is different.

In the Pairwise Approach, the objective of the Conditions was to define under which
context and calendar conditions the action defined by the THEN clause was the correct
response to the action defined by the ON clause.

In the Action Map Approach two types of conditions were considered. The Specific
Conditions discovered the conditions that defined the occurrence of each relationship when a
particular action could be followed by more than one option. The General Conditions defined
the general context for the whole Action Patterns.

Because of the different natures of the conditions, they cannot be compared in terms of
efficiency or runtime. For example, the Pairwise Approach identified conditions for all of the
patterns, whereas Specific Conditions were only identified for those situations that required

such conditions.

6.4.4 Runtime of different steps

Finally, the runtimes of the different steps were compared in order to identify the most
demanding steps in terms of time. In the case of the MavPad dataset, the runtimes of the
most demanding situation have been considered (confidence level = 25%). Figures 6.9 and

6.10 show the runtime of the different steps for the different approaches.

16000
14000 -
12000 -

10000 - ——\lavPad Dataset

8000 -
6000 - w—\\SU Smart Apartment Dataset

4000 -
2000 - —

Millisendos

Identifying Identifying Time Iclentifying
Frequent Relations Conditions
Relations

Different Steps

Figure 6.9: The runtime of different steps of the Pairwise Approach.

In the Pairwise Approach the most time-consuming step in both cases is the ‘Identifying
Condition’ step. The explanation for this is that in that approach, the conditions are iden-
tified for each discovered pattern. In contrast, in the Action Map Approach, the runtimes
of ‘Identifying Topology’ and ‘Identifying Time Relations’ are higher. This occurs because,

on the one hand, conditions are only identified when needed, and on the other hand, the

106

7000

6000 A
§ 5000 -
9 4000 - —lavPad Datas et
z 3000 - —\\/SU Smart Apartment Dataset
& 2000
1000 -
D T T T
Identifying Iclentifying Identifying ldentifying
Frequent Topology Time Conditions
Relations Relations
Differrent Steps

Figure 6.10: The runtime of different steps of the Action Map Approach.

‘Identifying Topology’ step includes many different subtasks such as discovering repetitive

actions and unordered subsets of actions, which are very time-consuming.

6.5 Summary

Both the Pairwise Approach and the Action Map Approach were validated using data col-
lected from two real environments (MavPad and WSU Smart Apartment). Different experi-
ments were run in both cases to validate the efficiency of each one of the steps.

In addition, as different validations were carried out using the same datasets, it was

possible to compare the output of both approaches in terms of the following aspects:

e Advantages over the other approach (e.g., knowledge representation).
e Efficiency in its task.

e Runtime.

107

108

CHAPTER 7

Conclusions and Further

Research

A general abstract of the main results obtained from the attainment of the thesis is given
in this chapter. Section 7.1 offers a global description of the research work. This work has
resulted in a set of contributions, described in Section 7.2, in addition to a set of publications
that are listed in Section 7.3. New research ideas and works that have been identified are

described in Section 7.4. The final remarks are given in Section 7.5.

7.1 Conclusions

Intelligent Environments (IEs) are real environments (Smart Homes, Smart Classrooms etc.)
that sensibly support people in their daily lives. This new term supposes a change of per-
spective in the relationships between humans and technology, shifting from a techno-centered
perspective to a human-centered one, where the technology adapts its behaviour to users’
needs, preferences and habits. Therefore, an environment should learn how to react to the
actions and needs of the user, and this should be achieved in an unobtrusive and transparent
way. It is assumed that users’ past and present frequent behaviours define their habits and
preferences, so that IEs could provide personalised and adapted services if those behaviours
were identified previously. Thus, the ability to discover users’ frequent behaviours becomes
an essential aspect for the successful implementation of IEs, allowing them to act proactively.
Acting proactively could mean that the environment might automate some devices based on
discovered users’ habits, or it could also mean that unhealthy habits are detected.

IEs appear to be a new area where automatically learning algorithms used in other areas
can be used in order to discover users’ frequent behaviours; however, each area has different
objectives, needs and features that can influence the learning process. In that sense, IEs
also have some features which make these environments different from others. They were
identified and analysed in Section 1.2.3.

Moreover, due to complexity of IEs (hardware, software and networks have to cooperate in
an efficient and effective way to provide a suitable result to the user), the first developments
were focused on needs associated with hardware and networking as the supporting infrastruc-
ture. This resulted in a simple automation that implements a reactive environment that did
not take into account the personalised and adaptive features of IEs. Nevertheless, notable

exceptions were found. Thus, Machine Learning techniques were identified as a possible so-

109

lution to automatically learn patterns and provide environments with intelligence. Different
Machine Learning techniques, used for different research groups, were analysed taking into
account the special features of IEs. It was concluded that still there does not seem to be
a system that learns quickly, is highly accurate, is nearly domain independent, does this
from few examples with literally no bias, and delivers a user model that is understandable
and contains breaking news about the user’s characteristics. Thus, the solution may rely on
the combination of most of them, taking advantage of the strengths of each technique. The
strengths and weaknesses of each technique were highlighted in Table 2.1.

Taking into account the need of learning, the special features of IEs and the current state
of the art, a system that discovered users’ frequent behaviours was designed and developed.
The system , Learning Frequent Patterns of User Behaviour System (LFPUBS), is based
on a three-layered architecture whose main objective is to separate those aspects that are
dependent on particular environments in which the system is being used from those aspects
that are environment-independent. Thus, both the Transformation Layer, which fills the gap
from the real environment to the LFPUBS, and the Application Layer, which fills the gap from
the LFPUBS to the real environment, are environment-dependent because their performance
depends on specific aspects (e.g., types of sensors/actuators) of particular environments. On
the contrary, the Learning Layer, which implements all of the algorithms that discover users’
frequent behaviours, is free of any influence of particular environments.

The main focus of this research work was to design and develop the necessary components
of the Learning Layer in order to allow the LEPUBS to discover users’ frequent behaviours.
The internal architecture of the Learning Layer was made up of two components: the language
component (L1 rpyps), which provides a standard conceptualisation of the patterns; and the
algorithm component (Aprpyps), which discovers the patterns. To this end, two different
approaches have been developed.

The first approach, the Pairwise Approach, was aimed at discovering those pairs of actions
that frequently occurred together. By relating users’ actions among them, instead of relating
them to context conditions, the understanding of their behaviours is facilitated. In addition
to identifying the Frequent Relations, the Pairwise Approach was designed to discover the
possible quantitative Time Relations between actions as well as the Conditions that defined
under what situations the pattern occurred.

The second approach, the Action Map Approach, was an evolution of the Pairwise Ap-
proach. Pairwise relationships allowed one to relate only two actions, so that it had many
limitations in order to represent a whole behaviour in a unique pattern. Thus, the Action
Map Approach was designed to discover and represent users’ frequent behaviours without
any limitation on the number of actions involved in the pattern. These new requirements
demanded a modification of both the language and the algorithm. The L rpyps was ex-
tended to allow the system to represent a whole behaviour in an unique pattern; however,
the component that needed a more substantial modification was the Arrppyps. New steps
that discovered frequent sets of actions and identified the frequent order (topology) of the
actions involved in each of them were developed. These steps were undertaken while con-

sidering the inherent aspects of IEs where repetitive actions or unordered subsets of actions

110

can occur. Regarding the Conditions, two different types of conditions were needed in this
new approach: Specific Conditions that identified under what conditions a relation between
two actions becomes true; and General Conditions that contextualised, in terms of calendar
information, the occurrence of the whole behaviour.

Both approaches were validated using data collected from two real environments: MavPad
[You05] and WSU Smart Apartment [Coo08]. Validating both approaches using the same
data allows one to compare the results and highlight the strengths and weaknesses of each

approach.

e It was concluded that representing users’ behaviours by means of Action Maps clearly
facilitated the understanding of such behaviours. Whereas the Pairwise Approach pro-
vides independent pieces of knowledge, the Action Map Approach provides complete
representation of the behaviours. Comparing the consistency of the knowledge discov-
ered by both approaches at this stage, it was verified that the 100% of the relations
defined by different topologies were also identified as Frequent Relations by the Pair-
wise Approach. Thus, although both approaches represent the discovered knowledge in
different manners, it can be concluded that the outputs provided by both approaches

were coherent among them.

e In order to identify quantitative Time Relations the same algorithm was used in both
approaches; however, the effectiveness of the algorithm, that is, the percentage of the
patterns where the algorithm was able to discover a quantitative Time Relation, in-
creased with the Action Map Approach (e.g., 16% in the WSU Smart Apartment
dataset). This is because, by considering repetitive actions, the system was able to
better define the nature of each occurrence, and therefore more accurate Time Rela-

tions were identified.

e The objective of the conditions in both approaches was to contextualise the discovered
knowledge. Even so, the nature of the conditions demanded for each one of the ap-
proaches was different. In the Pairwise Approach, conditions were identified for each
one of the relations. In the Action Map Approach, however, two different types of
conditions were demanded: Specific Conditions for situations where more than one
possibility were considered; and General Conditions to contextualise the whole Action
Map. However, it is worth noting that the effectiveness of this step was 78% and 69%
(considering the MavPad dataset) in the Pairwise and in the Action Map Approaches,

respectively.

Finally, the runtimes of different validation processes were compared. Thus, it was learned
that in the Pairwise Approach the most time consuming step was the ‘Identifying Condition’
due to the fact that conditions were discovered for each one of the patterns. On the contrary,
in the Action Map Approach, the most time consuming step was the ‘Identifying Topology’
step, mainly due to the fact that it includes many demanding subtasks such as ‘Identifying

Repetitive Actions’ or ‘Identifying Unordered Subsets of Actions’.

111

7.2 Contributions

Based on the aforementioned conclusions, a summary of the main contributions of the thesis

is presented in this section:

o A detailed state of the art has been given (see Chapter 2):

x Considering the special features of IEs.
* Identifying the strengths and weaknesses of each one of the Machine Learning
techniques.
e A general architecture for the LFPUBS has been proposed (see Chapter 3) that:
x Allows the system to separate those environment-independent aspects from those
that are environment-dependent.

x Allows one to include in the system any transformation process identified in any

particular environment.
x Allows one to design and develop a Learning Layer free of any external influence.

x Allows one to use discovered knowledge in order to achieve the objectives of par-
ticular environments. A speech-based interaction system was designed and imple-

mented in order to facilitate the development of easy-to-use applications.

e A Pairwise Approach that discovers frequent relations between pairs of actions has been
developed (see Chapter 4). It includes:
x A language (L1 rpyps) that provides a standard conceptualisation of the patterns.

* An algorithm (ALrpups) that discovers pairs of actions that are frequently re-
lated. In addition, A;ppyps discovers quantitative Time Relations and Condi-

tions for each of the relations.

e An evolution of the Pairwise Approach (the Action Map Approach), that discovers

users’ frequent behaviours has been developed (see Chapter 5). It includes:

x A new version of the L ppyps that is able to represent whole behaviours.

x A new Apppyps that discovers the Frequent Set of Actions, the frequent Topology

of such actions, the Time Relations and the Specific and General Conditions.

e A Graphical User Interface that allows the user of the LFPUBS to configure different

parameters of the system to carry out the desired learning process.

7.3 Relevant Publications

The ideas of the research work presented here have been set forth in international research

forums, such as: journals, book chapters and conferences.

112

7.3.1 International Journals

A. Aztiria, A. Izaguirre and J. C. Augusto ‘Learning patterns in Ambient Intelligence

environments: A Survey’. Artificial Intelligence Review, Springer. 2010.

7.3.2 Book Chapters

A. Aztiria, A. Izaguirre, R. Basagoiti and J. C. Augusto ‘ Learning about preferences and
common behaviours of the user in an intelligent environment’. Behaviour Monitoring
and Interpretation, ‘Ambient Intelligence and Smart Environments’ book series, ed.
Bjorn Gottfried, Hamid Aghajan, V.3, pp. 289-315, 2009.

7.3.3 International Conferences

A. Aztiria, A. Izaguirre, R. Basagoiti, J.C. Augusto and D. Cook ‘Automatic Modeling
of Frequent User Behaviours in Intelligent environments’. 6th International Conference

on Intelligents Environments, 2010.

A. Aztiria, J.C. Augusto, R. Basagoiti and A. Izaguirre ‘Accurate Temporal Relation-
ships in Sequences of User Behaviours in Intelligent Environments’. International Sym-
posium on Ambient Intelligence (ISAmI’2010), 2010.

J. M. Lucas-Cuesta, J. Ferreiros, A. Aztiria, J. C. Augusto and M. F. McTear ‘ Dialogue-
based Management of user feedback in an autonomous preference learning system’. 2nd
International conference on Agents and Artificial Intelligence (ICAART’2010). pp. 330-
337, 2010.

J. M. Lucas-Cuesta, A. Aztiria, M. F. McTear, J. C. Augusto, and J. Ferreiros ‘ Facil-
itating Preference Revision through a Spoken Dialogue System’. Workshop Designing
ambient interactions for older users, Co-located with the AMI 2009. 2009.

A. Aztiria, A. Izaguirre, R. Basagoiti, J. C. Augusto, and D. Cook ‘Discovering of Fre-
quent Sets of Actions in Intelligent Environments’. Proceedings of the 5th International

Conference on Intelligent Environments, pp 153-160, 2009.

A. Aztiria, J. C. Augusto, A. Izaguirre and D. Cook ‘Learning Accurate Temporal Re-
lations from User Actions in Intelligent Environments’. Proceedings of the 3th Sym-

posium of Ubiquitous Computing and Ambient Intelligence. 2008.

A. Aztiria, J. C. Augusto and A. Izaguirre ‘ Autonomous Learning of User’s Preferences
improved through User Feedback’. Proceedings of the 2nd Workshop on Behaviour
Monitoring and Interpretation (BMI'08), Co-located with the German Conference on
Al pp. 72-86, 2008.

A. Agztiria, J. C. Augusto and A. Izaguirre ‘Spatial and Temporal Aspects for Pattern
Representation and Discovery in Intelligent Environments’. Proceedings of the Work-

shop on Spatial and Temporal Reasoning, co-located with ECAI. 2008.

113

7.4 Future Work

Different topics that require deeper research have been detected throughout this research

work. They are described below, grouped by each important chapter of the thesis.

7.4.1 Improving the State of the Art

The state of the art could be improved considering other techniques that have shown their
utility in similar areas. Thus, techniques such as Markov Models, Bayesian networks or
Support Vector Machines (SVMs) that have been widely used in context-awareness [Wu09;
Duo06; Kas07] and pattern recognition [Bur04] areas could make an interesting contribution
in the learning process. For that, it would be interesting to consider them together with the

previous techniques and identify their strengths and weaknesses.

7.4.2 Improving the Architecture

This research work has been mainly focused on developing an environment-independent
Learning Layer. Although Transformation and Application Layers depend on specific aspects
of particular environments, some functionalities can be added to these layers to facilitate some
tasks for LFPUBS’s users.

Within the Transformation Layer, one of the main tasks that will probably take place in
almost all the environments is the identification of actions and activities from collected data.
For that, templates that define such inferences have been used in this research work (see
Section 3.1) . Being aware of the effort that some research groups [Wu09; Brd05; Tap04] are
doing in the area of context-awareness in IEs, including a context-awareness component in
the Transformation Layer would help the LFPUBS serve as a holistic approach to discovering
users’ frequent behaviours.

The same idea can be extrapolated to the Application Layer. In that sense, an interesting
functionality to add would be a translator or parser that translates the discovered knowledge
into other types of representation that allow their use in particular applications. For example,
it would be interesting to analyse the possibility of translating the discovered patterns into
HMMs in order to use them to automate some devices. In that sense, the definition of the
L rpups will greatly facilitate this task due to the fact that it provides a standard structure
of the patterns.

7.4.3 Improving the Action Map Approach

Considering that the Action Map Approach is an evolution of the Pairwise Approach, some
improvements are considered over this last approach. Regarding the steps defined in the
Action Map Approach, some improvements related to Time Relations and Conditions were
identified.

e So far, only exact quantitative Time Relations (e.g., 4 seconds) or qualitative Time

Relations (e.g. ‘after’) have been considered. Other types of Time Relations can also

114

be considered (e.g., ranges such as 10-15 minutes) that provide more possibilities to

define a Time Relation and allow the system to define a relation as accurate as possible.

e When it comes to discovering Specific Conditions, information provided by all of the
context sensors is considered equally, without considering the nature of each of them.
Thus, it could happen that the discovered conditions correctly separate the different
occurrences, but analysing the nature of the actions to be separated does not provide a
meaningful explanation. For that, it would be interesting to add semantic information
[Dig09] to both actions and context information so that, in the process of discovering
conditions, only context information that is related to the nature of the actions would

be considered.

e One of the main shortcomings of the current approach is related to the General Condi-
tions. As mentioned in the validation process (see Section 6.3), the current algorithm,
with the objective of covering all the occurrences, creates General Conditions that do
not allow one to discern different Action Maps. Thus, it is necessary to develop an

algorithm that discovers more accurate General Conditions.

As mentioned in Section 4.1, other types of sensors (e.g., those that indicate the health
status of the user [Erm08; Sta04]) can provide interesting information that would help to
better define their behaviours. This would require adapting both Ly rpyps and AprpuBs

to include this new type of information in the process of learning.

7.4.4 Improving the Validation

The LFPUBS has been validated using data collected from two real environments. One
of them showed users behaving without any predefined behaviour, whereas in the other
participants behaved based on a predefined pattern. Behaving in a more controlled way
seems difficult, although people could be predefined to even consider the Time Distances
between the actions they perform, so that quantitative Time Relations to be discovered will
also be known in advance.

Data collected from other Smart Homes or even from other types of IEs, such as Smart
Cars or Smart Classrooms, could be used to validate the current (and future) approach of
the LFPUBS.

7.4.5 More General Improvements

Finally, going a step further, some more ambitious research lines can be considered.

One of them would be to include in the LFPUBS all the learning periods defined in
Section 1.2.3. So far, LFPUBS only considers to behave intelligently once patterns that define
users’ frequent behaviours have been discovered. However, two more learning periods were
identified. The first one considered acting as intelligently as possible without patterns while
the system is collecting data. The last learning period considered that, once the environment
is acting in accordance with patterns discovered by the LFPUBS, it is necessary to adapt

those patterns in a continuous way because users’ frequent behaviours may change.

115

7.5 Final Remarks

With this research work we have tried to do our part in an area where few efforts have been
made so far, although its importance is recognised by everyone. Interesting conclusions have
been achieved and different future research lines have been defined to go a step further and

get closer to truly Intelligent Environments.

116

Conclusiones y Lineas Futuras

En el presente capitulo se ofrece un resumen general de los principales resultados obtenidos
a lo largo de la investigacién llevada a cabo en la presente tesis. Primero se realiza una
descripcion global del trabajo realizado. Este ha dado lugar a una serie de contribuciones,
las cuales son descritas a continuacién, ademés de una serie de publicaciones. A continuacion,
se describen las diferentes lineas futuras que se han detectado y que pueden dar lugar a nuevas

lineas de investigacién. Por tdltimo se describen las consideraciones finales.

Conclusiones

Los Entornos Inteligentes (EIs) son entornos reales (Casas Inteligentes, Aulas Inteligentes, ...)
que tratan de ayudar a las personas a llevar a cabo sus tareas diarias. Esta nuevo concepto de
Els lleva consigo un cambio de perspectiva en la relacion entra la tecnologia y sus usuarios.
Desde una perspectiva centrada en la tecnologia, donde el usuario tenia que aprender como
utilizar esta, se pasa a una perspectiva centrada en el usuario, donde la tecnologia es la que se
adapta a este. Para ello, un EI debe aprender cémo actuar ante las acciones y necesidades del
usuario, todo ello de una forma transparente y no obtrusiva. Se considera que las personas
son ‘animales de costumbres’ por lo que sus comportamientos pasados y presentes definiran
en gran medida sus futuras acciones. Asi, la capacidad de descubrir los comportamientos
frecuentes de los usuarios se convierte en un aspecto importante para los Els para asi poder
actuar proactivamente (automatizando ciertas acciones o detectando hébitos no saludables).

La problematica de aprender comportamientos frecuentes de los usuarios en Els parece
un &area propicia para la aplicacién de las técnicas de aprendizaje automaético utilizadas
hasta la fecha en otras areas. Sin embargo, cada area tiene diferentes objetivos, necesidades
y caracteristicas que pueden influenciar dicha utilizacién. En este sentido, los Els también
cuentan con ciertas particularidades que pueden influenciar el proceso de aprendizaje. Dichas
caracteristicas son identificadas y analizadas en la Seccién 1.2.3.

La complejidad de dichos entornos viene dada por la necesidad de integrar de una forma
eficiente el hardware, el software y las redes de comunicaciones, para proporcionar un resul-
tado apropiado al usuario. En consecuencia, los primeros esfuerzos se centraron en desarrollar
las infraestructuras necesarias (hardware y redes de comunicaciones). Dichos entornos fun-
cionaban de forma reactiva sin proveer servicios personalizados y adaptados. Las técnicas
de Aprendizaje Automético fueron identificadas como las técnicas idéneas para proveer de

inteligencia dichos entornos. Las diferentes técnicas de Aprendizaje Automaético utilizadas

117

por diferentes grupos de investigacion fueron analizados teniendo en cuenta las caracteristicas
especiales de los Els. Las fortalezas y debilidades de cada una de ellas han sido resumidas en
la Tabla 2.1. Como conclusién de este andlisis se puede decir que todavia no ha sido desarro-
llado un sistema que aprenda de forma répida, a partir de poca informacién, con precision,
siendo independiente del entorno donde se aplica y proveyendo un modelo comprensible y
novedoso.

Teniendo en cuenta la necesidad de aprendizaje, las caracteristicas especiales de los Els y
el estado del arte actual, un sistema que descubre de forma automatica los comportamientos
frecuentes de los usuarios ha sido desarrollado. El sistema, Learning Frequent Patterns of
User Behaviour System (LFPUBS), se basa en una arquitectura de tres capas que separa
aquellos aspectos que dependen del entorno particular donde se esta aplicando de aquellos
aspectos que son independientes. Tanto la capa de Transformacién como la de Aplicacién
son dependientes del entorno particular debido a que su actuacién depende de aspectos
tales como los tipos de sensores/actuadores que hay en dicho entorno. Por el contrario, los
componentes de la capa de Aprendizaje, que contiene todos los algoritmos que descubren los
comportamientos frecuentes de los usuarios, son independientes del entorno particular donde
se aplican.

El principal objetivo de este trabajo ha sido disenar y desarrollar los componentes nece-
sarios de la capa de Aprendizaje que permitan el descubrimiento automético de los compor-
tamientos frecuentes de los usuarios. La arquitectura interna de la capa de Aprendizaje esté
compuesta por dos médulos principales: el lenguaje (Lrrpups), que permite estandarizar la
representacion de los patrones descubiertos, y el algoritmo (A rpups) que trata de descubrir
dichos patrones. Para ello, dos diferentes propuestas fueron desarrolladas.

La primera propuesta, el Pairwise Approach, trata de descubrir parejas de acciones que
frecuentemente occurren de forma consecutiva. Ademads de identificar las relaciones fre-
cuentes, el Pairwise Approach descubre las relaciones temporales existentes entre dichas
acciones asi como las condiciones que determinan bajo qué circunstancias esa relacién es
cierta.

La segunda propuesta, el Action Map Approach, es una evolucién del Pairwise Approach
debido a que no se limita a descubrir sélo parejas de acciones, sino que su objetivo es descubrir
aquellos conjuntos de acciones sin limitacién en su nimero, que a su vez representan los
comportamientos frecuentes de los usuarios. Ello implica que tanto el lenguaje como el
algoritmo desarrollado para el Pairwise Approach hayan tenido que ser modificados. El
Lrrpups fue extendido para permitir la representacion del comportamiento global en un
Unico patrén. El Aprpyps necesité de modificaciones significativas; fue necesario desarrollar
nuevos modulos para descubrir los conjuntos de acciones frecuentes e identificar el modelo
(topologfa) para dichos conjuntos. En lo que se refiere a las condiciones, dos tipos fueron
identificados en esta nueva versién: condiciones specificas que definen bajo qué circunstancias
una relacién definida por dos acciones es real, y condiciones generales que contextualizan el
comportamiento global.

Ambas propuestas fueron validadas utilizando datos recogidos de dos entornos reales:

MavPad [You05] y WSU Smart Apartment [Coo08]. La utilizacién de los mismos datos para

118

la validacién de ambas propuestas permitié comparar los resultados obtenidos en cada una

de ellas y definir sus fortalezas y debilidades.

e La representaciéon del comportamiento mediante Action Maps facilita su comprensién
dado que, mientras el Pairwise Approach provee pequenios patrones independientes, el
Action Map Approach provee una representacién global del comportamiento. En lo
que se refiere a la consistencia de los resultados obtenidos, se comprobd que el total
(100%) de las relaciones definidas por las diferentes topologias fueron identificadas
como frecuentes por el Pairwise Approach. Asi, aunque ambas propuestas representen
de forma diferente el conocimiento adquirido, se puede concluir que ambas descubren

el mismo conocimiento.

e Para la identificacién de relaciones temporales el mismo algoritmo fue utilizado en am-
bas propuestas. Aun asi, la efectividad de aplicar dicho algoritmo, es decir el porcentaje
de relaciones donde el algoritmo fue capaz de identificar relaciones temporales, se incre-
mentd en un 16% a la hora de aplicarlo en el Action Map Approach. Este incremento
es debido a que el descubrimiento de acciones repetitivas permite definir mejor la na-
turaleza de cada una de ellas, de modo que relaciones temporales mucho més precisas

son identificadas.

e El objetivo de las condiciones, en ambas propuestas, es la de contextualizar los patrones
descubiertos. Aun asi, la naturaleza de las condiciones exigidas en cada una de ellas
varia de forma ostensible. En el Pairwise Approach, las condiciones fueron identificadas
por cada relacién. Sin embargo, en el Action Map Approach, dos tipos diferentes de
condiciones fueron identificados. Por un lado, las condiciones especificas que definen
aquellas situaciones donde méas de una relacién es posible, y por otro las condiciones
generales que tratan de contextualizar el comportamiento global. Cabe mencionar la
efectividad de ambas propuestas a la hora de descubrir tales condiciones (78% y 69%

respectivamente).

Finalmente, los tiempos de ejecucion de los diferentes experimentos fueron comparados.
Se puede concluir que en el Pairwise Approach, la tarea mas exigente en términos de tiempo
de ejecucién es la de identificar condiciones debido al hecho de que estas tenian que ser
identificadas para todas las relaciones. Por el contrario, en el Action Map Approach, la tarea

de identificar la topologia fue la més exigente.

Contribuciones

Partiendo de las conclusiones obtenidas a la finalizacién de la tesis descritas previamente, en

esta seccidn se ofrece una sintesis de las principales contribuciones de la tesis.

e Se ha realizado un andlisis exhaustivo del estado del arte (ver Capitulo 2):

* Considerando las caracteristicas especiales de los Els.

119

x Identificando las fortalezas y debilidades de cada una de las técnicas de Apren-

dizaje Automaético.
e Se ha propuesto una arquitectura general para el LFPUBS (ver Capitulo 3) que:
x Permite al sistema separar aquellos aspectos dependientes de entornos particulares

de aquellos que son independientes.

x Permite incluir en el sistema cualquier proceso de transformacién identificada en

cualquier entorno.

x Permite desarrollar una capa de Aprendizaje exenta de cualquier inferencia ex-

terna.

* Permite utilizar el conocimiento descubierto para alcanzar los objetivos de cada
entorno particular. En este sentido, un sistema, basado en la interaccién por voz,

ha sido desarrollado para facilitar el desarrollo de aplicaciones faciles de utilizar.

e Un sistema (Pairwise Approach) que descubre relaciones frecuentes entre dos acciones

ha sido desarrollado (ver Capitulo 4). Incluye:
* Un lenguaje (Lrrpups) que estandariza la representacién de los patrones descu-
biertos.

* Un algoritmo (Arrpups) que descubre pares de acciones relacionadas frecuente-
mente. Ademds, Aprpyps identifica a su vez las relaciones temporales y las

condiciones para cada una de ellas.

e Una evolucién del primer sistema (Action Map Approach), que descubre comportamien-

tos frecuentes de los usuarios ha sido desarrollado (ver Capitulo 5). Incluye:

x Una nueva version del L rpyps que es capaz de representar el comportamiento

global en un tnico patron.

x Un nuevo Apppyps que descubre los conjuntos de acciones que definen dicho
comportamiento, el orden frecuente (topologia) de dichas acciones as{ como las

relaciones temporales y las condiciones necesarias.

e Se ha desarrollado un Interfaz Grafico que permite al usuario del LFPUBS configurar
los diferentes parametros del proceso de aprendizaje.
Publicaciones Relevantes

El trabajo aqui presentado ha sido expuesto en foros de investigacion internacionales. Entre

ellos se encuentran revistas, capitulos de libros y conferencias.

Revistas Internacionales

o A. Agtiria, A. Izaguirre and J. C. Augusto ‘Learning patterns in Ambient Intelligence

environments: A Survey’. Artificial Intelligence Review, Springer. 2010.

120

Capitulos de libro

e A. Aztiria, A. Izaguirre, R. Basagoiti and J. C. Augusto ‘ Learning about preferences and
common behaviours of the user in an intelligent environment’. Behaviour Monitoring
and Interpretation, ‘Ambient Intelligence and Smart Environments’ book series, ed.
Bjorn Gottfried, Hamid Aghajan, V.3, pp. 289-315, 2009.

Conferencias Internacionales

e A. Aztiria, A. Izaguirre, R. Basagoiti, J.C. Augusto and D. Cook ‘Automatic Modeling
of Frequent User Behaviours in Intelligent environments’. 6th International Conference

on Intelligents Environments, 2010.

e A. Aztiria, J.C. Augusto, R. Basagoiti and A. Izaguirre ‘Accurate Temporal Relation-
ships in Sequences of User Behaviours in Intelligent Environments’. International Sym-
posium on Ambient Intelligence (ISAmI’2010), 2010.

e J. M. Lucas-Cuesta, J. Ferreiros, A. Aztiria, J. C. Augusto and M. F. McTear ‘ Dialogue-
based Management of user feedback in an autonomous preference learning system’. 2nd
International conference on Agents and Artificial Intelligence (ICAART’2010). pp. 330-
337, 2010.

e J. M. Lucas-Cuesta, A. Aztiria, M. F. McTear, J. C. Augusto, and J. Ferreiros ‘Facil-
itating Preference Revision through a Spoken Dialogue System’. Workshop Designing
ambient interactions for older users, Co-located with the AMI 2009. 2009.

e A. Aztiria, A. Izaguirre, R. Basagoiti, J. C. Augusto, and D. Cook ‘Discovering of Fre-
quent Sets of Actions in Intelligent Environments’. Proceedings of the 5th International

Conference on Intelligent Environments, pp 153-160, 2009.

e A. Aztiria, J. C. Augusto, A. Izaguirre and D. Cook ‘Learning Accurate Temporal Re-
lations from User Actions in Intelligent Environments’. Proceedings of the 3th Sym-

posium of Ubiquitous Computing and Ambient Intelligence. 2008.

e A. Aztiria, J. C. Augusto and A. Izaguirre ‘ Autonomous Learning of User’s Preferences
improved through User Feedback’. Proceedings of the 2nd Workshop on Behaviour
Monitoring and Interpretation (BMI'08), Co-located with the German Conference on
Al pp. 72-86, 2008.

e A. Aztiria, J. C. Augusto and A. Izaguirre ‘Spatial and Temporal Aspects for Pattern
Representation and Discovery in Intelligent Environments’. Proceedings of the Work-

shop on Spatial and Temporal Reasoning, co-located with ECAI. 2008.

Lineas Futuras

A lo largo de la presente tesis se han ido detectando diferentes lineas que requieren profun-

dizacidn cientifica. A continuacién son descritas agrupandolas segtin cada uno de los capitulos

121

principales de la tesis.

Estado del Arte

El estado del arte podria ser mejorado considerando otras técnicas que han mostrado su
capacidad de aprendizaje en otras areas. Técnicas tales como Modelos de Markov, Redes
Bayesianas o Support Vector Machines (SVMs) han sido utilizados en otras dreas como la
identificacién de situaciones [Wu09; Duo06; Kas07] y reconocimiento de patrones [Bur04],
y pueden aportar aspectos interesantes a la problematica tratada en este trabajo. Seria
interesante considerarlos junto con el resto de las técnicas para identificar sus fortalezas y
debilidades.

Arquitectura de LFPUBS

El objetivo principal de dicha arquitectura ha sido la de posibilitar el desarrollo de una
capa de Aprendizaje libre de cualquier inferencia externa. Este trabajo se ha centrado en el
desarrollo de dicha capa. Aunque las capas de Transformacion y Aplicacién sean dependientes
de los entornos donde se aplican, algunas funcionalidades que puedan ser generalizables para
muchos entornos podrian ser incluidas en el LFPUBS para facilitar su utilizacion.

Dentro de la capa de Transformacién, una de las tareas cuya generalizacién aportaria
grandes ventajas a la hora de utilizar el LFPUBS es la de identificar acciones y actividades
que el usuario este llevando a cabo (context-awareness). Siendo conscientes del interés de esta
drea y de los trabajos realizados por varios grupos de investigacién [Wu09; Brd05; Tap04],
integrar un componente que facilite dicha tarea permitiria al LFPUBS proveer una solucién
general para el descubrimiento de comportamientos frecuentes en diferentes entornos.

La misma idea podria ser extrapolada a la capa de Aplicacién. En este caso, desarrollar
un componente que traduzca el conocimiento descubierto por LFPBUS a otros tipos de repre-
sentaciones facilitaria alcanzar los objetivos particulares de cada entorno. Por ejemplo, seria
interesante analizar la posibilidad de trasladar el conocimiento descubierto por LFPUBS a
cadenas de Markov para poder automatizar la activacién/desactivacién de ciertos disposi-
tivos. En este sentido, la estandarizacion de los patrones por parte del L rpyps facilita de

forma considerable dicha tarea.

Action Map Approach

Siendo la propuesta de Action Map la evolucién de la primera propuesta, las lineas futuras
han sido identificadas sobre esta ultima. La mayoria de las mejoras a considerar son relativas

a las tareas de identificacién de relaciones temporales e identificacién de condiciones.

e LFPUBS, hasta la fecha, considera solamente relaciones temporales precisas (por ejem-
plo, 4 segundos) o relaciones temporales cualitativas (por ejemplo, ‘despues’). A ma-
yores de estas dos formas de representar las relaciones temporales, otras representacio-

nes intermedias podrian ser consideradas. Por ejemplo, cuando no es posible definir

122

una relacién temporal exacta, la consideracién de rangos de tiempo (por ejemplo, 10-
15 minutos) podrian proveer informacién més precisa que las relaciones temporales

cualitativas.

e Cuando se trata de descubrir condiciones especificas, la informacién proveida por di-
ferentes tipos de sensores es considerada por igual, sin tener en cuenta el significado
de cada uno de ellos. De esta forma, podria suceder que las condiciones descubiertas
por el sistema consigan su objetivo de separar pero que dicha separacién no provea una
explicacién significativa teniendo en cuenta la naturaleza de las acciones involucradas.
La utilizacién de informacién seméantica para definir la naturaleza de las acciones y
la informacién del entorno [Dig09] podria ayudar a descubrir condiciones mucho més

precisas.

e Un aspecto a mejorar es el proceso que descubre las condiciones generales. El algoritmo
actual, con el objetivo de cubrir todas las ocurrencias, genera condiciones demasiado

amplias que dificultan discernir entre los diferentes comportamientos.

Como ha sido mencionado en la Seccién 4.1, otros tipos de sensores, por ejemplo, aquellos
que indican el estado actual del usuario (ritmo cardiaco, nivel de aztcar,...) [Erm08; Sta04],
podrian proveer informacién que mejorase la calidad del conocimiento descubierto. Cabe
mencionar, que esta consideracion podria exigir la modificacién tanto del L, ppyps como del

ArLrpUBs.

Validacién

El LFPUBS ha sido validado utilizando datos provenientes de dos entornos reales. En uno
de ellos (MavPad), los usuarios no tenian ningiin comportamiento predefinido mientras que
en el otro (WSU Smart Apartment) se sabia de antemano que los datos representaban a
los usuarios realizando ciertas tareas. Definir un comportamiento mas controlado se antoja
dificil aunque siempre se puede considerar la posibilidad de definir los lapsos de tiempo entre
accion y accion.

También seria interesante validar el actual (y futuro) sistema considerando otros tipos de

Els, como por ejemplo Coches Inteligentes, Aulas Inteligentes, etc.

Otras Lineas Futuras

Finalmente, se han identificado mejoras considerando aspectos més generales.

Como se ha definido en la Seccién 1.2.3, se podrian considerar tres periodos de tiempo
para que un entorno actie de forma inteligente. Este trabajo se ha centrado en descubrir
los patrones que definen los comportamientos frecuentes y actuar en base a ellos, pero como
se ha mencionado con anterioridad otras situaciones demandan otras soluciones. El primer
periodo considera la posibilidad de actuar de forma inteligente mientras se estén recogiendo
los datos, es decir, sin descubrir los patrones. El tultimo periodo de aprendizaje considera

la necesidad de ir adaptando su conocimiento adquirido debido al hecho de que los usuarios

123

podrian modificar sus comportamientos frecuentes. Redisenar y desarrollar una nueva versién

de LFPUBS que actuase de forma inteligente en los tres periodos seria el iltimo paso a dar.

Consideraciones Finales

Esta tesis ha tratado de aportar su granito de arena en un ambito como el del aprendizaje
automatico de comportamientos frecuentes de los usuarios. Ademaés de presentar una nueva
propuesta, se observa que esta tesis abre nuevas vias de investigacién para alcanzar entornos

que actien de forma inteligente.

124

CHAPTER 8

Appendix

Appendix A: Example of Data Collected in Michael’s

scenario

A-Type Information C-Type Information

(date;device;status;value) (date; device;status;value)

2008-10-20 (Sequence 1) 2008-10-20 (Sequence 1)
08:02:12; Alarm;on; 100 08:02:14; TempBathroom;on;18
08:15:55; Bathroom;on; 100 08:05:19; HumBathroom;on;65
08:15:57; BathroomLights;on; 100 08:13:42; TempBathroom;on;19
08:17:10; Cabinet;on; 100 08:18:40; TempBathroom;on; 20
08:17:15; Mouthwash;on; 100 08:22:07; HumBathroom;on;66
08:17:16; Cabinet;off;0 08:27:19; TempBathroom;on; 18
08:19:23; Cabinet;on;100 08:28:20; HumBathroom;on; 70
08:19:29; Towel;0on;100 08:29:27; TempBathroom;on;19
08:19:30;Gel;on; 100 08:29:35; HumBathroom;on; 72
08:19:31; Cabinet;off;0 08:29:58; HumBathroom;on;71
08:21:46;Shower;on; 100 08:31:18; HumBathroom;on;68
08:29:37;Shower;off;0 08:33:27; TempBathroom;on;18

08:29:41; BathroomFan;on;100
08:32:57; BathroomFan;off;0
08:33:15; BathroomLights;off;0
08:33:41; Bathroom;off;0

125

2008-10-21 (Sequence 2)
08:10:50; Alarm;on;100
08:23:18; Bathroom;on;100
08:23:20; BathroomLights;on; 100
08:23:58; Cabinet;on; 100
08:24:02; Mouthwash;on;100
08:24:03; Cabinet;off;0
08:25:04; Tap;on; 100

08:25:54; Tap;off;0

08:26:48; BathroomLights;off;0
08:27:04; Bathroom;off;0

2008-10-22 (Sequence 3)

08:06:19; Alarm;on;100

08:21:55; Bathroom;on;100
08:21:58; BathroomLights;on;100
08:22:10; Cabinet;on; 100
08:22:16, Mouthwash;on; 100
08:22:17; Cabinet;off;0
08:23:07; Cabinet;on; 100
08:23:08; Gel;on; 100

08:23:09; Towel;on;100
08:23:10; Cabinet;off;0
08:24:50;Shower;on; 100
08:28:18;Shower;off;0
08:85:48; BathroomLights;off; 0
08:36:10; Bathroom;off; 0

2008-10-23 (Sequence 4)

08:16:39; Alarm;on;100

08:31:25; Bathroom;on; 100

08:31:26; BathroomLights;on;100
08:85:17; Cabinet;on;100
08:35:22; Mouthwash;on; 100
08:35:23; Cabinet;off;0

08:36:00; BathroomLights;off;0
08:36:02; Bathroom;off;0

2008-10-21 (Sequence 2)
08:11:41; TempBedroom;on;22
08:12:50, HumBathroom;on;50
08:21:25; TempBathroom;on;19
08:22:49; TempBathroom;on; 20
08:24:21; HumBathroom;on;53
08:25:18; Temp Bathroom;on; 22
08:25:57; HumBathroom;on;54
08:26:22; HumBathroom;on;54

2008-10-22 (Sequence 3)
08:15:41; TempBathroom;on;18
08:16:16; HumBathroom;on;62
08:22:05; HumBathroom;on;63
08:22:41; TempBathroom;on;19
08:23:05; TempBathroom;on; 20
08:24:58; HumBathroom;on;65
08:25:02; TempBathroom;on; 21
08:25:51; HumBathroom;on;66
08:27:00; Temp Bathroom;on; 22
08:28:17; HumBathroom;on;65
08:29:04; HumBathroom;on;66
08:29:57; TempBathroom;on; 21
08:31:12; HumBathroom;on;65
08:33:41; TempBathroom;on; 20

2008-10-23 (Sequence 4)
08:28:53; Temp Bathroom;on; 20
08:29:16; HumBathroom;on; 64
08:83:18; TempBathroom;on; 22
08:34:05; HumBathroom;on;65
08:34:08; TempBathroom;on; 21
08:35:28; TempBathroom;on; 64
08:36:00;, HumBathroom;on;19

126

2008-10-24 (Sequence 5)
08:05:40;Alarm;on;100
08:18:55; Bathroom;on;100
08:18:57; BathroomLights;on;100
08:19:58; Cabinet;on; 100
08:20:04; Mouthwash;on;100
08:20:05; Cabinet;off;0
08:22:34; Cabinet;on;100
08:22:42;Gel;on; 100

08:22:43; Towel;on; 100
08:22:44;Cabinet;off;0
08:23:18;Shower;on; 100
08:29:28;Shower;off;0
08:29:81; BathroomFan;on;100
08:86:17; BathroomFan;off;0
08:38:57; BathroomLights;off;0
08:39:12; Bathroom;off;0

2008-10-27 (Sequence 6)

08:03:47; Alarm;on; 100

08:15:06, Bathroom;on; 100
08:15:09; BathroomLights;on;100
08:17:30; Cabinet;on; 100

08:17:35; Mouthwash;on; 100
08:17:36; Cabinet;off;0
08:18:13; Cabinet;on;100
08:18:32; Towel;0on;100
08:18:33;Gel;on; 100

08:18:34; Cabinet;off;0
08:25:42;Shower;on; 100
08:30:39;Shower;off;0
08:36:03; BathroomFan;on;100
08:38:58; BathroomFan;off;0
08:46:02; BathroomLights;off;0
08:47:06; Bathroom;off;0

2008-10-24 (Sequence 5)
08:17:17; TempBathroom;on; 21
08:19:21; TempBathroom;on; 20
08:20:26; TempBathroom;on; 21
08:22:12; HumBathroom;on;65
08:28:04; Temp Bathroom;on; 20
08:26:18; TempBathroom;on; 21
08:28:57; HumBathroom;on; 71
08:29:00; TempBathroom;on; 22
08:29:25; HumBathroom;on; 75
08:30:05; Temp Bathroom;on; 20
08:31:41; HumBathroom;on; 72
08:34:10; HumBathroom;on;68

2008-10-27 (Sequence 6)
08:16:27; HumBathroom;on;65
08:18:08; TempBathroom;on; 19
08:24:25; TempBathroom;on; 20
08:26:48; HumBathroom;on;69
08:27:41; TempBathroom;on; 21
08:28:09; HumBathroom;on; 70
08:30:25; HumBathroom;on; 71
08:82:42; TempBathroom;on; 20
08:37:07; TempBathroom;on; 21
08:88:41; TempBathroom;on; 20
08:42:12; HumBathroom;on;68

127

2008-10-28 (Sequence 7)

08:10:39; Alarm;on;100
08:21:30; Bathroom;on;100

08:21:32; BathroomLights;on; 100
08:22:37; Cabinet;on; 100
08:22:42; Mouthwash;on;100
08:22:44; Cabinet;off;0

08:24:40; BathroomLights;off;0
08:24:46;Bathroom;off;0

2008-10-29 (Sequence 8)

08:03:47; Alarm;on;100

08:16:28; Bathroom;on; 100
08:16:29; BathroomLights;on;100
08:16:39; Cabinet;on;100
08:16:43; Mouthwash;on;100
08:16:44;Cabinet;off;0
08:18:33; Cabinet;on;100
08:18:58; Towel;on; 100
08:18:59;Gel;on; 100

08:19:00; Cabinet;off;0
08:20:06;Shower;on; 100
08:23:29;Shower;off;0
08:23:34; BathroomFan;on;100
08:24:39; BathroomFan;off;0
08:25:08; BathroomLights;off; 0
08:25:57; Bathroom;off; 0

2008-10-30 (Sequence 9)

08:16:42; Alarm;on;100

08:31:02; Bathroom;on; 100
08:31:04;BathroomLights;on;100
08:82:38; BathroomLights;off;0
08:82:47; Bathroom;off;0

2008-10-28 (Sequence 7)
08:20:45; TempBathroom;on; 18
08:22:20, HumBathroom;on;66
08:21:02; TempBathroom;on; 20
08:21:41; HumBathroom;on;65
08:22:18; TempBathroom;on;19
08:22:35; HumBathroom;on;66
08:24:40; TempBathroom;on; 20

2008-10-29 (Sequence 8)
08:15:53; HumBathroom;on;66
08:16:02; TempBathroom;on;18
08:17:08; HumBathroom;on;65
08:19:41; HumBathroom;on;66
08:19:45; TempBathroom;on; 17
08:20:30; TempBathroom;on; 16
08:20:35; HumBathroom;on; 70
08:22:24; TempBathroom;on;15
08:22:47; HumBathroom;on; 75
08:28:02; TempBathroom;on;17
08:23:20, HumBathroom;on;78
08:24:36; HumBathroom;on; 73
08:24:19; TempBathroom;on;18
08:25:20; TempBathroom;on;17
08:25:22; HumBathroom;on; 71

2008-10-30 (Sequence 9)
08:30:12; TempBathroom;on; 21
08:31:18; HumBathroom;on;65
08:81:25; TempBathroom;on; 22
08:31:58; TempBathroom;on; 20
08:32:08; HumBathroom;on;67

128

2008-10-31 (Sequence 10)
08:10:27; Alarm;on; 100
08:20:54,; Bathroom;on;100
08:20:56; BathroomLights;on;100
08:21:10;Cabinet;on; 100
08:21:16; Cabinet;off;0
08:22:50; Cabinet;on;100
08:22:58;Gel;on; 100

08:22:59; Towel;on;100
08:23:00; Cabinet;off;0
08:25:88;Shower;on; 100
08:29:07; Shower;off;0
08:36:27; BathroomLights; off;0
08:36:38; Bathroom;off;0

2008-10-31 (Sequence 10)

129

08:18:53; HumBathroom;on;65
08:19:16,; TempBathroom;on;18
08:20:58; HumBathroom;on;66
08:21:10; TempBathroom;on; 17
08:28:41; TempBathroom;on;16
08:24:10;, HumBathroom;on;65
08:25:40; TempBathroom;on; 17
08:28:46; HumBathroom;on;69
08:28:55; TempBathroom;on; 18
08:31:57; HumBathroom;on;68
08:82:29; TempBathroom;on;19
08:33:47; TempBathroom;on; 20
08:35:49; TempBathroom;on,;67

Appendix B: Pairwise Approach, Language Specification

Pattern::= ON (Event_Definition)
IF (Condition_Definition)
THEN (Action_Definition)

Event_Definition::= Primitive_Event|Composite_Event
Primitive_Event::= User_Action
User_Action::= occurs(Device, Action, time)
Device::= device_1|device_2]|...|device_n
Action::= on|off

Composite_Event::= Primitive_Event &...& Primitive_Event

Condition Definition::= Primitive_Condition|Composite_Condition

Primitive_Condition::= Context_Condition

context (Attribute,Quantitative_Condition|

Context_Condition::
Qualitative_Condition)
Attribute::= Calendar|Context_Sensor
Calendar::= time of daylday of week|...
Context_Sensor::= sensor_1|sensor_2]|...|sensor_n
Quantitative_Condition::= (Symbol,Quantitative_Value)
Symbol::= =|<|>|=>|=<
Quantitative_Value::= real_number
Qualitative_Condition::= qualitative_value

Composite_Condition::= Primitive_Condition &...& Primitive_Condition

Action Definition::= Primitive_Action|Composite_Action
Primitive Action::= do(Action, Device,time) when Relation

Action::= on|off

Device::= device_1|device_2|...|device_n

Relation::= Qualitative_Relation|Quantitative_Relation

Quantitative_Relation::= (Symbol,Quantitative_Value)

Symbol::= =|<|>]|=>|=<
Quantitative_Value::= real_number

Qualitative_Relation::= Qualitative_Value

Qualitative_Value::= after|while]...|equal

Composite_Action::= Primitive_Action &...& Primitive_Action

130

Appendix C: Pairwise Approach, Discovered Patterns

(Pattern 1)

ON occurs (Alarm, On,tO)

IF context ()

THEN do (On, Bathroom, t)
when t is after tO

(Pattern 3)

ON occurs (Bathroom, On,tO)

IF context ()

THEN do (On, BathroomLights, t)
when t = t0 + 2s

(Pattern 5)
ON occurs (Shower, 0ff,t0)
IF context (Bathroom humidity level
(<,70%))
THEN do (Off, BathroomLights, t)
when t is after tO

(Pattern 7)
ON occurs (BathroomLights, On,tO0)
IF context ()

THEN do (On, Cabinet, t)

when t is after tO

(Pattern 9)

ON occurs (Mouthwash, On,t0)

IF context ()

THEN do (0ff, Cabinet, t)
when t = t0 + 1s

(Pattern 11)

ON occurs (Towel, On,tO)

IF context ()

THEN do (0ff, BathroomLights, t)
when t = t0 + 1s

(Pattern 2)
ON occurs (BathroomLights, 0ff,t0)
IF context ()
THEN do (0Off, Bathroom, t)
when t = t0 + 1s

(Pattern 4)

ON occurs (BathroomFan, 0ff,t0)

IF context ()

THEN do (0ff, BathroomLights, t)
when t is after tO

(Pattern 6)
ON occurs (Cabinet, 0ff,tO0)
IF context (DayOfWeek (<>,Tuesday,
Thursday, Friday))
THEN do (0Off, BathroomLights, t)
when t is after tO

(Pattern 8)

ON occurs (Cabinet, Off,t0)

IF context (DayOfWeek (=,Tuesday
Thursday, Friday))

THEN do (On, Cabinet, t)

when t is after tO

(Pattern 10)

ON occurs (Gel, On,tO0)

IF context ()

THEN do (0ff, Cabinet, t)
when t = t0 + 1s

(Pattern 12)

ON occurs (Cabinet, On,t0)

IF context ()

THEN do (0ff, BathroomLights, t)
when t = t0 + 5s

131

(Pattern 13) (Pattern 14)

ON occurs (Cabinet, 0On,t0) ON occurs (Gel, On,t0)
IF context () IF context ()
THEN do (On, Towel, t) THEN do (On, Towel, t)
when t is after tO when t = t0 + 1s
(Pattern 15) (Pattern 16)
ON occurs (Cabinet, On,t0) ON occurs (Towel, On,tO)
IF context () IF context ()
THEN do (On, Gel, t) THEN do (On, Gel, t)
when t is after tO when t = t0 + 1s
(Pattern 17) (Pattern 18)
ON occurs (Cabinet, 0ff,t0) ON occurs (Shower, 0On,t0)
IF context () IF context ()
THEN do (On, Shower, t) THEN do (0ff, Shower, t)
when t is after tO when t is after tO
(Pattern 19) (Pattern 20)
ON occurs (Shower, 0ff,t0 ON occurs (BathroomFan, On,t0)
IF context (Bathroom humidity level IF context ()
(>,70%))
THEN do (On, BathroomFan, t) THEN do (0ff, BathroomFan, t)
when t = t0 + 4s when t is after tO

132

Appendix D: Action Map Approach, Language Specifica-

tion
ActionMap_Pattern::= ActionMap_Actions, General_Conditions
ActionMap_Actions::= ActionPattern & ... & ActionPattern

ActionPattern::= ON (Event_Definition)
IF (Condition_Definition)

THEN (Action_Definition)

Event_Definition::= Primitive_Event|Composite_Event
Primitive_Event::= User_Action
User_Action::= occurs(Action, time)
Action::= (Type, SetActions)|start
Type: := simple|unordered
SetActions::= SimpleActions|UnorderedActions
SimpleActions::= Device, Action_Status
Device::= device_1|device_2]|...|device_n
Action_Status::= on|off
UnorderedActions::= SimpleActions &...& SimpleActions

Composite_Event::= Primitive_Event &...& Primitive_Event

Condition_Definition::= Primitive_Condition|Composite_Condition

Primitive_Condition::= Context_Condition

Context_Condition::= context(Attribute,Quantitative_Condition]
Qualitative_Condition)
Attribute::= Calendar|Sensor
Calendar::= time of dayl|day of week]|...
Sensor::= sensor_1|sensor_2|...|sensor_n
Quantitative_Condition::= (Symbol,Quantitative_Value)
Symbol::= =|<|>|=>]|=<
Quantitative_Value::= real_number
Qualitative_Condition::= qualitative_value

Composite_Condition::= Primitive_Condition &...& Primitive_Condition

133

Action_Definition::= Primitive_Action|Composite_Action

Primitive Action::= User_Action when Relation

User_Action::= do(Action)
Action::= (Type, SetActions)|end
Type::= simple|unordered
SetActions::= SimpleActions|UnorderedActions
SimpleActions::= Device, Action_Status
Device::= device_1|device_2|...|device_n
Action_Status::= on|off
UnorderedActions::= SimpleActions &...& SimpleActions
Relation::= Qualitative_Relation|Quantitative_Relation
Quantitative_Relation::= (Symbol,Quantitative_Value)
Symbol::= =|<|>]|=>]|=<
Quantitative_Value::= real_number
Qualitative_Relation::= Qualitative_Value
Qualitative_Value::= after|while]...|equal
Composite_Action::= Primitive_Action &...& Primitive_Action
General_Conditions::= Condition_Definition

134

Appendix E: Action Map Approach, Discovered Patterns

(Action Map 1)

(General Condition)
context (DayOfWeek (=,Monday,Tuesday,Wednesday,Thursday,Friday)) &
context (TimeOfDay(>,08:00:00)) & context (Time0fDay(<:09:00:00))

(Action Pattern 0) (Action Pattern 1)
ON occurs (start,--,t0) ON occurs (simple, (Alarm,On),t0)
IF context () IF context ()
THEN do (simple, (On,Alarm),t) THEN do (simple, (On,Bathroom),t)
when --- when t is after tO
(Action Pattern 2) (Action Pattern 3)
ON occurs (simple, (Bathroom,0On),t0) ON occurs (simple, (BathroomLigts,0On),t0)
IF context () IF context ()
THEN do (simple, (On,BathroomLights),t) THEN do (simple, (On,Cabinet),t)
when t = t0 + 2s when t is after tO
(Action Pattern 4) (Action Pattern 5)
ON occurs (simple, (Cabinet(1),0n),t0) ON occurs (simple, (Cabinet(1),0n),t0)
IF context () IF context ()
THEN do (simple, (On,Mouthwash),t) THEN do (simple, (0ff,Cabinet(1)),t)
when t = t0 + 5s when t is after tO
(Action Pattern 6) (Action Pattern 7)
ON occurs (simple, (Mouthwash,On),t0) ON occurs (simple, (Cabinet(1),0£ff),t0)
IF context () IF context (DayOfWeek (<>, Tuesday,

Thursday,Friday))
THEN do (simple, (0ff,Cabinet(1)),t) THEN do (simple, (0ff,BathroomLights),t)

when t = t0 + 1s when t is after tO
(Action Pattern 8) (Action Pattern 9)
ON occurs (simple, (Cabinet(1),0ff),t0) ON occurs (simple, (Cabinet(2),0n),t0)
IF context (DayOfWeek (=,Tuesday, IF context ()
Thursday,Friday))
THEN do (simple, (On,Cabinet(2)),t) THEN do (unordered, ((On,Towel)&(0On,Gel)) ,t)
when t is after tO when t is after tO

135

(Action Pattern 10)
ON occurs (unordered,
((Towel,0On)&(Gel,0On)),t0)
IF context ()
THEN do (simple, (0ff,Cabinet(2)),t)
when t = t0 + 1s

(Action Pattern 12)
ON occurs (simple, (Shower,0On),t0)
IF context ()

THEN do (simple, (Off,Shower),t)

when t is after tO

(Action Pattern 14)
ON occurs (simple, (Shower,0ff),t0)
IF context (Bathroom humidity level
(>,70%))
THEN do (simple, (On,BathroomFan),t)
when t = t0 + 4s

(Action Pattern 16)
ON occurs (simple,
(BathroomFan,0ff),t0)
IF context ()
THEN do (simple,
(0ff,BathroomLights) ,t)

when t is after tO

(Action Pattern 18)

ON occurs (simple, (Bathroom,0ff),t0)
IF context ()

THEN do (--,end,t) when --

(Action Pattern 11)
ON occurs (simple,
(Cabinet (2),0££),t0)
IF context ()
THEN do (simple, (On,Shower),t)
when t is after tO

(Action Pattern 13)

ON occurs (simple, (Shower,0ff),t0)

IF context (Bathroom humidity level
(<,70%))

THEN do (simple, (Off,BathroomLights),t)

when t is after tO

(Action Pattern 15)
ON occurs (simple, (BathroomFan,On),t0)
IF context ()

THEN do (simple, (0ff,BathroomFan),t)
when t is after tO

(Action Pattern 17)
ON occurs (simple,
(BathroomLights,0ff) ,t0)
IF context ()
THEN do (simple,
(0ff,Bathroom) ,t)
when t = t0 + 1s

136

Appendix F: Validating the Pairwise Approach with

MavPad data

Note: For each trial, discovered Patterns are shown. Besides, for each Pattern the highest

confidence level where they were discovered appears.

(Pattern 1 (25%))
ON occurs (TableLamp,On,tO0)
IF context (Temperature (<,318))
THEN do (On,FloorLamp,t)
when t = t0 + 1s

(Pattern 3 (25%))
ON occurs (FloorLamp,On,t0)
IF context (TimeOfDay(<,20:48:00))
THEN do (On,TableLamp,t)
when t = t0 + Os

(Pattern 5 (25%))
ON occurs (ClosetLight, 0ff,t0)
IF context ()

THEN do (0ff,BedroomFan,t)
when t = t0 + 20s

(Pattern 7 (25%))
ON occurs (BedroomLight,0ff,t0)
IF context (TimeOfDay (>,01:06:44)
& (<,02:46:32))
THEN do (On,BedroomLuxol,t)
when t = t0 + Os

(Pattern 9 (25%))

ON occurs (ClosetLight,0ff,t0)

IF context (LightLevel (<,44))

THEN do (On,ClosetLight,t)
when t = t0 + 15s

(Pattern 2 (25%))

ON occurs (TablelLamp,0ff,t0)
IF context (TimeOfDay (<,23:34:00))
THEN do (0ff,FloorLamp,t)

when t = t0 + 2s

(Pattern 4 (50%))

(

(

(

137

ON occurs (BedroomFan,On,t0)

IF context ()

THEN do (0ff,BedroomFan,t)
when t = t0 + 3s

Pattern 6 (75%))
ON occurs (BedroomLuxol,0n,t0)
IF context (TimeOfDay (>,01:06:00)
& (<,02:46:00))
THEN do (O0ff,BedroomLight,t)
when t = t0 + Os

Pattern 8 (50%))
ON occurs (BedroomLight,0ff,t0)
IF context ()

THEN do (0ff,BedroomLuxol,t)
when t = t0 + 61s

Pattern 10 (25%))
ON occurs (LivingRoomLight,0ff,t0)
IF context (LightLevel (>,36))
THEN do (On,ClosetLight,t)

when t = t0 + 573s

(Pattern 11 (25%))
ON occurs (ClosetLight,0On,t0)

IF context (Temperature (>,149) & (<,151)) IF context (LightLevel (>,36)& (<,44))

THEN do (Off,ClosetLight,t)
when t = t0 + 138s

(Pattern 13 (50%))

ON occurs (BedroomLampl,0n,t0)
IF context (LightLevel (=,105))
THEN do (On,BedroomLamp2,t)

when t is after tO

(Pattern 15 (25%))

ON occurs (BedroomLampl,0n,t0)

IF context ()

THEN do (0ff,BedroomLamp2,t)
when t is after tO

(Pattern 1 (25%))
ON occurs (FloorLamp,0ff,t0)
IF context (LightLevel (=,151))
THEN do (On,FloorLamp,t)
when t = t0 + 5s

(Pattern 3 (50%))
ON occurs (FloorLamp,On,t0)
IF context (TimeOfDay(<,18:17:00))
THEN do (0ff,FloorLamp,t)
when t = t0 + 9s

(Pattern 5 (25%))

ON occurs (CounterLights,0ff,t0)

IF context (LightLevel (>,45))

THEN do (0ff,LivingRoomLight,t)
when t = t0 + 19s

(Pattern 7 (25%))
ON occurs (CounterLights,0On,t0)
IF context (DayOfWeek (=,Sunday))
THEN do (On,TableLamp,t)

when t is after tO

(Pattern 12 (25%))
ON occurs (ClosetLight,On,t0)

THEN do (0ff,ClosetLight,t)
when t = t0 + 26s

(Pattern 14 (25%))

ON occurs (BedroomLampl,0ff,t0)
IF context (Lightlevel (<, 105))
THEN do (On,BedroomLamp2,t)

when t is after tO

(Pattern 16 (50%))

ON occurs (BedroomLampl,0ff,t0)

IF context (LightLevel (=,105))

THEN do (0ff,BedroomLamp2,t)
when t is after tO

(Pattern 2 (25%))
ON occurs (TableLamp,On,t0)
IF context (TimeOfDay(>,21:21:00))
THEN do (On,FloorLamp,t)
when t = t0 + 6s

(Pattern 4 (50%))

ON occurs (BathroomLight,0ff,t0)

IF context (TimeOfDay(>,20:06:00))

THEN do (On,LivingRoomLight,t)
when t = t0 + 71s

(Pattern 6 (50%))
ON occurs (LivingRoomLight,0ff,t0)
IF context (LightLevel (>,9))
THEN do (On,TableLamp,t)
when t = t0 + 18s

(Pattern 8 (50%))
ON occurs (TableLamp,On,t0)
IF context (Temperature (>,148))
THEN do (0ff,TablelLamp,t)
when t = t0 + 6s

138

(Pattern 9 (50%))
ON occurs (LivingRoomLight,0ff,t0)
IF context (DayOfWeek (=,Thursday))
THEN do (0ff,TablelLamp,t)

when t = t0 + 18s

(Pattern 11 (25%))
ON occurs (ShowerLight,0ff,t0)
IF context (TimeOfDay(>,21:44:00))
THEN do (On,CounterLights,t)
when t = t0 + 15s

(Pattern 13 (50%))

ON occurs (ShowerLight,On,t0)

IF context ()

THEN do (On,BathroomLight,t)
when t = t0 + 34s

(Pattern 15 (75%))

ON occurs (BathroomLight,On,t0)

IF context (Lightlevel (<,204))

THEN do (On,BathroomFan,t)
when t = t0 + 4s

(Pattern 17 (25%))
ON occurs (ShowerLight,On,t0)
IF context (HumidityLevel (>,85)))
THEN do (O0ff,ShowerLight,t)
when t = t0 + 48s

(Pattern 19 (75%))

ON occurs (BathroomLight,0ff,t0)

IF context ()

THEN do (0ff,ShowerLight,t)
when t = t0 + 3s

(Pattern 21 (25%))

ON occurs (BedroomFan,On,t0)
IF context (Lightlevel (<,51))
THEN do (0ff,BedroomFan,t)

when t is after tO

(Pattern 10 (25%))

ON occurs (BathroomLight,On,t0)

IF context ()

THEN do (On,CounterLights,t)
when t = t0 + 18s

(Pattern 12 (75%))

ON occurs (CounterLights,On,t0)

IF context (LightLevel (>,22))

THEN do (0ff,CounterLights,t)
when t = t0 + 32s

(Pattern 14 (50%))

ON occurs (ShowerLight,0ff,t0)

IF context (LightLevel (>,50))

THEN do (0ff,BathroomLight,t)
when t = t0 + 6s

(Pattern 16 (25%))
ON occurs (ShowerLight,0ff,t0)
IF context (HumidityLevel (>,98))
THEN do (0ff,BathroomFan,t)
when t = t0 + Os

(Pattern 18 (25%))

ON occurs (CounterLights,0On,t0)

IF context (LightLevel (<,195))

THEN do (0ff,ShowerLight,t)
when t = t0 + 26s

(Pattern 20 (25%))
ON occurs (BedroomLight,On,t0)
IF context (ReedSwitch (>,249))
THEN do (On,BedroomFan,t)

when t = t0 + 18s

(Pattern 22 (25%))

ON occurs (BedroomLight,0ff,t0)

IF context (LightLevel (<,53))

THEN do (0ff, BedroomFan,t)
when t = t0 + Os

139

(Pattern 23 (50%))

ON occurs (BedroomLight,On,t0)

IF context ()

THEN do (Off,BedroomLight,t)
when t = t0 + 43s

(Pattern 25 (50%))
ON occurs (BedroomLight,On,t0)

IF context (TimeOfDay (>,19:19:49)

& (LightLevel (>,52)

& (LightLevel (<,143))

THEN do (0ff,BedroomLuxo2,t)
when t = t0O + 30s

(Pattern 27 (25%))

ON occurs (BedroomLight,0ff,t0)

IF context (LightLevel (>,11))

THEN do (On,BedroomLuxo3,t)
when t = t0 + 9s

(Pattern 29 (50%))

ON occurs (BedroomLuxo2,0ff,t0)

IF context (Temperature (>,146))

THEN do (0ff,BedroomLuxo3,t)
when t = t0 + 5s

(Pattern 31 (25%))

ON occurs (BedroomLuxo4,0ff,t0)

IF context (LightLevel (<,111))

THEN do (On,BedroomLuxo4,t)
when t = t0 + 14s

(Pattern 33 (25%))

ON occurs (BedroomLuxo2,0ff,t0)

IF context (LightLevel (<,40))

THEN do (0ff,BedroomLuxo4,t)
when t = t0 + 9s

(Pattern 35 (25%))

ON occurs (BedroomLuxo3,0ff,t0)

IF context (LightLevel (>,12))

THEN do (0ff,BedroomLuxo4,t)
when t = t0 + 11s

(Pattern 24 (25%))

ON occurs (BedroomLight,On,t0)

IF context (LightLevel (=,211))

THEN do (On,BedroomLuxol,t)
when t = t0 + 5s

(Pattern 26 (25%))
ON occurs (BedroomLight,On,t0)
IF context (LightLevel (=,6))

THEN do (On,BedroomLuxo3,t)
when t = t0 + 23s

(Pattern 28 (75%))

ON occurs (BedroomLuxo3,0n,t0)

IF context (Temperature (<,81))

THEN do (Off,BedroomLuxo3,t)
when t = t0 + 12s

(Pattern 30 (25%))

ON occurs (BedroomLuxo4,0ff,t0)

IF context (LightLevel (<,109))

THEN do (0ff,BedroomLuxo3,t)
when t = t0 + 19s

(Pattern 32 (25%))

ON occurs (BedroomLuxo4,0n,t0)

IF context (ReedSwitch (>,242))

THEN do (0ff, BedroomLuxo4,t)
when t = t0 + 23s

(Pattern 34 (50%))

ON occurs (BedroomLuxo3,0n,t0)

IF context (LightLevel (<,48))

THEN do (Off,BedroomLuxo4,t)
when t = t0 + 24s

(Pattern 36 (50%))

ON occurs (BedroomLight,0ff,t0)

IF context (LightLevel (<,14))

THEN do (0ff,BedroomLuxo4,t)
when t = t0 + 5s

140

(Pattern 37 (25%))

ON occurs (CloselLight,On,t0)

IF context (ReedSwitch (<,228))

THEN do (0ff,Closelight,t)
when t = t0 + 5s

(Pattern 39 (50%))

ON occurs (BedroomLampl,On,t0)

IF context ()

THEN do (0ff,BedroomLampl,t)
when t = t0 + Os

(Pattern 1 (50%))

ON occurs (LivingRoomLight,0ff,t0)

IF context ()

THEN do (On,LivingRoomLight,t)
when t = t0 + 5s

(Pattern 3 (25%))

ON occurs (BedroomLight,0ff,t0)
IF context (LightLevel (<,34))
THEN do (On,LivingRoomLight,t)

when t is after tO

(Pattern 5 (50%))

ON occurs (KitchenLight,0ff,t0)

IF context (HumidityLevel (<,108))

THEN do (0ff,LivingRoomLight,t)
when t = t0 + 51s

(Pattern 7 (75%))

ON occurs (FloorLamp,On,t0)

IF context (TimeOfDay (>,22:10:00))

THEN do (0ff,LivingRoomLight,t)
when t = t0 + 40s

(Pattern 9 (25%))
ON occurs (BathroomLight,0ff,t0)
IF context (TimeOfDay (>,22:13:00))
THEN do (On,CounterLights,t)
when t = t0 + 5ls

(Pattern 38 (25%))

ON occurs (BedroomLampl,0ff,t0)

IF context ()

THEN do (On,BedroomLampl,t)
when t = t0 + 11s

(Pattern 40 (75%))

ON occurs (BedroomLampl,0On,t0)

IF context ()

THEN do (O0ff,BedroomLamp2,t)
when t = t0 + Os

(Pattern 2 (75%))

ON occurs (LivingRoomLight,0ff,t0)

IF context (TimeOfDay (>,22:10:27))

THEN do (On,LivingRoomLight,t)
when t = t0 + 115s

(Pattern 4 (75%))

ON occurs (LivingRoomLight,On,t0)

IF context ()

THEN do (0ff,LivingRoomLight,t)
when t = t0 + 4s

(Pattern 6 (25%))

ON occurs (BedroomLight,0ff,t0)
IF context (LightLevel (<,34))
THEN do (0ff,LivingRoomLight,t)

when t is after tO

(Pattern 8 (50%))
ON occurs (CounterLights,0On,t0)
IF context (DayOfWeek (=,Saturday))
THEN do (Off,KitchenLight,t)
when t = t0 + 4s

(Pattern 10 (25%))

ON occurs (ShowerLight,0ff,t0)

IF context (Temperature (<,171))

THEN do (On,CounterLights,t)
when t = t0 + 78s

141

(Pattern 11 (25%)) (Pattern 12 (50%))

ON occurs (CounterLights,0On,t0) ON occurs (ShowerLight,On,t0)

IF context (Temperature (<,171)) IF context (TimeOfDay (<,13:49:00))

THEN do (Off,CounterLights,t) THEN do (On,BathroomLight,t)
when t = t0 + 78s when t = t0 + 23s

(Pattern 13 (75%)) (Pattern 14 (25%))

ON occurs (ShowerLight,0ff,t0) ON occurs (ShowerLight,On,tO0)

IF context () IF context (LightLevel (<,26))

THEN do (O0ff,BathroomLight,t) THEN do (0ff,ShowerLight,t)
when t = t0 + 9s when t = t0 + 1s

(Pattern 15 (75%)) (Pattern 16 (75%))

ON occurs (ShowerLight,0On,t0) ON occurs (ShowerLight,On,t0)

IF context () IF context ()

THEN do (0ff, ShowerLight,t) THEN do (0ff, ShowerLight,t)
when t = t0 + 78s when t is after tO

(Pattern 17 (25%)) (Pattern 18 (25%))

ON occurs (BathroomLight,0ff,t0) ON occurs (BedroomLight,On,t0)

IF context (LightLevel (<,31)) IF context (LightLevel (>,10))

THEN do (0ff, ShowerLight,t) THEN do (0ff, BedroomLight,t)
when t = t0 + Os when t = t0 + 24s

(Pattern 19 (25%)) (Pattern 20 (25%))

ON occurs (BedroomLight,On,t0) ON occurs (BedroomLuxol,0n,t0)

IF context (TimeOfDay (>,13:24:00)) IF context (LightLevel (>,6))

THEN do (On, BedroomLuxol,t) THEN do (0ff, BedroomLuxol,t)
when t = t0 + 9s when t = t0 + 27s

142

Appendix G: Validating the Pairwise Approach with
WSU data

(Pattern 1) (Pattern 2)
ON occurs (PhoneBook,0On,tO0) ON occurs (Phone,On,t0)
IF context () IF context ()

THEN do (On,Phone,t) when t = t0 + 57s THEN do (0ff,Phone,t) when t = t0 + 50s

(Pattern 3) (Pattern 4)
ON occurs (Cabinet,On,tO) ON occurs (Raisins,On,t0)
IF context () IF context ()

THEN do (On,Raisins,t) when t = tO + 3s THEN do (On,Oatmeal,t) when t is after tO

(Pattern 5) (Pattern 6)
ON occurs (Datmeal,On,tO) ON occurs (Cabinet,0ff,t0)
IF context () IF context ()

THEN do (On,Raisins,t) when t is after tO THEN do (On,Cabinet,t) when t = t0 + 34s

(Pattern 7) (Pattern 8)

ON occurs (Phone,0ff,t0) ON occurs (Cabinet,0ff,t0)

IF context () IF context ()

THEN do (On,Water,t) when t is after tO THEN do (On,Water,t) when t = t0 + 6s
(Pattern 9) (Pattern 10)

ON occurs (Water,0ff,t0) ON occurs (Water,On,t0)

IF context () IF context ()

THEN do (On,Cabinet,t) when t = tO + 39s THEN do (0ff,Water,t) when t is after tO

(Pattern 11) (Pattern 12)
ON occurs (Water,0ff,t0) ON occurs (Sugar,On,tO)
IF context () IF context ()
THEN do (On,Pot,t) when t is after tO THEN do (0ff,Sugar,t) when t = t0 + 3s
(Pattern 13) (Pattern 14)
ON occurs (Bowl,On,tO) ON occurs (Bowl,On,tO)
IF context () IF context ()
THEN do (On,MeasuringSpoon,t) THEN do (0ff,Cabinet,t)
when t is after tO when t = t0 + 3s

143

(Pattern 15) (Pattern 16)

ON occurs (Cabinet,0On,t0) ON occurs (Medicine,On,t0)

IF context () IF context ()

THEN do (On, Medicine,t) THEN do (0ff, Cabinet,t)
when t = t0 + 2s when t is after tO

(Pattern 17) (Pattern 18)

ON occurs (Cabinet,0On,t0) ON occurs (Medicine,0ff,t0)

IF context () IF context ()

THEN do (0ff, Medicine,t) THEN do (0ff, Cabinet,t)
when t = t0 + 2s when t = t0 + 2s

(Pattern 19) (Pattern 20)

ON occurs (Cabinet,0ff,t0) ON occurs (Water,On,tO)

IF context () IF context ()

THEN do (On, Burner,t) when t = tO + 5s THEN do (On, Burner,t) when t = t0 + 3s

(Pattern 21) (Pattern 22)

ON occurs (Burner,0ff,t0) ON occurs (Burner,0ff,t0)

IF context () IF context ()

THEN do (On, Cabinet,t) THEN do (0ff, Water,t)
when t = t0 + 12s when t = t0 + 1s

(Pattern 23)

ON occurs (Burner,On,t0)

IF context ()

THEN do (0Off, Burnmer,t) when t = t0 + 9s

144

Appendix H: Validating the Action Map Approach with

MavPad data

Note: For each trial and demanded confidence level, discovered Action Maps are shown.

(Action Map 1)

(General Conditions)

context (TimeOfDay(>,00:00:00)) & context (Time0fDay(<,03:30:00)) |
context (TimeOfDay(>,10:45:00)) & context (Time0fDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t)

when —--

(Action Pattern 1)
ON occurs (simple, (On,BedroomLampl),t0)

IF context ()
THEN do (simple, (0ff,BedroomLampl),t)
when t = t0O + Os

(Action Pattern 3)

ON occurs (simple, (On,BedroomLampl),t0)
IF context ()

THEN do (simple, (0Off,BedroomLamp2),t)

when t is after tO

(Action Pattern 5)

ON occurs (simple, (0ff,BedroomLampl),t0)
IF context (TimeOfDay (>,11:51:00))

THEN do (simple, (On,BedroomlLamp2),t)

when t is after tO

145

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLampl),t)

when —--

(Action Pattern 2)
ON occurs (simple,
(0ff ,BedroomLampl) ,t0)
IF context (TimeOfDay (<,11:51:00))
THEN do (simple, (On,BedroomlLampl),t)
when t = t0 + 11s

(Action Pattern 4)

ON occurs (simple, (On,BedroomLamp2),t0)

IF context ()

THEN do (simple, (0Off,BedroomLamp2),t)
when t = t0 + Os

(Action Pattern 6)

ON occurs (simple, (On,BedroomLight),t0)

IF context (TimeOfDay(<,21:14:00))

THEN do (simple, (On,BedroomLuxol),t)
when t = t0 + 5s

(Action Pattern 7)

ON occurs (simple, (On,BedroomLight),t0)

IF context (TimeOfDay(>,21:14:00))

THEN do (simple, (0ff,BedroomLight) ,t)
when t =t0 + 43s

(Action Pattern 9)

ON occurs (simple, (0Off,BedroomLight),t0)

IF context ()

THEN do (simple, (0Off,BedroomLuxol),t)
when t =t0 + 61s

(Action Pattern -)
ON occurs (simple, (0ff,BedroomLuxol),t0)

IF context ()

THEN do (--,end,t) when --

(Action Map 2)

(General Conditions)

(Action Pattern 8)

ON occurs (simple, (On,BedroomLuxol),t0)

IF context ()

THEN do (simple, (0ff,BedroomLight) ,t)
when t = t0 + 2s

(Action Pattern 10)

ON occurs (simple, (On,BedroomLuxol),t0)

IF context ()

THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 27s

(Action Pattern -)

ON occurs (simple,
(0ff,BedroomLamp2) ,t0)

IF context ()

THEN do (--,end,t) when --

context (TimeOfDay(>,00:00:00)) & context (Time0fDay(<,03:15:00)) |
context (TimeOfDay(>,11:15:00)) & context (Time0fDay(<,23:59:59))

(Action Pattern -)
ON occurs (start,--,t0)
IF context ()

THEN do (unordered, ((0ff,BedroomLuxol)&(0ff,BedroomLight)&(0On,BedroomLuxol)&
(On,BedroomLight)& (0ff,TableLamp)&(0On,TableLamp)&(0ff,LivingRoomLight)&

(On,LivingRoomLight)),t) when --

(Action Pattern -)

ON occurs (unordered, ((0ff,BedroomLuxol)&(0ff,BedroomLight)&(0n,BedroomLuxol)&
(On,BedroomLight)& (0ff,TableLamp)&(0On,TableLamp)&(0ff,LivingRoomLight)&

(On,LivingRoomLight)),t0)
IF context ()
THEN do (--,end,t) when --

(Action Map 3)

(General Conditions)

context (Time0fDay(>,00:00:00)) & context (Time0fDay(<,03:15:00)) |
context (TimeOfDay(>,11:15:00)) & context (TimeOfDay(<,23:59:59))

146

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,TableLamp),t)

when —-

(Action Pattern 1)
ON occurs (simple, (On,TableLamp),t0)

IF context ()

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t)

when —-

(Action Pattern 2)

ON occurs (simple,
(0ff,BedroomLight) ,t0)

IF context (TimeOfDay (<,11:51:00))

THEN do (unordered, ((0ff,LivingRoomLight)& THEN do (unordered,

(0ff ,FloorLamp)&(0ff,TableLamp)),t)

when t = t0 + 6s

(Action Pattern 3)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (On,BedroomLuxol),t)
when t = t0 + 5s

(Action Pattern 5)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (0Off,BedroomLight),t)
when t = t0 + 43s

(Action Pattern 7)

ON occurs (simple, (0ff,BedroomLight),t0)
IF context ()

THEN do (simple, (0ff,BedroomLuxol),t)

when t is after tO

(Action Pattern -)

((0ff,LivingRoomLight)&
(0ff,FloorLamp)&
(0ff,TableLamp)),t)

when t is after tO

(Action Pattern 4)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (On,BedroomLuxol),t)
when t = t0 + 9s

(Action Pattern 6)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (0Off,BedroomLight),t)
when t = t0 + 24s

(Action Pattern 8)

ON occurs (simple, (On,BedroomLuxol),t0)

IF context ()

THEN do (simple, (0ff,BedroomLuxol),t)
when t = t0 + 27s

(Action Pattern -)

ON occurs (unordered, ((0ff,LivingRoomLight) ON occurs (simple,

& (0£ff,FloorLamp)&(0ff,TableLamp))

:to)
IF context ()
THEN do (--,end,t) when --

147

(0ff ,BedroomLuxol),t0)

IF context ()
THEN do (--,end,t) when --

(Action Map 4)

(General Conditions)

context (TimeOfDay(>,00:00:00)) & context (Time0fDay(<,03:15:00)) |
context (TimeOfDay(>,11:15:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (unordered, ((On,FloorLamp)&
(On,TableLamp)),t) when --

(Action Pattern 1)
ON occurs (simple, (0ff,TableLamp),t0)
IF context ()
THEN do (unordered, ((0ff,FloorLamp)&
(On,TableLamp)),t)
when t = t0 + 6s

(Action Pattern 3)

ON occurs (simple, (On,BedroomLight),t0)

IF context (TimeOfDay(>,20:00:00))

THEN do (simple, (On,BedroomLuxo1(0)),t)
when t = t0 + bs

(Action Pattern 5)
ON occurs (simple, (0ff,BedroomLight),t0)

IF context ()
THEN do (simple, (On,BedroomLuxol(1)),t)
when t = t0 + Os

(Action Pattern 7)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (Off,BedroomLight),t)
when t = t0 + 43s

(Action Pattern 9)
ON occurs (simple, (0ff,BedroomLight),t0)

IF context ()
THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 61s

148

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t)

when —-

(Action Pattern 2)
ON occurs (unordered, ((On,FloorLamp)&
(On,TableLamp)),t0)
IF context ()
THEN do (simple, ((0ff,TableLamp)&
when t = t0 + 6s

(Action Pattern 4)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (On,BedroomLuxo1(0)),t)
when t = t0 + 9s

(Action Pattern 6)
ON occurs (simple,
(0On,BedroomLuxo1(1)),t0)
IF context ()
THEN do (simple, (0ff,BedroomLight),t)
when t = t0 + Os

(Action Pattern 8)

ON occurs (simple, (On,BedroomLight),t0)

IF context (TimeOfDay(<,20:00:00))

THEN do (simple, (Off,BedroomLight),t)
when t = t0 + 24s

(Action Pattern 10)
ON occurs (simple,
(On,BedroomLuxo1(1)),t0)
IF context ()
THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 27s

(Action Pattern -)
ON occurs (simple, ((0ff,TableLamp)&

IF context ()
THEN do (--,end,t) when --

(Action Map 5)

(General Conditions)

(Action Pattern -)
ON occurs (simple,
(0ff ,BedroomLuxol),t0)
IF context ()
THEN do (--,end,t) when --

context (Time0fDay(>,00:00:00)) & context (Time0fDay(<,04:15:00)) |
context (TimeOfDay(>,11:15:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (unordered, ((On,ClosetLight)&
(0ff,ClosetLight)),t) when --

(Action Pattern 1)

ON occurs (simple, (On,BedroomLight),t0)

IF context (TimeOfDay(>,11:59:00))

THEN do (simple, (On,BedroomLuxo1(0)),t)
when t = t0 + 5s

(Action Pattern 3)
ON occurs (simple, (0Off,BedroomLight),t0)

IF context ()
THEN do (simple, (On,BedroomLuxol(1)),t)
when t = t0 + Os

(Action Pattern 5)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (0ff,BedroomLight),t)
when t = t0 + 43s

(Action Pattern 7)
ON occurs (simple, (0Off,BedroomLight),t0)

IF context ()
THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 61s

149

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t)

when —--

(Action Pattern 2)

ON occurs (simple, (On,BedroomLight),t0)

IF context ()

THEN do (simple, (On,BedroomLuxo1(0)),t)
when t = t0 + 9s

(Action Pattern 4)
ON occurs (simple,
(On,BedroomLuxo1(1)),t0)
IF context ()
THEN do (simple, (Off,BedroomLight),t)
when t = t0 + 1s

(Action Pattern 6)

ON occurs (simple, (On,BedroomLight),t0)

IF context (TimeOfDay(<,11:59:00))

THEN do (simple, (0ff,BedroomLight),t)
when t = t0 + 24s

(Action Pattern 8)
ON occurs (simple,
(On,BedroomLuxo1(1)),t0)
IF context ()
THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 27s

(Action Pattern 9)
ON occurs (simple, (0ff,BedroomLight),t0)

IF context ()
THEN do (simple, (0ff,LivingRoomLight),t)

when t is after tO

(Action Pattern -)

(Action Pattern 10)
ON occurs (simple,
(0ff ,BedroomLuxol),t0)
IF context ()
THEN do (--,end,t) when --

ON occurs (unordered, ((On,ClosetLight)& (0ff,ClosetLight)),t0)

IF context ()
THEN do (--,end,t) when --

(Action Map 6)

(General Conditions)

context (TimeOfDay(>,00:00:00)) & context (Time0fDay(<,03:00:00)) |
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (unordered, ((On,LivingRoomLight)&
(0ff,LivingRoomLight)&
(On,ClosetLight)&
(0ff,ClosetLight)),t) when --

(Action Pattern 1)
ON occurs (simple, (On,BedroomLampl),t0)

IF context ()
THEN do (simple, (0ff,BedroomLampl)
when t = t0 + Os

(Action Pattern 3)

ON occurs (simple, (On,BedroomLampl),t0)

IF context (TimeOfDay(<,11:39:00))

THEN do (simple, (0Off,BedroomLamp2),t)
when t = t0 + 8s

(Action Pattern 5)
ON occurs (simple, (0ff,BedroomLampl),t0)

IF context ()
THEN do (simple, (0Off,BedroomLamp2),t)
when t is after tO

150

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t)

when --

(Action Pattern 2)
ON occurs (simple,
(0ff,BedroomLamp1) ,t0)
IF context (TimeOfDay(>,11:39:00))
THEN do (simple, ((On,BedroomLampl)&
when t = t0 + 11s

(Action Pattern 4)

ON occurs (simple, (On,BedroomLamp2),t0)

IF context ()

THEN do (simple, (Off,BedroomLamp2),t)
when t = t0 + Os

(Action Pattern 6)
ON occurs (simple,
(0£ff ,BedroomLamp2) ,t0)
IF context ()
THEN do (simple, (On,BedroomLamp2),t)
when t = t0 + 2s

(Action Pattern 7)
ON occurs (simple, (0Off,BedroomLampl),t0)

IF context ()

THEN do (simple, (On,BedroomLamp2),t)
when t = t0 + 43s

(Action Pattern 9)

(Action Pattern 8)
ON occurs (simple,
(0ff ,BedroomLight) ,t0)

IF context ()
THEN do (unordered, (On,LivingRoomLight)

& (0ff,LivingRoomLight)

& (On,ClosetLight)

& (0ff,ClosetLight)),t)

when t = t0 + 24s

(Action Pattern 10)

ON occurs (unordered, ((On,LivingRoomLight)& ON occurs (unordered,

(0ff,LivingRoomLight)&
(On,ClosetLight)&
(0ff,ClosetLight)),t0)

IF context ()
THEN do (simple, (0ff,BedroomLight),t)

when t = t0 + 43s

(Action Pattern -)
ON occurs (simple, (0Off,BedroomLamp2),t0)

IF context ()
THEN do (--,end,t) when --

(Action Map 7)

(General Conditions)

context (TimeOfDay(>,00:00:00)) & context

((On,LivingRoomLight) &
(0ff,LivingRoomLight)&
(On,ClosetLight)&
(0ff,ClosetLight)),t0)
IF context ()
THEN do (simple, (0ff,BedroomLight),t)
when t = t0 + 24s

(Action Pattern -)
ON occurs (simple,
(0ff ,BedroomLight) ,t0)
IF context ()
THEN do (--,end,t) when --

(TimeOfDay(<,04:15:00)) |

context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)
ON occurs (start,--,t0)
IF context ()

THEN do (unordered, ((On,LivingRoomLight)&(On,BedroomLight)&
(On,ClosetLight)&(0ff,ClosetLight),t) when --

(Action Pattern 1)

ON occurs (unordered, ((On,LivingRoomLight)&(0On,BedroomLight)&
(On,ClosetLight)&(0ff,ClosetLight),t0)

IF context ()

THEN do (simple, (0ff,BedroomLight),t) when t = tO + 43s

151

(Action Pattern 2)

ON occurs (unordered, ((On,LivingRoomLight)&(On,BedroomLight)&
(On,ClosetLight)&(0ff,ClosetLight),t0)

IF context ()

THEN do (simple, (0ff,BedroomLight),t) when t = t0 + 24s

(Action Pattern -)

ON occurs (simple, (0ff,BedroomLight),t0)
IF context ()

THEN do (--,end,t) when --

(Action Map 8)

(General Conditions)
context (TimeOfDay(>,00:00:00)) & context (TimeO0fDay(<,04:15:00)) |
context (TimeOfDay(>,10:45:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t) when --

(Action Pattern 1)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()

THEN do (unordered, ((On,BedroomLuxol)&(0ff,BedroomLight)),t) when t

(Action Pattern 2)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()

THEN do (unordered, ((On,BedroomLuxol)&(0ff,BedroomLight)),t) when t

(Action Pattern 3)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()

THEN do (unordered, ((On,BedroomLuxol)&(0ff,BedroomLight)),t) when t

(Action Pattern 4)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()

THEN do (unordered, ((0On,BedroomLuxol)&(0ff,BedroomLight)),t) when t

152

t0

t0

t0

t0

+

+

43s

Bs

24s

9s

(Action Pattern 5)

ON occurs (unordered, ((On,BedroomLuxol)&(0ff,BedroomLight)),t0)

IF context ()

THEN do (simple, (Off,BedroomLuxol),t) when t = tO + 61s

(Action Pattern 6)

ON occurs (unordered, ((On,BedroomLuxol)&(0ff,BedroomLight)),t0)

IF context ()

THEN do (simple, (0ff,BedroomLuxol),t) when t = t0 + 27s

(Action Pattern -)

ON occurs (simple, (0Off,BedroomLuxol),t0)
IF context ()

THEN do (--,end,t) when --

Trial 1 (Demanded confidence level: 50%)

(Action Map 1)

(General Conditions)

context (Time0fDay(>,00:00:00)) & context (Time0fDay(<,04:15:00)) |
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLight),t)

when --

(Action Pattern 2)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()
THEN do (unordered, ((On,BedroomLuxol)&
(0ff,BedroomLight)),t)
when t = t0 + 5s

153

(Action Pattern 1)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()
THEN do (unordered, ((On,BedroomLuxol)&
(0ff,BedroomLight)),t)
when t = t0 + 43s

(Action Pattern 3)
ON occurs (simple, (On,BedroomLight),t0)
IF context ()
THEN do (unordered, ((On,BedroomLuxol)&
(0ff ,BedroomLight)),t)
when t = t0 + 24s

(Action Pattern 4)
ON occurs (simple, (On,BedroomLight),t0)

IF context ()
THEN do (unordered, ((On,BedroomLuxol)&
(0ff ,BedroomLight)) ,t)
when t = t0 + 9s

(Action Pattern 6)
ON occurs (unordered, ((On,BedroomLuxol)&
(0££f ,BedroomLight)),t0)
IF context ()
THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 27s

(Action Map 2)

(General Conditions)

(Action Pattern 5)
ON occurs (unordered, ((On,BedroomLuxol)
& (0ff,BedroomLight)),t0)
IF context ()
THEN do (simple, (0Off,BedroomLuxol),t)
when t = t0 + 61s

(Action Pattern -)
ON occurs (simple,
(0ff ,BedroomLuxol) ,t0)
IF context ()
THEN do (--,end,t)

when —-

context (TimeOfDay(>,00:00:00)) & context (Time0fDay(<,03:15:00)) |
context (TimeOfDay(>,08:00:00)) & context (Time0fDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BedroomLampl),t)

when —-

(Action Pattern 2)

ON occurs (simple, (0ff,BedroomLampl),t0)

IF context ()

THEN do (simple, (On,BedroomLampl),t)
when t = t0 + 11s

(Action Pattern 4)

ON occurs (simple, (On,BedroomLampl),t0)

IF context ()

THEN do (simple, (0Off,BedroomLamp2),t)
when t = t0 + 8s

(Action Pattern 6)
ON occurs (simple, (0ff,BedroomLampl),t0)

IF context ()
THEN do (simple, (0Off,BedroomLamp2),t)
when t is after tO

154

(Action Pattern 1)

ON occurs (simple, (On,BedroomLampl),t0)

IF context ()

THEN do (simple, (0Off,BedroomLampl),t)
when t = t0 + Os

(Action Pattern 3)

ON occurs (simple, (On,BedroomLampl),t0)

IF context ()

THEN do (simple, (0Off,BedroomLamp2),t)
when t is after tO

(Action Pattern 5)

ON occurs (simple, (On,BedroomLamp2),t0)

IF context ()

THEN do (simple, (Off,BedroomLamp2),t)
when t = t0 + Os

(Action Pattern 7)
ON occurs (simple,
(0£ff ,BedroomLampl) ,t0)
IF context ()
THEN do (simple, (On,BedroomLamp2),t)
when t is after tO

(Action Pattern 8) (Action Pattern -)

ON occurs (simple, (On,BedroomLampl),t0) ON occurs (simple,

(0£f ,BedroomLamp2) ,t0)
IF context () IF context ()
THEN do (simple, (On,BedroomLamp2),t) THEN do (--,end,t) when --

when t is after tO
(Action Map 3)

(General Conditions)

context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<,03:15:00)) |
context (TimeOfDay(>,11:15:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -) (Action Pattern -)
ON occurs (start,--,t0) ON occurs (start,--,t0)
IF context () IF context ()
THEN do (simple, (On,TableLamp),t) THEN do (simple, (On,BedroomLight),t)
when -- when --
(Action Pattern 1) (Action Pattern 2)
ON occurs (simple, (On,TableLamp),t0) ON occurs (simple, (On,BedroomLight),t0)
IF context () IF context ()
THEN do (simple, (0Off,TableLamp),t) THEN do (simple, (On,BedroomLuxol),t)
when t = t0 + 6s when t = t0 + 5s
(Action Pattern 3) (Action Pattern 4)
ON occurs (simple, (On,BedroomLight),t0) ON occurs (simple,
(0£ff,BedroomLight) ,t0)
IF context (TimeOfDay(<,21:00:00)) IF context (TimeOfDay(>,01:43:00))
THEN do (simple, (On,BedroomLuxol),t) THEN do (simple, (On,BedroomLuxol),t)
when t = t0 + 9s when t = t0 + Os
(Action Pattern 5) (Action Pattern 6)
ON occurs (simple, (On,BedroomLight),t0) ON occurs (simple, (On,BedroomLight),t0)
IF context (TimeOfDay(>,21:00:00)) IF context ()
THEN do (simple, (Off,BedroomLight),t) THEN do (simple, (Off,BedroomLight),t)
when t =t0 + 43s when t = t0 + 24s
(Action Pattern 7) (Action Pattern 8)
ON occurs (simple, (0Off,BedroomLight),t0) ON occurs (simple, (On,BedroomLuxol),t0)
IF context (TimeOfDay(<,01:43:00)) IF context ()
THEN do (simple, (0Off,BedroomLuxol),t) THEN do (simple, (0Off,BedroomLuxol),t)
when t =t0 + 61s when t = t0 + 27s

155

(Action Pattern -) (Action Pattern -)
ON occurs (simple, (0ff,TableLamp),t0) ON occurs (simple,
(0ff ,BedroomLuxol) ,t0)
IF context () IF context ()
THEN do (--,end,t) when -- THEN do (--,end,t) when --

(Action Map 3)
(General Conditions)

context (TimeOfDay(>,00:00:00)) & context (Time0fDay(<,04:15:00)) |
context (TimeOfDay(>,08:00:00)) & context (Time0fDay(<,23:59:59))

(Action Pattern -) (Action Pattern -)
ON occurs (start,--,t0) ON occurs (unordered, ((On,ClosetLight)&
IF context () (0ff,ClosetLight)),t0)
THEN do (unordered, ((On,ClosetLight)& IF context ()
(0ff,ClosetLight)),t) when -- THEN do (--,end,t) when --

Trial 1 (Demanded confidence level: 75%)

(Action Map 1)

(General Conditions)
context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<,04:15:00)) |
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -) (Action Pattern -)
ON occurs (start,--,t0) ON occurs (unordered, ((On,BedroomLight)
IF context () & (0ff,BedroomLight)&
(On,BedroomLuxol)&
THEN do (unordered, ((On,BedroomLight)& (0ff ,BedroomLuxol)),t0)
(0ff,BedroomLight)&(0On,BedroomLuxol) IF context ()
& (Off,BedroomLuxol)),t) when -- THEN do (--,end,t) when --

156

(Action Map 1)

(General Conditions)
context (Time0fDay(>,00:00:00)) & context (TimeOfDay(<,05:30:00)) |
context (TimeOfDay(>,09:45:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -) (Action Pattern -)

ON occurs (start,--,t0) ON occurs (start,--,t0)

IF context () IF context ()

THEN do (simple, (On,BathroomLight),t) THEN do (unordered, ((On,ShowerLights)&
when -- (0ff,ShowerLights)),t) when --

(Action Pattern 1) (Action Pattern 2)

ON occurs (simple, (On,ShowerLights),t0) ON occurs (simple, (On,ShowerLights),t0)

IF context () IF context ()

THEN do (simple, (On,BathroomLight),t) THEN do (simple, (On,BathroomLight),t)
when t = t0 + 34s when t = t0 + 23s

(Action Pattern 3) (Action Pattern 4)

ON occurs (simple, (On,BathroomLight),t0) ON occurs (simple,

(0ff,ShowerLights) ,t0)

IF context () IF context ()

THEN do (simple, (0Off,BathroomLight),t) THEN do (simple, (0Off,BathroomLight),t)
when t = t0 + 64s when t = t0 + 6s

(Action Pattern 5) (Action Pattern 6)

ON occurs (simple, (0ff,ShowerLights),t0) ON occurs (simple,
(On,BathroomLight) ,t0)

IF context (TimeOfDay(<,22:11:00)) IF context (TimeOfDay(>,02:43:00))

THEN do (simple, (0ff,BathroomLight),t) THEN do (simple, (0ff,BathroomLight),t)
when t = t0O + 9s when t is after tO

(Action Pattern 7) (Action Pattern 8)

ON occurs (simple, (0Off,LivingRoomLight),t0) ON occurs (simple,
(0£ff ,BathroomLight),t0)

IF context () IF context ()
THEN do (simple, (On,LivingRoomLight),t) THEN do (simple, (On,LivingRoomLight),t)
when t = t0 + 5s when t = t0 + 71s

157

(Action Pattern 9) (Action Pattern 10)
ON occurs (simple, (0ff,LivingRoomLight),t0) ON occurs (simple,
(0ff,BedroomLight) ,t0)

IF context () IF context ()
THEN do (simple, (On,LivingRoomLight),t) THEN do (simple, (On,LivingRoomLight),t)
when t = t0 + 18s when t is after tO
(Action Pattern 11) (Action Pattern 12)
ON occurs (simple, (On,BathroomLight),t0) ON occurs (simple,
(On,BathroomLight) ,t0)
IF context (TimeOfDay(<,02:43:00)) IF context ()
THEN do (simple, (On,CounterLights),t) THEN do (simple, (On,CounterLights),t)
when t = t0 + 18s when t = t0 + 51s
(Action Pattern 13) (Action Pattern 14)
ON occurs (simple, (0ff,ShowerLights),t0) ON occurs (simple,
(0ff,ShowerLights),t0)
IF context () IF context (TimeOfDay(>,22:11:00))
THEN do (simple, (On,CounterLights),t) THEN do (simple, (On,CounterLights),t)
when t = t0 + 15s when t = t0 + 78s
(Action Pattern 15) (Action Pattern 16)
ON occurs (simple, (On,CounterLights),t0) ON occurs (simple,
(On,CounterLights) ,t0)
IF context (TimeOfDay(>,18:31:00)) IF context ()
THEN do (simple, (Off,CounterLights),t) THEN do (simple, (0ff,CounterLights),t)
when t = t0 + 32s when t = t0 + 78s
(Action Pattern 17) (Action Pattern 18)

ON occurs (simple, (On,LivingRoomLight),t0) ON occurs (simple,
(On,BathroomLight) ,t0)

IF context () IF context ()

THEN do (simple, (On,ShowerLights),t) THEN do (simple, (On,ShowerLights),t)
when t is after tO when t is after tO

(Action Pattern 19) (Action Pattern 20)

ON occurs (simple, (On,LivingRoomLight),t0) ON occurs (simple,
(0ff,CounterLights),t0)

IF context () IF context ()
THEN do (simple, (0Off,LivingRoomLight),t) THEN do (simple,
when t = t0 + 46s (0ff,LivingRoomLight) ,t)

when t = t0 + 19s

158

(Action Pattern 21) (Action Pattern 22)

ON occurs (simple, (On,BedroomLight),t0) ON occurs (simple,
(0ff,BedroomLight),t0)
IF context () IF context ()
THEN do (simple, (0ff,LivingRoomLight),t) THEN do (simple, (On,BedroomLight),t)
when t = t0 + 1s when t = t0 + 189s
(Action Pattern 23) (Action Pattern 24)

ON occurs (simple, (0ff,BathroomLight),t0) ON occurs (simple,
(0ff ,BathroomLight) ,t0)

IF context () IF context ()
THEN do (simple, (Off,ShowerLights),t) THEN do (simple, (Off,ShowerLights),t)
when t = t0 + 5s when t = t0 + 12s
(Action Pattern 25) (Action Pattern 26)
ON occurs (simple, (On,CounterLights),t0) ON occurs (simple,
(On, ShowerLights) ,t0)
IF context (TimeOfDay(<,18:31:00)) IF context ()
THEN do (simple, (0ff,ShowerLights),t) THEN do (simple, (0Off,ShowerLights),t)
when t = t0 + 26s when t = t0 + 48s
(Action Pattern 27) (Action Pattern 28)
ON occurs (simple, (On,ShowerLights),t0) ON occurs (simple,
(On,ShowerLights) ,t0)
IF context () IF context ()
THEN do (simple, (Off,ShowerLights),t) THEN do (simple, (Off,ShowerLights),t)
when t = t0 + 1s when t = t0 + 55s
(Action Pattern 29) (Action Pattern 30)
ON occurs (simple, (On,BedroomLight),t0) ON occurs (simple,
(On,BedroomLight) ,t0)
IF context () IF context ()
THEN do (simple, (0ff,BedroomLight),t) THEN do (simple, (0ff,BedroomLight),t)
when t = t0 + 43s when t = t0 + 24s
(Action Pattern -) (Action Pattern -)

ON occurs (simple, (0Off,LivingRoomLight),t0) ON occurs (unordered, ((On,ShowerLights)
& (0ff,ShowerLights)),t0)

IF context () IF context ()

THEN do (--,end,t) when -- THEN do (--,end,t) when —--

159

(Action Map 2)

(General Conditions)

context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<,04:45:00)) |
context (TimeOfDay(>,10:15:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,BathroomLight),t)

when —-

(Action Pattern 2)
ON occurs (simple, (On,BedroomLampl),t0)
IF context ()

THEN do (unordered, (0ff,BedroomLampl),t)

when t t0 + 1s

(Action Pattern 4)

ON occurs (unordered, ((On,BedroomLampl)&

(0££f ,BedroomLamp1)),t0)
IF context ()
THEN do (simple, (On,BedroomLampl),t)

when t is after tO

(Action Pattern 6)

ON occurs (simple, (0ff,BedroomLight),t0)

IF context ()
THEN do (simple, (On,LivingRoomLight),t)
t0 + 3s

when t

(Action Pattern 8)

ON occurs (simple, (0ff,BathroomLight),t0)

IF context ()
THEN do (simple, (On,LivingRoomLight),t)

when t is after tO

160

(Action Pattern 1)
ON occurs (simple, (On,BedroomLight),t0)
IF context (TimeOfDay(<,22:48:00))
THEN do (unordered, ((On,BedroomLampl)&
(0ff,BedroomLampl)),t)
when t t0 + 226s

(Action Pattern 3)

ON occurs (simple, (On,BedroomLampl),t0)

IF context ()

THEN do (simple, (Off,BedroomLampl),t)
when t t0 + bs

(Action Pattern 5)
ON occurs (simple,
(0££f ,BedroomLampl) ,t0)
IF context ()
THEN do (simple, (On,LivingRoomLight),t)

when t is after tO

(Action Pattern 7)

ON occurs (simple,
(0ff,BedroomLight) ,t0)

IF context ()

THEN do (simple, (On,LivingRoomLight),t)

t0 + 15s

when t

(Action Pattern 9)

ON occurs (simple,
(On,BathroomLight) ,t0)

IF context ()

THEN do (simple, (Off,BathroomLight),t)

when t is after tO

(Action Pattern 10) (Action Pattern 11)
ON occurs (simple, (On,LivingRoomLight),t0) ON occurs (simple,
(On,BedroomLight) ,t0)

IF context () IF context (TimeOfDay(>,22:48:00))
THEN do (simple, (On,BedroomLight),t) THEN do (simple, (0ff,BedroomLight) ,t)
when t is after tO when t = t0 + 43s
(Action Pattern 12) (Action Pattern -)
ON occurs (simple, (On,BedroomLight),t0) ON occurs (simple,
(0£ff ,BedroomLight) ,t0)
IF context () IF context ()
THEN do (simple, (Off,BedroomLight),t) THEN do (--,end,t)
when t = t0 + 24s when --

(Action Map 3)

(General Conditions)
context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<,05:30:00)) |
context (TimeOfDay(>,09:45:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -) (Action Pattern -)

ON occurs (start,--,t0) ON occurs (start,--,t0)

IF context () IF context ()

THEN do (simple, (On,BathroomLight),t) THEN do (simple, (On,LivingRoomLight),t)
when -- when --

(Action Pattern 1) (Action Pattern 2)

ON occurs (simple, (On,LivingRoomLight),t0) ON occurs (simple,
(0ff ,BathroomLight) ,t0)

IF context () IF context ()

THEN do (simple, (On,BathroomLight),t) THEN do (simple, (On,BathroomLight),t)
when t is after tO when t is after tO

(Action Pattern 3) (Action Pattern 4)

ON occurs (simple, (0Off,LivingRoomLight),t0) ON occurs (simple,
(On,BathroomLight) ,t0)

IF context () IF context ()
THEN do (simple, (On,LivingRoomLight),t) THEN do (simple, (Off,BathroomLight),t)
when t = tO + bBs when t = t0 + 492s

161

(Action Pattern 5) (Action Pattern 6)
ON occurs (simple, (0ff,LivingRoomLight),t0) ON occurs (simple,
(0ff,BathroomLight),t0)

IF context () IF context (TimeOfDay(<,17:31:00))

THEN do (simple, (On,LivingRoomLight),t) THEN do (simple, (On,LivingRoomLight),t)
when t = t0 + 1156s when t = t0 + 71s

(Action Pattern 7) (Action Pattern 8)

ON occurs (simple, (0ff,BedroomLight),t0) ON occurs (simple,
(0ff,BathroomLight),t0)

IF context (TimeOfDay(<,13:20:00)) IF context (TimeOfDay(>,17:31:00))
THEN do (simple, (On,LivingRoomLight),t) THEN do (unordered,
when t is after tO ((On,LivingRoomLight)&

(0ff,LivingRoomLight)),t)

when t is after tO

(Action Pattern 9) (Action Pattern 10)
ON occurs (unordered, ((On,LivingRoomLight)& ON occurs (simple, (0Off,BedroomLight),t)
(0ff,LivingRoomLight)),t0)

IF context () IF context ()
THEN do (simple, (0ff,LivingRoomLight),t) THEN do (simple,
when t = t0 + 3s (0ff,LivingRoomLight),t)

when t = t0 + 386s

(Action Pattern 11) (Action Pattern 12)
ON occurs (simple, (0ff,BedroomLight),t0) ON occurs (simple,
(On,BedroomLight) ,t0)
IF context (TimeOfDay(>,13:20:00)) IF context ()
THEN do (simple, (On,BedroomLight),t) THEN do (simple, (0ff,BedroomLight),t)
when t = t0 + 428s when t = t0 + 43s
(Action Pattern 13) (Action Pattern 14)
ON occurs (simple, (On,BedroomLight),t0) ON occurs (simple,
(0ff ,BedroomLight),t0)
IF context () IF context ()
THEN do (simple, (Off,BedroomLight),t) THEN do (--,end,t)
when t = t0 + 24s when --

162

(Action Map 1)

(General Conditions)
context (Time0fDay(>,00:00:00)) & context (TimeOfDay(<,05:30:00)) |
context (TimeOfDay(>,09:45:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -) (Action Pattern 1)
ON occurs (start,--,t0) ON occurs (simple,

(On,LivingRoomLight) ,t0)

IF context () IF context ()

THEN do (simple, (On,BathroomLight),t) THEN do (simple, (On,BathroomLight),t)
when —- when t is after tO

(Action Pattern 2) (Action Pattern 3)

ON occurs (simple, (On,BathroomLight),t0) ON occurs (simple,
(0ff ,BathroomLight) ,t0)

IF context () IF context (TimeOfDay(<,17:49:00))

THEN do (unordered, (0ff,BathroomLight),t) THEN do (simple, (On,LivingRoomLight),t)
when t is after tO when t = t0 + 71s

(Action Pattern 4) (Action Pattern 5)

ON occurs (simple, (0Off,LivingRoomLight),t0) ON occurs (simple,
(0£ff,BathroomLight),t0)

IF context () IF context (TimeOfDay(>,17:49:00))
THEN do (simple, (On,LivingRoomLight),t) THEN do (simple,
when t = t0 + 5s (0ff,LivingRoomLight) ,t)

when t = t0 + 169s

(Action Pattern 6) (Action Pattern 7)
ON occurs (simple, (0ff,LivingRoomLight),t0) ON occurs (simple,
(On,LivingRoomLight),t0)

IF context () IF context ()
THEN do (simple, (On,LivingRoomLight),t) THEN do (simple,
when t = t0 + 115s (0ff,LivingRoomLight) ,t)

when t = t0 + 4s

(Action Pattern -)

ON occurs (simple, (0Off,LivingRoomLight),t0)
IF context ()

THEN do (--,end,t) when --

163

Trial 2 (Demanded confidence level: 75%

(Action Map 1)

(General Conditions)
context (Time0fDay(>,00:00:00)) & context (Time0fDay(<,05:30:00)) |
context (TimeOfDay(>,09:45:00)) & context (Time0fDay(<,23:59:59))

(Action Pattern -) (Action Pattern 1)
ON occurs (start,--,t0) ON occurs (simple,
(On,LivingRoomLight) ,t0)
IF context () IF context ()
THEN do (simple, (On,BathroomLight),t) THEN do (simple, (On,BathroomLight),t)
when -- when t is after tO
(Action Pattern 2) (Action Pattern 3)
ON occurs (simple, (On,BathroomLight),t0) ON occurs (simple,
(0ff,BathroomLight) ,t0)
IF context () IF context (TimeOfDay(<,17:49:00))
THEN do (unordered, (0ff,BathroomLight),t) THEN do (simple, (On,LivingRoomLight),t)
when t is after tO when t = t0 + 71s
(Action Pattern 4) (Action Pattern 5)

ON occurs (simple, (0ff,LivingRoomLight),t0) ON occurs (simple,
(0ff,BathroomLight),t0)

IF context () IF context (TimeOfDay(>,17:49:00))
THEN do (simple, (On,LivingRoomLight),t) THEN do (simple,
when t = t0 + 5s (0ff,LivingRoomLight),t)

when t = t0 + 169s

(Action Pattern 6) (Action Pattern 7)
ON occurs (simple, (0ff,LivingRoomLight),t0) ON occurs (simple,
(On,LivingRoomLight) ,t0)

IF context () IF context ()
THEN do (simple, (0ff,LivingRoomLight),t) THEN do (simple,
when t = t0 + 115s (0ff,LivingRoomLight) ,t)

when t = t0 + 4s

164

(Action Pattern -)

ON occurs (simple, (0Off,LivingRoomLight),t0)
IF context ()

THEN do (--,end,t) when --

(Action Map 1)

(General Conditions)
context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<,05:00:00)) |
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (unordered, ((On,BedroomLight)&(0ff,BedroomLight)),t) when --

(Action Pattern -)

ON occurs (unordered, ((On,BedroomLight)&(0ff,BedroomLight)),t0)
IF context ()

THEN do (--,end,t) when --

Trial 3 (Demanded confidence level: 50Y%

(Action Map 1)

(General Conditions)
context (Time0fDay(>,00:00:00)) & context (Time0fDay(<,05:00:00)) |
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59:59))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (unordered, ((On,BedroomLight)&(0ff,BedroomLight)),t) when --

165

(Action Pattern -)

ON occurs (unordered, ((On,BedroomLight)&(0ff,BedroomLight)),t0)

IF context ()
THEN do (--,end,t) when --

Trial 3 (Demanded confidence level: 75Y%

(Action Map 1)

(General Conditions)
context (TimeOfDay(>,00:00:00)) & context (TimeOfDay(<,05:00
context (TimeOfDay(>,08:00:00)) & context (TimeOfDay(<,23:59

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (unordered, ((On,BedroomLight)&(0ff,BedroomLight)),t)

(Action Pattern -)

:00)) |
:59))

when —--

ON occurs (unordered, ((On,BedroomLight)&(0ff,BedroomLight)),t0)

IF context ()
THEN do (--,end,t) when --

166

Appendix I: Validating the Action Map Approach with
WSU data

(Action Map 1)

(General Condition)

context (TimeOfDay(>,10:45:00)) & context (TimeOfDay(<:18:15:00)) &
context (DayOfWeek(=, (Monday,Tuesday,Wednesday,Thursday,Friday)))

(Action Pattern -)

ON occurs (start,--,t0)

IF context ()

THEN do (simple, (On,PhoneBook),t)

when --

(Action Pattern 2)

ON occurs (simple, (On,Phone),t0)

IF context ()

THEN do (simple, (Off,Phone),t)
when t = t0 + 50s

(Action Pattern 4)

ON occurs (simple, (On,Water(0)),t0)

IF context ()

THEN do (simple, (0Off,Water(0)),t)

when t = t0 + 23s

(Action Pattern 6)
ON occurs (unordered, ((On,Cabinet(0))&
(0ff,Cabinet(0))),t0)
IF context ()
THEN do (unordered, ((On,Oatmeal)&
(On,Raisins)),t)

when t = t0 + 3s

167

(Action Pattern 1)
ON occurs (simple, (On,PhoneBook),t0)
IF context ()
THEN do (simple, (On,Phone),t)
when t = t0 + 57s
(Action Pattern 3)
ON occurs (simple, (Off,Phone),t0)
IF context ()
THEN do (simple, (On,Water(0)),t)
when t is after tO

(Action Pattern 5)
ON occurs (simple, (0ff,Water(0)),t0)
IF context ()
THEN do (unordered, ((On,Cabinet(0))&
(0ff,Cabinet (0))),t)
when t = t0 + 39s
(Action Pattern 7)
ON occurs (unordered, ((On,Oatmeal)&
(On,Raisins)),t0)
IF context ()
THEN do (simple, (On,Sugar),t)

when t = t0 + 2s

(Action Pattern 8)
ON occurs (unordered, ((On,Oatmeal)&
(On,Raisins)),t0)
IF context ()
THEN do (simple, (On,MeasuringSpoon,t)
when t = t0 + 3s

(Action Pattern 10)

ON occurs (simple, (On,MeasuringSpoon),t0)

IF context ()
THEN do (simple, (On,Bowl),t)
when t = t0 + 18s
(Action Pattern 12)
ON occurs (simple, (0Off,Cabinet(0)),t0)
IF context ()
THEN do (simple, (On,Water(1)),t)
when t = t0 + 10s
(Action Pattern 14)
ON occurs (simple, (0ff,Water(1)),t0)
IF context (TimeOfDay(<,14:17:00))
THEN do (simple, (On,Pot),t)
when t = t0 + 4s
(Action Pattern 16)
ON occurs (simple, (On,Pot),t0)
IF context ()
THEN do (simple, (On,Burner),t)
when t = t0 + 10s
(Action Pattern 18)
ON occurs (simple, (0Off,Burner),t0)
IF context ()
THEN do (simple, (On,Cabinet(1)),t)

when t is after tO

(Action Pattern 20)

ON occurs (simple, (On,Medicine),t0)
IF context ()

THEN do (simple, (0ff,Cabinet(1)),t)

when t = t0 + 2s

168

(Action Pattern 9)
ON occurs (simple, (On,Sugar),t0)

IF context ()

THEN do (simple, (On,MeasuringSpoon),t)
when t = t0 + bs

(Action Pattern 11)

ON occurs (simple, (On,Bowl),t0)

IF context ()

THEN do (simple, (0ff,Cabinet(0)),t)
when t =t + 7s

(Action Pattern 13)

ON occurs (simple, (On,Water(1)),t0)

IF context ()

THEN do (simple, (0Off,Water(1)),t)
when t = t + 5s

(Action Pattern 15)

ON occurs (simple, (0ff,Water(1)),t0)

IF context (TimeOfDay(<,14:17:00))

THEN do (simple, (On,Burner),t)
when t = t + 12s

(Action Pattern 17)

ON occurs (simple, (On,Burner),t0)

IF context ()

THEN do (simple, (Off,Burner),t)
when t is after tO

(Action Pattern 19)
ON occurs (simple, (On,Cabinet(1)),t0)
IF context ()
THEN do (simple, (On,Medicine),t)

when t = t + 2s
(Action Pattern 21)
ON occurs (simple, (0Off,Cabinet(1)),t0)
IF context (DayOfWeek(<>,Tuesday))
THEN do (simple, (On,Water(2)),t)

when t = t + 9s

(Action Pattern 22)

ON occurs (simple, (0Off,Cabinet(1)),t0)

IF context (DayOfWeek(=,Tuesday))

THEN do (simple, (On,ColdWater),t)
when t = t0 + 4s

(Action Pattern 24)
ON occurs (simple, (On,ColdWater),t0)

IF context ()
THEN do (unordered, ((On,Cabinet(2))&
(On,Water(2))&(0ff,Water(2))),t)
when t = t0 + 8s

(Action Pattern 26)

ON occurs (simple, (On,Cabinet(2)),t0)

IF context ()

THEN do (simple, (Off,Medicine),t)
when t = t0 + 2s

(Action Pattern 28)
ON occurs (simple, (0ff,Cabinet(2)),t0)
IF context ()
THEN do (simple, (On,Water(3)),t)
when t = t0 + 15s

(Action Pattern -)

ON occurs (simple, (0Off,Water(3)),t0)
IF context ()

THEN do (--,end,t) when --

169

(Action Pattern 23)

ON occurs (simple, (On,Water(2)),t0)

IF context ()

THEN do (simple, (On,ColdWater),t)
when t = t + 40s

(Action Pattern 25)

ON occurs (unordered, ((On,Cabinet(2))&
(On,Water(2))&(0ff,Water(2))),t0)

IF context ()

THEN do (simple, (On,Cabinet(2)),t)
when t = t + 6s

(Action Pattern 27)

ON occurs (simple, (0Off,Medicine),t0)

IF context ()

THEN do (simple, (0ff,Cabinet(2)),t)
when t = t + 8s

(Action Pattern 29)

ON occurs (simple, (On,Water(3)),t0)
IF context ()

THEN do (simple, (Off,Water(3)),t)

when t is after tO

170

Bibliography

[Aal04]

[Agh09)]

[Agr95]

[Aha91]

[AT184]

[Aug04]

[Aug06a]

[Aug06b]

[Aug07a]

[Aug07b]

[Aug07c]

[Aug09]

W.M.P. van der Aalst, A.J.M.M. Weitjers, and L. Maruster. Workflow mining discovering
process models from event logs. IEEE Transactions on Knowledge and Data Engineering,
vol. 18(9):pp. 1128-1142, 2004.

H. Aghajan, J.C. Augusto, and R. Lopez Cozar Delgado. Human-centric interfaces for

ambient intelligence. Academic Press, 2009.

R. Agrawal and R. Srikant. Mining sequential patterns. In Pro. 11th International Con-
ference on Data Engineering, pp. 3—14. 1995.

D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Machine
Learning, vol. 6:pp. 3766, 1991.

J. Allen. Towards a general theory of action and time. In Artificial Intelligence, vol. 23,
pp. 123-154. 1984.

J. C. Augusto and C. D. Nugent. The use of temporal reasoning and management of
complex events in smart homes. In Proccedings of European Conference on AI (ECAI
2004), pp. 778-782. I0 Press, 2004.

J. C. Augusto and C. D. Nugent, editors. Designing Smart Homes. The Role of Artificial
Intelligence. Springer-Verlag, 2006. M1: Copyright 2006, The Institution of Engineering
and Technology.

J. C. Augusto and C. D. Nugent. Smart homes can be smarter, pp. 1-15. Designing
Smart Homes. The Role of Artificial Intelligence, ed. Augusto,J. C. and Nugent,C. D.
Springer-Verlag, 2006.

J.C. Augusto and D. Cook. Ambient Intelligence: applications in society and opportunities
for Al Tutorial Lecture Notes delivered at 20th International Joint Conference on Artificial
Intelligence (IJCAI-07). 1JCAI, Hyderabad, India, January 2007.

J. C. Augusto. Ambient Intelligence: the Confluence of Ubiquitous/Pervasive Comput-
ing and Artificial Intelligence, pp. 213-234. Intelligent Computing Everywhere. Springer
London, 2007.

J. C. Augusto and P. McCullagh. Ambient intelligence: Concepts and applications. In
Computer Science and Information Systems, vol. 4, pp. 1-28. ComSIS Consortium, 2007.

J. C. Augusto. Past, present and future of ambient intelligence and smart environments.
In Ist International Conference on Agents and Artificial Intelligence (ICAART). 2009.

171

[Azt08]

[Beg06]

[Boi99)]

[Brdo5)

[Bur04]

[Cam06]

[Cas02]

[Cer99]

[Cha95]

[Coe98]

[Co007]

[Coo08]

[Das06]

[Dig09)]

A. Agztiria, J. C. Augusto, and A. Izaguirre. Spatial and temporal aspects for pattern
representation and discovery in intelligent environments. In Workshop on Spatial and
Temporal Reasoning at 18th European Conference on Artificial Intelligence (ECAI 2008).
2008.

R. Begg and R. Hassan. Artificial neural networks in smart homes, pp. 146-164. Designing
Smart Homes. The Role of Artificial Intelligence, ed. Augusto,J. C. and Nugent,C. D.
Springer-Verlag, 2006.

A. Boisvert and R. B. Rubio. Architecture for intelligent thermostats that learn from
occupants’ behavior. In ASHRAE Transactions, pp. 124-130. 1999.

O. Brdiczka, P. Reignier, and J. L. Crowley. Supervised learning of an abstract context
model for an intelligent environment. In Proceedings of the 2005 joint conference on
Smart objects and ambient intelligence: innovative context-aware services: usages and
technologies, vol. 121, pp. 259-264. ACM, 2005.

C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, vol. 2(2):pp. 121-167, 2004.

E. Campo, S. Bonhomme, M. Chan, and D. Esteve. Learning life habits and practices:
an issue to the smart home. In International Conference on Smart Homes and health
Telematic, pp. 355-358. 2006.

G. Castellano, A.M. Fanelli, and C. Mencar. Generation of interpretable fuzzy granules
by a double-clustering technique. Arch Contr Sci, vol. 12:pp. 397-410, 2002.

N. Cercone, A. An, and C. Chan. Rule-induction and case-based reasoning: hybrid archi-
tectures appear advantageous. IEEE Transactions on Knowledge and Data Engineering,
vol. 11:pp. 166-174, 1999.

M. Chan, C. Hariton, P. Ringeard, and E. Campo. Smart house automation system for
the elderly and the disabled. In Proceedings of the 1995 IEEE International Conference
on Systems, Man and Cybernetics, pp. 1586—-1589. 1995.

M. H. Coen. Design principles for intelligent environments. In Proceedings of the 1998 15th
National Conference on Artificial Intelligence, AAAI pp. 547-554. AAAT Press, 1998.

D. J. Cook and S. K. Das. How smart are our environments? an updated look at the state

of the art. In Pervasive and Mobile Computing, vol. 3, pp. 53-73. Elsevier Science, 2007.

D. Cook and M. Schmitter-Edgecombe. Activity profiling using pervasive sensing in smart

homes. IEEE Transactions on Information Technology for Biomedicine, 2008.

S. K. Das and Diane J. Cook. Designing and modeling smart environments. In Proc.
of International Sysmposium on Wireless, Mobile and Multimedia Networks, pp. 490-494.
2006.

R.M. van Eijk J. van Diggelen, R.J. Beun and P.J. Werkhoven. Efficient semantic infor-

mation exchange for ambient intelligence. The computer journal, 2009.

172

[Doc05]

[Doo06]

[Duco1]

[DumO08]

[Duo06]

[Erm08]

[Fri05)

[Gal01]

[Gal06]

[Gop04]

[Got06]

[Hag04]

[Hei02]

[Hog05]

F. Doctor, H. Hagras, and V. Callaghan. A fuzzy embedded agent-based approach for
realizing ambient intelligence in intelligent inhabited environments. In IEEE Transactions

on systems, man and cybernetics, vol. 35, pp. 55-65. 2005.

J. Dooley, V. Callaghan, H. Hagras, P. Bull, and D. Rohlfing. Ambient intelligence - knowl-
edge representation, processing and distribution in intelligent inhabited environments. In
2nd IET International Conference on Intelligent Environments, IE 06, pp. 51-59. 2006.

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. C. Burgelman. Scenarios for

ambient intelligence in 2010. Tech. rep., 2001.

H. Duman, H. Hagras, and V. Callaghan. Intelligent association exploration and exploita-
tion of fuzzy agents in ambient intelligent environments. Journal of Uncertain Systems,
vol. 2(2):pp. 133-143, 2008.

V. Duong, Q. Phung, H. Bui, and S. Venkatesh. Human behavior recognition with generic
exponential family duration modeling in the hidden semi-markov model. In 18th Interna-
tional Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 202-207. 2006.

M Ermes, J Parkka, J Mantyjarvi, and I Korhonen. Detection of daily activities and sports
with wearable sensors in controlled and uncontrolled contitions. IEEE Transactions on

Information Technology in Biomedicine, vol. 12:pp. 20-26, 2008.

M. Friedwald, O. M. Da Costa, Y. Punie, P. Alahuhta, and S. Heinonen. Perspectives of
ambient intelligence in the home environment. In Telematics and Informatics, vol. 22, pp.
221-238. Pergamon Press, 2005.

C. Le Gal, J. Martin, A. Lux, and J. L. Crowley. Smartoffice: Design of an intelligent
environment. IEEE Intelligent Systems, vol. 16(4):pp. 60-66, 2001.

M. Galushka, D. Patterson, and N. Rooney. Temporal data mining for smart homes, pp.
85—-108. Designing Smart Homes. The Role of Artificial Intelligence, ed. Augusto,J. C. and
Nugent,C. D. Springer-Verlag, 2006.

K. Gopalratnam and D.J. Cook. Active lezi: An incremental parsing algorithm for se-
quential prediction. International Journal of Artificial Intelligence, vol. 14:pp. 917-930,
2004.

B. Gottfried, H. W. Guesgen, and S. Hubner. Spatiotemporal reasoning for smart homes,
pp. 16-34. Designing Smart Homes. The Role of Artificial Intelligence. Springer-Verlag,
2006. M1: Copyright 2006, The Institution of Engineering and Technology.

H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, and H. Duman. Creat-
ing an ambient-intelligence environment using embedded agents. [EEFE Intelligent Systems,
vol. 19(6):pp. 1220, 2004.

E. O. Heierman and D. J. Cook. Improving home automation by discovering regularly
occurring device usage patterns. In Third IEEE International Conference on Data Mining,
pp- 537-540. 2002.

R. Hogg, J. McKean, and Allen Craig. Introduction to Mathematical Statistics, pp. 359—
364. Pearson Prentice Hall, 2005.

173

[Jak07a]

[Jak07b]

[Jan93]

[Jia04]

[Kas07]

[Kus04]

[Lea06]

[Mit97]

[Moz95]

[Mul04]

[Pan06]

[Par06]

[Ram08]

[Rao04]

V. R. Jakkula and D. J. Cook. Using temporal relations in smart environment data
for activity prediction. In Proceedings of the 24th International Conference on Machine
Learning. 2007.

V. R. Jakkula, A. S. Crandall, and D. J. Cook. Knowledge discovery in entity based
smart environment resident data using temporal relation based data mining. In 7th IEEE
International Conference on DataMining, pp. 625-630. 2007.

J.S.R. Jang. Anfis: Adaptive-network-based fuzzy inference system. IEEE Systems, man
and cybernetics, vol. 23:pp. 665-684, 1993.

Li Jiang, Da-You Liu, and Bo Yang. Smart home research. In Proceedings of 2004 Inter-
national Conference on Machine Learning and Cybernetics, vol. 2, pp. 659-663. 2004.

T.L.M. van Kasteren and B.J.A. Krose. Bayesian activity recognition in residence for
elders. In Proceedings of the 3rd International Intelligent Environments Conference, pp.
209-212. 2007.

N. Kushwaha, M. Kim, D. Y. Kim, and W. Cho. An intelligent agent for ubiquitous
computing environments: Smart home ut-agent. In Proceedings of the 2nd IEEE Workshop
on Software Technologies for future Embedded and Ubiquitous Systems, pp. 157-159. 2004.

D. Leake, A. Maguitman, and T. Reichherzer. Cases, context, and comfort: opportunities
for case-based reasoning in smart homes, pp. 109-131. Designing Smart Homes. The Role
of Artificial Intelligence, ed. Augusto,J. C. and Nugent,C. D. Springer-Verlag, 2006.

T. M. Mitchell. Machine Learning. The McGraw-Hill and MIT Press, 1997.

M. C. Mozer, R. H. Dodier, M. Anderson, L. Vidmar, R. F. Cruickshank, and D. Miller.
The neural network house: an overview, pp. 371-380. Current trends in connectionism.
Erlbaum, 1995.

M. E. Muller. Can user models be learned at all? inherent problems in machine learning
for user modelling. In Knowledge Engineering Review, vol. 19, pp. 61-88. Cambridge
University Press, 2004.

M. Pantic, A. Pentland, A. Nijholt, and T. Huang. Human computing and machine
understanding of human behavior: A survey. In Proceedings of the 8th international
conference on Multimodal interfaces, pp. 239-248. ACM, 2006.

T. Partala, V. Surakka, and T. Vanhala. Real-time estimation of emotional experiences

from facial expressions. Interacting with Computers, vol. 18(2):pp. 208-226, 2006.

Carlos Ramos, Juan Augusto, , and Daniel Shapiro. Ambient intelligence - the next
step for artificial intelligence (guest editors’ introduction to the special issue on ambient
intelligence). IEEE Intelligent Systems, vol. 23(2):pp. 15-18, Mar/Apr 2008.

S. P. Rao and D. J. Cook. Predicting inhabitant action using action and task models
with application to smart homes. International Journal on Artificial Intelligence Tools
(Architectures, Languages, Algorithms), vol. 13(1):pp. 81-99, 2004.

174

[Rus03]

[Sad05]

[Sah03)]

[San09]

[Sha07]

[Sta04]

[Sta06]

[Tap04]

[Tur07]

[Vai0g]

[Wan92]

[Wan03|

[Wat92]

[Wei91]

[Wei93]

[WeiO1]

S.J. Russell and P. Norvig. Artificial Intelligence: A modern approach, 2nd edition. Pren-
tice Hall, 2003.

N. M. Sadeh, F. L. Gandom, and O. B. Kwon. Ambient intelligence: The mycampus
experience. Tech. Rep. CMU-ISRI-05-123, ISRI, 2005.

D. Saha and A. Mukherjee. Pervasive computing: A paradigm for the 21st century. IEEE
Computer, vol. 36:pp. 25-31, 2003.

L.A. SanMartin, V.M. Pelaez, R. Gonzalez, and A.M. Campos. Environmental user pref-
erence learning for smart homes. In Proceedings of the 5th International Conference on
Intelligent Environments, pp. 177-184. 2009.

H. Sharp, Y. Rogers, and J. Preece. Interaction Design: Beyond Human-Computer Inter-
action. John Wiley and Sons Ltd., 2007.

V Stanford. Biosignals offer potential for direct interfaces and health monitoring. IFEE
Pervasive Computing, vol. 3:pp. 99-103, 2004.

V. Stankovski and J. Trnkoczy. Application of decision trees to smart homes, pp. 132—
45. Designing Smart Homes. The Role of Artificial Intelligence, ed. Augusto,J. C. and
Nugent,C. D. Springer-Verlag, 2006. M1: Copyright 2006, The Institution of Engineering
and Technology.

Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. Activity recognition in
the home using simple and ubiquitous sensors. In Proceedings of Pervasive, pp. 158-175.
2004.

M. Turunen, J. Hakulinen, A. Kainulainen, A. Melto, and T. Hurtig. Design of a rich
multimodal interface for mobile spoken route guidance. In Proceedings of Interspeech 2007
- Furospeech. 2007.

A. M. Vainio, M. Valtonen, and J. Vanhala. Proactive fuzzy control and adaptation
methods for smart homes. IEEFE Intelligent Systems, vol. 23(2):pp. 42—-49, 2008.

L.X. Wang and J.M. Mendel. Generating fuzzy rules by learning from examples. IEEE
Systems, man and cybernetics, vol. 22:pp. 1414-1427, 1992.

L.X. Wang. The mw method completed: A flexible system approach to data mining. [EEFE
Transactions fuzzy systems, vol. 11:pp. 768—782, 2003.

C.J.C.H. Watkins and P. Dayan. Q learning. Machine Learning, vol. 8:pp. 279-292, 1992.

M. Weiser. The computer for the 21st century. Scientific American, vol. 265(3):pp. 94-104,
1991.

M. Weiser. Hot topics: Ubiquitous computing. IEEE Computer, vol. 26:pp. 71-72, 1993.

A.J.M.M. Weijters and W.M.P. van der Aalst. Process mining discovering workflow models
from event-based data. In Proceedings of the 13th Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2001), pp. 283-290. 2001.

175

[Wen07]

[Wit05]

[Wu09]

[You05]

[Zad65)

[Z2i08]

L. Wen, W.M.P. van der Aalst, J.Wang, and J. Sun. Mining process models with non-
free-choice constructs. Data Mining and Knowledge Discovery, vol. 15(2):pp. 145-180,
2007.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd ed. Elsevier, 2005.

C. Wu and H. Aghajan. Using context with statistical relational models - object recognition
from observing user activity in home environment. In Workshop on Use of Context in
Vision Processing (UCVP), ICMI-MLMI. 2009.

G. M. Youngblood, D. J. Cook, and L. B. Holder. Managing adaptive versatile environ-
ments. In IEEE International Conference on Pervasive Computing and Communications.
2005.

L.A. Zadeh. Fuzzy sets. Information and Control, vol. 8:pp. 338-353, 1965.

S. Zaidenberg, P. Reignier, and J. L. Crowley. Reinforcement learning of context models
for a ubiquitous personal assistant. In Proceedings of the 3rd Symposium of Ubiquitous
Computing and Ambient Intelligence, vol. 51/2009, pp. 254-264. 2008.

176

	Contents
	Introduction
	Intelligent Environments (IEs)
	Motivation
	Different types of knowledge about the user
	Advantages/Disadvantages of Learning Frequent Behaviour
	Intelligent Environments' Special Features

	Hypothesis, Objectives and Limitations
	Methodology
	Thesis outline

	State of the Art
	Artificial Neural Network
	Applications
	Strengths and Weaknesses

	Classification techniques
	Applications
	Strengths and Weaknesses

	Fuzzy Logic rules
	Applications
	Strengths and Weaknesses

	Associated sequence discovery
	Applications
	Strengths and Weaknesses

	Instance-Based Learning
	Applications
	Strengths and Weaknesses

	Reinforcement Learning
	Applications
	Strengths and Weaknesses

	Summary

	General Architecture
	Transformation Layer
	Inference of simple actions
	Inference of complex actions
	Splitting actions into sequences

	Learning Layer
	Application Layer
	Applications of extracted knowledge
	Applications based on specific learning processes
	Interaction system

	Graphical User Interface
	Summary

	Learning Frequent Behaviours: the Pairwise Approach
	Introduction
	Architecture of the Learning Layer
	Representing patterns with LLFPUBS
	Event Definition
	Condition Definition
	Action Definition

	Learning patterns with ALFPUBS
	Identifying Frequent Relations
	Identifying Time Relations
	Identifying Conditions

	Summary

	Learning Frequent Behaviours: the Action Map Approach
	Introduction
	Representing patterns with LLFPUBS
	Evolution of the LLFPUBS

	Learning patterns with ALFPUBS
	Identifying Frequent Sets of Actions
	Identifying Topology
	Identifying Time Relations
	Identifying Conditions

	Summary

	Validation
	Validation Environments and Collected Data
	MavPad Environment
	WSU Smart Apartment Environment

	Pairwise Approach
	Validating the Pairwise Approach with the MavPad dataset
	Validating the Pairwise Approach with the WSU Smart Apartment dataset

	Action Map Approach
	Validating the Action Map Approach with the MavPad dataset
	Validating the Action Map Approach with the WSU Smart Apartment dataset

	Comparing both Approaches: The final Discussion
	Modelling Frequent Behaviours: A comparison
	Identifying Time Relations: A comparison
	Identifying Conditions: A comparison
	Runtime of different steps

	Summary

	Conclusions and Further Research
	Conclusions
	Contributions
	Relevant Publications
	International Journals
	Book Chapters
	International Conferences

	Future Work
	Improving the State of the Art
	Improving the Architecture
	Improving the Action Map Approach
	Improving the Validation
	More General Improvements

	Final Remarks

	Appendix
	Bibliography

