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Abstract 

 

This doctoral thesis falls within the scope of electronic power converters oriented to 

high voltage transmission applications, in particular the power generated in remote 

offshore wind farms by means of HVDC subsea cables. 

This research is focused on the Modular Multilevel Converter (MMC) with two level 

submodules but also with multilevel topology submodules such as 3L-FC (three level 

flying capacitors) and 3L-NPC (three level neutral point capacitors). The main 

contribution of this thesis is the developed PWM based modulation strategy which 

allows the balancing of the total amount of submodules capacitors. It is applicable to the 

aforementioned submodule topologies under different working conditions as evidenced 

by experimental results. 
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Chapter 1 
1 Introduction 

________________ 

In recent years, the continuously increasing demand for electric power is becoming our 

society more involved in saving energy. Climate change concerns together with high oil 

prices and increasing government support, have drived the use of renewable energy with the 

aim of dramatically reducing the emissions of greenhouse gases that harm the environment. 

The naturally replenished wind energy resource has undergone a spectacular growth over the 

last years. Due to this fast increase, the most suitable sites to build an onshore wind farm are 

already in use, so offshore wind power is destined to have an important role. The evolution of 

the wind farms from onshore to offshore has led to some technological challenges, such as the 

energy transmission system or energy integration in the main grid. The economic access to 

remote renewable energy sources requires an electric energy transmission system that bridges 

very long distances with low losses. This is why the interest in High Voltage Direct Current 

(HVDC) technology has been revived. 

The main advantage the HVDC offers versus High Voltage Alternative Current (HVAC) for 

bulky and long-distance electrical underwater power transmission is that HVDC avoids the 

heavy currents required by the cable capacitance improving the capacity of transmitting active 

power. For shorter distances, the higher cost of DC conversion equipment compared to an AC 

system may still be warranted, due to other benefits of direct current links. 
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1.1 Wind energy generation overview 

1.1.1 Wind power installations 

 

Fig. 1-1. Cumulative wind power installed in Europe by the end of 2011. Source: EWEA [1]. 

As described in [1], since 1995 wind energy has played an increasing and accelerating role in 

the evolution of the power sector. Despite the fact that most of the 94 GW of wind energy 

installed in the EU by the end of 2011 were added in the last 10 years, annual wind power 

installations in the EU have increased steadily over the past 17 years from 814 MW in 1996 to 

9616 MW in 2011, an average annual growth rate of 15.6% (the progression is exposed in 

Fig. 1-2a). From those 9616 MW installed throughout 2011, 866 MW are offshore wind’s 

share which represents a 9% of total installations, a little less than in 2010 (9.2%) as shown in 

Fig. 1-2b. Germany remains the EU country with the largest installed capacity (29 GW), 

followed by Spain (21.7 GW), Italy (6.7 GW), France (6.8 GW) and the UK (6.5 GW). Nine 

other countries have over 1 GW of installed capacity: Portugal, Denmark, the Netherlands, 

Sweden, Ireland, Greece, Poland, Austria and Belgium. 
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a)  b)  

Fig. 1-2. a) Annual wind power installations in EU in GW. b) Annual onshore and offshore installations in 

MW. Source: EWEA [1]. 

This significant deployment of wind energy has been instrumental in reducing greenhouse gas 

emissions from the power sector, with more wind power capacity being installed in the EU 

than any other power generating technology in the last 10 years, except for gas. The 21st 

century sees the EU power sector moving away from fuel oil, coal and nuclear while 

continuing to increase its total installed capacity with gas, wind and solar PV to meet 

increasing demand. 

1.1.2 Offshore wind power generation 

Based on information available at [2], the average size of offshore turbines grid connected 

during 2011 was 3.6 MW. Since 2000, when the first 2 MW turbines were introduced, the 

average size of offshore turbines has been increasing, albeit not linearly, and in the middle of 

the last decade turbines in the 3+ MW range were being deployed. The first 5 MW turbines 

were used in 2007 at Beatrice in the UK and 2008 at Hooksiel in Germany. This size turbine 

became more common and, by 2011 the average size of offshore turbines was 3.6 MW, 20% 

more than in 2010 (3 MW) and over 6 times more than the turbines used in the early nineties 

(Fig. 1-3a). Moreover, in 2011 REpower installed the first turbines with a rated capacity 

above 5 MW at Ormonde in the UK. Looking at the under construction offshore wind farm 

pipeline (4,583 MW), the Siemens 3.6 MW turbine will continue to be used extensively. 

However, roll-out of 5 – 6 MW turbines means that the under construction pipeline averages 

3.9 MW. 

Owing to the incessant development of wind turbines, the average size of offshore wind farms 

has been increasing steadily (Fig. 1-3b). A total of 1371 offshore turbines are now installed 

and grid connected in European waters totalling 3812.6 MW spread across 53 wind farms in 

10 countries. In 2011, the average size of the projects, once fully completed, is just under 200 

MW, 45 MW (+29%) more than in 2010 when Thanet, a 300 MW project in the UK, was the 

largest offshore wind farm completed and fully grid connected in the world. 
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a)  b)  

Fig. 1-3. a) Average annual size of offshore wind turbines in MW. b) Average wind farm size in MW. 

Source: EWEA [2]. 

This trend is expected to continue and, indeed, accelerate as the average size of offshore wind 

farms currently under construction is almost 300 MW, thanks to the construction that has 

already started on the first phase of the London Array project which will be 630 MW (the 

progression of the last years appears in Fig. 1-4a). As the technology matures and it is 

expected that wind farms will continue to grow in size, the average size of projects being 

planned by developers increases to 555 MW. 

The 9 offshore projects under construction in 2011, will bring online a further 2375 MW of 

capacity. These projects alone will bring total installed capacity in Europe to 6188 MW, a 

62% increase. Furthermore, preparatory work on nine other projects started in 2011. These 

projects have a cumulative capacity of 2910 MW, 2272 in Germany and 638 in the UK. 

Therefore, when these 18 projects are completed, total installed offshore wind capacity in 

Europe would reach 9 GW. Furthermore, EWEA has identified 18 GW of fully consented 

projects in 12 European countries (information represented in Fig. 1-4b). 

a)  b)  

Fig. 1-4. a) Cumulative and annual offshore wind installations in MW. b) Offshore wind farms online, 

under construction and consented in MW. Source: EWEA [2]. 
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The UK is by far the largest market with 2094 MW installed, representing over half of all 

installed offshore wind capacity in Europe. Denmark follows with 857 MW (23%), then the 

Netherlands (247 MW, 6%), Germany (200 MW, 5%), Belgium (195, 5%), Sweden (164, 

4%), Finland (26 MW in near-shore projects) and Ireland 25 MW. Norway and Portugal both 

have a full-scale floating turbine (2.3 MW and 2 MW respectively). 

 

Fig. 1-5. Average size, distance to shore and water depth. Source: EWEA [2]. 

As far as the location of offshore wind farms is concerned, they are increasingly being built 

further from the coast and in deeper waters. Analysis of the planned projects pipeline shows 

that this trend will continue. In 2011 average water depth of wind farms was 22.8 m and 

average distance to shore 23.4 km. In Fig. 1-5 can be observed that there is already online a 

wind farm 100 km far away from the coast where the water depth is 40 meters, and similar 

distances as well as depth are chosen for future constructions. This is why for projects under 

construction, average depth is 25.3 m and distance to shore 33.2 km. 

1.1.3 General wind farm layout 

An evaluation of various large-scale wind farms layout are investigated in [3] but mainly 

three of them can be found all over the world as represented in Fig. 1-6: onshore, offshore 

with AC transmission and offshore with HVDC transmission to shore. 

Onshore turbine installations are placed in hilly or mountainous regions. The exact position of 

the turbines is carefully chosen: these tend to be on ridgelines generally at least three 

kilometres inland from the nearest shoreline to exploit the topographic acceleration as the 

http://en.wiktionary.org/wiki/onshore
http://en.wikipedia.org/w/index.php?title=Topographic_acceleration&action=edit&redlink=1
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wind accelerates over a ridge. The additional wind speeds gained in this way can increase 

energy produced because more wind goes through the turbines. Many of the largest 

operational onshore wind farms are located in the USA but as listed in Table 1-1 they are 

installed all over the world 

a)

Grid

Onshore Wind Farm

Wind farm 
Substation

 

 

b)
Offshore Wind Farm

Submarine 
AC cables Grid

 

 

c)

DC

AC

AC

DC

Submarine 
DC cables

Grid

Offshore Wind Farm
 

Fig. 1-6. General layouts of wind farms: a) Onshore. b) Offshore with AC transmission. c) Offshore with 

HVDC transmission. 

The electricity generated in the wind turbines is typically low voltage. As the inter-turbine 

grid is usually medium voltage, a transformer is required at the output of each turbine to step 

up its voltage level. All the energy collected on the wind farm is again transformed at the 

substation to high voltage for the bulk transfer of the electrical energy, from the collecting 

point to electrical substations located near demand centres. The main function of the 

transformer is, besides voltage level conditioning, galvanic insulation of the two connected 

circuits. 

http://en.wikipedia.org/wiki/Electrical_energy
http://en.wikipedia.org/wiki/Electrical_substation
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Wind farm Current Capacity Country No. of turbines Production date 

Roscoe 781.5 MW USA 627 2009 

Horse Hollow 735.5 MW USA 421 2006 

Dabancheng 500 MW China 300 2009 

Fântânele-Cogealac 387.5 MW Romania 240 2011 

Whitelee 322 MW Scotland 140 2009 

Lake Bonney 279 MW Australia 99 2008 

Table 1-1. Some operational onshore wind farms. 

Unlike onshore wind farms, offshore ones refer to the construction of extensive wind farms in 

open bodies of water. Better wind speeds are available off the coast compared to on land, 

because it is typically more consistent and stronger over the sea, due to the absence of 

topographic features that disrupt wind flow. So its contribution in terms of electricity supplied 

is higher. Furthermore, offshore wind turbines are less obtrusive than turbines on land, as 

their apparent size and noise is mitigated by distance. 

There are nonetheless trade-offs. The operation and maintenance are more complicated than 

in land, the environment is more corrosive owing the salinity and humidity, the construction 

of the foundations on the seabed difficulties and increases the installation costs. However, the 

main differentiating feature is the energy transmission system to the shore. 

Two transmission options are used to transport the energy generated on the offshore wind 

farms to the grid connection point on the shore: HVAC or HVDC. Both the generation and 

the distribution grid are AC, so by using HVAC submarine cables only some transformers to 

step up and accommodate the voltage are required at both transmission ends in order to 

reduce the resistive line losses. On the other hand, if DC is the transmission choice, besides 

the transformers an apparatus to convert from AC to DC and vice versa is imperative as 

represented in Fig. 1-6c. The latter requirement is an important drawback which can be 

countered with the power savings related to reactive currents. Due to the short distance 

between the conductor and the shield, subsea power cables exhibit a much higher shunt 

capacitance, in the order of 100-200 nF/km meanwhile in overhead lines it is around 9-13 

nF/km. Accordingly, a large charging current flows through the cable as soon as it is 

energized. This current is proportional to the length of the cable an even at moderate lengths 

(50-150 km) its magnitude can approach the cable’s rated current reducing the power transfer 

capability of the cable [4]. AC power transmission suffers from these reactive losses 

meanwhile the only losses in a DC (zero frequency) transmission line are the resistive ones, 

which are present in AC lines as well. 

On the last years several studies ([5], [6], [7] for instance) have been conducted in this field 

trying to determine the most cost-effective alternative. Although the optimum layout 
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depending on rated power and distance to shore is not clear, all the analysis concur in stating 

that HVDC is the most attractive for high power and long distances. An example is shown in 

Fig. 1-7 in which HVDC is recommended for power higher than 300 MW or a submarine 

transmission longer than 250 km. 

 

Fig. 1-7. Approximate ranges for voltage options as a function of power and distance [7]. 

All the currently operational offshore wind farms have HVAC transmission system some of 

which are listed in Table 1-2 rated by the latest commissioning date. However, BorWin1 is a 

400 megawatt (MW) offshore wind farm with HVDC transmission that is presently under 

construction and is expected to be fully operational by the end of 2012. It will be an 80-

turbine wind farm, located 100 kilometres northwest of the isle Borkum (Germany), in water 

which is 40 metres deep. 

Wind farm Total Capacity Country No. of turbines Commissioning date 

Longyuan Rudong 

Intertidal 
131.3 MW China 37 2012 

Ormonde 150 MW UK 30 2012 

Walney (phases 1&2) 367.2 MW UK 102 2012 

Baltic 1 48 MW Germany 21 2011 

Thanet 300 MW UK 100 2010 

Bligh Bank (Belwind) 165 MW Belgium 55 2010 

Gunfleet Sands 172 MW UK 48 2010 

Donghai Bridge 102 MW China 34 2010 

Robin Rigg (Solway Firth) 180 MW UK 60 2010 

Rødsand II 207 MW Denmark 90 2010 

Horns Rev II 209 MW Denmark 91 2009 

Alpha Ventus 90 MW Germany 12 2009 

Rhyl Flats 60 MW UK 25 2009 

Princess Amalia 120 MW Netherlands 60 2008 

Lynn and Inner Dowsing 194 MW UK 54 2008 

Table 1-2. Latest operational offshore wind farms. 

Onshore wind farms as well as offshore wind farms with AC transmission system are a 

mature technology. Therefore, from the three aforementioned wind farm layouts this study 

will be focused in the last one, offshore wind farms with HVDC transmission system. 

http://en.wikipedia.org/wiki/Megawatt
http://en.wikipedia.org/wiki/Wind_farm
http://en.wikipedia.org/wiki/Borkum
http://en.wikipedia.org/wiki/Ormonde_Wind_Farm
http://en.wikipedia.org/wiki/Walney_Wind_Farm
http://en.wikipedia.org/wiki/Baltic_1_Offshore_Wind_Farm
http://en.wikipedia.org/wiki/Thanet_Offshore_Wind_Project
http://en.wikipedia.org/wiki/Bligh_Bank_Offshore_Wind_Farm
http://en.wikipedia.org/wiki/Gunfleet_Sands_Offshore_Wind_Farm
http://en.wikipedia.org/wiki/Donghai_Bridge_Wind_Farm
http://en.wikipedia.org/wiki/Robin_Rigg_Wind_Farm
http://en.wikipedia.org/wiki/Nysted_Wind_Farm#R.C3.B8dsand_II
http://en.wikipedia.org/wiki/Horns_Rev_2
http://en.wikipedia.org/wiki/Alpha_Ventus_Offshore_Wind_Farm
http://en.wikipedia.org/wiki/Rhyl_Flats
http://en.wikipedia.org/wiki/Princess_Amalia_Wind_Farm
http://en.wikipedia.org/wiki/Lynn_and_Inner_Dowsing
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Fig. 1-8. Photographs of Horns Rev II offshore wind farm taken from. Source: [8]. 

1.2 Description of a HVDC transmission based offshore wind 

farm 

This section gives an overview of how the energy transmission from offshore wind farms to 

shore is accomplished. The complete layout of the system is illustrated in Fig. 1-9 and then a 

brief description of its main parts is presented. 

DC

AC

AC

DC

Wind Farm

Submarine 
DC cables

Collector 
network

Onshore 
station

Offshore 
station

filter filter

TransformerTransformer

Seaside

 

Fig. 1-9. General layout of an offshore wind farm transmission system. 

The electricity generated in the wind turbines, which are placed further away from the 

shoreline, is collected in the medium voltage inter-turbines network. In order to reduce 

transmission losses, at the offshore station it is transformed to high voltage, then filtered to 

eliminate undesirable harmonics and finally converted to DC by a power converter. Afterward 

it is ready for transferring by submarine cables towards the onshore station where the reverse 

action takes place. Once it is again converted to AC and filtered on such a way that it fulfils 

the grid codes, the electricity is adapted to the voltage levels of the grid on the onshore 

connection point. 
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1.2.1 Wind farm 

The offshore wind power plant (WPP) is considered to be a large size and capacity wind farm 

located at more than 100 kilometres off the coast where noise and visual impact cannot be 

perceived from the inhabited areas. Assuming that the wind power has a non-controllable 

stochastic character since it depends on the weather conditions, better wind speeds (stronger 

and less roughness) are available offshore than on land. 

It consists of a large number of wind turbines which can be classified by three parameters 

according to most of the authors [9], [10]: the direction of the rotor axis (vertical or 

horizontal), the number of rotor blades and the rotor position (upwind or downwind). They 

are comprised of rotor blades, a gearbox, an electrical AC generator, the associated power 

electronics and measuring devices (anemometer and wind vane primarily). 

Due to the large size of the wind farm, the average distance between wind turbines and the 

collecting point can be of some kilometres. This is why each turbine has its own transformer 

to step-up the output voltage level to the medium voltage of inter-turbines line with the aim of 

reducing losses along the mentioned distance. 

1.2.2 Wind turbines 

Up to 2005 all turbines installed offshore had been 2 or 3 MW. Since 2006, 3.6 and 5 MW 

wind turbines have been introduced [11]. But the situation is changing. Experts state that we 

stand on the threshold of a revolution in the wind power and with the right equipment besides 

strategy, huge returns on investment are achievable. That is why nowadays, a new generation 

of turbines 100 per cent dedicated to offshore environments are being developed [12]. 

As a progression from the G10X 4.5-MW turbine, Gamesa has developed the G11X, a 5 MW 

permanent magnet generator with full-scale converter [13]. Regarding Repower Systems, 

after the great success in REpower 5M, the new REpower 6M offshore wind turbine 

represents the further development of its predecessor with a 6 MW asynchronous doubly-fed 

generator [14]. That same rated output power has achieved Siemens Wind Power in their 

SWT-6.0-120 prototype in which several trials to assess its performance and availability are 

now being conducted. This wind turbine is fitted with an innovative direct drive and therefore 

does not require a gearbox. If everything proceeds according to schedule, the SWT-6.0-120 

wind turbine should enter series production in 2014 [15]. 
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In the same way, Alstom has built up a new generation, high yield offshore wind turbine 

prototype: Haliade 150 – 6 MW, with a direct drive permanent magnet generator plus a full 

conversion converter [16]. 

With the launch of the V164-7.0 MW Vestas introduces almost the largest wind turbine: a 7 

MW permanent magnet generator provided with a full scale converter which has been 

designed with challenging offshore conditions in mind [12]. There is still a bigger one: 

Enercon E-126 which is able to generate up to 7.5 MW with a direct-drive annular generator 

[17]. 

  

Fig. 1-10. Wind turbine components. Source: NREL. 

 

Fig. 1-11. A wind turbine general system design in which all its components are specified. Source: [18]. 
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Each wind turbine has on a single platform inside the tower a compact full scale converter 

installed. As the power ratings of the wind turbines increases, medium voltage converters 

have become more competitive. The technology of the converter is in general a 3L neutral-

point-clamped (see Fig. 1-11). This converter, which uses PEBB technology IGCT as 

semiconductor, acts as a drive and can operate in all 4 quadrants, providing bidirectional 

power flow and full reactive power control. Moreover, during grid disturbances, the brake 

chopper dissipates the generated power in a shunt resistor. As soon as the fault has cleared, 

the turbine is taken back smoothly onto the grid in compliance with grid codes. 

1.2.3 Local inter-turbine grid 

The local inter-turbine grid can be AC or DC (this feature does not determinate the 

transmission systems technology), but the installed majority is an AC collector grid. 

Regarding the voltage level, the usage of above 36kV for the inter-turbine grid becomes 

uneconomic due to the impossibility to accommodate switchgear and transformers in each 

turbine tower. So, a medium voltage such as 33kV is widely used for collection schemes [19]. 

The cable length to the offshore collector point depends on the number of wind turbines, their 

disposition and the space among them which must be enough to avoid turbulences generated 

at the surrounding turbines, usually from 500 to 1000 m between two of them [20]. There are 

various standard arrangements for wind farm collector systems but these four designs are the 

most employed in existing offshore wind farms: 

 Radial design 

 Single side ring design 

 Double-side ring design 

 Star design 

The layouts of the four listed designs are illustrated in Fig. 1-12 from the simplest one to the 

most reliable [21]. The differences are related to the length and sizing of the cable, 

redundancy, energy saving thanks to extra paths, etc. 
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Fig. 1-12. Layout of the local inter-turbine grid. a) Radial design. b) Single side ring design. c) Double side 

ring design. d) Star design. 

1.2.4 Offshore platform transformer 

On the offshore transformer platform step-up transformation takes place to interconnect the 

VSC with the AC network. The main function of the transformers is to adapt the voltage level 

of the AC network to a voltage level suitable to the converter and galvanic insulation of the 

two connected circuits. This voltage level can be controlled using a tap changer, which will 

maximize the reactive power flow. 

Dry type transformers are preferred in offshore applications rather than oil-filled transformer 

basically because they require less maintenance services as well as space. Oil-filled 

transformers are capable of working at higher voltages and powers thanks to its better cooling 

characteristics. However, this liquid needs a regular maintenance which is a handicap in 

a) 

c) 

b) 

d) 
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station on the sea. Moreover this type of transformers needs greater installation space owing 

to the fire safety measures which must be taken to avoid oil combustion. 

The transformer is modelled using the equivalent circuit designated in [22] as the classical 

approach and depicted in Fig. 1-13. Power loss in the windings is current-dependent and is 

represented as in-series resistances Rp and Rs. Flux leakage results in a fraction of the applied 

voltage dropped without contributing to the mutual coupling, and thus can be modelled as 

reactances of each leakage inductance Xp and Xs in series with the perfectly coupled region. 

Iron losses are caused mostly by hysteresis and eddy current effects in the core and are 

represented by a resistance Rc in parallel with the ideal transformer. A core with finite 

permeability requires a magnetizing current Im to maintain the mutual flux in the core. It is 

modelled as a magnetizing reactance Xm in parallel with the core loss component Rc. If the 

secondary winding is made open-circuit, the current i0 taken by the magnetizing branch 

represents the transformer's no-load current. 

Xp Rp

Xm

RsXs

RcVp Vs

ip is
i0

Np:Ns

Np

Ns

2 Np

Ns

2

 

Fig. 1-13. Transformer electrical equivalent circuit per phase with secondary impedances referred to 

primary side. 

1.2.5 Converters 

The converter is the distinct and essential element of this transmission system. In total two of 

these are needed in the system, one at each HVDC end. An AC/DC is placed on the offshore 

station and the DC/AC is a part of the onshore converter station. As will be later detailed, two 

principal technologies exist for this purpose: LCC (Line Commutated Converter) using the 

classical thyristors and VSC (Voltage Source Converter) using IGBTs or IGCTs. 

1.2.6 HVDC transmission cables 

They are the physical medium to transfer the energy from the offshore station to the onshore 

PCC (Point of Common Coupling). For long distance transmission of bulk electrical power 

generated at the wind farm to the grid, high voltage direct current cables are installed 

undersea. HVDC systems may be less expensive and suffer lower electrical losses in contrast 

http://en.wikipedia.org/wiki/Leakage_inductance
http://en.wikipedia.org/wiki/Permeability_%28electromagnetism%29
http://en.wikipedia.org/wiki/Series_and_parallel_circuits
http://en.wikipedia.org/w/index.php?title=No-load_current&action=edit&redlink=1
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with the more common alternating current systems because it avoids the heavy currents 

required by the cable capacitance. 

 

Fig. 1-14. High voltage cables. Source: ABB [23]. 

 

Fig. 1-15. Power transmission cable systems. Source: [24]. 

Some of the basic requirements of a submarine cable are: Long-life design, low 

environmental impact as well as maintenance, mechanical resistance capable of withstanding 

undersea installation, high reliability and long manufacturing lengths to minimize cable joints. 

There are different available type of cables depending on the insulation and the transmission 

parameters such as power and voltage. Mass Impregnated cables (high-density paper tapes 

impregnated with a high-viscosity compound) have proven suitable for voltage ratings up to 

600kV DC and current rating up to 1600A and without requiring fluid pressure feeding, thus 

allowing these cables to be installed in HVDC links in very long lengths, up to several 

hundreds of kilometres. However, due to the remarkable applicability of VSC for HVDC 

transmissions, which allow the power to be transmitted in both directions without requiring 

polarity reversal, has allowed re-introducing the use of extruded cables (called XLPE) in DC 

http://en.wikipedia.org/wiki/Alternating_current
http://en.wikipedia.org/wiki/Capacitance
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power transmission. With the polarity reversal being no longer required, the problem of space 

charges that can arise with an extruded insulation and create excessive dielectric stress within 

the cable in the case of sudden polarity reversal is avoided. Extruded insulation offers several 

remarkable advantages and makes for lighter and easier-to-handle cables, which can operate 

at high temperatures and at high electrical stresses up to 300kV. The graph in Fig. 1-15 shows 

the variety of cable systems which could fit best according to the transmission length and 

voltage. 

From the broad range of types described, polymeric cables are usually the preferred choice for 

HVDC mainly because of their mechanical strength, flexibility and low weight [25]. 

Based on the electric representation of the cables and depending on the cable model 

requirements, it is possible to perform more or less simplifications, in order to maintain the 

accuracy of the model and reduce its complexity. There are two basic transmission line or 

cable modelling techniques [26]: 

a) Models based on constant parameters: Π models or Bergeron model. 

b) Models based on frequency dependent parameters: modal domain or phase domain. 

A single π model is used more commonly for normal design and control study in order to 

model the transients in easy way. If the objective is the analysis of a wide frequency spectrum 

accurately, a more precise model of a line can be developed considering the distributed 

parameters and frequency dependent. An example of the simple π model is represented in Fig. 

1-16. The parameters for a 100 km line are taken from [26] where the whole analysis 

regarding the way to obtain them in PSCAD is explained. 

L=50mH R=7Ω

C=5mF C=5mF

 

Fig. 1-16. Standard Π model using the parameters validated in [26] for a 100km line. 

1.2.7 Resonant passive filters 

An HVDC converter station usually requires ac filters, the purpose of which is to mitigate 

voltage distortion. On the AC side of a 12-pulse LCC-HVDC converter, current harmonics of 

the order of 11, 13, 23, 25 and higher are generated. Filters are installed in order to limit the 

amount of harmonics to the level required by the network apart from compensating to a 
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certain extent the reactive power. However, with VSC converters there is no need to 

compensate any reactive power consumed by the converter itself and the current harmonics 

on the AC side are related directly to the PWM frequency. Therefore the amount of filters in 

this type of converters is reduced dramatically compared with natural commutated converters. 

The passive filters are connected near the transformer to lessen some specific harmonics. The 

resonant passive filters are constituted by a series connection of a capacitor, an inductor and a 

resistor, this is, a RLC branch (see Fig. 1-17). The main property of this kind of branch is the 

delay of 180º between the voltage drop in the inductive impedance and the voltage drop in the 

capacitive impedance. As a consequence of this characteristic, at the resonance frequency, 

inductive and capacitive impedances counteract (becoming zero the reactive part of the circuit 

impedance) and as a result the electric branch only presents the resistive impedance. 

Lsc
Harmonic 

Source

L

C

R

Resonant 

Filter

 

Fig. 1-17. RLC resonant filter in parallel with the system. 

The RLC branch is tuned to present only the resistive part at the frequency where the 

harmonic, which is wished to be eliminated, is located. That is achievable by means of infinite 

combinations of the two independent L and C parameters of the RLC circuit as deduced from 

(1-1). 













CfΠ2

1
LfΠ2jRZ  (1-1) 

It should be highlighted that to attain a reduction higher than a 50% of any harmonic current 

with this kind of filters (a RLC branch in parallel with the circuit), the impedance of the filter 

at the selected frequency has to be less than the impedance presented by the system (Lsc) at 

that frequency. In this way, part of the generated harmonic current is deviated (according to 
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Kirchoff’s law) to the filter instead to flow to the distribution grid or power source as 

represented in Fig. 1-18. 

Lsc
Harmonic 

Source

R

iharmonic

Filter

 

Fig. 1-18. Simplified RLC filter at the resonance frequency in parallel with the system. 

It will be shown later in this report that filters will be dispensable when MMC with high 

number of submodules is used because the obtained output voltage waveform is of very good 

quality being its harmonics placed at quite high frequencies. 

1.2.8 Electrical grid 

It is the main electrical distribution grid to which the energy coming from the wind farm is 

integrated. It is fundamental to bear in mind that not every world countries have got the same 

legislation in force what means that the transmission system has to meet the current 

regulations at the PCC. For that, the onshore substation adapts the voltage, frequency and the 

reactive power of the transmission system to the voltage level, frequency and reactive power 

required by the main grid. 

1.2.9 Coordinated control system 

In the case of VSC-based HVDC transmission systems the transfer of power is controlled in 

the same way as in the case of a classical HVDC transmission [27], the inverter side controls 

the active power, while the rectifier side controls the DC voltage [28]. One of the advantages 

of VSC-HVDC is that it makes possible to independently control the active power and the 

reactive one. Unlike the power transmission between two AC grids in which the power flow 

can be bidirectional, the VSC-based HVDC system that is used to deliver power from an 

offshore wind power plant, the active power flow is unidirectional (the offshore side is 

delivering active power to the onshore side and not vice-versa). 

As represented in Fig. 1-9, in a VSC-based HVDC transmission between an offshore WPP 

and an AC network, two converters are needed: one offshore and another one onshore. 

Despite not existing direct communication between the two VSC controllers, the objective of 
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the coordinated system lies in guaranteeing the stability of the whole system. It has to ensure 

that the energy produced by the wind farm is injected first into the DC link and then 

transferred into the grid at the onshore side. This entire task has to be accomplished carefully 

to damp out troublesome oscillations which could disrupt the normal operation of the large 

interconnected power system. 

The offshore HVDC station has the rectifier task which means that all the AC energy 

delivered by the wind farm is transformed in DC and sent to the land through the DC cables. 

As shown in Fig. 1-19 the offshore VSC controller maintains the offshore AC inter-turbine 

grid voltage and frequency. The AC voltage is controlled by the means of the reactive power 

reference while the frequency is controlled according to the active power which has to be 

delivered. 

The onshore VSC controller regulates the HVDC bus voltage and the reactive power or AC 

grid voltage for grid codes compliance [29]. In this case the reference values for the fast inner 

current controllers are obtained as represented in Fig. 1-19: the DC voltage controller 

provides the reference value for the active current and the reactive power controller or the AC 

voltage controller for the reactive current [30]. 
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Fig. 1-19. Overall control structure of the VSC-HVDC transmission system [31]. 

Most of the existing HVDC connection systems in the world are point to point. It means that 

only one sending-end and one receiving-end stations are available. This kind of connection 

does not allow the expansion of physical interconnection capacity and improvements of the 

possibility of power exchange. Nowadays, multiterminal connection (see the diagram 

represented in Fig. 1-20) is the solution for this lack and it is a suitable solution that can 

provide the offshore wind farm connection and also that can facilitate the transnational 

exchange with high cost efficiency [32]. 
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However, when more than one receiving-end station is considered, the control of DC voltages 

and the power sharing which guarantees the power exchange between the inverter stations can 

bring some complications. Due to the random behaviour of the wind energy, at any moment is 

not possible to precisely determine the power which can be delivered. Power converters play 

an essential role in the safe operation of the system. In order to guarantee the DC voltage 

balance and power sharing, in [33] three control strategies are compared: scheduled power 

control, DC voltage droop control and central DC voltage control. 
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Fig. 1-20. Overall control structure of the MTDC system [34]. 

1.3 Converter technologies 

Along with the development of the power devices, the AC drive system has improved. Fig. 

1-21 shows the progress of the power devices and the drive systems development. The diode 

and thyristor were developed at first. The thyristor was able to turn on the power but the 

thyristor cannot turn off by itself, so it must be turned off with the help of outside conditions. 

Then GTO appeared with a function of turn on and turn off capability. Then the GCT/IGCT 

was developed as fast switching device. Now, the GCT/IGCT is used for large ac drives. And 

IGBT and IEGT were also developed and now used widely for large ac drives. 

Based on the development of the power device and main circuit design, the multilevel 

inverters are developed and applied in wide range of industries. 
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Fig. 1-21. Progress of the power devices and the drive systems. Source: [5]. 

HVDC technologies are often categorised by the power electronic switching device used 

within the AC to DC converter. Line commutated current source converters (LCC-CSC) 

use thyristor based converters and are capable of achieving high power ratings. Traditionally, 

it has been the technology for transmitting vast amounts of energy from point to point within 

an HVDC system (see Fig. 1-22). This tried and tested technology is primarily chosen 

because of the reliability and robustness inherent within the thyristor valves at the heart of the 

converter. Over the last decades, progress within the rating and dependability of the thyristor 

valve has allowed this technique to become more practical and cost effective. It has become 

the primary technique for medium to long distance electrical transmission with a total of more 

than 80GW worldwide [35]. However they require a synchronous voltage source to operate 

due to the limited flexibility inherited within the thyristor valve. 

P QQ

AC1 AC2

 

Fig. 1-22. HVDC system based on LCC technology. 

Q QP

AC1 AC2

 

Fig. 1-23. HVDC system based on VSC technology. 

Recent developments within power electronics have engendered the rise of a contending 

technology parallel to CSC-LCC. Previously, self commutated voltage source converters 
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(VSC-SCC) had lacked the robustness, plus the high voltage and current rating to be 

considered for high power transmission. This changed following the development of, amongst 

others, the Insulated Gate Bipolar Transistor, a device which marries the controllability of the 

MOSFET with the reliability and power rating of the BJT. The increasing penetration of the 

power electronics technologies into the power systems is mainly due to the continuous 

progress of the high voltage high power fully controlled semi conductors. The full 

controllability and switching symmetry through both turn-on and turn-off operation allows the 

device to reverse power flow much more quickly than its predecessor. Meanwhile the 

thyristor can only commute once per cycle, IGBTs can do it several times. This property 

enables the voltage and current modulation of the converter in order to outage better quality 

waveforms. Current flowing in the opposite direction is conducted by a reversed diode in 

parallel to the IGBT. However, this additional component brings a weakness to the system 

when a fault occurs on the DC side by creating a path for the resulting fault current. 

a)  b)  

Fig. 1-24. a) First HVDC thyristor valve (1967). b) The world’s first 12-pulse converter (1976). Source: 

ABB [23]. 

It is useful to consider some of the advantages the VSC transmission system offers [36]: 

 The ability to control reactive and active power independently. 

 The link is operational with weak AC systems. 

 No commutation failures within the converter. 

 Black-start capability. 
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 No polarity reversal required to reverse the power flow direction which has a positive 

effect on the isolation of the conductors. 

 The modularity of the converter reduces manufacturing costs, facilitates maintenance 

and permits provisions for spare parts. 

 With the use of intercycle PWM switching, or multi-level configurations in the VSC 

schemes, the filter requirements are drastically reduced or even eliminated altogether. 

Project 

Name 

Commissioning 

year 

Power 

rating 

No. of 

circuits 
AC voltage 

DC 

voltage 
Length of DC cable 

Reasons for choosing 

HVDC 
topology 

Hällsjön, 

Sweden 
1997 

3 MW 
±3MVAR 

1 
10 kV 

(both ends) 
± 10 kV 

10 km 
Overhead lines 

Test transmission. 
Synchronous AC grid 

2L 

Gotland 

HVDC light, 

Sweden 

1999 
50 MW 
-50 to 

+55MVAR 

1 
80 kV 

(both ends) 
± 80 kV 

2×70 km 

Submarine cables 

Wind power (voltage 

support). Easy to get 

permission for 
underground cables. 

2L 

Eagle Pass, 

USA 
2000 

36 MW 

±36MVAR 
1 

138 kV 

(both sides) 
± 15.9 kV 

Back to back HVDC 

light station 

Controlled 

asynchronous 

connection for trading. 
Voltage control. Power 

exchange 

3L-NPC 

Tjaereborg, 

Denmark 
2000 

8 MVA 
7.2 MW 

-3 to +4 

MVAR 

1 
10.5 kV 

(both sides) 
± 9 kV 

4×4.3 km 

Submarine cables 

Wind power. 

Demonstration project. 
2L 

DirectLink, 

Australia 
2000 

180 MW 

-165 to +90 

MVAR 

3 

110 kV 

(Bungalora) 
132 kV 

(Mullumbimby) 

± 80 kV 
6×59 km 

Underground cable 

Controlled 

asynchronous 

connection for trading. 
Easy to get permission 

for underground 

cables. 

2L 

MurrayLink, 

Australia 
2002 

220 MW 

-150 to 140 

MVAR 

1 

132 kV (Berri) 

220 kV 

(Red Cliffs) 

± 150 kV 
2×180 km 

Underground cable 

Controlled 

asynchronous 

connection for trading. 

Easy to get permission 

for underground 

cables. 

3L-ANPC 

CrossSound, 

USA 
2002 

330 MW 

±150MVA

R 

1 

345 kV 

(New Heaven) 
138 kV 

(Shoreham) 

± 150 kV 
2×40 km 

Submarine cables 

Controlled connections 

for power enhance. 

Submarine cables. 

3L-ANPC 

Troll 

offshore, 

Norway 

2005 
84 MW 

-20 to +24 

MVAR 

2 
132 kV 

(Kollsnes) 

56kV (Troll) 

± 60 kV 
4×70 km 

Submarine cables 

Environment, long 
submarine cable 

distance, compactness 

of converter on 
platform 

electrification. 

2L 

Estlink, 

Estonia-

Finland 

2006 

350 MW 

±125MVA

R 

1 
330kV (Estonia) 
400kV (Finland) 

± 150 kV 
2×31 km Underground 
2×74 km Submarine 

Length of land cable, 

sea crossing and non-
synchronous AC 

systems. 

2L 

Caprivi 

Link, 

Namibia 

2009 300 MW 1 
330kV Zambezi 

400kV Gerus 
350 kV 970 Overhead lines 

Synchronous AC grid, 

long distance, weak 

networks 

- 

Valhall 

offshore, 

Norway 

2009 78 MW 1 
300 kV (Lista) 
11kV (Valhall) 

150 kV 
292 km 

Submarine cables 

Reduce cost and 
improve operation 

efficiency of the field. 

Minimize emission of 
green house gases. 

2L 

BorWin1, 

Germany 
2012 400 MW 1 

380 kV Diele 

170kV Borkum 

2 

± 150 kV 
2×75 km Underground 
2×128 km Submarine 

Offshore wind farm, 

length of land and sea 
cables, asynchronous 

system 

- 

Table 1-3. Summary of worldwide VSC-HVDC projects and their basic parameters. 
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The recommended converter technology varies depending on the application. Although there 

is not a well-defined range, the previous Fig. 1-7 represents an approach of the optimum 

technology according to the application power and transmission distance. So, as indicated in 

the figure, from 500 MW on conventional HVDC is more favourable than VSC based HVDC. 

In Table 1-3 some of the worldwide HVDC-VSC projects are collected. 

1.4 HVDC-VSC topologies 

The VSC HVDC technology using IGBTs recently has gained growing interest due to its 

simplified modularity and flexibility due to the four-quadrant operation of the converter. One 

of the main advantages of VSC-based transmission is its ability to control reactive power in 

both directions, independently of the real power flow. Except for the maximal rating power 

(which is limited in VSC HVDC to around 500 MW while single LCC HVDC link can 

possibly transmit more than one GW power [37]), this second topology has superior 

advantages. That is why from the two converter technologies explained before, this study will 

be focused on the second one, VSC. 

This section deals with a number of VSC topologies suitable for HVDC transmissions. In 

addition to those topologies and control philosophies already developed by major 

manufacturers, along this document some variations will be introduced. 

1.4.1 Two level converter 

HVDC Light conversion system [38] was first introduced by ABB in 1997. It is based on a 

two level topology meaning that the output voltage is switched between two voltage levels. 

As can be seen in Fig. 1-25, each phase has two valves, one between the positive potential and 

the phase terminal and the other between the phase terminal and negative potential. Thus, a 

three phase converter has got six valves, three phase reactors and a set of DC capacitors. To 

be able to switch voltages higher than the rated voltage of one IGBT, several positions are 

connected in series in each valve. A complete IGBT position consists of a StakPak IGBT, a 

reversing diode, a gate unit, a voltage divider and a water-cooled heat sink [39]. 

HVDC Light uses a sinusoidal based PWM control philosophy to control the IGBT’s gate 

switching frequency producing a two level AC waveform. This is then improved to a 

sinusoidal form by the phase reactors. To eliminate harmonics, they are concentrated into a 

narrow band where small filters can be used. The series connected IGBT’s need to switch at 

exactly the same moment, to do this the voltage over each individual IGBT is measured and a 
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boost signal is provided to the gate of the transistor depending on the measured voltage. The 

monitoring system for the IGBT states is managed by a patented ABB control technology. 

VA,V1

VA,V2 VB,V2

VB,V1 VC,V1

VC,V2

+DC

-DC

Valve

 

Fig. 1-25. Schematic of a three phase 2 level HVDC-Light converter with series connected positions 

in each valve. 

The latest example of a HVDC Light application is the Borkum 2 (Germany) offshore wind 

farm transmission which is in operation since 2009. The transmission capacity is 400 MW at 

± 150kV DC voltage by 128 km of extruded polymer insulated submarine cables. The 

receiving station on land is located at Diele, 75 km from the coast, where the power will be 

injected into the German 380kV grid [38]. 

1.4.2 Modular Multilevel Converter (MMC) 

 

Fig. 1-26. SIEMENS’ Modular Multilevel Converter main circuit. Source: [40]. 
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An alternative approach is Siemens’ last technology and control system referred to as HVDC 

Plus [41] which uses multilevel converters (see the three phase schematic in Fig. 1-26). It 

consists of six converter legs, whereas the individual converter leg consists of a series 

connection of power modules (PM) connected in series with one converter reactor. Each of 

the submodules contains an IGBT half bridge as switching element and a DC storage 

capacitor. The two converter legs of each phase module represent a controllable voltage 

source because it is possible to separately and selectively control each of the individual 

submodules. The total voltage of the two converter legs in one phase unit equals the DC 

voltage, and by adjusting the ratio of the converter leg voltages in one phase module, the 

desired sinusoidal voltage at the AC terminal can easily be achieved. The AC waveform is 

built using small voltage steps formed by controlling the modules which are turned off or 

turned on at any given instant. Therefore there is very small need for AC voltage filtering to 

achieve a sinusoidal waveform in comparison to a two level circuit. This approach of using 

modules maximises the output voltage of the converter as many modules can be used in series 

[42]. The first project to use HVDC Plus came online in November of 2010 and is called the 

Trans Bay Cable in California. 

 

Fig. 1-27. Alstom Grid’s Chain-link converter based VSC-HVDC main equipment. Source: [40]. 
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Fig. 1-28. Alstom Grid’s STATCOM based on the MMC or “chain circuit”: circuit arrangement (left) and 

one phase of a ±75MVAr STATCOM supplied for National Grid’s East Claydon substation. Source: [43]. 

Two other prominent manufacturers, Alstom Grid and ABB, have developed very similar 

Modular Multilevel Converters (MMC) known by the commercial trade names Chain-Link 

and Cascaded Two Level converter (CTL) [44] respectively. This fact is evidenced by Fig. 

1-27 and Fig. 1-29 where little differences in the arrangement can be found. However, it has 

to be highlighted the fact that in CTL series-connected press-pack IGBTs are used in the 

valves, thus extending a technology which successfully has been used for high voltage two-

level VSCs to multilevel VSCs through cascade connection. 

 

Fig. 1-29. Outline of ABB’s Cascaded Two-Level (CTL) converter. Source: [45]. 

 
 

Fig. 1-30. Cell module with two valves, 

each comprising eight series-connected 

press-pack. Source: [45]. 

Fig. 1-31. Mechanical outline of ABB’s CTL double 

submodule. Source: [45]. 
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Apart from these two converter topologies, another possible option is the series-parallel 

connection of converters using transformers. This topology lies in assembling conventional 

VSC in series or parallel connection using transformers with the aim of reaching the required 

voltage and current values avoiding the necessity of designing an exclusive converter to fulfill 

the application requirements. Some configurations appear in patents such as [46] or [47]. 

However, there is not any known HVDC application in which it has been applied despite 

being an alternative for the two previous explained topologies. 

1.5 Purpose of the thesis 

As has been introduced, this thesis was within the framework of the study of electronic power 

converter topologies oriented to the HVDC transmission of the power generated in offshore 

wind farms, focusing the research on the Modular Multilevel Converter (MMC) topology. 

There have been two general objectives pursued in this thesis: 

 To study, analyse, compare and evaluate the MMC comprised of different submodule 

topologies. 

 To propose a capacitors voltage balancing algorithm, which can be applied to the 

MMC with different submodule topologies. 

To accomplish these objectives it is necessary to model the converter, to simulate it in Matlab 

software and then to built a downscaled real test bench in the laboratory to contrast the 

simulation results with the experimental ones. 

1.6 Description of the chapters 

This thesis is divided into seven chapters, appendixes and bibliography. The content of these 

chapters is summarized below: 

Chapter 1: the opening chapter reviews the current situation and trends of the wind energy as 

well as wind farms. Then a HVDC transmission from an offshore wind farm to the onshore 

substation is thoroughly described. From all the elements which make that energy 

transmission possible, this thesis is focused on the converter, that is why a brief state of the art 

of power converter technologies and topologies is exposed. Finally the objectives pursued by 

this thesis are presented. 
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Chapter 2: this chapter studies deeply the Modular Multilevel Converter with three different 

submodule concepts: 2L half bridge, 3L-FC and 3L-NPC. The converter is modelled by 

means of differential equations, the way of implementing the modulation technique is 

explained and some simulation results are shown. In addition, a methodology to size the 

converter capacitors and inductances is presented. Although the total voltage of the 

submodules is controlled, at the end of the chapter the individual capacitors unbalancing 

problem is raised. 

Chapter 3: Despite the fact that any modulation technique applicable to multilevel converters 

is also valid for MMC, along this chapter a modulation algorithm based on phase shifted 

PWM which copes with the capacitors unbalances is introduced. Firstly the general 

modulation philosophy is explained applied to the 2L submodule concept and then it is 

extended to 3L-FC, and 3L-NPC submodule topologies. Its effectiveness is confirmed by 

simulation results at different modulation indexes, cos(φ), number of submodules per phase 

and switching frequency. 

Chapter 4: in the fourth part of the report, the validation of the previously developed 

modulation strategy is carried out by means of successful experimental results obtained in a 

downscaled laboratory setup. The capacitors balancing at any operation condition are 

corroborated with submodules 2L and 3L-FC topologies. 

Chapter 5: A comparative assessment based on thermal analysis and sizing of the converter 

elements is made, revealing the benefits and drawbacks of using the studied different 

submodule concepts (including the 2L half bridge submodules with series connection of 

several controlled switches) and the conclusions drawn therefrom. 

Chapter 6: On the one hand, this chapter deals with technical difficulties associated to the 

implementation and the structure of the converter. On the other hand, breakdown and failure 

protections for the system are proposed. Especially an analysis concerning the consequences 

of malfunctions in submodules is carried out. 

Chapter 7: General conclusions and main contributions of the thesis as well as future work are 

summarized. 



 

Chapter 2 
2 Modular Multilevel Converter (MMC) 

________________ 

From the three converter topologies explained before, the decision as to continue 

studying in depth the MMC topology has been made. This converter topology has arisen 

as the leader and most competitive solution for VSC applications operating in the range 

of high power and high voltage levels [48]-[52]. Transmission of energy by means of 

HVDC seems to be an application area with an attractive future for this kind of 

converter topology [44], [53]-[54]. The main characteristics and most important features 

of this converter are summarized and discussed in publications such as [56]-[61], being 

its scalability or modular structure and its transformerless nature, probably its major 

advantages [61]-[62]. Due to these reasons, the MMC provides a suitable and flexible 

converter design that can be adapted to different ranges of voltages and powers. 

Although the majority of the published papers have been focused on MMC designs with 

two level half bridge submodules [48]-[64], it is also possible to arrange MMC 

topologies using multilevel submodule concepts, as reported for instance in [65]. Note 

that under this situation, we can find many possible submodule concepts, just 

combining the multilevel topology chosen, for example Flying Capacitor (FC), Neutral 

Point Clamped (NPC), Multi Point Clamped (MPC), Neutral Point Piloted (NPP), etc… 

and the number of levels used: 3, 4, 5, etc…[59]. This innovative solution, can be 

interesting for example from a manufacturer perspective, in order to bring already 

existing and well proven multilevel submodule designs to novel MMC arrangements, or 

simply to achieve a better usage of the trade components such as the semiconductors. In 

addition, it can help solving protecting actions taken by different manufacturers related 

to patents. On the other hand, from a construction point of view, using multilevel 
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modules is advantageous in reducing the dimensions of the whole converter at expenses 

of complicating the technology of the submodule. 

Therefore, in this thesis besides studying the MMC with 2L submodules, the same 

converter with unconventional submodules will be researched. Obviously not all the 

topologies will be considered, only two of the multilevel: the well known 3 Level NPC 

and the 3 Level FC based submodule concepts. 

Along this chapter, first the basic operation of the converter as well as the mathematical 

behavioural modelling of the MMC with 2L submodules is described. The modelling of 

the MMC has been carried out through differential equations because it is essential to 

learn in depth the behaviour of the converter but it is also useful for developing the 

control of the system and choosing the most suitable modulation technique. Secondly 

how the modulator generates the switching pulses for the semiconductors using PWM is 

explained. Then some simulation results are exposed to clarify the previous concepts. 

The same steps have been followed for the MMC with 3L-FC and 3L-NPC submodules. 

A sizing methodology for the passive components of the converter (the inductances and 

capacitors) is also included. After that, the way of controlling the voltage of all the 

submodules of the converter is presented. Despite employing this control method, the 

balancing problems which appear in the submodules capacitors will be discussed. To 

end up, the obtained conclusions of the chapter are provided. 
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2.1 MMC with 2L submodules 

2.1.1 Modelling 

The aim of modelling the converter by means of differential equations is first to 

describe its behaviour taking into consideration that all the switches are ideal. This 

helps develop a deeper understanding of the performance of the system. Moreover, 

thanks to the mathematical model the converter can be simulated, the different control 

loops designed and the suitable modulation technique chosen. 
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Fig. 2-1. Layout of the three phase MMC. 

The layout of the three phase Modular Multilevel Converter is shown in Fig. 2-1. The 

converter consists of three identical phase units, each with upper and lower multivalves. 

However, for the following developments, the simplest structure will be considered, this 

is, the single phase converter with n submodules shown in Fig. 2-2. It consists of two 

arms of converter, each one formed by a n/2 series connected power submodules plus an 

inductor or filter that can adopt several configurations [53]. Each submodule contains 

two insulated-gate bipolar transistors (IGBT), two reversing diodes and a DC energy 

storage capacitor. The DC side is modelled by two DC voltage sources (considered as 

constants in this study VPO=VON=VDC/2), while the AC side between terminals M and O 

is modelled by an AC voltage source (Vg), a resistor (Rout) and an inductor (Lout). Both 

arm inductors and the output one are taken to be linear and without internal resistance. 



2. Modular Multilevel Converter (MMC) 

Modular Multilevel Converter based HVDC transmission system for offshore wind farm -33- 

Lu

SM1

P

SMn/2

Ll

SMn+1

SMn

Lout

Rout

VPO

N

OM

MMCUpper Submodule (SM1...n/2)

D1

D2

C

iout

i1

i2 VON

A

B

ici

VciVi
Vu

Vl

Si

_

Si

Lower Submodule (SMn/2+1...n)

Vg

_
2

D1

D2

C

ici

VciVi

Si

_

Si

VDC

+ +

+

+

+
+

+
+

--

-

-

-

-

--

 

Fig. 2-2. Layout of the single phase MMC. 

Once the layout of the converter is shown, the purpose of the following analysis is to 

work out the differential equations which describe the dynamic of the different variables 

of the converter: the voltage of every capacitor (Vci), the two arms currents (i1 and i2) 

and the output current (iout). These four variables will be a function of the steady ones or 

the conduction state of all the switches. Being the configuration of the upper and lower 

arm submodules identical, note that along the next discussion, their firing commands 

are considered opposite between them (see Fig. 2-2). The reason of this choice will be 

later explained but it should be taken into account on the whole system. 

In normal operation, only one of the two semiconductors is on at a given time instant, 

that is why each submodule toggles between two states. In the upper arm submodules, 

on state (Si=1) represents that the lower semiconductor is conducting but not the upper 

one, whereas off state (Si=0) means that the upper semiconductor is conducting but not 

the lower one. Assuming that the capacitor voltage is Vci, the output voltage Vi of each 

power submodule can take one of the two different voltage levels. When the submodule 

state is on, the voltage within submodule terminals is zero but when it is off the 

submodule is outputting Vci. In order to make everything clear, in Table 2-1 the voltage 

at submodules terminals is exposed, as well as the current that circulates along the 

capacitor for both upper and lower arms and switching states. 
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Upper arm 

 

Lower arm 

Si Vi ici i1>0 i1<0 Si Vi ici i2>0 i2<0 

0 Vci -i1 Vci ↓ Vci ↑ 0 0 0 Vci ≈ Vci ≈ 

1 0 0 Vci ≈ Vci ≈ 1 Vci -i2 Vci ↓ Vci ↑ 

Table 2-1. Switching states, voltage and currents of 2L submodules. 

Therefore, it is possible to selectively and separately control each of the individual 

submodules in the converter to provide a voltage which is either Vci or zero. 

Remembering that each converter arm is formed by a series connection of several 

submodules, the voltage obtained in the n/2 upper submodules of the phase is the result 

of adding up the individual voltages and is called Vu (2-1). Likewise the voltage 

obtained in the n/2 lower submodules of the phase is Vl (2-2). Notice that these two 

equations depend on the switching state of every submodule and thus their value will be 

varying continuously according to those switching states. This is the reason why in the 

simplified diagram of Fig. 2-3 upper and lower submodules have been replaced by some 

alternative voltage sources. 
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Fig. 2-3. Simplified diagram of the single phase MMC. 

Looking at Fig. 2-3, the voltage between different points of the circuit which depends 

on the state of all submodules is calculated, where n refers to the total number of 

submodules per phase: 
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Subtracting the previous equations the voltage VAB is achieved: 
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Fig. 2-4. a) Diagram of the simplified single phase MMC. b) Diagram of the simplified single phase 

MMC without the load. 

A further simplification of the MMC circuit is necessary in order to continue with the 

modelling of the converter. For that, Thévenin’s theorem is applied to the circuit of Fig. 

2-3. As the theorem states, Thévenin’s voltage Vth is the voltage between M and O 

which has to be calculated in open circuit condition (meaning infinite resistance) that is 

why the load is disconnected in Fig. 2-4a. So when iout=0 and taking into account that 

the two arm inductors have the same value (Lu= Ll= L), the voltage drop is equal in both 

components as expressed in equation (2-6): 

2

V
VV AB

BMMA   (2-6) 
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Including this last equality in (2-7) besides the preceding three equations, Thévenin’s 

voltage can be determined. After substituting several already known terms and 

reordering them, the expression (2-10) is obtained. Paying attention to (2-10) it can be 

deduced that if all the capacitors are well balanced, the first term of the equation should 

be approximately zero, the second one -VDC/2 and the third one provides the n+1 

voltage levels of the output signal being each level of Vci/2 volts. 
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At the beginning of this chapter it has been pointed out that the firing commands of the 

upper and lower submodules are considered opposite between them (see Fig. 2-2). The 

explanation of this choice comes from (2-10). Notice that when all the firing commands 

of the phase are off (Si=0), Vth≈-VDC/2. By contrast when all of them are on (Si=1), 

Vth≈VDC/2. In addition, when half of them are on and the rest are off, Vth≈0 (see Fig. 

2-5). Therefore this means that activating any of the firing commands (regardless the 

arm it belongs to) implies increasing a voltage level of Vth, meanwhile deactivating one 

implies decreasing a voltage level. This idea facilitates reasonably the implementation 

of the modulation besides resulting Vth a zero centred stepped signal. 
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Fig. 2-5. Simplified MMC circuit applying Thévenin theorem. 
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On the other hand, Thévenin’s equivalent inductance Lth is the one measured between 

points M and O considering the voltage sources as short circuits. In this case it is the 

parallel between the two arms inductances as depicted in Fig. 2-4b. Once both Vth and 

Lth are calculated, the whole converter’s circuit can be substituted by a single voltage 

source and an inductance as appears in Fig. 2-5. 

Then, by means of Kirchhoff’s laws applied to the simplified circuit of Fig. 2-5 

equations (2-11) and (2-12) are deduced. 
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Putting in order the expression (2-12), the differential equation which defines the 

dynamic of the output current is obtained: 
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The expression which models the current circulating along the upper arm i1 depends on 

the voltage at Lu inductor’s terminals. It is achieved substituting (2-11) and (2-3) in 

(2-14). In the same way, the current along the lower arm i2 is obtained, this time 

substituting (2-11) and (2-4) in (2-16). 
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Finally, the differential equations which define the voltage in the submodules capacitors 

are worked out. Owing to the opposite definition of the firing pulses for upper and 
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lower submodules, the obtained equations are different: (2-18) for the capacitors of the 

upper submodules and (2-19) for the lower ones. 
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Hence, from (2-13) to (2-19) the differential equations which define de dynamic of the 

Modular Multilevel Converter are achieved. In the following figure (Fig. 2-27), a 

summary of how these variables are accomplished is revealed, being all the submodules 

firing orders the inputs. 

 

Fig. 2-6. Diagram of equations which defines the dynamic behaviour of the MMC. 

2.1.2 Modulation 

Any modulation technique which is employed in multilevel converters can be adapted 

to the MMC. In [66] modulation techniques for multilevel converters are grouped into 

three headings: 

 Multilevel SHE (Selective Harmonic Elimination) 

 Multilevel Carrier-Based PWM (Pulse Width Modulation) 
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 Multilevel SVM (Space Vector Modulation) 

Several examples of these techniques applied to different multilevel inverters are 

exposed in [67]-[68]. Multilevel carrier-based PWM uses several triangular carrier 

signals, which can be modified in phase and/or vertical position in order to reduce the 

output voltage harmonic content. According to [69], the most commonly used 

modulation technique for cascaded multilevel inverters is the PSPWM (Phase Shifted 

Pulse Width Modulation) because it offers an evenly power distribution among cells 

and it is very easy to implement independently of the number of inverters. Fundamental 

concepts as well as variations of PWM appear in [70]. This modulation shifts the phase 

of each carrier in a proper angle to reduce the harmonic content of the output voltage. 

Therefore, this technique is the chosen one for the MMC modelled before. 

The fundamental task of the firing control system is to generate the switching pulses for 

every n submodules of the converter phase by means of the chosen modulation 

technique and the two input references Vu* and Vl*. The fact of having modelled the 

two arms of the phase as two independent voltage sources is the reason why two 

reference signals have to be generated. In the simplified model of Fig. 2-3 can be seen 

that each arm is simplified as an alternative voltage source plus an inductor and both 

arms are in parallel connection. Then, in order to find out which is the desired voltage at 

both upper and lower submodules, a voltage reference per each arm is needed. This 

way, the external control system generates Vu* and Vl* and thanks to the applied 

modulation a voltage similar to the references is tried to be achieved by means of 

switching the submodules. Moreover, according to the operating of the MMC described 

in 2.1.1 these two references should be similar in amplitude but with a phase shift of 

180º. 

For the MMC with 2L submodules, in particular, a carrier signal per submodule is 

necessary, evenly interleaved with a phase shift of 360º/n between two consecutive 

carriers. As each arm is modelled separately, half of the carriers belong to the upper 

phase arm and the other half to the lower one being those carriers which belong to the 

same arm evenly shifted (2∙360º)/n. From the comparison between upper reference 

signal (Vu*) and upper triangular carrier signals (T1..Tn/2), the firing pulses for upper 

submodules are generated. On the other hand, lower submodules commutation orders 

are generated from the comparison between lower reference signal (Vl*) and lower 

triangular carrier signals (Tn/2+1..Tn). 
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Every time a reference signal crosses with a carrier signal which belongs to its same 

arm, its respective submodule must switch. In order to distinguish between a switching 

on and switching off, the value of those two signals is compared. In this point it has to 

be taken into account that switching orders for upper and lower submodules are taken 

oppositely. Thus, regarding the upper arm, the semiconductor is on meanwhile the 

reference is lower than the triangular and off when it is greater. However, as far as the 

lower arm is concerned, the contrary becomes the case as detailed in Table 2-2. 

Upper arm (i=1..n/2) 

 

Lower arm (i=n/2+1..n) 

Si=1 Vu*<Ti Si=1 Vu*>Ti 

Si=0 Vu*>Ti Si=0 Vu*<Ti 

Table 2-2. Switching states depending on the comparison between reference and carrier signals. 
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Fig. 2-7. Triangular and reference signals of a single phase 2L submodule MMC where n=4. 

An example of the generation of commutation orders for a MMC with four submodules 

in the phase is drawn in Fig. 2-7 to clarify these theoretical explanations. In this case 

n=4, which implies the requirement of four triangular carriers. T1 and T2 are those 

which belong to the upper two submodules while T3 and T4 belong to the lower ones. It 

can be seen in Fig. 2-7 how between T1 and T2 there is a phase shift of 180º ((2∙360º)/n) 

as well as between T3 and T4. However, if two carriers from different arms are taken, T1 

and T3 for instance, they are shifted 90º (360º/n). Later, these signals are compared with 

Vu* and Vl* references to generate the firing pulses (S1..S4) in accordance with Table 

2-2. 
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2.1.3 Simulation results 

Next, some simulation figures which demonstrate what has been previously explained 

will be shown. All the graphics from Fig. 2-8, Fig. 2-10 and Fig. 2-12 have been taken 

from a single phase MMC simulation model whose DC voltage is fixed to 2 volts. The 

only two parameters which change are the number of submodules on the converter and 

the frequency of the triangular carriers. First the two references and the triangular 

signals are depicted. Then both upper and lower arms output voltage, Vu and Vl, are 

shown. Each one consists of (n/2+1) levels of Vi volts as expressed in (2-20). The last 

graphic represents the Thévenin voltage of one phase of the converter defined in (2-10). 

Vth is a staircase voltage waveform synthesized by combining the voltages of all the 

submodules of the phase and it is characterized by its (n+1) voltage levels of Vi/2 volts. 

n/2

V
V DC

i 
 

(2-20) 

Being fsw the frequency of every triangular carrier signal, the frequency of the first 

harmonic band of the arm output voltage f1hb_arm depends on the number of submodules 

per arm (2-21). The same happens with the f1hb of Vth which is pushed to n times the 

carrier frequency as expressed in (2-22). This property can be checked in Fig. 2-9, Fig. 

2-11 and Fig. 2-13 where the spectrum of the example in the left is shown. Choosing the 

waveforms from Fig. 2-8 as an example, multiplying n=4 by fsw=500 Hz outcomes 

f1hb=2 kHz, exactly the frequency of the first harmonic band in Fig. 2-9. Moreover, the 

following harmonic bands appear every f1hb. 

sw1hb_arm f
2

n
f 

 
(2-21) 

sw1hb fnf 
 

(2-22) 
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Fig. 2-8. Triangular and reference signals, Vu, Vl 

and Vth of a single phase 2L submodule MMC 

where n=4, VDC=2 volts and fsw=500 Hz. 

Fig. 2-9. Spectrum of Vth from a 2L submodule 

MMC where n=4 and fsw=500 Hz. 

  

  

Fig. 2-10. Triangular and reference signals, Vu, 

Vl and Vth of a single phase 2L submodule MMC 

where n=4, VDC=2 volts and fsw=750 Hz. 

Fig. 2-11. Spectrum of Vth from a 2L submodule 

MMC where n=4 and fsw=750 Hz. 

  

  

Fig. 2-12. Triangular and reference signals, Vu, 

Vl and Vth of a single phase 2L submodule MMC 

where n=8, VDC=2 volts and fsw=500 Hz. 

Fig. 2-13. Spectrum of Vth from a 2L submodule 

MMC where n=8 and fsw=500 Hz. 

-1

0

1

0

1

2

0

1

2

0 0.002 0.004 0.006 0.008 0.015

-1

0

1

time [sec]

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

Fundamental (50 Hz)= 0.991288

M
a

g
 (

%
 o

f 
5

0
 H

z
 c

o
m

p
o

n
e

n
t)

Frecuency (Hz)

-1

0

1

0

1

2

0

1

2

0 0.002 0.004 0.006 0.008 0.015

-1

0

1

time [sec]

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

Fundamental (50 Hz)= 0.990081

M
a

g
 (

%
 o

f 
5

0
 H

z
 c

o
m

p
o

n
e

n
t)

Frecuency (Hz)

-1

0

1

0

1

2

0

1

2

0 0.002 0.004 0.006 0.008 0.015

-1

0

1

time [sec]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fundamental (50 Hz)= 0.990479

M
a

g
 (

%
 o

f 
5

0
 H

z
 c

o
m

p
o

n
e

n
t)

Frecuency (Hz)

Vth 

Vl 

Vu 

Vl* 

Vu* 

Vth 

Vth 

Vl 

Vl 

Vu 

Vu 

Vl* 

Vl* 

Vu* 

T1 T2 T3 T4 

 

 

 

Vu* 



2. Modular Multilevel Converter (MMC) 

Modular Multilevel Converter based HVDC transmission system for offshore wind farm -43- 

2.2 MMC with 3L-FC submodules 

2.2.1 Modelling 

The Modular Multilevel Converter with 3L-FC submodules (Fig. 2-14) keeps the same 

converter modular concept than the MMC with 2L submodules but what does change is 

the topology of every submodule. In this case, each submodule comprises a classical 

3L-FC converter structure formed by four controlled semiconductors, four reversing 

diodes and two capacitors. Regarding the electronic devices, one of these submodules is 

equivalent to two 2L submodules. However, as an advantage of the 3L-FC 

configuration, the capacity of the two capacitors is not the same, being one of them 

smaller C1i=2∙C2i. 
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Fig. 2-14. Structure of the single phase MMC with 3L-FC submodules. 
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Upper arm 

S1i S2i Vi ic1i ic2i i1>0 i1<0 

0 0 Vc1i -i1 0 Vc1i ↓, Vc2i ≈ Vc1i ↑, Vc2i ≈ 

0 1 Vc1i-Vc2i -i1 i1 Vc1i ↓, Vc2i ↑ Vc1i ↑, Vc2i ↓ 

1 0 Vc2i 0 -i1 Vc1i ≈, Vc2i ↓ Vc1i ≈, Vc2i ↑ 

1 1 0 0 0 Vc1i ≈, Vc2i ≈ Vc1i ≈, Vc2i ≈ 

Lower arm 

S1i S2i Vi ic1i ic2i i2>0 i2<0 

0 0 0 0 0 Vc1i ≈, Vc2i ≈ Vc1i ≈, Vc2i ≈ 

0 1 Vc2i 0 -i2 Vc1i ≈, Vc2i ↓ Vc1i ≈, Vc2i ↑ 

1 0 Vc1i-Vc2i -i2 i2 Vc1i ↓, Vc2i ↑ Vc1i ↑, Vc2i ↓ 

1 1 Vc1i -i2 0 Vc1i ↓, Vc2i ≈ Vc1i ↑, Vc2i ≈ 

Table 2-3. Switching states, voltage and currents of 3L-FC submodules. 

Again, upper and lower arm submodules are absolutely identical except for their firing 

commands which are considered opposite between them. Unlike the 2L submodules in 

which only two commutation combinations could occur, in this configuration there can 

be four switching states per submodule as detailed in Table 2-3. As a result, three 

voltage levels (see Vi column of Table 2-3) are achieved at its terminals as the 

submodule topology name suggests. Not only do the voltage levels differ from the 

former configuration but also the currents which flow through capacitors. So the next 

step is to obtain the equations which model this alternative converter. It should be taken 

into account that only those equations which have to do with the submodules voltages 

are modified because the converter structure remains unaltered. 

First of all, the voltage between different points of the circuit of Fig. 2-14 which 

depends on the state of all submodules is calculated ((2-23), (2-24) and (2-25)) where n 

refers to the total number of submodules per phase. 

 



n/2

1i

2i1i2i1ic2i1ic1iPOuPOAO SSSSVSVVVVV  (2-23) 

 



n

1n/2i

2i1i2i1ic2i1ic1iONlONBO SSSSVSVVVVV  (2-24) 

   






n

1n/2i

2i1i2i1ic2i1ic1i

n/2

1i

2i1i2i1ic2i1ic1iONPO

BOAOAB

SSSSVSVSSSSVSVVV

VVV

 (2-25) 
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Remember from the simplified diagram of Fig. 2-4 that Thévenin’s voltage (Vth) is the 

voltage between M and O. Then, it is given by the equation (2-26) which can be 

expanded on (2-27). 

2

V

2

V

2

VV
V luONPO

th 


  (2-26) 

   
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
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
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


n

1n/2i

2i1i2i1ic2i1ic1i
n/2

1i

2i1i2i1ic2i1ic1iONPO

th
2

SSSSVSV

2

SSSSVSV

2

VV
V

 

(2-27) 

Once Vth is calculated and keeping in mind that Lth=L/2, the whole converter circuit can 

be reduced to the one in Fig. 2-5. Applying Kirchhoff’s laws to this circuit, the 

differential equation which defines the dynamic of iout current is conformed (2-30). Note 

that the output current of the converter is a function of Vth calculated in (2-27). 

dt

di

2

L
VV out

thMO   (2-28) 

0V
dt

di

2

L

dt

di
LiRV th

outout
outoutoutg   (2-29) 

 
thoutoutg

out

out ViRV
LL0.5

1

dt

di





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




  (2-30) 

The expression which models the current circulating along the upper arm i1 depends on 

the voltage at the inductor terminals. It is achieved substituting (2-28) and (2-23) in 

(2-31).The same way, the current along the lower arm i2 is obtained, this time 

substituting (2-28) and (2-24) in (2-33). 
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  (2-31) 
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 







 
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n

1n/2i

2i1i2i1ic2i1ic1iON
out

th

l

2 SSSSVSVV
dt

di

2

L
V

L

1

dt

di
 (2-34) 

In the 3L-FC topology 2 DC energy storage elements are needed, C1i and C2i, but due to 

their location on the circuit, their behaviour is defined by (2-35) and (2-36) respectively. 

As the firing pulses for upper and lower submodules are opposite (see Fig. 2-14), the 

equations which define the voltage in the two arm capacitors is also different, being 

(2-37) and (2-38) for the lower ones. 

1i1

1i

c1i Si
C

1-

dt

dV
:Upper   (2-35) 

 2i1i2i1i1

2i

c2i SSSSi
C

1-

dt

dV
:Upper 

 
(2-36) 

1i2

1i

c1i Si
C

1-

dt

dV
:Lower   (2-37) 

 2i1i2i1i2

2i

c2i SSSSi
C

1-

dt

dV
:Lower 

 

(2-38) 

2.2.2 Modulation 

After the modelling equations of the MMC with 3L-FC submodules being explained, 

how the modulation is carried out will be described. The chosen modulation technique 

is the phase shifted PWM as in the MMC with 2L submodules. The difference lies in 

the number of switching states per submodule which has been increased in two. The 

way to get those four switching states per submodule is by means of two triangular 

signals as depicted in Fig. 2-15, one per semiconductor. So overall, 2∙n triangular 

signals per phase are required altogether with a constant phase shift among them of 

360º/(2∙n). As occurred with the 2L configuration, half of the total triangular carrier 

signals belongs to the phase upper arm (T1…Tn) whereas the rest belong to the lower 

one (Tn…T2n). Obviously, there is a phase difference of 360º/n between two consecutive 

triangular signals which belong to the same arm (it is the same concept than the 

explained in Fig. 2-7). 
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Fig. 2-15. Lower reference, triangular carriers and firing orders of a lower arm 3L-FC submodule. 

Once again, two reference signals Vu* and Vl* are needed. These keep unaltered from 

the previous chapter. From the comparison between Vu* and T1..Tn, the firing pulses for 

upper submodules are generated. On the other hand, lower submodules commutation 

orders are generated from the comparison between Vl* and Tn+1..T2n. On and off 

switching states depend on the value of both the reference signal and the carriers as 

specified in Table 2-4. 

Upper arm (i=1..n) 

 

Lower arm (i=n+1..2n) 

Si=1 Vu*<Ti Si=1 Vu*>Ti 

Si=0 Vu*>Ti Si=0 Vu*<Ti 

Table 2-4. Switching states depending on the comparison between reference and carrier signals. 

2.2.3 Simulation results 

Next, some simulation figures will be shown to demonstrate what has been previously 

explained and at the same time to analyze the output waveform. The graphics from Fig. 

2-16 have been taken from a two submodules single phase MMC normalized model 

whose DC voltage is fixed to 2 volts. First the two reference and the four triangular 

signals are depicted. Then both upper and lower arms output voltage, Vu and Vl, are 

shown. Each one consists of (n+1) levels of Vi volts as expressed in (2-39). The last 

graphic represents the Thévenin voltage of one phase of the converter defined in (2-27), 

this is, the voltage between points M and O from Fig. 2-14. Vth is a staircase voltage 

waveform synthesized by combining the voltages of all the submodules of the phase and 

it is characterized by its (2∙n+1) voltage levels of Vi/2 volts (2-40). 

n

V
V DC

i 
 

(2-39) 
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1n2levelsV ofNumber th 
 

(2-40) 

If Fig. 2-8 and Fig. 2-16 are compared, no difference will be found even knowing that 

the topology of the submodule is not the same neither the number of total submodules 

of the converter. However, it is the best example to explain that one 3L-FC submodule 

is equivalent to two 2L submodules. In both cases the amount of total elements to build 

the converter is identical, the carrier signals are generated in an analogous way so as a 

consequence the arm voltages as well as the output voltage turns out to be equal. 

  

Fig. 2-16. Triangular and reference signals, Vu, 

Vl and Vth of a single phase 3L-FC submodule 

MMC where n=2, VDC=2 volts and fsw=500 Hz. 

Fig. 2-17. Spectrum of Vth from a 3L-FC 

submodules MMC where n=2 and fsw=500 Hz. 

As far as the spectrum of the output signal is concerned, if Vth in both examples are 

identical, obviously the spectrum will be identical too. Being fsw the frequency of every 

triangular carrier signal, the frequency of the first harmonic band of the arm output 

voltage f1hb_arm depends on the number of submodules per arm (2-46). The same 

happens with the f1hb of Vth which is pushed to 2∙n times the carrier frequency as 

expressed in (2-42). This property can be checked in Fig. 2-17 where the spectrum of 

the example in the left is shown. Moreover, the following harmonic bands appear every 

f1hb. 

sw1hb_arm fnf 
 (2-41) 

sw1hb fn2f 
 

(2-42) 
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2.3 MMC with 3L-NPC submodules 

2.3.1 Modelling 

Lu

SM 1

P

SMn/2

Ll

SMn+1

SMn

Lout

Rout

VPO

N

OM

MMCUpper Submodule (SM1...n/2)

iout

i1

i2 VON

A

B

Vu

Vl

Lower Submodule (SMn/2+1...n)

Vg

_
2

VDC

S1

ic2

Vc1i

S2

S2

ic1

S1

Vc2iVi

S1

ic2

Vc1i

S2

S2

ic1

S1

Vc2iVi

C1i

C2i

C1i

C2i

+

+

+

+
+

+

+

+
+

+

-

-

-

-

-

-

-

- -

-

 

Fig. 2-18. Structure of the single phase MMC with 3L-NPC submodules. 

 

The Modular Multilevel Converter with 3L-NPC submodules (Fig. 2-18) keeps the 

same converter modular concept than the MMC with 2L and 3L-FC submodules but 

what does change is the topology of every submodule. In this case, each submodule 

comprises a classical 3L-NPC converter structure formed by four controlled 

semiconductors, four reversing diodes, two freewheeling diodes and two capacitors. 

Unlike the 3L-FC configuration, these two capacitors are identical regarding the 

capacity and the operating voltage. 
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Upper arm 

S1i S2i Vi ic1i ic2i i1>0 i1<0 

0 0 Vc2i+Vc1i -i1 -i1 Vc1i ↓, Vc2i ↓ Vc1i ↑, Vc2i ↑ 

0 1 - - - - - 

1 0 Vc2i 0 -i1 Vc1i ≈, Vc2i ↓ Vc1i ≈, Vc2i ↑ 

1 1 0 0 0 Vc1i ≈, Vc2i ≈ Vc1i ≈, Vc2i ≈ 

Lower arm 

S1i S2i Vi ic1i ic2i i2>0 i2<0 

0 0 0 0 0 Vc1i ≈, Vc2i ≈ Vc1i ≈, Vc2i ≈ 

0 1 Vc2i 0 -i2 Vc1i ≈, Vc2i ↓ Vc1i ≈, Vc2i ↑ 

1 0 - - - - - 

1 1 Vc2i+Vc1i -i2 -i2 Vc1i ↓, Vc2i↓ Vc1i ↑, Vc2i ↑ 

Table 2-5. Switching states, voltage and currents of 3L-NPC submodules. 

Once more, upper and lower arm submodules are absolutely identical except for their 

firing commands which are considered opposite between them. Combining 

semiconductors states, the path followed by the current can be altered and as a 

consequence 3 voltage levels can be achieved at submodule terminals (0, Vc1i and 

Vc1i+Vc2i) depending on which capacitor passes through. In this case only 3 switching 

combinations for the semiconductors are allowed as detailed in Table 2-5. 

The equations which model this converter are based on the data gathered in Table 2-5 

besides the former general equations concerning the whole converter. So first, the 

voltage between different points of the circuit of Fig. 2-18 which depends on the state of 

all submodules is calculated ((2-43), (2-44) and (2-45)) where n refers to the total 

number of submodules per phase. 


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
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n

1n/2i

2ic2i1ic1i

n/2

1i

2ic2i1ic1iONPOBOAOAB SVSVSVSVVVVVV  (2-45) 

Remember from the simplified diagram of Fig. 2-4 that Thévenin’s voltage (Vth) is the 

voltage between M and O. Then, it is given by equation (2-46) which can be expanded 

on (2-47). 
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(2-47) 

Once Vth is calculated and keeping in mind that Lth=L/2, the whole converter circuit can 

be reduced to the one in Fig. 2-5. Applying Kirchhoff’s laws to this circuit, the 

differential equation which defines the dynamic of iout current is conformed (2-50). Note 

that the output current of the converter is a function of Vth calculated in (2-47). 
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The expression which models the current circulating along the upper arm i1 depends on 

the voltage at the inductor terminals. It is achieved substituting (2-48) and (2-43) in 

(2-51).The same way, the current along the lower arm i2 is obtained, this time 

substituting (2-48) and (2-44) in (2-53). 
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In the 3L-NPC topology 2 DC energy storage elements are needed, C1i and C2i, but due 

to their location on the circuit, their behaviour is defined by (2-55) and (2-56) 

respectively. As the firing pulses for upper and lower submodules are opposite (see Fig. 
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2-18), the equations which define the voltage in the two arm capacitors is also different, 

being (2-57) and (2-58) for the lower ones. 

1i1

1i

c1i Si
C

1-

dt

dV
:Upper   (2-55) 

2i1

2i

c2i Si
C

1-

dt

dV
:Upper 

 
(2-56) 

1i2

1i

c1i Si
C

1-

dt

dV
:Lower   (2-57) 

2i2

2i

c2i Si
C

1-

dt

dV
:Lower 

 

(2-58) 

2.3.2 Modulation 

As far as the modulation is concerned, not any modulation technique can be used for the 

3L-NPC topology because as revealed in Table 2-5 there are some forbidden states. 

Owing to the limitations inherent to this submodule topology the PSPWM applied to the 

previous submodule concepts is not fully useful in this one. However, a LSPWM (Level 

Shifted Pulse Width Modulation) technique (which is widely used in NPC inverters 

[69]) will be used in combination with the PSPWM. Using a LSPWM, the forbidden 

states in the 3L-NPC topologies can be avoided. An analysis regarding the harmonic 

content of this modulation technique can be found in [71]. There, it is explained that the 

phase displacement between two contiguous triangular carriers is free but there are three 

very simple dispositions that seem the most interesting: 

 APO disposition: all the carriers are alternatively in opposition. 

 PO disposition: all the carriers above the zero value reference are in phase 

among them but in opposition with those below. 

 PH disposition: all the carriers are in phase. 

For a 3L converter only two carriers are needed, that is why from the preceding 

dispositions, the phase displacement with APO or PO will be the same. Hence, in this 

analysis PH disposition is chosen because for a single phase model the harmonic 

content is minimized. 
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With the aim of avoiding one switching combination per submodule, two triangular 

signals and the reference are disposed as drawn in Fig. 2-19. According to the 

semiconductors arrangement of upper submodules, the unacceptable combination is: 

S1i=0, S2i=1 which means that the complementary S1i and S2i are conducting but S1i and 

the complementary S2i are not conducting (see Table 2-5). Then, the triangular signal at 

the top must be the one related to S1i whereas the triangular signal at the bottom must be 

the one related to S2i. This way, the crossings between the reference and T1 or T2 will 

never work out the state S1i=0 and S2i=1. On the other hand, the unacceptable 

combination for lower submodules is S1i=1, S2i=0 as can be checked in Fig. 2-19 and 

Table 2-5. 

1 0

1 0

S1

S2

T1

T2

Vu*

1 1 0 0

1 1 0

S1

S2

T1

T2

Vl*

0
 

Fig. 2-19. Reference, triangular carriers and firing orders of an upper (drawing in the left) and 

lower (drawing in the right) arm 3L-NPC submodule. 

Regarding the whole MMC with n 3L-NPC submodules per phase, n triangular signals 

are required altogether because as depicted in Fig. 2-19 the same triangular carriers 

T1…Tn are valid for generating upper and lower submodules firing pulses. In that picture 

can also be observed that the two triangular signals of the same submodule are in phase. 

However, phase-shift PWM concept is applied among triangular signals of different 

submodules. Two consecutive triangular carriers which belong to the same arm are 

evenly interleaved with a phase shift of (2∙360º)/n (it is the same concept than the 

explained in Fig. 2-7). 

Finally, from the comparison between Vu* and T1..Tn, the firing pulses for upper 

submodules are generated. On the other hand, lower submodules commutation orders 

are generated from the comparison between Vl* and T1..Tn. On and off switching states 

depend on the value of both the reference signal and the carriers as specified in Table 

2-6. 

Upper arm (i=1..n) 

 

Lower arm (i=1..n) 

Si=1 Vu*<Ti Si=1 Vl*>Ti 

Si=0 Vu*>Ti Si=0 Vl*<Ti 

Table 2-6. Switching states depending on the comparison between reference and carrier signals. 
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2.3.3 Simulation results 

Next, some simulation figures will be shown to demonstrate what has been previously 

explained and at the same time to analyze the output waveform. The graphics from Fig. 

2-20 have been taken from a two submodules single phase MMC normalized model 

whose DC voltage is fixed to 2 volts. First the two references and the two triangular 

signals are depicted. Then both upper and lower arms output voltage, Vu and Vl, are 

shown. Each one consists of (n+1) levels of Vi volts as expressed in (2-59). The last 

graphic represents the Thévenin voltage of one phase of the converter defined in (2-47), 

this is, the voltage between points M and O from Fig. 2-18. Vth is a staircase voltage 

waveform synthesized by combining the voltages of all the submodules of the phase and 

it is characterized by its (2∙n+1) voltage levels of Vi/2 volts (2-60). 

n

V
V DC

i 
 

(2-59) 

1n2levelsV ofNumber th 
 

(2-60) 

If Fig. 2-8 and Fig. 2-20 are compared, no difference will be found even knowing that 

the topology of the submodule is not the same neither the number of total submodules 

of the converter. The same happens with the 3L-FC submodules: one 3L-NPC 

submodule is equivalent to two 2L submodules. Regarding the analysis of the 

waveforms, in the three cases the amount of total elements to build the converter is 

identical, the carrier signals are generated in an analogous way so as a consequence the 

arm voltages as well as the output voltage turns out to be equal. 

As far as the spectrum of the output signal is concerned, if Vth in both examples are 

identical, obviously the spectrum will be identical too. Being fsw the frequency of every 

triangular carrier signal, the frequency of the first harmonic band of the arm output 

voltage f1hb_arm depends on the number of submodules per arm (2-61). The same 

happens with the f1hb of Vth which is pushed to n times the carrier frequency as 

expressed in (2-62). This property can be checked in Fig. 2-21 where the spectrum of 

the example in the left is shown. Moreover, the following harmonic bands appear every 

f1hb. 
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Fig. 2-20. Triangular and reference signals, Vu, 

Vl and Vth of a single phase 3L-NPC submodule 

MMC where n=2, VDC=2 volts and fsw=1000 Hz. 

Fig. 2-21. Spectrum of Vth from a 3L-NPC 

submodules MMC where n=2 and fsw=1000 Hz. 

sw1hb_arm f
2

n
f 

 
(2-61) 

swhb1 fnf 
 

(2-62) 

2.4 Sizing of the passive elements of the MMC 

Throughout this chapter the operation of the converter as well as the components 

needed to comprise it are described. From all those elements, this section is focused on 

the sizing of the passive elements of the converter. First, how to calculate the capacity 

of the capacitors of all the submodules is explained. Then, both the arm and output 

inductances are estimated according to the maximum fixed ripple. 

2.4.1 Sizing of the capacitors 

2.4.1.1 Capacitors of the 2L submodules 

The capacitor is one of the principal elements of each submodule, this is the reason why 

it should be well sized according to its application. The sizing methodology of the 

capacitors will be based on the power exchange of the single phase converter. For this 

analysis, notice that each converter arm has been substituted by an inductor plus an 

alternative voltage source v1 or v2 in the diagram of Fig. 2-22. These, in turn, are formed 

by an alternative voltage source and a constant value (for instance, in the upper arm 

v1=e1+E1). As the alternative component of each phase arm is approximately the grid 
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voltage, e1 is considered to get that same value. Moreover, assuming that both arms 

have the same average voltage, E1≈VPN/2. 

Lu

Ll

M

i1

i2

A

B

v1

v2

Vg

+

-

+

+

-

-

iout 

2

iout 

2

e1≈-vg

+

-

E1=

Iz

Vpn

2

iout 

i2=Iz-
iout 

2

i1=Iz+
iout 

2

 

Fig. 2-22. Simplified diagram of the single phase MMC. 

Regarding the arm i1 and i2 currents, they consist of a continuous current Iz plus the 

alternative one, iout/2 (the output current is distributed equally between the two arms). 

So it can be deduced that the active power of a single phase MMC is (2-63) being Vg 

and Iout are the rms values of these variables and φ is the phase shift between them. 

)cos(IVP outg       or     zPN IVP   (2-63) 

To get started, the dynamic equation of a capacitor is exposed in (2-64): 

dt

dv
Ci ci

ici   (2-64) 

It can also be expressed as a function of the instantaneous power in the capacitor (pci(t)): 

dt

dv
C

(t)v

(t)p ci
i

ci

ci   (2-65) 
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But the dynamic equation of a submodule capacitor voltage can be also written as a 

function of the instantaneous power of a MMC phase (pph(t)) being n the total number 

of submodules on the phase: 

n/2(t)vC

(t)p

(t)vC

(t)p

dt

dv

cii

ph

cii

cici





  (2-66) 

In order to obtain the expression of vci(t) the differential equation shown in (2-66) must 

be solved. Assuming that the ripple of the capacitor voltage is negligible compared to 

the average capacitor voltage value (Vci), this approximation is made to facilitate the 

solving of this differential equation: vci(t)≈Vci. 

n/2VC

(t)dtp

VC

(t)dtp
(t)v

cii

ph

cii

ci

ci








 (2-67) 

To determine vci(t) from (2-67) it is necessary to calculate the instantaneous power on 

the phase. Taking into account the voltages and currents on the phase detailed in Fig. 

2-22, pph(t) is: 

2

(t)i
(t)eI(t)e

2

(t)i
EIE(t)p out

1z1
out

1z1ph   (2-68) 

Where: 

2

P

V

P

2

V
IE

PN

PN
z1   (2-69) 
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(2-70) 
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(2-71) 
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(2-72) 

Therefore, after integrating the expression of the phase power and substituting it in 

(2-67) results in the following: 
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(2-73) 

In order to check the validity of equation (2-73) worked out with the aim of defining 

vci(t), some simulations have been carried out. The converter used as example is a single 

phase MMC with 8 2L submodules whose most characteristic parameters are: 

Vgmax=230V, Ioutmax=36.8A, VPN=500V, Vci=125V, Lu=Ll=2mH, Ci=0,01F. Fig. 2-23 is 

the result of substituting these parameters in equation (2-73) meanwhile Fig. 2-24 shows 

the submodules capacitors voltage taken from the simulation model described before. 

From the comparison of the two figures can be deduced that the shape of the ripple is 

very similar and that there is little difference in the amplitude. Therefore, it can be 

concluded that the equation which defines the dynamic of the capacitors voltage (vci(t)) 

worked out in this section of the report is acceptable. 

  

Fig. 2-23. Capacitors voltages (in p.u.) obtained 

from equation (2-73). 

Fig. 2-24. Capacitors voltages (in p.u.) obtained 

from simulation. 

However, this long expression can be greatly simplified. Assuming that the converter is 

working in a HVDC application in which there is not reactive power exchange with the 

grid, only active power is being transmitted. In this case, the phase shift between iout and 

vg is zero, thus cos(φ)=1. Moreover, if the converter is considered to be working at a 

unitary modulation index, 
22

V
V PN

g


 . So applying this latter equality in (2-68), the 

expression of the instantaneous power on the phase is: 

 t)ωcos(2t)cos(ω
2

P
(t)pph   (2-74) 
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As done before, integrating pph(t) and substituting it in (2-67) the obtained vci(t) 

expression is considerably reduced if it is compared with (2-73): 

K
2

t)ωsin(2
t)sin(ω

n/2ωVC

P/2
(t)v

cii

ci 






 



  (2-75) 

Once the temporal equation of the voltage in the submodules capacitors is already 

known, the ripple produced in them can be achieved by calculating the voltage 

difference between the maximum and minimum vci(t). Fulfilling that purpose 

mathematically is as easy as solving the derivative of (2-75) set equal to zero. In this 

case, as the derivative of vci(t) is the phase power, (2-76) has to be solved. 

  0t)ωcos(2t)cos(ω
2

P
(t)pph   (2-76) 

(2-77) trigonometric identity is used to transform (2-76) in (2-78). 

1t)(ωcos2t)ωcos(2 2   (2-77) 

                   t1=0  inflection point
 

                   01t)cos(ωt)(ωcos2 2         t2=2/300  max 
                   t3=4/300  min 

(2-78) 

Three different solutions are obtained from the latter equation but t1 does not match up 

with any maximum or minimum of the function because it corresponds to an inflection 

point. Therefore, entering the other two found solutions in (2-75) the ripple under the 

aforementioned conditions is achieved: 

2nωVC

P33
)(tv)(tvΔV

cii

3ci2cici



  (2-79) 

Finally, defining ΔVcimax as the maximum ripple allowed in the submodules capacitors, 

the capacity of these elements must be higher than: 

2nωVΔV

P33
C

cicimax

i



  (2-80) 

It has to be remarked that this equation is a quite good approach for the approximations 

specified before: ma=1, cos(φ)=1 and 
22

V
V PN

g


 . However, as long as these 
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parameters are further from the specified previous values, the calculated Ci from 

equation (2-80) is more inaccurate and the ripple will be higher than the one estimated 

in (2-79). In that case, it can be used to obtain an approximated capacity value but if a 

more exact value had to be determined, equation (2-73) should be employed instead 

which is demonstrated to be really precise. 

2.4.1.2 Capacitors of the multilevel submodules 

The previous methodology for the sizing of the submodules capacitor is based on the 

instantaneous power exchange. This instantaneous power given or absorbed by each of 

the submodules is independent of the topology used in these submodules. Regardless of 

the used topology (2L or multilevel) the equation (2-68) describes the instantaneous 

power delivered by the submodule. As described in the previous section, based on the 

equations (2-68) and (2-73) it is possible to correctly size the capacity of the 2L 

submodules capacitors, but these equations are not entirely valid for multilevel 

submodule topologies. The reason is that in the multilevel submodules there is more 

than one capacitor, so instantaneously it is possible to know how much power the 

submodule delivers, but it is very difficult to know which capacitor (or capacitors) is 

giving or absorbing this instantaneous power. The individual capacitor ripple depends 

on many factors such as the submodule topology, the employed modulation, etc. 

Therefore, finding out the analytical expression of the individual capacitor ripple in 

multilevel submodules is a very complex task. So it is necessary to size the capacitors 

on the basis of their behavioural simulations and keep on adjusting the Ci value until 

their ripple meets the required specifications in these simulations. This is the procedure 

which has been followed to get the 3L-FC and 3L-NPC submodules capacitor values in 

the next chapters of this thesis. 

2.4.2 Sizing of the inductances 

The objective of this section as in the previous one is to obtain the most suitable value 

of the system inductances. The criteria adopted for the sizing of these elements is the 

maximum admissible ripple through the arm and output currents. For the following 

analysis, the single phase MMC with n=4 2L submodules is taken as example. 

As can be deduced in Fig. 2-1, VMA and VBM represent the voltage drop across Lu and Ll 

inductances respectively. So the general equations that model the current variation along 

Lu and Ll inductances are (2-81) and (2-82) respectively: 



2. Modular Multilevel Converter (MMC) 

Modular Multilevel Converter based HVDC transmission system for offshore wind farm -61- 

Δt
L

V
Δi

u

MA
1   (2-81) 

Δt
L

V
Δi

l

BM
2   (2-82) 

At the beginning of this chapter, the voltage drop across each inductance is defined in 

(2-6) being VAB the voltage drop across the two of them expressed in (2-5). From those 

equations and bearing in mind the example where n=4, it can be deduced that in VMA or 

VBM three voltage levels can be achieved: 0 and ±Vci/2. Under these considerations, 4 

triangular signals are needed for the typical PWM as depicted in Fig. 2-25 and described 

in chapter 2.1.2. It could be shown that the worst case for the current ripple is when the 

reference crosses two triangular carriers at the same instant as depicted in Fig. 2-25. In 

this particular case, the voltage applied at each inductance changes from Vci/2 to –Vci/2 

or vice versa resulting a square signal with an amplitude of Vci and a duty cycle of 0.5 as 

represented in Fig. 2-25. Although this is based on an example where n=4, it can be 

extended to any number of submodules in the converter. Then, the resulting VMA or VBM 

signal would acquire similar shape but its period would be Tpwm/(n/2). 

Tpwm/4

Tpwm

VMA

Tpwm/4

-Vci

2

Vci

2

0

Tu1

Tu2

Tl 1

T l2

Vref

 

Fig. 2-25. Triangular signals for PWM generation as well as VMA and VBM voltage levels. 

Then, the current variation through the phase inductances can be calculated as in (2-83) 

and (2-84) where n is the total number of the phase submodules. 

u

pwmci

1
L

n

T

2

V

Δi



  
(2-83) 
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Δi



  
(2-84) 

Making use of the previous equations the two arm inductances can be dimensioned to 

fulfil the arm current ripple requirements. 

The next step is to do the equivalent for the output current ripple. Going back to the 

Thévenin circuit (Fig. 2-4) it can be seen that not only is iout current determined by Lout 

but also by Lu and Ll, that is, Lth. So as the value of Lu and Ll increases, the ripple in iout 

also decreases. The general equation that models the output current ripple is (2-85): 

outth

BA
out

LL

ΔtV
Δi




  (2-85) 

As mentioned before, VBA is a staircase voltage waveform whose voltage levels are 

±Vci/2. It can be demonstrated that in this kind of signals, the maximum current ripple 

takes place for a duty cycle equal to 0.5. ∆t depends on the number of triangular carriers 

needed for the PWM modulator. Then, the output current variation can be expressed as 

in (2-86). 

outth

pwmci

out
LL

n

T
0.5

2

V

Δi




  
(2-86) 

As the two arm inductances take part in (2-86) (Lth=L1 in parallel with L2), it could 

happen that only with these inductances calculated previously, the output current ripple 

requirements are fulfilled. In that case, an output filter Lout would be unnecessary. 

Regarding the design considerations, it has been previously explained that a direct 

current is circulating through the two arms inductors. Accordingly, in order to avoid the 

magnetic core saturation, employing air core inductances would be a suitable solution. 

2.4.3 Summary of passive elements 

Once compared the voltages and currents from various simulations, it is known that 

while the value of Lu and Ll increases but decreases Lout, the ripple of arm currents as 

well as capacitors voltages minimizes. On the other hand, the time required for the 

system to reach the steady state increases considerably. In Table 2-7 the consequences 

of varying the value of some components is summarized. 
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Increasing Consequence 

Lu=Ll 

The ripple in i1 and i2 decreases but also the ripple in iout 

The transient time increases 

Higher energy at inductances  Higher price and volume 

Higher voltage drop between Vg and Vth 

Lout 

iout ripple decreases  Smaller AC filter required 

Higher energy at inductance  Higher price and volume 

Higher voltage drop between Vg and Vth 

Ci 

Vci ripple decreases 

Higher energy in the capacitors  Higher price and volume 

The output AC voltage is improved 

Table 2-7: Consequences of increasing the value of inductances or capacitors. 

2.5 Control of the voltage of the submodules 
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Fig. 2-26. Block diagram of the single phase Modular Multilevel Converter. 

The main objective of a DC/AC converter is to obtain from continuous voltage sources 

a near sinusoidal stepped waveform at its output, in this case Vth (referred to the middle 

point of the DC bus side). In the MMC, to fulfil that purpose the switches of the 

submodules are operated so that the individual voltages from each submodule add up to 

form the multilevel waveform. It is crucial that every submodule voltage has the same 

value with the aim of attaining regular steps in Vth. This task is executed by the 

modulator but in addition to this, the total capacitors voltage has to be controlled to 

keep the DC bus at a constant value. 
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In this thesis, no possible control strategies or control dynamics for the converter are 

analysed. This part of the research is just based on the regulation of the average current 

through the phase Iz as done in [72] in order to control the total voltage of the capacitors 

as can be seen in the block diagram of Fig. 2-26. 

2.5.1 Capacitors voltage control 

Vth is a signal formed by so many levels of continuous voltages as the number of phase 

submodules plus one. So the more submodules there are the better is the output signal, 

that is, the more it will look like a sinusoidal wave avoiding the AC side filtering 

requirement. 

1nlevelsV ofNumber th   (2-87) 
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Fig. 2-27. Summary of the most relevant waveforms under ideal conditions. 

 

Going back to equation (2-9) which defines the voltage Vth, it is deduced that the total 

sum of one arm capacitors voltage must be equal to VPN in order to obtain symmetrical 
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voltages, that is, a sinusoidal wave without offset (see Fig. 2-27). This way, when all the 

submodules of the phase are off (Si=0), Vth= -VPN/2; in case half of the total submodules 

are on while the others are off, Vth=0; and when all the submodules of the phase are on 

(Si=1), Vth= VPN/2.  

Therefore, when the whole system is active, to ensure a symmetrical output voltage it is 

essential to keep the sum of all the capacitors of the phase to twice the value of the DC 

voltage. This is the reason why the command of the external loop is 2∙VPN. From this 

first control loop the reference of the average current through all the capacitors Iz is 

resulted. 

2.5.2 Average current control 

In accordance with the converter general circuit of Fig. 2-26, the currents fulfil the 

equation (2-88) – (2-90) where the average current through the phase Iz is defined as the 

half of the two arm currents sum as expressed in (2-91) [72]. 

out21 iii   (2-88) 
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Ii out
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
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Fig. 2-26 shows the block diagram of the minor loop. The current command of Iz is the 

outcome of the external control loop and is given by equation (2-92). Controlling the 

difference between the current command and the measured average current (2-91) 

implies setting the voltage at the end of the inductances VAB according to equation 

(2-93). 




















 

 1sT

1
KVV2I p

n

1i

ciPN

*

z

 

(2-92) 



2. Modular Multilevel Converter (MMC) 

Modular Multilevel Converter based HVDC transmission system for offshore wind farm -66- 

lu

ABz

LL

V-

dt

di


  (2-93) 

Once the command VAB* from de current loop is calculated and the command of the 

output signal Vth* is fixed, it is feasible to get the upper and lower reference signal for 

the modulator with the purpose of calculating the switching pulses. 

2.6 Unbalances of the submodule voltages 

Until this point, the whole analysis of the converter has carried out considering ideal 

submodules in which all the electronic devices behave ideally and above all, the 

capacitors keep balanced at the same voltage level. However, in practice the features of 

electronic components are never identical and as a result there are always inequalities 

which can lead to unbalances in the capacitors. It has been found out that the capacitors 

voltage control together with the PWM modulation applied to the converter is not 

effective when disturbances turn up because the switching pattern is always the same. 

It has been checked by means of several simulations using Matlab/Simulink that 2L 

submodules capacitors voltages tend to diverge when slight differences among 

submodules parameters appear. Proof of this is Fig. 2-28. 

 

Fig. 2-28. Capacitor voltages of a single phase 2L submodule MMC being n=4. 

As with the 2L submodules MMC, the 3L submodules does not bring any improvement 

with respect to the balancing of the submodules capacitors after applying the presented 
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modulation as is demonstrated in Fig. 2-29 and Fig. 2-30. Unless an adjustment in the 

modulation is adopted, a well-balanced will not be achieved. 

Capacitors voltage balancing is one of the main objectives of the thesis. It is an issue 

that has to be treated because the consequence is a malfunctioning of the whole 

converter. It should not be forgotten that the multilevel output signal is formed adding 

up the DC voltage of these capacitors, so if their voltages are unbalanced the DC levels 

will be different. Therefore it is essential to cope with this problem in next chapters. 

 

Fig. 2-29. Capacitor voltages of a single phase MMC with 3L-FC submodules being n=4. 

 

 

Fig. 2-30. Capacitor voltages of a single phase MMC with 3L-NPC submodules being n=4. 
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2.7 Conclusions 

In chapter 2, the n submodules single phase Modular Multilevel Converter layout is 

described and its behaviour is deeply explained by means of differential equations. 

Apart from two level half bridge submodules, multilevel topology submodules can be 

also used with the intention of increasing each submodule voltage which is, in the 2L 

submodules, imposed by the chosen semiconductor. 

The modelling of the converter does not have to do with the topology of the 

submodules. However, there are some differences in the way of obtaining the firing 

orders for the switches. Therefore, how the modulation should be implemented 

according to the three selected submodule topologies is explained: 2L, 3L-FC and 3L-

NPC. Moreover, some simulation results are displayed by means of which the output 

signal in the three cases can be analysed. 

A sizing methodology for the passive elements of the MMC is expounded. In the case 

of the capacitors, the expression obtained to size their capacity is valid for the 2L 

submodules but not for the rest because when there is more than a capacitor per 

submodule, their individual ripple depends on several factors. Thus, in the coming 

chapters the Ci estimation for the multilevel submodules will be determined by 

simulations results. 

This thesis does not go into the analysis of feasible control strategies for the converter 

or any specific control loop optimization, simply the total capacitors voltage is 

controlled in order to keep the total DC bus constant. Despite implementing the 

mentioned control, it has been demonstrated that the proposed modulation is not useful 

for models with little disturbances for the reason that the capacitors are likely to 

diverge. So once the problem is identified a solution for the balancing of the capacitors 

will hereinafter be exposed. 



 

Chapter 3 
3 Modulation algorithm with capacitors voltage 

balancing valid for multilevel submodules 

________________ 

It has been demonstrated in chapter 2 that this converter unavoidably requires a voltage 

balancing control of all the capacitors of the submodules comprising the converter. In 

publications such as [49], [73]-[81], several capacitors voltage balancing methods have 

been treated with a MMC topology with 2L submodule concepts. Most of the 

mentioned balancing philosophies are based on a PWM modulation, selecting the 

submodule that must switch at any time, depending on the capacitors voltage and arm 

currents of the converter. These philosophies lead to an extra computational cost 

requirement, since all capacitors voltages must be measured, then the one that switches 

according to a given criteria must be selected, etc... 

Hence, in [73]-[74], a specific procedure for generating the voltage references of the 

two voltage sinusoidal references for each arm is proposed, together with its 

corresponding balancing method based on PWM. This method is especially suitable for 

operating in STATCOM application. With a slightly different philosophy, in [58], [75], 

the balancing and modulation method requires a division of the sinusoidal voltage 

references in n (number of submodules) levels, ensuring that only one submodule will 

switch at each level. On the other hand, in [76] for instance, phase disposition levels 

shifted carriers are used for the modulation method, while the voltage balancing of the 

capacitors is carried out by choosing the appropriate redundant voltage vector. By 

contrast, in [72],[77]-[78], two external closed loops are incorporated to ensure the 

balancing of the capacitors: first an averaging control loop guarantees the appropriate 

circulating current, while secondly, a balancing control loop actuates on the voltage 
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sinusoidal references, ensuring the balancing. In a similar philosophy, [79] also includes 

additional closed control loops to perform the balancing. Finally, [81] compares 

different modulation and control methods for MMC. 

It must be pointed out that for instance in [49], in a different approach compared to 

previous cases, a space vector modulation based balancing method is employed in a low 

number of submodules MMC. Thus, in this case, common mode voltages of the MMC 

are used as degrees of freedom for balancing the capacitors. In an attempt to reduce the 

complexity of the implementation, [82] explores the possibility of controlling the 

converter in open loop by estimating the stored energy in the arms and thereby avoiding 

the necessity of using a large number of measured voltages. Finally, [83] studies the 

voltage balancing limits in MMCs. 

However, no publication has been presented dealing with the voltage balancing problem 

being the MMC constructed by multilevel submodules concepts, such as the well known 

NPC, FC or NPP topologies (note that from the capacitors voltage balancing point of 

view, 3L-NPC and 3L-NPP topologies are equivalent). Thus, this chapter presents an 

effective and versatile solution for the voltage balancing of the capacitors originally 

proposed in [80], based solely on the appropriate PWM modulation strategy and now 

extended to different “classic” and innovative multilevel submodule concepts. It can be 

easily implemented in standard hardware boards, not being difficult to adapt the 

implementation program to arrangements with a different number of submodules. 

Therefore in this chapter a modulation method to face the encountered problem is 

proposed. It is firstly described and applied to 2L submodules. After testing its proper 

performance illustrating the most characteristic variables, it is applied to 3L 

submodules. As the balancing of the capacitors cannot be assured for all the working 

conditions in the 3L-NPC submodules, some extra changes are included in the 

modulation. 

Finally, additional simulation results are shown to prove the right operation of the 

converter at low switching frequencies and high number of submodules. 
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3.1 Description of the Modulation Algorithm applied to 2L 

submodules 

Meanwhile the voltage control system maintains the total voltage of capacitors constant 

to twice the DC bus value, a crucial requisite of the modulator is to uphold all the 

submodules capacitors at the same voltage level. Despite being their total amount 

correct, in case the capacitors are unbalanced, the result is a distorted output voltage. It 

has been verified in chapter 2 that a PWM technique is not enough to fulfil both tasks: 

generate the right semiconductors firing pulses to achieve a multilevel output signal 

meanwhile the capacitors are getting charged and discharged in a balanced manner. 

However, it has been deduced that just modifying the semiconductors switching 

sequence those duties could be completed. This is briefly the clue of the following 

modulation. So it has to be remarked that in this thesis none modulation technique is 

developed, but anyone valid for multilevel converters can be chosen and then slightly 

modified to achieve the balancing of the capacitors. To sum up, instead of following an 

even switching pattern, the modulator algorithm chooses which submodule has to be 

activated or deactivated according to the capacitors voltages when the modulation 

technique detects that a submodule state has to be toggled. 

The modulation method proposed in this chapter consists on a multilevel carrier PWM 

based on [85]. In a standard PWM technique, each triangular carrier signal is linked to a 

specific semiconductor in such a way that, the firing pulses of each semiconductor are 

generated when both reference and its correlated triangular signal intersect. This means 

that all the semiconductors toggle according to a regular repetitive sequence. So the 

main difference of the modulation algorithm developed here is that none of the 

triangular carrier signals are directly linked with any semiconductor. They are just 

grouped by phase arms, so the principle lies in deciding which of the arm 

semiconductor should toggle when a voltage reference signal and a triangular intersect, 

according to the submodule capacitor voltage. Consequently, apart from obtaining a 

multilevel signal in the output voltage of the converter, it is possible to achieve the 

balance of the capacitor voltages. 

Despite there being no interaction among the generation of the switching pulses for the 

2 arms of the phase, the procedure followed is almost the same as can be seen in the 

summary of Fig. 3-1. Every time a reference signal crosses with any of the triangular 

signal which belong to its same arm, any of the arm submodules must switch. The first 
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task the modulator does is to put in order from the lowest to the highest all the arm 

submodules capacitors according to their voltages. Then, in order to distinguish between 

a switching on and switching off, it compares the value of the carrier signal with the 

reference. As can be observed in the diagram of Fig. 3-1 and also in the Table 2-2, if the 

upper reference value is larger than the triangular carrier, a submodule must be switched 

off. In case it is smaller, a submodule must be switched on. The contrary should occur 

with the lower arm. 

Initialization

Upper reference < Upper triangular

YES NO

i1>0:

● If Si whose Vci is 

the lowest =0

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next lower

 Si =1

i1<=0:

● If Si whose Vci is 

the highest =0

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next higher

 Si =1

Switchon_U
i1>0:

● If Si whose Vci is 

the highest =1

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next higher

 Si =0

i1<=0:

● If Si whose Vci is 

the lowest =1

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next lower

 Si =0

Switchoff_U

Lower reference > Lower triangular

YES NO

i2>0:

● If Si whose Vci is 

the highest =0

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next higher

 Si =1

i2<=0:

● If Si whose Vci is 

the lowest =0

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next lower

 Si =1

Switchon_L
i2>0:

● If Si whose Vci is 

the lowest =1

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next lower

 Si =0

i2<=0:

● If Si whose Vci is 

the highest =1

● If not, repeat the previous

      sentence with the Si whose 

Vci is the next higher

 Si =0

Switchoff_L

Upper triangular and  

reference cross

Lower triangular and  

reference cross

Put upper Vci in ascending order Put lower Vci in ascending order 

 

Fig. 3-1. Diagram of the modulation algorithm. 

Whenever the arm current i1 or i2 is positive (see the current direction chosen in Fig. 

5-1), the voltage level of the capacitor through which that current is flowing decreases, 

but it increases when the current is negative (see Table 2-1). So with positive current, its 

circulation must be forced through the capacitor whose voltage level is the highest with 

the aim of discharging it, meanwhile with negative current it must be forced through the 

one whose voltage level is the lowest to charge the capacitor. It can be seen in Fig. 3-1 

that the algorithm carries out different commands depending on the current direction 

and the switching states. This is the main philosophy of the voltage balancing algorithm. 

This algorithm will be well understood looking at Fig. 3-2 which depicts an example of 

the lower arm switching states of a MMC formed by 8 submodules in total, 4 in each 

arm. Every time the lower reference signal crosses with one of the triangular signals 

(T5…T8), the control algorithm decides which submodule of the arm toggles depending 

on the Vci(5-8). The first commutation that appears in the figure happens as a result of the 

intersection between T5 and Vl*. In this case one switch must be deactivated because the 
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triangular is becoming greater than the reference. The current is negative so following 

the steps of the diagram of Fig. 3-1, the switch which should change is that whose 

capacitor voltage is the highest, S5. As its state is on, it is possible to switch it off. 

Paying attention to the next commutation where a switch on takes place being i2<0, it 

should be noticed that instead of activating S7 (as the intersection occurs with T7), the 

switch that toggles is S8. This is because Vc8 is the lowest capacitor voltage and its 

previous state is S8=0. If in that moment S8 was already on, that is, S8=1, it will be the 

turn of the next submodule with less capacitor voltage to switch on, in this example S7. 

In case this one was also activated, the algorithm would continue checking the next 

states in increasing order of capacitors voltage until it found one whose state was off. 

T6 T5

Lower 

Reference T7T8

S5

S6

S7

S8

Vc5
Vc6

Vc8 Vc7

OFF ON OFF OFF
OFF OFF

ON
ON ON

 

Fig. 3-2. Detailed lower arm switching behaviour of a single phase with 8 submodules Modular 

Multilevel Converter when i2<0. 

To recapitulate and validate all the previous concepts, this modulation has been applied 

to the simplest model of the Modular Multilevel Converter: a single phase MMC with 

four 2L submodules at all, two in each arm. The most significant parameters of this 

converter are: VDC=500V, Ci=4.1mF, L1=L2=2mH. It is connected to an L filter 

(Lout=2mH, Rout=0.1Ω) and to the grid (Vg_rms =163V). 

Fig. 3-3 is focused on the lower arm of the converter. Two triangular carriers are needed 

(T2-3) and a reference Vl* to achieve the switching pulses for the two submodules of that 

arm. As a consequence of their IGBTs commutations, the voltage of capacitors Vc3 and 

Vc4 are reflected at submodules terminals as Vl1 and Vl2 respectively. The sum of these 

two voltages works out Vl while Vth represents the two arms output voltage. Note that 
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the steps of these signals have got a regular value which means that capacitors are pretty 

well balanced due to sinusoidal currents as can be seen in Fig. 3-4. 

  

Fig. 3-3. Single phase 4 2L submodules MMC. 

Triangular and reference signals of the lower 

arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=1, fsw=1 kHz (all in p.u.). 

Fig. 3-4. 4 Single phase 2L submodules MMC. 

Converter currents and capacitors voltages 

being cos(φ)=1, fsw=1 kHz (all in p.u.). 

It has been verified that the balancing works correctly for any operation mode of ma, 

cos(φ), etc. It is evidenced in Fig. 3-5-Fig. 3-6 where the working point has changed to 

cos(φ)=0.76. The modification of the shape in the capacitors voltage is what stands out 

most. The ripple of these signals has got a 50 Hz plus a 100 Hz component (as 

explained in 2.4.1.1) which gets altered according to the power exchange. That is what 

exactly happens in this example, P and Q values have been changed to obtain another 

working point and consequently the capacitors ripple and the arm currents have also 

undergone that change. 

  

Fig. 3-5. Single phase 4 2L submodules MMC. 

Triangular and reference signals of the lower 

arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=0.76, fsw=1 kHz (all in p.u.). 

Fig. 3-6. 4 Single phase 2L submodules MMC. 

Converter currents and capacitors voltages 

being cos(φ)=0.76, fsw=1 kHz (all in p.u.). 
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3.2 Modulation applied to 3L-FC submodules 

Not only is the developed modulation well suited to any number of submodules per 

phase but also to different submodule configurations. The algorithm has been described 

for 2L submodules but it is also valid for multilevel submodules adding minor 

amendments. 

In chapter 2.2.2 how to create all the triangular carriers and the reference signals to get 

the semiconductor firing pulses for the MMC with 3L-FC submodules is explained. 

Even though the previous modulation technique was a PWM, carriers as well as 

reference signals keep unaltered for this modulation technique. Meanwhile in the 

standard PWM has been revealed that the carrier signals are linked with a determined 

semiconductor, in this modulation what must be correlated are capacitors with 

semiconductors. The reason is that in this case semiconductors will commute disorderly 

depending on capacitors voltages and the arms current direction, with the aim of 

balancing all these capacitors. 

Thus, the modulation algorithm explained before (Fig. 3-1) can be applied to this 

submodule topology assuming that capacitor C1i is related to S1i and C2i to S2i. In the FC 

configuration, as half of the capacitors have got twice the capacity than the rest, their 

voltage is also supposed to be always the double (Vc1i=2∙Vc2i).Then, in order to get 

comparable voltages in the modulator block, great capacitors measured voltages are 

divided by two. Afterwards the algorithm puts in order these voltages before deciding 

which submodule should commute following the steps of Fig. 3-1. 

  

Fig. 3-7. Single phase 4 3L-FC submodules 

MMC. Triangular and reference signals of the 

lower arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=1, fsw=1 kHz (all in p.u.). 

Fig. 3-8. Single phase 4 3L-FC submodules 

MMC. Converter currents and lower arm 

capacitors voltages being cos(φ)=1, fsw=1 kHz (all 

in p.u.). 
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After these explanations, it is rather clear that the operating mode as well as the output 

signals of the converter with 3L-FC submodules configuration are very similar to the 2L 

submodules configuration. 

Once having explained how to apply the aforementioned modulation algorithm to the 

3L-FC submodules, the simulation results will be shown. The converter model is again 

a single phase MMC with n=4 and the same parameters as the one described for the 2L 

submodules simulation obtaining as a result Fig. 3-7 and Fig. 3-8. 

Being the switching frequency of the carriers 1 kHz as in the 2L submodules model, in 

Fig. 3-7 it is clearly observed that the apparent frequency of the output signal (Vth) is 

twice that frequency because in this topology the double amount of triangular signals 

per phase are required [59]. Moreover, although n=4 in both converters, in this case 3 

voltage levels are obtained per submodule (see Vl1 and Vl2) and as a consequence, Vth is 

formed by 9 voltage levels. As far as the balancing is concerned, lower arm capacitors 

voltages are plotted in Fig. 3-8. Note that Vc5=2∙Vc6 or Vc7=2∙Vc8 relationship is satisfied 

and at the same time their value is totally balanced as a clear evidence of the smooth 

operation of the modulation block. 

  

Fig. 3-9. Single phase 4 3L-FC submodules 

MMC. Triangular and reference signals of the 

lower arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=0.76, fsw=1 kHz (all in p.u.). 

Fig. 3-10. Single phase 4 3L-FC submodules 

MMC. Converter currents and lower arm 

capacitors voltages being cos(φ)=0.76, fsw=1 kHz 

(all in p.u.). 

Apart from the results taken when ma=1 and cos(φ)=1, it has been verified that the 

balancing is working correctly at different operating conditions. For example, Fig. 3-9 

and Fig. 3-10 are obtained when cos(φ)=0.76, but the resulting signals are similar to the 

previous ones except for capacitors ripple appearance. 
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3.3 Modulation applied to 3L-NPC submodules 

As with the 3L-FC submodules, the explanation of creating the modulator input signals 

to get the semiconductor firing pulses for the converter is included in chapter 2.3.2. 

Once these are correctly generated, the aforesaid modulation algorithm (Fig. 3-1) can be 

applied assuming that capacitor C1i is correlated to S1i and C2i to S2i. 

Next, the simulation results of the 3L-NPC submodules will be exposed. In Fig. 3-11 

some representative voltages of the converter are depicted. Despite using the same 

number of carrier signals as in the 3L-FC submodules topology, the apparent frequency 

of Vth of this figure is half that of the one in Fig. 3-7. It is owing to the LSPWM 

technique used in combination with the PSPWM to generate the carrier signals. 

  

Fig. 3-11. Single phase 4 3L-NPC submodules 

MMC. Triangular and reference signals of the 

lower arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=1, fsw=1 kHz (all in p.u.). 

Fig. 3-12. Single phase 4 3L-NPC submodules 

MMC. Converter currents and lower arm 

capacitors voltages being cos(φ)=1, fsw=1 kHz (all 

in p.u.). 

The converter model has not changed from the previous simulations but the result of 

Fig. 3-12 reveal that even applying the new modulation, using 3L-NPC submodules 

capacitors voltages tend again to diverge. Looking at this picture, it is obvious that the 

modulation tries to get the required output voltage Vth. However, the balancing of the 

capacitors cannot be achieved reaching an unstable operating point. Consequently, 

although the shape of Vth is apparently acceptable, taking a close look to that signal (or 

to Vl1 and Vl2) it can be noted that its levels are unequal because they depend on the 

actual capacitors voltages. Paying attention to Table 2-5, it can be observed that for each 

voltage level provided at the terminals of the submodule, the switching states of 

semiconductors do not matter that until the arm current direction changes, it is 

unworkable to alter the tendency of the capacitors. This means that if a capacitor is 
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getting charged, it can never be forced to start discharging (or conversely). At most its 

value can be kept constant. 

Modifying P and Q power exchange in order to provoke a variation in the phase shift 

between output current and voltage, unlike the previous simulation, it is demonstrated 

by means of Fig. 3-13 and Fig. 3-14 that for example, when cos(φ)=0.5 the balancing of 

the capacitors voltages is achievable. 

After carrying out a thorough analysis on this converter topology, the boundaries which 

define its stability are collected in the graph of Fig. 3-15. As it is done in [86], a cos(φ) 

sweep is made by means of successive simulations in which a modulation index is 

imposed, the amplitude of the current remains constant but the phase shift between iout 

and Vth is modified from 0º to ±180º. In this way, whether or not the modulation is able 

to balance the bus capacitors in each case is checked. 

  

Fig. 3-13. Single phase 4 3L-NPC submodules 

MMC. Triangular and reference signals of the 

lower arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=0.5, fsw=1 kHz (all in p.u.). 

Fig. 3-14. Single phase 4 3L-NPC submodules 

MMC. Converter currents and lower arm 

capacitors voltages being cos(φ)=0.5, fsw=1 kHz 

(all in p.u.). 

Summarizing, when the modulation index of the output voltage is under 0.4, the 

converter is able to balance all the capacitors without any restriction, which is 

reasonable because Vth signal is formed of few voltage levels and in that situation more 

switching combinations are possible. But unfortunately as modulation index increases, 

the cos(φ) limit which allows an acceptable balancing is reduced as detailed in Fig. 

3-15. 
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Fig. 3-15. Stability graph of the 3L-NPC submodules MMC. 

3.3.1 Modification in the modulation of the MMC with 3L-NPC 

Submodules 

A successful variation has been included in the modulation algorithm by means of 

which is possible to get the balancing of the capacitors for the whole cos(φ) range. It 

lies in altering triangular amplitudes so that the ton-toff ratio (duty cycle) of IGBTs is 

modified. By doing so, the medium current along capacitors could be the desired one so 

as to increase or decrease their voltage depending on their instantaneous value. 

 

Fig. 3-16. Amplitude of the two triangular signals of a 3L-NPC submodule. 

As stated before, two triangular signals are needed per 3L-NPC submodule, the 

amplitude of each one being 0.5 p.u. and disposed as in Fig. 3-16. Not only should the 

voltage of these capacitors fulfil equation (3-1) but also keep them balanced. In case of 

a deviation in both capacitor voltages the amplitude of the carrier signals should change 

in relation to the produced variation as expressed in equation (3-2). Therefore, every 

calculation step, the modulus of all the triangular signals is determined being the one of 

triangular Ta the calculated in equation (3-3) while the modulus of Tb the one estimated 

from (3-4). Note that if the deviation is positive (V1i > V2i according to (3-2)), A2 will 

result larger than A1 and vice versa. It has to be remarked that any frequency of 

triangular signals changes, only the gradient. Otherwise the switching frequency of 

IGBTs would also change which is not desirable. 
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p.u 1==VV+V cic2ic1i  (3-1) 

c2ic1i

ci
c2ic1i

VV

ΔV
=V-V


 (3-2) 

c2ic1i

ci
1

V+V

ΔV
-0.5A   (3-3) 

c2ic1i

ci
2

V+V

ΔV
0.5A   (3-4) 

Simulation results with the described modulation implemented are shown in Fig. 3-17 

and Fig. 3-18. The most unfavourable case is represented (Q=0) in order to test the 

modulation algorithm. In the first plot of Fig. 3-17 the four triangular signals of the 

lower arm are depicted. As the image is not clear enough, it has been magnified to be 

able to distinguish the variation in the amplitude of T5-8. Thanks to this alteration, Vth is 

properly formed and capacitors voltages keep constant all the time around the fixed 

value. However, a remarkably drawback appears at arm currents. Changing the 

amplitude of carrier signals with the intention of altering the voltage on capacitors, 

implies at the same time a modification of the output signal besides a variation on both 

arms consumption. 

 

 

 

Fig. 3-17. Single phase 4 3L-NPC submodules MMC including a modification in the modulation. 

Triangular and reference signals of the lower arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output voltage being cos(φ)=1, fsw=1 kHz (all in p.u.). 
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Fig. 3-18. Single phase 4 3L-NPC submodules MMC including a modification in the modulation. 

Converter currents and lower arm capacitors voltages being cos(φ)=0.5, fsw=1 kHz (all in p.u.). 

The perturbation generated in the two arms can be compensated by adding a zero 

sequence component control in the three phase system which will modify Vu* and Vl* 

references. As a result, a second order harmonic turns up in i1 and i2 as can be seen in 

Fig. 3-18. Although this harmonic does not appear in the output signals such as Vth or 

iout and does contribute to the balancing, it disrupts the operation of the converter. For 

example, the amplitude of arm currents is much higher than iout meanwhile in previous 

cases it was always half the amount of it. Due to this degraded performance its potential 

application in real systems is reduced. 

3.4 Validation of the modulation for a HVDC application 

All the previous simulation results have been obtained for a 1 kHz triangular frequency 

which may well be quite high in case of a HVDC transmission application. To test the 

developed modulation validity at lower switching frequencies, first a simulation of a 4 

3L-FC submodules MMC has been conducted at 250 Hz. Its results are illustrated in 

Fig. 3-19-Fig. 3-20. Despite the encountered difficulties owing to the low fsw and low 

number of submodules, the obtained voltages are the right ones and the modulator is 

capable of balancing the eight capacitors voltages although their shapes as well as the 

currents are slightly degraded. 
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Fig. 3-19. Single phase 4 3L-FC submodules 

MMC. Triangular and reference signals of the 

lower arm, voltages at the output of the two lower 

submodules, voltage of the lower arm and output 

voltage being cos(φ)=1, fsw=250 Hz (all in p.u.). 

Fig. 3-20. Single phase 4 3L-FC submodules 

MMC. Converter currents and lower arm 

capacitors voltages being cos(φ)=1, fsw=250 Hz 

(all in p.u.). 

Besides corroborating the proper operation of the modulation at low triangular 

frequencies, Fig. 3-21-Fig. 3-22 give evidence of its effectiveness when the application 

requires a high number of submodules. The proposed simulation scenario consists of a 

140kV DC transmission being the converter a single phase 2L submodule MMC. A 

medium voltage semiconductor has been selected as the switching device whose 

VCE@100FIT=2800V and which withstands a maximum current of Ic=1200A. This 

information is enough to calculate in (3-5) the number of submodules per phase of the 

converter, n=100 in this case (actually in a real converter extra submodules would be 

installed to assure the redundancy). 
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Following the sizing methodology described in the chapter 2.4, the capacitor and 

inductances are going to be calculated. For that, the ripple of the capacitors voltage and 

converter currents is considered to be a 10% of the value at most. Moreover, only active 

power is assumed to be transmitted at an unitary modulation index. 

mF4.4
21005022800280

2

1200

22

kV140
33

2nωVΔV

P33
C

cicimax

i 













 

(3-6) 

mH29.3

1.0
22

1200
100

100/1

2

2800

Δi

n

T

2

V

L
1

pwmci

u 












 
(3-7) 

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0.23 0.235 0.24 0.245 0.25 0.255 0.26
-1

0

1

time [sec]

-1

-0.5

0

0.5

1

0.98

0.99

1

1.01

1.02

0.18 0.2 0.22 0.24 0.26 0.28 0.30 0.32

0.48

0.5

0.52

time [sec]

Vl*
 

Vc8 

Vc6 

Vc5 Vc7 

i2 i1 iout 

Vth 

Vl 

Vl2 

Vl1 

T5­8
 



3. Modulation algorithm with capacitors voltage balancing valid for multilevel submodules 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms -83- 

mH82.0

1.0
2

1200
100

100/1
5.0

2

2800

Δi

n

T
5.0

2

V

L
out

pwmci

th 











 
(3-8) 

Along the modelling of the converter it has been commented that the two arm inductors 

have the same value (Lu=Ll=L) and therefore the Thévenin inductance results 

Lth=Lout+L/2. In (3-12) Lth turns out to be smaller than Lu meaning that there is no need 

of using an output filter Lout in order to fulfil the requirements of the current ripple. The 

reason is that the two arms inductances have got influence over the dynamic of iout. The 

ripple on arms currents is much bigger than the ripple on output currents. Thus, if the 

inductances Lu and Ll are sized to get less than a 10% ripple in their currents, it implies a 

decreasement on iout‘s ripple being it less than a 10% too. 

To sum up, the simulation model in which this modulation has been applied this time is 

a single phase MMC with 100 2L submodules whose most significant parameters are 

according to equations (3-6), (3-7): Ci=4.5mF, Lu=Ll=4mH. Despite not being 

necessary, it is connected to an L filter (Lout=2mH, Rout=0.2Ω) to make it easier to 

control the system and to the grid (Vg_rms=50kV). Although the switching frequency is 

100 Hz, as the number of submodules is so high, the resulting signals are of very good 

quality. 

  

Fig. 3-21. Single phase 100 2L submodules MMC. 

Few triangular and the reference signals, voltage 

of the first upper submodule, voltage of the upper 

and lower arm and output voltage being 

cos(φ)=1, fsw=100 Hz (all in p.u.). 

Fig. 3-22. Single phase 100 2L submodules 

MMC. Converter currents and both upper and 

lower arm capacitors voltages (only some of 

them) being cos(φ)=1, fsw=100 Hz (all in p.u.). 

This modulation is already demonstrated to be suitable for any number of submodules 

in the arm or switching frequencies but it is also quite simple to extrapolate it to a three 

phase MMC model (see Fig. 2-1 or Fig. 3-23). On the single phase model the output AC 
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signal of the converter is considered Vth. However, on the three phase model, the three 

output signals are considered those between terminals r, s or t and the neutral point 

called X in Fig. 3-23. In order to obtain those voltages, the converter is supposed to be a 

balanced system where (3-9) and (3-10) expressions are fulfilled: 

0iii tsr   (3-9) 

0VVV tXsXrX 
 

(3-10) 

To get the equations referred to X instead to O, the following equalities are applied 

(3-11)-(3-13): 

XOrXrO VVV 
 

(3-11) 

XOsXsO VVV   (3-12) 

XOtXtO VVV 
 

(3-13) 

Adding these last equations and bearing (3-10) in mind, some terms are removed. This 

way, the unknown factor VXO could be easily worked out as written in (3-14). Once the 

value of VXO managed, it is simple to get VKn where k=r, s or t. 

 tXsXrXXO VVV
3

1
V 

 

(3-14) 

The most representative signals of the three phase converter are exposed from Fig. 3-24 

to Fig. 3-26. First, the currents and the output voltage referred to O of one phase are 

depicted in Fig. 3-24. Notice that there is almost no difference in comparison with the 

single phase converter’s signals. Again, it is hard to appreciate the 101 levels which 

form the output signal as it has more or less the same shape of it reference. Then, in the 

top chart of Fig. 3-25, the voltages of all the capacitors of a phase are shown meanwhile 

in the bottom chart the sum of the one hundred capacitor’s voltage and it reference are 

shown. It can be seen that all the capacitors are properly balanced and that each 

capacitor presents less than 10% of voltage oscillation which becomes in only a 3% 
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oscillation in the total voltage above its reference due to the opposite shape between the 

upper and lower capacitors ripple. 
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Fig. 3-23. Layout of the three phase MMC. 

Fig. 3-24. 3 phase100 2L submodules MMC. 

Currents of the r phase and voltage and 

reference of r phase referred to O being 

cos(φ)=1, fsw=500 Hz (all in p.u.). 

  

Fig. 3-25. 3 phase 100 2L submodules MMC. 

Upper – lower arm capacitors voltages of one 

phase and the sum of all them with the reference 

being cos(φ)=1, fsw=500 Hz (all in p.u.). 

Fig. 3-26. 3 phase 100 2L submodules MMC. 

Three phases voltages and currents being 

cos(φ)=1, fsw=500 Hz (all in p.u.). 

Finally, the graphic on the top of Fig. 3-26 illustrates the three phases’ output voltages 

between r, s, t points and the common neutral point X meanwhile the bottom graphic 

represents the three phases’ output currents of Fig. 3-23. Note that there is 120º phase 

shift among converter phases which means that the system is balanced thanks to the 

correct operating modulation. Sinusoidal shape at the output AC terminals is the main 

advantage of this multilevel converter because big filters are avoided. 

The oscillatory behaviour of the capacitors voltage differs from Fig. 3-22 to Fig. 3-25. It 

is mainly owing to the extremely low triangular frequency. This parameter (fsw) is 
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deduced, as will be described in chapter 5, from a compromise among: power losses 

(converter’s efficiency), thermal stress (working life of the semiconductor), quality of 

the output waveform, capacitors voltage ripple, etc. 

3.5 Conclusions 

In this chapter the developed modulation algorithm based on the PWM for MMCs is 

detailed. It has to be highlighted that in this thesis none modulation technique is 

developed, in fact, anyone employed for multilevel converters can be applied. What 

essentially has been done here is to modify slightly the chosen modulation technique to 

achieve the balancing of the capacitors. Instead of following an even switching pattern, 

the modulator algorithm chooses which submodule has to be activated or deactivated 

according to the capacitors voltages when the modulation technique detects that a 

submodule state has to be toggled. The most important features compared to the 

previously mentioned balancing methods can be summarized as follows: 

•It has been designed in such a way that, a prior analysis of the specific converter 

arrangement is not necessary to identify redundant voltage combinations. Thus, the 

adaptation of the algorithm to arrangements of MMC with a different number of 

submodules is straightforward. 

•For this reason as well, it is easily adaptable to arrangements of MMC with different 

multilevel submodule concepts. 

It is clear that this modulation algorithm is suitable for any topology of submodule 

employed in the MMC arrangement, which allows the voltage balancing of the 

capacitors comprising the converter to be obtained. Thus, by means of simulation 

results carried out in Simulink software tool, the successful performance of capacitors 

balancing at any operating condition (cos(φ), fsw, n) is validated, with submodules 2L 

(even in the three phases converter) and 3L-FC topologies. In this way, this topologies 

operating with the proposed modulation method, could be useful for grid connected 

high power and high voltage applications such as HVDC power transmission or 

STATCOM applications. 

On the other hand, the results obtained with 3L-NPC submoudules with the proposed 

modulation are not as successful as with 2L or 3L-FC submodules, since the voltage 

balancing cannot be guaranteed when the active power exchange is predominant to the 
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reactive power (cos(φ) near 1). Nevertheless, this 3L-NPC based topology could be 

useful for instance, in STATCOM applications. Trying to solve the problem with 3L-

NPC submodules, the proposed modulation algorithm is modified, imposing a second 

harmonic current circulation through the arm currents, allowing the successful 

capacitors voltage balancing to be obtained. However, these arm currents are 

significantly increased, reducing the effectiveness of the solution for practical 

applications. Finally, it can be concluded and highlighted that the proposed modulation 

technique could also be extended to different multilevel topologies such as NPP, SMC, 

etc and combined with higher number of multilevel levels too. 



 

Chapter 4 
4 Experimental validation of the modulation 

strategy 

________________ 

In previous chapters the MMC is modelled by means of the differential equations which 

define the dynamic of the converter. That modelling has been helpful to simulate it in 

Simulink software and to develop a special modulation algorithm whose goal is to 

balance all the capacitors voltages besides obtaining the proper output signal. Although 

the simulation results confirm its effectiveness mainly in the MMC model with 2L and 

3L-FC submodules, it is of big interest to corroborate it on a real implementation. So the 

aim of this chapter is to check if the results of the modelled converter and those of the 

real one match. 

First of all, the used laboratory test bench is roughly described providing the most 

significant data and showing the main arrangement layout. Subsequently, how the 

control system and the modulation are implemented on a dSPACE and a FPGA boards 

respectively is detailed, besides explaining the interaction among all the elements of the 

system. 

From the three submodule topologies previously analysed, only 2L and 3L-FC 

topologies are experimentally evaluated because it has been deduced that the MMC with 

3L-NPC submodules presents some balancing restrictions. Thus the last part of the 

chapter focuses on the experimental results taken under different situations and the 

conclusions drawn therefrom.  

  



4. Experimental validation of the modulation strategy 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms -89- 

4.1 Description of the laboratory test bench 

The diagram of this laboratory setup is illustrated in Fig. 4-1 meanwhile the pictures of 

the real test bench appear in Fig. 4-3. It consists of a single phase Modular Multilevel 

Converter with 6 submodules at all, three in each arm. First, the configuration of the 

submodules was 2L topology (Fig. 4-1a), but after obtaining the experimental results, it 

was replaced by 3L-FC topology (Fig. 4-1b). Although the 3L-NPC topology has also 

been evaluated, it is not experimentally tested due above all to the balancing caused 

problems. 
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Fig. 4-1. Layout of the laboratory test bench. 

  

Fig. 4-2. Laboratory test bench being the configuration of its submodules: 2L topology (left) and 

3L-FC topology (right). 
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Eupec’s IGBT modules [87] are the semiconductors used in the submodules. Each 

module is formed by a series connection of two IGBTs with their freewheeling diode. 

The DC side is obtained rectifying the 3 phase’s grid voltages and adding a bank of 6 

capacitors in series connection. Only for simplicity, an R-L load is connected at the 

output terminals of the converter, between the two arms and the middle point of the DC 

side. The converter parameters are specified in Table 4-1. 

IGBT module (Eupec BSM100GB170DLC) 

VCE 1700 V Ic,nom 100 A 

Converter parameters 

Lu=Ll=Lout 2 mH VDC 537 V 

Rout 47 Ω VAC rms 380 V 

Ci 350mF,1100V CDC 8000mF, 400V 

Table 4-1. Parameters of the single phase MMC with 6 submodules test bench. 

All the connection cables are electrically isolated and a hand-operated inhibition for the 

IGBTs has been designed besides the rest of the protective elements included in the test 

bench. The control system is programmed in a dSPACE controller board meanwhile the 

modulation is implemented on a field-programmable gate array (FPGA). A computer is 

employed to visualize in a real time all the measured values as well as to modify the 

desired control parameters. 

4.2 Implementation of the control system on a dSPACE 

The control system detailed in chapter 2.5 has been designed and simulated in 

MATLAB/Simulink. Then it has been implemented in a rapid prototyping platform 

called dSPACE controller board by means of its Real-Time Interface (RTI) which is the 

link between dSPACE hardware and the development software MATLAB/Simulink. To 

connect the simulation model previously executed in Simulink to a dSPACE 

input/output (I/O) board, it is just necessary to drag and drop the I/O module from the 

RTI block library and then connect it to the Simulink blocks without the user having to 

write a single line of code. When the building button is pressed, the real-time model is 

compiled, downloaded, and started automatically on the hardware. 

By means of several voltage and current sensors assembled over electronic boards 

placed on the converter, all capacitors voltages (Vc_u (upper capacitor voltages), Vc_l 

(lower capacitor voltages)), two arm currents (i1, i2) and the output current (iout) are 

continuously measured. These captured signals are analogically adapted to the ADC 

inputs of the dSPACE Expansion Box. The first task the dSPACE controller board does 
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is to digitalize the received signals and send the computer the read values to display 

them on the Control Desk experiment software. This software which is provided with 

the controller board allows the user to visualize and interact with the control application 

in real time. It is possible to configure all I/O graphically, watch in situ the temporary 

evolution of any desired system variable even change any control system parameter of 

the model implemented in Simulink. For instance, in the picture of Fig. 4-3, some 

control buttons are displayed on the top in order to control the system references or to 

inhibit the semiconductors firing orders in case of emergency. In the remaining displays 

some real measures taken from the test bench are shown such as the capacitors voltages, 

the arms and output currents or the output voltage. 

 

Fig. 4-3. Picture taken from the Control Desk experiment software. 

Another duty carried out by this board lies in comparing the measured variables with 

the maximum allowable voltage and current values, so in case they exceed these limits, 

an inhibition signal is generated for all the semiconductors as a protection system for 

the converter. And the last task is to process that digital data and execute the control 

system with the aim of generating the two references (Vu*, Vl*) for the modulator. 



4. Experimental validation of the modulation strategy 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms -92- 

Afterwards, the generated references, the inhibition and the measured variables except 

iout are converted again to analogue signals before sending them to the modulator block 

which is implemented on a FPGA (see Fig. 4-4). 
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Fig. 4-4. Diagram of the control implemented on a dSPACE. 

4.3 Implementation of the modulation on a FPGA 

Even though the dSPACE has a PWM generation unit, the decision of incorporating a 

FPGA has been taken. The reason is that the dSPACE has a single PWM generation 

unit whereas for the aforementioned modulation several triangular carriers have to be 

generated. The complexity of creating these carrier signals analogically with a phase 

shift sufficiently precise between them has been a relevant argument for opting for the 

digital programmable systems. 

In particular Xilinx’s Starter Kit has been used which is comprised of a board with a 

Spartan-3 as well as other components such as seven-segment displays, leds, I/O 

connectors, etc. So the modulation algorithm for the converter is implemented on a 

FPGA which is integrated on a Spartan-3 family device of Xilinx. It is an integrated 

circuit which contains programmable logic components and a hierarchy of 

reconfigurable interconnectors that allows the blocks to be inter-wired in many different 

configurations [88]. This device has been programmed in VHDL language using the 

provided ISE Design Suite software. 

Next, the way the modulation has been implemented on the FPGA will be described. 

During the entire document has been mentioned that both arms behaviour is similar but 

they just differ on the opposite switching orders. This is why in Fig. 4-5 only the 

schematic block of the upper arm modulation is broken down. As the converter was 

targeted towards high voltage applications, an important requirement was that both the 
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modelling and the implementation had to be easily adaptable to arrangements of high 

number of submodules. Note that the implementation of the modulation has been 

specially designed, keeping in mind this purpose. 

All the data coming in different byte streams from the dSPACE (see Fig. 4-4) is stored 

in the memory component of the FPGA. That data is distributed to the corresponding 

variables when the clock signal is activated. Besides the memory and clock, there are 

other two identical modulation components: one for the upper arm pulses and another 

for the lower. They carry out the same tasks, but the input and output variables are 

different. Inside each modulation component, the events generator compares the 

triangular signals with the reference and in case there is a crossing between them, it 

decides whether there should be a change in the switching pulses according to the 

previous states. If it detects by means of the XOR logic gates that two opposite changes 

have been occurred at the same time (ON and OFF), it rules out the action. Otherwise, it 

finds out if a switch-on or switch-off should be fulfilled. Depending on the activated 

order, one of the next two blocks is running. 

Vu* Triangular 

signals 

generator

Sw Sw_previous

Sw_on

Clock_desfasado

Sw

clk

on_off_1 on_off_2
on_off

Pulses_on

Pulses_u

Pulses_feedback

Sw_off

on_off_3

Vc_u

i1

Ordering 

pulses

Switching 

state’s 

change

 

01

Pulses_1
Pulses_2

Reordering 

pulses

Positions

Ordering 

pulses

Switching 

state’s 

change

 

10 

Pulses_1
Pulses_2

Reordering 

pulses

Positions

Pulses_off

Vc_u

i1

clk

clk

clk

Pulses_feedback

XOR_sw

XOR_sw_previous

XOR_XOR

positive

Sw_off

negative

positive1
negative1

Pulses_3

Pulses_3

Sw_on

Sw_off_1

Sw_off_1

Switch ON (Upper)

Switch OFF (Upper)

Generation of pulses (Upper)

Events generator (Upper)

Modulation (Upper)

clk_1

clk

i1

Vc_u

Vl*
Sw_on

on_off

Pulses_l
Sw_off Generation of pulses (lower)

Events generator (lower)

Modulation (lower)

clk_1

clk

i2

Vc_l

T1...Tn/2

Vu*

inhibition

inhibition

 

Fig. 4-5. Diagram of the modulation implemented on a FPGA. 
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As can be observed in Fig. 4-5, both Switch ON and Switch OFF blocks are very 

similar: first pulses are ordered depending on capacitors voltage, then the appropriate 

switching state is changed and finally the pulses are prepared to be sent to the 

semiconductors. From these three, the second task is the different one: on the Switch 

ON the corresponding switching state changes from 0 to 1 meanwhile in Switch OFF it 

changes from 1 to 0. Note that all these actions are synchronized by a clock signal. 

Thus, every clock signal the firing pulses for all the IGBTs will be updated at the output 

of the FPGA. 

Optical fibres are used to provide isolation and fast flow of the control signals from 

Spartan-3 device to the semiconductors drivers of the converter. It is interesting to 

mention that the driver is the responsible for generating not only pulses for principal 

IGBTs but also those for complementary IGBTs. 

4.4 Experimental Results 

Once the laboratory downscaled model as well as the implementation of the control 

system and the modulation is described, the experimental results will be shown. The 

main idea is to plot the same variables than those shown in the simulation results to be 

able to contrast them. In the simulation results Vth stepped waveform was considered the 

output voltage of the converter. Nevertheless, this is a variable which cannot be 

physically measured so in the real converter the voltage in the load (voltage between M 

and O of Fig. 4-1) is captured in the oscilloscope instead. In the simplified diagram of 

Fig. 4-6 can be observed that VMO and Vth are not exactly the same voltages because 

Thévenin inductance appears between them. However, taking into account the 

parameters of Table 4-1, as the load impedance is far larger than Lth the voltage drop in 

the latter element is negligible and therefore considering VMO equal to Vth is an accurate 

approximation. 

Vth≈
Vl-Vu

2

O

MLth=L/2

iout+

-

Lout Rout

 

Fig. 4-6. Simplified MMC circuit applying Thévenin theorem. 
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4.4.1 Results with 2L submodules 

In this subsection the most relevant experimental results obtained from the first 

laboratory model will be shown. Remember that initially the topology of the 

submodules was the 2L illustrated in Fig. 4-1a and Fig. 4-2 (left picture). 

According to Table 4-1, the DC voltage attained in the test bench is around 540 volts, 

which means that during the steady state the voltage at the output of any of the six 

submodules should be 180 volts (capacitors balancing voltage, Vci). A proper switching 

sequence of the submodules turns out a four levels waveform at each arm terminals as 

depicted in Fig. 4-7a. As expected, the steps of Vu and Vl are approximately of 180 V, 

totalling a maximum of VDC and having an average value of VDC/2 as anticipated in Fig. 

2-27. This picture also shows the upper and lower references generated in the dSPACE 

board to check how closely they are tracked by their respective signals. When 

subtracting them as expressed in (2-8) the converter output voltage is obtained, that is, 

the voltage between the terminals M and O (see Fig. 4-7b). From two stepped 

waveforms of four levels each, another one of seven levels is achieved, VMO. So, the 

output voltage of a converter with 6 2L submodules results in a 7 levels signal (2-87) 

with VDC/2 volts of peak voltage and centred on zero. If the modulation index is reduced 

to i.e. ma=0.5 (Fig. 4-7c and Fig. 4-7d), the voltages are also reduced according to that 

factor and the voltage levels are the required to get the ma·VDC and ma·VDC/2 values 

respectively. 

Apart from the output voltage, in Fig. 4-7e the three currents which circulate through 

the converter are depicted. The output current iout and arm currents i1 and i2 are 

determined by the load and the commanded modulation index. Although arm currents 

appear a bit distorted due to the submodules commutations, notice that a 5 amps perfect 

sinusoidal output current is achieved when ma=1. Moreover looking thoroughly, it can 

be perceived that i1 and i2 have got an average value which coincides with Iz (the 

average current along the phase from Fig. 4-7f. 
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a)  b)  

c)  d)  

e)  f) 

Fig. 4-7. Experimental results of a single phase Modular Multilevel Converter with 6 2L 

submodules. a) Upper and lower arms voltages and references. b) Output voltage and its reference 

being ma=1. c) Upper and lower arms voltages and references being ma=0.5. d) Output voltage and 

its reference being ma=0.5. e) Output voltage and currents. f) Control variables and capacitors 

measurements taken from the Control Desk software. 

In Fig. 4-7f, some of the variables displayed in real time on the computer are depicted. 

The first graph is the sum of the six capacitor voltages illustrated in the two graphs on 

the bottom. Look how Vci keeps more or less constant to 180 V and as a result Vct is a 

rippled signal around 1080 volts. Despite having fixed the reference to 1100 V, the real 

voltage cannot attain it because remember that the DC side of the converter is obtained 

rectifying 380 volts from the AC grid. 
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a)  b)  

Fig. 4-8. Experimental results of a single phase Modular Multilevel Converter with 6 2L 

submodules. a) Transient ma=0.5 to ma=1. b) Balancing of the upper arm capacitors. 

After ensuring an acceptable steady state operation of the converter, the next stage is to 

test its behaviour during transients. For that, the modulation index is changed from 0.5 

to 1 but as can be seen in Fig. 4-8a, the transient is properly performed. 

To prove the proper operation of the modulation, the balancing algorithm is disabled 

during a short period of time. It can be observed at the top of Fig. 4-8b that initially all 

voltages have got the same value and after 70 ms of imbalance situation the system is 

able to get recovered from it. Only upper arm capacitors voltages are displayed due to 

the lack of input channels on the oscilloscope. However, the behaviour of the lower 

capacitors is exactly the same. The picture has been enlarged in the moment when 

capacitors voltage differs the most to point out how the output signal gets distorted. 

4.4.1.1 Results with 2L submodules. A different working point 

The aim of this section is to demonstrate that not only can this converter work 

exchanging active power but also in other working points. For this purpose, the load 

parameters have been changed a little bit, increasing Lout until 48 mH and decreasing 

Rout to 40 Ω as specified in Table 4-2. This way the load turns more inductive. 

Converter parameters 

Lu=Ll 2 mH VDC 537 V 

Lout 48 mH VAC rms 380 V 

Rout 40 Ω CDC 8000 mF, 400V 

Table 4-2. Parameters of the single phase MMC with 6 submodules test bench. 

The effect produced by the new load in the currents is noticeable in the first four graphs 

of Fig. 4-9. In this case currents are some degrees ahead comparing with the former 

working point. Instead of being 180º phase shift between iout and VMO, now there is 

about 165º. Apart from that, the behaviour of the converter is identical. The individual 

VMO 

i2 i1 iout 

VMO 

V3 V2 

V1 



4. Experimental validation of the modulation strategy 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms -98- 

voltages from each submodule add up to form four level arm voltages (Fig. 4-9c) and at 

the same time Vu and Vl add up to form the seven level output voltage. The consequence 

of reducing the modulation index can be noticed in Fig. 4-9d where the four depicted 

signals are reduced to the half according to the modulation index. It is obvious that the 

modulation is working properly, otherwise voltage levels would be irregular. However, 

to verify it, the measured values are displayed in Fig. 4-9b. 

a)  b) 

c)  d)  

Fig. 4-9. Experimental results of a single phase Modular Multilevel Converter with 6 2L 

submodules being Rout 40 Ω and Lout 48 mH. a) Output voltage and currents being ma=1. b) Control 

variables and capacitors measurements taken from the Control Desk software. c) Output voltage, 

upper and lower arms voltages and output current being ma=1. d) Output voltage, upper and lower 

arms voltages and output current being ma=0.5. 

4.4.2 Results with 3L-FC submodules 

Once the experimental results obtained from the test bench with 2L submodules are 

shown, those obtained from the test bench with 3L-FC submodules (Fig. 4-1b) will be 

exposed. 
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a)  b)  

c)  d)  

e)  
 

f) 

Fig. 4-10. Experimental results of a single phase Modular Multilevel Converter with 6 3L-FC 

submodules. a) Upper and lower arms voltages and references. b) Output voltage and its reference 

being ma=1. c) Upper and lower arms voltages and references being ma=0.5. d) Output voltage and 

its reference being ma=0.5. e) Output voltage and currents. f) Control variables and capacitors 

measurements taken from the Control Desk software. 

The number of submodules of the converter remains constant but to reconfigure the 

submodule, the elements have been doubled and the connections have been changed. 

Unlike the 2L configuration, the arm voltages are formed by 7 levels (see Fig. 4-10a) 

instead of 3. Consequently, the individual voltages from each submodule add up to form 

a multilevel, now near sinusoidal 13 stepped waveform (VMO), this is, 2∙n+1 as shown in 
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Fig. 4-10b. These two pictures are repeated in Fig. 4-10c and Fig. 4-10d but in this case 

the references are fixed to half of its maximum value being the modulation index 0.5 

instead of 1. 

Regarding the currents, in Fig. 4-10e it can be observed how the output current is a 

sinusoidal signal while i1 and i2 contain a lot of noise because of the submodules 

commutations. As far as capacitors voltage is concern, the last picture of Fig. 4-10 

shows their measured values. It should not be forgotten that as a characteristic of this 

submodule topology, one of the two capacitors per submodule is charged to the half of 

the other’s voltage. In this test bench, Vc1i=2·Vc2i being Vc1i≈180V and Vc2i≈90V. 

However, as explained in the modelling chapter, to adjust the external control loop (the 

one related to the total capacitors voltage) the twelve capacitors of the converter are 

supposed to be charged to the same level. For this reason, just for carrying out some 

calculations, the greatest capacitors voltages are divided by two. Thus, the reference 

signal Vct* is fixed to 1080 volts, this is 12·Vc2i=12·90V. 

a)  b)  

c)  d)  

Fig. 4-11. Experimental results of a single phase Modular Multilevel Converter with 6 3L-FC 

submodules. a) Transient ma=0.5 to ma=1. b) Transient ma=1 to ma=0.5. c) Balancing of the greater 

upper arm capacitors. d) Balancing of the smaller upper arm capacitors. 
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After ensuring a satisfactory steady state operation of the converter, similar transient 

than in the previous configuration has been caused. First, in Fig. 4-11a the modulation 

index is changed from 0.5 to 1 and in Fig. 4-11b the opposite is done, ma is changed 

from 1 to 0.5. In both experiments the transient is properly performed, currents and 

voltages acquire an acceptable shape as well as value. 

To prove the proper operation of the modulation, the balancing algorithm is disabled 

during 30-40 ms. It can be observed at the top of Fig. 4-11c and Fig. 4-11d that initially 

all voltages have got the same value, then capacitors start getting unbalanced and after 

the modulation being reactivated the system is able to recover rapidly from the 

instabilities, it takes only 10 ms to go back to the steady state. Only upper arm 

capacitors voltages are displayed but the behaviour of the lower capacitors is similar. In 

this case two figures have been plotted because the two capacitors of the same 

submodule acquire different values, so to clearly perceive them, those with equal Vcis 

are grouped in the same picture. As can be noticed, capacitors voltages of Fig. 4-11c are 

two times the voltages of capacitors in Fig. 4-11d. These two pictures have been 

enlarged in the moment when capacitors voltage differs the most to point out how the 

output signal gets distorted. 

4.5 Conclusions 

In this chapter, the modulation strategy described in chapter 3 is implemented in a 

downscaled laboratory setup. This implementation has been specially designed keeping 

in mind that for a high voltage application, it will be necessary to control a high number 

of submodules. 

By means of experimental results shown here, the successful simulation results of the 

capacitors balancing at any operation condition are corroborated with submodules 2L 

and 3L-FC topologies. In this way, this topologies operating with the proposed 

modulation method, could be useful for grid connected high power and high voltage 

applications such as HVDC power transmission or reactive compensator applications. 

 



 

Chapter 5 
5 Comparison of MMC with different submodules 

________________ 

It has been demonstrated that not only the MMC can be comprised of 2L half bridge 

submodules but also of multilevel submodules, without impairing the operating of the 

converter or hindering its implementation. So in this chapter primarily the advantages 

and disadvantages of using different suitable submodules concepts for the MMC 

topology to be used in HVDC applications will be discussed. 

The submodule topologies under comparison are, apart from the three considered so far 

(2L, 3L-FC, 3L-NPC), the 2L half bridge with series connection of several controlled 

switches. The analysis includes guidelines to choose the most suitable semiconductor, 

accompanied with an illustrative example that compares the performances obtained with 

two different natures of IGTBs, one of low voltage (LV) and the other one of medium 

voltage (MV). Thus, the analysis will evaluate the four aforementioned submodule 

concepts built up with different nature of semiconductors, applying a comparison 

procedure that is mainly focused on a thermal analysis of the resulting converter. From 

that procedure, the maximum achievable output AC currents and powers under different 

operating conditions, such as number of submodules employed, switching frequency, 

modulation index, power factor, etc are deduced. In addition to this, the comparison also 

takes into account other aspects such as the quality of the generated waveforms and 

implementation complexity. 

To summarize, the findings of more interest from each section are collected in a large 

table in order to find out easily the positive and negative aspects of each submodule 

topology.   
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5.1 Output voltage analysis of MMC topology 
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Fig. 5-1. Diagram of the three phase Modular Multilevel Converter (MMC) with an undefined 

number of submodules and types. a) MMC converter, b) 2L submodule concept, c) 2L submodule 

with series connection of IGBTs concept, d) 3L-FC submodule concept, e) 3L-NPC submodule 

concept. 

This section compares the submodule topologies under study presented in Fig. 5-1 in 

terms of output AC voltage quality. Note that apart from the three submodule topologies 

that have been analysed in the previous chapters, from now on the 2L submodule 

topology with several switches connected in series will be as well considered. 
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e)
 

a)
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Taking into account that in HVDC applications, the operating voltages are relatively 

high, for instance from 100kV (could be 50kV) up to even 640kV (could be 320kV) 

at DC side, the required number of semiconductors in the arrangement of the converter 

will also be high. This situation from an optimistic perspective can be understood as 

advantageous in MMC topologies, for the reason that although a high number of 

submodules are required to reach these high voltages, multilevel AC waveforms of good 

quality or low distortion ratios are achieved. Therefore, this study is focused on the 

quality of the Vth waveform according to two main parameters: the switching frequency 

and the number of submodules used. The analysis is carried out under an idealized 

scenario [89], with classical PWM modulation methods, not considering the balancing 

algorithm of the DC bus voltage capacitors explained in chapter 3. Note that this 

scenario, simplifies the evaluation and easies the understanding, without loss of 

generality or representativeness. 

5.1.1 MMC topology with different submodule concepts 

As the Modular Multilevel Converter with different submodule concepts has already 

been described, the outing voltage characteristics have been detailed. But in this section 

all that information is gathered and deeply analysed. 

Initially, 2L submodule topology represented in Fig. 5-1b and 2L with series connection 

of switches submodule topology illustrated in Fig. 5-1c will be analyzed. All the 

graphics in Fig. 5-2a and Fig. 5-2b have been taken from a single phase MMC 

simulation with 4 submodules in total (2 in the upper arm and 2 more in the lower arm). 

It is supposed that the same type of semiconductors is utilized but not the number of 

them. In the second topology (Fig. 5-2b), two semiconductors (IGBTs and diodes) are 

considered in series connection per valve which makes up in total 8 of each meanwhile 

in the 2L topology only four. 

n/2

V
V DC

i 
 

(5-1) 

In those figures, first the two references (Vu
*
 and Vl

*
) and the corresponding triangular 

carrier signals to generate the firing orders are depicted. Then both upper and lower 

arms output voltage, Vu and Vl are shown. Each one consists of (n/2+1) levels of Vi volts 

as expressed in (5-1) in which n is the number of submodules per phase. The last 
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graphic of Fig. 5-2, represents the output voltage of one phase of the converter Vth. This 

voltage is characterized by its (n+1) voltage levels of Vi/2 volts. 

  

 

 

 

 

Fig. 5-2. Normalized triangular and reference signals, Vu, Vl and Vth of different MMC 

configurations (all with same semiconductor). a) 4 2L concept submodules at fsw=250 Hz. b) 2 2L 

concept submodules with series connection of 2 switches at fsw=250 Hz. c) 2 3L-NPC concept 

submodules at fsw=250 Hz. d) 2 3L-NPC concept submodules at fsw=500 Hz. e) 2 3L-FC concept 

submodules at fsw=500 Hz. 

The fact of serializing 2 semiconductors in each valve lead us to chose the voltage of the 

capacitor double for the configuration of Fig. 5-2 b, in order to set equal voltage at each 

semiconductor allowing to operate them at the collector-emitter 100 FIT (Failure In 

Time rate) voltage (Vce@100FIT). Consequently, the relation of amplitude voltages for Vu, 

Vl and Vth are double in Fig. 5-2b than in Fig. 5-2a, but the appearance of the obtained 

waveforms is equal. To sum up, for a determined number of submodules in the 

converter, with the series connection of semiconductors submodule topology voltage 
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amplitude is gained at the expense of increasing the number of elements while the wave 

shape keeps unaltered. 

On the other hand, Fig. 5-2c and Fig. 5-2d are the corresponding waveforms, for a 3L-

NPC submodule concept. In this case, they represent a single phase MMC simulation 

with 2 submodules in total (1 in the upper arm and 1 more in the lower arm). Once 

again, it is supposed that the same type of semiconductor as in the previous two 

configurations is utilized. Consequently, equal VDC voltage is needed for configurations 

of Fig. 5-2a, Fig. 5-2c and Fig. 5-2d. The same number of controlled switches is also 

necessary (except for the clamping diodes) for these configurations. Due to the nature of 

a 3L-NPC submodule, in Fig. 5-2c, the triangular signals needed are level shifted and 

their frequency (fsw) is fixed to equal value as in Fig. 5-2a. As a result, unlike the 

previous cases, its output waveform differs from the one in Fig. 5-2a. However, by 

doing two times greater the triangular frequency of the MMC with 3L-NPC submodule 

concept, a curious effect shown in Fig. 5-2d is appeared: the same output voltages Vu, Vl 

and Vth as in configuration of Fig. 5-2a are achieved. 

Finally, if MMC converter with submodules based on 3L-FC topology is utilized with 

equivalent philosophy than the 3L-NPC submodules, the obtained output voltage results 

are exactly equivalent to the MMC converter with 2L submodule concept. Naturally, to 

obtain the output waveforms of Fig. 5-2a for instance by using 3L-FC submodules, only 

2 submodules in total (1 in the upper arm and 1 more in the lower arm) should be used 

and their corresponding triangular signals (and frequencies) should be equal as shown in 

Fig. 5-2a. Note that in this particular case, the number of semiconductors of both 

configurations would be also equal (2L and 3L-FC). 

5.1.2 Output voltage quality analysis 

Keeping in mind that Vth is a multilevel waveform whose number of levels depends on 

the number of submodules per phase, and f1hb depends on the switching frequency, it is 

predictable that the quality of the signal will improve as these two parameters increase. 

Thus, next the evolution of the quality of MMC waveforms is going to be analyzed 

according to the chosen n and fsw. For that, the total harmonic distortion (THD) of Vth 

(5-2) and the weighted total harmonic distortion (WTHD) (5-3) will be calculated 

(without the injection of the third harmonic) for a 2L submodule based MMC. After 

that, the results are extrapolated to the studied submodule concepts. 
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Observing Fig. 5-3 it can be noticed that both THD and WTHD decrease exponentially 

as n increases, meanwhile the fundamental value of the analyzed signal remains 

constant in all the cases with a little ripple lower than 0.2%. Furthermore while fsw rises, 

WTHD presents a downward trend. It does not happen the same in the case of THD 

which keeps more or less stable regardless of the frequency. 

 

 

Fig. 5-3. Fundamental voltage, THD and WTHD of Vth, in a 2L submodule MMC converter 

according to the number of submodules and the switching frequency. 

It could be natural to think that the THD has to change due to the switching frequency, 

enhancing with higher fsw. However, looking at the spectrum of the same converter but 

at two different switching frequencies (Fig. 5-4, Fig. 5-5) it can be seen how the 

amplitude of the harmonic bands hardly change one another. The reason is that in the 

THD rate calculation the frequency is not taken into account (5-2). 

On the other hand, the switching frequency does have influence on the WTHD rate. 

Although the amplitude of the harmonic bands in Fig. 5-4 and Fig. 5-5 are almost the 

same, the frequency where those harmonic bands appear is different, 12.5 kHz and 17.5 

kHz respectively. WTHD is a weight calculation of THD which means that the lower 

harmonics have got more importance. Therefore, in a particular MMC with n 

submodules, the converter whose fsw is the lowest will obtain the lowest WTHD rate. 
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Fig. 5-4. Spectrum of a 2L submodule MMC 

where n=10 and fsw=1250 Hz. 

Fig. 5-5. Spectrum of a 2L submodule MMC 

where n=10 and fsw=1750 Hz. 

To have a quick overview of the obtained voltage waveforms with such high number of 

submodules as required in HVDC applications, when Fig. 5-6 is compared with Fig. 

5-7, the quality difference is not so remarkable (30 total submodules against 60), both 

can be accepted as very good quality signals (note that the output current quality would 

be improved due to the effect of the inductances of the MMC converter). 

  

Fig. 5-6. Vth in a 2L submodule MMC where 

n=30, VDC=2 volts and fsw=500 Hz. 

Fig. 5-7. Vth in a 2L submodule MMC where 

n=60, VDC=2 volts and fsw=500 Hz. 

Therefore, Table 5-1 gathers some representative numerical examples. THD, WTHD 

and achievable total DC bus voltage (VDC) of the MMC, with 2L, 3L-NPC and 3L-FC 

submodule concepts, according to n at fixed switching frequencies. It should be 

remarked, that the three submodule concepts obtain exactly the same voltage waveform 

at the conditions covered in the table. Thus, if for instance a MMC to a fixed DC 

voltage of 112kV is needed, it would be necessary to use 80 submodules of 2L concept, 

achieving a WTHD of 0.0873e-3 being fsw=500 Hz. Equivalently, with 40 submodules 
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of 3L-NPC (at fsw=1000 Hz) or 3L-FC (at fsw=500 Hz), exactly the same results in terms 

of output AC voltage Vth would be obtained. 

 2L SUBMODULE CONCEPT, AT FSW=500 HZ  

 SUBMODULES PER ARM OF MMC 

 16 32 48 64 80 96 112 128 

THD 0.071857 0.036475 0.024405 0.018421 0.014533 0.012054 0.010428 0.009094 

WTHD 0.4587e-3 0.1908e-3 0.1889e-3 0.1157e-3 0.0873e-3 0.1251e-3 0.0359e-3 0.0880e-3 

TOTAL VDC (KV) 22.4 44.8 67.2 89.6 112 134.4 156.8 179.2 

 8 16 24 32 40 48 56 64 

 SUBMODULES PER ARM OF MMC 

 
3L-NPC SUBMODULE CONCEPT, AT FSW=1000 HZ AND 3L-FC SUBMODULE CONCEPT, AT 

FSW=500 HZ 

Table 5-1. Output voltage quality (Vth) comparison of different submodule concepts at modulation 

index=1 (all topologies use the same semiconductor being its VCE@100FIT=2.8kV). 

On the other hand, Table 5-2 shows that with 2L submodule concept with series 

connection of 8 semiconductors, if the same DC voltages as in Table 5-1 are needed, 

obviously less number of submodules are required but achieving poorer quality of the 

output voltages. Thus, in order to achieve 112kV of total DC bus voltage for instance, 

there are only 10 submodules needed, obtaining a WTHD of 0.000958 with fsw=500 Hz. 

However, a later analysis of this document shows that with still higher required DC bus 

voltages, this last configuration can be very useful, since the achieved output voltage 

quality can be reasonably accepted as very good, reducing the number of submodules 

needed. 

 2L SUBMODULE CONCEPT WITH SERIES CONNECTION OF 8 SWITCHES, AT FSW=500 HZ  

 SUBMODULES PER ARM OF MMC 

 2 4 6 8 10 12 14 16 

THD 0.533203 0.269346 0.187230 0.140897 0.114450 0.094864 0.081400 0.071857 

WTHD 0.021375 0.005544 0.002525 0.001480 0.000958 0.000695 0.000533 0.000458 

TOTAL VBUS (KV) 22.4 44.8 67.2 89.6 112 134.4 156.8 179.2 

Table 5-2. Output voltage quality (Vth) of 2L submodule concept with series connection of 8 

switches per valve, at fsw=500 Hz (being VCE@100FIT=2.8kV of all semiconductors). 

For the beyond analysis, it is established WTHD=0.1908e-3, corresponding to 32 

submodules of 2L concept (approximately the waveform of Fig. 5-6), as the quality of 

waveform that provides very good converter currents quality exchange. 

5.2 Output current capacity analysis of MMC topology 

The following step implies the maximum output current capacity deduction. This 

maximum achievable output current, depends on the semiconductor nature itself, the 
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topology of the converter (the way and conditions where the semiconductors are 

arranged) and the manner in which the semiconductors are switched during the 

operation of the converter. Therefore, in this section the maximum achievable output 

current (iout of Fig. 5-1, from now on Iph,rms,1) evolution versus the switching frequency 

(fsw) based on the procedure explained in [89] is analyzed. It is carried out for various 

working conditions of the MMC, two different semiconductors and also the different 

submodules configurations presented in Fig. 5-1. This maximum output current 

characteristic versus switching frequency is going to be evaluated considering these two 

limits: 

1. The semiconductor current thermal limit (Iph,rms,1), which is imposed by the 

maximum admissible semiconductor junction temperature (Tj,max). The Tj of all 

the semiconductors of the converter must be evaluated in order to find out which 

component settles the thermal limit under the considered operating conditions. 

2. The maximum semiconductor current is restricted by its Safe Operating Area, 

which is influenced by the semiconductor switching conditions (DC voltage, 

driving characteristics, parasitic elements, etc.). This limit is a constant value 

(Imax_SOA) not influenced by the fsw. This Imax_SOA limits the whole converter 

output maximum current, henceforth, called (5-4): 

2

I
I max_SOA

rms,1.maxph,   (5-4) 

In order to obtain the thermal output limit, the use of five (fsw,max,Iph,rms,1) simulations 

points provides a good computation versus error, trade off when obtaining 

Iph,rms,1=f(fsw). As simulating three fsw points per Iph,rms,1 is more than enough to obtain 

the Tj evolution, this implies the need of only 15 simulations for the same procedure 

input conditions. The chosen frequency and current values are: 

 fsw= 500 Hz, 1000 Hz, 1450 Hz. 

 Iph,rms,1= 121.3 A, 414.2 A, 707.1 A, 1000 A, 1292.9 A, 1585.8 A. (note that the 

semiconductor temperature is evaluated even at higher currents than the 

Imax_SOA). 
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5.2.1 Semiconductors 

Two commercial IGBT modules are selected for the analysis, SEMIC. A: Infineon 

DBFS450R17KE3 [90] used in low voltage (LV) applications and SEMIC. B: ABB 

5SNA1200G450300 [91] usually used in medium voltage (MV). However, the 

maximum collector current of both of them is the same, 1.2 kA. 

The first one (SEMIC. A), consists of a series connected two IGBT-Diode pair. 

Therefore by means of this module a half bridge converter topology can be formed (one 

2L submodule). At the same time, each equivalent semiconductor is composed of 3 

components in parallel. Thanks to this configuration the current through the module is 

shared out among the three internal components, so that it can reach up to 1.2kA. This 

module’s VCE@100FIT voltage is assumed to be 900V. Nonetheless, [92] has already 

checked that it can work at 1100V without putting at risk its integrity. This is why from 

now on this voltage will be considered 1100 volts. The second one (SEMIC. B), 

withstands 1.2kA too but regarding the semiconductor collector-emitter voltage, it 

nearly resists 3 times Infineon’s being its VCE@100FIT=2800 volts. 

 

Fig. 5-8. Iph,rms,1 = f(fsw) characteristics in a MMC with different semiconductors, n=16, ma=1, 

cos(φ)=1 and submodule concept of Fig. 5-1b. 

The nature and switching characteristics of both semiconductors are quite different, 

yielding to two maximum achievable output current characteristics quite different too, 

as depicted in Fig. 5-8 [89], it is seen that SEMIC. B is more restraining when the 

switching frequency is higher than roughly 500 Hz, what means that this semiconductor 

is designed to preferably work at low frequencies. Apart from the curves that define the 

output current characteristic versus switching frequency, in Fig. 5-8 three limits are 

included. The horizontal black line represents SOA current whose value in this case is 
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1200/√2 = 848.5A. On the other hand, the limits on the frequency axes are imposed by 

the minimum switching frequency (250 Hz defined according to the output voltage 

quality) and the maximum (4 kHz defined ideally according to the minimum 

microprocessor sampling time). Despite at switching frequencies lower than 500 Hz, the 

thermal limit allows operating at higher currents than the maximum SOA current, it is 

preferable not to overtake this limit. Thus, the point where the current capacity is 

maximized for both semiconductors is similar: around 600 Hz for SEMIC. A and 

around 500 Hz for SEMIC. B. 

a)  

b)  

Fig. 5-9. Temperatures of all the semiconductors (SEMIC. A) of one arm, for a MMC with n=10, 

ma=1, cos(φ)=1, with 2L submodule concept at equal current and at 3 different switching 

frequencies. A) IGBTs, b) Diodes.- 

Note that the corresponding DC bus voltages and the output AC fundamental voltages 

are different for each configuration. In each configuration, the DC voltage of each 

submodules capacitor is ideally fixed to 1100V and 2800V respectively, while the 

number of submodules is equally fixed to 16. Consequently, the maximum achievable 

output power is also different for both converter configurations. However, the switching 

frequency at which the semiconductor reaches the maximum current is found. In both 

cases, Tu2 is the most restrictive semiconductor (see Fig. 5-1b, with u denoting upper 

arm), achieving the highest temperature in all the cases. It must be pointed out that the 

MMC topology presents a strong symmetry between submodules. Thus, as noticed in 

the evaluation of temperatures summarized in Fig. 5-9, within the upper arm for 

instance, semiconductor Tu1 of all the submodules reaches very similar temperature (the 

only difference is due to non-linear effects such as dead times, or minimum conduction 

times of semiconductors). Equal behaviour is also obtained, with the rest of the 

semiconductors Tu2, Du1 and Du2, reaching very similar temperature at every submodule 

of the upper arm. Finally, in an equivalent way, this symmetry is also present at the 
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lower arm (see Fig. 5-1b, with l denoting lower arm), being the temperatures of each 

semiconductor (Tl1, Tl2, Dl1 and Dl2) very similar at each submodule. 

Finally, it must be remarked that in order to perform a uniform comparison, the arm 

currents i1 and i2 are maintained of sinusoidal shape (plus an offset when active power is 

transmitted and the high frequency ripple), as simplified illustrated in Fig. 2-27 by the 

appropriate control strategy [80], [93], [84]. 

5.2.2 Output current analysis at different modulation indexes 

The objective of this subsection is to find out which the modulation index that cause 

higher temperature on the semiconductors is, in short, which the most restrictive 

modulation index in terms of temperature is. The curves of Fig. 5-10 and Fig. 5-11 are 

obtained applying the aforementioned procedure to a single phase MMC with SEMIC.A 

and SEMIC. B respectively. These models were simulated with three different 

modulation indexes: 1, 0.8 and 0.6. It must be specified that ma=1 is assumed to be as 

in (5-5) where VDC is the total DC bus: 

DC

rms,1LL,

V

V

31.15

22
ma 




  (5-5) 

 

  

Fig. 5-10. Iph,rms,1 = f(fsw) characteristics with 

different modulation indexes, n=20, cos(φ)=1 

and submodule concept of Fig. 5-1b (SEMIC. 

A). 

Fig. 5-11. Iph,rms,1 = f(fsw) characteristics with 

different modulation indexes, n=12, cos(φ)=1 

and submodule concept of Fig. 5-1b (SEMIC. 

B). 

It can be noticed that in both cases the most restrictive characteristic belongs to the 

simulation with highest modulation index, while the less restrictive belongs to that 

whose modulation index is the lowest, ma=0.6. This effect is related to the influence of 

the conduction time of the semiconductors. Thus, from a design point of view, if the 
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converter must operate in all the range of modulation indexes, the switching frequency 

must be fixed no higher than 500 Hz - 600 Hz (depending on the semiconductor), 

enabling to reach the maximum output current of 848.5A. It must be pointed out that in 

all the cases, the most restrictive semiconductor is Tu2, since all the submodules of each 

arm presents equivalent behaviour. Note that this converter topology presents a very 

symmetric behaviour, since at given operating conditions, Tu1, Tu2, Du1 and Du2 of all 

submodules present equivalent power losses and consequently, equivalent thermal 

behaviour. 

5.2.3 Output current analysis at different cos(φ) 

In this subsection, the same procedure is applied to a MMC converter where the phase 

shift between output current and voltage is changed, in order to find out the influence of 

cos(φ) on the maximum achievable output current of the converter. In the previous 

subsection, ma=1 has been found to be the most restricting modulation index. Therefore, 

from now on simulations will be always performed considering the worst case, ma=1. 

  

Fig. 5-12. Iph,rms,1 = f(fsw) characteristics with 

n=20, ma=1 at different cos(φ) with SEMIC. A 

and submodule concept of Fig. 5-1b. 

Fig. 5-13. Iph,rms,1 = f(fsw) characteristics with 

n=12, ma=1 at different cos(φ) with SEMIC. B 

and submodule concept of Fig. 5-1b. 

Five angles have been assigned to φ: 0º, 45º, 90º, 135º and 180º. Fig. 5-12 and Fig. 5-13 

show the obtained maximum output current characteristic for each phase shift. Notice 

that for each case, the active and reactive power exchange through the converter is 

different. Remember that at the highest active power exchange, in i1 and i2 currents an 

offset value (iz) appears. The higher the active power exchange is, the higher is this 

offset current value, provoking a greater overall current seen by the submodules. This 

fact mainly determines the average temperature differences of semiconductors at 

different cos(φ). Thus, the switching frequency at which the converter reaches the 
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maximum SOA limit in function of cos(φ) is summarized in Table 5-3  for the used two 

semiconductors. If all the range of phase shifts at maximum current exchange wants to 

be guaranteed, the selected switching frequency of the converter should be fixed around 

500 Hz. 

Cos(φ) fsw max (SEMIC. A) Most restrictive semiconductor 

1 612 Hz Tu2 

0.7 868 Hz Tu2 

0 1353 Hz Du2, Dl1 (slight ΔTª between semiconductors) 

-0.7 793 Hz Du2 

-1 495 Hz Du2 

cos(φ) fsw max (SEMIC. B) Most restrictive semiconductor 

1 480 Hz Tu2 

0.7 677 Hz Tu2 

0 1236 Hz Tu2, Tl1 (slight ΔTª between semiconductors) 

-0.7 812 Hz Du2 

-1 560 Hz Du2 

Table 5-3. Summary of obtained results at different cos(φ) and semiconductor. 

5.2.4 Output current analysis with different number of submodules 

The aim of this analysis lies in investigating whether the switching frequency which 

makes better usage of the semiconductors is altered by the number of submodules 

arranged in the MMC converter. The abovementioned procedure is used again to obtain 

Iph,rms,1=f(fsw) curves according to the number of submodules in the converter but this 

time being ma=1 and cos(φ)=1. The submodules capacitor voltage is left constant, so 

that, what changes with the number of submodules is the fundamental AC output 

voltage of the converter. 

  

Fig. 5-14. Iph,rms,1 = f(fsw) characteristics in a 

MMC with n=10, 16, 20 and 30 using SEMIC. A, 

ma=1 and cos(φ)=1. 

Fig. 5-15. Iph,rms,1 = f(fsw) characteristics in a 

MMC with n=8, 12 and 16 submodules per arm 

using SEMIC. B, ma=1 and cos(φ)=1. 

In Fig. 5-14 the output current versus the switching frequency characteristics in a single 

phase MMC with 10, 16, 20 and 30 submodules are depicted. It can be noticed that due 
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to the strong symmetry of this converter topology there is hardly any deviation among 

the four characteristics. Equivalent results are obtained using SEMIC. B as can be seen 

in Fig. 5-15. Therefore it can be stated that the number of submodules in the MMC does 

not affect the thermal limit of the MMC converter. However, be aware that the higher 

the number of submodules is, greater is the number of semiconductors switching, what 

means that the power losses of the converter becomes greater, although the maximum 

achievable output current is obtained at equal switching frequency. 

It should not be forgotten that this study is oriented to HVDC transmission application 

where n is likely a high number. So that, the previous conclusion is quite useful in case 

it is essential to extrapolate it to a big dimensions model. Once known that Iph,rms,1=f(fsw) 

characteristic is independent of n, it is quite easy to estimate the achievable power of the 

converter regarding the semiconductors switching frequency. 

SEMIC. A 

n VDC Poutmax fsw max 
Most restrictive 

semiconductor 
WTHD 

8 5.5 kV 5.6 MW 582 Hz Tu2 9.37e-4 

12 11 kV 11.2 MW 611 Hz Tu2 3.1e-4 

16 16.5 kV 16.8 MW 612 Hz Tu2 1.98e-4 

Extrapolating: 

72 200 kV 203 MW 612 Hz Tu2 <1.98e-4 

228 640 kV 650 MW 612 Hz Tu2 <1.98e-4 

SEMIC. B 

n VDC Poutmax fsw max 
Most restrictive 

semiconductor 
WTHD 

8 11.2 kV 11.4 MW 480 Hz Tu2 14.5e-4 

12 16.8 kV 17 MW 480 Hz Tu2 6.59e-4 

16 22.4 kV 22.7 MW 480 Hz Tu2 4.28e-4 

Extrapolating: 

72 200 kV 203 MW 480 Hz Tu2 <1.98e-4 

228 640 kV 650 MW 480 Hz Tu2 <1.98e-4 

Table 5-4. Summary of obtained results at different cos(φ) with the two semiconductors. 

In Table 5-4, the most representative parameters of the MMCs illustrated in the 

previous pictures are detailed. The selected switching frequency is the one which makes 

better use of semiconductors, this is, the frequency which allows flowing the maximum 

SOA current through these elements being its temperature under 110ºC. In this table 

two extrapolation examples are included with similar parameters than a HVDC 

application. Voltage or power is fixed (for example 200kV DC) and due to the 

converter’s symmetries deduced in this section, the rest of the values are calculated. The 

output AC voltage considers a 20% voltage drop from the maximum available, due to 
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effects such as the output inductances, margin for control, etc...In addition, third 

harmonic injection is also commanded in the modulation. 

5.2.5 Output current analysis with serialized submodule concept 

In the context where a high number of submodules are required to reach the high 

voltages of HVDC applications, it can be interesting to be able to reduce the number of 

submodules. This objective can be achieved, for instance by increasing the DC voltage 

of each submodule arranging serialized semiconductors (for each valve) and 

maintaining the two level arm concept of each submodule. This option is presented for 

instance in [44], where each submodule valve is configured by 8 press-pack IGBTs in 

series connection as shown in Fig. 5-1c. Therefore, for instance by using valves 

arranging SEMIC. B in series, under idealized conditions, the DC bus voltage of each 

submodule would be 22.4kV, being the voltage seen by each semiconductor still 2.8kV. 

Thus, although the number of needed semiconductors is exactly the same to reach a 

given voltage level, the submodules are decreased 8 times, reducing the complexity of 

the modulation implemented and its corresponding control hardware. 

When decreasing the amount of submodules with the serialized concept, the quality of 

the signal is worsen due to the fact that the number of levels in the output signal is 

directly related to n. It may well be crucial in low and medium voltage applications but 

it is not so relevant in high voltage applications like the one detailed in this analysis 

(section 5.1). Referring to the thermal study, considering an ideal serialization that 

means a uniform voltage distribution through all the IGBTs of the valve, the 

temperature reached by each of them does not depend on the number of serialized 

semiconductors because in fact these are independent chips. On the other hand, going 

back to the previous subsection, it is deduced that the temperature of the 

semiconductors is not related to the amount of submodules needed to reach a required 

total converter DC bus voltage. Consequently, it can be declared that there is no 

difference between Iph,rms,1=f(fsw) characteristics of a MMC with serialized submodule 

concept or the ‘classic’ one, if the total number of semiconductors used in each 

configuration is the same. Consequently, in order not to repeat figures, no characteristic 

of this configuration is shown in this section. However, as an example, from Table 5-1 

and Table 5-2, if we pay attention for instance to the two configurations that based on 

2L submodule concepts reach 179.2kV of total DC bus voltage, 128 ‘classic’ 

submodules and 16 of serialized submodules are needed, but it can be said that both 
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solutions present the same Iph,rms,1=f(fsw) characteristic. Note that this is an idealized 

approach that does not consider auxiliary circuits which support the commutations [94], 

especially for the serialized case. However, it is expected that this fact does not affect 

significantly the conclusions. 

5.2.6 Output current analysis with 3L-FC submodule concept 

This analysis dedicated to the MMC is focused on the 3L-FC submodule concept. 

Following equivalent philosophy as in the previous subsection, the MMC converter is 

constructed with submodules as illustrated in Fig. 5-1d. This MMC converter concept is 

totally equivalent to the MMC based on the classic 2L submodules, with equal number 

of IGBTs and diodes which operate in exactly equal conditions at both philosophies 

despite being the number of submodules (n) the half. The AC output voltage of one 3L-

FC submodule concept, is equivalent to the output voltage provided by two 2L 

submodules (Table 5-1 and Fig. 5-2). The main difference recalls in one of the 

capacitors of the 3L-FC submodule that must be of two times higher voltage than the 

capacitors of the 2L submodules. Therefore, with regards to the maximum achievable 

output current capacity of the MMC converter by using 3L-FC submodules, it can be 

concluded that provides equal results as obtained in subsections 5.2.2, 5.2.3 and 5.2.4. 

So for instance, to reach 179.2kV of total DC voltage with SEMIC. B, it would be 

necessary 128 submodules of 2L concept, or 64 submodules of 3L-FC concept, 

however, the same maximum output current characteristic Iph,rms,1 = f(fsw), would be 

achieved, reaching also the same output power of the converter. 

5.2.7 Output current analysis with 3L-NPC submodule concept 

The way pulses are created for the 3L-NPC submodules of Fig. 5-1e is quite dissimilar 

to the previous topologies and thus thermal losses too. Hence finally the last objective is 

to compare 3L-NPC submodules with the others. For that, equal AC output voltage has 

been defined (or equivalently, same voltage of the total DC Bus) in order to avoid 

mistakes among results and cos(φ) has been changed from 1 to 0 to keep away from its 

balancing problems. This is why the simulation of the MMC with 2L submodules 

consists of 6 submodules per arm while that of the 3L-NPC consists only of 3. In both 

cases the SEMIC. B is used and regarding the number of IGBTs needed, in both 

configurations is the same. Nevertheless, a higher number of diodes are required with 

3L-NPC submodules, due to the usage of clamping diodes. On the other hand, this new 
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configuration needs extra balancing method of the capacitors of each submodule. This 

fact does not add extra complexity to the entire modulation schema of the MMC 

converter, as shown in [95]. 

 

Fig. 5-16. Iph,rms,1 = f(fsw) characteristics in a MMC(2L-VSC) with 12 submodules per phase and 

MMC(3L-NPC) with 6 submodules per phase using SEMIC. B, ma=1 and cos(φ)=0. 

Iph,rms,1 = f(fsw) characteristics of Fig. 5-16 reveal that 2L submodules are more 

restrictive in all the frequency range. Meanwhile at the maximum SOA current this 

topology can work to 1250 Hz of triangular frequency, the 3L-NPC can do it to 2000 

Hz. Nevertheless, it is important to remark that the output apparent frequency of the 2L 

submodules converter is twice. 

Submodule 

configuration 
n VDC Poutmax fsw max 

Most restrictive 

semiconductor 

Number of 

elements 
WTHD 

2L 12 8.4 kV 8.5 MW 480 Hz Tu2, Tl1 

24 Diodes 

24 IGBTs 

12 Capacitors 

6.59e-4 

3L-NPC 6 8.4 kV 8.5 MW 573 Hz Tu1c 

24 Diodes 

24 IGBTs 

12 Capacitors 

12 clamp diodes 

6.59e-4 

Table 5-5. Summary of obtained results with SEMIC. B. 

From the 4 semiconductors which form a submodule in a MMC (2L-VSC), Tu2, Tl1 are 

those with higher losses if the working conditions are: ma=1 and cos(φ)=0. With the 

3L-NPC submodule concept, T2c is the most restrictive semiconductor. This fact is 

summarized in Table 5-5, concluding that the converter can be operated at higher 

triangular frequency, with 3L-NPC submodules. The main reason for that is because in 

3L-NPC philosophy, during half of the period, there is always one semiconductor that is 

ON all the time, but not commutating, reducing therefore the average switching losses. 
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However, in 2L philosophy, there is always one semiconductor commutating at every 

switching period, increasing then the switching losses, compared to the 3L-NPC 

concept. 

5.2.8 Extrapolation of the power losses 

Having calculated the power losses generated in a MMC with 8, 12 and 16 2L 

submodules (keep in mind that serialized 2L and 3L-FC topologies behave equally in 

terms of thermal losses and consequently in power losses) when cos(φ)=0 and 

cos(φ)=1, in Fig. 5-17 the resulting lines are derived by extrapolation for comparability 

purposes. In the same vein, the losses generated in a MMC with 3L-NPC submodules 

when cos(φ)=0 are represented. So by means of this graph, it can be noticed that under 

equal working conditions (same converter power) the 3L-NPC submodule topology is a 

bit more efficient than the others. 

166 8 12 n

Ploss

3L-NPC(cosφ=0)

2L(cosφ=1)

2L(cosφ=0)

4

344 KW 

20 MVAR251 KW 

15 MVAR160 KW 

10 MVAR

162 KW 

10 MW

272 KW 

15 MW

375 KW 

20 MW

164 KW 

15 MVAR106 KW 

10 MVAR

 

Fig. 5-17. Measured and extrapolated power losses regarding the converter output active or 

reactive power depending on its cos(φ) and n. 

5.2.9 Analysis of the submodules capacitors 

It is already well known that a 3L-(FC or NPC) submodule is equivalent to two 2L 

submodules in terms of number of elements (but for the clamp diodes in the NPC) as 

well as voltage output in their terminals. However, regarding the capacitors few 

differences appear: 

 One of the two capacitors of the 3L-FC submodules has to be balanced at double 

voltage than the rest. 

 In the 2L submodules with series connection of semiconductors, the balancing 

voltage of the capacitor depends on the amount of IGBTs serialized per valve. 
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 Due to the balancing algorithm besides the charge and discharge process of each 

topology, the obtained ripple over capacitor voltages changes in amplitude but 

also in shape. 

Several simulations have been conducted in order to find out the capacity of each 

topology capacitor which leads to a determined ripple. For that, it has been chosen a 

single phase MMC with eight 2L submodules, other with four 3L-FC submodules and 

another one formed by four 3L-NPC submodules, thereby totalling 16 IGBTs in each 

arrangement. Due to the balancing problem of the 3L-NPC submodules topology when 

transmitting active power, both cos(φ)=1 and cos(φ)=0 have been considered. Pretty 

high fsw has been chosen in order to disregard imperfections due to the commutations. 

  

Fig. 5-18. 8 2L submodules MMC. Converter 

currents and output voltage being cos(φ)=1, 

fsw=10 kHz (all in p.u.). 

Fig. 5-19. 8 2L submodules MMC. Capacitors 

voltage being cos(φ)=1, fsw=10 kHz (all in p.u.). 

Vci+1

Vci

Vi

(Vci)+(Vci+1)

Vci+1

0

Vci 

Ci

Ci+1

  

Fig. 5-20. An arrangement of a MMC two 2L 

submodules in series connection and its three 

possible voltage levels. 

Fig. 5-21. 8 2L submodules MMC. Capacitors 

voltage being cos(φ)=1, fsw=10 kHz (all in p.u.). 

First, the results when cos(φ)=1 are depicted. Fig. 5-18 and Fig. 5-22 demonstrate that 

both converters are working under the same conditions. In the 2L submodule 

configuration, the eight capacitors are balanced at the same voltage level but it is also 
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deduced from Fig. 5-19 that the ripple in the four capacitors of the each arm has got the 

same shape. Keeping in mind that two 2L submodules are needed to be equivalent to a 

3L-FC one, the output voltage of two 2L submodules has to be added in order to 

contrast with the voltage at the 3L-FC terminals. As the ripple in the capacitors of the 

same arm has got identical shape, when their voltages are added to obtain the maximum 

level in Vx (see Fig. 5-20), the ripple is multiplied by two as can be observed in Fig. 

5-23. Talking in percentage it reaches at around 1%. 

Regarding the maximum level which is obtained in Vs of Fig. 5-20, similar results are 

achieved in the greater capacitors of the 3L-FC submodules as can be compared with 

Fig. 5-23. In this submodule topology, the value of the maximum level corresponds 

with Vci as specified in Fig. 5-24 and thus the maximum ripple at the output terminals 

(being again of around 1%). 

  

Fig. 5-22. 4 3L-FC submodules MMC. 

Converter currents and output voltage being 

cos(φ)=1, fsw=10 kHz (all in p.u.). 

Fig. 5-23. 4 3L-FC submodules MMC. 

Capacitors voltage being cos(φ)=1, fsw=10 kHz 

(all in p.u.). 
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Fig. 5-24. A MMC 3L-FC submodule and its three possible output voltage levels. 

It is verified that under the shown working conditions a 1% ripple has been obtained in 

both submodule topologies. However, to get that percentage, the capacity assigned to 
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capacitors is different. Meanwhile in the 3L-FC submodule C1i=C and C2i=0.4∙C, in the 

2L submodule Ci=Ci+1=2.2∙C. So in respect of the capacity, the 2L submodule is 

adversely affected. Nevertheless, in terms of stored energy in these elements, the 

outcome is the same in both cases. The reason is the double voltage of Ci in the 3L-FC 

submodule which increases the energy a lot because in the equation (5-6) the capacitor 

voltage is squared. 

2

cc VC
2

1
E   (5-6) 

 

 

Fig. 5-25. 8 2L submodules MMC. Converter 

currents and output voltage being cos(φ)=0, 

fsw=10 kHz (all in p.u.). 

Fig. 5-26. 8 2L submodules MMC. Capacitors 

voltage being cos(φ)=0, fsw=10 kHz (all in p.u.). 

  

Fig. 5-27. 4 3L-FC submodules MMC. 

Converter currents and output voltage being 

cos(φ)=0, fsw=10 kHz (all in p.u.). 

Fig. 5-28. 4 3L-FC submodules MMC. 

Capacitors voltage being cos(φ)=0, fsw=10 kHz 

(all in p.u.). 

The previous simulations are repeated but changing the working point from cos(φ)=1 to 

cos(φ)=0. In this case, not only the former submodule topologies are analysed but also 

the 3L-NPC one. As can be checked in Fig. 5-25 and Fig. 5-27 there is a phase shift of 

90º between the output current and voltage but their amplitudes have not change from 

the preceding pictures. Looking at the obtained capacitors voltages in Fig. 5-26 and Fig. 
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5-28 it can be noticed that although the ripple shape has been modified a little bit, its 

amplitude is again of around 1% in both topologies. To achieve this ripple percentage 

the capacity of the capacitors have had to be increased and therefore their stored energy 

too: 

 3L-FC submodule: C1i=C, C2i=0.4∙C. 

 2L submodule: Ci=Ci+1=2.2∙C. 

  

Fig. 5-29. 4 3L-NPC submodules MMC. 

Converter currents and output voltage being 

cos(φ)=0, fsw=10 kHz (all in p.u.). 

Fig. 5-30. 4 3L-NPC submodules MMC. 

Capacitors voltage being cos(φ)=0, fsw=10 kHz 

(all in p.u.). 
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Fig. 5-31. A MMC 3L-NPC submodule and its 

three possible output voltage levels. 

Fig. 5-32. 4 3L-NPC submodules MMC. 

Capacitors voltage being cos(φ)=0, fsw=10 kHz 

(all in p.u.). 

With regard to the 3L-NPC submodule topology, in Fig. 5-29 can be seen that the 

working point is cos(φ)=0 because in this case the balancing of the capacitors is 

achieved. The objective of getting a ripple of 1% at the terminals of the submodule is 

obtained being C1i=2.3C, C2i=3∙C. The voltage of all the capacitors of the simulated 

converter is illustrated in Fig. 5-30. Due to the modulation, the charge and discharge 

process of the two capacitors of the same submodule is not identical, resulting different 

amplitudes in their voltage ripple. However, as represented in Fig. 5-31, the maximum 

0.7 0.72 0.74 0.76 0.78 0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [sec]

0.99

0.995

1

1.005

1.01

0.7 0.72 0.74 0.76 0.78 0.8
0.99

0.995

1

1.005

1.01

time [sec]

1.98

1.99

2

2.01

2.02

0.7 0.72 0.74 0.76 0.78 0.8
1.98

1.99

2

2.01

2.02

time [sec]

Vth iout 

i1 i2 

Vc1 Vc2 Vc3 Vc4 

Vc5 Vc6 Vc7 Vc8 

Vc1+Vc2 

 

+Vc1 

Vc3+Vc4 

 

+Vc1 

Vc5+Vc6 

 

+Vc1 

Vc7+Vc8 

 

+Vc1 



5. Comparison of MMC with different submodules 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms  -125- 

voltage level of the submodule is got adding the two capacitors voltages as it is 

illustrated in Fig. 5-32. By means of that picture is corroborated that the proposed 

objective is satisfied. 
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Fig. 5-33. A MMC serialized 2L submodule and its three possible output voltage levels. 

Finally the serialized 2L submodule of Fig. 5-33 will be considered. Generally it works 

like a standard 2L submodule because the serialized semiconductors per valve behave 

like a single one, they all commute at the same time. However, the voltage of each 

submodule capacitor gets multiplied by X (number of serialized semiconductors). On 

the contrary, to fulfil the imposed 1% ripple at the terminals of the submodules, 

capacitors capacity is reduced in X. As a consequence, the stored energy per capacitor 

results equal to the 2L one, but it should be kept in mind that the number of elements is 

decreased. 

 

Submodules type 

2L 

Serialized 2L (X 

IGBTs in series 

connection per 

valve) 

3L-NPC 3L-FC 

Cos(φ)=1 

Capacity Ci =2.2∙C Ci=2.2∙C/X 

- 

C1i= C, C2i=0.4∙C 

Voltage Vci =Vc Vci= X∙Vc Vc1i=2∙Vc, Vc2i=Vc 

Current (rms) Ici = Ic Ici=∙Ic Ic1=∙Ic2 =  Ic 

Energy E=2.2∙C∙Vc
2
 E=2.2∙C∙Vc

2
 E=2.2∙C∙Vc 

2
 

Cos(φ)=0 

Capacity Ci =2.2∙C Ci=2.2∙C/X C1i= 2.3, C2i=3∙C C1i= C, C2i=0.4∙C 

Voltage Vci =Vc Vci= X∙Vc Vc1i= Vc2i=Vc Vc1i=2∙Vc, Vc2i=Vc 

Current (rms) Ici=∙Ic Ici=∙Ic Ic1= 0.8∙Ic, Ic2= 1.2∙Ic Ic1=∙Ic2 = Ic 

Energy E=2.2∙C∙Vc
2
 E=2.2∙C∙Vc

2
 E=2.65∙C∙Vc

2
 E=2.2∙C∙Vc 

2
 

Table 5-6. Summary of capacitors features at different cos(φ) and submodule type. 

The results obtained along this section are collected in Table 5-6. To sum up, it can be 

said that regardless the operation point, the 3L-FC submodule is advantageous in the 

capacity as well as rms current through capacitors but conversely, the voltage of one of 
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them is double. Including these two terms in equation (5-6), the energy comes out to be 

the same than in the others except in the 3L-NPC which is penalized in the analysed 

terms. 

5.2.10 Extrapolating to a HVDC application 

Once different configuration of MMC converters are studied considering output voltage 

quality and maximum achievable output current capacity, the next task consists of 

extrapolating these results to the voltage characteristics required by a HVDC 

application. Two HVDC scenarios have been chosen in terms of total DC connecting 

voltages to fill in the Table 5-7: 200kV and 640kV (which could be ±100kV and 

±320kV respectively). Note that these connection voltages could be catalogued as 

considerably high, if we compare them with the worldwide VSC-HVDC projects 

already existing now [96]. Neither simulations nor experimental tests have been 

performed at these voltage levels, arranging all the required number of submodules. 

Instead, the conclusions of previous sections deduced with reasonably low number of 

submodules have been utilized, and then extrapolated to the amount of submodules 

necessary to reach the specified voltages. In this section only SEMIC. B will be taken 

into account because it does not have any sense to choose a low voltage semiconductor 

for this kind of application. 

As can be seen, all the configurations let transmit the same amount of power barely 

differing in the number of submodules needed. By considering the results deduced in 

the precedent section, it can be assumed that the number of utilized submodules does 

not affect to the maximum achievable output current of the converter, leading us to the 

conclusion that the maximum output current (Imax_SOA=848.5A) would be given at 480 

Hz or less, as deduced in Fig. 5-15. Furthermore, the output AC voltage quality is 

excellent as noticed by the WTHD except in the case of 2L configuration in which only 

18 submodules are required and the silicon efficiency is almost similar. Note that this 

configuration allows reducing considerably the complexity of the modulation and 

implementation philosophy. However, it must be guaranteed a reliable series connection 

of semiconductors. This is the reason why alternative submodule concepts such as 3L-

FC might well be considered for HVDC applications as described before. 

On the other hand, for those sceneries in which working at cos(φ)=1 is not required, for 

example reactive power compensators, not only could 3L-NPC submodule topology be 

useful but also competitive. 
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Submodule 

configuration 
VDC n Poutmax fsw max 

Number of 

elements  

per phase 

WTHD 

2L 

200 kV 144 203 MW 480 Hz 

288 Diodes 

288 IGBTs 

144 Capacitors 

<1.98e-4 

640 kV 460 650 MW 480 Hz 

920 Diodes 

920 IGBTs 

460 Capacitors 

<1.98e-4 

2L 

with 8 IGBTs in 

series per valve 

200 kV 18 203 MW 480 Hz 

288 Diodes 

288 IGBTs 

18 Capacitors 

3.18e-4 

640 kV 58 650 MW 480 Hz 

928 Diodes 

928 IGBTs 

58 Capacitors 

<1.98e-4 

3L-FC 

200 kV 77 203 MW 480 Hz 

288 Diodes 

288 IGBTs 

144 Capacitors 

<1.98e-4 

640 kV 230 650 MW 480 Hz 

920 Diodes 

920 IGBTs 

460 Capacitors 

<1.98e-4 

Table 5-7. Summary of obtained results with different submodule concepts, at cos(φ)=1 and ma=1. 

5.2.11 Final comparison 

In Table 5-8 the most relevant 

characteristics of the studied 

MMC submodules arrangements 

are collected with the aim of 

making a comparison among 

them. For this purpose, although 

the submodule topologies are 

different, the chosen 

semiconductor and number of 

them keep unaltered in order to 

reach an equal defined AC 

output voltage of the converter. Being difference neither in the current nor in the 

voltage, the power value works out to be the identical (provided that the fsw is low). 

On the one hand, along the chapter it has been mentioned that the total number of 

semiconductors per phase is exactly the same for all the topologies except for the 3L-

NPC one, in which 2 extra clamp diodes per submodule are needed. On the other hand, 

it should also be remembered that one 3L-NPC or 3L-FC submodule is equivalent to 

two 2L submodules in terms of power electronic switches, anti-parallel diodes, 

capacitors and voltage levels at their terminals. Therefore those components such as 

Measurements and Firing Orders

optical communication fibres 

Capacitor
Bypass 

switch

Thyristor

IGBT

 

Fig. 5-34. Components of a MMC 2L submodule showing 

apart from the capacitor and semiconductors, the 

protection thyristor, bypass switch and all signal exchange 

between the power module and the management system. 



5. Comparison of MMC with different submodules 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms  -128- 

cold-plates, bus-bars, protective switches, connections, etc. which are required per 

submodule will be double in 2L topology (see in Fig. 5-34 the elements needed per 

submodule). On the contrary, one of the 2L with series connection topology’s benefit is 

that the amount of submodules is reduced according to X and in turn fewer associated 

components are necessary. As a drawback of this last arrangement, the serialization of 

semiconductors entails the usage of passive elements to share the voltage accurately 

which provoke higher losses. In addition, the driver for these valves gets more complex 

and thus probably more expensive. 

 Submodules type 

2L 
Serialized 2L (X IGBTs 

in series connection per 

valve) 

3L-NPC 3L-FC 

Achievable power (output current) = = 1 = = 

Semiconductors in normal operation: = = Unfavourable = 

No. of IGBTs = = = = 

No. of anti-parallel diodes = = clamp diodes required = 

Elements of the Submodule: Unfavourable best = = 

No. of submodules Double X times less = = 

No. of cooling plates = X times less Unfavourable (clamp 

diodes) 

= 

No. of bus-bars Double X times less = = 

No. of high speed Bypass switch Double (but half 

voltage) 

X times less = = 

No. of protective thyristor  Double (but half 

voltage) 

X times less = = 

No. of thyristor control circuits Double X times less = = 

No. of thyristor clamp Double X times less = = 

Bypass switch and thyristor trigger Double X times less = = 

No. of capacitors voltage sensors = X times less (of higher 

voltage) 

= = 

No. of connections between submodules Double X times less = = 

No. of optical communication fibres  Double X times less = = 

THD = 
Unfavourable (when less 

than 14 submodules are 

required) 

= = 

Driver and switching assistance: = Unfavourable = = 

Complexity of the driver for the IGBTs = Unfavourable = = 

Passive elements for serializing semiconductors No Yes No No 

Modulation: = best Unfavourable = 

No. of triangular carrier signals = N times less = = 

Capacitors balancing problem No No Yes (at some cosφ) No 

Complexity considering the balancing principle 2 = = = = 

Computational cost of the hardware where it is 

implemented 

= best = = 

Bus capacities: = = Unfavourable = 

Voltage sensors for the modulation = = = = 

No. of capacitors = = = = 

Capacitors characteristics (of one submodule): = = Unfavourable = 

Cos(φ)=1: 

Capacity Ci =2.2∙C Ci=2.2∙C/N 

- 

C1i= C, 

C2i=0.4∙C 

Voltage Vci =Vc Vci= N∙Vc 
Vc1i=2∙Vc, 

Vc2i=Vc 

Current (rms) Ici =Ic Ici=Ic Ic1=Ic2=Ic 

Energy E=2.2∙C∙Vc
2 E=2.2∙C∙Vc

2 E=2.2∙C∙Vc 
2 

Cos(φ)=0: 

Capacity Ci =2.2∙C Ci=2.2∙C/N C1i=2.3∙C, C2i=3∙C 
C1i= C, 

C2i=0.4∙C 

Voltage Vci =Vc Vci= N∙Vc Vc1i= Vc2i=Vc 
Vc1i=2∙Vc, 

Vc2i=Vc 

Current (rms) Ici=Ic Ici=Ic Ic1= Ic∙0.8, Ic2= Ic∙1.2 Ic1=Ic2=Ic 

Energy E=2.2∙C∙Vc
2 E=2.2∙C∙Vc

2 E=2.65∙C∙Vc
2 E=2.2∙C∙Vc 

2 
Switching and conducting losses = = Favourable 3 = 

Passive elements losses (assistance to the 

switching) 

= Unfavourable = = 

1
 If the number of submodules is high enough to avoid an output filter. 

2 Regarding the balancing method explained in this article. 
3 At the same triangular frequency. 

Table 5-8. Summary of the most relevant characteristics of a MMC with different submodule 

concepts using the same IGBT and diode in all the cases (same total output AC voltage of the 

converter). 
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The principal advantage of the MMC is that for high voltage applications which 

demands great number of submodules to form the converter, a multilevel signal is 

obtained adding their voltages in a well-organized way. From 15 steps on, the output 

signal is considered good enough because the acquired THD is really low. However, 

this particularity could be lost with the serialized 2L topology since the total number of 

submodules is reduced affecting the quality of the output signal. In STATCOM 

applications [97], [73] where the MMC is becoming more interesting, the AC voltage is 

about 30kV (unlike the HVDC which can reach ±300kV). In these cases, since no very 

large number of submodules is needed, deteriorating the wave quality by using valves 

with serialized IGBTs cannot be profitable because greater output passive filter may be 

used as compensation. 

Regarding the modulation, it is worth mentioning that the most disadvantageous 

topology is the 3L-NPC due to the fact that it is impossible to get the balancing of the 

capacitors for a wide operating range as has been detailed before. Conversely, the most 

favourable is the serialized 2L due to the number of submodules once again. The fewer 

submodules there are, the fewer triangular carrier signals have to be implemented and as 

a consequence the capacity of the control hardware will not be so demanding. As far as 

the capacitors are concerned, all the capacities specified in de table have been calculated 

to attain the same percentage ripple rate. 

No great differences are detected between 2L and serialized 2L topologies. On the last 

one, capacitors capacity and voltage depend on the number of series connected 

semiconductors but in the end, the stored energy result identical. The negative point of 

the 3L-FC submodules is that the voltage of one of its two capacitors is established to 

2∙Vc. Nevertheless, it has been discovered that comparing to the previous two 

topologies, the capacity required to achieve a determined relative ripple is lower. 

Despite the differences in capacity and voltage parameters, not only does the total 

energy in the 3L-FC topology outcome as in both 2L arrangements but the rms current 

which circulate through them is also the same. Regardless the balancing problem of the 

3L-NPC when cos(φ)=1, the results gathered in the table reveal that it is also 

disadvantageous when it is working for example as a STATCOM (being cos(φ)=0). 

Finally, concerning the efficiency, it has been demonstrated by means of several 

experiments that the 3L-NPC topology generates higher switching and conducting 

losses than the rest, although the serialized 2L topology is the only one which adds 

significant passive elements power losses. 
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Once all the characteristics have been explained, it can be concluded that there is not a 

clear topology which stands out from the rest, each of them has got its beneficial and 

disruptive points. This means that depending on the hot issue and interest of each 

company, any of these topologies could well be chosen. Nonetheless, to sum up, it can 

be stated that the 3L-FC submodule topology is the most favourable one overall because 

taking into account the whole table it does not show up to be the worst in none of the 

detailed aspects. Moreover, comparing it with the 2L submodule, the fact of needing 

half submodules greatly facilitates the assembling process and reduces to a great extent 

the number of elements of the converter. 

5.3 Conclusions 

This analysis and evaluation of different submodule concepts for Modular Multilevel 

Converter, has concluded on several interesting and useful aspects. First of all, from the 

achieved output quality point of view, it has been seen that all the submodule concepts 

can provide a very good quality waveforms when they operate in the range of the high 

voltage levels of HVDC applications. This fact is mainly due to the necessity of a high 

number of submodules to reach this high voltage levels, together with the intrinsic 

multilevel nature of the MMC converter. This can be understood as an advantageous 

characteristic, reducing the necessity of bulky and costly filter requirements. It must be 

pointed out that the ingenuous 2L submodule concept with series connection of IGBTs, 

can effectively reduce the number of submodules resulting an interesting solution that 

can significantly improve important issues of HVDC applications such as: firing orders, 

implementation complexity, modulation complexity, etc… mainly associated to the high 

number of modules involved in the converter. However, this solution is accompanied 

with an unavoidable reduction of the quality of the generated waveforms, compared 

with the rest of the submodule concepts studied. Actually, this is not a real drawback, 

since the quality of signals achieved is still considered as very good, allowing to 

eliminate the costly filter requirements if the connecting voltage range must be of very 

high range (640kV for instance).  

Secondly, from the thermal analysis, several conclusions can be remarked. First of all, it 

must be highlighted that the procedure itself, allows calculating the maximum 

achievable output power and currents of the MMC converter, without the necessity of 

performing the simulation with the high number of submodules (even several hundreds) 
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required by the HVDC application. From the obtained results, it has been seen that it is 

enough to perform some few ‘easier’ simulations with low number of submodules and 

then extrapolate by simple analytical calculus (can be done by hand), to the required 

connection voltage level, with the corresponding ‘high’ submodule number, but 

avoiding the necessity of performing such complicated simulations. Thus, this simple 

evaluation procedure permits to study the appropriateness of several semiconductor 

options available in the market for one specific HVDC application. 

In addition, this evaluation procedure is able to calculate the switching frequency limit 

at which the semiconductor utilized can operate at its maximum current limit (SOA 

current limit) for every submodule studied in MMC topology and at different operating 

conditions. This value is useful first to know which switching frequency permits to 

reach the maximum current of the semiconductor, and secondly to know the quality of 

the waveforms achieved under this condition. Therefore, the study that has been carried 

out reveals that all the submodule concepts considered with the two utilized 

semiconductors can operate at around 500 Hz switching frequency limit. Under these 

circumstances, all of them can make operate the converter with around 200MW (at 

200kV of DC voltage) or 650MW (at 640kV of DC voltage), which is a useful range of 

powers for HVDC applications. However, in a HVDC application where the number of 

submodules will be really high, it is more convenient to decrease the fsw obtaining a 

good quality waveform but with the aim of reducing the converter power losses and 

therefore enhancing its efficiency. Generally frequencies around 100 – 250 Hz are 

employed, that is why the 500 Hz one would not be very realistic. On the other hand, if 

the converter is going to work as a STATCOM where the voltage is lower and 

consequently the number of submodules too, a proper fsw should be evaluated in a 

compromise among power losses, output filter requirement, number of submodules, etc. 

Going into more detail, it can be said that SEMIC. A permits to switch faster (around 

600 Hz) than SEMIC. B. However, this does not almost produce benefits from the 

quality of the generated waveforms point of view, and is penalizing the fact that it needs 

much higher number of submodules (due to its smaller Vce@100FIT voltage), increasing 

the implementation complexity and potential reliability of the converter. It can be 

thought that it is better to use a semiconductor with a higher Vce@100FIT voltage ratio, for 

instance SEMIC. B, allowing using the least number of submodules that is possible, 

even if the switching frequency limit achieved is slightly lower. On the other hand, it is 
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remarkable that the 3L-NPC submodule concept also permits to obtain higher switching 

frequency limits, due to its intrinsic modulation philosophy. 

From a practical point of view, it can be said that the best advantage of the multilevel 

submodule concept, compared to the classic 2L submodule, is that the number of 

submodules can be reduced, leading, in turn, to a significant reduction of elements 

associated to the submodule (thyristors, bypass switches, optical fibres, etc..), 

potentially reduction in the volume and assembling process of the converter. Moreover, 

from a manufacturer point of view, the multilevel submodule concepts (3L-NPC and 

3L-FC in this case), can be attractive in order to avoid problematic situations related 

with patents.  

Regarding the final comparison provided in this chapter, it is not intended to defend any 

of the studied topologies as the best. Instead, the only intention is to show in a rigorous 

way the advantages and disadvantages among them, providing to the reader a wider and 

realistic perspective of the factors that can influence a manufacturer of converters, to 

take the decision of choosing one topology from other. 

Finally, it can be concluded saying that perhaps a good option for a HVDC application, 

could be to use a submodule concept together with a semiconductor that permits to 

operate with a considerably high voltage level at each submodule (for instance, 2L with 

series connection of 6 to 12 IGBTs), in order to achieve good balance between 

implementation complexity and quality of the waveforms generated. The semiconductor 

should be in the range of kAmperes, in order to reach considerably high power levels 

and suitable to perform an efficient series connection, to finally build up reliable valves. 

All of this, of course should be also well coordinated with constructive, control, 

dimensions, cost, etc… aspects, which are out of the scope of this analysis.  



 

Chapter 6 
6 Problems associated with disturbances and 

feasible solutions 

________________ 

As described in the previous chapter, many equipments take part in the power 

transmission from the generators to the onshore connection point. Obviously in such a 

large and important system, all of them have to be studied in detail and perfectly 

adapted to the particular case because any of them can entail a source of malfunctions. 

This chapter deals with some issues which have not been deeply analysed but are 

believed to be fundamental for the smooth running of the system. The first section is 

about the hardnesses that this kind of converter presents regarding the voltage supply of 

some devices, isolation among them, complicated management system and assembling 

of the structure. 

The second section concerns the failures in general. Some of them are provoked by 

external causes, for instance, the breakage of a submarine cable or a lightning strike. 

The most used protections against these failures are proposed. However, there are others 

which can occur in the same converter like the breakdown of a semiconductor. For this 

case, the consequences are discussed and some possible solutions are suggested. 
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6.1 Specific characteristics of the MMC working as HVDC 

6.1.1 Precharge of the capacitors 

A not very cited drawback of the MMC (regardless the topology of its submodules) is 

the precharge of all the capacitors before becoming the converter operational. In 

practice, difficulties occur when a common network intertie has to start without power 

from the de-energized condition into operating condition (″black start″). 

A possible process of charge per inverter arm for 2L submodules is described in [98]. In 

order to accomplish this procedure, only one auxiliary voltage source with a relatively 

low output voltage (VLoad ≈ VC) is necessary. The output terminals of the supply are 

connected to the DC bus of the multilevel converter. Per inverter arm a number of (2n-

1) IGBTs T2 (Fig. 6-1a) are turned on. The remaining IGBT T2 and all remaining IGBTs 

T1 in the inverter leg are kept off. When one capacitor per phase leg has reached the 

operation voltage, the next ones are selected by appropriate gating. In that way all 

capacitors in the arms are gradually charged to the operation voltage (Fig. 6-1b). 

Finally, the voltage source has to be disconnected by series diodes or mechanical 

switching. 

a)  b)  

Fig. 6-1. Process of charge per inverter arm. Source: [98]. 

However, this precharge presents some drawbacks related to the duration of the process 

and charging level. A solution to overcome these problems is proposed in [99]. It 

consists of a new precharge topology of MMC based on submodules in parallel and 

attached to external DC bus bars to precharge synchronously in order to accelerate the 

“black start” process (Fig. 6-2). Triggering the four included antiparallel thyristors with 

pulses synchronously will start the precharge process until all the capacitors are 

simultaneously charged to UC0. Then the thyristors will automatically turn off so that 

the submodules’ terminals have the same electric potential and the maintenance current 
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fall to zero. Then all the capacitors will be connected to the submodules and operated in 

normal mode. The waveform of the new MMC precharge topology is shown in Fig. 6-3. 
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Fig. 6-2. New 2L submodules MMC precharge topology [99]. 
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Fig. 6-3. Process of charge per inverter arm [99]. 

This last precharging process is expressly designed for 2L submodules but it could be 

used for the multilevel submodules studied in this report implementing some changes to 

overcome the different disposition of the capacitors. Beginning with 3L-FC 

submodules, where there are 2 capacitors with different balancing voltage and based on 

the previous idea, the solution consists of using 2 DC voltage sources to accomplish that 
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task (see Fig. 6-4a). The process would be identical but one of the submodules capacitor 

would be charged to half voltage in comparison with the other one. 
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Fig. 6-4. a) 3L-FC submodules MMC precharge topology. b) 3L-NPC submodules MMC precharge 

topology. 

On the other hand, regarding the 3L-NPC submodules, the topology would only differ 

in the connection points as depicted in Fig. 6-4b. Ideally, in this way the two capacitors 

would be charged simultaneously and acquire the same voltage level although in 

practice their charge should be controlled. 
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Fig. 6-5. a) Simultaneous charging of upper capacitors in one phase. b) Individually charging of 

capacitors in each submodule. 

Some other methods for charging the series capacitors proposed in the literature also 

rely on an external voltage source to do so [100], [101]. However, according to [102] 

the charging and discharging of the capacitors can be done from the main voltage 

source. For this, an additional resistance controlled by a mechanical or electronic switch 
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is connected in series to the arms, see Fig. 6-5. At steady state operation, the resistance 

is bypassed from the circuit. Conversely, by appropriately inserting it, the capacitors in 

the submodules can be charged or discharged, for instance during the removal of a 

submodule from the circuit. All those capacitors of one arm can be charged 

simultaneously and then those of the other arm as in Fig. 6-5a, or one by one as shown 

in Fig. 6-5b. 

6.1.2 Control hardware 

In a MMC oriented to the HVDC 

application in which hundred 

submodules per phase are needed, the 

management system becomes really 

complex. In previous chapters has 

been explained that as many triangular 

signals have to be generated as 

number of submodules with a 

particular phase shift among them. 

Apart from these carriers, it is crucial 

to measure the voltage of every submodules capacitor in order to generate the proper 

firing order for each submodule with the aim of balancing the whole phase capacitors. 

In addition, it is important to measure the voltage at the semiconductors terminals to 

identify failures. This means that the converter’s overall management system has to deal 

with a great amount of data transmitted to it by two optical fibres from the power 

module of each submodule. Therefore a really powerful hardware is required to 

coordinate the received information, manage the power exchange, generate the firing 

orders, activate the protection systems, etc. 

6.1.3 Voltage supply for the drive of the submodule 

When using many power semiconductor devices connected in series in a high voltage 

converter circuit such as the MMC, there is a problem in supplying the individual drive 

units. Utilizing individual transformers (one for each drive unit) is a very expensive 

solution, especially in high voltage converter circuits in which the potential differences 

between ground and the different drive units are high, tens of kV or more. Therefore a 

Measurements and Firing Orders

optical communication fibres 

General Management System
 

Fig. 6-6. Signal exchange between the power module 

of a 2L MMC and the management system. 
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much simpler, reliable, well isolated and considerably less expensive power supply for 

the drive units has to be designed. 

A possible solution is to provide the different drive units with energy taken from the 

capacitor of its same submodule. To obtain the desired input voltage level for the drive, 

various circuits are patented in [103]. For example: a static voltage divider connected in 

parallel with the power semiconductor device plus a shunt regulator (shown in Fig. 

6-7a), a regulator connected in series with the capacitor or a DC/DC converter if 

positive but also negative voltage has to be applied to the gate of the semiconductor. A 

similar proposal is explained in [104] whose main layout is depicted in Fig. 6-7b. The 

advantage of this type of power supply is that there is no need for utilizing high voltage 

insulated transformers which results in saving costs and a smaller size of the apparatus.  

a)  b)  

Fig. 6-7. Voltage supply for the drive taking energy from the submodule capacitor a) Source: [103]. 

b) Source: [104]. 

6.1.4 Submodules and converter arrangements 

The aim of the pictures above (Fig. 6-23) is to give a physical view of the VSC-HVDC 

submodules and the whole converter. Fig. 6-23a is the image of a submodule where the 

capacitor is as bigger as the rest of the components. In Fig. 6-23b the typical 400 MW 

converter arrangement is represented. It consists of six arms of more than 200 

submodules per each one. Finally, in Fig. 6-23c a real installation of Siemens converter 

is shown to give an idea of its size as well as how the submodules are disposed. Here it 

can be appreciated that each arm structure is formed by three submodules floors 

separated by means of isolators and reinforced with protections against seismic 

movements. 
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a)    

b) c) 

Fig. 6-8. a) Power module. b) Typical converter arrangement for 400 MW. c) On site installation. 

Source: [105]. 

6.1.5 Onshore and offshore substations 

Once seen the structure and the space required for the converter thereof, the onshore and 

offshore substation will be shown. Meanwhile all the components size is minimized on 

the offshore platform and a special foundation (depending on the water depth and 

seabed) is needed for its emplacement, these requirements are not so critical on the 

onshore substation. Comparing both Fig. 6-9 pictures which represent the same 400 

MW converter, the surface occupied by the offshore substation is 55x42 meters while 

the onshore one is around 130x90 meters. 

As can be seen in Fig. 6-9a, a landing area is built on the topside of the platform 

because it is only accessible by air (helicopter for maintenance works or simple 

standardised repairs) or by sea (requiring the use of a service vessel for routine access, 

and a jackup rig for heavy and big piece replacements). Unlike the offshore substation 

with indoor equipment, on the onshore one there are some elements such as the 

transformers or switchyards (Fig. 6-9b) that can be placed outdoor. 

Capacitor 

Seismic reinforcements Isolators 

Submodules 

http://en.wikipedia.org/wiki/Jackup_rig
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a)   

 

b)  

Fig. 6-9. a) Offshore platform design. b) Onshore station layout. Source: [105]. 

6.2 Problems associated with failures 

6.2.1 AC current interrupter 

AC circuit breaker (Fig. 6-10b) is a switching device which can open or close circuit in 

a small fraction of second. This is achieved thanks to its separable contacts. The closing 

and opening of the circuit allows to establish or to interrupt the circulation of current 

through the circuit under usual or unusual working conditions such as short circuits.  

SF
6
 (sulfurhexaflouride) circuit breaker is undoubtedly the most common one used 

nowadays for high voltage applications [106]. It has replaced air and oil circuit breakers 

as most SF
6
 properties are superior to other interrupting mediums, such as its high 

dielectric strength or higher thermal conductivity. 
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In this kind of circuit breakers the current continues flowing after contact separation 

through a plasma arc of ionized SF
6
. It is designed to direct a constant gas flow to the 

arc that extracts heat from the arc and so allows achieving its extinction at zero current. 

The gas flow de-ionizes also the contact gap and restores the required dielectric strength 

to prevent an arc re-strike. 

6.2.2 Overvoltage and overcurrent protections 

For the acceptance and reliability of high-voltage networks, the availability of protective 

elements such as surge arresters or circuit breakers is critical, making them one of the 

key enabling technologies.  

The surge arresters (Fig. 6-10a) are the primary protection against atmospheric and 

switching overvoltages providing alternative path to ground or bypassing protected 

object. They are generally connected in parallel with the equipment to be protected to 

divert the surge current. The active elements (ZnO blocks) of surge arresters are 

manufactured using a highly non-linear ceramic resistor material, composed primarily 

of zinc oxide mixed with other metal oxides and sintered together [54]. 

a)  b)  

Fig. 6-10. a) Surge arrester. b) Circuit breaker. Source: [54]. 
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There are significant differences between the requirements of ac and dc circuit breakers, 

mainly due to the absence of a natural current zero crossing in dc systems. DC breakers 

have to interrupt short-circuit currents very quickly and need to dissipate the large 

amount of energy which is stored in the inductances in the system. 

For HVDC applications, transfer and load current switches are in use. Breakers 

interrupting HVDC short-circuit currents are not commonly available and have very 

limited ratings. The numerous presented proposals for breaker designs all comprise 

different series and parallel connections of classical ac interrupters, resonance circuits 

with inductors and capacitors, semiconductors, charging units, varistors, or resistors 

[107]. 

6.2.3 DC side pole to pole fault 
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SM1
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SMn/2
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Fig. 6-11. DC side fault handling with MMC [108]. 

Although pole to pole faults are more frequent when DC overhead lines are used, they 

still have to be taken into account. The stored energy of the concentrated DC capacitors 

at the DC bus results in extremely high surge currents and subsequent damage if short 

circuits at the DC bus cannot be excluded. When a DC failure occurs, power 

transmission and AC grids are no more feasible. It is very desirable to affect the system 

as little as possible and to restart power transmission as quickly as possible. 
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a)

Protective 

thyristor switch

 b)  

c)  

Fig. 6-12. a) Bypass thyristor. b) Full bridge cells. c) Clamp double cell. Source: [109]. 

Inherent to this converter topology, rated diodes and reactors would have to handle 

those surge currents. At first glance, limiting the DC fault currents by fast acting DC 

switches (mechanical or semiconductor switches) could be the best option. However, 

owing to physical reasons, the DC switches would be very hard to realize because they 

need forced arc extinction and very high energy absorption. So alternative proposed 

remedies: 

 Bypass thyristor (Fig. 6-12a). Thanks to this solution the short circuit current 

does not entirely flow through the submodules diode but through the bypass 

thyristor as well with the aim of protecting the diodes. 

 Full bridge cell (Fig. 6-12b). It can cut off arms currents of any direction by 

impressing appropriate polarity of terminal voltages in the arm. This can be 

assured in a simple manner by turning off all the IGBTs. However, comparing 

with the half bridge submodules, its additional switching states are not useful in 

normal operation because a reverse voltage polarity at the DC bus is not required 

for HVDC applications. Therefore, using double number of semiconductors and 

doubling the semiconductor losses represents a severe drawback. 

Hybrid clamp double cell (Fig. 6-12c). This topology enables the desired cut off and 

voltage clamping functionality. In normal operation it represents an equivalent of two 

half bridge submodules. The total expense for the semiconductors and the resulting 
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losses are only slightly increased, owing to the addition of T5, which is normally on. In 

case of fault currents it is turned off, resulting in voltage clamping and energy 

absorption. During voltage clamping, both capacitors are in parallel, ensuring 

minimized overvoltage. 

6.2.4 Grid faults 

When the voltage in the grid side is temporarily reduced due to a fault or load change in 

it, the voltage dip has to be faced according to the legislation in force of the country 

where the wind farm is installed. In electricity supply and generation, low voltage ride 

through (LVRT), or fault ride through (FRT), is what the electric device might be 

required to be capable of. The voltage may be reduced in one, two or all the three 

phases of the AC grid. The severity of the voltage dip is defined by the voltage level 

during the dip (it can even go down to zero) and its duration. For generating units such 

as wind turbines, the required LVRT behaviour is defined in grid codes issued by the 

grid operator. Taking as example the German E.On grid code, it establishes that wind 

farms and their equipments must keep connected if the dip characteristics match the 

dotted area of the voltage/time curve depicted in Fig. 6-13. In addition, they have to 

support the grid with a reactive power dependant on the voltage drop pertecentage. 

  

Fig. 6-13. Voltage/time curve and power factor requirement of the EON’s LVRT grid code. 

Wind turbines have only 100 ... 200ms fault ride through capability meanwhile onshore 

grid codes require interruption capability higher than 1s. Under this circumstance, the 

main goal is to maintain the wind farm operational, preventing at all costs the wind 

turbines shutdown. The difficulty then lies in what to do with the wind farm output 

power (as represented in Fig. 6-14) which has to be kept up during this period because 

there are no feasible means of storage for the excess power. 

http://en.wikipedia.org/wiki/Electric_power_transmission
http://en.wikipedia.org/wiki/Electrical_power_industry
http://en.wikipedia.org/wiki/Three-phase_electric_power
http://en.wikipedia.org/wiki/Three-phase_electric_power
http://en.wikipedia.org/wiki/Power_dips
http://en.wikipedia.org/wiki/Wind_turbine
http://en.wikipedia.org/wiki/Reactive_power
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Fig. 6-14. Encountered problem when an AC grid fault occurs [108]. 

A possible solution is adding a DC side braking chopper unit formed by a series 

connection of several braking chopper modules such as the one illustrated in Fig. 6-15 

and used by Siemens in its HVDC PLUS system. It consists of an IGBT, reversing 

diodes, a resistor to dissipate the surplus energy and a capacitor to uphold the same 

voltage level at the terminals of all the IGBTs. This DC chopper module topology is 

designed for 2L MMC but it might well be altered for alternative MMC submodules. 

The braking chopper unit is arranged in parallel 

with the converter phases as depicted in Fig. 6-16. 

Its function is to absorb the dynamic excess power 

generated by the wind farm during onshore grid 

interruptions. However, for enduring grid faults, 

the wind farm may be throttled down in usual 

order via wind farm power control but it keeps 

away from the emergency shutdown. As the 

chopper is installed at the onshore converter station, the offshore station’s footprint is 

not enlarged. 

The features and benefits of this component are the following: 

 Smooth DC voltage and currentSave fault ride through of offshore wind farm. 

 Redundant designHigh reliability. 

 Use of well-proven standard componentsHigh availability of state of the art 

components. 

 Design & control scheme derived from HVDC PLUSPower Module Synergy 

with Power Module in development and production. 

+

 

Fig. 6-15. Braking chopper module 

[108]. 
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 Easy scalability  Low engineering efforts 

 Low number of primary components  Low maintenance requirements 
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Fig. 6-16. Converter layout incorporating the breaking chopper module [108]. 

 

Fig. 6-17. Close AC line to ground fault in the inverter side. Source: [108]. 

A demonstration of an AC line to ground fault and the recovery of the system are 

represented in Fig. 6-17. In the first graph how the voltage of line 3 drops to zero for a 

short time interval can be observed. When it occurs, the converter changes its operating 
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mode (look at the AC converter voltages) in order to accomplish the imposed 

requirements for that situation without disconnecting the wind farm. In the bottom 

graph the FRT behaviour is appreciated thank to which after the dip clearance the 

system is able to return to the normal state. 

6.2.5 Failure management in submodules 

Failures in electronic devices are quite usual, sometimes because of its end of life but 

others unexpectedly. The malfunction of a little device can bring the whole apparatus to 

a standstill or provoke damages to the rest of the components. Such event is always 

undesirable but the consequences are aggravated in equipments located on offshore 

stations. The main reason is that maintenance staff has to move by boat to the station 

where not only the working conditions and accessibility are harder but costs are also 

driven up. So the fewer trips required to the station the better. That is why it is 

interesting to analyze which penalties could be caused by a submodule’s fault in the 

MMC. 

Regardless the submodule topology, when any of the 

elements which constitute it breaks down, it is 

assumed that it drops to failure mode without 

damaging anything else. Moreover the whole 

submodule must be short-circuited to let the rest of 

the converter continue working (a high speed bypass 

switch like in Fig. 6-18 is typically used for such 

purpose). Although some redundant submodules are 

installed in the converter to avoid unscheduled repair service, it is not possible to install 

many of them due to the space requirements and costs above all. Therefore, it is 

interesting to find out what would happen in the worst case when there are no more 

spare submodules left until it gets repaired or replaced by a new one. 

From the moment that a submodule remains short-circuited, its output voltage will be 

always zero. For this reason the arm signal instead of having (n/2+1) levels, it will be 

formed by a level less per submodule broken down. Such case is represented in Fig. 

6-19 (simulation in per unit of a MMC with 2L submodules being n=10) where one of 

the five upper submodules is not operating. As can be observed, Vl is a 1V amplitude 

signal formed by six levels meanwhile Vu is a signal formed only by 5 levels and whose 

amplitude cannot reach the one volt. Obviously, the converter output voltage Vth gets 

Bypass 

switch
 

Fig. 6-18. 2L submodule including 

a bypass switch. 
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affected. Not only is the amplitude reduced due to the lack of voltage levels but the 

shape of the signal is also altered. 

 

Fig. 6-19. Modulator references and carriers, voltages of upper and lower submodules and output 

voltage of a single phase MMC with 5 submodules per arm with failure in the first upper 

submodule, ma=1, VDC=2 volts and fsw=500 Hz. 

The spectrum of the Vth signal of a single phase MMC with 5 submodules per arm with 

failure in an upper submodule is depicted in Fig. 6-20 (with zoom at low frequencies). 

As explained in chapter 2 its first harmonic band come into view at n times the 

switching frequency (f1hb=12.5 kHz in this example) fulfilling the equation (2-22). 

However, if the spectrum of Fig. 6-20 is compared with the one of Fig. 5-4 which is 

taken from the same MMC without failures in the submodules, it can be noticed that 

there is a new family of harmonics at low frequencies which belongs to the switching 

frequency, 1250 Hz in this example. It is obvious that this fact deteriorates the output 

voltage, but what really cannot be acceptable for the proper operation of the converter is 

the continuous voltage of this signal. 

  

Fig. 6-20. Spectrum of Vth of a single phase MMC with 5 submodules per arm with failure in the 

first upper submodule, fsw=1250 Hz and VDC=2 volts. 
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Fig. 6-21. Voltage of upper and lower submodules and output voltage of a single phase MMC with 5 

submodules per arm with failure in the first upper and first lower submodule, ma=1, VDC=2V and 

fsw=500 Hz. 
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6-22. a) Output voltage and upper and lower submodules voltages in a MMC with failure in an 

upper submodule. b) Output voltage and upper and lower submodules voltages in a MMC with 

failure in one upper submodule as well as in one lower submodule. 
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Whenever a submodule breaks down, the simplest way of getting rid of the continuous 

voltage at the output of the converter is short-circuiting another submodule of the 

opposite arm. Therefore the same number of submodules in each arm will be missing 

and Vth will not present any offset as demonstrated in Fig. 6-21. The main disadvantage 

is that the total output voltage amplitude is reduced in another Vci level. With the aim of 

making the comprehension of failure modes easier, these two cases are depicted in the 

general diagrams of 6-22. 

 
Position of the short-circuited submodule in the lower arm 

1 2 3 4 5 

f s
w
 

250 Hz 0,009678 0,019616 0,033372 0,032150 0,021130 

500 Hz 0,004468 0,009513 0,015249 0,015249 0,009513 

750 Hz 0,002897 0,006218 0,010013 0,010059 0,006288 

1000 Hz 0,002171 0,004686 0,007504 0,007504 0,004686 

1250 Hz 0,001795 0,003773 0,006012 0,006001 0,003748 

1500 Hz 0,001440 0,003123 0,004989 0,004989 0,003123 

1750 Hz 0,001288 0,002652 0,004266 0,004280 0,002695 

Table 6-1. WTHD of Vth according to fsw and the position of the short-circuited submodule in a 

MMC being n=10 with failure in the first upper submodule. 

 

 
Position of the short-circuited submodule in the upper arm 

1 2 3 4 5 

f s
w
 

250 Hz 0,021130 0,030819 0,031204 0,020796 0,009097 

500 Hz 0,009513 0,015239 0,015227 0,009479 0,004319 

750 Hz 0,006288 0,010065 0,010063 0,006267 0,002884 

1000 Hz 0,004686 0,007506 0,007499 0,004677 0,002176 

1250 Hz 0,003748 0,005993 0,005998 0,003749 0,001758 

1500 Hz 0,003123 0,005006 0,004990 0,003115 0,001466 

1750 Hz 0,002695 0,004321 0,004298 0,002677 0,001261 

Table 6-2. WTHD of Vth according to fsw and the position of the short-circuited submodule in a 

MMC being n=10 with failure in the fifth lower submodule. 

Once known that it is necessary to have the same number of submodules operating in 

both upper and lower arm, what has to be determined now is which of the opposite 

arm’s submodule is more convenient to short-circuit. For that, the values of the WTHD 

of a MMC with five submodules per arm have been compared. First, a failure in the first 

upper submodule has been set and the WTHD values of the converter’s output voltage 

have been gathered in Table 6-1depending on which lower submodule is short-circuited. 

Then (see Table 6-2), the failure has been set in the fifth lower submodule and the 

WTHD values have been calculated varying the upper submodule in which the short-

circuit is forced. After having evaluated all the possibilities, it is deduced that the best 

option is to disregard the same submodule of the opposite arm than the one broken 

down because the weighted total harmonic distortion in that case is the minimum in the 

two tables. 
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a) 

 
b) 

Fig. 6-23. Spectrum of Vth of a single phase MMC with 10 submodules, fsw=1250 Hz and VDC=2V. a) 

With failure in the first upper and fifth lower submodule. b) With failure in the first upper and 

first lower submodule. 

Comparing the two spectrum obtained in Fig. 6-23, which both refer to the same 

converter with failure in the first upper submodule but different short-circuited one in 

the lower arm, it can be noticed why the calculated WTHD values are different. Paying 

attention to frequencies lower than 10 kHz, if the damaged submodule is not in the same 

arm position than the short-circuited one, the first significant harmonic appears at 

switching frequency and repeats every fsw (see Fig. 6-23a). Nevertheless, if their 

position matches up, the quality of the signal improves a little because low frequency 

harmonics appear every 2∙fsw instead of every fsw as can be checked in Fig. 6-23b. 

Taking up the HVDC application again, in Table 6-3 the signal quality parameters 

calculated for a submodule failure of four different MMC examples are added. In case a 

great number of submodules are needed to comply the converter requirements, it is 

evident that under normal conditions the quality of the output signal will almost be 

affected because of a failure in one submodule since that quality was already good 

enough (remember than in chapter 5.1.2 from n=32 2L topology (WTHD=0.1908e-4 at 

fsw=500 Hz), the obtained signal was considered top-quality). Nonetheless, considering 

the MMC configuration where 8 IGBTs per valve are serialized, the total number of 

submodules in the converter decreases considerably and any change on the signal levels 

can be important. For instance, in the first example of Table 6-3 in which the number of 

submodules per phase is 36, if the converter is working properly its WTHD is lower 

than 0.1908e-3 (the one considered good enough). Otherwise, if a submodule fails and 

consequently another one of the opposite arm has to be short-circuited, the WTHD 

value rises roughly ten times exceeding the optimum value. 
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Submodules 

topology 
Voltages (kV) n 

Normal conditions 1 submodule less/arm 

WTHD THD WTHD THD 

2L-VSC 

 

MV with 8 

IGBTs serialized 

per valve 

VDC=400 

VAC(LL-rms)=276 
36 1.08e-4 3.25e-2 1.25e-3 4.29e-2 

VDC=640 

VAC(LL-rms)=444 
58 6.81e-5 2.02e-2 7.43e-4 2.69e-2 

2L-VSC 

 

MV without 

serialization 

VDC=400 

VAC(LL-rms)=276 
288 6.34e-5 4e-3 1.6e-4 5.42e-3 

VDC=640 

VAC(LL-rms)=444 
458 4.25e-5 2.5e-3 1.11e-4 3.54e-3 

Table 6-3. THD and WTHD under normal conditions and with a damaged submodule evaluated in 

two converters with different submodules topology. 

The defects which appear in the voltages are caused by the modulation algorithm. It is 

prepared for a specific number of submodules but not for failure cases. Therefore when 

any of the submodules is under failure mode there is an extra triangular carrier in the 

modulator. The intersection of that triangular signal and the reference involves a 

commutation of the submodule out of work which consequently provokes some 

inadequate switching actions as can be observed in Fig. 6-19 or Fig. 6-21. Not only do 

these imperfections occur with the typical PWM but also with the modulation explained 

in this document. In order to avoid these imperfections that worsen considerably the 

output signal’s quality, in those applications with low number of submodules where the 

quality has great importance, it is worth reconfiguring the modulator despite losing 

amplitude in the AC signal. 

Apart from the solution aforementioned, instead of forcing a short-circuit in the 

opposite arm’s submodule, the offset can be removed by means of the control system. 

In Fig. 6-24 what happens in the control system when a submodule of the upper arm 

fails can be seen. There is a semi period where the Vu voltage cannot reach the total 

amplitude of its reference due to the lack of voltage contribution of the submodule 

which is broken down. As said before, this fact causes an offset in the output voltage 

due to the decrease in its amplitude. 
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Fig. 6-24. Voltage of upper and lower submodules, output voltage as well as its references of a 

generic single phase MMC with failure in an upper submodule, ma=1 and VDC=2V. 

If the reference Vu* is adjusted to the maximum amplitude reachable with the number of 

operative submodules in the arm as shown in Fig. 6-25, the result is a sinusoidal output 

voltage Vth without offset. This way the references can be followed by its voltages 

during all the period without any problem. However, according to the signal’s quality, 

whenever the modulation algorithm is not modified to make the number of triangular 

signals equal to the number of active submodules, the solution of short-circuiting an 

opposite arm’s submodule is better than adjusting the control loop. The reason is that 

when the same submodules are left in both arms, the irregularities caused by wrong 

commutations due to the extra triangular are compensated. On the other hand, when 

adjusting the control loop, the imperfections of one of the arms affect the output signal 

worsening its quality. 
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Fig. 6-25. Voltage of upper and lower submodules, output voltage as well as its references of a 

generic single phase MMC with failure in an upper submodule, ma=1 and VDC=2V. The control 

system is adjusted to the number of active submodules. 

6.3 Conclusions 

Regarding the precharge of the submodules capacitors, all the found choices agree that 

an external voltage source is needed for that purpose. The first most viable option 

consists of connecting each submodule by means of some thyristors to a DC voltage 

source and triggering these semiconductors precharge the capacitors synchronously. The 

second one instead, suggests charging them from the main voltage source just 

connecting in series to the arms some resistances controlled by a switch. Although the 

second one seems to be simpler, it is protected by a patent and it is not useful for any 

submodule concept. 

It has been deduced that the arrangement of the components is of vital importance in 

this kind of converters. On the one hand, particularly the converter placed at the 

offshore substation has to occupy as little space as possible. However, on the other 

hand, isolation distances among elements with high potential differences must be 

respected. Moreover, not only should it incorporate protective elements against 

electrical faults (overvoltages, overcurrents, AC or DC side failures) but also 
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mechanical reinforcements to prevent any collapse of the structure, for instance due to 

seismic movements. 

Continuing with protective measures, MMC manufacturers taking for granted 

unexpected damages in electronic devices, incorporate several redundant submodules to 

avoid unplanned shutdowns. Nevertheless, it could well happen that there may be more 

destroyed than redundant submodules. The research conducted about this topic 

determines that unequal number of submodules in the arms of the same phase provokes 

an undesirable DC voltage at the output waveform. The simplest remedy lies in 

identifying the position of the broken device and short-circuiting the counterpart 

submodule in the opposite arm. Instead of that, if the control parameters could be 

modified, another solution would be adjusting the arm references (Vu*, Vl*) to the 

maximum amplitude reachable with the number of operative submodules in the arm. 

However, it would be even better reconfiguring carriers generation in the modulator to 

avoid undesired commutations. 

 



 

Chapter 7 
7 Conclusions and future work 

________________ 

7.1 Conclusions 

With increasing attention to sustainable development and environmental protection, the 

application of renewable energy is the proposal to reduce the dependence on fossil fuels. 

The integration of the energy generated by large scaled offshore wind farms more 

effectively than with existing AC networks, is a new challenge. Many investigations 

concur in stating that VSC-HVDC is the most attractive option for high power and long 

distances. It is concluded that this thesis is focused on the MMC for the benefits that it 

presents over the two level converter. 

The principal weakness of this converter topology is the unbalance that appears among 

the submodules capacitors causing disruptions in the proper operating of the converter. 

One of the general objectives of this thesis was to find a solution to this trouble. It is 

effectively solved with the implementation of a PSPWM based balancing strategy, 

which detects when a commutation has to be completed but toggles the submodule 

whose capacitor voltage is furthest from the balancing value. Successful simulations as 

well as experimental results confirm the latter statement. 

Typically, the MMC is comprised of 2L half bridge submodules. However, thinking 

about high voltage applications in which high number of submodules per phase is 

required, it could be interesting to use multilevel submodules instead. Therefore, the 

implementability and effectiveness of the developed modulation algorithm is also 

verified in the MMC with 3L-FC and 3L-NPC multilevel submodule concepts so as to 

fulfil the second objective established in this research work. In addition, a comparison 

revealing the benefits and drawbacks of using the proposed different submodule 
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concepts is carried out. It concludes that the best advantage of the multilevel submodule 

concept compared to the classic 2L submodule, is that the number of submodules can be 

reduced, leading in turn to a significant reduction of elements associated to the 

submodule (thyristors, bypass switches, optical fibres, etc..), potentially reduction in the 

volume and assembling process of the converter. It can also significantly improve 

important issues of HVDC applications such as: firing orders, implementation 

complexity, modulation complexity, etc… 

7.2 Contributions 

The main contributions of this thesis have been: 

 The modelling of the MMC by means of differential equations which describe 

the dynamic of its most relevant variables. This provides to develop good 

understanding about the behaviour of the system but also to design the 

appropriate control system and the suitable modulation technique. Not only is 

the modelling valid for 2L submodules but it can easily be extended to 3L-FC 

and 3L-NPC submodule concepts. 

 The development of a modulation algorithm which solves the submodules 

capacitors unbalancing problem. In this case, it is based on the PSPWM 

modulation technique but actually it is applicable to anyone employed for 

multilevel converters. It has been designed in such a way that, a prior analysis of 

the specific converter arrangement is not necessary to identify redundant voltage 

combinations. Thus, the adaptation of the algorithm to arrangements of MMC 

with a different number of submodules is straightforward. In addition, it is easily 

adaptable to arrangements of MMC with different multilevel submodule 

concepts. 

 Experimental validation of the capacitors balancing strategy in the laboratory 

downscaled MMC test bench, first with 2L submodules and then with 3L-FC. 

 Comparison and evaluation of different submodule concepts for MMC applying 

a procedure that is mainly focused on a thermal analysis and sizing of the 

converter elements, showing the advantages and disadvantages among them. 

 To find solutions to some problems associated with disturbances, either for 

specific characteristics of the converter or simply because failures. As the 
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submodule is a vital element of the MMC, the consequences for the converter 

operability resulting from submodule breakages and some remedies are 

explained in detail. 

7.3 Future work 

In this section several future lines of research are proposed as a continuation of the work 

developed in this report: 

 A detailed 3 phase MMC design for a specific application in which every single 

component should be defined. Besides selecting the semiconductors, capacitors 

and inductances many other important elements have to be configured: the 

cooling system, voltage sources for the capacitors precharge, connection plates 

and cables, measurement boards, etc. Moreover the arrangement of all these 

components is crucial in order to minimize the overall size, but at the same time 

the minimum distances among elements have to be observed with the aim of 

guaranteeing the isolation. 

 Analysis of the converter internal control loops strategies to regulate the total 

capacitors voltage by means of the average current through the phase or the 

transmitted active power. Dynamics, stability, advantages, disadvantages of 

different control strategies should be examined. 

 Simulation of a complete wind farm with HVDC transmission comprising the 

model of several wind turbines, cables, transformers and converters at both ends. 

Then, the most suitable coordinated control for the whole system should be 

determined. 

 After implementing a coordinated control technique and the modulation 

algorithm proposed in this thesis, it would be interesting to analyse the 

behavioural of the whole system under different operation conditions such as 

variable wind speed, voltage dips at the connection point, breakage of 

transmission cables...Obviously grid code requirements should be fulfilled in all 

these cases. 

 Study of the data communication between converter’s measurement boards and 

the overall management system regarding a three phase MMC with hundred 

submodules per arm. A research on the viability of different powerful hardwares 
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which can collect, process and manage all the received information as well as 

the implemented modulation algorithm must be done. 

 Study of alternative applications that this converter topology can have in which 

just reactive power is exchanged, for instance FACTS such as STATCOMs, grid 

balancers, active filters, etc. 
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Appendix 
Power flow 

________________ 

An analysis about power flow in the Modular Multilevel Converter has been carried out. 

Thus, the converter is simplified as done before by means of Thévenin’s theorem, so 

that, the circuit that will be analysed consists only of two voltage sources and an 

inductance connected in series (the resistor is omitted in this case) as represented on 

Fig. A-1. 

Vg

iout

Vth

Ls

+

-

+

-

VS

+-

iout Vth -VS

VSVg

φ δ

φ

Ls= (Lu//Ll) + Lout  

Fig. A-1: Simplified circuit and vector diagram of the MMC. 

First of all, the sign convention used along this section will be explained because it is 

essential to avoid confusion: 

 The output current iout is considered positive from the grid toward the converter 

as drawn in Fig. A-1. This means that the converter absorbs active power when 

P>0 but it gives when P<0. 

 The reactive power is positive when the current iout is behind the grid voltage Vg, 

this is, when φ angle is negative. 

 δ is defined as the angle between both Vth and Vg voltages. It is measured from 

Vth to Vg. 
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Next three equations about voltages (A-1), active (A-2) and reactive power (A-3) are 

deduced from the circuit and diagram of Fig. A-1. 

Sgth VVV   (A-1) 

 cosIVP outg  (A-2) 

 sinIVQ outg  (A-3) 

Using the sine theorem and other trigonometric identities, the equations of active and 

reactive powers on the grid can be achieved, (A-4) and (A-5) respectively. These 

depend on voltages Vth and Vg of the circuit, as well as the phase shift between them. 

senδ
X

VV
P

L

thg



  (A-4) 

 
L

gthg

X

VcosδVV
Q


  (A-5) 

Where:  outthsL LLπ2Lπ2X   (A-6) 

Variation of the active power when Q=0 

This section deals with modifying the active power delivered or absorbed from the grid 

without reactive power flow. The reactive power will be zero according to (A-5) when 

the expression (A-7) is fulfilled. This fact happens every time iout and Vg have got the 

same or the opposite phase (see Fig. A-2), which means that the angle φ=0º or 180º 

because the projection of Vth on x axis has got the same value than grid voltage. 

0VcosδV gth   (A-7) 

As XL is fixed by the inductances of the circuit, more or less current flow must be forced 

along the circuit in order to achieve different active powers. Hence the angle between 

the two voltages varies with the module of Vs causing changes in the active power. If 



Appendix: Power flow 

Modular Multilevel Converter based HVDC transmission system for offshore wind farms -171- 

δ=0, there is not voltage drop in the inductance because there is not any current 

circulation and consequently the active power will be null. 

iout

Vth

Vred

δ

a)   P>0

-VS

 

iout

Vth

-VS

Vred

δ

b)   P<0

 

Fig. A-2: a) Vector diagram for P>0. b) Vector diagram for P<0. 

Variation of the active power when P=0 

It deals with modifying the reactive power delivered or absorbed from the grid without 

active power flow. The reactive power will be zero according to (A-4) when the δ angle 

(the angle between Vg and Vth) is zero, that is, whenever both voltages are in phase as 

shown in Fig. A-3. Therefore the value of Q depends on the subtraction of these two 

voltages as can be deduced from equation (A-5). The result of this subtraction is the 

voltage Vs that changes according to the current which circulates along the converter. 

iout

VthVS Vredφ

a)   Q>0

 

φ

iout

VthVS Vred

b)   Q<0

 

Fig. A-3: a) Vector diagram for Q>0. b) Vector diagram for Q<0. 

Variation of the active and reactive power 

In the previous sections, two special features 

about the power flow are detailed, specifically 

how to vary the active or reactive power 

separately, keeping one of them to zero. 

However, in this section the four power 

possible working cases depicted in Fig. A-4 

will be verified by means of some numeric 

examples. 

Setting one of those two powers to zero makes 

P+

P+

P-

P- Q+Q+

Q- Q-

 

Fig. A-4: The four quadrants of power. 
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the unknown parameters calculation easier. However, for the remaining cases the 

calculation of these unknown parameters is a bit more complex, it depends on the 

variables known. Next, the steps which have been followed to obtain Vth and δ knowing 

the value of Vg, iout and φ are detailed. 

From equations (51) and (52), sin(δ) and cos(δ) are worked out respectively. Then, 

Pythagorean’s identity (A-10) is applied so that the value of Vth is obtained (A-11). 

Finally, Vth is substituted in (A-8) to get δ. 

thg

L

VV

XP
sinδ




  (A-8) 

thg

2
gL

VV

VXQ
cosδ




  (A-9) 

1δcosδsin 22   (A-10) 

 
g

2
gL

4
g

2
L

22

th
V

VXQ2VXQP
V


  (A-11) 

All these equations have been checked by means of some simulations in Matlab-

Simulink software. These simulations have been conducted in a single phase MMC with 

8 submodules in which all submodules capacitors have been substituted by ideal voltage 

sources, with the aim of avoiding disturbances and the results could match up. 

In Fig. A-5 simulations as well as numerical results are illustrated. Starting from 

Vg=230V, Iout=20A and φ angle data, all the other variables (active and reactive power, 

Vth and δ) are calculated with the equations presented before. Four different φ angles 

have been considered to validate it on the four quadrants of power. 

It is hard to appreciate exactly the voltage difference between Vg and Vth signals and 

also the phase shift in the figures, but it can be seen whether Vth is greater than those 

230 volts of grid voltage and which is some degrees behind the other. As settled, the 

maximum value of Iout is always 20 amperes and the phase shift matches up with 

numerical results. 
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a) φ=10º 
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b) φ=120º 

 

iout Vth

-VS

Vg

δ
φ
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c) φ=225º 
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d) φ=350º 

 

iout
Vth

-VS

Vg

δφ

 

P = 2.265 KW 

Q = 399.39 VAR 

Vth = 227.28 voltios 

δ = 0.082 rad = 4.68º 

Fig. A-5. a) Output current, grid and Thévenin voltages, vector diagram and parameters for φ=10º. 

b) Output current, grid and Thévenin voltages, vector diagram and parameters for φ=120º. c) 

Output current, grid and Thévenin voltages, vector diagram and parameters for φ=225º. d) Output 

current, grid and Thévenin voltages, vector diagram and parameters for φ=350º. 
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