
Funtionality and Dependability Assurane in

Massively Networked Senarios

Jose Ignaio Aizpurua Unanue

Supervisor:

Eñaut Muxika Olasagasti

A thesis submitted to Mondragon Unibertsitatea

for the degree of Dotor of Philosophy

Department of Eletronis and Computer Siene

Mondragon Goi Eskola Politeknikoa

Mondragon Unibertsitatea

Otober 2014

�Beti izango haiz gure bihotzetan, adiorik ez Bene, gero arte baizik.�

In the memory of Gorka Ramos Hernández (04-07-2012).

Abstrat

The design of dependable systems and redution of eonomi osts have

been viewed as on�iting goals. Traditional dependable design approahes

repliate system resoures to improve fault tolerane. However, the aggre-

gation of hardware, software or ommuniation resoures to add reovery

apabilities to a system funtion results in higher osts.

Instead of adding redundanies that provide reovery apabilities to a

prede�ned system funtion, in Massively Networked Senarios (MNS) there

is room to take advantage of over-dimensioning design deisions and overlap-

ping strutural funtions by using heterogeneous redundanies: omponents

that, besides performing their primary intended design funtion, restore om-

patible funtionalities of other omponents. MNS are systems haraterized

by several replias of system funtions distributed throughout the physial

struture (e.g., a train has repliated funtions throughout its ars; or build-

ings have repliated funtions throughout its �oors and rooms). Besides,

in these senarios there are many proessing units, sensors and atuators

onneted to a ommuniation network for di�erent purposes.

We have designed a methodology named D3H2 (aDaptive Dependable

Design for systems with Homogeneous and Heterogeneous redundanies) to

design HW/SW arhitetures systematially applying modelling and analysis

approahes. These approahes inlude the systematization of the next ativ-

ities: (1) identi�ation of heterogeneous redundanies; (2) integration of re-

dundanies in the HW/SW arhiteture inluding neessary fault detetion,

reon�guration and ommuniation implementations; and (3) dependability

and ost assessment of the designed HW/SW arhitetures.

Through the appliation of the devised modelling and analysis ap-

proahes, D3H2 enables the assessment of the e�et of alternative redun-

dany and reon�guration strategies, fault detetion and ommuniation im-

plementations on system dependability and ost. The methodology has been

applied to non-repairable and repairable systems.

Design strategies based on heterogeneous redundanies have shown po-

tential to improve system dependability ost-e�etively. However, the de-

ision of whih redundany strategy is better for a spei� system funtion

should be evaluated ase-by-ase basis through the appliation of the D3H2

methodology.

An experimental prototype using real railway ommuniation elements

has been developed to validate some of the onepts treated in the D3H2

methodology.

Resumen

El diseño de sistemas on�ables y la reduión de ostos han sido vistos

omo objetivos on�itivos. Las ténias tradiionales para diseñar sistemas

on�ables replian los reursos del sistema para mejorar la tolerania a fallos.

Sin embargo, añadir reursos de hardware, software o de omuniaiones para

proporionar apaidad de reuperaión al sistema resultan en un inremento

de ostes.

En vez de añadir redundanias que proporionan apaidad de reu-

peraión a una funión prede�nida en los Esenarios Masivamente Redun-

dados (EMR) hay opión para aprovehar las deisiones de diseño sobre-

dimensionadas y funiones que se solapan usando redundanias heterogéneas:

omponentes que además de desarrollar su funión prinipal, pueden reu-

perar las funionalidades ompatibles de otros omponentes. Los EMR son

sistemas araterizados on varias replias de las funiones del sistema dis-

tribuidos en toda su estrutura físia (p.e., un tren tiene funiones repliadas

en sus ohes; o los edi�ios tienen funiones repliadas en diferentes plantas

y habitaiones). Además, en estos esenarios hay varias unidades de proe-

samiento, sensores y atuadores onetados a una red de omuniaiones on

diferentes objetivos.

Hemos diseñado la metodología D3H2 (aDaptive Dependable Design for

systems with Homogeneous and Heterogeneous redundanies) para diseñar

arquiteturas HW/SW sistemátiamente apliando ténias de modelado y

análisis. Estas ténias inluyen la sistematizaión de las siguientes ativi-

dades: (1) identi�aión de las redundanias heterogéneas; (2) integraión de

las redundanias en las arquiteturas HW/SW inluyendo las implementa-

iones de deteión de fallos, reon�guraión y omuniaión; y (3) evalu-

aión de la on�abilidad y osto de las arquiteturas HW/SW diseñadas.

Mediante la apliaión de las ténias diseñadas de modelado y análisis,

D3H2 permite la evaluaión del efeto de las estrategias alternativas de re-

dundania y reon�guraión, y de las implementaiones de deteión de fallos

y omuniaión en la on�abilidad y el osto del sistema. La metodología

ha sido apliada tanto a sistemas reparables omo no reparables.

Las estrategias de diseño basadas en redundanias heterogéneas han de-

mostrado potenial para mejorar la on�abilidad del sistema sin omprom-

eter el osto. Sin embargo, la deisión de qué estrategia de redundanias es

mejor para una funión espei�a debe ser evaluado uno por uno mediante

la apliaión de la metodología D3H2.

Para evaluar algunos oneptos desarrollados en la metodología D3H2 se

ha desarrollado un prototipo experimental usando elementos de omunia-

iones reales de la industria ferroviaria.

Laburpena

Sistema �dagarrien diseinua eta kostu ekonomikoaren murrizketa helburu

bateraezin bezela kontsideratu izan ohi dira. Diseinu teknika tradizionalak

sistemako errekurtsoak bikoiztu izan ohi dituzte akatsekiko tolerantzia ho-

betzeko. Hala ere, hardware, software eta komunikazio errekutsoak gehitzeak

sistemaren kostua igotzea dakar.

Erredundantzia esplizituak gehitu beharrean aukeratutako funtzioei er-

rekuperazio gaitasuna emateko, Masiboki Saretutako Eszenategietan (MSE)

posible da gain-dimentsionatutako diseinu erabakiak eta errepikatutako

funtzioak aprobetxatzea erredundantzia heterogeneoak erabiliz: hauek be-

raien diseinuko helburu nagusia betetzeaz gain beste osagaien funtzio batera-

garriak errekuperatzeko gai da. MSE-ak sistemako funtzioen hainbat kopiaz

osatuta daude eta hauek sisteam osoan zehar banatuta daude (adibidez,

tren batek bere kotxeetan errepikatutako funtzioak ditu; edo eraikuntzek

errepikatutako funtzioak dituzte beraien solairu eta gelatan zehar). Gain-

era, eszenatoki horietan hainbat prozesamendu unitate, sentsore eta eragile

daude komunikazio sarera konektatuta helburu ezberdinekin.

D3H2 (aDaptive Dependable Design for systems with Homogeneous and

Heterogeneous redundanies) metodologia diseinatu dugu HW/SW egit-

urak sistematikoki diseinatzeko ereduztapen eta analisi teknikak erabiliz.

Teknika hauek, ondoko jardueren sistematizazioa egiten dute: (1) erredun-

dantzia heterogeneoen identi�kazioa; (2) erredundantzia heterogeneoen tx-

ertatzea HW/SW egituran beharrezko akats detekzio, birkon�gurazio eta

komunikazio inplementazioak gehituz; eta (3) diseinatutako HW/SW egitu-

raren �dagarritasun eta kostu analisia.

Diseinatutako ereduztapen eta analisi teknikak aplikatuz, erredundantzia

eta birkon�gurazio estrategia ezberdinen, akats detektatzaile eta komu-

nikazio inplementazioen eragina aztertzen du D3H2k sistemaren �dagarrita-

sun eta kostuan. Metodologia sistema konpongarri eta konponezinei aplikatu

zaie.

Erredundantzia heterogeneotan oinarritutako diseinu estrategiak sis-

temaren �dagarritasuna kostua konpromezuan jarri gabe hobetu dezake.

Hala ere, zein erredundantzia mota den hobea funtzio espezi�ko bakoitzar-

entzat kasuz kasu aztertu beharrekoa da D3H2 metodologiaren bidez.

D3H2n garatutako kontzeptu batzuk baieztatzeko prototipo esperimental

bat garatu da benetako trenen komunikazio elementuak erabiliz.

Eskertza

First of all I would like to thank to my thesis diretor, Eñaut Muxika, for the support, assistane

and guidane that he gave me during the Ph.D. Eñaut gave me the freedom to do whatever

I wanted, at the same time ontinuing to ontribute valuable feedbak and enouragement. I

also would like to thank to Mondragon University and CAF Power & Automation for funding

and giving me the opportunity to develop this work.

I gratefully aknowledge the members of my Ph.D. ommittee for their time to read and review

this dissertation.

I am also grateful to my Ph.D. student olleagues: Aritz, Enaitz, Alain, Aitor L., Aitor A.,

Dani, Osar and Raul; as well as to those ex-Ph.D. students olleagues who �nished their Ph.D.

suessfully during these years: Iker S., Maitane, Iker Z., Peio, Lorena, Lorea, Idoia, Iñaki and

Maite. I wish to thank also to my olleagues in the CAF Power & Automation laboratory at

Mondragon University for reating a nie working environment: Ane, Egoitz, Mikel and Unai.

Besides, I would like to thank Iokin Azkue and Juan Fernández for making possible my stay at

CAP Power & Automation and introduing to the industry. I am also grateful to my olleagues

there: Gari, Jon, Esti, Juanmi and Oihana for making my stay unforgettable.

I wish to thank also my Italian olleagues Gabriele and Ferdinando, who have provided me

support and guidane in those moments that I needed. Your help pushed me to improve myself

and stimulate my passion for reliability & safety engineering.

I am speially thankful to Yiannis Papadopoulos for making possible my stay at the University

of Hull and making me feel as if I were at home. Your wisdom and fruitful omments are always

inspirational. Thanks also to my olleagues in the Dependable Systems Researh Group for

our interesting disussions: Leonardo, Martin, David, Sohag, Luis, and Sheptavera.

And last but not least, I would like to express my deepest gratitude to my family and friends.

To my dear parents and to my exeptional ousins, Josune and Alazne, who enouraged me to

not throw in the towel and speially to Paula, for her unwavering support and enouragement

during these years.

This work would not have been possible without your support and enouragement. Cheers!

x

Contents

Contents xi

1 Introdution 1

1.1 Opportunity Identi�ation . 1

1.2 Sope of the Researh . 3

1.3 Researh Objetives . 5

1.4 Researh Hypothesis, Contributions & Limitations 6

1.5 Researh Methodology . 7

1.6 Thesis Outline . 9

2 Literature Review 11

2.1 Appliation Framework . 11

2.2 Dependability Framework . 18

2.2.1 Dependability: De�nitions and Classi�ations 18

2.2.2 Designing for Fault Tolerane and Dependability 24

2.2.3 Fault Hypothesis & Failure/Error Model 28

2.2.4 Opportunity Analysis . 30

2.3 Overview of the Main Dependability Analysis Approahes 32

2.3.1 Hybrid Approahes . 33

2.3.2 Opportunity Analysis . 47

2.4 Design of Dependable Systems: Trade-O� Between Dependability & Cost 48

2.4.1 Design Approahes using Homogeneous Redundanies 49

2.4.2 Design Approahes using Heterogeneous Redundanies 52

2.4.3 Opportunity Analysis . 60

2.5 Conlusions . 64

3 D3H2 Methodology 65

xi

3.1 Introdution . 65

3.2 Overview of the D3H2 Methodology . 66

3.3 HW/SW Arhiteture Design . 68

3.3.1 Funtional Modelling Approah 69

3.3.2 Compatibility Analysis . 73

3.3.3 Reon�guration Strategies . 76

3.3.4 Extended Funtional Modelling Approah 77

3.4 Results . 81

3.5 Conlusions . 96

4 Dependability & Cost Analysis of Non-Repairable Systems 99

4.1 Introdution . 100

4.2 Dependability Evaluation Modelling Approah 102

4.2.1 Conepts and Notation . 102

4.2.2 Analysis Algorithm . 104

4.2.3 Analysis of the State of the Art Approahes 108

4.2.4 Implementation: Component Dynami Fault Trees 109

4.3 Sensitivity Analysis . 114

4.3.1 Simulation-based Importane Measurement Indies 114

4.3.2 Implementation of the Sensitivity Analysis 116

4.4 Unertainty Analysis . 119

4.5 Cost Analysis . 122

4.6 Results . 123

4.6.1 Fire Protetion Control . 123

4.6.2 Door Status Control . 133

4.7 Conlusions . 145

5 Dependability & Cost Analysis of Repairable Systems 149

5.1 Introdution . 149

5.2 Dependability Evaluation Modelling Approah for Repairable Systems . . 152

5.2.1 Conepts and Notation . 152

5.2.2 Analysis Algorithm . 154

5.2.3 Implementation . 157

5.3 Cost Analysis . 160

5.4 Results . 161

xii

5.4.1 SAN Generi Models . 161

5.4.2 Fire Protetion Control . 182

5.4.3 Door Status Control . 188

5.5 Conlusions . 193

6 D3H2 Methodology: Experimental Evaluation 197

6.1 Introdution . 197

6.2 Industrial Railway Communiation Arhitetures 198

6.2.1 Communiation Networks . 198

6.2.2 Communiation Devies . 199

6.3 Appliation Arhiteture . 203

6.3.1 Senario I: Sensor-Level Reon�guration 205

6.3.2 Senario II: PU-Level Reon�guration 207

6.3.3 Senario III: Communiation-Level Reon�guration 208

6.4 Conlusions . 209

7 Conlusions and Future Work 211

7.1 Conlusions . 211

7.2 Contributions . 216

7.3 Future Work . 217

Appendies 219

A Overview of the Basi Dependability Analysis Approahes 221

A.1 Event-Based (Combinatorial, Stati) Approahes 221

A.2 State-Based (Dynami) Approahes 227

B Classi�ation of the Hybrid Approahes and Tool Support 237

B.1 Classi�ation of the Hybrid Approahes 237

B.2 Tool Support . 238

C Analysis of Literature Approahes on a System Example 241

C.1 (Stati) Fault Tree [Vesely02℄ . 242

C.2 Component Fault Tree (ESSaReL tool) [Kaiser03℄ 243

C.3 HiP-HOPS [Papadopoulos11℄ . 244

C.4 Repairable Dynami Fault Tree (RAATSS tool) [Manno14℄ . . . 245

C.5 Struture Funtion of Dynami Fault Trees [Merle14℄ 246

C.6 BDMP [Bouissou07℄ . 247

xiii

C.7 SEFT - DSPN [Kaiser07℄ . 248

D Automation/Implementation of the HW/SW Arhiteture Design 253

D.1 Annotations of the System Arhiteture 254

D.2 Identi�ation of Heterogeneous Redundanies 256

D.3 Extration of the Reon�guration Table 259

E Failure Rate & Cost Data . 263

F PAND Model for Repairable Systems . 267

List of Figures . 275

List of Tables . 279

List of Algorithms . 281

Glossary . 284

Bibliography . 285

List of Abbreviations . 311

xiv

Chapter 1

Introdution

This hapter desribes the motivation that inspired the author to researh in the �eld of

model-based reliability engineering so as to provide solutions to the examined problems.

The hapter is organised as follows:

� Setion 1.1 desribes the main motivation of this thesis.

� Setion 1.2 frames the sope of this researh.

� Setion 1.3 de�nes the researh objetives of this dissertation.

� Setion 1.4 sets the researh hypothesis, ontributions and limitations.

� Setion 1.5 explains the followed methodology to obtain the researh objetives.

� Setion 1.6 desribes the struture of this thesis.

1.1 Opportunity Identi�ation

The design of dependable systems and redution of eonomi osts have been viewed

as on�iting goals (e.g., see [Somani97; Elegbede03; Izosimov05℄). Traditional depend-

able design approahes aim at repliating resoures in order to improve fault tolerane.

For instane, the widely adopted Triple Modular Redundany (TMR) [Avizienis85℄ (f.

Figure 2.15) is one example among many other fault tolerane strategies that expliitly

add software and/or hardware omponents (either same or diverse) in order to improve

system dependability [Laprie92; Laprie95℄.

Nevertheless, the aggregation of resoures leads to more failure soures and higher osts.

Therefore, one feasible diretion to onstrut dependable systems and redue the eo-

1

nomi ost is the optimization of system resoures. To do so, we fous on the design of

distributed Networked Control Systems (NCSs) [Wang08℄.

In distributed NCSs, remote sensors, ontrol algorithms alloated at

Proessing Units (PUs), and atuators work in ooperation to perform a system

funtion. The underlying harateristis of distributed NCSs (distributed nature, om-

puting apaity of the networked PUs) make NCSs suitable to adapt their behaviour

in the presene of system hanges suh as omponent failures or attahment of new

devies.

Traditionally sensors and atuators perform a single funtion, while PUs handle multiple

tasks. For instane, onsider the air onditioning ontrol and �re protetion ontrol

funtions implemented in a room: for the air onditioning ontrol a temperature sensor

measures the temperature of the room and a heater warms the room aordingly; while

in the ase of �re protetion ontrol a smoke detetor detets the presene of smoke

and a sprinkler extinguishes the �re of the room. Despite being independent ontrol

funtions, it is not strange to alloate both ontrol funtions - air onditioning ontrol

and �re protetion ontrol - in the same PU.

In this work, we onentrate on optimising system resoures to redue system ost and

improve the dependability of system funtions. To this end, the funtionalities of sen-

sors and atuators are extended beyond their nominal design funtions so as to perform

as many funtions as possible and feasible. Retaking the previous example of the air

onditioning ontrol and �re protetion ontrol funtions and assuming that there exists

another room next to the previously desribed one with the same funtionalities, it is

possible to reuse: (1) the temperature sensor to approximate the temperature of the on-

tiguous room or (2) the sprinkler (either in the same or in the ontiguous room) to raise

an alarm when speakers are not working. All the hardware resoures inluding sensors,

atuators and PUs, whih are able to perform additional funtions beside their nomi-

nal design funtions are named heterogeneous redundanies [Aizpurua12a℄ (see Setion

2.2.2).

Unfortunately, the use of heterogeneous redundanies is not a panaea. Although the

employment of heterogeneous redundanies may redue the hardware ost and improve

the dependability level of a system design without redundanies, it also introdues some

drawbaks. When making use of system resoures in further irumstanes beside from

2

their nominal design onsideration, additional osts emerge. Namely, it neessary to:

1. Identify and evaluate the potential resoures whih ould provide additional om-

patible funtionalities without inurring a onsiderable extra ost (i.e., identify

reusable resoures).

2. Adjust the system arhiteture with health management funtionalities and im-

plementations (i.e., fault detetion and reon�guration) to make the use of het-

erogeneous redundanies in further system ontexts possible.

3. Evaluate the dependability and ost of the resulting system arhiteture.

Given the methodology to address these issues, there is room in NCSs and more speif-

ially in massively networked senarios (f. Setion 1.2) to optimize the use of system

resoures by means of heterogeneous redundanies.

In the literature there exist many approahes fousing on the adaptation of the system

arhitetures to deal with omponent failures, however, those whih address the uti-

lization of heterogeneous redundanies or similar onepts are not many. Interestingly,

when enompassing the system design proess as a whole aounting for dependability,

adaptivity, and heterogeneous redundany-like issues, existing solutions are sare (f.

Chapter 2). Therefore, the ontribution of this thesis proposes the generation of a

design methodology in order to evaluate the dependability and ost level of alternative

arhitetures whih make use of heterogeneous and/or homogeneous redundanies.

1.2 Sope of the Researh

In order to set the framework of this thesis and de�ne the sope of this researh we

de�ne the appliation ontext in whih this work is situated and later, we will de�ne

the faults that the proposed approah is intended to deal with (see Chapter 2).

Massively Networked Senarios

The appliation ontext of this dissertation is framed within NCSs operating in mas-

sively networked senarios: systems haraterized by several replias of system funtions

3

distributed throughout the physial struture. In these senarios there are many PUs,

sensors and atuators onneted to a ommuniation network for di�erent purposes.

For instane, as Figure 1.1 depits, a train is an example of a NCS operating in massively

networked senarios. A train has repliated funtions throughout its ars, eah ar has

implemented its own funtions and (some of) these funtions are repliated throughout

the di�erent ars of the train.

Figure 1.1: Massively Networked Senario: Railway Train Example

The funtions

1

numbered in Figure 1.1 are de�ned as follows:

1. Air Conditioning Control

2. Passenger Alarm System

3. Fire Protetion Control

4. Video Surveillane

5. Intelligent Light Control

6. Passenger Information System

7. Voie Communiation Control

8. Door Status Control

9. Passenger Counting System

Eah funtion enlosed within a retangle has its own set of resoures (i.e., sensors, on-

trollers and atuators). For further details about the implementation of these funtions

please refer to Setion 2.1.

1

There exist other funtions whih have not been represented here, e.g., braking ontrol or power

ontrol.

4

Another example of NCSs operating in massively networked senarios are the build-

ings. Buildings are onstituted by �oors and rooms, whih have repliated funtions

throughout its �oors and rooms as Figure 1.2 shows.

Figure 1.2: Internal Arhiteture of a Building: Funtions and Communiation Interfaes

Therefore, we onentrate on studying NCSs operating in massively networked senarios

so as to exploit the potential heterogeneous redundanies whih may exist in these

systems.

1.3 Researh Objetives

The main goal of this thesis is to evaluate the impat of the reuse of system

resoures on the overall system dependability and analyse whether it redues

the system development ost. Starting from this main goal and after performing

the study of the state of the art (f. Setion 2), further underlying neessary objetives

have been de�ned.

Therefore, the main researh goal is divided into the following researh objetives of this

dissertation:

1. Systemati identi�ation of heterogeneous redundanies.

5

2. Systemati haraterization of HW/SW arhitetures �tted with

health management funtions and their implementations, i.e., fault detetion and

reon�guration.

3. Systemati evaluation of the in�uene of the type and number of redundany and

reon�guration strategies on system dependability and ost.

4. Optimization of the design of ontrol system arhitetures in massively networked

senarios, maximizing dependability and minimizing the ost.

5. De�nition of a guideline to deide when the reuse of system resoures is bene�ial

for the system (redue osts, improve dependability) and when it is better to use

homogeneous redundanies.

1.4 Researh Hypothesis, Contributions & Limita-

tions

The objetive of this setion is to de�ne the researh hypothesis in order to speify the

foundations of this dissertation as well as the ontributions and limitations.

As a result of the performed literature study - in whih we review the works related

with this thesis (f. Chapter 2) - and linking this survey with our researh objetives

(f. Setion 1.3), the researh hypothesis that we are going to work with is de�ned as

follows:

�The systemati onsideration of the e�et of homogeneous and

heterogeneous redundanies, fault detetion, reon�guration

and ommuniation funtions, allows the optimization of ontrol

system arhitetures in massively networked senarios, maximizing

dependability and minimizing the ost.�

Comparing this work with already existing approahes whih make use of heterogeneous

redundanies for designing adaptive dependable systems, this dissertation di�ers in the

following aspets - ontributions:

� The systematization of the identi�ation of heterogeneous redundanies.

6

� The expliit onsideration of the faulty behaviour of the fault detetion,

reon�guration and ommuniation implementations when addressing heteroge-

neous redundanies.

� The systemati haraterization of HW/SW arhitetures �tted alternative re-

dundany and reon�guration strategies, fault detetion implementations and

reon�guration resoures.

� The systemati evaluation of the e�et on dependability and ost of the de-

signed HW/SW arhitetures by onsidering both non-repairable and repairable

resoures.

The following parts were left out of the sope of this work - limitations:

� The proess for obtaining the failure rate data of software resoures is not onsid-

ered and it is assumed a known data. Nevertheless, to deal with unertain data

we have implemented an unertainty analysis approah in Chapter 4.

� Exat solutions are not obtained, instead we onentrate on simulation tehniques.

� Analysis of low-level requirements: timing requirements that omponents should

meet in order to be ompatible and perform a funtion timely; memory and pro-

essing power requirements that the proessing units should meet; and bandwidth

onstraints of ommuniation protools that the system have to adhere will not

be addressed.

1.5 Researh Methodology

The proposed methodology allows the validation of the stated researh hypothesis. Our

researh methodology is based on the haraterization (design) of modelling and analysis

ativities and their ombined appliation to theoretial ase studies in order to validate

the researh hypothesis.

To this end, we have divided the researh problem into smaller problems and de�ne

solutions to eah of them, so that evidene is shown for eah part in partiular and for

the overall problem in general:

7

� Systemati onsideration of the implied attributes/variables in the researh

hypothesis - haraterization of the design model:

� De�nition of a generi system model to design HW/SW arhitetures

systematially inluding the next ativities:

* Systemati identi�ation of heterogeneous redundanies.

* Proedural onsideration of fault detetion, reon�guration, and

ommuniation funtions.

� Systemati evaluation of the e�et of the implied attributes/variables in the

researh hypothesis on dependability and ost - haraterization of the analysis

model:

� De�nition of analysis models and algorithms to evaluate systemati-

ally the dependability and ost of the alternative HW/SW arhitetures

designed with the generi system model:

* De�nition of the dependability metri/model and an algorithm to anal-

yse the dependability level of alternative HW/SW arhitetures system-

atially.

* De�nition of the ost metri/model and an algorithm to analyse the ost

of alternative HW/SW arhitetures systematially.

* Overall evaluation of the system's dependability and ost and trade-

o� analysis between these attributes.

� Automation of all the previous phases.

� Validate the feasibility of the proposed approah by using real hardware, software,

and ommuniation elements.

All these ativities have been validated ase by ase basis through the development of

theoretial ase studies. Besides, to validate the feasibility of the proposed method-

ology, a real proof-of-onept has been developed using real hardware, software and

ommuniation elements of the railway industry

2

(f. Chapter 6).

2

The author was a visiting researher at CAF Power and Automation (www.afpower.om) for the

last six months of 2013.

8

1.6 Thesis Outline

This report is divided into 7 hapters. The following points overview the organisation

of eah hapter:

� Chapter 2 de�nes the appliation example used to illustrate the onepts emerg-

ing from this dissertation and it provides the needed bakground literature

for the development of this thesis. Through an exhaustive literature analysis of

model-based system engineering and reliability engineering �elds, the opportu-

nity (motivation) is identi�ed.

� Chapter 3 desribes the main ontribution of this dissertation: the aDaptive

Dependable Design for systems with Homogeneous and Heterogeneous

redundanies (D3H2) methodology. The methodology integrates all the re-

searh objetives and ativities identi�ed previously. For the sake of larity, the

explanation of the methodology is divided in two parts:

1. Modelling and analysis ativities to reate an extended HW/SW arhiteture.

2. Dependability and ost analysis of the extended HW/SW arhiteture.

This hapter overviews the main ativities of the methodology and desribes the

steps to reate an extended HW/SW arhiteture.

� Taking the extended HW/SW arhiteture as a starting point, Chapter 4 de�nes

the dependability evaluation algorithm for non-repairable systems and its

implementation by using simulation tehniques.

� Taking the extended HW/SW arhiteture as a starting point, Chapter 5 de�nes

the dependability evaluation algorithm for repairable systems and its im-

plementation.

� Chapter 6 desribes the implementation of the researh objetives by using real

railway hardware and ommuniation elements.

� Chapter 7 sets the onlusions of this thesis and future researh goals.

9

10

Chapter 2

Literature Review

In this hapter we provide the neessary bakground information for the elaboration

of the thesis and we review the previous related work so as to support our researh

hypothesis and set the topi of this dissertation. Besides, in order to have a onsistent

ongoing example throughout the thesis, we will also speify the example ase study so

that we an illustrate the emerging onepts diretly.

The hapter is organised as follows:

� Setion 2.1 desribes the illustrative appliation framework.

� Setion 2.2 presents the dependability framework for the development of this thesis

introduing relevant de�nitions and onepts.

� Setion 2.3 lassi�es and examines the main dependability analysis tehniques.

� Setion 2.4 reviews the sienti� literature examining those approahes whih

design adaptive dependable systems by using homogeneous and/or heterogeneous

redundanies.

� Setion 2.5 onludes this hapter with onlusions that will determine the orien-

tation of the forthoming hapters of this thesis.

2.1 Appliation Framework

The goal of this setion is to introdue the running example so that all the examples

throughout this dissertation have a unique onsistent referene. The illustrative ase

study has been inspired from the diret appliation of this thesis: a train operating in

massively networked senarios. A train (usually) is onstituted by more than one ar,

11

and eah ar in turn has a set of di�erent funtions, whih are repliated for eah ar of

the train.

Figure 2.1 depits some of the funtions performed in a train ar that will be used

throughout this thesis for illustration purposes. Di�erent funtions are onneted to dif-

ferent ommuniation networks and there is an interonneting gateway element, whih

makes possible the ommuniation of resoures onneted to di�erent ommuniation

networks. In order to make the ommuniation between di�erent ars of the train possi-

ble, train swithes are used. The inter-ar ommuniation and intra-ar ommuniation

are implemented aording to the IEC 61375 (Train Communiation Network) standard

[IEC07℄.

Figure 2.1: Train Car Con�guration: Funtions and Communiation Interfaes

In Figure 2.1, eah funtion is enlosed in a box and in turn, they have their own

hardware and software resoures. Conseutively we will explain the main HW/SW

features of the funtions and they will be used throughout this dissertation to perform

di�erent analyses.

Without loss of generality, heneforth we will assume that eah ar of the train will have

2 ompartments (Zone

A

, Zone

B

) and in eah ompartment there will be 2 doors loated

side by side (f. Figure 2.2).

12

Sprinkler Fire

Detector

Zone A Zone B

Reference

Temperature

Temperature

Sensor

Speaker

Heater

Emergency

Button

Zone A Zone B

Close

Detector

Open

Sensor

Motor

Open

Button

Camera

Figure 2.2: Train Car Con�guration: Physial Distribution

Door Status Control

Eah door in the train has many sensors and ontrol buttons for the passengers and the

driver. The doors losure is ontrolled by the driver based on a enable signal that will

be reeived depending on the status of the train, e.g., while the train is running the

doors must remain losed.

In the train there is a omponent alled Train Control Monitoring System (TCMS),

whih ontrols and monitors several ritial systems of the train suh as tration and

doors. This omponent is homogeneously dupliated in two reliable PUs (PU

TCMS

) for

safety purposes. The TCMS reeives information about the speed of the train and it

will not allow the driver to open the doors while the train is running. To this end, it

provides an enable to the driver to inform about the safe operation of door opening or

losing (known as Enable Door Driver). The driver aordingly provides an enable to

the ontroller of eah door (known as Enable Door Passenger) to at safely on opening

or losing the doors while taking into aount if the train is moving and if there is an

obstale in the door.

As Figure 2.3 shows, in a train ar there is one opening and losing button for the driver

onneted to the driver's PU (PU

driver

), while eah door has: one opening button for

passengers, one door veloity sensor, one door open detetion sensor, one door losed

detetion sensor and one obstale detetion sensor. All these sensors, their ontrollers

and the door ontrol algorithm are loated in the PU

Door

.

Figure 2.4 depits the ontrol loop inluding the physial system (Train Car Door).

13

Ethernet

MVB

CAN

PUDoor

Open

Sensor

PUDriver PUTCMS

Closed

Sensor

Obstacle

Sensor

Speed

Sensor

Open

Button

Passeng.

CloseButton

Driver
Open

Button

Driver

Enable

Button

Driver

Motor

Figure 2.3: Hardware Model of the Door

Status Control Funtion

Door Control

Algorithm

Open

Sensor

DriverControl

Closed

Sensor
Obstacle

Sensor

Speed

Sensor

Open

Button

Passeng.

Open

Button

Driver

Enable

Button

Driver

Motor

TCMS

Train Car Door

Close

Button

Driver

Figure 2.4: SW/Dependeny Model of the

Door Status Control Funtion

The Driver

Control

software resoure loated at PU

Driver

reeives the status information of

the train from the TCMS omponent (Enable Door Driver) and based on the reeived

information and driver's open, lose or enable indiations, it provides the Enable Door

Passenger signal to the Door Control Algorithm. Door Control Algorithm loated at

PU

Door

reeives the status data of the sensors of the door and passenger ommands.

Then, based on driver's enable ommand (Enable Door Passenger) it will atuate on

the orresponding motor to open or lose the door of the orresponding ompartment

of the train ar.

Video Surveillane

The Video Surveillane funtion performs monitoring tasks on eah ar of the train.

Eah ar is equipped with a amera whih fouses towards the doors in order to prevent

hazards and injuries.

The inoming images reorded by the amera are proessed through an image proessing

algorithm (Proess Image) loated in PU

Cam

and in the presene of a hazard in any of

the ars it raises an emergeny signal using the lamps and the siren. Besides, for

seurity issues, all the images are stored in a server onneted to the same Ethernet

ommuniation network.

As depited in Figure 2.6, the Proess Image algorithm loated in PU

Cam

evaluates

14

Ethernet

MVB

CAN

PUCam

Camera

Lamp

Siren

Server

Figure 2.5: Hardware Model of the Video

Surveillane Funtion

Lamp Siren

Camera

Car

Server

Figure 2.6: SW/Dependeny Model of the

Video Surveillane Funtion

hazardous situations in a train ar; redirets the amera images towards the storage

server; and raises the alarms when hazardous situations are deteted.

Air Conditioning Control

The Air Conditioning Control (ACC) sets the temperature of a train ar aording to

the referene temperature de�ned by the driver.

The driver is responsible for (1) ativating the Air Conditioning Control on the ar(s)

that he/she deides - Ativate ACC; and (2) set the referene temperature of the or-

responding ar. In eah train ar's ompartment, there are dediated PUs to perform

the Air Conditioning Control of the ar (PU

ACC

). To this end, in eah ar the PU

ACC

reeives the urrent temperature of the ar through a temperature sensor and heats

the room by using a dediated heater. Normally, a train ar omprises of di�erent

ompartments and aordingly, there exist a temperature sensor and a heater for eah

ompartment of the train ar (f. Figure 2.7).

As depited in Figure 2.8, eah train ar ompartment has its own ontrol loop so as to

heat the room aording to the referene temperature set by the driver.

15

Ethernet

MVB

CAN

PUACC

Temperature

Sensor

rPUD�����

re

Figure 2.7: Hardware Model of Air Condi-

tion Control Funtion

Control

Temperature

Sensor

Train

Car

Compartment

r

e

ACC

Reference

Temperature
Enable

ACC

Figure 2.8: SW/Dependeny Model of Air

Condition Control Funtion

Fire Protetion Control

The Fire Protetion (FP) ontrol funtion aims at the �re detetion and extintion in

a train ar ompartment. The hazardous situation is deteted by a �re detetor, whih

based on the presene of smoke raises a signal, or it is triggered by a user who pushes

the emergeny button to indiate an emergeny situation (f. Figure 2.9).

Ethernet

MVB

CAN

PU

Figure 2.9: Hardware Model of the Fire Pro-

tetion Funtion

Fire

Protection

Control

Fire

Detector

Train Car

Compartment

Figure 2.10: SW/Dependeny Model of the

Fire Protetion Funtion

As depited in Figure 2.10, eah train ar ompartment has its own Fire Protetion

ontrol loop so as to extinguish the possible �res. The Fire Protetion Control SW

element loated in PU

FP

ativates sprinklers whih are strategially loated in eah

16

ompartment of the train ars.

Passenger Information System

The Passenger Information System (PIS) informs the passenger about the position of

the train and next stops (f. Figure 2.11).

Ethernet

MVB

CAN

PUPISPUDriver

Figure 2.11: Hardware Model of the Passen-

ger Information System

Process

Information

GPS

Train

Car

Compartment

Display

Board

Figure 2.12: SW/Dependeny Model of the

Passenger Information System

The PIS funtion makes use of the Global Positioning System (GPS) devie loated

at driver's ompartment in PU

Driver

. Based on the loation of the train, information

displays are updated with the orresponding information at runtime through the Proess

Information SW algorithm loated at PU

Driver

.

Light Control

Eah ar of the train may have an intelligent lighting ontrol system, whih swithes

on/o� the lights or lowers the light intensity automatially based on the presene/ab-

sene of people. To this end, there is a presene sensor whih detets if anyone is in a

train ar and besides, the driver has its own manual ativation button for those ases

in whih the sensor is not working orretly (f. Figure 2.13).

The Light Control Algorithm loated in PU

Light

will be responsible for swithing on/o�

the lights in eah ar using a dimmer.

17

Ethernet

MVB

CAN

DimmerPUPU

e

r

Figure 2.13: Hardware Model of the Light

Control Funtion

e

r

Train

Car

Dimmer

e

r

Figure 2.14: SW/Dependeny Model of the

Light Control Funtion

2.2 Dependability Framework

In this setion we introdue the basi de�nitions for the development of this thesis,

disuss about the essential fault tolerant design tehniques and set the failure model of

our approah, i.e., the failures that our approah is intended to deal with.

2.2.1 Dependability: De�nitions and Classi�ations

The �rst fundamental de�nition onerns to dependability:

De�nition 2.1. Dependability: the ability to avoid failures that are more severe and

more frequent than is aeptable [Avizienis04℄.

What is a aeptable for a system design is de�ned by the dependability requirements,

whih will limit its tolerable failures. Consequently, failure-related studies (also known

as siene of failures) will guide dependability determination and evaluation.

Every system is exposed to threats, while di�erent dependability mehanisms are used

to meet requirements. Dependability requirements are de�ned in terms of dependability

attributes. This harateristis will be introdued in the following setions.

18

When designing a dependable system, the lassi�ation of fault, error and failure on-

epts, i.e., dependability threats, are fundamental so as to speify dependability require-

ments aurately.

De�nition 2.2. Fault: adjudged or hypothesized ause of an error. A fault is ative if

it produes an error, otherwise it remains dormant.

Fault lassi�ation: elementary fault lasses are grouped aording to di�erent view-

points [Avizienis04℄:

� Phase of reation or ourrene of faults: development faults emerge during the

system development and operational faults appear during the system operation.

� System boundaries: internal faults and external faults resulting from the intera-

tion with the physial or human environment.

� Phenomenologial auses: natural/hardware faults and human-made faults.

� Dimension: hardware and software faults.

� Objetive: maliious faults and non-maliious faults.

� Developer's intent: deliberate faults (bad deisions) and non-deliberate faults (mis-

takes).

� Capability: aidental faults and inompetene faults.

� Persistene of faults: permanent faults and transient faults.

De�nition 2.3. Error: part of the system's total state that may ause its subsequent

failure. Errors are the responsible for deviation between the omputed value and the

orret value [Rausand03℄.

Error lassi�ation: a formal de�nition and lassi�ation of errors is given by

[Powell95℄ whih haraterizes system servies by the tuple 〈vsi, tsi〉 where vsi is the

value of the servie and tsi is the time or instant of observation of the servie si.

The orretness of the system servie si is spei�ed by orret ontent (vsi ∈ SVi) and

time instant (tsi ∈ STi) values where SVi and STi are respetively the spei�ed sets of

values and times for the servie item si. Aordingly, di�erent errors are de�ned:

19

� Arbitrary value error : vsi /∈ SVi

� Arbitrary timing error : tsi /∈ STi

� Early timing error: tsi < min(STi)

� Late timing error: tsi > max(STi)

� Omission (in�nitely late) error : tsi = ∞

� Impromptu error : (vsi /∈ SVi) ∧ (tsi /∈ STi)

De�nition 2.4. Failure: an event that ours and provokes the transition of the orret

servie to inorret servie. Di�erent forms of transitions are de�ned through failure

modes.

Failure lassi�ation: a servie is haraterized by the value and time the servie is

delivered. The di�erent ways that deviations our are failure modes and eah failure

mode is ategorized by the failure severity. Failure modes are haraterized aording

to the following viewpoints:

� Failure domain: failures are lassi�ed aording to value and timing failures

[Bondavalli90℄:

� Value failures: inorret value failures are further re�ned into oarse inorret

(detetable value failures), subtle inorret (undetetable value failures) and

omission value failures (no output when required).

� Timing failures: inorret timing failures are lassi�ed as early, late and

in�nitely late (omission) failures.

When both value and timing failures our, failures are lassi�ed as:

� Halt failures: the servie is halted.

� Errati failures: the servie is delivered but is errati.

� Detetability of failures: signalled failures and un-signalled failures.

� Consisteny of failures: onsistent failures and inonsistent (random) failures.

� Consequene/Critiality of failures: the onsequene of the failures are quanti�ed

20

by the failure severities to whih maximum aeptable probabilities of ourrene

are assoiated. A ommon lassi�ation of failure severities inlude atastrophi,

ritial, major and minor onsequenes.

Assuming that a system is onstituted by a set of interating omponents, the state of the

system will be determined by the state of its onstituent omponents. The ourrene

of a fault or ombination of faults on hardware and software omponents provoke errors

and when errors lead the system funtion to perform inorretly, system failure ours.

Table 2.1 and Table 2.2 display the lassi�ation of faults and error/failures respetively.

Table 2.1: Fault Classi�ation

Phenomenologial Cause

Physial

Human Made

System Boundaries

Internal

External

Phase of Creation

Development

Operational

Dimension

Hardware

Software

Objetive

Maliious

Non-Maliious

Capability

Aidental

Inompetene

Persistene

Permanent

Transient

Table 2.2: Failure/Error Classi�ation

Domain

Value

Coarse

Subtle

Omission

Time

Early

Late

Omission

Consisteny

Non-Consistent

Consistent

Persistene

Transient

Permanent

Detetability

Signalled

Un-signalled

So as to speify dependability requirements, let us de�ne dependability attributes:

De�nition 2.5. Reliability: ability of an item to perform a required funtion, under

given environmental and operational onditions for a stared period of time [Rausand03℄.

Statistially: assuming X represents the random variable whih determines the time to

failure of the system, reliability (R(t)) is de�ned as the probability that the system will

be suessfully operating from time 0 to time t:

R(t) = P(X > t) (2.1)

The failure probability or unreliability is then:

21

F(t) = 1−R(t) = P(X 6 t) (2.2)

Assuming non-repairable omponents, reliability is expressed informally as the proba-

bility of the system remains operative throughout a time interval. If the assumption of

non-repairable omponents does not hold, reliability with repairs needs to be onsidered:

probability of the system experienes no failures throughout a time interval given that

it was operative at the initial time instant.

De�nition 2.6. Mean Time To Failure: is de�ned as the expeted value of the

lifetime before a failure ours. Statistially: assuming X is the random variable that

represents the time to failure and f(t) the probability density funtion of the system

lifetime (f(t) = dF(t)
dt

), the MTTF is de�ned as:

MTTF = E[X] =
∫ ∞

0
tf(t)dt =

∫ ∞

0
R(t)dt (2.3)

De�nition 2.7. Failure Rate Funtion (Hazard Funtion): the onditional prob-

ability of a omponent of age t failing in (t, t + ∆t℄ given that it has not failed in [0,

t℄. It indiates the hanging rate in the ageing behaviour over the life of a population of

omponents.

The probability that an item will fail in the time interval (t, t+∆t℄ when we know that

the item is funtioning at time t is:

Pr(t < X 6 t+∆t | X > t) =
Pr(t < X 6 t+∆t)

Pr(X > t)
=

F(t+∆t)− F(t)

R(t)
(2.4)

By dividing Equation 2.4 by the length of the time interval, ∆t and letting ∆t→ 0, we

get the failure rate funtion (λ(t)) of the item:

λ(t) = lim
∆t→0

Pr(t < X 6 t +∆t|X > t)

∆t
= lim

∆t→0

F(t+∆t)− F(t)

∆t

1

R(t)
=

f(t)

R(t)
(2.5)

De�nition 2.8. Maintainability: ability to undergo repairs and modi�ations to re-

store or retain to a state in whih an perform its required funtions.

22

Informally, maintainability is the probability of isolating and repairing a fault in a system

within a given time.

De�nition 2.9. Mean Time To Repair: is the expeted value of the repair time.

Statistially: let Y to be the random variable that represents the time to repair of a

system and g(t) the density funtion of the system repair time, we de�ne MTTR as:

MTTR = E[Y] =
∫ ∞

0
tg(t)dt (2.6)

Availability omprehends both reliability and maintainability onepts:

De�nition 2.10. Availability: Operate orretly at a ertain point in time when a

servie is requested [Rausand03℄. Statistially: assuming I(t) is a Bernoulli random

variable (1: operative; 0: failed) the point availability (A(t)) is de�ned as:

A(t) = P{I(t) = 1} (2.7)

De�nition 2.11. Average Availability (Aav): is de�ned in [0, t℄ as

Aav(t) =

∫ t
0 A(t)dt

t
=

MTTF

MTTR +MTTF
(2.8)

De�nition 2.12. Safety: absene of atastrophi onsequenes on the user(s) and the

environment. The aim of safety analysis tehniques is to evaluate whether a system

meets its safety requirements. Safety requirements are de�ned as a hazard

3

(i.e., injury

or inidents) ombined with the tolerable probability of this hazard [Leveson95℄.

Sine seurity aspets are outside of the sope of this thesis, we will not onsider on-

�dentiality and integrity as dependability attributes. Heneforth, throughout this dis-

sertation the term dependability will fous on Reliability, Availability, Maintainability,

and Safety (RAMS) attributes.

3

Hazard is an state of the system, whih may develop into an aident either through the fators

that are not under the ontrol of the system, unontrollable external ations or through a sequene of

normal events. It is the last deision point before an aident.

23

2.2.2 Designing for Fault Tolerane and Dependability

Based on the knowledge that faults are present within the system omponents, devel-

opment of an appropriate system within spei�ed onstraints will be guided by the

dependability mehanisms [Kaanihe02; Avizienis04℄:

� Fault Prevention: prevent the ourrene or introdution of faults, e.g., projet

planning and risk assessment ativities enable system's fault prevention.

� Fault Removal : redution of the number and severity of faults inluding veri�a-

tion, diagnosis and modi�ation ativities.

� Fault Foreasting : estimation of the present number, future inidene and the like-

lihood of the onsequene of faults. Fault foreasting ativities inlude statement

of the dependability objetives, alloation of the objetives and qualitative and

quantitative evaluation to assess whether the system satis�es the objetives.

� Fault Tolerane: delivery of orret servie in the presene of faults, e.g., seletion

of the adequate fault and error handling mehanisms.

Fault prevention and fault removal tehniques are aimed at reduing system faults and

both tehniques are inluded in the fault avoidane paradigm. Fault foreasting and

fault tolerane are embodied in the onept of fault aeptane based on the assumption

that the design of a system without faults is not ahievable. In order to design a de-

pendable system, eah of the four mehanisms need to be onsidered, but not neessarily

as separate onepts. Fault tolerane onept enompasses all means by struturing the

system so as to avoid faults. When inevitable faults our, ountermeasures are adopted

in the form of redundanies to deliver orret servie in the presene of faults.

Di�erent arhitetural deisions in�uene both dependability and ost (e.g., see

[Somani97; Nord03; Cortellessa06; Gokhale07℄). Hardware osts, power requirements,

proessing time and weight of the added hardware elements (ritial parameter for some

�elds suh as avionis) are some design onsequenes that need to be onsidered when

designing a system for fault tolerane. This situation leads to di�erent design strategies

suh as optimal arhiteture seletion based on the trade-o� between dependability at-

tributes, ost and omplexity; or re�nement of the struture until ahieving an adequate

ompromise solution.

24

Fault tolerane mehanisms may overome all dependability goals, but speially they

are aimed at reduing the frequeny of failures and mitigating their e�ets (failure

avoidane). Designing a fault-tolerane strategy involves the following steps [Nelson90℄:

1. Error Detetion: takes plae either during normal servie delivery or while normal

servie delivery is suspended.

2. Error Containment : prevention of the propagation of erroneous information aross

de�ned boundaries.

3. Error Masking : dynami orretion of the error allowing the ontinuity of orret

servie in the presene of errors.

4. Error Reovery : systemati or on-demand orretion of an erroneous system state.

On-demand orretion brings the system to a error-free state by applying teh-

niques like bakward or forward reovery. Error ompensation uses redundany

within the erroneous state to mask errors on-demand or systematially.

5. Fault Diagnosis: identi�ation of the module responsible for a deteted error.

6. Fault Repair/Reon�guration: exlude or replae the faulty omponent.

7. Veri�ation of the e�etiveness (or overage) of the fault tolerant strategy.

Redundany Classi�ation

The key ingredient in fault tolerant tehniques is redundany, that is, the addition of

information, time, or resoures beyond what is needed for normal system operation.

Di�erent lasses of redundanies are employed to ahieve dependability requirements

[Johnson84℄.

Informational redundany is foused on providing additional information to the basi

data struture. This redundany an be used for: error detetion with the aim to

distinguish valid and invalid ode words (e.g., error-deteting odes, heksums); error

orretion allowing the real-time omputation without interruptions (e.g., Hamming,

Reed Solomon error-orreting odes); or error reovery providing a fail-over reovery

point through the implementation of a requirement funtion using diverse tehniques

25

(analytial redundanies), e.g., alulation of the aeleration using di�erent physial

variables (e.g., position, speed) linked with their analytial relationships.

Hardware redundany (also known as spatial redundany) deals with the redundany of

physial resoures and it an be lassi�ed in three forms of repliation:

1. Stati or passive repliation masks prede�ned ourrene of faults to prevent their

propagation using the onept of majority voting to determine the output of the

system and do not o�er detetion, isolation or repair of a faulty module (e.g.,

Triple Modular Redundany (TMR), see Figure 2.15).

Figure 2.15: Triple Modular Redundany Example

2. Dynami or ative repliation does not mask faults, but detets and reon�gures

faults so that a spare omponent an be swithed to replae the faulty omponent

(e.g., hot and old spares).

3. Hybrid repliation uses fault masking to prevent the fault from a�eting the system

and fault detetion and reon�guration to allow a spare module to replae the

faulty omponent (e.g., N modular redundany (NMR) with spares).

Temporal redundany is based on redundant omputations primarily used to distin-

guish between permanent and transient failures. To this end, multiple omputations

are performed with the aim to observe the behaviour of an error ondition. Temporal

redundany aims to redue the amount of extra hardware at the expenses of additional

time (e.g., see [Agrawal88; Thuel94℄).

Software redundany adds extra software to provide the system with fault tolerane a-

pabilities. Single-version and multiple-version software fault tolerane tehniques are

distinguished [Wilfredo00℄. The former uses single version of a piee of software to

detet and reover from faults and inludes onsiderations on the software struture,

26

error detetion and exeption handling. The majority of single-version software reov-

ery mehanisms implement hekpoint and restart strategies (either dynami or stati).

The latter is haraterized by the idea of building software omponents in di�erent ways

from a ommon spei�ation (also known as design diversity - see [Littlewood01b℄ and

referenes herein), in order to eliminate any soures of similar design faults. Examples

of multi-version software fault tolerant tehniques are reovery blok, N version pro-

gramming, N self-heking programming, and onsensus reovery bloks tehniques (see

[Pullum01℄ for details of alternative strategies).

How redundany is used in order to improve the dependability of the overall system is

as important as the redundany itself. An inrease in the number of redundant elements

does not guarantee better fault tolerane, instead it inreases the overall failure proba-

bility. E�etiveness of fault tolerant arhiteture depends on the probability of ommon

failures between its redundant parts [Littlewood01a℄. To this end, diversity tehniques

are used by implementing alternative development/design tehniques to reate di�erent

redundant elements whih may fail di�erently and protet the system against ommon

ause failures (f. Figure 2.16). While idential redundanies address random failures,

diverse redundanies address both random and ommon ause failures.

Figure 2.16: Diverse Design [Littlewood00a℄

Theoretial models have been developed to evaluate the in�uene of diversity-seeking

deisions and ommon ause failures on system reliability (e.g., see EL and LM models

[Littlewood96℄). Although these models are outside the sope of this work, it is worth

mentioning that the quantitative evaluation of the in�uene of diversity on dependability

is not a trivial task. In the well known example developed by Knight and Leveson

27

[Knight86℄, they tested empirially the assumption of statistial independene in N

version programming. Their results show that there is orrelation between independently

developed versions and therefore, the assumption of independent errors does not hold.

We fous on a subset of design diversity tehniques: funtional diversity [Burlando92℄.

Funtional diversity is a methodology onsisting of N di�erent implementations of the

same requirement spei�ation where eah implementation uses a di�erent input set

and di�erent algorithms to ompute the same required output. With respet to normal

diversity (e.g., N version programming), the basi di�erenes are the followings: in

funtional diversity, N teams begin to work separately having as only ommon point the

system requirements. The approahes to the problem and input data are di�erent. In

normal diversity, the N teams begin to work separately only after the spei�ation has

been written. Then eah team use a similar approah: the same modelling of the proess

and the same data types; the di�erenes among them lie only in the implementation

tehniques and in the details of the algorithms. In everyday systems there exist many

appliations whih make use of funtional diversity and implement diverse redundany

appliations (i.e., deploying diverse replias): ars have dupliated braking systems

omprised of foot brakes and handbrakes or laptops have diverse bakups for eletrial

power supply suh as batteries.

The basi requirement to apply funtional diversity is that the problem should be ap-

proahed from di�erent viewpoints, whih leads to de�ning the major drawbak of fun-

tional diversity: the need of an (brainstorming-like) intelletual proess to obtain di-

verse spei�ations with the ost that this proess inurs. Therefore, an important

issue whih needs to be addressed when undertaking funtional diversity is whether the

fault tolerane will produe enough reliability (dependability) gain to be worth its ost.

2.2.3 Fault Hypothesis & Failure/Error Model

Fault assumptions are losely related to the fault-tolerane management deisions. Any

assumption whih does not adhere to the real operation of the system will ause an over-

all derease on the system dependability. Therefore, it is neessary to de�ne whih faults

the system is going to tolerate, i.e., fault hypothesis, and arrange them in a failure/error

model so as to haraterize the possible fault reovery strategies systematially.

28

Table 2.3 desribes the fault hypothesis of the systems that we will deal with and Table

2.4 displays the failure/error model of the system. Examples of the faults that we

plan to address with this dissertation are: permanent software development defets or

hardware deteriorations; development faults and faults whih emerge from designers

inompetenes and aidents. The in�uene of aidental and inompetene faults will

be onsidered by assigning a failure rate to the human-made software resoures. Thus,

the onsidered human-made faults will over software development faults, but we will not

address the in�uene of human faults as is. External environmental in�uenes will not

be addressed neither, we will onsider only system's internal faults suh as hardware,

software or ommuniation resoures faults. Sine we are not dealing with seurity

issues, maliious faults will not be ontemplated as well.

Table 2.3: Fault Hypothesis

Phenomenologial Cause

Physial X

Human Made X

System Boundaries

Internal X

External X

Phase of Creation

Development X

Operational X

Dimension

Hardware X

Software X

Objetive

Maliious X

Non-Maliious X

Capability

Aidental X

Inompetene X

Persistene

Permanent X

Transient X

Table 2.4: Failure/Error Model

Domain

Value

Coarse X

Subtle X

Omission X

Time

Early X

Late X

Omission X

Consisteny

Non-Consistent X

Consistent X

Persistene

Transient X

Permanent X

Detetability

Signalled X

Un-signalled X

Fault detetion tehniques are neessary to detet the presene of these faults. Aording

to the failure/error model (f. Table 2.4), for simpliity we will assume onsistent and

permanent failures. The addressed fault detetion strategies are based on time and

value thresholds either as statially predetermined or dynamially determined thresholds

(model-based fault detetion, e.g., see [Isermann05℄ and referenes herein).

29

Redundany Model

Design strategies (redundanies) di�er when managing di�erent kind of failures. From

the di�erent lasses of redundanies, we fous on hardware, software, and information

redundanies implemented as follows:

� Hardware redundany with dynami redundany strategies provides fail-over apa-

bilities by deteting faults and reon�guring the system behaviour and/or system

struture to adapt the system operation.

� Software redundany fouses on the strategial distribution of system funtionality

among di�erent PUs to repair the system funtionality in the presene of failures.

� Information redundany is used to provide ompatible funtionalities by reusing

and/or adapting already existing information in a system.

In order to simplify the nomenlature when dealing with hardware, software, and in-

formation redundanies, based on the possibility of reusing hardware resoures through

ompatible funtionalities, we de�ne two kind of redundanies:

De�nition 2.13. Homogeneous redundanies: redundanies whih expliitly repli-

ate the nominal funtionality making use of additional expliit hardware omponents

(and hene, software modules and information soures), e.g., N modular redundany.

De�nition 2.14. Heterogeneous redundanies [Shelton04; Wysoki07℄: redundan-

ies whih reuse existing hardware resoures in a system and provide a ompatible fun-

tionality (i.e., emerge from heterogeneous funtionalities) with the information that al-

ready exists in the system, e.g., analytial redundany.

2.2.4 Opportunity Analysis

Our design goal fouses on designing for redundany instead of designing for failure

diversity [Strigini05℄. Designing for failure diversity fouses on adding diversity-related

design approahes deliberately in order to improve fault tolerane. Our work fouses

on adding redundanies (and required fault tolerant mehanisms) where deemed ne-

essary by exploiting impliit diversity whih may exist in some spei� environments

30

(see Setion 1.2) in order to provide fault tolerane and redue osts. We do not fous

diretly on evaluating the in�uene of diversity-seeking deisions on dependability, but

eventually this may happen as a side-e�et of our design goals.

The onept of funtional diversity is generalist and diretly aligned with analyti re-

dundanies in that both approahes use diverse algorithms to produe equivalent results.

Despite not following diretly a diversity-seeking deision approah our method make

use of diverse funtions and fault-tolerant hoies that a�et these systems: number of

redundanies, fault detetion and reon�guration methods, and alloation of software

modules to the hardware modules. The primary onern of the designers when adding

fault-tolerant strategies should be to manage the omplexity resulted from the need to

manage additional resoures and orresponding mehanisms. Therefore, it is neessary

to adopt trade-o� deisions between the inurred ost and attained fault tolerane (and

dependability) level.

In the sienti� literature there have been two di�erent viewpoints towards the onept

of heterogeneous (and homogeneous) redundanies: (1) redundany alloation problems

(e.g., see [yangLi10; Sharma11℄) have onsidered as heterogeneous redundanies those

omponents whih have di�erent harateristis (e.g., memory, proessing power). (2) In

[Shelton04℄, Shelton and Koopman introdued the heterogeneous redundany onept

as an approah to redue osts through analyti redundany like tehniques.

Aligned with the idea of Shelton and Koopman, our onept of heterogeneous redun-

danies enompass a general lass of redundanies. These are: analytial redundan-

ies, redundanies whih emerge from some funtional diversity appliations and re-

dundanies arising from overlapped system funtions in massively networked senarios

[Aizpurua13a℄. Sine the reuse of hardware elements an emerge in di�erent situations

heterogeneous redundanies an take many forms:

� Alternative algorithms providing an equivalent output, e.g., analyti redundanies:

alternative equations by linking sensors/atuators in di�erent ways so that they

an provide additional (heterogeneous) funtions.

� Implementations/funtions loated in alternative ontexts able to provide ompati-

ble implementations to other implementations/funtions, e.g., temperature sensors

loated in ontiguous ompartments able to provide ompatible funtionalities to

eah other ompartments (reuse of the temperature sensor).

31

� Alternative funtionalities able to provide ompatible implementations to other

funtions, e.g., Video Surveillane funtion may provide a ompatible funtion to

the Door Status Control funtion by adding a image proessing SW to the amera

(reuse of the amera).

Our goal with the use of heterogeneous redundanies is not only to redue hardware

osts, but also to maintain or even improve the dependability level of the system design.

Heterogeneous redundanies inlude overlapping system funtions whih may add di-

versity to the system arhiteture due to the inherent properties of a networked ontrol

system operating in massively networked senarios. The intuition of the advantages pro-

vided by the use of heterogeneous redundanies need to be demonstrated quantitatively

so that it is possible to adopt trade-o� deisions between dependability and ost when

deiding to implement alternative redundany tehniques.

Motivated by these issues we outline a design approah whih evaluates systematially

the in�uene of fault tolerane and diversity-related design deisions on system depend-

ability and ost (see Chapter 3). To do so, a dependability evaluation algorithm and

further analyses suh as the sensitivity evaluation of redundanies have been imple-

mented (see Chapter 4 and Chapter 5).

2.3 Overview of the Main Dependability Analysis Ap-

proahes

Dependability analysis tehniques an be organised by looking at how di�erent system

failures are haraterized with its orresponding underlying formalisms. On one hand,

event-based approahes re�et the system failure behaviour and strutural relationships

through ombination of events. This analysis results in either Fault Tree (FT) like

[Vesely02℄ or Reliability Blok Diagram (RBD) like [Rausand03℄ strutures, whih em-

phasizes the reliability and safety attributes. On the other hand, state-based approahes

map the analysis models into state-based formalisms suh as Markov hain or Petri nets.

These approahes analyse system hanges with respet to time and mainly onentrate

on reliability and availability attributes. Interested readers refer to the Appendix A for

basi de�nitions of event-based and state-based formalisms.

32

This setion has been divided into 2 subsetion: Subsetion 2.3.1 overviews extensions

of event-based approahes and ombinations of both event-based and state-based ap-

proahes - hybrid approahes; and Subsetion 2.3.2 evaluates the utility of hybrid ap-

proahes to evaluate omplex systems - opportunity analysis.

2.3.1 Hybrid Approahes

Hybrid approahes overome the main limitations of event-based approahes and provide

mehanisms to address some of the drawbaks arising from state-based approahes.

The extended usage of event-based approahes for dependability-related tasks have lead

to the identi�ation of their main limitations, see Table 2.5.

Table 2.5: Limitations of Event-Based Approahes [Aizpurua13b℄

ID

Limitation

L1

Event-based approahes are stati representations of the system, neither time infor-

mation nor sequene dependenies are taken into aount [Dugan92℄.

L2

The orientation of the event-based approahes onentrates on the analysis of failure

hain information. Consequently, their hierarhy re�ets failure in�uenes without

onsidering system funtional arhiteture (design) information [Kaiser03℄.

L3

Event-based (and state-based) quality evaluation models depend on the analyst's

skill to re�et the aspets of interest. Failure modes and undesired events must

be foreseen, resulting in a proess highly dependent on analyst's knowledge of the

system [Galloway02℄.

L4

Manageability and legibility of event-based (and state-based) quality evaluation mod-

els is hampered when analysing omplex systems. Model size, lak of resoures to

handle interrelated failures and repeated events/omponents, in onjuntion with

few reusability means, are its main impediments [Kaiser03℄ [Prie02℄.

L1 refers to the apability of the tehnique to handle temporal notions. This is of

paramount importane when analysing fault tolerant systems taking into aount system

dynamis suh as load sharing, standby redundany, on-demand failures, dependent

failures, asade failures or ommon ause failures.

L2 emphasizes the interdisiplinary work between dependability analysis and arhite-

tural design. Joining both proedures helps obtaining a design, whih meets depend-

33

ability requirements onsistently.

L3 entails a trade-o� solution between the time onsuming analysis resulting from under-

standing the failure behaviour of the system and the aquired experiene. A substantial

body of works have foused on the automati generation of analysis models from design

models addressing limitations L2 and L3 (refer to groups 3, 5 in Appendix B, Table

B.1). These approahes reuse design models showing the e�ets of design hanges in

the analysis results. However, the orretness of the analysis lies in the auray of the

failure annotations.

Finally, L4 underlines the apability of the dependability analysis model to handle the

omponent-wise nature of embedded systems. This permits obtaining a model that

better adheres to the real problem and avoids onfusing results.

Many authors have developed new alternatives or extended existing ones. Three groups

are identi�ed in order to gather the hybrid approahes with respet to the limitations

they address:

� L1 is addressed in the Subsetion Dynami Solutions for Stati-Logi Approahes.

� L2 and L4 are overed in the Subsetion Compositional Failure Propagation Anal-

ysis Approahes.

� Spei�ally fousing on L3 and generally addressing the remainder of limitations

Model-Based Transformational Approahes are studied.

Note that some approahes annot be limited to a spei� group, hene they are lassi�ed

aordingly to its main ontribution.

Dynami Solutions for Stati-Logi Approahes

The limitation onerning the lak of temporal and dependeny information has been

addressed by several authors to deal with system dynamis suh as redundany or repair

strategies. Spei� solutions for event-based FT and RBD approahes and solutions

whih ombine event-based and state-based approahes have been proposed.

Fault Tree extensions: [Dugan92℄ introdued the Dynami Fault Tree (DFT)

methodology to address the analysis of on�guration hanges. DFTs were oneived

34

to model the reliability of systems whih pose omplex dependenies. New gates were

added (dynami gates) to the traditional (stati) Fault Tree de�nition (see Figure 2.17):

� Priority AND (PAND) gate: Y = PAND(E1, E2, ..., EN); Y is true i� all

events {E1, E2, ..., EN} are true and our in the following order: E1 ⊳E2 ⊳ ... ⊳EN ;

otherwise is false (f. Figure 2.17 (a)).

� Funtional Dependeny (FDEP) gate: [E1, E2, ..., EN] = FDEP (T); {E1, E2,

..., EN} are true if the trigger event T ours or they fail by themselves; otherwise

they are false (f. Figure 2.17 (b)).

� Sequene Enforing (SEQ) gate: SEQ(E1, E2, ..., EN); {E1, E2, ..., EN} are

true i� all events {E1, E2, ..., EN} are true and our in the following order: E1 ⊳

E2 ⊳ ... ⊳EN ; otherwise they are false (f. Figure 2.17 ()). Input events are fored

to fail in a partiular order and di�erent failure sequenes an never take plae.

� Spare (SP) gate: Y = SP (EAct1, Esp1, Esp2, ..., EspN); Y is true i� the ative event

EAct1 and all spares {Esp1, Esp2, ..., EspN} have failed, otherwise is false. Spares may

be in any of the following states: stand-by, working or failed. Spares an fail in

working and stand-by states: λActj is the failure rate of the spare that is in working

state, αActjλActj is its failure rate in the dormant state (f. Figure 2.17 (d)).

Figure 2.17: Dynami Fault Tree Symbols

DFT models an be solved analytially or via simulation [Chiahio11℄. To solve DFT

models analytially it is neessary to transform the DFT model into its equivalent

stohasti model. If basi events are haraterized by the exponential distribution,

the DFT model an be mapped to a Continuous Time Markov Chain (CTMC) diretly

and solve it analytially by using di�erential equations. Other alternatives to solve a

35

DFT model address:

� Generalized Stohasti Petri Nets (GSPN) [Bobbio04℄ [Codetta-Raiteri05℄: Dy-

nami Repairable Parametri Fault Tree (DRPFT) approah allows a ompat

representation of the system inluding repairable basi events. It enables folding

idential sub-trees in a single parametri sub-tree (f. Figure 2.18). System's unre-

liability is obtained by solving the Stohasti Well Formed Net model [Bobbio04℄

or through the evaluation of GSPN models [Codetta-Raiteri05℄. The approah

relies on exponential failure/repair distributions.

� Dynami Bayesian networks [Montani08; Portinale10℄: avoids the

state-explosion problem by transforming the DFT model into a

Dynami Bayesian Networks (DBN) model. DBN is a stohasti transition

model fatored over a number of random variables. Disrete time is used to

ope with the high omputational e�ort arising from exat time-ontinuous

alulations. It supports the analysis of repairable events and omponents

through repair box gates [Portinale10℄.

� Input/Output interative Markov hains [Arnold13℄: provides a ompat repre-

sentation of the system and it supports exponential and phase-type distributions.

The I/O interative Markov hain is a ompositional CTMC and it redues the

�nal state-spae. It is analysed through stohasti model heking and repairable

basi events are not addressed (f. Figure 2.19).

� Struture funtion [Merle14℄: presents an algebrai framework to extrat the stru-

ture funtion of a DFT and alulate the exat solution of systems independent of

the failure distribution. The approah requires high omputational e�ort even for

small systems, it is not yet implemented, and it is unable to deal with repairable

basi events (see Appendix C.5 for a example).

For omplex systems the traeability from the DFT model to the state-based analysis

model and vie-versa is di�ult to follow due to the �at harateristis of the DFT

model and its state-based analysis model. [Bobbio04; Codetta-Raiteri05℄ presented the

DRPFT approah to deal with the manageability issue of representing several replias

in a Fault Tree by taking advantage of symmetri DFT on�gurations. Sub-trees linked

with the same gates and same failure rates are folded and parametrized (f. Figure 2.18).

However, its underlying analysis model (GSPN) is a �at state-spae model. Furthermore,

36

if the same subsystem does not fail with the same logi it is not parametrizable (e.g.,

see Figure C.4).

Figure 2.18: Dynami Parametri Fault Tree Example

[Arnold13℄ overome the �atness of the dependability analysis model through ompo-

sitional Markov hain. Although the analysis model is ompositional, the DFT model

su�ers from �atness. When the size of state-spae model or DFT model inreases, it

beomes error prone and di�ult to maintain (see Appendix C).

Figure 2.19: Composition Aggregation Method of [Arnold13℄

Other alternatives to analyse DFT models are based on simulations:

� [Rao09℄ and [Manno12b℄ implement Monte Carlo simulations to address any dis-

tribution of basi events. To this end, multiple omputations are performed over

37

the DFT model haraterized with the failure logi of the DFT gates and random

variables representing the failure times of basi events.

� [Manno14℄ introdued a disrete event simulation approah based on Adaptive

Transition System paradigm [Manno12a℄. This promising approah is able to

apture any distribution as well as repair haraterizations of basi events.

Simulation approahes have been suessfully applied to address size, repair behaviour

and statistial distribution assumptions/limitations. Their drawbak omes from the

required alulation time, whih inreases with the required auray of the results. See

Chapter 4, Subsetion 4.2.4 for further details and implementation of Dynami Fault

Trees using Monte Carlo simulations.

Reliability Blok Diagram extensions: following the way of DFTs, an approah

emerged based on dynami RBDs.

Dynami RBDs (DRBDs) [Distefano07; Distefano09℄ model failures and repairs of om-

ponents through the spei�ation of state mahines for eah omponent and inter-

omponent ause/e�et dependenies. To analyse DRBD models quantitatively, these

are transformed into GSPN models and its underlying CTMC is obtained and solved

using the WebSPN tool [Pulia�to14℄. Another solution to solve DRBD models was

presented in [Robidoux10℄ through the onversion of DRBDs into Coloured Petri Nets.

However, to the best of our knowledge, an integrated modelling and analysis toolset for

DRBDs is laking.

[Signoret13℄ presented an approah alled Reliability Blok Diagram driven Petri nets

(RdP) whih uses RBDs as an interfae to build large Petri nets systematially. The

modular haraterization of Petri nets enables the intuitive reation of RdP models from

prede�ned module libraries.

Aligned with these formalisms, the OpenSESAME modelling environment onnets

RBDs and state-based formalisms [Walter08℄: its input models are based on RBDs

and failure dependeny diagrams, while omponent tables and repair tables are used to

indiate omponent-spei� failure/repair harateristis and inter-omponent depen-

denies. To perform the quantitative analysis of the system, OpenSESAME models are

transformed into SPN and Stohasti Proess Algebra models.

Combination of event-based and state-based approahes: progres-

38

sion in the onjoint use of event-based and state-based formalisms is re-

�eted with Boolean logi Driven Markov Proess (BDMP) [Bouissou07℄ and

State-Event Fault Tree (SEFT) [Kaiser07℄ formalisms.

BDMP employs stati FT as a struture funtion of the system and assoiates Markov

proesses (or Petri nets, if neessary) to eah leaf of the tree. Triggers are used to

in�uene the ourrenes of basi events or gates with the failure ourrene of other

basi events or gates existing in the same FT. BDMP enables modelling the repair

behaviour of basi events as well as sequenes of failure events.

However, the main limitations of BDMP ome from the trigger event itself: (1) the failure

of the trigger event is not taken into aount and (2) the trigger is able to onsider only

two proesses while in some ases it is neessary to use more proesses to fully desribe

the behaviour of the system.

SEFT formalism ombines FT elements with both Stateharts [Harel87℄ and Markov

hains, inreasing the expressiveness of the model. SEFT deals with funtional and fail-

ure behaviour, aounts for repeated states and events, where the events are harater-

ized as deterministi and/or exponentially distributed events, and allows the automati

transformation of SEFT models into Deterministi and Stohasti Petri Nets (DSPN)

models for state-based analysis. Besides, the SEFT model allows modelling the system

ompositionally by linking omponents in a FT-like struture while managing system's

omplexity (refer to Appendix C for a SEFT model example and more details).

Dynami Fault Tree is a well-known mature approah for the evaluation of the system's

dynamis. It has been widely implemented over the last years (see Appendix B Table

B.2 for the tool support) and di�erent extensions have been performed: due to the

properties of the CTMCs, the use of Dynami Fault Trees has been limited to model

events haraterized with exponential distributions. This fat have awakened the sien-

ti� ommunity to develop alternative analysis formalisms so that it is possible to model

any failure distributions (e.g., [Rao09℄,[Manno12b℄, [Manno14℄, [Merle14℄). Moreover,

DFTs were originally oneived to evaluate the unreliability of systems, but there have

been many extensions in order to inlude repairable basi events and evaluate systems

unavailability, e.g., repairable DFT [Manno14℄, BDMP [Bouissou07℄, SEFT [Kaiser07℄,

Radyban [Portinale10℄, DRBD [Distefano09℄.

As a result of the ombination of state-based and event-based approahes to solve Dy-

39

nami Fault Tree models, spei� problems of state-based approahes have emerged

among Dynami Fault Tree solutions whih use state-based models for its resolution.

The main impediments are the state-explosion problem and di�ulty to understand the

analysis model intuitively.

To improve the manageability, maintainability and traeability of these models,

omponent-based haraterizations have been suggested [Kaiser07℄. Although limited

in modelling apabilities, the ompositional and transformational features of the SEFT

approah, provide an adequate abstration of the system struture and behaviour. Sine

the underlying analysis model of SEFTs is based on Deterministi and Stohasti Petri

Nets, it may su�er from manageability issues (�atness) and it is limited to deterministi

and exponentially distributed events.

Although the omponent-based haraterization have been applied to SEFT models, due

to the SEFT model's limitations there is room to extend the ompositional paradigm

towards the dynami analysis of systems. Indeed, the omponent-based haraterization

has not been integrated with Dynami Fault Tree models yet (see Chapter 4).

Compositional Failure Propagation Analysis Approahes

The main objetive of Compositional Failure Propagation (CFP) approahes is to avoid

unexpeted onsequenes resulting from the failure generation, propagation, and trans-

formation of omponents. Common fators for CFP approahes are:

� Charaterization of the system arhitetures by design omponents.

� Annotation of the failure behaviour of eah of omponent onstituting the system.

� System failure analysis based on inter-omponents in�uenes.

CFP approahes haraterise the system as omponent-wise developed FT-like mod-

els linked with a ausality hain. System arhitetural spei�ations and subsequent

dependability analyses of CFP approahes rely on a hierarhial system model. This

model omprises omponents omposed from subomponents speifying system stru-

ture and/or behaviour. CFP approahes analyse the system failure behaviour through

haraterizations of individual omponents, whih lead to ahieving a manageable failure

analysis proedure.

40

Failure Propagation and Transformation Notation (FPTN) [Fenelon93℄,

Hierarhially Performed Hazard Origin and Propagation Studies (HiP-HOPS)

[Papadopoulos11℄ and Component Fault Tree (CFT) [Kaiser03℄ are the prinipal

CFP approahes. Their main di�erene is in the failure annotations of omponents,

whih speify inoming, outgoing and internal failures to eah omponent: (1) FPTN

uses logial equations, (2) HiP-HOPS makes annotations using Interfae Foused

Failure Mode and E�et Analysis (FMEA) (IF-FMEA) tables and (3) CFT assoiates

to eah omponent individual FTs. Subsequently, the onnetions between system

omponents determines the failure �ow of the system, linking related failure annotations

of eah omponent.

Conerning the di�erent ontributions of CFP approahes, FPTN �rst addressed the

integration of system-level dedutive FTA (from known e�ets to unknown auses) with

omponent-level indutive FMEA (from known auses to unknown e�ets).

HiP-HOPS integrates design and dependability analysis onepts within a hierarhial

system model. However, instead of exlusively linking funtional omponents with their

failure propagations like in FPTN, �rst the hierarhial system model is spei�ed and

then, ompositional failure annotations are added to eah omponent by means of IF-

FMEA annotations. These annotations desribe the failure propagation of omponent

in terms of outgoing failures spei�ed as logial ombinations of inoming and internal

failures (f. Figure 2.20).

From the IF-FMEA annotations shown in Figure 2.20, the outgoing failures at the port

out_1 will be spei�ed as follows:

omission-out_1 = omission-in_1 AND omission-in_2 OR Stuk at 0

One all the outgoing failures of all the ports are haraterized, a FT synthesis algorithm

analyses the propagation of failures between onneted omponents. Traversing the

hierarhial system model, while parsing systematially the IF-FMEA annotations of

its onstituent omponents, allows the extration of the system FT and FMEA models.

CFTs are a model-based extension of FTA models. The omponent FTs an be ombined

and reused to systematially obtain the FT for any failure without having to reate and

annotate a FT for eah failure. In order to integrate analysis and design onepts, it has

41

Figure 2.20: Hierarhial Struture and CFP Annotations in HiP-HOPS

been extended in [Domis09b℄ resulting in the Safe Component Model approah. The

approah separates omponents' funtional/failure spei�ation and realization views

and through the integration of the failure propagation and hierarhial abstration, Safe

Component Model allows obtaining a hierarhial omponent based abstration of CFTs.

They all have been extended to ope with ourrenes of temporal events in�uened by

the DFT approah. Temporal extensions for FPTN [Niu11℄ and HiP-HOPS [Walker09℄

onentrate on non-repairable systems by examining the order of events to identify

sequene of events leading to the system failure, i.e., minimal ut-sequene sets.

Namely, the temporal extension of HiP-HOPS is based on the Pandora approah

[Walker09℄: it enables the dynami qualitative analysis of event sequenes through

ut-sequene sets. Temporal Fault Tree (TFT) gates are de�ned to model omplex

time-dependent irumstanes. For the quantitative analysis, algebrai models and

Monte Carlo simulations are used with the TFT gates: priority OR - output ours

if: the �rst input ours before the seond input and the seond input is not needed

to our [Edifor12℄; simultaneous AND - all input events our at the same time; and

parametrized SAND - output ours if two events happen within a given interval of time

[Edifor13℄.

42

Within the approahes extended to deal with temporal events, there have been ap-

proahes whih have been foused on onneting CFP approahes with state-based

approahes: integration of CFT onepts with state-based tehniques resulted in the

SEFT formalism, whih is able to handle availability and maintainability properties of

repairable systems. Besides, HiP-HOPS has been onneted with state mahine spe-

i�ations to generate (temporal) Fault Trees from state mahine models [Mahmud12℄.

From individual state mahines, Pandora failure expressions are generated transforming

omponent-based state mahines into TFT expressions of the system failures.

Other interesting extensions inlude mehanisms to automate and reuse analysis on-

epts: Failure Propagation and Transformation Calulus (FPTC) [Paige08a℄ approah

adds the haraterization of the nominal behaviour to FPTN models and generalizes

the FPTN equations to improve the manageability and analysability. Moreover, an

algorithm is implemented to ope with yli dependenies of feedbak strutures. In

[Wolforth10℄, general failure logi annotation patterns were de�ned for HiP-HOPS. Sim-

ilarly, the CFP approah presented by [Priesterjahn11a℄ emphasizes the reuse of failure

propagation properties spei�ed at the port level of omponents. These spei�ations

fous on the physial properties of di�erent types of �ows, whih allow reusing failure

behaviour patterns for funtional arhitetures.

The evolution of CFP approahes fous on reusability, automation and transformation

properties. Sine the annotations of the failure behaviour of omponents depend upon

designers experiene, reusing failure annotations leads to reduing the error proneness.

Based on the knowledge that di�erent dependability analyses have to be performed

when designing a system, de�nition of a unique onsistent model overing all analyses

would bene�t these approahes. This is why reent publiations in this �eld entre on

integrating existing approahes (see next Subsetion). Interested readers please refer to

Appendix B Table B.3 to see the tool support of the CFP approahes.

Combinations of dynami dependability evaluation models able to model system dy-

namis and the ompositional failure propagation approahes would result in a approah

whih is able to model repairable systems ompositionally aording to any failure distri-

bution. Thus, motivated by this issue, a omponent-based approah for DFTs is de�ned

in Chapter 4: Component Dynami Fault Trees (CDFT).

43

Model-Based Transformational Approahes

Designing a dependable system presents many hallenges throughout the development

phase - from system spei�ation to system validation and veri�ation. This proess is

further ompliated due to the inreasing omplexity of the urrent systems, whih use

many and di�erent omponents. Model-based design approahes provide mehanisms

to manage this omplexity e�etively.

Model-based transformational approahes were proposed to bridge the gap between

design and analysis ativities. Their main goal is to onstrut target dependability

analysis models (semi-)automatially from soure design models. The modelling proess

of transformational approahes is onstituted of the following main ativities:

1. The proess starts from a ompositional design desription by using omputer

siene modelling tehniques.

2. The failure behaviour is spei�ed either by extending expliitly the design model

or developing a separate model, whih is alloated to the design model - extended

design model.

3. Transformation rules and algorithms extrat dependability analysis models from

the extended design model.

Arhitetural Desription Languages (ADLs) provide an adequate ab-

stration to manage the system omplexity [Medvidovi00℄: Simulink

[MathWorks14℄, Arhiteture Analysis and Design Language (AADL) [Feiler07℄ and

Uni�ed Modelling Language (UML) [OMG14b℄ have been used for both arhitetural

and failure spei�ation. UML is a widely used modelling language, whih has been

extended for dependability analyses following model-driven arhiteture onepts

[OMG03℄. Namely, pro�les allow extending and ustomizing modelling mehanisms to

the dependability domain [Fuentes04℄.

Lately, a wide variety of independently developed extensions and pro�les have been

proposed for dependability analysis [Bernardi12℄. However, some generally appliable

metamodel is laking. In an e�ort to provide a onsistent pro�le CHESS ML emerged

[Montehi11℄. CHESS ML provides all neessary mehanisms to model dependable

systems and extrat either event-based (FMECA, FPTC) or state-based (SPN) models.

44

Many analysis approahes have been shifted towards the model-based transformational

paradigm. Translations from high-level arhitetural desription languages to well es-

tablished ompositional failure propagation analysis tehniques, enable an early depend-

ability analysis and allow undertaking timely design deisions, e.g.:

� The toolset for FPTC approah [Paige08a℄ relies on a generi metamodel in order

to support transformations from SysML and AADL models.

� [Adler10a℄ developed a metamodel to extrat CFT models from funtional

arhiteture models spei�ed in UML. This proess permits the generation of

reusable CFT models onsistent with the design model.

� In the same line, integration of HiP-HOPS model with EAST-ADL2 automotive

UML pro�le is presented in [Biehl10℄.

AADL aptures the system arhitetural model in terms of omponents and their inter-

ations desribing funtional, mapping and timing properties. The ore language an

be extended to meet spei� requirements with annex libraries. Behaviour and error

model annexes are provided with the tool. The error annex links system arhiteture

omponents to their failure behaviour spei�ation making possible the analysis of the

dependability attributes of the system. It has been used for event-based (FT) [Joshi07℄

and state-based (GSPN) [Rugina07℄ analysis.

AltaRia [Arnold99; Batteux13℄ is a dependability language, whih enables desribing

the behaviour of systems when faults our. The model is omposed of several om-

ponents linked together representing an automaton of all possible behaviour senarios,

inluding those ases when reon�gurations our due to the ourrene of a failure

[Romain07℄. It is possible to proess suh models by other tools for model-heking,

generation of FTs [Bieber02℄, Markov Chain generation, Petri Nets generation, or even

for the generation of Boolean-Driven Markov Proess models [Labri14℄.

[Riedl12℄ presented a language for the spei�ation of reon�gurable and dependable

systems alled LARES. It expresses system's fault tolerant behaviour using a generi

language in whih any kind of disrete-event stohasti system an be spei�ed. It

is based on fully automated model transformations to measure systems dependability.

Namely, transformations into TimeNET [TU Berlin07℄ and CASPA [Riedl08℄ tools are

arried out in order to solve state-based stohasti Petri nets and stohasti proess

45

algebra models respetively.

[Cressent11℄ de�ned a method for RAMS analysis entred on SysML [OMG14a℄ from

where a FMEA model is dedued. SysML diagrams de�ne a funtional model onneted

to a dysfuntional database enabling the identi�ation of failure modes. This database

ontains the link between system arhiteture and failure behaviour giving the key for

FMEA extration. Further, the methodology for dependability assessment is extended

by using AltaRia, AADL and Simulink models. The approah addresses reliability

analysis, timing analysis, and simulation of the e�ets of faults respetively.

De�nition of a model for the extration of all neessary formalisms for a omplete/ex-

haustive dependability analysis is the ommon goal for the approahes inluded in this

setion. Interonnetions between di�erent formalisms in order to take advantage of the

strengths of eah ADL, allow analysing dependability properties aurately. AltaRia

and AADL over adequately the analysis of reliability, availability and maintainability

attributes. Extration of the main CFP approahes from ADLs should help to analyse

omprehensively system safety properties. Moreover, Simulink model simulations allow

evaluating the e�ets of failure and repair events in the system. Thereby, integrations

between language spei� models like in [Cressent11℄ helps evaluating aurately all de-

pendability aspets of a system. The aeptane of the transformational approahes

depends on the availability of tool-sets apable of performing (automati) transforma-

tions. Interested readers refer to Appendix B Table B.4 to see the tool-support of the

transformational approahes.

These approahes lead to adopting trade-o� deisions between dependability design and

analysis proesses. On one hand, the automation and reuse of analysis tehniques in a

manageable way makes it a worthwhile approah for design purposes. The impat of

design hanges on dependability attributes are analysed systematially. On the other

hand, from purist's point of view of lassial analysis tehniques, the automation proess

removes the ability of these tehniques to identify and analyse hazards or malfuntions

in a omprehensive and strutured way.

Motivated by the lak of model-based solutions to identify heterogeneous redundanies

systematially and evaluate their in�uene of system's dependability level automatially,

in [Aizpurua13a℄ we presented a model-based solution to evaluate the failure probability

of systems whih use heterogeneous redundanies systematially.

46

Interested readers refer to Appendix B Table B.1 to see a lassi�ation of the analysed

hybrid approahes based on the addressed limitations displayed in Table 2.5.

2.3.2 Opportunity Analysis

In order to lassify (dynami) Fault Tree - related approahes used in this setion we

will take into aount: (1) their apability to model dynami system on�gurations; (2)

their possibility to haraterize system's failure behaviour using the omponent-based

paradigm; (3) their possibility to haraterize the repair behaviour of the basi events

of the system; and (4) their possibility to model any failure/repair distributions (f.

Table 2.6). Using a illustrative example, the model of eah approah has been reated

in Appendix C in order to highlight their main harateristi.

Table 2.6: Addressed Charateristis by the Analysed Approahes

Approah Dynami

Component

Based

Repair

Any

Distribution

Stati FT [Vesely02℄ (see Se. C.1) X X X X

CFT [Kaiser03℄ (see Se. C.2) X X X X

HiP-HOPS [Papadopoulos11℄

(see Se. C.3)

X X X X

Dynami FT [Manno14b℄ (see Se. C.4)
X X X X

Struture Funtion [Merle14℄

(see Se. C.5)

X X X X

BDMP [Bouissou07℄ (see Se. C.6) X X X X

SEFT [Kaiser07℄ (see Se. C.7) X T:X; A:X; X
only

exponential

T: Top model

A: Top model's underlying Analysis model

The approahes displayed in the Table 2.6 an be lassi�ed aording to their apability

of analysing: (1) stati on�guration and non-repairable basi events; (2) stati on�g-

uration and repairable basi events; (3) dynami on�guration and non-repairable basi

events; and (4) dynami on�guration and repairable basi events.

47

To reate an aurate and maintainable dependability evaluation model, we �nd nees-

sary the following harateristis:

� Component-based modelling and reuse of omponents.

� Repair haraterization of basi events and omponents.

� Any failure and repair distribution of basi events and omponents.

From the literature analysis, there exist many di�erent alternatives to address some of

these harateristis. However, to the best of our knowledge there is no approah whih

integrates all these harateristis. Therefore the integration of the Dynami Fault Tree

paradigm with the Component Fault Trees is deemed an interesting approah, so that it

is possible to take the best of both worlds. In Chapter 4 we will introdue the onept

of Component Dynami Fault Trees addressing all the aforementioned harateristis.

In Chapter 5 we will add omplex repair strategies so that we need to rely on more

powerful formalisms.

2.4 Design of Dependable Systems: Trade-O� Be-

tween Dependability & Cost

Generally, dependability design deisions and objetives are related to trade-o� deisions

between system dependability attributes and ost. Dependability requirements often

on�it with one another, e.g., safety-availability ompromise when a faults leads the

system to a safe shut-down in order to prevent it from propagating. The time at whih

design deisions are taken determines the ost that the design proess an inur.

Designing a dependable system within onsidered requirements requires a proess to

math and tune ombination of arhitetural omponents so as to �nd an optimal solu-

tion satisfying design onstraints. There are other approahes onentrated on the design

of dependable systems under the orret-by-onstrution paradigm. For instane, the

approah presented in [Lopatkin11℄ reates a formal system spei�ation preserving the

orretness through gradual re�nements of the system design model. However, instead

of addressing formal orret-by-onstrution design approahes, we will overview those

approahes whih are aimed at haraterizing at design time the impliations of design

48

deisions on dependability and ost.

More spei�ally, we group dependable design approahes by looking at how system

reovery strategies are implemented. For the design of dependable systems, there exist

alternative reovery strategies that add redundanies to the system design in order to

avoid single points of failure and thus, provide fault tolerane (f. Subsetion 2.2.1).

So far, the expliit repliation of hardware and software resoures has been suessfully

applied and it is a feasible solution to reover from failures. Interestingly, in some

ases, there exist ost-e�etive solutions that make the repair possible by reusing already

existing hardware resoures. Aordingly, we group in Subsetion 2.4.1 those approahes

that repliate the nominal funtionality by aggregating additional hardware resoures,

i.e., homogeneous redundanies and on the other side, in Subsetion 2.4.2, we group those

approahes whih are aimed at reusing hardware omponents to provide a ompatible

funtionality and redue hardware osts, i.e., heterogeneous redundanies.

2.4.1 Design Approahes using Homogeneous Redundanies

The prinipal issue addressed by the approahes grouped in this subsetion is the eval-

uation of the e�et of design hoies (e.g., robustness level of omponents, redundany

on�gurations) on dependability and ost.

Methodology for designing distributed ontrol systems by [Cau�riez04℄

[Cau�riez13℄ and [Clarhaut09℄ foused on designing a dependable system based on a

design methodology presented in [Cau�riez04℄. The main fous of this methodology

relies on the early and systemati haraterization of dependability riteria during the

system design ativities (f. Figure 2.21).

The approah omprehends three types of arhitetures: funtional, equipment, and op-

erational arhitetures. As Figure 2.21 desribes, the design proess is haraterized as

follows: (1) it starts from the haraterization of funtional and equipment arhitetures

by addressing funtional and dependability riteria; (2) the alloation of the funtional

arhiteture onto the equipment arhiteture is evaluated in relation to dependability;

(3) as a result, the operational arhiteture is produed, whih ould require reonsid-

49

Modelling the

functional

architecture
Partitioning into

elementary

functions
Projecting

Allocating

Aggregating

Choosing the

equipment

Improving the

equipment choice

Validating the

global

architecture

Constraints

Know-How

Criteria

Decision

Know-How Decision

Decision

Dependabiltiy

Criteria

Dependability

Criteria

Dependability

Criteria

Functional

Requirements Functional

Architecture
Partitioned

Functional

Architecture

Operational

Architecture

Equipment

Architecture

Selected

Equipment

Architecture

Manufacturer

Data

Validated

operational

architecture

Know-How

Figure 2.21: Methodology for Designing Distributed Control Systems [Cau�riez04℄

ering funtional and/or equipment deisions in order to obtain a validated operational

arhiteture with respet to dependability requirements.

Safe-SADT methodology by [Cau�riez13℄

The Safe-SADT (Strutured Analysis and Design Tehnique) methodology onentrates

on the analysis of repairable arhitetures by evaluating how the use of alternative hard-

ware omponents a�ets system funtionality and dependability [Cau�riez13℄ . To do so,

they haraterize system-level funtions in a top-down manner until lowest level subfun-

tions are reahed. At the bottom layer, failure and repair rates of hardware omponents

permit analysing the performane of the system's top layer (reliability and availabil-

ity) using Monte Carlo simulations. In this way, a strutural funtion is haraterized,

whih links funtions with hardware resoures and allows evaluating alternative opera-

tional modes by assoiating di�erent subfuntions to perform the system-level funtion.

The overall design methodology for modelling and analysing alternative arhitetural

design hoies has been integrated within a design tool.

Dependable design methodology by [Clarhaut09℄

[Clarhaut09℄ desribed a design approah overoming the stati-logi limitation of event-

based analysis tehniques by identifying sequential omponent-wise ontributions to

system-level failures. During the design proess, a funtional hierarhial tree model

50

haraterizes dependenies between funtions and hardware resoures. This model a-

ounts for alternative arhitetures to perform the modelled ontrol funtions. Subse-

quently, the Improved Multi Fault Tree (IFT) is onstruted haraterizing sequential

failure relationships between Failure Modes (FM) of omponents and system funtions

designated as dreaded events.

As Figure 2.22 shows, the struture of the design methodology revolves around the har-

aterization, analysis, and optimization of system arhitetures so as to adopt optimal

design deisions regarding dependability and ost. The IFT determines the dependabil-

ity level of the overall arhiteture by weighting the ontribution of eah omponent to

the system-level failures. Arhitetural design hoies over ative and passive redundan-

ies. The ost assoiated with eah hardware omponent enables progressing between

alternative arhitetures toward an optimal arhiteture maximizing dependability and

minimizing the ost.

Equipment

Architecture

Functional

Model

Figure 2.22: Design Approah of [Clarhaut09℄

Optimal dependable design arhitetures by [Adahi11℄

[Adahi11℄ extended the HiP-HOPS approah with reovery strategies to design opti-

mal arhitetures reduing ost and inreasing dependability. The reovery strategies

are formally represented using patterns. These patterns haraterize the potential to

detet, mitigate, and blok a�eting omponent failures whih are previously identi-

�ed with HiP-HOPS and analysed by means of Fault Tree Analysis (FTA) and FMEA.

Finally, starting from an abstrat arhiteture, reovery strategies are introdued with-

out violating user onstraints and an optimization algorithm allows onverging through

dependability and ost requirements.

51

Adaptive dependable system design by [Perez14℄

More reent approahes ontinue assessing the in�uene of homogeneous redundanies

from di�erent but losely related points of view. For instane, the work presented

in [Perez14℄, evaluates the in�uene of the use of adaptive omponents in the system

availability and ost, alulating the availability through GSPN.

All the overed approahes in this subsetion aim at inreasing system dependability

through the expliit repliation of nominal omponents. This design deision implies a

ost inrease. Consequently, this deision needs to be justi�ed through an exhaustive

and adequate analysis of how the system design meets funtional and dependability

requirements.

2.4.2 Design Approahes using Heterogeneous Redundanies

One of the key properties of the systems whih exerise heterogeneous redundanies is the

ability to suessfully aommodate hanges in ase of failure ourrenes. Consequently,

the approahes overed in this subsetion address dependability issues and adaptation

apabilities. Aordingly, they are grouped as adaptive dependable design approahes.

Funtional alternatives by [Shelton04℄

Robust Self-Con�guring Embedded Systems (RoSES)

4

projet revolved around the idea

to build robust and adaptive embedded systems. [Shelton04℄ �rst worked on the on-

ept of heterogeneous redundanies by means of funtional alternative strategies. These

strategies allow to ompensate for omponent failures by hanging the system funtion-

ality. The approah models alternative system on�gurations and assigns them a relative

utility value weighing their ontribution to the system performane and dependability.

From this model, the overall utility value of the system is alulated whih enables the

evaluation and omparison of design hoies as to where alloate resoures for funtional

alternatives or redundany.

4

http://www.ee.mu.edu/∼koopman/roses/

52

Based on eah on�guration's assigned utility values and system's utility funtion, al-

ternative on�gurations are ompared. Although this haraterization makes it possible

to evaluate how omponent failures a�et system utility, the approah has assumption-

s/limitations to be addressed: (1) there is no alulation of the system's failure probabil-

ity (dependability analysis tehniques are not used); (2) there is no onsideration of the

in�uene of health management (fault detetion, reon�guration) and ommuniation

mehanisms on the system operation and dependability; and (3) the identi�ation of

heterogeneous redundanies is performed ase-by-ase basis.

Shared redundany by [Wysoki04℄

[Wysoki04℄ addressed the same design strategy under the shared redundany onept.

They onentrated on the reuse of proessing units through the strategi distribution of

software modules. Consequently, given the failure ourrene of a software omponent,

it is possible to still ontinue operating through the reon�guration of ommuniation

routes. To evaluate the reliability and safety of the alternative arhitetures, �rst a FTA

is arried out. This analysis permits extrating minimal ombination of events whih

leads the system to failure (minimal ut-sets). Additionally, this information is used

as input for further analysis through Design of Experiments (DOE) to alulate system

ost and failure probabilities. Based on the same design onept [Galdun08℄ analysed

the reliability of a networked ontrol system struture using Petri Nets (PN).

The approah onentrates on the reuse of proessing units through strategial distri-

bution of software modules among proessing units. However, there exist some points

worth onsidering: (1) there is no onsideration of the possible ompatible funtional-

ities emerging from sensors, atuators and even ommuniation mehanisms; (2) fault

detetion and reon�guration mehanisms are assumed ideal; and (3) the dependabil-

ity analysis models are FTA (without dynami properties) and Petri nets (�at models

limited to exponential failure rates).

ARDEA framework by [Rawashdeh06℄

[Rawashdeh06℄ presented the ARDEA (Automatially Reon�gurable Distributed Em-

bedded Arhitetures) reon�guration framework with the goal of designing reon�g-

53

urable arhitetures for fault tolerant embedded systems. The approah is based on

reon�gurations of proessing units to ahieve graeful degradation and ope with hard-

ware failures. A graefully degrading system tolerates system failures by providing the

same or equivalent funtionality with the remaining system omponents. Dependeny

graphs are used to model the funtional information �ow by onsidering alternative im-

plementations. A entralized system manager uses dependeny graphs and a hardware

resoure list to �nd a viable mapping of software on the available proessing units. It

deides when to (un-)shedule software modules by moving objet ode among available

proessing units without exeeding proessor time and bandwidth.

ARDEA provides an adequate framework for the partial implementation our researh

ideas. However, (1) they do not perform dependability analysis of the alternative design

deisions; (2) heterogeneous redundanies are limited to proessing units; (3) hetero-

geneous redundanies are identi�ed in a ad-ho manner; and (4) they fous only on

entralised reon�guration implementations.

Impliit redundanies by [Trapp07℄

In the MARS projet, [Trapp07℄ proposed a omponent based modelling and analysis

method to exploit impliit redundanies so as to reat to system failures by reusing

hardware resoures. They provide methodologial support for modelling and gathering

system on�gurations. Moreover, reasonable system on�gurations are eliited from a

set of possible andidates. The adaptive behaviour of the system is modelled based on

quality types, whih drive system's graeful degradation possibilities.

Eah system omponent operates under di�erent on�gurations and this is determined

by quality attributes whih are attahed to eah omponent's every I/O port. Con�g-

uration ativation rules are de�ned over these ports based on the needed and provided

quality attributes (f. Figure 2.23).

For eah omponent in the system its possible on�guration variants are de�ned. Eah

port has its own onstraints de�ned as ativation preonditions and propagation post-

onditions. This haraterization determines ompatible omponents, based on quality

attributes. As a result, system on�gurations are extrated based on a expliitly de�ned

adaptation behaviour.

54

Figure 2.23: Example of an Adaptation Spei�ation View [Adler10b℄

From this modelling paradigm (MARS modelling), di�erent analyses have been arried

out. In [Adler08℄, transformations from MARS models into hybrid-Component Fault

Trees (hybrid-CFTs) were performed in order to alulate on�guration probabilities (f.

Subsetion 2.3.1). Hybrid-CFTs extend CFTs by using Markov hains models (enlosed

in a omponent) so that it is possible to haraterize the repair behaviour of the system.

In order to ensure the ausality of the reon�guration sequenes and safety-related prop-

erties, veri�ation ativities have been arried out in [Adler10b℄. Last but not least,

methodologial support for identifying an adaptation model meeting availability-ost

trade-o� is addressed in [Adler10℄.

Despite addressing our similar design goals, this approah has assumptions and there are

di�erenes with respet to our methodology: (1) all the approahes within MARS assume

fault-free software (ideal fault detetion and ideal reon�guration implementations) and

there is no onsideration of the in�uene of the ommuniation on system dependability;

(2) the model of adaptation is implemented by a entral runtime framework without

evaluating the feasibility of distributed reon�guration implementations; (3) despite

onsidering the use of heterogeneous redundanies, the identi�ation of heterogeneous

redundanies is performed in an ad-ho manner; (4) as for the dependability analysis,

the failure/repair haraterization of hybrid-CFTs models are limited to exponential

distributions and its Markov models are limited to haraterize basi events.

In the D3H2 methodology (f. Chapter 3) we fous on addressing all these limitations

with onneted modelling and analysis ativities.

55

Integrated Modular Avionis

Similar design onepts are addressed in the avionis �eld. Namely, the Integrated

Modular Avionis (IMA) design paradigm de�nes robust partitioning in on-board avioni

systems so that one omputing module (line replaeable unit) is able to exeute one or

more appliations of di�erent ritiality levels independently. The standardised generi

hardware modules forming a network leads to looser oupling between hardware and

software appliations [Moore01℄.

SCARLETT projet [Bieber09℄ aims at designing reon�gurable Integrated Modular

Avionis arhitetures in order to mitigate the e�et of failures of funtional, fault de-

tetion and reon�guration implementations. One a permanent failure is deteted, the

reon�guration supervisor proeeds with the following key ativities. Firstly, it man-

ages the modi�ations given the urrent on�gurations and failed module. Seondly,

it heks the orretness of the system on�guration and the loaded data in the line

replaeable unit. The entralized supervisor determines a suitable on�guration based

on a reon�guration graph, whih ontains all possible on�gurations. Reon�guration

poliies and real-time and resoure onstraints, de�ne the set of reahable safe transi-

tions and states. In order to analyse the reon�guration behaviour when failures our,

a safety model leads to �nding the ombinations of funtional failures [Bieber10℄.

Based on the same onepts, DIANA projet [Engel10℄ aims at distributing these fun-

tionalities. This approah improves the availability of the reon�guration mehanisms

at the expense of relying on a omplex, resoure onsuming ommuniation protool.

The safety assessment of the reon�gurable Integrated Modular Avionis arhitetures

does onsider the in�uene of the failure of fault detetion and reon�guration imple-

mentations on system operation. However, their goal is not to exploit heterogeneous

redundanies emerged in massively networked senarios, instead they are aimed at ex-

ploiting replaeable proessing units and alloated SW units to perform reon�gurations

e�etively.

56

Semanti tehniques for dynami reon�gurations by [Hoftberger13℄

Reently, the use of semanti tehniques for dynami reon�gurations in embedded

real-time systems has been explored in [Hoftberger13℄ by means of an ontology and

algorithms that enable the runtime adaptation of these systems. The ontology de�nes

expert knowledge about the system struture, relations and interations between subsys-

tems. When a failure ours, semantially equivalent servies are searhed through the

ontology. The algorithm determines if a servie an be substituted by other servies in

the system by exploring the ontology to �nd the required property onepts. Data type,

auray, and temporal behaviour are ompared to hek the ompatibility of servies.

Despite not addressing our target approah for the design proess - seletion of ompo-

nents, evaluation of its in�uenes on dependability and ost - it does address possible

implementation framework for the design onepts treated throughout this dissertation.

The performane of the approah relies on the proposed searh algorithm, whih diretly

depends on the size of the ontology. For run-time determined reon�gurations this is a

ritial issue to be addressed.

Fault-tolerant ontrol & fault diagnosis approahes

There have been approahes in the fault-tolerant ontrol and fault diagnosis ommunity

aligned with the idea of reusing elements to provide additional funtionalities (e.g., see

[Blanke11℄ and referenes herein). Namely, they fous on identifying analyti redun-

danies systematially. Proposed approahes in this area evaluate if it is possible to

provide the same servie with a ombination of remaining sensors, i.e., if there exists an

alternative analyti equation, whih uses di�erent set of variables (resoures) to provide

the same (or equivalent) servie.

The identi�ation of analyti redundanies is based on the strutural analysis: relying on

detailed mathematial models of the plant (system), system equations, and known and

unknown variables are related. If there exists redundant information about the system

struture, i.e., if there are more onstraints (equations) than variables to be determined,

there may exist alternative ways to de�ne a variable (analytial redundany relations)

[Staroswieki89; Krysander08℄. When dealing with omplex systems, detailed models

are di�ult to obtain. Thus, strutural analysis and graph-based analysis emerged to

57

solve large omplex sets of equations [Staroswieki99℄. Analytial redundany relations

are generated from unmathed onstraints. Besides, analytial redundany relations are

used as fault detetion funtions, also known as residuals (e.g., see [Ana10; Svard10℄).

Exhaustive haraterization and mathematial formulation of omplex systems is not

trivial and in some ases unfeasible: detailed knowledge about the system is needed to

get analytial redundany relations and therefore, fault-tolerant ontrol of the system.

The identi�ation of analyti redundanies through analytial redundany relations is

feasible at subsystem level, but when onsidering the system as a whole, the omplexity

of the mathematial formulation inreases due to the size of the system and its inner

omplexity. This is the rationale that led us to adopt a funtion-based viewpoint with

qualitative attributes, instead of the formal mathematial viewpoint (see Chapter 3).

Heterogeneous redundanies are not limited to analyti redundanies. Heterogeneous

redundanies inlude ases in whih system variables are not related diretly, but they

an be derived using system equations and onstraints. In massively networked se-

narios, systems are omprised of further subsystems - a train is omprised of ars and

ompartments; or a building is omprised of �oors and rooms - whih are interonneted

using a ommuniation network.

Instead of analysing the onsequenes on dependability of using alternative on�gura-

tions, the fous of the fault-tolerant ontrol ommunity has been plaed on �nding (1)

ontrol algorithms able to ontinue operating in the presene of failures and (2) equations

to detet and diagnose failed omponents.

Diverse redundanies and sensor fusion by [Flammini11℄

[Flammini11℄ introdued a railway seurity approah whih makes use of heterogeneous

redundanies. To this end, railway surveillane systems are exploited addressing hetero-

geneous data soures making use of diverse redundanies and reasoning about hetero-

geneous data (sensor fusion).

Arhiteture details are presented integrating the DETECT (DEision Triggering

Event Composer and Traker) [Flammini09℄ and SMS (Seurity Management System)

[Flammini10℄ frameworks. SMS enables to ollet the heterogeneous multi-sensor data

and store it in a database and DETECT is an senario-based threat detetion approah

58

(expert system), whih provides event orrelation mehanisms making possible the gen-

eration of alerts based on reeived inputs, i.e., it is a entralised appliation of data

fusion. Alternative (diverse) sensors and intelligent ameras are used to improve the

detetion of hazards/attaks, e.g., to identify a ontaminated plae, Infra-red radiation

sensors or Ion Mobility spetrosopy detetors are suggested (analyti redundany).

Their viewpoint is lose to ours, but there are some di�erenes worth mentioning: (1)

the use of heterogeneous redundanies is performed in ad-ho manner providing spe-

i� (diverse) solutions to spei� problems; (2) the main fous of the approah is on

inreasing the probability of detetion of threat ourrenes using diverse implementa-

tions; and (3) there is no overall alulation of the failure probability of the system (due

to its inner omponents and their in�uene).

Safe Software Produt Lines by [Jean-Pasal13℄

In the projet alled Safe ReSA (Safe Reusable Safety Analysis and Arguments)

[Jean-Pasal13℄ introdued an approah ombining safety engineering and produt line

engineering disiplines. Software produt line engineering fouses on maximizing the

reuse through mehanisms to model ommonalities and variabilities (feature modelling)

[Clements01℄. The goal of this approah is to apply safety engineering methods to

reusable artefats emerged from produt line engineering. To this end, a model-based

approah is used to extrat safety ases (evidenes) overing all the phases: starting

from the de�nition of safety goals until their veri�ation. CFTs are used as a reusable

mehanism to analyse ause-e�et relations and Safety Conept Trees [Domis09a℄ to

desribe how a top-event is re�ned into a set of safety requirements using ombinatorial

gates.

Our approah an be linked with software produt lines paradigm beause we do share

the idea of reusing elements: the reuse in software produt lines onentrates on reating

di�erent systems (produt lines) bene�ting from the shared properties among systems;

we are foused on the reuse of system elements (sensors, ontrollers, atuators) whih

already exist in the system. However, our fous relies on reliability engineering: we use

redundanies to aommodate hanges in ase of system failure ourrenes and evalu-

ate the in�uene of alternative design deisions on system dependability and ost (e.g.,

entralised/distributed reon�guration implementations or homogeneous/heterogeneous

59

redundanies). Making an analogy between reliability engineering and software produt

lines: we analyse system harateristis to �nd inner variabilities (heterogeneous redun-

danies) or we add expliit variabilities when neessary (homogeneous redundanies)

depending on the dependability and ost onstraints. Besides, our approah is limited

to networked ontrol systems operating in massively networked senarios.

2.4.3 Opportunity Analysis

In order to haraterize the reviewed approahes within this setion, the following design

properties have been desribed in the Table 2.7:

1. Type of reovery strategy.

2. Dependability analysis approah.

3. Cost evaluation.

4. Consideration of the dependability of fault detetion (FD), reon�guration (R)

and ommuniation funtions.

5. Other tasks, e.g., optimization, veri�ation.

Sine the use of heterogeneous redundanies requires onsidering system dynamis, the

dependability analysis approahes desribed so far address the temporal behaviour

of systems either by linking event-based stati-logi approahes with state-based for-

malisms (e.g., Hybrid-CFT) or by evaluating through approahes whih integrate the

temporal behaviour expliitly (e.g., Monte Carlo simulations, Dynami Fault Tree, Petri

Nets, Dynami Bayesian Networks). Moreover, given the extra design omplexity of the

systems whih use heterogeneous redundanies, the mehanisms whih help struturing

the analysis and reusing the models are neessary suh as hierarhial abstrations or

omponent-based design/analysis paradigms.

To obtain a preditable system design and avoid unexpeted failure ourrenes, all

the approahes assume design-time determined reon�gurations. Nonetheless, it is

neessary to go beyond and overome their underlying assumptions onerning the

system's ritial funtionalities to perform reon�gurations e�etively. Namely, among

all the reviewed approahes only [Bieber10℄ and [Adahi11℄ onsider the failure be-

60

Table 2.7: Approahes and Addressed Design Properties

Works 1 2 3 4 5

[Cau�riez13℄

Homogeneous

Redundanies

Monte Carlo

simulations

HW ost Not Addressed

Not

Addressed

[Clarhaut09℄

Homogeneous

Redundanies

Improved

multi-fault

tree

HW ost Not Addressed Optimization

[Adahi11℄

Homogeneous

Redundanies

HiP-HOPS

HW & SW

ost

FD, R;

Communiation

not addressed

Optimization

[Perez14℄

Homogeneous

Redundanies

GSPN

Not

Addressed

Not Addressed

Not

Addressed

[Shelton04℄

Heterogeneous

Redundanies

Utility Values

Not

Addressed

Assumed Ideal Optimization

[Wysoki04℄;

[Galdun08℄

Shared

Redundanies

Fault Tree,

Design of

experiments;

Petri nets

Maintenane

ost

Communiation;

FD, R

Assumed Ideal

Not

Addressed

[Rawashdeh06℄

Graeful

Degradation

Not Addressed

Not

Addressed

Not Addressed

Not

Addressed

[Hoftberger13℄

Reon�gurable

Ontology

Not Addressed

Not

Addressed

Assumed Ideal

Not

Addressed

[Trapp07℄

Impliit

Redundany

Hybrid-CFT

HW & SW

ost

Not Addressed

Optimization,

Veri�ation

[Bieber09℄

[Engel10℄

Reon�gurable

IMA

Safety

analysis,

AltaRia

Not

Addressed

FD, R;

Communiation

not addressed

Not

Addressed

[Blanke11℄

Analyti

Redundany

Not Addressed

Not

Addressed

Not Addressed

Residuals,

fault

diagnosis

[Flammini11℄

Diverse

Redundany

(Dynami)

Bayesian

Networks

Not

Addressed

Not Addressed

Not

Addressed

[Jean-Pasal13℄

Sofware

Produt Lines

Component

Fault Trees

Not

Addressed

Not Addressed

Not

Addressed

61

haviour of the fault detetion and reon�guration implementations and [Galdun08℄ ad-

dresses the failure the ommuniation network. The evaluation of the possible faulty

behaviour of these implementations leads to obtaining an approah whih better adheres

to real implementations and onsequently, more reliable results. Despite not address-

ing heterogeneous redundany like onepts diretly, in [Forster10℄ an approah alled

omponent logi models is presented whih does address the faulty behaviour of fault

detetion implementations.

Shifting from problem spei� solutions towards generi fault tolerant design approahes

requires systematizing identi�ation, modelling and analysis steps. From our perspe-

tive, it is neessary over the following design ativities in order to progress in the design

of systems whih use heterogeneous redundanies and re�ne the dependability analysis

of these systems:

� Systemati identi�ation of heterogeneous redundanies and extration of system

on�gurations to reat in the presene of failures.

� Design of the system arhiteture to make the use of heterogeneous redundanies

possible, i.e., fault detetion and reon�guration implementations.

� Evaluation of the system dependability with respet to dependability, adaptivity

and ost onstraints.

The systemati identi�ation of heterogeneous redundanies and extration of system

on�gurations alls for an approah whih allows identifying systematially existing

hardware omponents able to provide a ompatible funtionality. To the best of our

knowledge, only the work we presented in [Aizpurua12a℄ works towards this goal. In

[Adler10b℄, authors worked on the systemati extration of system on�gurations an-

notating omponent by omponent their adaptive behaviour. During this proess they

evaluate in a ad-ho manner if it is possible to provide another on�guration variant

using alternative hardware omponents and �nally extrat system on�gurations based

on inter-omponent in�uenes. In [Blanke11℄ a mathematial approah for the system-

ati identi�ation of analytial redundanies is outlined. It is a sound and onsistent

approah, but it su�ers from salability issues. The use of this approah within NCSs

operating in massively networked senarios would require too muh details onerning

the exat mathematial formulation of the system.

62

The design of the system arhiteture to make use of heterogeneous redundanies re-

quires addressing design deisions regarding the organization of fault detetion and

reon�guration implementations, i.e., their distribution and repliation. On one hand,

when implementing the fault detetion funtion within a networked ontrol system, it is

possible to alloate it either on the soure PU where the information is produed (e.g.,

sensor, ontroller) or in the destination PU, whih is the target PU of the soure informa-

tion (e.g., ontroller, atuator) or in both PUs. On the other hand, when dealing with

reon�guration implementations, its distribution in�uenes the overall dependability

and ost of the system (f. Table 2.8).

Table 2.8: Design Deisions and In�uened Attributes

Attribute

Design

Fault Detetion Reon�guration

Soure Destination Centralised Distributed

Dependability

Detetion at origin,

unable to manage

ommuniation

failures

Detetion of wrong

value & omission.

Prone to ommon

ause failures

Failure

proneness: single

point of failure

Multiple

reon�guration

redundanies

Cost

HW/SW

implementation

osts

Costly

identi�ation of all

failures: failure

transformation

Single

reon�guration

implementa-

tion's HW/SW

osts

Higher ost:

multiple

reon�guration

implementations

Complexity

Diret failure

handling

Further failure

soures

Less

ommuniation

overhead

Complex

ommuniation

and resoure

management

Additionally, when adopting design deisions within the seond ativity, it is neessary

to address adaptivity onstraints whih also has in�uene on dependability, e.g., time-

liness onstraints: maximal duration in whih the adaptation of one omponent an

be performed [Priesterjahn11b℄, dependeny onstraints: dependenies between system

omponents, where adapting one omponent requires further adaptation on other om-

ponents [Adler10b℄ or hardware resoure onstraints: limit the use of hardware resoures,

e.g., proessing power, memory [Rawashdeh06℄.

63

2.5 Conlusions

Heterogeneous redundanies (or more generally reuse of sensors, ontrollers and atua-

tors) an take many forms: analytial redundany, design diversity or fail-safe ontrol

algorithms are some well-known examples. To the best of our knowledge, so far this task

have been foused on the reative ability of the designer. Furthermore, these approahes

have assumed failure-free behaviour of fault detetion and/or reon�guration and/or

ommuniation implementations. Besides, previously there have not been an attempt

to pro�t from the physial organization of massively networked senarios: repliated

funtions distributed throughout the physial struture of the system. Therefore, so as

to integrate these tasks, overome previous limitations, and evaluate the in�uene of

alternative design deisions on dependability and ost, we have designed a methodology

entitled: aDaptive Dependable Design for systems with Homogeneous and Heteroge-

neous redundanies (D3H2).

Fousing on the dependability analysis of these systems, we have identi�ed the need of an

approah whih omprehends the harateristis outlined in Subsetion 2.3.2. Given that

suh an approah exists, the analysis of omplex, dynami and repairable systems will

beome manageable and easier to maintain. In Chapter 4, we will introdue Component

Dynami Fault Tree onept in order to address these harateristis within the D3H2

methodology and in Chapter 5 we will desribe a proess to model omplex repairable

systems.

64

Chapter 3

D3H2 Methodology

In order to design adaptive dependable systems systematially and ost-e�etively, we

propose a design methodology named aDaptive Dependable Design for Systems with

Homogeneous and Heterogeneous redundanies (D3H2). The methodology integrates

the variables implied in the researh hypothesis of this thesis: homogeneous/heteroge-

neous redundanies, fault detetion, reon�guration, and ommuniation.

This hapter is organised as follows:

� As a result of the literature review done in Chapter 2, Setion 3.1 introdues the

motivation of this hapter.

� Setion 3.2 overviews the D3H2 methodology and its main ativities.

� Setion 3.3 desribes in detail the main ativities and models for designing a hard-

ware/software arhiteture systematially inluding health management strate-

gies.

� Setion 3.4 applies the main ativities to the running example so as to onstrut

a hardware/software arhiteture.

� Setion 3.5 loses this hapter with a disussion of the limitations of the D3H2

methodology.

3.1 Introdution

The design of adaptive dependable systems requires a proess to math and tune the

adequate ombinations of omponents aording to the funtional and dependability

65

requirements. As stated in Chapter 2, the D3H2 methodology emerges from the goal of

systematizing all the design steps needed to design omplex dependable systems ost-

e�etively.

Heterogeneous redundanies may exist in diverse systems. However, usually the ost and

e�ort involved in identifying and exploiting whih implementations are able to perform

further ompatible funtions is not feasible.

Assuming that potential heterogeneous redundanies have been identi�ed, it is neessary

to evaluate quantitatively whether integrating this redundany is more bene�ial - in

terms of dependability and ost - than using homogeneous redundanies instead. To

evaluate its bene�ts, �rstly it is neessary to reate an arhiteture whih makes their

use possible. To this end, health management (fault tolerane) mehanisms are required:

fault detetion and reon�guration.

When ombining all the previous design onepts, the issues that a designer may

be interested on overing address: (1) the implementation and distribution of the

health management mehanisms; (2) the use of homogeneous or heterogeneous redun-

danies; (3) trade-o� analysis between dependability and ost when seleting alternative

arhitetures (omprised of di�erent interating elements with their orresponding fail-

ure/repair rate and ost).

Repeating this proess for di�erent ombinations of omponents (i.e., arhitetures) an

be umbersome and ostly. In onsequene, the proposed methodology performs all

these tasks systematially.

3.2 Overview of the D3H2 Methodology

The D3H2 methodology fouses on modelling and analysis ativities shown in Figure

3.1. The methodology haraterizes a system of interest as a set of interating hardware,

software, and ommuniation resoures, taking into aount their interfaes and provided

funtionality.

The methodology starts from the haraterization of system funtions, required resoures

and the physial loation in whih these funtions are performed. These onepts are

66

formalised in the funtional model (f. Figure 3.1 and Subsetion 3.3.1). To this end,

the designer has to speify:

� System funtions.

� List of resoures in order to meet the system funtions.

� Physial loation in whih the system funtions are performed within the system

physial struture.

Figure 3.1: D3H2 Methodology [Aizpurua13a℄

The funtional model is obtained from the projetion of funtions onto system resoures

while onsidering their physial loation. This model addresses initial design require-

ments. To systematize its onstrution, the Funtional Modelling Approah (FMA) has

been reated (f. Subsetion 3.3.1).

Homogeneous and heterogeneous redundanies are identi�ed as a result of the ompatibil-

ity analysis (f. Subsetion 3.3.2). This ativity evaluates if there exist ompatibilities

in the funtional model. To take into aount these ompatibilities, it may be neessary

to aggregate additional resoures and subfuntions and perform the alloation ativity

for the new elements.

67

Subsequently, system's reon�guration strategies and the preliminary HW/SW

arhiteture are extrated (f. Subsetion 3.3.3).

Before onsidering this preliminary HW/SW arhiteture for further haraterizations

and possible implementation, it is neessary to extend it with health management

funtions, i.e., fault detetion and reon�guration, whih make the use of redundan-

ies possible (f. Subsetion 3.3.4). From the extension of the preliminary HW/SW

arhiteture, the extended funtional model is onstruted.

The aggregation and alloation ativities allow the designer to reate an ex-

tended HW/SW arhiteture from the extended funtional model. Subsequently, the

dependability analysis evaluates the dependability level of the extended HW/SW

arhiteture (see Chapter 4 and Chapter 5). Moreover, the ost analysis allows adopting

trade-o� deisions between the used redundanies and inurred ost. Finally, the ex-

tended HW/SW arhiteture needs to be evaluated with respet to system requirements

to verify if the initial requirements are met.

If system requirements are not satis�ed there are two options: Option A jumps bak to a

previous ativity and repeats the proess from there (ompatibility analysis, extension,

alloation, aggregation). Option B drives the design proess to the starting point of the

design methodology so that design requirements are reonsidered.

The identi�ation of heterogeneous redundanies requires studying all the system

funtions, resoures, and their physial loations early at the design time. Nevertheless,

at the expense of relying on a more ostly design methodology - rather than simply

adding expliit redundant resoures where they are neessary - it is expeted that the

ost savings obtained with heterogeneous redundanies reward the design e�orts. The

hardware ost savings emerge from limiting the addition of hardware resoures (homo-

geneous redundanies) by exploiting already existing hardware resoures (heterogeneous

redundanies). This is something that will be evaluated in Chapter 4 and Chapter 5.

3.3 HW/SW Arhiteture Design

In Subsetion 3.3.1 the Funtional Modelling Approah (FMA) is presented. The FMA

allows the systemati identi�ation of homogeneous and heterogeneous redundanies

68

[Aizpurua12a℄. Making use of the onstruted funtional model, in Subsetion 3.3.2 and

Subsetion 3.3.3 the ompatibility analysis and reon�guration strategies are presented.

Finally, the Extended Funtional Modelling Approah (EFMA) is introdued in Sub-

setion 3.3.4. The EFMA adds fault detetion and reon�guration implementations to

the preliminary HW/SW arhiteture.

3.3.1 Funtional Modelling Approah

The overall goal of de�ning the Funtional Modelling Approah (FMA) is the proedural

onsideration of system funtions, resoures and the relations between them. The FMA

has been designed deliberately to enable the systemati identi�ation of heterogeneous

redundanies and the extration of reon�guration strategies.

The Funtional Modelling Approah is haraterized in a top-down manner, starting

from a set of high-level funtions traing down to the neessary resoures to perform

these funtions (f. Figure 3.2).

Figure 3.2: Funtional Modelling Approah

A high level funtion (e.g., di�erent train operations: train operating properly, train

stopped) is omprised by a set of Main Funtions (MFs), e.g., train operating properly

= {tration system OK, signalling system OK, braking system OK,. . . }. These main

funtions are performed in possibly di�erent Physial Loations (PLs), e.g., a single Air

Conditioning Control implementation may span a whole train ar or eah ar ompart-

ment in a train ar may have its own Air Conditioning Control. In the same way, a

69

main funtion onsists of a set of Subfuntions (SFs), e.g., input, ontrol and output

subfuntions. A subfuntion may have multiple implementations and eah implementa-

tion requires a set of resoures that may be shared with other implementations of other

subfuntions (e.g., proessing units).

Our model fouses on main funtions and its sub-levels to limit the sope of the analysis

without losing its generality (see the end of this subsetion for further disussion). The

full haraterization of a subfuntion's implementation of a generi main funtion is

spei�ed as follows:

Main Function.Physical Location.Subfunction.Implementation (3.1)

This haraterization is omprised of tokens whih desribe the partiular Main Fun-

tion, Physial Loation, Subfuntion and Implementation. These tokens are separated

by dots. However, for those tokens whih also have dots we surround them with square

brakets, e.g., onsidering the Physial Loation = Train.Car.Zone:

MainFunction.[Train.Car.Zone].Subfunction.Implementation.

As a result, di�erent tokens are identi�ed straightforwardly (see Example 3.3.1).

To de�ne the physial loation of system funtions onsistently, a physial loation map

is de�ned for the physial struture. Figure 3.3 shows the physial loation map of

an hypothetial train, where eah ar is omprised of di�erent ompartments (Zone

A

,

Zone

B

).

Figure 3.3: Example of a Train Physial Loation Map

70

The physial loation of eah main funtion spei�es the sope of the main fun-

tion and its subfuntions, e.g., zone - level: [Train.Car

1

.Zone

A

℄ ; or spei� - level:

[Train.Car

2

.Zone

B

.Door℄.

Example 3.3.1:

The haraterization of the Air Conditioning Control main funtion's temperature

measurement subfuntion, whih is performed within a train ar in a spei� ompart-

ment, will be spei�ed as follows (f. Setion 2.1):

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

A

Where the implementation Sensor

A

is omprised of the next set of resoures:

Sensor

A

={Temperature sensor A, PU

ACC_A

, SW

Temp

}.

A system on�guration is de�ned as follows: a possible realization of the main funtion

omprised of the neessary subfuntions and their underlying implementations (and

resoures) to perform the main funtion (f. Example 3.3.2).

Example 3.3.2:

Considering the Air Conditioning Control main funtion introdued in Setion 2.1 and

assuming the train on�guration desribed in Figure 3.3, the nominal on�guration

for the Train.Car

1

.Zone

A

will be omprised of the following implementations:

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempMeasurement.Sensor

A

AirConditioningControl.[Train.Car

1

.Zone

A

℄.RefTemp.RefButton

A

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.PID_Control

AirConditioningControl.[Train.Car

1

.Zone

A

℄.Heating.Heater

A

where,

Sensor

A

= {Temperature Sensor A, PU
ACC_A

};

RefButton

A

= {Reference T emperature Button A, PU
ACC_A

};

PID_Control = {PU
ACC_A

, SW
PID

, T empMeasurement,RefTemp};

Heater

A

= {Heater A, PU
ACC_A

, T empControlAlgorithm}

The high-level funtions modelled in Figure 3.2 desribe the high-level operation of the

system. These funtions have their own set of main funtions and the main funtions are

omprised of a set of subfuntions. Consequently, if the whole funtional model is taken

into aount, the omplexity of the analysis grows up. Aordingly, its manageability

is worse and the utility of the Funtional Modelling Approah is a�eted. It is for that

reason that we model starting from main funtions.

71

Among the alternative implementations to perform the same subfuntion, based on the

implemenation's resoures and provided funtionality, we lassify nominal, degraded

and fail-safe implementations (f. Figure 3.2). Nominal (N) implementations perform

the same funtions as intended by the initial funtional design harateristis. When

the nominal implementations are lost due to the failure of some resoure, there may be

implementations whih provide a Degraded (D) but aeptable servie. Fail-Safe (FS)

implementations emerge from the need to ope with the severe failure of resoures, whih

ould result in hazard situations. In safety-ritial systems, fail-safe implementations

must be de�ned to avoid these situations.

Despite the desribed design methodology onentrates on the design of new systems,

it may be ustomized for the design of already existing systems. Both methodologies

di�er in the orientation of the onstrution of the funtional model. However, for design

purposes, one the funtional model is reated the same steps apply for both design

strategies.

When designing a new system, the orientation of the Funtional Modelling Approah

fouses from system main funtions toward resoures (top-down). This design strategy

requires planning and understanding ompletely the system so that an overall piture of

the system is obtained. Nonetheless, the drawbak of this perspetive is that it inreases

the development time and sometimes not everything is known at the beginning of a

projet (e.g., physial layout of the system).

On the ontrary, when addressing the redesign of an already existing system, a bottom-

up �st step is needed to obtain a funtional model. As it is shown in Figure 3.4, the

funtional model is onstruted by grouping system resoures to perform subfuntions

and linking them with the main funtions they arry out (synthesis).

Figure 3.4: Funtional Modelling Approah for Existing Systems

72

When redesigning an existing system, the synthesis of previously designed implementa-

tions and funtionalities is a troublesome task: taking into aount all implementations,

subfuntions, and main funtions beomes time onsuming and prone to errors.

3.3.2 Compatibility Analysis

The objetive of the ompatibility analysis is the systemati identi�ation of heteroge-

neous redundanies.

The ompatibility analysis allows gathering ompatible implementations and identify-

ing heterogeneous redundanies. Two implementations are ompatible if they provide

the same or similar (but aeptable) result. However, the aeptable results need to be

on�rmed in a ase-by-ase basis by the designer. Heterogeneous redundanies are iden-

ti�ed based on the tokens of the main funtion: mathing subfuntions and ompatible

physial loations.

There exist two ompatibility ases:

� Natural ompatibility emerges automatially from ompatible implementations ar-

rying out the same subfuntion in ompatible physial loations (f. Example

3.3.3);

� Fored ompatibility identi�es available I/O implementations loated at ompatible

physial loations, and then evaluates if they may ful�l additional subfuntions

with ompatible implementations (f. Example 3.3.5).

Possible ompatible physial loations are de�ned as Table 3.1 displays.

Table 3.1: Possible Compatible Physial Loations

Case Desription Example

1 Subfuntions loated at the same physial loation [Car

1

℄.Zone

A

↔ [Car

1

℄.Zone

A

2
Subfuntions loated at adjaent physial loations [Car

1

℄.Zone

A

↔ [Car

1

℄.Zone

B

3

Subfuntions loated at a physial loation that

span other subfuntion loated at more spei�

physial loations

[Car

1

℄.[Zone

A

℄ → [Car

1

℄.[Zone

A

℄.Door

73

In the natural ompatibility ase, the ompatibility of the physial loation depends upon

the type of the examined subfuntion. For input subfuntion implementations performed

within ompatible physial loations and depending on the input subfuntion type itself,

the produed outomes of the implementations are aeptable (f. Example 3.3.3).

Example 3.3.3:

Considering the temperature measurements in two adjaent ompartments:

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

A

AirConditioningControl.[Train.Car

1

.Zone

B

℄.TemperatureMeasurement.Sensor

B

We identify that the same subfuntion's implementations are loated at a adjaent

physial loations ([Train.Car

1

.Zone

A

℄, [Train.Car

1

.Zone

B

℄), and the temperature mea-

surements arried out by Sensor

A

and Sensor

B

ould be interhanged in a degraded

mode of operation (assuming that the temperature di�erene in two adjaent om-

partments is not signi�ant).

However, spei� physial loations limit the ompatibility. Generally, this is the ase

of output subfuntions due to their spei� atuation spae (see Example 3.3.4).

Example 3.3.4:

Considering the spei� atuation spae of the door manipulation subfuntions' motors

loated at eah doors of a train ar (f. Setion 2.1):

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorManipulation.Motor

A

DoorStatusControl.[Train.Car

1

.Zone

B

.Door℄.DoorManipulation.Motor

B

Motor

A

an only at in the [Train.Car

1

.Zone

A

.Door℄ and it an not manipulate the

door loated in [Train.Car

1

.Zone

B

.Door℄.

Fored ompatibility ase is analyses available I/O implementations and their physial

loations and evaluates if they may ful�l additional subfuntions (f. Example 3.3.5).

Example 3.3.5:

Consider a train ar with the following funtionalities (f. Setion 2.1):

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDetetion.ClosedSensor

VideoSurveillane.[Train.Car

1

.Zone

A

℄.VideoInput.Camera

Given that we ould add a software funtionality to detet the losure of the doors using

the amera (e.g., ClosedCamera implementation), we onsider these implementations

ompatible:

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDetetion.ClosedSensor

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDetetion.ClosedCamera

74

Using the tokenized haraterization of system funtionalities (f. Charaterization 3.1),

the identi�ation of redundanies is simpli�ed. This is performed in a straightforward

way by omparing the orresponding tokens of subfuntions and physial loations.

Based on the equivalenes between system funtions, physial loations and resoures,

Table 3.2 displays a omparison between the nominal main funtion on�guration and

those whih use homogeneous and heterogeneous redundanies.

Table 3.2: Comparison of Redundanies with respet to the Nominal Con�guration

Redundany Subfuntion Physial Loation Resoures Con�guration

Homogeneous = = = =

Heterogenous = ≡, = ≡, = ≡

same(=); ompatible(≡)

Diverse redundanies (see Subsetion 2.2.2) provide the same funtionality using an al-

ternative on�guration. The di�erene between diverse and heterogeneous redundanies

lies on the design purpose: while heterogeneous redundanies already exist in the system

on�guration, diverse redundanies are added expliitly to provide the system with im-

plementations whih fail in di�erent failure modes and avoid ommon ause failures.

As for the omparison between homogeneous and diverse redundanies, both exerise

additional resoures, but homogeneous redundanies provide the same funtion within

the same physial loation under the same on�guration, whereas diverse redundanies

provide the same funtion with a ompatible on�guration.

The ontrol subfuntions are a speial ase beause they do not depend upon the phys-

ial loation. They are able to perform the ontrol subfuntion provided it reeives

the orresponding input values of the spei� physial loation. There may also exist

alternative fault-tolerant ontrol subfuntion implementations, whih are able to ope

with input subfuntion implementation failures, e.g., open-loop ontrol algorithms.

The implementations identi�ed in the ompatibility analysis may be degraded imple-

mentations. They are reated from a implementation whih is a nominal implementation

for another main funtion by reusing resoures. We assume that their funtionality is

aeptable, but they may in�uene the quality of the provided main funtion. Aord-

ingly, the validation of the identi�ed heterogeneous redundanies is an ativity whih will

75

determine whether the quality of the heterogeneous redundany implementation is a-

eptable, e.g., timing requirements of an implementation. These are some hallenges to

be addressed in our future work to further re�ne the ompatibility analysis (f. Setion

3.5).

3.3.3 Reon�guration Strategies

To integrate the funtional model with heterogeneous and homogeneous redundanies in

the D3H2 methodology, reon�guration strategies are de�ned. Reon�guration strategies

onsist of possible system on�gurations and they desribe fault tolerane strategies of

the system to reover from system implementation failures.

The existene of ompatible implementations lead us to de�ne alternative on�gurations.

These are annotated in a reon�guration table de�ning all implementations and assigning

priorities to eah of them (see Example 3.3).

Example 3.3.6:

Table 3.3 displays a hypothetial Air Conditioning Control main funtion (see Example

3.3.2) with three on�guration examples (C

1

, C

2

, C

3

), where C

1

refers to the nominal

on�guration ; C

2

shows a degraded operation reusing a sensor; and the C

3

indiates

another degraded operation reusing the referene button.

The hypothetial Air Conditioning Control for Train.Car

1

.Zone

A

is omprised of 2

heterogeneous redundany implementations: #1 ↔ #2 and #3 ↔ #4.

The prioritization proess for alternative implementations is founded on a metri based

on the weighted sum of: (1) level of the degradation of the funtionality; (2) fail-

ure probability of the implementation; and (3) ost of the on�guration. The level of

the degradation depends on the relative physial distane (appliable for heterogeneous

redundanies emerging from natural ompatibilities). This metri does not indiate

the �nal failure probability of the system sine it is neessary to extend the system

arhiteture with the neessary health management funtions and implementations (f.

Subsetion 3.3.4). Besides, in some ases, it is neessary the designer's knowledge, e.g.,

when there exist multiple heterogeneous redundanies raised from fored ompatibilities.

However, it provides an initial idea of the priority of eah implementation to perform

the subfuntion.

76

Table 3.3: Reon�guration Table Example

Implementation Prio C

1

C

2

C

3

#

AirConditioningControl.[Train.Car

1

.Zone

A

℄.MeasureTemp.Sensor

A

1 W F W 1

AirConditioningControl.[Train.Car

1

.Zone

A

℄.MeasureTemp.Sensor

B

2 W 2

AirConditioningControl.[Train.Car

1

.Zone

A

℄.RefTemp.RefButton

A

1 W W F 3

AirConditioningControl.[Train.Car

1

.Zone

A

℄.RefTemp.RefButton

B

2 W 4

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.PID 1 W W W 5

AirConditioningControl.[Train.Car

1

.Zone

A

℄.Heating.Heater

A

1 W W W 6

W : Working; F : Failed; Prio: Priority.

Moreover, the reon�guration strategies enable the diret identi�ation of single points

of failure. A single implementation of a subfuntion in the reon�guration table indiates

that the subfuntion is a single point of failure (e.g., #6 in Table 3.3).

One of the limitations of the studied reon�guration strategies is the proess needed to

extrat the reon�guration strategies. That is, the haraterization of all the system

funtions, resoures and their physial loations is a laborious task.

3.3.4 Extended Funtional Modelling Approah

The main goal of the Extended Funtional Modelling Approah (EFMA) is to add

health management funtions and orresponding implementations to the preliminary

HW/SW arhiteture. Namely, it is neessary to add:

� Fault Detetion (FD) mehanisms to detet the inorret operation of an imple-

mentation;

� Reon�guration (R) mehanisms to reover from implementation failures.

The EFMA has been designed with the goal of making it general enough to allow the sys-

temati design and analysis of alternative extended HW/SW arhitetures. Sine fault

detetion and reon�guration subfuntions are subfuntions of a given main funtion,

they are also modelled using tokens (f. Charaterization 3.1).

77

The following design assumptions are adopted when haraterizing the

health management subfuntions and their implementations [Aizpurua13a℄:

� Fault detetion:

� Eah subfuntion has an assoiated fault detetion subfuntion (FD_SF);

� All the fault detetion implementations of the same subfuntion use replias

of the same fault detetion algorithm;

� The fault detetion subfuntion is loated at the destination proessing unit

where the information of the soure proessing unit is used. This deision en-

ables to detet ommuniation (timing and value) failures straightforwardly.

� Reon�guration:

� Eah subfuntion will have its own reon�guration subfuntion (R_SF),

whih reeives fault detetion subfuntion's signals and sends reon�guration

signals to subfuntion implementations.

� Fault detetion of the reon�guration:

� Eah reon�guration implementation will have its own fault detetion

mehanism (FD_R_SF) implemented in keepalive on�guration. Eah

reon�guration subfuntion implementation sends keepalive signals to all

their fault detetion funtion implementations (FD_R_SF) to indiate that

it is operating (i.e., it is alive). In the absene of a keepalive signal during

a predetermined time slot, the reon�guration implementation of R_SF is

assumed to be failed. When this happens, the reon�guration's fault dete-

tion implementation (FD_R_SF) sends an ativation signal to the available

reon�guration implementation (R_SF) with the highest priority.

Instead of inluding ommuniation funtion as part of the Extended Funtional Mod-

elling Approah, it is onsidered as a resoure to arry out the haraterized subfuntions.

Although we have assumed that the implementation of the fault detetion funtion is

alloated on the destination PU, it is possible to alloate it on the (1) soure PUs

where the original subfuntion is arried out, (2) destination PUs where the original

subfuntion's results is being used, or (3) both. On the one hand, if the fault detetion

78

is alloated on the soure PU, it is also neessary to have a mehanism whih detets

its performane omission (see Subsetion 2.2.1) in the destination PU where it is used.

On the other hand, the alloation of the fault detetion funtion on the destination PU

enables implementing a single fault detetion funtion for the di�erent implementations

of the same subfuntion (e.g., based on time and value thresholds). The latter ase

requires taking into aount at design-time all possible destination PUs and supplying

them with fault detetion funtionalities.

Conerning the implementation of the reon�guration funtion we assume that: (1) all

subfuntion's PUs have a reon�guration mehanism whih enables them to send/re-

eive data to/from di�erent destinations/soures and (2) additionally, there is one (or

multiple) deision PU(s) to manage the reon�gurations aording to the subfuntion's

status. If all reon�guration deision funtions are alloated to the same PU, we end up

with a entralised deision PU and it beomes highly sensitive to ommuniation fail-

ures. On the other end, if reon�guration deision funtions are distributed throughout

the system resoures, the management of the reon�guration deision funtions beomes

muh more omplex, but less sensitive to ommon ause failures (f. Table 2.8).

Figure 3.5 desribes an abstrat arhiteture of the main funtion i and the

health management mehanism of the main funtion's output subfuntion. In this �gure

overlapped retangles desribe alternative implementations for the same subfuntion.

Figure 3.5: Abstrat Arhiteture of the Main Funtion i and the Health Management Im-

plementation of its Output Subfuntion

79

There is no unique valid solution when alloating resoures to fault detetion and

reon�guration funtions. For instane, when onsidering the reon�guration funtion,

alternative HW/SW arhitetures emerge depending on its distribution. This model is

general enough to allow for the systemati analysis of alternative HW/SW arhitetures

by means of the Dependability Evaluation Modelling approah (f. Chapter 4 and Chap-

ter 5).

When onsidering the implementation of the reon�guration strategies, we assume

design-time distribution of alternative on�gurations. One reon�guration strategies

are haraterized and ompleted with network addresses of di�erent implementations,

the reon�guration table will be alloated partially in di�erent deision PUs or totally

in a unique deision PU to enable the runtime reon�guration of implementations.

To make the reon�guration possible, the following needs to be implemented in eah

PU whih has implementations to be reon�gured: a wrapper that ensures the inter-

hangeability between ompatible implementations; and a reon�guration mehanism to

rediret its information to di�erent destinations dynamially. Furthermore, the PUs in

whih the fault detetion of the reon�guration subfuntion implementations are allo-

ated require monitoring keepalive signals to ontrol the orret operation of the ative

reon�guration implementation.

For these arhitetures the ommuniation paradigm plays an important role: the om-

muniation protool needs to be able to support the reation/removal of ommunia-

tions dynamially while onsidering the synhronization of the implementation's states

and adjudiation of the results. Message oriented publisher/subsriber ommuniation

protools (e.g., Data Distribution Servie [Pardo-Castellote03℄) address these harater-

istis: alternative soure implementations publish data in a network loation and the

destination implementations subsribe or unsubsribe to a publisher aording to the

reon�guration table. Please refer to the Chapter 6 to read about pratial implemen-

tation details.

80

3.4 Results

In order to illustrate how to use the modelling and analysis approahes presented in this

hapter, we will apply the D3H2 methodology to the train example desribed in Setion

2.1. From the funtions performed in a train ar, we will onentrate on three main

funtion examples so as to haraterize the di�erent ompatibility ases: natural om-

patibility (Air Conditioning Control) and fored ompatibility (Fire Protetion Control

and Door Status Control).

Natural Compatibility example: Air Conditioning Control

Despite not being a ritial funtion for the safe operation of the train, the Air Con-

ditioning Control funtion o�ers a simple, but yet an interesting and intuitive example

to demonstrate the possibilities for using heterogeneous redundanies emerging from

natural ompatibilities (f. Example 3.3.1).

Funtional Model

Let us onsider a train with di�erent numbered ars (Car

1

, Car

2

) and eah ar onsti-

tuted by 2 ompartments (Zone

A

, Zone

B

) aording to the physial loation map of the

train depited in Figure 3.3. We assume that independent Air Conditioning Control

funtions are implemented in eah ompartment of the train.

As displayed in Table 3.4, the Air Conditioning Control main funtion implementation

for eah ompartment onsists of two input subfuntions: temperature measurement and

user referene temperature; one ontrol subfuntion: air onditioning ontrol algorithm;

and one output subfuntion: heating. User referene temperature subfuntion is onsti-

tuted by two alternative implementations: referene temperature button (#2, #8) and

software de�ned referene temperature (#3, #9); and also the air onditioning ontrol

algorithm ontains two di�erent implementations: losed-loop PID ontrol algorithm

(#4, #10) and open-loop ontrol algorithm, whih only requires temperature referene

set-point (#5, #11).

81

Table 3.4: Funtional Model for Air Conditioning Control in Train.Car

1

MF PL SF Type Implementation Resoures #

Air

Conditioning

Control

Train.

Car

1

.

Zone

A

Temperature

Measurement

I Sensor

A

Temperature Sensor A, PU

ACC_A

1

User Referene

Temperature

I RefButton

A

Referene Temperature Button A,

PU

ACC_A

2

User Referene

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

3

Air Conditioning

Control

Algorithm

C PID

A

Temperature Measurement, User

Referene Temperature, PU

ACC_A

,

SW

PID

4

Air Conditioning

Control

Algorithm

C OL

A

User Referene Temperature,

PU

ACC_A

, SW

OL

5

Heating O Heater

A

Air Conditioning Control

Algorithm, PU

ACC_A

, Heater A

6

Train.

Car

1

.

Zone

B

Temperature

Measurement

I Sensor

B

Temperature Sensor B, PU

ACC_B

7

User Referene

Temperature

I RefButton

B

Referene Temperature Button B,

PU

ACC_B

8

User Referene

Temperature

I RefTempSW

B

SW

RefTemp

, PU

ACC_B

9

Air Conditioning

Control

Algorithm

C PID

B

Temperature Measurement, User

Referene Temperature, PU

ACC_B

,

SW

PID

10

Air Conditioning

Control

Algorithm

C OL

B

User Referene Temperature,

PU

ACC_B

, SW

OL

11

Heating O Heater

B

Air Conditioning Control

Algorithm, PU

ACC_B

, Heater B

12

Legend: I: Input; C: Control; O: Output; Impl.: implementation

The single implementations of the heating subfuntion (#6, #12) indiate that it is

a single point of failure for the Air Conditioning Control main funtion. In these

ases, if the main funtion's requirements are stringent, the funtional model points

out the need to add an homogeneous redundany. Sine in this ase we are not deal-

ing with a safety-ritial funtion, we will assume that it is not neessary to add an

homogeneous redundany (designer's arhiteture-spei� deision).

82

Compatibility Analysis

Automatially identi�ed heterogeneous redundanies aording to the natural ompati-

bility ase are:

� It is possible to use the temperature sensor loated in ontiguous ompartments

for temperature measurement: #1 ↔ #7.

� It is possible to use the referene temperature button loated ontiguous ompart-

ments for the user referene temperature: [#2, #3℄↔ [#8, #9℄.

� It is possible to reuse the system PUs (PU

ACC_A

, PU

ACC_B

) to perform the ontrol

funtions for both ompartments: [#4, #5℄ ↔ [#10, #11℄.

All these implementations are onsidered ompatible beause the same subfuntion is

performed in another ompatible physial loation (f. Table 3.1). Therefore, alternative

implementations provide a degraded (but aeptable) funtionality - see oloured ells in

Table 3.5. Possible ompatible implementations #9 and #11 were left out for simpliity

(f. Table 3.4).

Extended Funtional Model

One the potential heterogeneous redundanies are seleted (f. Table 3.5 oloured

ells), the extended HW/SW arhiteture is reated for the Air Conditioning Control

main funtion. To this end, the funtional model is extended with health management

funtions and implementations, and then we alloate resoures to the aggregated sub-

funtions (see Table 3.6).

For the extended HW/SW arhiteture example displayed in Table 3.6, we assumed

a entralised reon�guration deision PU o-alloated with fault detetion imple-

mentations. This design deision improves the fault ontainment properties of the

health management mehanisms, but also adds a single point of failure.

Please notie how the ommuniation in�uene is taken into aount in the destination

implementation. For instane, for the temperature measurement subfuntion: (1) im-

plementation #2 requires an ativation signal from the reon�guration implementation

83

Table 3.5: Preliminary HW/SW Arhiteture for Air Conditioning Control in

Train.Car

1

.Zone

A

MF PL SF Type Implementation Resoures #

Air

Conditioning

Control

Train.

Car

1

.

Zone

A

Temperature

Measurement

I Sensor

A1

Temperature Sensor A, PU

ACC_A

1

Temperature

Measurement

I Sensor

A2

Temperature Sensor B, PU

ACC_B

,

Comm

2

User Referene

Temperature

I RefButton

A1

Referene Temperature Button A,

PU

ACC_A

3

User Referene

Temperature

I RefButton

A2

Referene Temperature Button B,

PU

ACC_B

, Comm

4

User Referene

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

5

Air Conditioning

Control

Algorithm

C PID

A1

Temperature Measurement, User

Referene Temperature, PU

ACC_A

,

SW

PID

, Comm

6

Air Conditioning

Control

Algorithm

C PID

A2

Temperature Measurement, User

Referene Temperature, PU

ACC_B

,

SW

PID

, Comm

7

Air Conditioning

Control

Algorithm

C OL

A

User Referene Temperature,

PU

ACC_A

, SW

OL

8

Heating O Heater

A

Air Conditioning Control

Algorithm, PU

ACC_A

, Heater A

9

#4 whih is alloated in a di�erent PU (i.e., PU

ACC_B

and PU

ACC_A

respetively); (2)

the fault detetion implementation #3 needs to monitor the orret performane of im-

plementations #1 and #2, from whih the implementation #2 is in a di�erent PU. The

same logi applies to the remainder of subfuntions and implementations of the main

funtion.

Reon�guration Table

Table 3.7 displays the reon�guration table for the Air Conditioning Control main fun-

tion implemented in the Train.Car

1

.Zone

A

.

For simpliity, in Table 3.7 only nominal subfuntions with redundanies are inluded.

84

Table 3.6: Extended HW/SW Arhiteture for the Air Conditioning Control Main Funtion

in Train.Car

1

.Zone

A

MF PL SF Type Implementation Resoures #

Air

Conditioning

Control

Train.

Car

1

.

Zone

A

Temperature

Measurement

I Sensor

A1

Temperature Sensor A, PU

ACC_A

1

Temperature

Measurement

I Sensor

A2

Temperature Sensor B, PU

ACC_B

,

Comm

2

FD_Temp.Meas. FD FD_Sensor

A

PU

ACC_A

, SW

FD_TM

, Comm 3

R_Temp.Meas. R R_Sensor

A

PU

ACC_A

, SW

R_TM

4

User Referene

Temperature

I RefButton

A1

Referene Temperature Button A,

PU

ACC_A

5

User Referene

Temperature

I RefButton

A2

Referene Temperature Button B,

PU

ACC_B

, Comm

6

User Referene

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

7

FD_Ref.Temp. FD FD_RefTemp

A

PU

ACC_A

, SW

FD_RT

, Comm 8

R_Ref.Temp.

A

R R_RefTemp

A

PU

ACC_A

, SW

R_RT

9

Air Conditioning

Control

Algorithm

C PID

A1

Temperature Measurement, User

Referene Temperature,

PU

ACC_A

, SW

PID

, Comm

10

Air Conditioning

Control

Algorithm

C PID

A2

Temperature Measurement, User

Referene Temperature,

PU

ACC_B

, SW

PID

, Comm

11

Air Conditioning

Control

Algorithm

C OL

A

User Referene Temperature,

PU

ACC_A

, SW

OL

12

FD_ACCA FD FD_TempControl

A

PU

ACC_A

, SW

FD_TCA

, Comm 13

R_ACCA R R_TempControl

A

PU

ACC_A

, SW

R_TCA

14

Heating O Heater

A

Air Conditioning Control

Algorithm, PU

ACC_A

, Heater A

15

Legend: FD_X : Fault Detetion of the subfuntion X; R_X : Reon�guration of the subfuntion X;

Temp.Meas.: Temperature Measurement (TM); Ref.Temp.: user Referene Temperature; ACCA: Air

Conditioning Control Algorithm

85

Table 3.7: Reon�guration Table for the Air Conditioning Control Main Funtion in

Train.Car

1

.Zone

A

Implementation Priority #

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

A

1 1

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TemperatureMeasurement.Sensor

B

2 2

AirConditioningControl.[Train.Car

1

.Zone

A

℄.UserRefTemp.RefButton

A

1 5

AirConditioningControl.[Train.Car

1

.Zone

A

℄.UserRefTemp.RefButton

B

2 6

AirConditioningControl.[Train.Car

1

.Zone

A

℄.UserRefTemp.RefButton_SW

A

3 7

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.TCA_PID

A

1 10

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.TCA_PID

B

2 11

AirConditioningControl.[Train.Car

1

.Zone

A

℄.TempControlAlgorithm.TCA_OL

A

3 12

The reon�guration deision PU needs to know the address of the implementations in

the reon�guration table in order to be signalled for (de)ativation purposes and make

e�etive the reon�gurations.

In this ase, there is no need to distribute the reon�guration table to di�erent PUs

beause all subfuntion's reon�guration implementations are loated in the same PU.

Therefore, this reon�guration table will be loated at the PU

ACC_A

.

Fored Compatibility example: Fire Protetion Control

In order to illustrate the proess for the fored ompatibility ase, in this subsetion we

analyse the Fire Protetion Control main funtion (f. Figure 2.9 and Figure 2.10).

Funtional Model

In order to onstrut the funtional model, we will limit the physial loation to the

Train. Car

1

. Zone

A

. Aording to the physial loation, we model the funtions loated

at the Zone

A

in the train Car

1

: Fire Protetion Control and Air Conditioning Control.

There are other funtions loated at the same physial level (e.g., Light Control), but

86

for the sake of larity we limit the funtional models displayed in Table 3.8 to these

funtions.

As desribed in the Setion 2.1, the Fire Protetion Control main funtion detets

the presene of �re using a dediated �re detetor and additionally, passengers signal

emergeny situations diretly using a emergeny button loated in eah ompartment

of the train. In the presene of �re, the Fire Protetion Control algorithm ativates the

sprinklers loated at eah ompartment of the train ar.

Table 3.8: Funtional Model for the Funtions in Train.Car

1

.Zone

A

MF PL SF Type Implementation Resoures #

Fire

Protetion

Control

Train.

Car

1

.

Zone

A

User Emergeny

Signal (UES)

I EmergButton

A

EmergenyButton, PU

FP

1

Fire Detetion I FireDet

A

Fire Detetor, PU

FP

2

Fire Control

Algorithm

C FireControl

A

UserEmergenySignal,

FireDetetion, SW

FireControl

, PU

FP

3

Fire Extintion O Sprinkler

A

FireControlAlgorithm, PU

FP

,

Sprinkler

4

Air

Conditioning

Control

Temperature

Measurement

I Sensor

A

Temperature Sensor A, PU

ACC_A

5

User Referene

Temperature

I RefButton

A

Referene Temperature Button A,

PU

ACC_A

6

User Referene

Temperature

I RefTempSW

A

SW

RefTemp

, PU

ACC_A

7

Air Conditioning

Control

Algorithm

C PID

A

Temperature Measurement, User

Referene Temperature, PU

ACC_A

,

SW

PID

8

Air Conditioning

Control

Algorithm

C OL

A

UserRefereneTemperature,

PU

ACC_A

, SW

OL

9

Heating O Heater

A

AirConditioningControlAlgorithm,

PU

ACC_A

, Heater

10

Compatibility Analysis

Based on the funtional model, the ompatibility analysis is performed in order to �nd

ompatible implementations existing in the Train.Car

1

.Zone

A

.

87

Automatially identi�ed heterogeneous redundanies arising from natural ompatibil-

ities are possible: we an use the �re detetor loated in the ontiguous ompart-

ment (Train.Car

1

.Zone

B

) to detet �re in the Train.Car

1

.Zone

A

. However, we will

assume that it is not feasible to replae the �re detetion subfuntion using the �re

detetor loated in the ontiguous ompartment due to the degraded quality of the

heterogeneous redundany: the time needed to detet a �re using the ontiguous om-

partment's smoke sensor is assumed to be too high.

Semi-automatially identi�ed heterogeneous redundanies emerging from fored om-

patibilities are feasible: it is possible to use a temperature sensor to detet the presene

of �re using temperature value thresholds: #5 → #2.

Table 3.9: Preliminary HW/SW Arhiteture for the Fire Protetion Control in

Train.Car

1

.Zone

A

MF PL SF Type Implementation Resoures #

Fire

Protetion

Control

Train.

Car

1

.

Zone

A

User Emergeny

Signal (UES)

I EmergButton

A

EmergenyButton, PU

FP

1

Fire Detetion I FireDet

A

Fire Detetor, PU

FP

2

Fire Detetion I Sensor

A

Temperature Sensor A, PU

ACC_A

,

SW

FireDet

, Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

3

Fire Control

Algorithm

C FireControl

A

UserEmergenySignal,

FireDetetion, SW

FireControl

, PU

FP

4

Fire Extintion O Sprinkler

A

FireControl, PU

FP

, Sprinkler 5

Note that the Fire Protetion Control and Air Conditioning Control main funtions are

onneted to di�erent ommuniation networks, i.e., CAN and Ethernet respetively

(f. Figure 2.1). Therefore, a gateway devie is neessary in order to use alternative

ommuniation protool's data.

Extended Funtional Model

To use these redundanies in massively networked senarios, it is neessary to om-

plete the extended HW/SW arhiteture with health management and ommuniation

mehanisms as Table 3.10 displays.

88

Table 3.10: Extended HW/SW Arhiteture for the Fire Protetion Control in

Train.Car

1

.Zone

A

MF PL SF Type Implementation Resoures #

Fire

Protetion

Control

Train.

Car

1

.

Zone

A

User Emergeny

Signal (UES)

I EmergButton

A

EmergenyButton, PU

FP

1

Fire Detetion I FireDet

A

Fire Detetor, PU

FP

2

Fire Detetion I Sensor

A

Temperature Sensor A,

PU

ACC_A

, SW

FireDet

,

Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

3

FD_FireDetetion FD FD_FireDet

A

SW

FD_FireDet

, PU

FP

,

Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

4

R_FireDetetion

1

R R_FireDet

A1

SW

R_FireDet

, PU

FP

5

R_FireDetetion

2

R R_FireDet

A2

SW

R_FireDet

, PU

ACC_A

,

Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

6

FD_R_FireDetetion FD_R FD_R_FireDet

A1

SW

FD_R_FireDet

, PU

ACC_A

,

Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

7

FD_R_FireDetetion FD_R FD_R_FireDet

A2

SW

FD_R_FireDet

, PU

FP

,

Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

8

Fire Control

Algorithm

C FireControl

A

UserEmergenySignal,

FireDetetion, SW

FireControl

,

PU

FP

, Communiation CAN,

Communiation ETH,

Gateway

ETH-CAN

9

Fire Extintion O Sprinkler

A

FireControlAlgorithm, PU

FP

,

Sprinkler

10

Reon�guration Table

Table 3.11 displays the reon�guration table for the Fire Protetion Control main fun-

tion implemented in the Train.Car

1

.Zone

A

. The reon�guration table inludes the line

number (#) of eah implementation; and priority of eah implementation to perform a

determined subfution in a de�ned physial loation.

89

Table 3.11: Reon�guration Table of the Fire Protetion Main Funtion in the

Train.Car

1

.Zone

A

Implementation Priority #

FireProtetionControl.[Train.Car

1

.Zone

A

℄.FireDetetion.FireDet

A

1 2

FireProtetionControl.[Train.Car

1

.Zone

A

℄.FireDetetion.Sensor

A

2 3

For simpliity, in Table 3.11 only nominal subfuntions with redundanies are inluded.

In this ase, reon�guration implementation is loated in PU

FP

(#5) and PU

ACC_A

(#6). Therefore, this reon�guration table will be pre-alloated in both PUs for the

reon�guration of the �re detetion subfuntion.

Fored Compatibility example: Door Status Control

In this subsetion we analyse the Door Status Control main funtion (f. Figure 2.3 and

Figure 2.4).

Funtional Model

In order to onstrut the funtional model, we will limit the physial loation to Train.

Car

1

.Zone

A

.Door. Aording to the physial loation, we model those funtions loated

at the door of the train ar: Door Status Control and Video Surveillane. There exist

other funtions loated at the same physial level (e.g., Passenger Counting System),

but for the sake of larity we limit the funtional models displayed in Table 3.12 to these

funtions.

As desribed in the Setion 2.1, the Door Status Control main funtion (f. Figure 2.3

and Figure 2.4) requires di�erent input subfuntions to assure the safe operation of door

opening/losing: enable subfuntions (enable door driver, enable door passenger), mon-

itoring subfuntions (door open detetion, door losed detetion, door veloity, obstale

detetion) and ommand subfuntions (door open ommand and door lose ommand).

These input subfuntions are direted toward the door ontrol algorithm subfuntion

whih determines when and how to lose the doors through the door manipulation sub-

90

funtion. Video Surveillane main funtion (f. Figure 2.5 and Figure 2.6) reeives

video images (video input subfuntion), proesses them through the proess image on-

trol subfuntion and �nally, if it is the ase, it raises an alarm using the lamps and sirens

onneted to the PU

Cam

.

Table 3.12: Funtional Model for the Funtions in the Train.Car

1

.Zone

A

.Door

MF
PL SF Type Implementation Resoures #

Door Status

Control

Train.

Car

1

.

Zone

A

.

Door

Enable Door

Driver

I EnableDriv

A1

SW

TCMS

, PU

TCMS

1

(simpli�ed) 1

I EnableDriv

A2

SW

TCMS

, PU

TCMS

2

(simpli�ed) 2

Enable Door

Passenger

I EnablePass

A

Enable Door Driver, PU

Driver

,

EnableButton

Driver

, Comm.

3

Door Close

Command

I CloseCommand

A

PU

Driver

, CloseButton

Driver

4

Door Open

Command

I OpenButton

Driv.A

PU

Driver

, OpenButton

Driver

5

I OpenButton

Pass.A

PU

DSC_A

, OpenButton

Passenger

6

Door Open

Detetion

I OpenSensor

A

PU

DSC_A

, OpenSensor 7

Door Closed

Detetion

I CloseSensor

A

PU

DSC_A

, CloseSensor 8

Door Veloity I VeloitySensor

A

PU

DSC_A

, VeloitySensor 9

Obstale

Detetion

I ObstaleSensor

A

PU

DSC_A

, ObstaleSensor 10

Door Control

Algorithm

C DoorControl

A

Enable Door Passenger, Door Close

Command, Door Open Command,

Door Closed Detetion, Door Open

Detetion, Door Veloity, Obstale

Detetion, PU

DSC_A

, SW_CL,

Comm

11

Door

Manipulation

O Motor

A

Door Control Algorithm, PU

DSC_A

,

Motor

12

Video

Surveillane

Train.

Car

1

.

Zone

A

.

Door

Video Input I VideoIn

A

Camera, PU

Cam

13

Proess Image C Surveillane

A

Video Input, SW

Surveillane

, PU

Cam

14

Alarm O Siren

A

Proess Image, PU

Cam

, Lamp, Siren 15

91

Compatibility Analysis

Based on the funtional model, the ompatibility analysis is performed in order to �nd

ompatible implementations existing in the Door Status Control funtion.

Automatially identi�ed heterogeneous redundanies arising from natural ompatibili-

ties are not feasible beause the Door Status Control funtion is not diretly replaeable

by other funtions loated in other plaes. For instane, it is not feasible to ontrol the

status of a door loated in Car

1

using the status of the Car

2

door, neither it is feasible

to use the status of the door loated in a ontiguous ompartment.

The ompatibility analysis points out the following heterogeneous redundanies:

� It is possible to use the amera and its PU

Cam

with the orresponding intelligent

software to identify the position of the doors: door open detetion (#7) or door

losed detetion (#8).

� It is possible to use the amera and its PU

Cam

with the orresponding intelligent

software to alulate the speed of the door (#9).

� It is possible to use the amera and its PU

Cam

with the orresponding intelligent

software to detet obstales in the door (#10).

After the extration of all the input and output implementations loated at ompatible

physial loations, it is the designer's work to hek if among the suggested list of

implementations there exist a feasible ompatible implementation.

For the sake of readability we will inlude heterogeneous redundanies solely for the

detetion of the door open and lose positions as displays the preliminary HW/SW

arhiteture in the Table 3.13 (in Chapter 4 and Chapter 5 when analysing alternative

arhiteture on�gurations, all possible heterogeneous redundanies are onsidered).

Extended Funtional Model

To use these redundanies in massively networked senarios, it is neessary to omplete

the funtional model with health management (fault detetion and reon�guration) and

92

Table 3.13: Preliminary HW/SW Arhiteture for the Door Status Control in the

Train.Car

1

.Zone

A

.Door

MF PL SF Type Implementation Resoures #

Door Status

Control

Train.

Car

1

.

Zone

A

.

Door

Enable Door

Driver

I EnableDriv

A1

SW

TCMS

, PU

TCMS

1

(simpli�ed) 1

I EnableDriv

A2

SW

TCMS

, PU

TCMS

2

(simpli�ed) 2

Enable Door

Passenger

I EnablePass

A

Enable Door Driver, PU

Driver

,

EnableButton

Driver

, Comm

3

Door Close

Command

I CloseCommand

A

PU

Driver

, CloseButton

Driver

4

Door Open

Command

I OpenButton

Driv.A

PU

Driver

, OpenButton

Driver

5

I OpenButton

Pass.A

PU

DSC_A

, OpenButton

Passenger

6

Door Open

Detetion

I OpenSensor

A

PU

DSC_A

, OpenSensor 7

Door Open

Detetion

I OpenCamera

A

Camera, PU

Cam

, SW

OpenDet

,

Comm

8

Door Closed

Detetion

I ClosedSensor

A

PU

DSC_A

, CloseSensor 9

Door Closed

Detetion

I ClosedCamera

A

Camera, PU

Cam

, SW

CloseDet

,

Comm

10

Door Veloity I VeloitySensor

A

PU

DSC_A

, VeloitySensor 11

Obstale

Detetion

I ObstaleSensor

A

PU

DSC_A

, ObstaleSensor 12

Door Control

Algorithm

C DoorControl

A

EDP, DCC, DOC, DCD, DOD, DV,

OD, PU

DSC_A

, SW_CL, Comm

13

Door

Manipulation

O Motor

A

DCA, PU

A

, Motor 14

Legend: EDP : Enable Door Passenger; DCC : Door Closed Command; DOC : Door Open Com-

mand; DCD : Door Closed Detetion; DOD : Door Open Detetion; DV : Door Veloity; OD : Obstale

Detetion; DCA: Door Control Algorithm

ommuniation mehanisms and adopt design deisions with respet to the use of het-

erogeneous redundanies as Table 3.14 displays. Due to the size of the Table 3.14,

subsequently we introdue the aronyms used in this table: FD_X : fault detetion of

the subfuntion X ; R_X : reon�guration of the subfuntion X ; FD_R_X : fault de-

tetion of the reon�guration of the subfuntion X ; EDD: Enable Door Driver; EDP:

Enable Door Passenger; DCC: Door Close Command; DOC: Door Open Command;

93

DOD: Door Open Detetion; DCD: Door Closed Detetion; DV: Door Veloity; OD:

Obstale Detetion; DCA: Door Control Algorithm; and DM: Door Manipulation.

As for the reon�guration deisions, we will assume a dupliated reon�guration

arhiteture whih is initially entralised, but its replias are loated (distributed) in an-

other PU (PU

Cam

). This design deision requires monitoring whether the reon�guration

implementations are performing orretly or not. To this end, reon�guration's fault

detetion implementations are deployed (#12, #13 - FD_R_DOD; #19, #20 -

FD_R_DCD;) so as to monitor the (in)orret performane of the reon�guration im-

plementations (#10, #11 - R_DOD; #17, #18 - R_DCD) and swith them if neessary.

As for the ommuniation in�uene we hek whether dependent subfuntions are im-

plemented in di�erent PUs. For instane in the door open detetion subfuntion ase

(#7) (f. Table 3.14):

� It has an alternative implementation whih requires ommuniation for its ativa-

tion (#8).

� Sine the fault detetion of this subfuntion (#9) is required to monitor the orret

performane of the implementations #7 and #8, and implementation #8 is loated

in a di�erent PU, implementation#9 will also be in�uened by the ommuniation.

� as for the reon�guration implementation (e.g., R_DOD #10, #11), the im-

plementation #11 will also be in�uened by the ommuniation in order to be

(re)ativated to perform its reon�guration tasks.

� Reon�guration's fault detetion implementations (e.g., FD_R_DOD #12, #13)

will be atively monitoring the orret performane of all the reon�guration im-

plementations (#10, #11). Therefore, it will be diretly in�uened by the om-

muniation.

Reon�guration Table

Table 3.15 displays the reon�guration table for the Door Status Control main funtion

implemented in the Train.Car

1

.Zone

A

.Door.

For simpliity, in Table 3.15 only nominal subfuntion with redundanies are inluded.

94

Table 3.14: Extended HW/SW Arhiteture for the Door Status Control in the

Train.Car

1

.Zone

A

.Door

MF PL SF Type Implementation Resoures #

Door

Status

Control

Train.

Car

1

.

Zone

A

.

Door

EDD

I EnableDriv

A1

SW

TCMS

, PU

TCMS

1

(simpli�ed) 1

I EnableDriv

A2

SW

TCMS

, PU

TCMS

2

(simpli�ed) 2

EDP I EnablePass

A

EDD, PU

Driver

, EnableButton

Driver

,

Comm

3

DCC I CloseCommand

A

PU

Driver

, CloseButton

Driver

4

DOC

I OpenButton

Driv.A

PU

Driver

, OpenButton

Driver

5

I OpenButton

Pass.A

PU

DSC_A

, OpenButton

Passenger

6

DOD

I OpenSensor

A

PU

DSC_A

, OpenSensor 7

I OpenCamera

A

Camera, PU

Cam

, SW

OpenDet

, Comm 8

FD_DOD FD FD_OpenDet

A

PU

DSC_A

, SW

FD_DOD

, Comm 9

R_DOD R R_OpenDet

A1

PU

DSC_A

, SW

R_DOD

10

R_DOD R R_OpenDet

A2

PU

Cam

, SW

R_DOD

, Comm 11

FD_R_DOD FD_R FD_R_OpenDet

A1

PU

Cam

, SW

FD_R_DOD

, Comm 12

FD_R_DOD FD_R FD_R_OpenDet

A2

PU

DSC_A

, SW

FD_R_DOD

, Comm 13

DCD

I ClosedSensor

A

PU

DSC_A

, CloseSensor 14

I ClosedCamera

A

Camera, PU

Cam

, SW

CloseDet

, Comm 15

FD_DCD FD FD_CloseDet

A

PU

DSC_A

, SW

FD_DCD

, Comm 16

R_DCD R R_CloseDet

A1

PU

DSC_A

, SW

R_DCD

17

R_DCD R R_CloseDet

A2

PU

Cam

, SW

R_DCD

, Comm 18

FD_R_DCD FD_R FD_R_CloseDet

A1

PU

Cam

, SW

FD_R_DCD

, Comm 19

FD_R_DCD FD_R FD_R_CloseDet

A2

PU

DSC_A

, SW

FD_R_DCD

, Comm 20

DV I VeloitySensor

A

PU

DSC_A

, VeloitySensor 21

OD I ObstaleSensor

A

PU

DSC_A

, ObstaleSensor 22

DCA C DoorControl

A

EDP, DCC, DOC, DCD, DOD, DV, OD,

PU

DSC_A

, SW_CL, Comm

23

DM O Motor

A

DCA, PU

DSC_A

, Motor 24

95

Table 3.15: Reon�guration Table of the Door Status Control Main Funtion in the

Train.Car

1

.Zone

A

.Door

Implementation Priority #

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorOpenDetetion.OpenSensor

A

1 7

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorOpenDetetion.OpenCam

A

2 8

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDetetion.ClosedSensor

A

1 14

DoorStatusControl.[Train.Car

1

.Zone

A

.Door℄.DoorClosedDetetion.ClosedCam

A

2 15

In this ase, reon�guration implementations are loated in di�erent PUs. Therefore,

this reon�guration table will be loated at PU

DSC_A

and PU

Cam

.

3.5 Conlusions

In this hapter we have introdued the methodology to design HW/SW arhitetures

systematially. This methodology enables the systemati identi�ation of redundan-

ies and single points of failure. An straightforward extension of the initial HW/SW

arhiteture allows the designer to reate the ompleted extended HW/SW arhiteture

whih aount for designer's deisions with respet to the distribution and implementa-

tion of fault detetion, reon�guration and ommuniation funtions.

The presented modelling approahes (Funtional Modelling Approah and Extended

Funtional Modelling Approah) enable an straightforward haraterization of the

system and its subsequent exploitation for redundany identi�ation and further analy-

ses. However, this proess requires studying all the system funtions, resoures, and their

physial loations early at the design-time. At the expenses of relying on a more ostly

design methodology it is expeted that the ost savings obtained with heterogeneous

redundanies reward the design e�orts (f. Chapter 4 and Chapter 5).

When using heterogeneous redundanies, the designer needs to be aware of the quality

degradation and evaluate whether it is aeptable or not. Validation of the heterogeneous

redundanies is not a trivial task. Di�erent arhiteture-spei� requirements subjet

to real system operation need to be taken into aount, suh as timeliness, memory and

96

proessing apaity onstraints of the proessing units. These are some hallenges to be

addressed in our future work to re�ne the ompatibility analysis (see Chapter 7).

Another limitation of the D3H2 approah is the stati nature of reon�guration table.

Although the reon�guration table an be updated diretly to re�et system hanges,

dynamially updating the reon�guration table would failitate its maintenane.

97

98

Chapter 4

Dependability & Cost Analysis of

Non-Repairable Systems

This hapter de�nes the dependability evaluation algorithm to assess the extended

HW/SW arhiteture de�ned in Chapter 3. This algorithm makes possible the sys-

temati/automati analysis of the in�uene of alternative arhitetural design deisions

on dependability.

The hapter is organised into the next setions:

� Setion 4.1 introdues the analysis paradigm, states the hypotheses that this hap-

ter assumes and sets the motivation and goals of the hapter.

� Setion 4.2 presents the Dependability Evaluation Modelling (DEM) approah for

non-repairable systems. The analysis algorithm and adopted implementation teh-

niques are presented.

� Setion 4.3 desribes the implementation of the simulation-based sensitivity anal-

ysis within the Dependability Evaluation Modelling approah.

� Setion 4.4 explains the implementation of the unertainty analysis in order to

deal with the lak of exat failure-related data information.

� Setion 4.5 de�nes the assumptions and deisions adopted to perform the ost

analysis of the system.

� Setion 4.6 applies the Dependability Evaluation Modelling approah and sensi-

tivity, unertainty and ost analyses to the running example of this dissertation.

� Finally, Setion 4.7 sums up the onlusions of this hapter.

99

4.1 Introdution

The extended HW/SW arhiteture is omprised of many di�erent design deisions: (1)

seletion of the type and number of redundany strategies (homogeneous, heteroge-

neous); (2) seletion of the most adequate reon�guration sheme (entralised, dis-

tributed); (3) seletion of the number and type of PUs (with respet to their reliability

and ost parameters); or (4) alloation of software funtions into the di�erent PUs.

The ombination of di�erent design deisions produes di�erent results with respet to

dependability and ost. Therefore, there is room to optimize design deisions so as to

improve dependability and redue system ost. The goal of the DEM is to analyse the

dependability level of the extended HW/SW arhiteture - whih ontains any of the

previously mentioned design deisions.

In the sienti� literature (f. Chapter 2) there have been approahes implementing the

systemati/automati transformation from design models to dependability analysis mod-

els (see Subsetion 2.3.1 - Model-based Transformational Approahes). Besides, there

exists dependability-spei� solutions whih diretly evaluate the in�uene of arhite-

tural design deisions on system's dependability and ost (see Subsetion 2.4.1). How-

ever, to the best of our knowledge, there are no approahes whih analyse the in�uene

of heterogeneous redundany shemes inluding the failure behaviour of fault detetion,

ommuniation and alternative reon�guration strategies (see Subsetion 2.4.2).

To perform the systemati dependability assessment of the extended HW/SW

arhiteture, the following assumptions are adopted:

� Fixed arhitetural design deisions with respet to health management imple-

mentations and their alloations (f. Chapter 3):

� Fault detetion loated at the destination implementation.

� Fault detetion of the reon�guration subfuntion implemented as heartbeat

or keepalive implementation.

� Eah system subfuntion has its own reon�guration subfuntion, whih may

be entralised or distributed.

� Resoure failures are non-repairable.

100

Illustration of the Problem Addressed by the Chapter

Extended HW/SW arhitetures are haraterized by di�erent design harateristis and

failure in�uenes: di�erent reon�guration sequenes, priorities, funtional dependenies

or ommon ause failures are some examples of these harateristis. The systemati

dependability assessment of the extended HW/SW arhiteture requires taking into a-

ount all the possible situations in whih the (omplex) system is unable to ontinue

performing its design funtion.

The omplexity that emerges from dependenies and in�uening hardware, software

and ommuniation resoures leads to ompromising the maintainability (readability,

traeability) of the dependability analysis model of the extended HW/SW arhiteture.

Therefore, omponent-based modelling mehanisms [Crnkovi03℄ are deemed a nees-

sary design instrument to deal with the size and omplexities of the extended HW/SW

arhiteture.

The design-related researh questions that this hapter aims to answer are:

� Whih is the in�uene on dependability and ost of using di�erent reon�guration

and redundany strategies?

� Whih is the ontribution of a given omponent on the system failure?

� Can we assume the ideal performane of health management and ommuniation

implementations?

The analysis of entralised and distributed reon�guration strategies in itself does not

pose new hallenges. However, the ombination of alternative reon�guration strategies

with homogeneous and/or heterogeneous redundanies (redundany strategies) sets new

issues to be analysed:

� When using heterogeneous redundanies, whih is the best trade-o� in

reon�guration strategy with respet to the ost of the system and its

dependability?

Linked with the previous design issue, we will perform importane measurements so as

to evaluate quantitatively the in�uene of homogeneous and heterogeneous redundanies

(and related design deisions) on system failure.

101

So far, design approahes whih have onsidered the use of heterogeneous redundanies

have assumed the ideal performane of fault detetion and reon�guration funtions (f.

Chapter 2). In this hapter, we aim to evaluate the validity of this assumption through

di�erent dependability analyses.

4.2 Dependability Evaluation Modelling Approah

To evaluate the dependability of the extended HW/SW arhitetures systematially and

intuitively, we have de�ned a Dependability Evaluation Modelling (DEM) approah

[Aizpurua14℄.

4.2.1 Conepts and Notation

The objetive of the DEM approah is the generi, systemati and omplete failure

modelling of extended HW/SW arhitetures to evaluate their dependability.

The failure model of the extended HW/SW arhiteture inludes the following failure

modes: fault detetion implementations fail (FD_SF, FD_R_SF) in Omission (O)

when it does not detet a failure when it ours and fail in False Positive (FP) when

it detets a failure when it does not exist; the reon�guration implementation fails in

omission when it fails to reon�gure a faulty implementation; and failure of subfuntion's

implementations over value and timing failures. Figure 4.1 shows the failure model of

the extended HW/SW arhiteture.

All possible failures of all system subfuntion implementations (SF, FD_SF, R_SF,

FD_R_SF) are de�ned at the implementation level ([MF].[PL].[SF].[Impl] Failure)

aording to the failure harateristis of the implementation's resoures. Based on

the ombination of implementation-level failures, subfuntion-level failures are de�ned

systematially ([MF].[PL].[SF] Failure).

Table 4.1 de�nes the notations of the failure events and working events aording to

their subfuntion and failure modes. For larity, in subsequent haraterizations we

omit the ommon part ([MF℄.[PL℄).

102

Figure 4.1: Extended HW/SW Arhiteture's Failure Model

Table 4.1: Notation of Failure and Working Events

Notation
Failure Logi Notation Failure/Working Logi

F
X

X failure W
X

X working

F
SF

[SF℄ failure W
SF

i

[SF℄.[Impl

i

℄ working = NOT(F
SF

i

)

F
SF

i

[SF℄.[Impl

i

℄ failure F
R

[R_SF℄ failure

F
FD

[FD_SF℄ failure F
R

i

O

[R_SF℄.[Impl

i

℄ omission

F
FD FP

[FD_SF℄ false positive F
FD_R

i

FP

[FD_{[R_SF℄.[Impl

i

℄}℄ false positive

F
FD

i

[FD_SF℄.[Impl

i

℄ failure F
FD_R

i

O

[FD_{[R_SF℄.[Impl

i

℄}℄ omission

F
FD

i

O

[FD_SF℄.[Impl

i

℄ omission

F
R

i

O/FP

[R_SF℄.[Impl

i

℄ omission or FP =

OR(F
R

i

O

,F
FD_R

i

FP

)
F
SF

i

FP

[SF℄.[Impl

i

℄ failure or FP = OR(F
SF

i

,F
FD FP

)

The stohasti failure haraterization of eah resoure is hara-

terized by sampling randomly the failure times aording to their

Cumulative probability Distribution Funtions (CDFs) along the system lifetime.

The methodology supports any CDFs, but for the sake of simpliity without losing the

generality of the approah, in subsequent probabilisti haraterizations exponential

failure distributions are assumed.

103

Therefore, the failure haraterization of system resoures is de�ned aording to their

failure rates (λ
Res

). The failure haraterization of a SF's i -th implementation ([SF℄.

[Imp

i

℄ Failure) omprised of N resoures is spei�ed as follows:

F
SF

i

= OR(λ
Res

1

, λ
Res

2

, . . . , λ
Res

N

) (4.1)

The same equation holds for the failure haraterizations of the omission failures of:

FD_SF (F
FD

i

O

), R_SF (F
R

i

O

), and FD_R_SF (F
FD_R

i

O

) implementations. A-

ordingly, the false positive failures of fault detetion implementations (F
FD FP

and

F
FD_R

i

FP

) will be haraterized with their haraterizing failure distribution and orre-

sponding parameters (e.g., exponential distribution with λ
FD FP

and λ
FD_R

i

FP

values).

4.2.2 Analysis Algorithm

The DEM approah de�nes an algorithm that evaluates the dynami failure behaviour

of systems whih use fault detetion and reon�guration implementations while overing

all possible failure situations for the spei�ed extended HW/SW arhitetures. It allows

to evaluate systematially the onsequene of design deisions on system dependability

(see Setion 4.1). Resulting equations haraterize the failure of suh systems omposi-

tionally so that the failure logi is kept lear for omplex systems.

To this end, the DEM approah haraterizes ombinations of subfuntion's imple-

mentation failures that prevent the extended HW/SW arhiteture from performing its

intended subfuntion

5

. The SF will fail (F
SF

) when all implementations have failed

(F
All Impl.

), an implementation fails and reon�guration does not happen (failure unre-

solved, F
Unresolved

), or its input dependenies have failed (F
Dependenies

):

F
SF

= OR(F
All Impl.

, F
Unresolved

, F
Dependenies

) (4.2)

Assuming that we have N

SF

implementations of the subfuntion, the F
All Impl.

event

happens when eah implementation fails or is deteted as failed:

5

Sine the failure of any subfuntion neessary for a main funtion provokes the immediate failure

of a main funtion, from this point onwards we will only onsider the failure of a subfuntion.

104

F
All Impl.

= AND(F
SF

1

FP

, . . . , F
SF

N

SF

FP

) (4.3)

The failure unresolved (F
Unresolved

) ours when the working implementation fails and

either the fault is not deteted (failure undeteted) or the reon�guration itself fails

(reon�guration failed). For eah implementation there are di�erent failure unresolved

events (F
Unr. Imp

i

) beause eah implementation may have di�erent failure probabilities,

however, note that the last implementation's failure annot be solved (non-repairability

assumption):

F
Unresolved

= OR(F
Unr. Imp

1

, . . . , F
Unr. Imp

N

SF

-1

) (4.4)

To de�ne the failure unresolved event of the i -th implementation of the generi sub-

funtion SF (F
Unr.Imp

i

), let us introdue two new events. The �rst event ours when

the i -th implementation of the subfuntion fails and the reon�guration has failed but

after suessfully reon�guring previous i -1 implementations (reon�guration sequene

failure, F
R Seq.

i

). Assuming F
SF

1..i-1

FP

= AND(F
SF

1

FP

, . . . , F
SF

i-1

FP

) indiates the

failure or false positive from 1 to i -1 implementations:

F
R Seq.

i

= PAND(F
SF

1..i-1

FP

, F
R

, F
SF

i

FP

) (4.5)

The seond event ours when the i -th implementation of the SF fails and the fault

detetion of the SF has failed but after deteting orretly previous i -1 implementation

failures (fault detetion sequene failure, F
FD Seq.

i

). Note that fault detetion's false

positive and omission failures are mutually exlusive and therefore the false positive

does not in�uene F
FD Seq.

i

:

F
FD Seq.

i

= PAND(F
SF

1..i-1

, F
FD

, F
SF

i

) (4.6)

Due to the haraterization of time-ordered failures, Equations 4.5 and 4.6 annot be fur-

ther simpli�ed. Aordingly, i -th implementation's failure unresolved event (F
Unr. Imp

i

)

ours when either the fault detetion sequene (F
FD Seq.

i

) fails or the reon�guration

sequene (F
R Seq.

i

) fails:

105

F
Unr. Imp

i

= OR(F
FD Seq.

i

, F
R Seq.

i

) (4.7)

Dependenies address Input (I) and Control (C) subfuntions in�uene on ontrol and

Output (O) subfuntions respetively. Control subfuntion failure impats diretly the

output subfuntion failure (C→O); and the in�uene of input subfuntion on ontrol

subfuntion depends if the system's ontrol on�guration is operating in losed loop

(C_CL) or open loop (C_OL):

F
Dependenies

= OR(F
Dep. C_CL

, F
Dep. C_OL

) (4.8)

Assuming that W
C_X

= OR(W
C_X

1

, . . . , W
C_X

NW
) means that any NW implementa-

tions of the C_X subfuntion are working (where X = {CL, OL}), Equations in 4.9

desribe the di�erent input subfuntions that a�et eah ontrol on�guration (I_CL→

C_CL, I_OL → C_OL). F
Dep. C_OL

may not happen beause the open loop ontrol

generally does not have input dependenies:

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

) F
Dep. C_OL

= AND(W
C_OL

, F
I_OL

) (4.9)

The reon�guration failure is a speial ase among subfuntions and therefore F
R

is

developed like Equation 4.2, exept that there are no additional dependenies:

F
R

= OR(F
All R Impl.

, F
R Unresolved

) (4.10)

F
All R Impl.

indiates the failure of all reon�guration implementations and F
R Unresolved

designates the reon�guration's failure unresolved ondition. Assuming M

reon�guration implementations:

F
All R Impl.

= AND(F
R

1

O/FP

, . . . , F
R

M

O/FP

) (4.11)

Although the system may operate orretly when a false positive ours, it has to as-

106

sume that the information provided by the fault detetion is orret, sine there is no

mehanism to detet the inorret operation of fault detetion.

F
R Unresolved

happens when all M implementations of FD_R_SF fail in omission si-

multaneously and it is a diret onsequene of our design hoie: all reon�guration's

fault detetion implementations (FD_R_SF) are ative and homogeneous redundanies

(heartbeat implementations):

F
R Unresolved

= AND(F
FD_R

1

O

, . . . , F
FD_R

M

O

) (4.12)

The fault detetion failure F
FD

is also a speial ase among subfuntions. It depends on

the operation of the destination subfuntion (SF

DEST

), beause the FD implementation

is loated at the same PU. Hene, F
SF_DEST

in�uenes diretly F
FD

. We assume that

the hange of destination SF's implementation ativates the orresponding FD imple-

mentation and the previous one is deativated. Equation 4.13 desribes the FD_SF

failure ase when FD_SF has K implementations:

F
FD

= OR(F
FD_Dest Seq

1

, . . . , F
FD_Dest Seq

K

) (4.13)

As for the i -th fault detetion implementation's failure sequene (F
FD_Dest Seq

i

), it ex-

presses the following event: from 1 to i -1 destination SF's implementations have failed

and reon�gured orretly (F
SF_DEST

1..i-1

), and then either the i -th fault detetion or

destination SF's implementation fails:

F
FD_Dest Seq

i

= PAND(F
SF_DEST

1..i-1

, OR(F
SF_DEST

i

, F
FD

i

O

)) (4.14)

To avoid reating loops when evaluating system's dependability, we have onsidered that

the fault detetion implementation's failure is governed by the destination subfuntion's

implementations failure without onsidering its input dependenies (f. Equation 4.14).

If destination subfuntion's dependenies are taken into aount they will reate logial

loops. Therefore, the in�uene of dependenies is taken into aount at the �top� sub-

funtion's failure level (f. Equation 4.2). At this level, if any dependent subfuntion

fails, it leads diretly to the failure ourrene of the subfuntion.

107

4.2.3 Analysis of the State of the Art Approahes

In order to implement the equations of the DEM approah, existing dynami and om-

positional fault-tree-like paradigms have been analysed (f. Table 4.2) looking for the

following harateristi:

(1) Component based haraterization: embed the failure logi of a set of related events

or omponents and (re)use it where needed instead of haraterizing the system

failure behaviour in a single �at model.

(2) Dynami gates: apture the system failure logi aounting for time-ordered events.

(3) Support for any probability density funtion.

(4) Possibility of modelling repeated basi events.

(5) Possibility of modelling repeated subsystems or omponents.

(6) NOT gates: address the in�uene of funtional events.

Table 4.2: Approah and Charateristis

Approah (1) (2) (3) (4) (5) (6)

Stati FT [Vesely02℄
X X X X X X

Component FT [Kaiser03℄
X X X X X X

DFT - Galileo [Dugan92℄ X X X X X X

DFT - RAATS [Manno14b℄ X X X X X X

DFT - DFTCal [Arnold13℄ T: X; A: X X X X X X

DFT - Radyban [Montani08℄ T: X; A: X X X X X X

DFT - GFT [Raiteri11℄ T: X; A: X X X X X X

BDMP [Bouissou07℄ X X X X X X

SEFT [Kaiser07℄ T: X; A: X X X X X X

HiP-HOPS [Papadopoulos11℄ X X X X X X

T: Top model

A: Top model's underlying Analysis model

108

The integration of stati fault trees and ompositional haraterization is not new

[Kaiser03; TU Kaiserslautern09; Adler08℄: Component Fault Trees addressed this on-

ept prominently. Among the DFT approahes there exist alternatives to model systems

with any failure probability. To this end, simulation-based approahes are used (e.g.,

RAATSS [Manno14℄, Radyban [Montani08℄) due to their possibility of approximating

suh harateristis.

As for the ompositional haraterization, the Generalized Fault Tree (GFT) (integra-

tion of parametri and repairable dynami fault trees [Bobbio04; Codetta-Raiteri05℄)

approah is the only one whih has worked towards this goal [Raiteri11℄. There exist

some approahes whih model the failure behaviour of a system with a user friendly

(ompositional) formalisms (top model), but they perform the statistial alulation

using a less intuitive (�at) underlying formalism (analysis model). The drawbak of

the GFT approah relies in the analysis of its underlying formalism (Stohasti Well-

Formed nets [Chiola93a℄) whih is a �at state-based system model whih also su�ers

from state-explosion issues. Besides, the ompositional (parametri) viewpoint for this

approah is in folding repeated events and symmetri subsystems (see Figure 2.18), but

not embedding the same logi in a omponent and reusing in the same model where

deemed neessary as done in Component Fault Trees (see Figure C.2). HiP-HOPS also

aounts for the onept of Component Fault Trees using annotations [Papadopoulos11℄.

Annotated omponents (whih an be seen as Component Fault Trees) are parsed to

reate the Fault Tree of the system. Despite it has been extended for the extration of

the ut sequene sets, the quantitative solution of dynami models is not an integrated

approah within HiP-HOPS.

To the best of our knowledge, there is no approah whih addresses expliitly the integra-

tion of Dynami Fault Trees and omponent oriented haraterization while addressing

any failure distributions. To address these harateristis, simulation-based analysis

tehniques provide adequate analysis mehanisms at the expenses of relying on a in-

reased omputation time.

4.2.4 Implementation: Component Dynami Fault Trees

Addressing all these harateristis, the onept of

Component Dynami Fault Tree (CDFT) is de�ned borrowing the de�nition of

109

original Component Fault Trees introdued in [Kaiser03℄:

C
Out1 Out2

OR
III

Out1

OR
III

Out1

Out
1

Out1

Out1

OR

Out1 Out1

Out1

Out1 Out2

in1

C

Figure 4.2: Component Dynami Fault Tree Overview

De�nition 4.1. Component Dynami Fault Tree: the omponent dynami fault

tree model, dft, is a 4-tuple < N, G, SC, E >

where:

� N is the set of Nodes, whih are partitioned into a set of: internal events Nintern,

input ports Nin and output ports Nout; N = {Nintern, Nin, Nout}. For in-

stane, for the CDFT model depited in Figure 4.2, onsidering C

1

: Nintern =

{C1.BE1, C1.BE2}, Nin = {C1.in1, C1.in2, C1.in3, C1.in4}, Nout = {C1.Out1,

C1.Out2}.

� G is the set of Gates, where eah gate g ∈ G is desribed by: one output port g.out;

one or more input ports g.ini /i ∈ N; a dynami funtion whih links inputs with

outputs aording to stati (AND, OR, KooN) and/or dynami (PAND) Fault Tree

gates. As displayed in Table 4.3, the behaviour of the CDFT gates are haraterized

aording to its input events (A,B), whih an be extended to an arbitrary number

110

of input events.

� A set SC of Sub-Components, where eah subomponent sc ∈ SC is desribed by:

one or more output ports sc.outi; one or more input ports sc.ini; and a mapping to

another CDFT omponent's failure logi. For instane, for the CDFT model de-

pited in Figure 4.2, SC=C

2

: Nin = {C2.in1, C2.in2, C2.in3}, Nout = {C2.Out1};

mapping: C1.in1 → C2.in1; C1.in2 → C2.in2; C1.in3 → C2.in3; C2.out1 → OR.in2;

C2.out1 → AND.in1;

� A set of direted Edges E ⊆ ((N

intern

∪ N

in

∪ G.OUT ∪ SC.OUT) × (N

out

∪

G.IN ∪ SC.IN)) where: G.OUT is set of all outputs of all gates; G.IN is set of all

inputs of all gates; SC.OUT is the set of all outputs of all sub-omponents; and

SC.IN is the set of all inputs of all sub-omponents.

Table 4.3: Component Dynami Fault Tree Gates

Gate Notation (Gate Behaviour)

Y=AND(A,B) If A fails and B fails, then Y fails

Y=OR(A,B) If A fails or B fails, then Y fails

Y=PAND(A,B) If A fails before the failure of B or at the same time, then Y fails

Y=NOT(A) If A doesn't fail, then Y fails

CDFT omponents desribe the failure logi of a omponent through temporal and/or

boolean funtions, determining the ourrene of the output events depending on the

input event ourrenes and its orresponding ourrene time.

While a basi event haraterizes self-ontained simple failure logi, a omponent en-

loses any-omplexity failure logi (with possibly multiple I/O dependenies) spei�ed

using BEs, gates, and further sub-omponents. Therefore, the CDFT paradigm makes

it possible to embed in a omponent the dynami failure logi of a (sub)system and

(re)use it where needed addressing repeated omponents and repeated basi events.

Figure 4.2 haraterizes a hypothetial CDFT model with repeated omponents (C

2

)

and CDFT gates. Eah omponent (C

1

, C

2

) may have gates, basi events and/or other

omponents as inputs. Eah basi event (BE

1

, BE

2

, ..., BE

6

) is haraterized aording

to its probability density funtion and its failure rates. The failure rates may be spei�ed

111

as a single value or interval of possible failure rate values allowing to understand their

in�uene on system failure behaviour (see Setion 4.4).

The failure evaluation algorithm for the model in Figure 4.2 is:

C2.Out1 = AND(OR(BE3, BE4), OR(BE4, BE5))

C1.Out1 = OR(BE(λ1,
′exponential′), C2)

C1.Out2 = PAND(OR(BE(λ1,
′exponential′), C2),AND(C2, BE6, BE(λ2,

′exponential′)))

where the funtion BE(parameters, distribution) generates the orresponding failure data of

basi events. Note: C2.Out1 is simpli�ed to C2 in the previous equations beause C2

has a single output.

This approah (as with the Component Fault Tree approah) enables the system re�ne-

ment through arhitetural omponents until reahing a indivisible omponent, instead

of the lassial top-down approah adopted in most of the Fault Tree implementations.

To implement the CDFT paradigm, Monte Carlo simulations are performed on the

system's failure evaluation algorithm in order to estimate the failure probability. To

this end, it is exeuted a large number of times, eah exeution omprising of a set of

random variables orresponding to the failure ourrenes of the basi events. From the

law of big numbers, in the long run the failure probabilities of the system are alulated

throughout its lifetime [Zio13℄. For eah exeution: (1) the random time to failure

of basi events are alulated aording to their umulative probability distribution

funtion; (2) onneted gates and/or omponents use this information to determine

their outome (funtional or failed state); (3) When a failure at the output of a gate or

omponent ours, the failure time information is passed to the next gate/omponent

so that the system's dynami failure logi is traked from basi events to system-level

top-event.

In the Component Fault Tree approah it is possible to reuse a omponent throughout

the model. With Component Dynami Fault Trees the same onept is applied through

the reuse of the outomes of system gates/subomponents and their inner CDFT failure

logi and basi events. While for the implementation of CFTs ombinatorial logi and

algorithms for the evaluation of binary deision diagrams are applied (see Subsetion

112

2.3.1), in order to solve CDFT models Monte Carlo simulations are used aounting for

the temporal ourrene of events and omponents.

Figure 4.3 depits an example model that shows how the CDFT is implemented using

repeated omponents (IE4, IE5) and repeated events (BE2, BE5). The CDFT model

improves the readability and manageability of the dynami model. See Appendix C to

see how to model the same example using other formalisms.

Figure 4.3: Component Dynami Fault Tree Example

To analyse CDFTs, MatCarloRe tool [Manno12b℄ has been extended with NOT gates,

importane measurements (f. Setion 4.3) and unertainty analyses (f. Setion 4.4).

113

4.3 Sensitivity Analysis

The goal of the sensitivity analysis (importane measurement) is to weigh the ontri-

bution of omponents (or basi events) to the top-event failure ourrene based on the

struture of a system and omponent reliability. In the next subsetions we explain

simulation-based methods to estimate importane measurement indies and then how

we implemented the hosen method.

There exist analytial importane measurement indies [vanderBorst01℄ and they have

been applied suessfully by [Friks03℄ and [Ou00℄. However, sine Component Dynami

Fault Trees are analysed through Monte Carlo simulations, in this dissertation only

simulation-based importane measurement index values have been onsidered.

4.3.1 Simulation-based Importane Measurement Indies

Owing to the inreasing omplexity of urrent systems, in some ases analytial alu-

lations of important measurements are not feasible. To overome this issue, simulation-

based importane measurements were introdued [Wang04℄.

Failure Critiality Index (FCI): FCI value indiates the ontribution (perentage) of the

i -th omponent's failure to the system overall failure:

IFCI
i =

nF
i

NF
(4.15)

where,

� IFCI
i : failure ritiality index of the i -th omponent.

� nF
i : number of system failures aused by omponent i.

� NF
: total number of system failures.

To evaluate the frequeny of the i -th omponent failure ausing a system failure, we

reord the number of system failures aused by the omponent i (nF
i) with respet to

the total number of system failures (NF
).

114

Other simulation-based measurements fous on repair harateristis and omponent's

uptime/downtime values:

Restore Critiality Index (RCI): RCI value indiates the ontribution (perentage) of

the i -th omponent's repair to the system's overall repair:

IRCI
i =

nR
i

NR
(4.16)

where,

� IRCI
i : restore ritiality index of the omponent i.

� nR
i : number of system repairs aused by omponent i.

� NR
: total number of system repairs.

Operational Critiality Index (OCI): OCI value is de�ned as the perentage of the i -th

omponent's downtime over the system downtime:

IOCI
i =

downi

downsys

(4.17)

where,

� IOCI
i : operational ritiality index of the i -th omponent.

� downi: downtime of the omponent i.

� downsys: system downtime.

Due to the arhitetural design assumptions (non-repairable resoures) importane mea-

surements whih onsider repair harateristis are not onsidered (restore ritiality in-

dex). The operational ritiality index measures downtime values of the system and of

a omponent, but it does not onsider the ontribution of the omponent to the system

failure. Therefore, we fous on the Failure Critiality Index (IFCI
i) due to its diret

appliation with CDFTs and the signi�ane of its measurements. The main goal of the

FCI measurement is to identify weaknesses of the system design.

115

4.3.2 Implementation of the Sensitivity Analysis

To implement the failure ritiality index evaluation, we resort to the gates of the CDFT

model. For eah input event (E1, E2, . . . , EN), their failure ritiality index values are

alulated by examining when the input event Ei has aused the ourrene of a gate's

output event (Y). Subsequently, this analysis is extended to the output of the next

gate until we reah the output of the omponent and this proess is repeated until the

output of the system. In this way, we obtain the hain of gates and omponents that

ause the top-event of the system. For eah Monte Carlo trial, the omponents ausing

the top-event's failure ourrene are reorded and after a total of N Monte Carlo trials,

the relation between: (1) the total number of times the output event ours due to the

failure of an input event and (2) the total number of output event failure ourrenes is

alulated.

There exist two alternatives for onsidering the system failures aused by event/ompo-

nent i :

� Last event that aused the system to fail - triggering event.

� Minimal ut-set.

In our implementation, we have onsidered the triggering event implementation. As

noted by [Hilber05℄, the rationale under this deision relies on the fat that the index

beomes non-ambiguous and it is not neessary to alulate minimal ut-sets.

It is assumed that an input event auses the ourrene of the output event when the

input event's ourrene time (uptime) mathes with the output event's ourrene time

(uptime) (f. Figure 4.4). With the OR gate logi, it is neessary to take into aount

top event's downtime: if the event that aused the top event ourrene (uptime) is no

longer failed but the top event ontinues to be failed top event's downtime needs to be

heked (f. Figure 4.4 dashed line event).

Therefore, when analysing omplex systems, the system CDFT will have a set of inter-

onneted gates and eah of them will has its own failure ritiality index values with

respet to its input events.

Algorithm 1 determines for a CDFT model the failure ritiality index of any of its

116

B

Fail

Y

Fail

t

A

Fail

t

t

Y= OR (A,B)

IA
FCI
=2/3

B

Fail

Y

Fail

t

A

Fail

t

t

Y= AND (A,B)

B

Fail

Y

Fail

t

A

Fail

t

t

Y= PAND (A,B)

IB
FCI
=2/3

IA
FCI
=1/3

IB
FCI
=2/3

IA
FCI
=0

IB
FCI
=1

Figure 4.4: FCI Example Time-Diagrams

onstituent omponents or events. To this end the algorithm requires:

� The event whose failure ritiality index needs to be evaluated (represented by its

name, e.g., BE2 failed).

� The Top Event (TE) gate whose failure ritiality index needs to be evaluated.

The gate is represented by the following information: the output event's name and

a list of input events that are used to evaluate the TE output.

� A vetor with the information for all the gates of the CDFT model. Eah gate has

its output event's name and the list of input events that are used to evaluate its

outputs.

The output name of a gate will be referened by gate.Output_Name in the algo-

rithm. The list of input events will be referened by gate.Input(j), where j goes from

1 to the number of inputs of the gate. Finally, eah gate.Input(j) ontains its name

(gate.Input(j).Input_Name), and the FCI of this input event with respet to the out-

put event of this gate (gate.Input(j).FCI_V alue), i.e., the perentage that this input

was the ause of the output failure.

The Algorithm 1 traverses the CDFT's struture in a top-down manner �nding the

failure ritiality index value of the event variable ompositionally: the ontribution of

eah intermediate event (or a basi event) is weighted aording to the ontribution of

the gate they belong to (see Figure 4.5 and its explanations).

The system example in Figure 4.5 shows the appliation of the Algorithm 1 to the

hypothetial system shown in Figure 4.3 and in Appendix C.

System's failure event TE is aused by %IE1, %IE2 and %IE3; aordingly, eah of them

117

Algorithm 1 Critiality Analysis

1: funtion system_fci = FCI(event, TE, subtree)
2: system_fci = 0;
3: i = 0;
4: done = 0;
5: // for eah branh of the tree starting from the TE

6: while (i <= length(TE.Input)) AND (!done) do
7: fci = 1; // init for eah branh

8: IE = TE.Input(i);
9: fci = fci ∗ IE.FCI_V alue; // FCI of the orresponding input

10: if strcmp(IE.Input_Name, event) then // is this the analysed event?

11: done = 1;
12: else// not mathing with the 1st level, try inner subtree

13: j = 0;
14: inner = 0;
15: while (!inner) AND (j < length(subtree)) do
16: j = j + 1;
17: if strcmp(subtree(j).Output_Name, IE.Input_Name) then
18: inner = 1; // there is an inner event

19: if (inner) then
20: branch = subtree(j); // new TE to be found

21: branch_fci = FCI(event, branch, subtree(:)); // reursive all

22: fci = fci ∗ branch_fci; // update branh FCI ontribution to TE

23: if (inner) OR (done) then
24: system_fci = system_fci+ fci; // sum branh to system FCI

25: i = i+ 1;
return system_fci

will be aused also by its underlying intermediate events (e.g., %IE1 is aused by %IE4

and %IE5) until reahing the basi event level (e.g., %IE4 is aused by %BE1, %BE2

and %BE3). Therefore, the failure ritiality index for the BE2 is alulated as follows:

IFCI
BE2

= (%IE1).(%IE4).(%BE2) + (%IE1).(%IE5).(%BE2) + (%IE2).(%IE7).(%BE2) + (%IE3).(%IE8).(%BE2)

118

IE4 IE5 IE6 IE7 IE8

IE3IE2IE1

TE

Figure 4.5: Failure Critiality Index Calulation Example

4.4 Unertainty Analysis

The inability to obtain statistial failure harateristis of ertain omponents hampers

the appliability of the Dependability Evaluation Modelling approah. In order to deal

with unertain failure data of omponents, unertainty analyses have been integrated

within the D3H2 methodology.

It has been demonstrated that software failure rates are di�ult to determine (e.g.,

see [Littlewood00b; Go²eva-Popstojanova01; Lyu07℄). This unertainty in parameter

estimation an lead to very di�erent dependability analysis results.

There exist di�erent soures of unertainty [Oberkampf04℄:

� Epistemi Unertainty: lak of knowledge or information in any phase or ativity

of the modelling proess.

119

� Aleatory Unertainty: inherent variation assoiated with the physial system or

environment under onsideration.

In this dissertation we are onerned with the epistemi unertainty, whih deals with

the lak of knowledge of the exat behaviour of the system. The epistemi unertainty

will be addressed/onsidered as the in�uene of unertain omponent parameter values

(failure rate) on system's unreliability value.

In order to deal with the lak of exat knowledge of the failure rate data, seond-order

probabilities (i.e., statisti distribution of failure ourrene probabilities) have been

implemented in the MatCarloRE tool [Manno12b℄, allowing to alulate seond-order

probability mass funtions of: system failure probabilities and importane (sensitivity)

measurements.

Eah basi event is modelled with its orresponding random variable aording to its

failure distribution and parameters. When integrating unertainty in the DEM the im-

plemented approah allows the designer to speify interval failure rates: (1) the random

number orresponding to every variables' failure rate interval is sampled randomly, (2)

then the orresponding probability of interest is alulated, and (3) �nally outome

probabilities are distributed among histogram bins (where relative number of samples

per bin indiates the probability of the bin's assoiated probability interval) resulting

in a probabilisti distribution of probability values [Forster09℄ - seond order probabil-

ities (f. Figure 4.6). For simpliity and due to the lak of knowledge of real failure

data values, the stohasti distribution of variable probability intervals is hosen to be

uniform.

The following main ativities are involved in the unertainty analysis proess:

1. Monte Carlo sampling of the unertain variables: from the failure rates of the

unertain variables - spei�ed as interval values - a single failure rate value is

hosen randomly within the spei�ed failure rate interval aording to the uniform

distribution. The outome of this ativity is a randomly sampled failure rate.

2. Monte Carlo sampling of the time to failure (ourrene) of both unertain vari-

ables and known variables based on their failure rate values. The outome of this

proess are a set of randomly sampled time to failures.

3. With the updated numerial values of data variables, the Component Dynami

120

Figure 4.6: Overview of the Unertainty Analysis

Fault Tree model is solved getting as an outome ounters of top-event failure

ourrenes and ritial event failure ourrenes gathered in a system's mission

time (lifetime) vetor.

4. If the threshold of N Monte Carlo trials is reahed, aumulated Component

Dynami Fault Tree model's statistial results are gathered in a histogram whih

ounts and lassi�es the (probabilisti) frequeny of ourrene of the top event.

5. If the threshold of M Monte Carlo trials is reahed, the overall proess ends up

and the histogram is normalized. Otherwise, the proess is restarted again by

sampling failure rate values randomly and time to failure of the basi events.

The main drawbak of this approah is the time needed for the omputation of Monte

121

Carlo simulations (M×N iterations in Figure 4.6). While there exist analyti tehniques

for the redution of this time (e.g., dynami stopping riterion [Meedeniya11℄), we have

opted for using Matlab's parallel toolbox in order to perform parallel tasks in several

omputers at a time.

4.5 Cost Analysis

The ost assessment is arried out by adding up the ost of hardware and software

resoures (see Appendix E for the spei� values).

Software osts: the ost of software omponents is quanti�ed by onsidering their

development ost assuming that it will be paid o� in X

6

years. We lassify 4 types

of software omponents: fault detetion software (SW_FD), reon�guration software

(SW_R), reon�guration's fault detetion software (SW_FD_R) and Control/Detetor

software (SW_Det).

The development osts for eah of these 4 SW omponents is onsidered one for di�er-

ent subfuntion implementations of the same main funtion: one developed, they are

adapted for the related SF implementations. This assumption is adopted beause the

grouped subfuntion implementations are losely related and they do not need a signi�-

ant development ost (as demonstrated in [Kanoun01℄ through an empirial ase study,

the ost of N variants (in design diversity) is not N times the ost of a single software

variant): (1) fault detetion implementations adapt to di�erent subfuntions modifying

subfuntion-spei� time/value thresholds; (2) reon�guration implementations' devel-

opment ost does not di�er for di�erent subfuntions, alternative implementations will

have alloated di�erent reon�guration tables for di�erent subfuntions, but reativa-

tion logi holds the same for di�erent subfuntion's reon�guration implementations; (3)

reon�guration's fault detetion implementations development ost for di�erent subfun-

tions di�er only in the keepalive timeout, but their development is independent of any

subfuntion; and (4) all the onsidered ontrol/detetor software implementations have

a losely related logi.

Hardware ost: the ost estimation of sensors, ontrollers and atuators an be ob-

6

Let us assume X=4 years for alulation purposes.

122

tained from their suppliers. Human ost related with mounting and testing tasks is

onsidered for sensors and atuators assuming 10 minutes per sensor (atuator) at a

rate of 60 e/hour.

4.6 Results

Taking the extended HW/SW arhitetures of the safety-ritial Door Status Control and

Fire Protetion Control main funtions as a starting point (see Table 3.10 and Table

3.14 for the extended HW/SW arhitetures of the Fire Protetion Control and the Door

Status Control main funtions respetively), the Dependability Evaluation Algorithm

is applied to both main funtions. Furthermore, ritiality analysis to evaluate the

robustness of di�erent redundanies and unertainty analysis to manage the lak of

failure data information of software and ommuniation resoures are implemented as

well. Resultantly, in Subsetion 4.6.1 and Subsetion 4.6.2 the Dependability Evaluation

Models for the Fire Protetion Control and Door Status Control main funtions are

presented respetively. The failure rates and ost values of the di�erent resoures are

presented in Appendix E.

4.6.1 Fire Protetion Control

In this subsetion di�erent design strategies are analysed with respet to dependability

and ost for the Fire Protetion Control main funtion [Aizpurua14℄. By means of the

dependability evaluation model, simulations are performed to evaluate: (1) redundany

strategies; (2) reon�guration strategies; and (3) validity of the hypothesis of the ideal

behaviour of fault detetion, reon�guration and ommuniation.

Dependability Evaluation Model

Aording to the DEM approah, subfuntion's implementations are haraterized with

the failure rates of its onstituent resoures. For the Fire Detetion subfuntion (f.

Table 3.10, implementations #2 and #3), its implementation failures are spei�ed as

123

follows

7

(see Equation 4.1 for more information about the λ notation):

F
FireDetetion

1

= OR(λ
PU

FP

, λ
FireDetetor

)

F
FireDetetion

2

= OR(λ
PU

ACC_A

, λ
TemperatureSensor

, λ
SW

FireDetetion

, λ
Comm

)

The same equation holds for the failure haraterizations of the omission failures of:

fault detetion of the �re detetion (F
FD_FireDetetion

1

O

- #4), reon�guration of the �re

detetion (F
R_FireDetetion

1

O

- #5, F
R_FireDetetion

2

O

- #6), and fault detetion of the �re

detetion's reon�guration (F
FD_R_FireDetetion

1

O

- #7, F
FD_R_FireDetetion

2

O

- #8) subfun-

tions implementations:

F
FD_FireDetetion

1

O

= OR(λ
PU

FP

, λ
SW

FD_FireDetetion

, λ
Comm

)

F
R_FireDetetion

1

O

= OR(λ
PU

FP

, λ
SW

R_FireDetetion

)

F
R_FireDetetion

2

O

= OR(λ
PU

ACC_A

, λ
SW

R_FireDetetion

, λ
Comm

)

F
FD_R_FireDetetion

1

O

= OR(λ
PU

ACC_A

, λ
SW

FD_R_FireDetetion

, λ
Comm

)

F
FD_R_FireDetetion

2

O

= OR(λ
PU

FP

, λ
SW

FD_R_FireDetetion

, λ
Comm

)

Aordingly, the false positive failures will be haraterized with their haraterizing

failure distribution and orresponding parameters: F
FD_FireDetetion FP

= λ
FD_FireDetetion FP

;

F
FD_R_FireDetetion

1

FP

= λ
FD_R_FireDetetion

1

FP

; F
FD_R_FireDetetion

2

FP

= λ
FD_R_FireDetetion

2

FP

.

The failure of the �re detetion subfuntion will be haraterized aording to the fol-

lowing equation:

F
FireDetetion

= OR(F
All Impl._FireDetetion

, F
Unresolved_FireDetetion

, F
Dependenies_FireDetetion

)

The F
All Impl._FireDetetion

event will happen when eah implementation fails or is deteted

as failed:

F
All Impl._FireDetetion

= AND(F
FireDetetion

1

FP

, F
FireDetetion

2

FP

)

where F
FireDetetion

i

FP

= OR(F
FireDetetion

i

, λ
FD_FireDetetion FP

); i = {1, 2}.

7

For the sake of simpli�ation we will inlude in λComm failure rates of all the ommuniation

networks and interonneting gateway devie.

124

Sine the �re detetion subfuntion has 2 implementations, the failure unresolved event

will take into aount the failure unresolved situation of the �rst implementation:

F
Unr. Imp

1

_FireDetetion

= OR(F
R Seq.

1

_FireDetetion

, F
FD Seq.

1

_FireDetetion

)

The reon�guration sequene failure and fault detetion sequene failure for the �rst

implementation of the �re detetion subfuntion are de�ned as follows:

F
R Seq.

1

_FireDetetion

= PAND(F
R_FireDetetion

, F
FireDetetion

1

FP

)

The reon�guration failure F
R_FireDetetion

is developed as follows:

F
R_FireDetetion

= OR(F
All R Impl._FireDetetion

, F
R Unresolved_FireDetetion

)

where,

F
All R Impl._FireDetetion

= AND(F
R_FireDetetion

1

O/FP

, F
R_FireDetetion

2

O/FP

)

F
R_FireDetetion

i

O/FP

= OR(F
R_FireDetetion

i

O

, λ
R_FireDetetion

i

FP

); i={1,2}

F
R Unresolved_FireDetetion

= AND(F
FD_R

1

O

, F
FD_R

2

O

)

The fault detetion sequene failure for the �re detetion subfuntion is de�ned as

follows:

F
FD Seq._FireDetetion

1

= PAND(F
FD_FireDetetion

, F
FireDetetion

1

)

The fault detetion failure of the �re detetion F
FD_FireDetetion

depends on the operation

of the destination subfuntion (SF

DEST

), beause the FD implementation is loated at

the same PU:

F
FD_FireDetetion

= F
FD_Dest

1

The destination subfuntion is the Fire Control Algorithm (FCA) subfuntion (imple-

mentation #9 in Table 3.10):

125

F
FD_Dest

1

= OR(F
FireControlAlgorithm

1

, F
FD_FireDetetion

1

O

)

where,

F
FireControlAlgorithm

1

= OR(λ
PU

FP

, λ
SW

FireControl

, λ
Comm

)

Note that we have avoided inluding �re ontrol algorithm subfuntion's dependenies at

this level (i.e., user emergeny signal and �re detetion subfuntions) beause it would

reate a logial loop. Dependenies are taken into aount at a higher level (see �re

ontrol algorithm subfuntion failure's haraterization - F
FireControlAlgorithm

).

There is no input dependeny for the �re detetion subfuntion (F
Dependenies_FireDet

=

0): it is an input subfuntion and therefore, it does not reeive data from another

subfuntion.

The user emergeny signal input subfuntion (f. Table 3.10 #1) does not have redun-

danies. Therefore, its failure haraterization is diretly obtained through the failure

haraterization of the implementation's onstituent resoures:

F
UserEmergenySignal

= F
UserEmergenySignal

1

= OR(λ
EmergenyButton, PU

FP

)

As for the �re ontrol algorithm, there are no implementation redundanies, but there

exist input dependenies. Therefore, its failure expression is as follows:

F
FireControlAlgorithm

= OR(F
All Impl._FireControlAlgorithm

, F
Dependenies_FireControlAlgorithm

)

where,

F
All Impl._FireControlAlgorithm

= F
FireControlAlgorithm

1

F
Dependenies_FireControlAlgorithm

= F
Dep. C_CL

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

)

W
C_CL

=NOT(F
FireControlAlgorithm

1

)

F
I_CL

= OR(F
UserEmergenySignal

, F
FireDetetion

)

126

Therefore, after simpli�ation

8

, the �re ontrol algorithm subfuntion's failure is spei-

�ed as follows:

F
FireControlAlgorithm

= OR(F
FireControlAlgorithm

1

, F
UserEmergenySignal

, F
FireDetetion

)

Finally, the failure of the �re extintion subfuntion (F
FireExtintion

) and aordingly, the

failure of the Fire Protetion Control main funtion is spei�ed as follows:

F
FireExtintion

= OR(F
All Impl._FireExtintion

, F
Unresolved_FireExtintion

, F
Dependenies_FireExtintion

)

Note that the �re extintion subfuntion has one implementation (#10), therefore:

F
All Impl._FireExtintion

= F
FireExtintion

1

and F
Unresolved_FireExtintion

= 0.

F
FireExtintion

= OR(F
FireExtintion

1

, F
FireControlAlgorithm

)

F
FireExtintion

1

= OR(λ
PU

FP

, λ
Sprinkler

)

Redundany Strategies

To evaluate the failure probability of the Fire Protetion Control main funtion's

arhiteture ombinations, the arhiteture on�gurations displayed in Table 4.4 have

been tested.

Table 4.4: Fire Protetion Control Con�gurations with Alternative Redundany Strategies

ID
Con�guration

#1
No redundanies (f. Table 3.8)

#2
1 Heterogeneous redundany (f. Table 3.10)

#3 1 Homogeneous redundany onneted to the same PU

FP

#4 1 Homogeneous redundany onneted to a di�erent PU

Figure 4.7 depits Fire Protetion Control on�gurations' relative failure probability

8A+A.B = A+B

127

and relative ost normalized with respet to the on�guration without redundanies.

Alternative extended HW/SW arhitetures are analysed adding a homogeneous or

heterogeneous redundany to the �re detetion subfuntion. With homogeneous redun-

danies, the �re detetion sensor has been repliated with two alternative on�gurations:

onnet both �re detetion sensors to the PU

FP

(#3) or onnet eah �re detetion sen-

sor to a di�erent PU (#4). All these on�gurations inlude the same fault detetion

and reon�guration implementations (f. Table 3.10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time (Years)

R

e

l

a

t

i

v

e

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

Homogeneous Redundany: Same PU; Relative Cost=1.532

Homogeneous Redundany: Di�erent PU; Relative Cost=1.616

Heterogeneous Redundany; Relative Cost=1.448

Figure 4.7: Relative Failure Probability & Cost of Fire Protetion Control Con�gurations

(10

6

iterations)

As Figure 4.7 depits, heterogeneous redundany on�guration's failure prob-

ability is higher than homogeneous redundany on�guration when the extra

homogeneous redundany sensor is implemented in the same PU. However, when the

homogeneous redundany sensor is implemented in a additional PU, the failure prob-

ability of the arhiteture with homogeneous redundany is higher. This happens be-

ause both on�gurations (the homogeneous redundany implemented in a additional

PU and the heterogeneous redundany) add extra resoures to the extended HW/SW

arhiteture, they beome more sensitive to the ommuniation failures, and aord-

ingly the failure probability inreases. The di�erene between them relies on the used

resoures: while the heterogeneous redundany implementation adds another PU and

relies on the existing temperature sensor and the orresponding SW resoure to deter-

mine the presene of �re; the homogeneous redundany implementation adds another

128

PU and another �re detetion sensor. The failure rate of both PUs is the same and

the failure rate of the SW resoures is small ompared with the remainder resoures

(λSWFireDet
= 1 × 10−2), however, the failure rate of the smoke sensor (λF ireSensor =

3.77× 10−2) is higher than the temperature sensor (λTempSensor = 1.49× 10−2).

As for the ost analysis, heterogeneous redundanies are more eonomial than homo-

geneous redundanies beause this on�guration reuses already existing resoures in the

system arhiteture (i.e., temperature sensor, PU).

Clearly the reliability gain is something that should be evaluated in ase-by-ase basis.

For example, in two years time the failure probability is only redued approximately

by 10% while the ost is inreased by 44% in the heterogeneous redundanies ase and

it is even more expensive in the other ases. In the Fire Protetion Control ase, the

minimum number of detetors per area unit is limited by law and the addition of extra

detetors would not be bene�ial.

Reon�guration Strategies

To analyse further the di�erenes between homogeneous and heterogeneous redundan-

ies while onsidering the in�uene of reon�guration strategies, failure ritiality index

evaluations have been performed on the Fire Protetion Control main funtion's dif-

ferent arhitetures. Namely, the reon�guration subfuntion implementations of �re

detetion have been dupliated: in one on�guration they have been distributed in two

di�erent PUs and in another on�guration they have been entralised in the same PU

(f. Table 3.10).

Table 4.5 displays the impat of the failure of redundany and reon�guration strategies

on the system failure ourrene. The shown values are the in�uene of (1) �re detetion

subfuntion's redundany (FF ireDetection2
) and (2) its reon�guration strategies (FR Seq.)

on the Fire Protetion main funtion's failure .

Failure ritiality index values provide indiators about bottlenek in�uenes on system

reliability: heterogeneous and homogeneous redundanies implemented in di�erent PUs

perform better than homogeneous redundanies loated on the same PU due to the

bottlenek in�uene on ausing the top event. That is, PU

FP

performs as a ommon

ause failure and its failure inurs the simultaneous failure of other subfuntion im-

129

Table 4.5: Failure Critiality Index Values of the Fire Protetion Control (10

6

iterations)

Reon�guration

Strategy

Centralised Distributed

Redundany

Strategy

Homogeneous

Same PU

Homogeneous

Di�erent

PU

Heterogeneous

Homogeneous

Same PU

Homogeneous

Di�erent

PU

Heterogeneous

FCIFFireDetection2
0.339027 0.174606 0.179927 0.276643 0.154960 0.170669

FCIFR Seq.
0.177554 0.171728 0.174496 0.114232 0.107315 0.106994

plementations. The same logi applies to the reon�guration strategies: distributed

reon�guration implementations perform better than entralised implementations due

to the bottlenek in�uene on system failure probability.

In�uene of Health Management Implementations

Taking the heterogeneous redundany on�guration (#2) as a starting point (f. Table

3.10), Figure 4.8 depits normalized system's failure probability values (with respet

to the arhiteture without assumptions) for di�erent on�gurations under di�erent

assumptions regarding ideal fault detetion, reon�guration and ommuniation imple-

mentations.

As Figure 4.8 shows there is a 2.5% maximum di�erene in relative failure probabil-

ity between the real on�guration and ideal on�gurations in whih the fault detetion,

reon�guration and ommuniation are assumed to be ideal in all possible ombinations.

Among the ideal implementations, the on�guration with the ideal ommuniation (f.

yan line) deviates the most from their real values. Indeed, assumptions about the ideal

behaviour of the fault detetion and reon�guration implementations in�uene only the

�re detetion subfuntion's performane, beause �re detetion is the only subfuntion

with redundanies within the Fire Protetion Control main funtion. The ommuni-

ation in�uenes many di�erent subfuntions and their implementations and therefore,

the assumption about the ideal behaviour of the ommuniation plays a more impor-

tant role ompared with the ideal performane of the fault detetion and reon�guration

implementations.

Among health management implementations, fault detetion implementation has a on-

130

0 5 10 15 20 25 30
0.970

0.980

0.985

0.990

0.995

1.000
1.001

Time (Years)

R

e

l

a

t

i

v

e

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

(

w

r

t

R

e

a

l

C

o

n

�

g

u

r

a

t

i

o

n

V

a

l

u

e

s

)

2 Centralised Reon�guration Implementations; Heterogeneous Redundany Con�guration

Ideal: FD, R, Comm

Ideal: FD, R

Ideal: R, Comm

Ideal: FD, Comm

Ideal: FD

Ideal: R

Ideal: Comm

Figure 4.8: Failure Probability of Fire Protetion Control Con�gurations under Di�erent

Assumptions (10

6

iterations)

siderable e�et on the system failure probability ompared with the reon�guration im-

plementation's in�uene (f. magenta line). While the reon�guration implementation

has redundant implementations, the fault detetion implementation is a single point of

failure and it a�ets diretly to the �re detetion subfuntion failure.

As Table 4.6 displays, we alulate the failure ritiality index to (1) hek the ohereny

of the results showed in the Figure 4.8 and (2) see the e�et of the failure of di�erent

events on the Fire Protetion Control main funtion failure. Namely, failure ritiality

index values of the �re ontrol algorithm subfuntion (FCIFFCA
), �re detetion sub-

funtion (FCIFFireDet
), fault detetion sequene of the �re detetion (FCIFFD_FireDet Seq.

)

and reon�guration sequene of the fault detetion subfuntions (FCIFR_FireDet Seq.
) have

been alulated. Besides, as a further referene to the previous results, the system failure

probability at the time instant T = 5 is also displayed (Fire Extintion (FE) subfuntion

failure FFE � T = 5) in the Table 4.6.

As Table 4.6 on�rms, the in�uene of the ommuniation's performane is onsiderable

in onjuntion with the �re detetion's fault detetion. Let us onsider the FCIFFCA
ol-

umn: while assuming ideal reon�guration implementations deviates only by %0.38 from

131

Table 4.6: Unreliability and FCI values for Fire Protetion Control Con�gurations under

Di�erent Assumptions (10

6

iterations)

Con�g.

FFireExtinction

� T = 5

FCIFFCA
FCIFFireDet

FCIFFD_FireDet Seq.
FCIFR_FireDet Seq.

Ideal:

FD, R,

Comm

0.6497 0.3851 0.1442 0 0

Ideal:

Comm,

FD

0.6499 0.3869 0.2597 0 0.1725

Ideal:

Comm, R

0.6547 0.3975 0.279 0.1862 0

Ideal:

Comm.

0.6549 0.3995 0.2815 0.1838 0.167

Ideal:

FD, R

0.6584 0.3988 0.1418 0 0

Ideal: FD
0.6585 0.4003 0.257 0 0.1725

Ideal: R
0.6634 0.4106 0.2765 0.1884 0

Real 0.6634 0.4122 0.2788 0.187 0.1744

the failure ritiality index values of the real on�guration, there is a %6.53 deviation

if we onsider the on�guration assoiated with the ideal ommuniation performane

and ideal fault detetion performane.

If we ompare the failure ritiality index values of the �re detetion (FCIFFireDet
) and

�re protetion ontrol algorithm (FCIFFCA
) subfuntions, we an see that the ontri-

bution of the �re detetion subfuntion failure to the top event's failure ourrene is

redued beause: (1) other subfuntions (user emergeny signal subfuntion and �re pro-

tetion ontrol algorithm subfuntion) also do in�uene to the system failure ourrene;

and (2) there are repeated resoures whih ause the failure of di�erent subfuntions

simultaneously (e.g., PU

FP

), ontributing to their failure ritiality index values alto-

gether. This is why despite having a di�erene of 0.1 or greater between FCIFFireDet

values for di�erent on�gurations, the top event's failure probability does not have on-

siderable hanges (if any).

Figure 4.9 shows the seond order failure probability of the heterogeneous redundany

132

on�guration with 2 redundany implementations (f. Table 3.10) at the time instant

T = 5 for di�erent ommuniation's failure rate intervals. That is, how the ommuni-

ation's failure rate impats on the system's failure probability distribution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

lambda = [.0001-.001℄; mean= 0.653; std dev= 0.005

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

×10−2

lambda = [0.001-0.1℄; mean= 0.7283; std dev= 0.0396

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

lambda = [0.2-0.3℄; mean= 0.8995; std dev= 0.015

0 0.2 0.4 0.6 0.8 1
0.00

0.05

0.10

0.15

lambda = [0.1-0.2℄; mean= 0.8349; std dev= 0.0241

Figure 4.9: Fire Protetion Control Failure Probability Distribution: Communiation's Fail-

ure Rate In�uene (10

4×5.103 iterations)

As Figure 4.9 shows, the mean of the failure probability of the Fire Protetion Control

main funtion inreases with an inrement in the range of values of the ommuniation's

failure rate. These probability density funtion graphis show whih is the impat of

the ommuniation resoure's possible failure rates on the system's failure probability.

4.6.2 Door Status Control

In this subsetion di�erent analyses for the Door Status Control main funtion are

performed to evaluate di�erent design deisions and their in�uene on dependability

and ost. By means of the dependability evaluation model, simulations are performed to

evaluate: (1) redundany strategies; (2) reon�guration strategies; and (3) validity of the

hypothesis of the ideal behaviour of fault detetion, reon�guration and ommuniation.

133

Dependability Evaluation Model

Aording to the Dependability Evaluation Modelling approah, subfuntion's imple-

mentations are haraterized with its onstituent resoures' failure rates. For the Door

Open Detetion (DOD) subfuntion (f. Table 3.14, implementations #7 and #8), its

implementation failures are spei�ed as follows

9

(see Equation 4.1 for more information

about the λ notation):

F
DoorOpenDetetion

1

= OR(λ
PU

DSC_A

, λ
OpenSensor

)

F
DoorOpenDetetion

2

= OR(λ
PU

Cam

, λ
Camera

, λ
SW

OpenDet

, λ
Comm

)

The same equation holds for the failure haraterizations of the omission failures of:

fault detetion of the door open detetion (F
FD_DoorOpenDetetion

1

O

- #9), reon�guration

of the door open detetion (F
R_DoorOpenDetetion

1

O

- #10, F
R_DoorOpenDetetion

2

O

- #11), and

fault detetion of the door open detetion's reon�guration (F
FD_R_DoorOpenDetetion

1

O

-

#12; F
FD_R_DoorOpenDetetion

2

O

- #13) subfuntions implementations:

F
FD_DoorOpenDetetion

1

O

= OR(λ
PU

DSC_A

, λ
SW

FD_DOD

, λ
Comm

)

F
R_DoorOpenDetetion

1

O

= OR(λ
PU

DSC_A

, λ
SW

R_DOD

)

F
R_DoorOpenDetetion

2

O

= OR(λ
PU

Cam

, λ
SW

R_DOD

, λ
Comm

)

F
FD_R_DoorOpenDetetion

1

O

= OR(λ
PU

Cam

, λ
SW

FD_R_DOD

, λ
Comm

)

F
FD_R_DoorOpenDetetion

2

O

= OR(λ
PU

DSC_A

, λ
SW

FD_R_DOD

, λ
Comm

)

Aordingly, the false positive failures will be haraterized with their haraterizing

failure distribution and orresponding parameters: F
FD_DoorOpenDetetion FP

= λ
FD_DOD FP

,

F
FD_R_DoorOpenDetetion

i

FP

= λ
FD_R_DoorOpenDetetion

i

FP

i={1,2}.

The failure of the door open detetion subfuntion will be haraterized aording to

the following equation:

F
DoorOpenDetetion

= OR(F
All Impl._DOD

, F
Unresolved_DOD

, F
Dependenies_DOD

)

The F
All Impl._DOD

event will happen when eah implementation fails or is deteted as

9

For the sake of simpli�ation we will inlude in λComm failure rates of all the ommuniation

networks and interonneting gateway devie.

134

failed:

F
All Impl._DOD

= AND(F
DoorOpenDetetion

1

FP

, F
DoorOpenDetetion

2

FP

)

where F
DoorOpenDetetion

i

FP

= OR(F
DoorOpenDetetion

i

, λ
FD_DoorOpenDetetion FP

); i = {1, 2}.

Sine the door open detetion subfuntion has 2 implementations, the failure unresolved

event will take into aount the failure unresolved situation of the �rst implementation:

F
Unr. Imp

1

_DOD

= OR(F
R Seq.

1

_DoorOpenDetetion

, F
FD Seq.

1

_DoorOpenDetetion

)

The reon�guration sequene failure and fault detetion sequene failure for the �rst

implementation of the door open detetion subfuntion are de�ned as follows:

F
R Seq.

1

_DoorOpenDetetion

= PAND(F
R_DoorOpenDetetion

, F
DoorOpenDetetion

1

FP

)

The reon�guration failure F
R_DOD

is developed as follows:

F
R_DOD

= OR(F
All R Impl._DoorOpenDetetion

, F
R Unresolved_DoorOpenDetetion

)

where,

F
All R Impl._DoorOpenDetetion

= AND(F
R_DoorOpenDetetion

1

O/FP

, F
R_DoorOpenDetetion

2

O/FP

)

F
R_DoorOpenDetetion

i

O/FP

= OR(F
R_DoorOpenDetetion

i

O

, λ
R_DOD

i

FP

)

F
R Unresolved_DoorOpenDetetion

= AND(F
FD_R_DoorOpenDetetion

1

O

, F
FD_R_DoorOpenDetetion

2

O

)

The fault detetion sequene failure for the door open detetion subfuntion is de�ned

as follows:

F
FD Seq._DoorOpenDetetion

1

= PAND(F
FD_DoorOpenDetetion

, F
DoorOpenDetetion

1

)

The fault detetion failure of the door open detetion F
FD_DoorOpenDetetion

depends on

the operation of the destination subfuntion (SF

DEST

), beause the FD implementation

is loated at the same PU:

135

F
FD_DoorOpenDetetion

= F
FD_Dest

1

The destination subfuntion is the Door Control Algorithm (DCA) subfuntion (imple-

mentation #23 in Table 3.14):

F
FD_Dest

1

= OR(F
DoorControlAlgorithm

1

, F
FD_DoorOpenDetetion

1

O

)

where,

F
DoorControlAlgorithm

1

= OR(λ
PU

DSC_A

, λ
SW_CL

, λ
Comm

)

Note that door ontrol subfuntion's dependenies are not taken into aount deliber-

ately to avoid reating logial loops. At this level, we onsider only the implementa-

tion failure itself, and when haraterizing the failure of the door ontrol subfuntion

(F
DoorControlAlgorithm

) its dependenies will be onsidered.

There is no input dependeny for the door open detetion subfuntion, beause it is

an input subfuntion and therefore, it does not require to reeive data from another

subfuntion (F
Dependenies_DOD

= 0).

The failure haraterization of the Door Closed Detetion (DCD) subfuntion failure

(F
DCD

) follows exatly the same proess aounting for its respetive resoures' failures.

The remainder of input subfuntions (Enable Door Passenger - EDP #3, Door Close

Command - DCC #4, Door Open Command - DOC #5, #6, Door Veloity - DV

#21 and Obstale Detetion - OD #22) do not have redundanies and therefore, their

failure haraterization is diretly obtained through the failure haraterization of the

implementation's onstituent resoures:

F
EnableDoorPassenger

= F
EnableDoorPassenger

1

= OR(λ
EDD, PU

Driver

, λ
EnableButton

Driver

, λ
Comm

)

F
DoorCloseCommand

= F
DoorCloseCommand

1

= OR(λ
PU

Driver

, λ
CloseButton

Driver

)

F
DoorVeloity

= F
DoorVeloity

1

= OR(λ
PU

DSC_A

, λ
VeloitySensor

)

F
ObstaleDetetion

= F
ObstaleDetetion

1

= OR(λ
PU

DSC_A

, λ
ObstaleSensor

)

However, note that door open ommand has two 2 implementations whih operate as

136

ative redundanies:

F
DoorOpenCommand

1

= OR(λ
PU

Driver

, λ
OpenButton

Driver

)

F
DoorOpenCommand

2

= OR(λ
PU

DSC_A

, λ
OpenButton

Passenger

)

F
DoorOpenCommand

= AND(F
DoorOpenCommand

1

, F
DoorOpenCommand

2

)

As for the door ontrol algorithm, there are no implementation redundanies, but there

exist input dependenies. Therefore, its failure expression is as follows:

F
DoorControlAlgorithm

= OR(F
All Impl._DoorControlAlgorithm

, F
Dependenies_DoorControlAlgorithm

)

where,

F
All Impl._DoorControlAlgorithm

= F
DoorControlAlgorithm

1

F
Dependenies_DoorControlAlgorithm

= F
Dep. C_CL

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

)

W
C_CL

=NOT(F
DoorControlAlgorithm

1

)

F
I_CL

= OR(F
EDP

, F
DCC

, F
DOC

, F
DoorOpenDetetion

, F
DCD

, F
DV

, F
OD

)

Therefore, after simpli�ation

10

, the door ontrol algorithm subfuntion's failure is spe-

i�ed as follows:

F
DCA

= OR(F
DCA

1

, F
EDP

, F
DCC

, F
DOC

, F
DOD

, F
DCD

, F
DV

, F
OD

)

Finally, the failure of the door manipulation (DM) subfuntion (F
DoorManipulation

) and

aordingly, the failure of the Door Status Control main funtion is spei�ed as follows:

F
DoorManipulation

= OR(F
All Impl._DM

, F
Unresolved_DM

, F
Dependenies_DM

)

Note that the door manipulation subfuntion has one implementation (#24), therefore:

F
All Impl._DoorManipulation

= F
DoorManipulation

1

and F
Unresolved_DoorManipulation

= 0.

10A+A.B = A+B

137

F
DoorManipulation

= OR(F
DoorManipulation

1

, F
DoorControlAlgorithm

)

F
DoorManipulation

1

= OR(λ
PU

DSC_A

, λ
Motor

)

Redundany Strategies

For simpliity, 2 heterogeneous redundanies have been onsidered in the extended

HW/SW arhiteture displayed in Table 3.14 (door open detetion, door losed dete-

tion). In order to add further optimization possibilities (and arhiteture ombinations)

to the extended HW/SW arhiteture all possible heterogeneous redundanies have been

inluded. Therefore, within the design onsiderations we will inlude homogeneous and

heterogeneous redundanies for obstale detetion and door veloity subfuntions, apart

from the previously onsidered door open detetion and door losed detetion subfun-

tions' heterogeneous redundanies.

Figure 4.10 shows relative ost and failure probability of Door Status Control main fun-

tion's alternative on�gurations with respet to the Door Status Control on�guration

without redundanies desribed in the funtional model at Table 3.12. Among the 4 in-

put subfuntions with heterogeneous redundanies (Door Open Detetion - DOD, Door

Closed Detetion - DCD, Obstale Detetion - OD, and Door Veloity - DV), as Table

4.7 displays, alternative extended HW/SW arhitetures are analysed adding one addi-

tional heterogeneous redundany and/or homogeneous redundany to eah subfuntion

using the reon�guration strategy 2R Centralised desribed in Table 4.8.

Table 4.7: Door Status Control Con�gurations with Alternative Redundany Strategies

ID Con�guration

#1
No redundanies (f. Table 3.12)

#2 4 Heterogeneous redundanies

#3 4 Homogeneous redundanies

#4 3 Heterogeneous redundanies: DCD, DOD, DV; 1 homogeneous redundany: OD

#5 2 Heterogeneous redundanies: DCD, DOD; 2 homogeneous redundanies: OD, DV

#6 1 Heterogeneous redundany: DCD; 3 homogeneous redundanies: OD, DV, DOD

138

In all the on�gurations displayed in Table 4.7, homogeneous redundanies are reated

by repliating the orrespondent subfuntion implementation's sensor and onneting

them to the existing PU

DSC_A

operating as ative redundany.

0.7
0.75

0.8
0.85

0.9
0.95

1

1
1.1

1.2
1.3

1.4

0

10

20

→

←

←

←

→

→

1

2

3

4

5

6

Relative Fail. Prob.

Relative Cost

T

i

m

e

(

y

e

a

r

s

)

Figure 4.10: Relative Failure Probability & Cost of Alternative Door Status Control Main

Funtion's Con�gurations for the Train.Car

1

.Zone

A

.Door (10

6

iterations)

As Figure 4.10 depits, heterogeneous redundanies are more eonomial than homoge-

neous redundanies, nevertheless, their drawbak is that it is neessary to add further

mehanisms (SW) to make implementations ompatible, whih leads to having slightly

worse reliability than homogeneous redundanies due to the inreased failure soures.

To analyse further di�erenes between homogeneous redundanies and heterogeneous

redundanies, we alulate the ontribution of the door open detetion subfuntion

failure on the main funtion failure (failure ritiality index - f. Setion 4.3). At the

same time, the unertainty of the failure rate data (f. Setion 4.4) of the open detetion

subfuntion software (SW_Det) has been taken into aount. Figure 4.11 and Figure

4.12 show the distribution of the failure ritiality index values of door open detetion

subfuntion's redundany omponents with λ
SW_Det

= [0.001-0.1℄.

From Figure 4.11 and Figure 4.12 it is lear that the reuse of hardware omponents

adds bottleneks to the system design resulting in a worse FCI value than distributing

tasks among di�erent omponents: in the heterogeneous redundany on�guration the

amera is onneted to one PU and the original sensor is in another PU (f. Figure 4.11),

while in the homogeneous redundany on�guration redundant sensors are onneted to

139

5 · 10−2 0.1 0.15
0

0.1

0.2

0.3

mean=0.0826 std dev=0.0103

P

r

o

b

a

b

i

l

i

t

y

Figure 4.11: FCIDOD - Heterogeneous

Redundany (10

6

iterations)

5 · 10−2 0.1 0.15
0

0.1

0.2

0.3

0.4

mean=0.1506 std dev=0.0089

P

r

o

b

a

b

i

l

i

t

y

Figure 4.12: FCIDOD - Homogeneous

Redundany (10

6

iterations)

the same PU (f. Figure 4.12), whih explains why heterogeneous implementations are

less ritial in this ase.

Reon�guration Strategies

To analyse the in�uene of the number and distribution of reon�guration implemen-

tations on system dependability, this nomenlature is adopted: SF

i

refers to the i -th

implementation of the subfuntion (e.g., R_DOD

1

designates the �rst implementation

of the door open detetion's reon�guration subfuntion) and 1R, 2R and 3R identify

the number of reon�guration implementations.

Based on the system arhiteture omprised of 4 heterogeneous redundanies, alter-

native reon�guration strategies have been tested with di�erent failure rate values of

health management SW omponents (λ
SW_HM

): SW_FD, SW_R and SW_FD_R. The

failure rates of these software resoures have been modi�ed altogether to highlight the

in�uene of reon�guration implementations on system unreliability at the T = 10 years

time instant with 10

6

Monte Carlo trials.

From Table 4.8 two main patterns are identi�ed: the greater the λ
SW_HM

and number of

reon�guration redundanies, the better the reliability of distributed reon�gurations.

The unreliability of entralised reon�gurations on�rms that the introdution of addi-

140

Table 4.8: Door Status Control Failure Probability for Reon�guration Distribution Strategies

(T=10 years)

Con�guration Reon�guration Implementation Distributions

DSC Fail. Prob.

λ
SW_HM

=0.05

λ
SW_HM

=0.15

λ
SW_HM

=0.25

1R Centralised PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

) 0.856 0.887 0.902

1R Distributed

PU

1

(R_DOD

1

); PU

2

(R_DCD

1

); PU

3

(R_OD

1

);

PU

4

(R_DV

1

)

0.867 0.892 0.904

2R Centralised

PU

1

(R_DOD

1

, R_DCD

1

,R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

)

0.850 0.888 0.905

2R Distributed

PU

1

(R_DOD

1

, R_DCD

2

); PU

2

(R_DOD

2

, R_DCD

1

);

PU

3

(R_OD

1

, R_DV

2

); PU

4

(R_OD

2

, R_DV

1

)

0.853 0.888 0.905

3R Centralised

PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

);

PU

3

(R_DOD

3

, R_DCD

3

, R_OD

3

, R_DV

3

)

0.838 0.874 0.897

3R Distributed

PU

1

(R_DOD

1

,R_DCD

2

,R_OD

3

);

PU

2

(R_DOD

2

,R_DCD

1

,R_DV

3

);

PU

3

(R_DOD

3

,R_OD

1

,R_DV

2

);

PU

4

(R_DCD

3

,R_OD

2

,R_DV

1

)

0.839 0.875 0.897

tional omponents inrease system failure soures. However, with the inrease of the

failure rate values and reon�guration's redundanies, system's ommon ause failures

gain importane and distributed implementations perform better than on�gurations

with system bottleneks.

Interestingly, we ome up with a �threshold� failure probability, where from that point

on, the distribution of reon�guration strategies have no impat on the reliability of

the system arhiteture. The �threshold� failure probability dereases as the number

of reon�guration's redundany implementations inreases (see grey ells in Table 4.8).

This should be studied further, but it seems logial that the higher the unreliability of the

reon�guration implementations, the impat of the reon�guration strategies beomes

less important.

141

In�uene of Health Management Implementations

To validate the feasibility of the assumption of the ideal (non-faulty) behaviour of fault

detetion, reon�guration and ommuniation implementations, we evaluate their in�u-

ene on system's dependability under di�erent assumptions.

Taking the on�guration (2) of Figure 4.10 as the referene on�guration, Figure 4.13

depits the results of di�erent arhitetures to test the feasibility of the hypotheses about

the ideal behaviour of fault detetion, reon�guration and ommuniation implementa-

tions. The outome failure probability of di�erent on�gurations has been normalized

with respet to the referene on�guration, in whih the behaviour of the fault dete-

tion, reon�guration and ommuniation implementations have been onsidered with

their respetive failure haraterization.

0 2 4 6 8 10 12 14 16 18 20

0.94

0.96

0.98

1

Time (Years)

R

e

l

a

t

i

v

e

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

(

w

r

t

R

e

a

l

C

o

n

�

g

u

r

a

t

i

o

n

V

a

l

u

e

s

)

2R - Centralised; 4 Heterogeneous Redundanies

Ideal: FD, R, Comm

Ideal: FD, R

Ideal: R, Comm

Ideal: FD, Comm

Ideal: FD

Ideal: R

Ideal: Comm

Figure 4.13: Door Status Control: Ideal Con�gurations Relative Failure Probabilities w.r.t.

Referene Con�guration (10

6

iterations)

As Figure 4.13 depits, there is a 7% maximum di�erene between the ideal and the

referene on�gurations in whih the fault detetion, reon�guration and ommuniation

implementations are assumed perfetly reliable (f. yellow line). Besides, the in�uene

of the failure behaviour of the fault detetion is also notieable (dashed purple line). In

this spei� ase, this issue is aused by the lak of redundany implementations for the

fault detetion subfuntion.

142

To further evaluate the in�uene of the fault detetion and reon�guration subfun-

tion failures on system unreliability, failure ritiality index evaluations have been per-

formed for the on�gurations depited in Figure 4.10: 4 heterogeneous redundany

and 4 homogeneous redundany on�gurations. For the homogeneous redundany

on�guration (on�guration #3 in Table 4.7), 2 alternative arrangements have been

tested: onnet expliit homogeneous sensors to the same PU or onnet expliit homo-

geneous sensors to di�erent PUs. Table 4.9 displays the in�uene of the failure of fault

detetion and reon�guration subfuntions on di�erent Redundany Strategies (RS).

Table 4.9: FCIFFD_SF
and FCIFR_SF

using Di�erent Redundany Strategies (10

6

iterations)

RS
FCIFFD_DOD

FCIFR_DOD
FCIFFD_DCD

FCIFR_DCD
FCIFFD_OD

FCIFR_OD
FCIFFD_DV

FCIFR_DV

A
0.1520 0.1367 0.1524 0.1374 0.1520 0.1372 0.1563 0.1416

B 0.2265 0.1949 0.2267 0.1956 0.2265 0.1954 0.2362 0.1999

C 0.1826 0.1623 0.1832 0.1632 0.1825 0.1627 0.1863 0.1674

A: 4 Homogeneous Redundanies onneted to di�erent expliitly added 4 PUs

B: 4 Homogeneous Redundanies onneted to the same existing PU

DSC

C: 4 Heterogeneous Redundanies

Supporting the statements from Figure 4.13, Table 4.9 displays that the FCI values

of fault detetion subfuntion failures have higher ritiality than reon�guration sub-

funtion failures. With respet to the in�uene of alternative redundany arrangements

on system's failure ourrene, Table 4.9 also desribes how the in�uene on the top

event's failure ourrene of fault detetion and reon�guration subfuntions inreases

when onentrating redundanies in the same PU.

To hek the onsisteny of the data depited in Figure 4.13, Table 4.10 displays the

failure ritiality index values of alternative subfuntion failures under di�erent assump-

tions: door ontrol algorithm (FCIFDCA
) and door open detetion (FCIFDOD

) as an ex-

ample of input subfuntion's failure in�uene. Besides, the failure in�uenes of the fault

detetion sequene of the door open detetion (FCIFFD_DOD Seq.
) and reon�guration

sequene of the door open detetion (FCIFR_DOD Seq.
) on the system failure ourrene

are also analysed.

Figure 4.13 and Table 4.10 agree on the results, so that the less ritial (more reliable)

arhiteture is the ideal on�guration and the more unreliable the on�guration with

143

Table 4.10: Failure Probabilities and FCI Values for Con�gurations under Di�erent Assump-

tions (10

6

iterations)

Con�g. FDM � T = 5 FCIFDCA
FCIFDOD

FCIFFD_DOD Seq.
FCIFR_DOD Seq.

Ideal:

FD, R,

Comm

0.8724 0.9222 0.0953 0 0

Ideal:

Comm,

FD

0.873 0.9221 0.1016 0 0.0522

Ideal:

FD, R

0.878 0.9236 0.0931 0 0

Ideal: FD 0.879 0.9237 0.0994 0 0.0542

Ideal:

Comm, R

0.9007 0.9278 0.2123 0.1461 0

Ideal:

Comm.

0.9011 0.9279 0.2119 0.1456 0.0798

Ideal: R 0.878 0.9278 0.2121 0.146 0

Referene 0.906 0.9291 0.2085 0.1456 0.0851

the real referene model. Furthermore, we see that the in�uene of the fault detetion

is the most onsiderable ompared with fault detetion and ommuniation. Let us

fous on the olumn FCIFDCA
: while assuming ideal reon�guration and ommuniation

implementations di�ers in 0.14% and 0.129% from the referene on�guration's failure

ritiality index value respetively, assuming ideal fault detetion implementation does

make a 0.584% di�erene between ideal fault detetion and referene on�guration.

Let us now fous on the olumn FCIFDOD
: we an see that the on�guration whih as-

sumes ideal fault detetion (and ombinations thereof with ideal reon�guration and/or

ideal ommuniation) implementation has the biggest di�erene with respet to the

referene on�guration. Note that the door open detetion subfuntion is one of the

ontributors to the top event ourrene, but not the only one, the remainder of input

subfuntions, door ontrol algorithm subfuntion and the door manipulation implemen-

tation's resoures also do in�uene to the top-event failure ourrene.

As for the analysis of the in�uene of the ommuniation on the system failure prob-

ability, unertainty analyses have been implemented. To this end, di�erent interval

144

values have been assigned to the ommuniation's failure rate and we have analysed

its in�uene on the distribution of the top-event failure frequeny at the time instant

T = 5 (f. Figure 4.14). The analyses have been performed on the on�guration with 4

heterogeneous redundanies and 2 entralised reon�guration implementations.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

lambda = [.0001-.001℄; mean= .646; std dev= .015

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
×10−2

lambda = [0.001-0.1℄; mean= 0.7238; std dev= 0.0420

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

lambda = [0.2-0.3℄; mean= 0.8973; std dev= 0.0151

0 0.2 0.4 0.6 0.8 1
0.00

0.05

0.10

0.15

lambda = [0.1-0.2℄; mean= 0.831; std dev= 0.0244

Figure 4.14: Failure Probability Distribution: 2R Centralised Heterogeneous Con�guration -

Communiation's Failure Rate Intervals (10

4×5.103 iterations)

As Figure 4.14 on�rms, an inrease in the failure rate of the ommuniation results

in a worse system's failure probability. The shape of the system's failure probability

distribution depends on the seleted ommuniation's failure rate interval.

4.7 Conlusions

In this hapter the algorithm and its implementation for the reliability assessment of

the extended HW/SW arhiteture have been desribed. This approah makes possi-

ble the systemati evaluation of the in�uene on dependability and ost of redundany

strategies, reon�guration strategies and the in�uene of health management and om-

muniation implementations on system failure probability. The probabilisti evaluation

of the dependability evaluation model has been performed using the ombination of

145

Dynami Fault Tree and Component Fault Tree paradigms: Component Dynami Fault

Trees.

Besides, the outlined approah makes possible the evaluation of the in�uene of

ideal/non-ideal fault detetion, reon�guration and ommuniation implementations on

system failure probability. To this end, the in�uene of these implementations on system

failure probability has been taken into aount and their ontribution to the system fail-

ure ourrene has been evaluated using importane measurements.

Furthermore, in order to deal with the lak of exat failure data information of software

resoures as well as ommuniation implementations, unertainty analysis algorithms

have been implemented within the Dependability Evaluation Modelling approah. The

implementation enables the spei�ation of interval failure rates (instead of single value

data) and alulation of the failure probability distributions of top events failure prob-

ability ourrenes.

As for the ost assessment of extended HW/SW arhitetures whih use homogeneous or

heterogeneous redundanies, the main di�erene remains in the software development

ost. While homogeneous redundanies add an expliit hardware omponent to make

possible the system reon�guration, heterogeneous redundanies require additional (�t

for purpose) software to reuse ompatible implementations for further subfuntions.

The ost of hardware resoures is omputed diretly, but software implementations ost

needs onsidering additional fators. Software ost an be divided into development

and maintenane ost. Development of 2 di�erent software implementations with sim-

ilar harateristis is not quanti�ed intuitively. In this dissertation we have grouped

the development ost of similar SW resoures onsidering their development ost one.

Besides, we have also onsidered that the SW development osts will be paid o� in X

11

years (see Appendix E for the used failure rate and ost values).

All in all, the evaluation of whih redundany strategy is heaper does not have

only one answer. Depending on the type of heterogeneous redundany strategy

their osts also will be di�erent. Generally speaking heterogeneous redundanies

arising from natural ompatibilities require less additional resoures than heteroge-

neous redundanies arising from fored ompatibilities. Therefore, depending on the

type of heterogeneous redundany strategy the omparison between homogeneous and

11

X=4 years for alulation purposes.

146

heterogeneous redundany strategies will be di�erent.

In the ase of infotainment funtions, their failure ourrene does not pose ritial issues

for the system design. However, when onsidering safety-ritial funtion failures their

inability to perform an lead to the unavailability of the whole system. For instane, if

a door of a train ar fails (e.g., it is not possible to determine whether it is opened or

losed) it is possible that the system requires stopping ompletely and the assoiated

osts will inrease onsiderably. In these ases, the use of heterogeneous redundanies

to provide a ompatible (and possibly degraded) funtionality allows saving osts by

exploiting already existing hardware resoures.

The dependability analysis formalism presented in this hapter (Component Dynami

Fault Tree) is not able to evaluate the failure probability of the D3H2s ompliant re-

pairable HW/SW arhitetures. Although the extension of Component Dynami Fault

Trees to repairable systems is straightforward (i.e., onsidering repairable basi events),

the CDFT approah in general and the priority-AND gate in partiular are not able to

handle omplex repair poliies. Aording to the priority-based reon�guration proess

of the D3H2 methodology, when the failure of a subfuntion's implementation is to be

repaired, the implementation with the highest priority should be ativated among the

available redundanies for the failed subfuntion. Therefore, the repair proess may not

be sequential as determined by the logi of the priority-AND gate. In order to grasp

omplex repair situations, more powerful formalisms needs to be onsidered as desribed

in Chapter 5.

Furthermore, the ost alulation in this Chapter has been foused on the hardware,

software, and ommuniations ost. However, as it we will show in Chapter 5, the most

penalizing ost is the one assoiated with system unavailability (downtime osts).

147

148

Chapter 5

Dependability & Cost Analysis of

Repairable Systems

In the D3H2 methodology, the dependability evaluation of the extended HW/SW

arhitetures onstituted by repairable resoures sets new hallenges. While in Chapter

4 only the order of failure was important, in this hapter the order of failure and the

order of repair are addressed.

This hapter is organised as follows:

� Setion 5.1 introdues the problem addressed in this hapter.

� Setion 5.2 presents the Dependability Evaluation Modelling approah for re-

pairable systems fousing on the evaluation algorithm and its implementation

through the Stohasti Ativity Networks (SAN) formalism.

� Setion 5.4 applies the Dependability EvaluationModelling approah for repairable

systems to the running example of this dissertation.

� Setion 5.5 loses this hapter with onlusions and prospets.

5.1 Introdution

In Chapter 4 we have onstrained the Dependability Evaluation Modelling approah

(DEM) (and the extended HW/SW arhiteture) with system implementations whih use

non-repairable resoures. However, many of the urrent industrial systems are no longer

haraterized with non-repairable implementations. There exist mehanisms whih make

149

possible the repair of system resoures (either on-line or o�-line) and improve the avail-

ability of the system. Shifting from non-repairable systems towards repairable systems

introdues new hallenges that the repairable DEM approah and its analysis paradigm

must meet.

Namely, the haraterization of the system's repair proess governed by the priorities of

the implementations is not trivial. In the D3H2 methodology, the repair behaviour of

a system is haraterized aording to the reon�guration table (see Chapter 3). The

reon�guration table determines alternative implementations (either homogeneous or

heterogeneous) for the same subfuntion and their orresponding priorities. Sine im-

plementations are assumed to be repairable, subfuntion's repair proess will be hara-

terized aording to the implementations priority. That is, the reon�guration meha-

nism of the subfuntion's implementation have to ativate the implementation with the

highest priority among the available spare implementations of the subfuntion. This

means that it does not neessarily have to follow a �xed sequene, e.g., assume that

we have a subfuntion with 4 implementations and urrently the 3rd implementation

is operative while �rst and seond implementations are failed. If the �rst or the se-

ond implementation are repaired prior to the failure of the 3rd implementation, when

the 3rd implementation fails the subfuntion will be reon�gured to the 1st or the 2nd

implementation instead of reon�guring to the 4th implementation (f. Figure 5.1 (a)).

Figure 5.1: Challenges Emerging from Repairable Systems (a) Possible Reon�guration Se-

quenes (b) System Modelling through Dynami Fault Tree's Spare Gates and Components

Although the manageability and ease of use of Component Dynami Fault Tree formal-

ism for non-repairable systems makes this paradigm suitable for the analysis of the DEM

150

approah, its appliation is limited to non-repairable extended HW/SW arhitetures.

The repair proess in the D3H2 methodology annot be modelled using only sequential

logi - as determined by the logi of the PAND gate. More powerful formalisms are re-

quired in order to manage the stated repair strategies. While it is possible to use Markov

Chains to model suh omplex situations, in reality the use of pure Markov models is

not feasible: the size and omplexity of the resulting Markov model hampers under-

standability and maintainability of the system. The required size (number of states) to

model suh a omplex (user de�ned) repair strategies would result in a unmanageable

model.

The analysis of the extended HW/SW arhiteture whih uses repairable resoures opens

the way to explore new system properties suh as system availability and assoiated

downtime osts. The downtime ost will provide the designer with an additional design

indiator assoiated with the unavailability of the system. As we will see in the results

(f. Setion 5.4), this ost will penalize more the less reliable arhiteture due to the

inreased downtime.

In order to deal with the stated properties and implement the ompositional Depend-

ability Evaluation Modelling approah for repairable systems, we have analysed existing

formalisms looking for the following harateristis:

� Capability to model user-de�ned repair proesses.

� Dynami gates: apture the system failure logi aounting for time-ordered

events.

� Capability to model repeated events and repeated omponents or subsystems.

� Component-based haraterization.

� Support for any probability density funtion.

Figure 5.1 (b) shows an example of the systems that we analyse in this hapter using the

onept of Dynami Fault Tree's spare gates (see Subsetion 2.3.1). Namely, systems

with: (1) prioritized and repairable subsystems (S1, S2, S3, S4); (2) shared subsystems

(S2); (3) repeated omponents among di�erent subsystems (C1); and (4) repeated (BE3,

BE8) and repairable basi events (BE1, BE2, ..., BE10).

Furthermore, in addition to the assumptions adopted in Chapter 4 with respet to the

151

�xed arhitetural design deisions, throughout this hapter we onsider that:

� The proative/preventive maintenane is not applied and we will fous only on

the reative maintenane, i.e., the repair proess starts only when a resoure fails.

� We will deal with situations in whih the repaired resoures will be as good as new

ones after the repair proess without onsidering further degraded states.

5.2 Dependability Evaluation Modelling Approah for

Repairable Systems

The ompositional Dependability Evaluation Modelling approah for repairable systems

enables to analyse the dependability of extended HW/SW arhitetures systematially.

5.2.1 Conepts and Notation

The objetive of the DEM approah for repairable systems is the generi, systemati and

omplete failure and repair modelling of the extended HW/SW arhiteture to evaluate

the dependability of alternative extended HW/SW arhitetures. The failure model for

the DEM approah for repairable systems is the same as for the DEM approah for

non-repairable systems (see Subsetion 4.2.1).

With non-repairable resoures (f. Chapter 4) it is enough to assume that the im-

plementations are reon�gured sequentially so that we know whih implementation is

ative (working, operative) based on whih implementations are failed. With repairable

resoures and implementations, it is neessary to hek the status of all subfuntion's

implementations to know whih implementation is ative and aordingly determine

system's failure situations (f. Figure 5.1 (a)).

Let us de�ne when the implementation i will be ative: the implementation i will be

ative if (1) at the start of the system operation the implementation i has the highest

priority among the implementations for the same subfuntion; or (2) when a failure

of the ative implementation ours (whih is not the i -th implementation) and the

152

implementation i has the highest priority among the available implementations of the

same subfuntion.

Apart from the notation introdued in Table 4.1, we will also use additional notations

to support the modelling of repairable systems as desribed in Table 5.1.

Table 5.1: Notation of Failure and Working Events II

Notation Failure Logi

F
SF

i

| Ative

[SF℄.[Impl

i

℄ fail while ative

F
SF

i

FP | Ative

[SF℄.[Impl

i

℄ fail or FP while ative = OR(F
SF

i

| Ative

, F
FD FP

)

F
SF_Dest

i

| Ative

[SF_Dest℄.[Impl

i

℄ fail while ative

F
FD

i

O | Ative

[FD_SF℄.[Impl

i

℄ omission while ative

The stohasti failure haraterization of eah resoure is haraterized by randomly

sampling the failure and repair times aording to their Cumulative Probability Dis-

tribution Funtions (CDFs) along the system lifetime. The methodology supports any

CDFs, but for the sake of simpliity without losing the generality of the approah, in

subsequent probabilisti haraterizations exponential failure distributions are assumed.

Hene, the failure haraterization of system resoures (F
Res

) is de�ned aording to

their failure rates (λ
Res

) and repair rates (µ
Res

). Assuming exponential failure and repair

distributions, the failure haraterization of system resoures an be seen as Continuous

Time Markov Chains with working and failed states. The transitions between these

states are determined by failure rate (λ
Res

) and repair rate (µ
Res

).

The failure haraterization of a SF's i -th implementation ([SF℄.[Imp

i

℄ Failure) om-

prised of N resoures is spei�ed as follows:

F
SF

i

= OR(F
Res

1

, F
Res

2

, . . . , F
Res

N

) (5.1)

The same equation holds for the haraterizations of the omission failures of: fault dete-

tion subfuntion (FD_SF - F
FD

i

O

), reon�guration subfuntion (R_SF - F
R

i

O

), and

fault detetion of the reon�guration subfuntion (FD_R_SF - F
FD_R

i

O

) implementa-

tions. Aordingly, the false positive failures of fault detetion implementations (F
FD FP

153

and F
FD_R

i

FP

) will be haraterized with their haraterizing failure and repair distribu-

tions and orresponding parameters (e.g., exponential distribution with λ
FD FP

; µ
FD FP

and λ
FD_R

i

FP

µ
FD_R

i

FP

values). See Appendix E for failure and repair rate data values

used in this dissertation.

5.2.2 Analysis Algorithm

The DEM approah for repairable systems determines the dependability evaluation al-

gorithm. It de�nes the dynami failure behaviour of systems whih use fault detetion

and reon�guration implementations overing all possible failure situations for the spe-

i�ed extended HW/SW arhitetures. It allows to evaluate the onsequene of design

deisions on system dependability systematially. Resulting equations haraterize the

failure of suh systems ompositionally so that the failure logi is kept lear for omplex

systems.

To this end, the DEM approah for repairable systems haraterizes ombinations of

SF's implementation failures that prevent the extended HW/SW arhiteture from per-

forming its intended SF

12

. The SF will fail (F
SF

) when all implementations have failed

(F
All Impl.

), an implementation fails and reon�guration does not happen (failure unre-

solved, F
Unresolved

), or its input dependenies have failed (F
Dependenies

):

F
SF

= OR(F
All Impl.

, F
Unresolved

, F
Dependenies

) (5.2)

Assuming that we have N

SF

implementations of the subfuntion, the F
All Impl.

event

happens when eah implementation fails or is deteted as failed:

F
All Impl.

= AND(F
SF

1

FP

, . . . , F
SF

N

SF

FP

) (5.3)

The failure unresolved (F
Unresolved

) ours when the ative implementation fails and

either the fault is not deteted (failure undeteted event) or the reon�guration itself

fails (reon�guration failed event). For eah implementation there are di�erent failure

12

The failure of any subfuntion neessary for a main funtion provokes the immediate failure of a

main funtion. Hene, from this point onwards, we will only onsider the failure of a subfuntion.

154

unresolved events (F
Unr. Imp

i

) beause eah implementation may have di�erent failure

probabilities:

F
Unresolved

= OR(F
Unr. Imp

1

, . . . , F
Unr. Imp

N

SF

) (5.4)

To de�ne the failure unresolved event (F
Unr.Imp

i

) let us introdue two new events. The

�rst event ours when �rst the reon�guration subfuntion fails and then the i -th im-

plementation of the subfuntion fails when it is ative (reon�guration sequene failure,

F
R Seq.

i

):

FR Seq.
i

= PAND(F
R

, F
SF

i

FP | Ative

) (5.5)

The seond event ours when �rst the fault detetion of the SF fails and then the

i -th implementation of the SF fails when it is ative (fault detetion sequene failure,

F
FD Seq.

i

):

F
FD Seq.

i

= PAND(F
FD

, F
SF

i

| Ative

) (5.6)

Aordingly, the failure unresolved event of the i -th implementation (F
Unr. Imp

i

) ours

when either the fault detetion sequene (F
FD Seq.

i

) fails or the reon�guration sequene

(F
R Seq.

i

) fails:

F
Unr. Imp

i

= OR(F
FD Seq.

i

, F
R Seq.

i

) (5.7)

Dependenies address Input (I) and Control (C) subfuntions in�uene on ontrol and

Output (O) subfuntions respetively. Control SF failure impats diretly the output

subfuntion failure (C→O); and the in�uene of input subfuntion on ontrol subfun-

tion depends if the system's ontrol on�guration is operating in Closed Loop (C_CL)

or Open Loop (C_OL):

F
Dependenies

= OR(F
Dep. C_CL

, F
Dep. C_OL

) (5.8)

155

Assuming thatW
C_X

=OR(W
C_X

1

,. . . , W
C_X

NW
) means that any of the NW implemen-

tations of the C_X subfuntion are working (where X = {CL,OL}), Equations in 5.9

desribe the di�erent input SFs that a�et eah ontrol on�guration (I_CL→C_CL,

I_OL→C_OL). F
Dep. C_OL

may not happen beause the OL ontrol generally does not

have input dependenies:

F
Dep. C_CL

= AND(W
C_CL

, F
I_CL

) F
Dep. C_OL

= AND(W
C_OL

, F
I_OL

) (5.9)

The reon�guration failure is a speial subfuntion and therefore F
R

is developed like

Equation 5.2, exept that there are no additional dependenies:

F
R

= OR(F
All R Impl.

, F
R Unresolved

) (5.10)

F
All R Impl.

indiates the failure of all reon�guration implementations, and F
R Unresolved

designates the reon�guration's failure unresolved ondition. Assuming M

reon�guration implementations:

F
All R Impl.

= AND(F
R

1

O/FP

, . . . , F
R

M

O/FP

) (5.11)

F
R Unresolved

happens when M implementations of the FD_R_SF fail simultaneously

and it is a diret onsequene to our design hoie: all reon�guration's fault detetion

implementations (FD_R_SF) are ative and homogeneous redundanies (heartbeat im-

plementations):

F
R Unresolved

= AND(F
FD_R

1

, . . . , F
FD_R

M

) (5.12)

Aordingly, the false positive of the reon�guration's fault detetion ours when all

FD_R_SF implementations raise the false positive ondition simultaneously. Although

the system may operate orretly when a false positive ours, it has to assume that the

information provided by the fault detetion is orret, sine there is no mehanism to

156

detet the inorret operation of fault detetion.

The fault detetion failure F
FD

depends on the operation of the destination subfuntion

(SF

DEST

), beause the FD implementation is loated at the same PU. Hene, F
SF_DEST

in�uenes diretly F
FD

.

When the FD implementation fails, the hange of SF

DEST

's implementation determines

its reon�guration. We assume that the hange of destination SF's implementation

ativates the orresponding FD implementation and the previous one is deativated.

Equation 5.13 desribes the FD_SF failure ase when FD_SF has K implementations:

F
FD

= OR(F
FD_Dest

1

| Ative

, . . . , F
FD_Dest

K

| Ative

) (5.13)

The i -th fault detetion implementation's failure while it is ative (F
FD_Dest

i

| Ative

),

expresses the following event: either i -th destination subfuntion or the i -th fault dete-

tion implementation fail while they are ative (remember that the i -th fault detetion

is loated at the same PU as the SF_DEST

i

implementation - see arhitetural design

deisions and hypotheses at Setion 4.1):

F
FD_Dest

i

| Ative

= OR(F
SF_DEST

i

| Ative

, F
FD

i

O | Ative

) (5.14)

To avoid reating loops when evaluating system's dependability, we have onsidered that

fault detetion implementation's failure is determined by the destination subfuntion's

implementations failure without onsidering destination subfuntion's input dependen-

ies (f. Equation 5.14). If dependenies are taken into aount, they will reate logial

loops. Therefore, the in�uene of dependenies is taken into aount at the �top� sub-

funtion's failure level (f. Equation 5.2). At this level, if any dependent subfuntion

fails, it leads diretly to the failure ourrene of the subfuntion.

5.2.3 Implementation

Stohasti Ativity Networks (SAN) formalism meets all the design requirements (f.

Setion 5.1) needed to model extended HW/SW arhitetures e�etively and intuitively

[Sanders02a℄. Namely, SAN enables to model:

157

(1) User de�ned repair priorities using input and output gates.

(2) The behaviour of dynami gates using plaes, ativities and input and output gates.

(3) Repeated events and omponents through the repliate/join formalism.

(4) Any probability density funtion through simulations.

Stohasti Ativity Networks

SAN formalism [Sanders02a℄ extends Petri Nets model by generalizing the stohasti

relationships and introduing mehanisms to onstrut hierarhial models. SAN mod-

elling primitives inlude plaes, ativities, input gates, and output gates [Sanders12℄ (see

Figure 5.2).

Standard PlaceStandard Place Extended PlaceExtended Place Input GateInput Gate Timed ActivityTimed ActivityOutput GateOutput Gate Instantaneous ActivityInstantaneous Activity

Figure 5.2: Graphial Notation of SAN Elements

Plaes represent the state of the modelled system. Eah plae ontains a ertain number

tokens de�ning the marking of the plae: a standard plae ontains integer number of

tokens, while extended plaes ontain other data types than integers (e.g., �oats, array).

There are two types of ativities: (1) instantaneous ativities represent system ativities

whih omplete in negligible amount of time; and (2) timed ativities represent ativities

of the modelled system whose duration has an e�et on the system performane. With

timed ativities the ompletion time an be a onstant value or a random value. When

the ompletion time is random its value has to be ruled by a probability distribution

de�ning the time to �re the ativity. Parameters of ativities may be marking (token)

dependant.

Ativities �re based on the onditions de�ned over the marking of the net and their

e�et is to modify the marking of the plaes. The ompletion of an ativity of any

kind is enabled by a partiular marking of a set of plaes. Assuming that there are

neither input nor output gates, eah ativity has input and output ars linked with its

158

input and output plaes respetively. The presene of at least one token in eah input

plae enables the �ring of the ativity and removing the token from its input plaes and

plaing them in the output gates.

Assoiated with eah ativity is a reativation funtion. This funtion de�nes the mark-

ing dependent onditions under whih an ativity is reativated, that is, the ativity is

aborted and a new ativity time is immediately obtained from the ativity time distri-

bution. The reativation funtion onsists of an ativation prediate and reativation

prediate. An ativity is reativated at the moment of a marking hange if (1) the

reativation prediate holds for the new marking; (2) the ativity remains enabled; and

(3) the ativation prediate holds for the marking in whih the ativity was originally

ativated.

Eah ativity may have more than one ase assoiated to it, whih stands for a possible

outome of the ativity. Eah ase orresponds to a ertain e�et of the ompletion of

an ativity and has a predetermined probability.

Another way to enable a ertain ativity onsists of input and output gates. I/O gates

make SAN formalism general and powerful enough to model omplex real situations.

They determine the marking of the net based on user-de�ned rules, whih determine

when an ativity �res and its e�et on the marking of the net.

Input gates ontrol the enabling of ativities and de�ne the marking hanges that will

our when an ativity ompletes. A set of plaes are onneted to the input gate and

and the input gate is onneted to an ativity haraterizing the marking of the net

based on two expressions:

� Enabling prediate: a boolean ondition expressed in terms of the marking of the

plaes onneted to the gate; if suh ondition holds, then the ativity onneted

to the gate is enabled.

� Input Funtion: the e�et of the ativity ompletion on the marking of the plaes

onneted to the gate.

An output gate is onneted to an ativity and a set of plaes and it de�nes the marking

hanges that will our when an ativity ompletes. It spei�es the e�et of ativity

ompletion on the marking of the plaes onneted to the output gate. Output gates

are de�ned only with an output funtion. The funtion de�nes the marking hanges

159

that our when the ativity ompletes.

The repliate/join operators allow to model through a ompositional tree struture

di�erent atomi SAN models linked in a unique omponent-based omposed model. In

the tree struture, atomi SAN models are linked together through join operators using

the shared plaes between SAN models. The repliate operator onstruts a number

of idential opies of the SAN model through the repliate operator (same onept as

Parametri Fault Trees [Codetta-Raiteri05℄).

Therefore, the analyst an fous on spei� harateristis of the system behaviour

through �t-for-purpose atomi models and later join independently validated atomi

models to obtain a more omplex omposed system model.

The performane measures are arried out through reward variables by hoosing a spe-

i� solver to generate the solution. Reward funtions are de�ned in order to retrieve

a performane measurement over the spei�ed model. There are two kind of reward

funtions (1) state reward funtions, whih are based on the marking of the net; and

(2) impulse reward funtions, whih are based on the ompletion of the ativities. The

performane measurement is evaluated as the expeted value of the reward funtion.

The modelling and analysis of SAN models is performed through the Möbius tool

[Courtney04; Illinois14℄. Please refer to [Sanders02a; Sanders12℄ for more information

and formal de�nition of SAN formalism.

5.3 Cost Analysis

Apart from the hardware and software ost desribed in Setion 4.5, downtime osts

are also inluded when studying repairable systems to re�et the penalization inurred

due to the system's unavailability.

In the spei� ase of railway systems, downtime ost is a ritial fator whih impats

negatively the overall eonomi budget. The downtime ost will be measured as the

ombination of: (1) number of travels lost while the train was stopped (travels_lost);

(2) number of people in eah travel (people_travel); and (3) average ost of a tiket per

person (tiket_ost):

160

downtime_cost = travels_lost× people_travel × ticket_cost

travels_lost =
travels

hour
× downtime

downtime = unavailability×mission time

We will assume that we do not have to stop the whole train in order to �x a failure

in a single ar. Besides, for alulation purposes let us assume the following values

(ommon values for a short-distane (< 50 km) train):

travels
hour

= 2; people_travel =

20; and tiket_ost = 1 e. The mission time will be onsidered 30 years and we will

evaluate the unavailability at T = 30 years time instant.

5.4 Results

Sine the detailed dependability analysis of repairable Door Status Control and Fire

Protetion Control main funtions require onsidering similar underlying onepts, in

Subsetion 5.4.1 we introdue the key onepts and models for the dependability analysis

of extended HW/SW arhitetures using a simple example. Applying the onepts and

models explained in Subsetion 5.4.1, dependability and ost evaluations of the Fire

Protetion Control and Door Status Control main funtions are examined in Subsetion

5.4.2 and Subsetion 5.4.3 respetively.

5.4.1 SAN Generi Models

Consider the hypothetial system displayed in Table 5.2 omprised of prioritized im-

plementations eah of them haraterized by their onstituting resoures, in turn har-

aterized with their orresponding failure and repair rates. This model is simple but

representative enough to desribe the main dependability modelling harateristis that

are used to analyse more omplex extended HW/SW arhitetures.

In the remainder of this subsetion, we apply the equations desribed in the Depend-

ability Evaluation Modelling approah for repairable systems (f. Setion 5.2) to the

hypothetial extended HW/SW arhiteture displayed in Table 5.2 in a bottom-up man-

ner. System's failure probability alulation is performed using the SAN formalism by

161

Table 5.2: Repairable HW/SW Arhiteture Example

MF SF Subfuntion Type Implementation Resoures Priority #

MF SF

SF I Impl1 Res1, Res2, Res3 1 1

SF I Impl2 Res2, Res4, Res5 2 2

FD_SF FD FD_Impl1 Res2, Res6, Res7 1 3

R_SF R R_Impl1 Res2, Res7, Res8 1 4

R_SF R R_Impl2 Res7, Res9, Res10 2 5

FD_R_SF FD_R FD_R_Impl1 Res2, Res10, Res11 1 6

FD_R_SF FD_R FD_R_Impl2 Res7, Res10, Res12 1 7

ControlSF C C_Impl1 Res1, Res12, Res13 1 8

OutputSF O O_Impl1 Res1, Res14, Res15 1 9

means of the Möbius tool.

Resoures

Resoures are the most basi models in the DEM approah. The failure haraterization

of resoures (FRes) is de�ned aording to their failure and repair rates.

In the SAN notation, we model resoures with atomi models haraterizing their failure

and repair rates through ativities. Figure 5.3 desribes the haraterization of the

resoure Res1 : plaes Res1_OK and Res1_KO model working and failed states and

ativities Res1_Fail and Res1_Repair model failure and repair ativities with their

orresponding probabilisti distribution and parameters.

Figure 5.3: Atomi Model of Resoures (R01_Res1)

In order to use a onsistent nomenlature throughout this hapter, the models

162

of resoures are denoted as RX_Resoure where X identi�es the resoure X =

{1, 2, . . . , 15} (f. Table 5.2).

Implementations

The failure of eah implementation is haraterized aording to the working or failure

states of its onstituting resoures (f. Equation 5.1).

There are two kind of implementations: implementations without redundanies and

implementations with redundanies. In both ases, the implementations will be hara-

terized with two interonneted models: an atomi model desribing implementation's

failure/repair logi; and a omposed model whih links: (1) the models of the imple-

mentation's resoures desribing their failure/repair logi (f. Figure 5.3); with (2) the

model of the implementation whih desribes its failure/repair logi (f. Figure 5.4,

Figure 5.6).

The implementation's models are named as I#_Implementation and their omposed

models are named as top_I#_Implementation where # identi�es the implementation

= {1, 2, . . . , 9}.

Implementations without redundanies are modelled with failed and repair events

without the need to ativate redundant implementations. Figure 5.4 presents the SAN

model of the implementation #3 from Table 5.2. Implementations without redundanies

are haraterized with the following plaes:

� I_FD_Impl1_Ative: implementation ative plae. The initial marking of this

plae will be 1.

� I_FD_Impl1_KO : implementation failed plae. The input gate Fail_FD_Impl1

sets the marking of this plae to 1 if any of its onstituting resoures (Res2, Res6,

Res7) is failed, otherwise if all the resoures are working the marking of this plae

will be zero.

� Res2_KO, Res6_KO, Res7_KO : these plaes indiate the failure of the imple-

mentation's onstituent resoures (see Figure 5.3).

Table 5.3 displays the failure and repair ativities behaviour modelled through

163

Figure 5.4: Atomi Model of Implementations

without Redundanies (I03_FD_Impl1, #3)

Figure 5.5: Composed Model of Im-

plementations without Redundanies

(top_I03_FD_Impl1)

Table 5.3: Ativities in I03_FD_Impl1

Ativity:
FD_Impl1_Fail

Time to

omplete:

Immediate

Input

gate:

Fail_FD_Impl1

Input gate

prediate:

(m(I_FD_Impl1_KO)==0 &&

(m(Res2_KO)==1||m(Res6_KO)==1

|| m(Res7_KO)==1))

Input gate

funtion:

m(I_FD_Impl1_Ative)=0;

m(I_FD_Impl1_KO)=1;

Ativity: FD_Impl1_Repair

Time to

omplete:

Immediate

Input

gate:

Repair_FD_Impl1

Input gate

prediate:

(m(I_FD_Impl1_KO)==1

&& m(Res2_KO)==0 &&

m(Res6_KO)==0 &&

m(Res7_KO)==0)

Input gate

funtion:

m(I_FD_Impl1_Ative)=1;

m(I_FD_Impl1_KO)=0;

Fail_FD_Impl1 and Repair_FD_Impl1 input gates

13

and Figure 5.5 displays the om-

posed model, whih links the models of resoures (f. Figure 5.3) and implementation

(f. Figure 5.4) using the join operator and shared plaes. Using the join operator se-

leted plaes are shared among the models that ontain this plae. By means of shared

plaes, repeated resoures and repeated omponents are modelled.

Again for reading purposes, we will simplify the information shown in the following

input gate tables. Spei�ally we will omit the linked ativity whih an be seen in the

orresponding �gure and we will also omit the time to omplete beause in all the

ases studied throughout this hapter it is always immediate.

Implementations with redundanies require to (de)ativate (or reon�gure) redun-

dant implementations aording to the implementations' states and priorities. Figure

13

The funtion m(x) denotes the marking of the plae x.

164

5.6 depits the SAN model of the implementation #1 from Table 5.2.

Figure 5.6: Atomi Model of the Implementa-

tions with Redundanies (I01_Impl1, #1)

Figure 5.7: Composed Model of Implementa-

tions with Redundanies (top_I01_Impl1)

Table 5.4: Ativities in I01_Impl1

Input

gate:

Fail_Impl1

Input gate

prediate:

((m(Res1_KO)==1 ||

m(Res2_KO)==1||m(Res3_KO)==1)

&& m(I_Impl1_KO)==0)

Input gate

funtion:

if(m(I_Impl1_Ative)==1)

m(I_Impl1_Ative)=0;

if(m(I_Impl1_StandBy)==1)

m(I_Impl1_StandBy)=0;

m(I_Impl1_KO)=1;

Input

gate:

Repair_Impl1

Input gate

prediate:

(m(I_Impl1_KO)==1 &&

m(I_Impl1_StandBy)==0

&& m(Res1_KO)==0 &&

m(Res2_KO)==0 &&

m(Res3_KO)==0)

Input gate

funtion:

m(I_Impl1_KO)=0;

m(I_Impl1_StandBy)=1;

Repliated subfuntion's implementations are haraterized with the following plaes:

� I_Impl1_Ative: implementation ative plae. If the implementation's priority is

the highest, then the initial marking of this plae will be 1, otherwise the initial

marking of this plae will be zero.

� I_Impl1_KO : implementation failed plae. The input gate Fail_Impl1 sets the

marking of this plae to 1 if any of its onstituting resoures fails (Res1, Res2,

Res3). If all resoures are operative the marking of this plae will be zero.

� I_Impl1_StandBy : implementation standby plae. If the priority of the imple-

mentation is the highest among the subfuntion's implementations, the marking

of this plae will be zero. Otherwise, if the priority of the implementation is not

the highest or if the implementation has been repaired after a failure the marking

of this plae will be 1.

� I_Impl1_Reon�gure: reon�guration plae. This plae will be ativated through

the reon�guration implementation model (see Figure 5.8). The marking of this

165

plae is zero until the reon�guration implementation logi deides to reon�gure

an implementation and sets its marking to 1. Therefore, when this plae is set to 1

and the marking of the StandBy plae is one, the implementation will be ativated

immediately setting again the marking of the plae I_Impl1_Ative to one.

� Res1_KO, Res2_KO, Res3_KO : these plaes indiate the failure of the imple-

mentations onstituent resoures aording to the logi desribed in Figure 5.3.

Note that an implementation may fail either when it is in ative operation or in standby

operation. Table 5.4 displays failure and repair haraterizations of input gates for

implementations with redundanies. The omposed model of the implementation with

redundanies is depited in Figure 5.7. The di�erene with the implementation without

redundanies is on higher levels when onneting omposed models of implementations

with their reon�guration logi and failure logi.

The shared resoures among implementations at as ommon ause failures for all the

implementations whih use the plaes of the resoures as a part of the implementations

failure haraterization.

Reon�guration's funtional operation

When a implementation fails, the reon�guration implementation has to ativate an

available redundant implementation taking into aount implementation's priorities. In

order to manage the marking of the reon�guration plaes in the models of the imple-

mentations with redundanies (tagged with the su�x Reon�gure in the Figure 5.6, i.e.,

I_Impl1_Reon�gure) the model of the reon�guration logi is reated (f. Figure 5.8).

The reon�guration logi in Table 5.5 enables the priority-based reon�guration. The

Reon�gure input gate reon�gures subfuntions' implementations via shared plaes

I_Impl1_Reon�gure (see Figure 5.6) and I_Impl2_Reon�gure. If the reon�guration

logi determines that an implementation should be reon�gured, it sets a token in

its respetive Reon�gure plae. When there is a token in I_Impl1_Reon�gure or

I_Impl2_Reon�gure plae, the orresponding implementation (aording to the model

of the implementation with redundanies - see Figure 5.6) moves the token from the

StandBy plae to the Ative plae and it starts operating immediately. Table 5.5 dis-

plays the logi of the Reon�gure input gate.

166

Figure 5.8: Atomi Model of the Reon�gura-

tion Logi (Reon�gurationLogi_SF)

Table 5.5: Ativities in Reon�gura-

tionLogi_SF

Input

gate:

Reon�gure

Input gate

prediate:

((m(I_Impl1_KO)==1 &&

m(I_Impl2_StandBy)==1)

|| (m(I_Impl2_KO)==1 &&

m(I_Impl1_StandBy)==1)))

Input gate

funtion:

if(m(I_Impl1_StandBy)==1)

m(I_Impl1_Reon�gure)=1;

else if (m(I_Impl2_StandBy)==1)

m(I_Impl2_Reon�gure)=1;

The input gate funtion in the Reon�gure input gate enables to reon�gure the sub-

funtion's implementation to the available highest priority implementation. The mod-

els whih haraterize the reon�guration logi are named as Reon�gurationLogi_XX

where XX identi�es the spei� subfuntion (XX={SF, R_SF, FD_R_SF}).

Implementation fails while ative

With non-repairable resoures it is enough to assume that implementations are reon-

�gured sequentially and the logi for the system operation an be de�ned based on the

failed implementations. However, with repairable resoures it is neessary to keep trak

of whih implementation is ative to de�ne the failure logi of system events (f. Figure

5.1 (a)).

To determine whih implementation is ative, it is neessary to hek the status of all

subfuntion's implementations. In the hypothetial example displayed in Table 5.2 there

are two implementations for the subfuntion SF : Impl1 (#1) and Impl2 (#2). Impl1

fails while it is ative when the �rst implementation fails (m(I_Impl1_KO)=1) and the

seond implementation is not ative (m(I_Impl2_Ative)=0).

The input gates Impl1_FailAtive and Impl1_NoFailAtive in Figure 5.9 implement

the logi displayed in Table 5.6. The omposed model depited in Figure 5.10 links (1)

omposed models of the subfuntion implementations (top_I01_Impl1, top_I02_Impl2

- see Figure 5.6), (2) the reon�guration logi to swith from one implementation to

other (Reon�gurationLogi_SF - see Figure 5.8) and (3) fail while ative failure logi

167

(F01_Impl1_FailAtive - see Figure 5.9).

Figure 5.9: Atomi Model of the Fail while

Ative Logi (F01_Impl1_FailAtive)

Figure 5.10: Composed Model of the Fail while

Ative Logi (top_F01_Impl1_FailAtive)

Table 5.6: Ativities in F01_Impl1_FailAtive

Input

gate:

Impl1_FailAtive

Input gate

prediate:

(m(I_Impl1_KO)==1 &&

m(I_Impl2_Ative)==0 &&

m(Fail_Ative)==0)

Input gate

funtion:

m(Fail_Ative)=1;

Input

gate:

Impl1_NoFailAtive

Input gate

prediate:

(m(Fail_Ative)==1 &&

(m(I_Impl1_KO)==0 ||

m(I_Impl2_Ative)==1))

Input gate

funtion:

m(Fail_Ative)=0;

The models of the failure events are named as Fnn_SF_FM where nn identi-

�es the failure number, SF names the subfuntion SF={SF, R_SF, Impl1, Impl2,

FD_R_SF, ControlSF, OutputSF} and FM identi�es the failure mode of the subfun-

tion FM={FailAtive, AllFail, AllRFailed, RUnresolved, Failure, RF1, RF2, RF, FU1,

FU2, FU}; where FU stands for failure undeteted event (equivalent to the fault de-

tetion sequene failure event FFD Seq); and RF stands for reon�guration failed event

(equivalent to the reon�guration sequene failure event FR Seq) see Table 5.7.

Table 5.7: Fault Detetion and Reon�guration Failure Events and Assigned Names

Event Plae name Event Plae name

F
FD Seq

FU F
R Seq

RF

F
FD Seq.

i

FUi F
R Seq.

i

RFi

168

All implementations failed

All implementations failed event (f. Equation 5.3) desribes the situation in whih all

the implementations of a subfuntion are failed at the same time (f. Figure 5.11). The

plae AllImplFailed indiates the all implementations failed event and the failure logi

is determined by the input gates AllFailed and AllNoFailed (f. Table 5.8).

Figure 5.11: Atomi Model of the All Fail

Event (F07_SF_AllFail)

Figure 5.12: Composed Model of the All Fail

Event (top_F07_SF_AllFail)

Table 5.8: Ativities in F07_SF_AllFail

Input

gate:

AllFailed

Input gate

prediate:

(((m(I_Impl1_KO)==1 &&

m(I_Impl2_KO)==1) ||

m(FD_FalsePositive)==1) &&

m(AllImplFailed)==0)

Input gate

funtion:

m(AllImplFailed)=1;

Input

gate:

AllNoFailed

Input gate

prediate:

((m(I_Impl1_KO)==0 ||

m(I_Impl2_KO)==0) &&

m(FD_FalsePositive)==0 &&

m(AllImplFailed)==1)

Input gate

funtion:

m(AllImplFailed)=0;

Figure 5.12 shows the omposed model for all implementations failed event, linking

implementations (top_I01_Impl1, top_I02_Impl2) - see Figure 5.7 (Impl2 is the same

with its orresponding resoures), their reon�guration logi (Reon�gurationLogi_SF)

- see Figure 5.8, the failure logi (F07_SF_AllFail) - see Figure 5.12 and false positive

failure event (R15_SW_SF_SF_FP) - whih is the same as resoure models (see Figure

5.3) with its orresponding failure and repair rate.

Reon�guration subfuntion failure

The reon�guration subfuntion's failure will our when (f. Equation 5.10): (1) all

reon�guration implementations fail (AllRFailed event); or (2) reon�guration imple-

mentation's failure is unresolved (RUnresolved event).

169

All reon�guration implementations failed: AllRFailed event ours when all the

reon�guration implementation fail simultaneously or reon�guration's fault detetion

raises a false positive signal. In the model displayed in the Table 5.2, the AllRFailed

event is de�ned as follows (f. Equation 5.11):

F
R

1

O/FP

= OR(F
R_Impl1

, F
FD_R FP

)

F
R

2

O/FP

= OR(F
R_Impl2

, F
FD_R FP

)

F
All R Impl.

= AND(F
R

1

O/FP

, F
R

2

O/FP

)

(5.15)

The event F
All R Impl.

is desribed in Figure 5.13. The plaes I_R_Impl1_KO and

I_R_Impl2_KO indiate the state of the reon�guration subfuntion's implementa-

tions, FD_R_FalsePositive indiates the presene of false positive signals and AllRe-

on�gFailed plae denotes the event F
All R Impl.

. The failure logi is implemented using

the input gates AllR_Failed and AllR_Working (f. Table 5.9).

Figure 5.13: Atomi Model of AllRFailed

Event (F03_R_SF_AllRFailed)

Table 5.9: Ativities in

F03_R_SF_AllRFailed

Input

gate:

AllR_Failed

Input gate

prediate:

(((m(I_R_Impl1_KO)==1 &&

m(I_R_Impl2_KO)==1) ||

m(FD_R_FalsePositive)==1) &&

m(AllReon�gFailed)==0)

Input gate

funtion:

m(AllReon�gFailed)=1;

Input

gate:

AllR_Working

Input gate

prediate:

(((m(I_R_Impl1_KO)==0 ||

m(I_R_Impl2_KO)==0) &&

m(FD_R_FalsePositive)==0) &&

m(AllReon�gFailed)==1)

Input gate

funtion:

m(AllReon�gFailed)=0;

The logi to reon�gure R_SF implementations is in Figure 5.14. The input gate

R_SF_Reon�gure de�nes the order of the reon�guration for the reon�guration im-

plementations aording to their priorities in Table 5.2.

As de�ned in the R_SF_Reon�gure input gate (f. Table 5.10), the implementation on

170

Figure 5.14: Atomi Model of Reon�guration

Implementation's Reon�guration Logi (Reon-

�gurationLogi_R_SF)

Table 5.10: Ativities in Reon�gura-

tionLogi_R_SF

Input

gate:

R_SF_Reon�gure

Input gate

prediate:

(((m(I_R_Impl1_KO)==1 &&

m(I_R_Impl2_StandBy)==1)

|| (m(I_R_Impl2_KO)==1 &&

m(I_R_Impl1_StandBy)==1)))

Input gate

funtion:

if(m(I_R_Impl1_StandBy)==1)

m(I_R_Impl1_Reon�gure)=1;

else if(m(I_R_Impl2_StandBy)==1)

m(I_R_Impl2_Reon�gure)=1;

standby with the highest priority is seleted for reon�guration. Whih is implemented

aording to their position in the "if-else" lauses.

Figure 5.15: Composed Model of the All Reon�guration Implementation Fail Event

(top_F03_R_SF_AllRFailed)

The top-level omposed model in Figure 5.15 links the following omposed

models: reon�guration implementations omposed models (top_I04_R_Impl1,

top_I05_R_Impl2); false positive failure model (R16_SW_FD_R_FP); the or-

responding failure logi model F03_R_SF_AllRFailed (f. Figure 5.13); and

reon�guration logi model Reon�gurationLogi_R_SF (f. Figure 5.14).

Reon�guration Unresolved Event: the same modelling proess applies to the

reon�guration unresolved failure event. Applying Equation 5.12 to the Table 5.2:

F
RUnresolved

= AND(F
FD_R

1

, F
FD_R

2

) (5.16)

Figure 5.16 displays the reon�guration unresolved event model. The operation of the

implementations FD_R_Impl1 and FD_R_Impl2 together with the input gates Unre-

solved and NotUnresolved (f. table 5.11) determine if the reon�guration is unresolved.

171

Figure 5.16: Atomi Model of the

Reon�guration Unresolved Event

(F04_R_SF_RUnresolved)

Table 5.11: Ativities in

F04_R_SF_RUnresolved

Input

gate:

Unresolved

Input gate

prediate:

(m(I_FD_R_Impl1_KO)==1 &&

m(I_FD_R_Impl2_KO)==1 &&

m(Reon�gUnresolved)==0)

Input gate

funtion:

m(Reon�gUnresolved)=1;

Input

gate:

NotUnresolved

Input gate

prediate:

((m(I_FD_R_Impl1_KO)==0 ||

m(I_FD_R_Impl2_KO)==0) &&

m(Reon�gUnresolved)==1)

Input gate

funtion:

m(Reon�gUnresolved)=0;

The implementations of the fault detetion of the reon�guration (FD_R_SF) operate

in heartbeat/keepalive on�guration: all implementations are operating and there are

no priorities between them (f. Figure 5.17, Table 5.12). FD_R_SF_Reon�gure input

gate reon�gures all fault detetion implementations that go on standby.

I_FD_R_Impl1_StandBy

I_FD_R_Impl1_KO

I_FD_R_Impl1_Reconfigure

I_FD_R_Impl2_StandBy

I_FD_R_Impl2_ReconfigureI_FD_R_Impl2_KO

FD_R_SF_Reconfigure ReconfigurationLogic_FD_R_SF

I_FD_R_Impl1_StandBy

I_FD_R_Impl1_KO

I_FD_R_Impl1_Reconfigure

I_FD_R_Impl2_StandBy

I_FD_R_Impl2_ReconfigureI_FD_R_Impl2_KO

FD_R_SF_Reconfigure ReconfigurationLogic_FD_R_SF

Figure 5.17: Reon�guration Logi FD_R

(Reon�gurationLogi_FD_R_SF)

Table 5.12: Reon�gurationLogi_FD_R_SF

Ativity Charaterization

Input

gate:

FD_R_SF_Reon�gure

Input gate

prediate:

((m(I_FD_R_Impl1_KO)==1 &&

m(I_FD_R_Impl2_StandBy)==1)

|| (m(I_FD_R_Impl2_KO)==1 &&

m(I_FD_R_Impl1_StandBy)==1))

Input gate

funtion:

if(m(I_FD_R_Impl1_StandBy)==1)

m(I_FD_R_Impl1_Reon�gure)=1;

if(m(I_FD_R_Impl2_StandBy)==1)

m(I_FD_R_Impl2_Reon�gure)=1;

The omposed model of F
RUnresolved

(f. Figure 5.18) links the following mod-

els: omposed models of the fault detetion of the reon�guration (FD_R_SF) im-

plementations (top_I06_FD_R_Impl1, top_I07_FD_R_Impl2); failure unresolved

logi model (F04_R_SF_RUnresolved); and reon�guration logi model (Reon�gu-

rationLogi_FD_R_SF).

172

Figure 5.18: Composed Model of Reon�guration Unresolved Event

(top_F04_R_SF_RUnresolved)

Reon�guration Subfuntion Failure: Figure 5.19 models the reon�guration sub-

funtion failure event (f. Equation 5.10). The plae SF_R_Failed indiates that the

reon�guration subfuntion has failed. This event will be based on the marking of the

plaes AllReon�gFailed (shared with the plaes in Figure 5.13) and Reon�gUnresolved

(shared with the plaes in Figure 5.16). The behaviour of the model is desribed by the

input gates SF_Reon�g_Fail and SF_Reon�g_NotFail (f. Table 5.13).

Figure 5.19: Atomi Model of the Reon�gu-

ration SF Fail Event (F05_R_SF_Failure)

Figure 5.20: Composed Model of

the Reon�guration SF Fail Event

(top_F05_R_SF_Failure)

Table 5.13: Ativities in F05_R_SF_Failure

Input

gate:

SF_Reon�g_Failed

Input gate

prediate:

((m(AllReon�gFailed)==1 ||

m(Reon�gUnresolved)==1) &&

(m(SF_R_Failed)==0))

Input gate

funtion:

m(SF_R_Failed)=1;

Input

gate:

SF_Reon�g_NotFailed

Input gate

prediate:

(m(AllReon�gFailed)==0 &&

m(Reon�gUnresolved)==0 &&

m(SF_R_Failed)==1)

Input gate

funtion:

m(SF_R_Failed)=0;

The omposed model (f. Figure 5.20) is used to determine the failure probability of the

reon�guration subfuntion. Aordingly, it links implementations, resoures and their

failure logi via shared plaes: all reon�guration implementations failed event model:

top_F03_R_SF_AllRFailed (f. Figure 5.13); reon�guration unresolved event model:

top_F04_R_SF_RUnresolved (f. Figure 5.16); and reon�guration subfuntion failure

173

logi model: F_05_R_SF_Failure (f. Figure 5.19).

Fault detetion subfuntion failure

The fault detetion subfuntion failure is de�ned in terms of the failure of the fault

detetion implementation or failure of the funtion implemented at the destination PU

of the monitored funtion (f. Equation 5.14). Analysing the implementation #3 in

Table 5.2, the fault detetion subfuntion failure (F
FD_SF

) will be determined either by

the failure of the fault detetion funtion itself or failure of the ontrol subfuntion.

Figures 5.4 and Figure 5.21 show the models of the fault detetion and ontrol sub-

funtion implementation failures respetively. In this example neither implementations

have redundanies (f. Table 5.2) and therefore, they are modelled following the same

haraterization as desribed in Figure 5.4.

Control subfuntion failure: the I09_ControlSF_NoDependenies model (f. Figure

5.21) indiates that the ontrol subfuntion implementation has failed when any of its

resoures is down (Res1, Res12, Res13). In order to avoid reating logial loops, it is

assumed that the failure of the ontrol implementation will be provoked only through

its implementations - if dependenies are onsidered there will be logial loops. Table

5.14 displays the failure logi implemented in the input gates and Figure 5.22 depits

the omposed model whih links the implementation's failure logi with its onstituting

resoures.

Fault detetion subfuntion failure: the model whih desribes the

fault detetion subfuntion failure event (f. Figure 5.23) uses the plaes

I_FD_SF_KO and I_SF_Control_KO from the models I08_FD_SF_Failure,

I09_ControlSF_NoDependenies respetively.

Table 5.15 desribes the logi implemented in the input gates FD_Failure and

FD_NoFail and Figure 5.24 shows the omposed model of the fault detetion subfuntion

failure. The plaes between the omposed models of the ontrol subfuntion failure (f.

Figure 5.22), fault detetion failure (f. Figure 5.5) and the fault detetion subfuntion

failure (f. Figure 5.23) are shared.

174

I_SF_Control_Active

Res12_KO

Res1_KO

I_SF_Control_KO

Repair_SF_Control

SFControl_Fail

SFControl_Repair

Res13_KO

Fail_SFControl

Figure 5.21: Atomi Model of

the Control Subfuntion Fail Event

(I09_ControlSF_NoDependenies)

Join1

R13_Res13

R01_Res1

I09_ControlSF_NoDependencies

R12_Res12

Join

Submodel

Submodel

Submodel

Submodel

Figure 5.22: Composed Model of the Control

Subfuntion Fail Event (top_I09_ControlSF)

Table 5.14: Ativities in

I09_ControlSF_NoDependenies

Input

gate:

Fail_SFControl

Input gate

prediate:

(m(I_SF_Control_KO)==0

&& (m(Res1_KO)==1

|| m(Res12_KO)==1 ||

m(Res13_KO)==1))

Input gate

funtion:

m(I_SF_Control_Ative)=0;

m(I_SF_Control_KO)=1;

Input

gate:

Repair_SF_Control

Input gate

prediate:

(m(I_SF_Control_KO)==1

&& m(Res1_KO)==0 &&

m(Res12_KO)==0 &&

m(Res13_KO)==0)

Input gate

funtion:

m(I_SF_Control_Ative)=1;

m(I_SF_Control_KO)=0;

Reon�guration sequene failure

The reon�guration sequene failure event of the hypothetial system displayed in Table

5.2 is expressed as follows (see also Equation 5.5):

F
R Seq.

1

_SF

= PAND(F
R_SF

, F
SF

1

| Ative

)

F
R Seq

2

_SF

= PAND(F
R_SF

, F
SF

2

| Ative

)

F
R Seq_SF

= OR(F
R Seq

1

_SF

, F
R Seq

2

_SF

)

(5.17)

Table 5.7 displays nomenlature equivalenes between the reon�guration-related fail-

ure equations and the SAN model's events. To reate this model previously de�ned

models will be linked using shared plaes (f. Figure 5.25): top_F01_Impl1_FailAtive

(f. Figure 5.9), top_F05_R_SF_Failure (f. Figure 5.20) and PAND gate's model

14

(PAND(A,B)). PAND gate's A and B events are onneted with the SF_R_Failed

14

A SAN omponent has been designed whih implements the PAND gate's logi for repairable

systems. Interested readers please refer to Appendix F to see implementation details and validation.

175

Figure 5.23: Atomi Model of the

Fault Detetion Subfuntion Failure

(F08_FD_SF_Failure)

Join1

F08_FD_SF_Failure

top_I03_FD_Impl1
top_I09_ControlSF

Join1

F08_FD_SF_Failure

top_I03_FD_Impl1
top_I09_ControlSF

Join

Submodel

Submodel
Submodel

Figure 5.24: Composed Model of

the Fault Detetion Subfuntion Failure

(top_F08_FD_SF_Failure)

Table 5.15: Ativities in F08_FD_SF_Failure

Input

gate:

FD_Failure

Input gate

prediate:

(m(FD_SF_Fail)==0 &&

(m(I_FD_SF_KO)==1 ||

m(I_SF_Control_KO)==1))

Input gate

funtion:

m(FD_SF_Fail)=1;

Input

gate:

FD_NoFailure

Input gate

prediate:

(m(FD_SF_Fail)==1 &&

m(I_FD_SF_KO)==0 &&

m(I_SF_Control_KO)==0)

Input gate

funtion:

m(FD_SF_Fail)=0;

plae of the model top_F05_R_SF_Failure and FailAtive plae of the model

top_F01_Impl1_FailAtive respetively (see Equation 5.17). The output plae of the

PAND gate's model is named PAND_RF1.

Join1top_F01_Impl1_FailActive top_F05_R_SF_Failure

A_PAND_B

Join1top_F01_Impl1_FailActive top_F05_R_SF_Failure

A_PAND_B

JoinSubmodel Submodel

Submodel

Figure 5.25: Composed Model of the F
R Seq.

1

Event (top_F06_Impl1_RF1)

The reon�guration sequene failure event model for the seond imple-

mentation (F
R Seq.

2

_SF

) is reated following the same logi by onneting:

top_F02_Impl2_FailAtive, top_F05_R_SF_Failure (f. Figure 5.20) and PAND

gate (see Equation 5.17). The output plae of the PAND gate's model is named

PAND_RF2.

Finally, in Figure 5.26, both reon�guration sequene failure models (F
R Seq.

1

_SF

and

F
R Seq.

2

_SF

) are linked using the plaes PAND_RF1 and PAND_RF2 respetively. The

176

output of the equation F
R Seq._SF

(f. Equation 5.17) is inluded in the plae RF.

Figure 5.26: Atomi Model of the F
R Seq._SF

Event (F06_SF_RF)

Figure 5.27: Composed Model of the

F
R Seq._SF

Event (top_F06_SF_RF)

Table 5.16: Ativities in F06_SF_RF

Input

gate:

OR

Input gate

prediate:

(m(RF)==0&&(m(PAND_RF1)==1

|| m(PAND_RF2)==1))

Input gate

funtion:

m(RF)=1;

Input

gate:

no_RF

Input gate

prediate:

(m(RF)==1 && m(PAND_RF1)==0

&& m(PAND_RF2)==0)

Input gate

funtion:

m(RF)=0;

Figure 5.27 desribes the omposed model whih links reon�guration sequene fail-

ure events (F
R Seq.

1

_SF

, F
R Seq.

2

_SF

) and the reon�guration sequene failure logi

(F
R Seq._SF

), see Equation 5.17.

Fault detetion sequene failure

This development is very similar to the reon�guration sequene failure model. The

fault detetion sequene failure equations of the on�guration displayed in Table 5.2 are

expressed as follows (see Equation 5.6):

F
FD Seq.

1

_SF

= PAND(F
FD_SF

, F
SF

1

| Ative

)

F
FD Seq.

2

_SF

= PAND(F
FD_SF

, F
SF

2

| Ative

)

F
FD Seq_SF

= OR(F
FD Seq

1

_SF

, F
FD Seq

2

_SF

)

(5.18)

Table 5.7 displays nomenlature equivalenes between the fault detetion re-

lated failure equations and the SAN model's events. To haraterize the event

F
FD Seq.

1

_SF

a omposed model is reated linking the following omposed models:

top_F01_Impl1_FailAtive (f. Figure 5.9); top_F08_FD_SF_Failure (f. Figure

5.23); and PAND gate model (PAND(A,B)), where event A is shared with the event

177

FD_SF_Fail and event B is shared with the event FailAtive (see Equation 5.18). The

output plae of the PAND gate's model is named PAND_FU1.

Join1

top_F01_Impl1_FailActive top_F08_FD_SF_Failure

A_PAND_B

Join1

JoinSubmodel Submodel

Submodel

Figure 5.28: Composed Model of the F
FD Seq.

1

Event

Similarly, the event F
FD Seq.

2

_SF

is reated by linking its orresponding fail ative

event model (top_F02_Impl2_FailAtive); fault detetion subfuntion failure model

(top_F08_FD_SF_Failure) and PAND gate's failure logi model (see Equation 5.18).

The output plae of the PAND gate's model is named PAND_FU2.

The model in Figure 5.29 links both F
FD Seq.

1

_SF

and F
FD Seq.

2

_SF

in order to haraterize

the F
FD Seq.

event (f. Equation 5.18). Table 5.17 displays the logi of the input gates

FailUndeteted and FailDeteted, whih determine the F
FD Seq._SF

event in Figure 5.29.

Figure 5.29: Atomi Model of the F
FD Seq._SF

Event (F09_FD_SF_FU)

Figure 5.30: Composed Model of the F
FD Seq.

Event (top_F09_FD_SF_FU)

Table 5.17: Ativities in F09_FD_SF_FU

Input

gate:

FailUndeteted

Input gate

prediate:

(m(FU)==0&&(m(PAND_FU1)==1

|| m(PAND_FU2)==1))

Input gate

funtion:

m(FU)=1;

Input

gate:

FailDeteted

Input gate

prediate:

(m(FU)==1&&m(PAND_FU1)==0

&& m(PAND_FU2)==0)

Input gate

funtion:

m(FU)=0;

In order to evaluate the failure probability of the F
FD Seq._SF

event, the model

in Figure 5.30 links omposed models top_F09_Impl1_FU1 (F
FD Seq.

1

_SF

) and

top_F09_Impl2_FU2 (F
FD Seq.

2

_SF

) with the model F09_FD_SF_FU whih deter-

mines the event F
FD Seq._SF

. The plaes PAND_FU1 and PAND_FU2 are shared with

178

the plaes of the PAND models of the F
FD Seq.

1

_SF

and F
FD Seq.

2

_SF

events respetively.

The plae FU models the event F
FD Seq._SF

.

Input Subfuntion Failure

The subfuntion failure is de�ned aording to the Equation 5.2. In the ase of the input

subfuntion SF there is no need to onsider the in�uene of dependenies. Therefore,

the input subfuntion failure is determined by the events F
All Impl

and F
Unresolved

where

F
Unresolved

= OR(F
R Seq._SF

, F
FD Seq._SF

). Figure 5.31 desribes the failure logi of the

subfuntion SF failure event F
SF

.

Table 5.18 displays the failure logi of the input gates Fail_SF and OK_SF. The

marking of the FU, RF and AllImplFailed plaes are determined by linking the

model of Figure 5.31 with the previously de�ned top_F06_SF_RF (f. Figure 5.27);

top_F09_SF_FU (f. Figure 5.29); and top_F07_SF_AllFail (f. Figure 5.12) mod-

els. Figure 5.32 depits the omposed model whih determines the ourrene of the

F
SF

event.

Figure 5.31: Atomi Model of the F
SF

Event

(F10_SF_Failure)

Figure 5.32: Composed Model of the F
SF

Event (top_F10_SF_Failure)

Table 5.18: Ativities in F10_SF_Failure

Input

gate:

Fail_SF

Input gate

prediate:

((m(FU)==1 || m(RF)==1

|| m(AllImplFailed)==1) &&

m(SF_Failure)==0)

Input gate

funtion:

m(SF_Failure)=1;

Input

gate:

OK_SF

Input gate

prediate:

(m(FU)==0 && m(RF)==0

&& m(AllImplFailed)==0 &&

m(SF_Failure)==1)

Input gate

funtion:

m(SF_Failure)=0;

179

Control Subfuntion Failure

The ontrol subfuntion failure is de�ned aording to the Equation 5.2 determined

by the events F
All Impl

, F
Unresolved

and F
Dependenies

. Sine the ontrol subfuntion has

only one implementation (f. Table 5.2), the failure of the ontrol subfuntion will

be determined by the failure of the implementation itself or the F
Dependenies

event.

There is no F
Unresolved

event beause there are no alternate implementations. Figure

5.33 desribes the failure logi of the ontrolSF failure event (F
ControlSF

). The event

is determined by the failure of its resoures (Res1, Res12, Res13) or the failure of the

input subfuntion SF_Failure plae.

Table 5.19 displays the failure logi of the input gates Fail_ControlSF and

OK_ControlSF. The marking of the Res1_KO, Res12_KO, Res13_KO and SF_Failure

plaes are determined by linking the model of Figure 5.33 with the previously de�ned

resoures failure/repair models (f. Figure 5.3) and input subfuntion's failure model

top_F10_SF_Failure (f. Figure 5.32). Figure 5.34 depits the omposed model whih

determines the ourrene of the F
ControlSF

event.

Note that we have previously modelled the ontrol subfuntion failure without input

dependenies to avoid reating logial loops with the modelling of the input subfuntion's

fault detetion performane (f. Figure 5.21). In Figure 5.34 the plaes of the same

resoures will be shared aounting for the failure/repair of the resoure existing in

both models.

Output Subfuntion Failure

The output subfuntion failure is de�ned aording to the Equation 5.2 determined by

the events F
All Impl

, F
Unresolved

and F
Dependenies

. The output subfuntion also has only

one implementation (f. Table 5.2) and therefore, the output subfuntion failure will

be determined by the failure of the implementation itself or the F
Dependenies

event.

Figure 5.35 desribes the failure logi of the OutputSF failure event (F
OutputSF

) that

is determined by the failure of its resoures (Res1, Res14, Res15) or the failure of the

ontrol subfuntion I_ControlSF_KO plae.

Table 5.20 displays the failure logi of the input gates Fail_OutputSF and

180

I_ControlSF_KO

Res12_KORes13_KO

SF_Failure
Res1_KOI_ControlSF_Active

Fail_ControlSF

OK_ControlSF

ControlSF_Fail

ControlSF_OK

Figure 5.33: Atomi Model of the F
ControlSF

Event (I09_ControlSF)

Join1

I09_ControlSF

Res1
Res12 Res13

JoinSubmodel

Submodel
Submodel Submodel

top_F10_SF_Failure

Submodel

Figure 5.34: Composed Model of the

F
ControlSF

Event (top_I09_ControlSF)

Table 5.19: Ativities in

I09_Control_SF_Failure

Input

gate:

Fail_ControlSF

Input gate

prediate:

((m(Res1_KO)==1 ||

m(Res12_KO)==1 ||

m(Res13_KO)==1 ||

m(SF_Failure)==1) &&

m(I_ControlSF_KO)==0)

Input gate

funtion:

m(I_ControlSF_Ative)=0;

m(I_ControlSF_KO)=1;

Input

gate:

OK_ControlSF

Input gate

prediate:

(m(Res1_KO)==0 &&

m(Res12_KO)==0 &&

m(Res13_KO)==0 &&

m(SF_Failure)==0 &&

m(I_ControlSF_KO)==1)

Input gate

funtion:

m(I_ControlSF_Ative)=1;

m(I_ControlSF_KO)=0;

OK_OutputSF. The marking of the Res1_KO, Res14_KO, Res15_KO and

I_ControlSF_KO plaes are determined by linking the model of Figure 5.35 with the

previously de�ned resoures failure/repair models (f. Figure 5.3) and ontrol sub-

funtion's failure model top_I09_ControlSF (f. Figure 5.34). Figure 5.36 depits the

omposed model whih determines the ourrene of the F
OutputSF

event and aordingly

the failure of the main funtion.

To evaluate the failure probability of the output subfuntion (and the main funtion),

a reward variable is de�ned haraterizing the performane measurement whih will

indiate the failure of the output subfuntion:

double reward=0;

i f (I10_OutputSF−>I_OutputSF_KO−>Mark()==1)

reward+=1;

return (reward) ;

Whih in turn is used later to evaluate probabilities.

181

Res1_KO

I_ControlSF_KO

Res14_KOI_OutputSF_Active

Res15_KO

Fail_OutputSF

OK_OutputSF

OutputSF_OK

I_OutputSF_KO

OutputSF_Fail

Figure 5.35: Atomi Model of the F
OutputSF

Event (I10_OutputSF)

I�����	
�	��

Res1

Res_14

Res_15

J��� J��

��S�o��

��S�o��

��S�o��

��S�o��

	
�I�t���	n��F

��S�o��

Figure 5.36: Composed Model of the

F
OutputSF

Event (top_I10_OutputSF)

Table 5.20: Ativities in

I10_OutputSF_Failure

Input

gate:

Fail_OutputSF

Input gate

prediate:

((m(Res1_KO)==1 ||

m(Res14_KO)==1 ||

m(Res15_KO)==1 ||

m(I_ControlSF_KO)==1) &&

m(I_OutputSF_KO)==0)

Input gate

funtion:

m(I_OutputSF_Ative)=0;

m(I_OutputSF_KO)=1;

Input

gate:

OK_OutputSF

Input gate

prediate:

(m(Res1_KO)==0 &&

m(Res14_KO)==0 &&

m(Res15_KO)==0 &&

m(I_ControlSF_KO)==0 &&

m(I_OutputSF_KO)==1)

Input gate

funtion:

m(I_OutputSF_Ative)=1;

m(I_OutputSF_KO)=0;

5.4.2 Fire Protetion Control

Based on the generi SAN modelling proess desribed in subsetion 5.4.1, we have

evaluated the unavailability of the Fire Protetion Control main funtion implemented

using alternative on�gurations for the physial loation Train.Car

1

.Zone

A

. Namely,

alternative redundany and reon�guration strategies have been tested, as well as the

in�uene of fault detetion, reon�guration and ommuniation implementations on the

system failure probability.

The di�erene from the analysed on�gurations in Chapter 4 is that the arhitetures

analysed in this hapter are omprised of repairable resoures instead of non-repairable

resoures. Aordingly, we an evaluate the downtime osts taking into aount the

downtime of the arhiteture.

182

Redundany Strategies

Alternative arhiteture on�gurations have been analysed eah of them organised with

di�erent redundany strategies (f. Table 4.4) and same reon�guration strategy im-

plemented with 2 reon�guration implementations loated in di�erent proessing units

(Table 5.22 2R distributed on�guration). Figure 5.37 displays the relative failure prob-

abilities of these on�gurations normalized with the arhiteture without redundanies.

All simulations have been arried out with a on�dene level of 0.99 and absolute on-

�dene interval of 0.001.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Years)

R
el

at
iv

e
Fa

ilu
re

 P
ro

ba
bi

lit
y

Heterogeneous Redundancy
Homogeneous Redundancy − Different PU
Homogeneous Redundancy − Same PU

Figure 5.37: Normalized Failure Probability of Fire Protetion Control Con�gurations

Figure 5.37 shows how the use of alternative redundany strategies improve system's

failure probability with respet to the on�guration without redundanies. The following

improvements have been observed at T=20 year time instant with respet to the on-

�guration without redundanies: heterogeneous redundany 8% better; homogeneous

redundany onneted at a di�erent PU 9.4% better; and homogeneous redundany

onneted at the same PU 10.2% better.

The on�guration with the lowest failure probability is the homogeneous redundany

on�guration onneted at the same PU (as in Chapter 4). However, with repairable

183

systems, the failure probability of the heterogeneous redundany on�guration is slightly

higher than the homogeneous on�gurations. This is a onsequene of the added extra

resoures to make implementations ompatible (temperature sensor, SW to detet �re,

ommuniation). Therefore, we an see that the addition of extra resoures worsens the

failure probability.

Table 5.21 displays the ost of alternative on�gurations normalized with respet to the

ost of the on�guration without redundanies.

Table 5.21: Normalized Cost of Alternative Fire Protetion Control Con�gurations

Con�guration
Relative HW/SW/Comm. Cost Relative Downtime Cost

1 Heterogeneous Redundany 1.4482 0.89794

1 Homogeneous Redundany - Same PU

FP

1.5322 0.94155

1 Homogeneous Redundany - Di�erent PU 1.6162 0.94956

Due to the lower hardware/software/ommuniation ost of the

heterogeneous redundany on�guration and thanks to the small di�erenes be-

tween the failure probabilities of di�erent on�gurations, the heapest solution is

the heterogeneous redundany on�guration. Note that these result are obtained for

the values in Appendix E and assumptions in Setion 5.3. Therefore, there may be

variations in the results. An analysis of the sensitivity of the ost alulation parameters

should be performed here (see Setion 5.5).

Reon�guration Strategies

Table 5.22 displays the in�uene of alternative reon�guration strategies on system

availability at the time instant T=10 for the heterogeneous redundany on�guration.

We arry out di�erent simulations with a on�dene level=0.99 and on�dene in-

terval=0.0009. In these simulations we onsider di�erent failure rate values of

health management SW omponents (λ
SW_HM

): SW_FD, SW_R and SW_FD_R. The

failure rates of these software resoures have been modi�ed to highlight the in�uene of

reon�guration implementations on system unavailability.

From Table 5.22 the following patterns have been identi�ed:

184

Table 5.22: Fire Protetion Control (FPC) Unavailability for Reon�guration Distribution

Strategies (T=10 years)

Con�guration Reon�guration Implementation Distributions

FPC Unavailability

λ
SW_HM

=0.05

λ
SW_HM

=0.15

λ
SW_HM

=0.25

1R Centralised PU

1

(R_FireDet

1

) 0.365 0.366 0.366

2R Centralised PU

1

(R_FireDet

1

, R_FireDet

2

) 0.569 0.569 0.570

2R Distributed PU

1

(R_FireDet

1

); PU

2

(R_FireDet

2

) 0.366 0.366 0.366

3R Centralised PU

1

(R_FireDet

1

, R_FireDet

2

, R_FireDet

3

) 0.568 0.569 0.569

3R Distributed PU

1

(R_FireDet

1

); PU

2

(R_FireDet

2

); PU

3

(R_FireDet

3

) 0.366 0.366 0.366

� The in�uene of the failure rate of the health management implementations on

the main funtion failure is negligible.

� Centralised on�gurations perform worse than distributed implementations due to

the unique proessing unit ating as a ommon ause failure.

� The number of redundany implementations within the on�gurations of the same

group (entralised, distributed) does not have an e�et on the main funtion fail-

ure. There is really no need of redundanies in this ase for reon�gurations.

The failure probability of the �re ontrol algorithm subfuntion does not show variations

by hanging system on�gurations. However, if we fous on the �re detetion subfuntion

and its underlying failure events there are some harateristis worth mentioning. Table

5.23 shows the failure probability of the �re detetion subfuntion failure (F
FireDet

), �re

detetion subfuntion's reon�guration sequene failure event (F
R.Seq.

FireDet

f. Equa-

tion 5.17), and �re detetion subfuntion's reon�guration failure event (F
R_FireDet

)

for di�erent failure rates of health management implementations (λHM) and di�erent

reon�guration strategies. All the simulations have been performed with a on�dene

level = 0.99 and on�dene interval = 0.0009.

The performane of the �re detetion subfuntion shows the in�uene of the failure rate

of the health management implementations and the in�uene of the distribution of the

reon�guration implementations. Table 5.23 points out the following harateristis:

185

Table 5.23: Failure Probability of the Fire Detetion and its Underlying Events (T=10 years)

Events

λHM = 0.05 λHM = 0.15 λHM = 0.25

1R 2RC 2RD 3RC 3RD 1R 2RC 2RD 3RC 3RD 1R 2RC 2RD 3RC 3RD

F
FireDet

0.052 0.355 0.052 0.355 0.05 0.052 0.355 0.052 0.356 0.052 0.052 0.355 0.052 0.356 0.052

F
RSeq

FireDet

0.008 0.04 0.005 0.038 0.004 0.011 0.082 0.01 0.073 0.008 0.013 0.115 0.013 0.101 0.011

F
R_FireDet

0.319 0.365 0.276 0.353 0.247 0.578 0.679 0.428 0.623 0.282 0.767 0.925 0.571 0.835 0.391

x-R-Conf : x number of reon�guration implementations in Conf on�guration, where C = entralised

and D = distributed; e.g., 3RD = 3 reon�guration implementations in distributed on�guration

� The failure probability of the entralised on�gurations is signi�antly higher than

the distributed on�gurations.

� Inreasing the failure rate of the health management implementations with the

values shown in Table 5.23 slightly in�uenes the failure probability of the F
FireDet

in 3RC and 3RD on�gurations.

� Inreasing the failure rate of the health management implementations also in-

reases the failure probability of the F
R.Seq.

FireDet

and F
R_FireDet

events.

� The greater the number of reon�guration redundanies, the lower the failure prob-

ability of F
R.Seq.

FireDet

and F
R_FireDet

events of the same on�guration (entralised,

distributed) saving the 1R on�guration.

Despite an inrease in the failure rate of the health management implementations im-

pats diretly on the reon�guration subfuntion failure (F
R_FireDet

), its in�uene on

the main funtion is dependent on a sequene of events (f. Equation 5.5). Hene, for

the event F
FireDet

to happen, F
RSeq._FireDet

must fail aording to the sequene depen-

dent onstraint. As a result, its in�uene on the subfuntion failure, and aordingly,

on the main funtion failure is attenuated. Therefore, as we an see in Table 5.23, its

ontribution to the main funtion failure is not as important as its ontribution to the

failure of the reon�guration subfuntion itself.

186

In�uene of Health Management Implementations

Taking the heterogeneous redundany on�guration #2 as a starting point (f. Table

4.4), the in�uene of the fault detetion, reon�guration and ommuniation implemen-

tations have been analysed assuming real and ideal behaviour of eah of these imple-

mentations.

Figure 5.38 depits the failure probability values of these on�gurations in whih all

the simulations have been performed with on�dene level=0.99 and on�dene inter-

val=0.001.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

Time (Years)

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

Real Con�guration

Con�guration with Ideal Communiation

Con�guration with ideal Reon�guration

Con�guration with ideal Fault Detetion

Figure 5.38: Fire Protetion Control Failure Probability with Ideal Assumptions

In Figure 5.38 we an see that the in�uene of the ommuniation is more important than

the in�uene of the reon�guration and fault detetion implementations. For instane

at the time instant T=15 the following failure probability values hold:

� real on�guration = 0.334 ± 0.001;

� ideal reon�guration = 0.333 ± 0.001;

� ideal fault detetion = 0.331 ± 0.001;

� ideal ommuniation = 0.326 ± 0.001;

187

We an see that (1) the in�uene of the health management implementations is almost

negligible and (2) the fault detetion implementation has a higher in�uene than the

reon�guration implementation beause the fault detetion subfuntion does not have

redundanies. The impat of the ommuniation implementation on the top-event is

even more important beause the health management implementations only in�uene

the �re detetion input subfuntion, whereas ommuniation a�ets most of the Fire

Protetion Control main funtion's subfuntions.

5.4.3 Door Status Control

Based on the generi SAN modelling proess desribed in subsetion 5.4.1, we have eval-

uated the unavailability of the Door Status Control (DSC) main funtion implemented

using alternative on�gurations for the physial loation Train.Car

1

.Zone

A

.Door.

Namely, alternative redundany and reon�guration strategies have been tested, as well

as the in�uene of fault detetion, reon�guration and ommuniation implementations

on the system failure probability.

The di�erene from the analysed DSC on�gurations in Chapter 4 is that the

arhitetures analysed in this hapter are omprised of repairable resoures instead of

non-repairable resoures. Aordingly, we an evaluate the downtime osts taking into

aount the downtime of the arhiteture.

Redundany Strategies

Alternative arhiteture on�gurations have been analysed, eah of them organized with

di�erent redundany strategies using a dupliated reon�guration implementation lo-

ated in di�erent proessing units for eah subfuntion with redundanies (Table 5.25

2R entralised on�guration). Figure 5.39 depits the relative failure probabilities of

the on�gurations displayed in the Table 4.7 normalized with the arhiteture without

redundanies #1. All simulations have been arried out with a on�dene level of 0.99

and absolute on�dene interval of 0.001.

Figure 5.39 shows how the use of alternative redundany strategies improve system's

failure probability with respet to the on�guration without redundanies. The follow-

188

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (Years)

R

e

l

a

t

i

v

e

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

4 Heterogeneous Redundanies

1 Homogeneous Redundany; 3 Heterogeneous Redundanies

2 Homogeneous Redundanies; 2 Heterogeneous Redundanies

3 Homogeneous Redundanies; 1 Heterogeneous Redundany

4 Homogeneous Redundanies

Figure 5.39: Normalized Door Status Control Con�gurations Failure Probability

ing improvements have been observed at T=20 year time instant with respet to the

on�guration without redundanies: 4 heterogeneous redundanies 42% better; 3 hetero-

geneous redundanies and 1 homogeneous redundany 42.57% better; 2 heterogeneous

redundanies and 2 homogeneous redundanies 43.23% better; 1 heterogeneous redun-

dany and 3 homogeneous redundanies 44.07% better; 4 homogeneous redundanies

44.74% better.

Table 5.24 displays the relative osts of alternative on�gurations normalized with re-

spet to the on�guration without redundanies. The ost assessment has been ar-

ried out aording to the Setion 5.3 and using the values shown in Appendix E.

When onsidering the ost of the hardware, software and ommuniation implemen-

tations, the ost of the on�gurations with heterogeneous redundanies is heaper than

homogeneous redundany on�gurations. However, when downtime osts are taken into

aount, the less reliable the arhiteture, the higher its ost. Therefore, when inlud-

ing downtime osts, the ost of the on�gurations with heterogeneous redundanies are

greater than the on�gurations with homogeneous redundanies. Compared with the

189

Fire Protetion Control on�gurations (see Subsetion 5.4.2) the failure probability dif-

ferenes between on�gurations are greater and therefore homogeneous redundanies

obtain the better redution in ost.

Table 5.24: Normalized Cost of Alternative Door Status Control Con�gurations

Con�guration Relative HW/SW/Comm Cost Relative Downtime Cost

4 Heterogeneous Redundanies 1.2212 0.58301

3 Heterogeneous Redundanies;

1 Homogeneous Redundany

1.2488 0.57689

2 Heterogeneous Redundanies;

2 Homogeneous Redundanies

1.2811 0.57097

1 Heterogeneous Redundany;

3 Homogeneous Redundanies

1.3088 0.56237

4 Homogeneous Redundanies
1.2903 0.55697

Reon�guration Strategies

Table 5.25 displays the in�uene of alternative reon�guration strategies on system

availability at the time instant T=10 using a heterogeneous redundany for eah sub-

funtion. We arry out di�erent simulations with a on�dene level=0.99 and on�-

dene interval=0.0009. In these simulations we onsider di�erent failure rate values of

health management SW omponents (λ
SW_HM

): SW_FD, SW_R and SW_FD_R. The

failure rates of these software resoures have been modi�ed to highlight the in�uene of

reon�guration implementations on system unavailability.

Table 5.25 displays that the distribution of the seleted reon�guration implementa-

tions for the Door Status Control main funtion does not have any in�uene on the

�nal system's failure probability. However, note that these results annot be ompared

with the values displayed in Table 5.22. This is beause there is only one subfun-

tion with redundanies in the Fire Protetion Control ase and we named entralised

reon�gurations those strategies whih entralize redundant reon�guration implemen-

tations in the same PU. In the Door Status Control ase entralised reon�gurations

group all the subfuntion's redundanies with the same priority in the same PU.

190

Table 5.25: Door Status Control (DSC) Unavailability for Reon�guration Distribution

Strategies (T=10 years)

Con�guration Reon�guration Implementation Distributions

DSC Unavailability

λ
SW_HM

=0.05

λ
SW_HM

=0.15

λ
SW_HM

=0.25

1R Centralised PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

) 0.346 0.347 0.347

1R Distributed

PU

1

(R_DOD

1

); PU

2

(R_DCD

1

); PU

3

(R_OD

1

);

PU

4

(R_DV

1

)

0.347 0.347 0.347

2R Centralised

PU

1

(R_DOD

1

, R_DCD

1

,R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

)

0.347 0.347 0.347

2R Distributed

PU

1

(R_DOD

1

, R_DCD

2

); PU

2

(R_DOD

2

, R_DCD

1

);

PU

3

(R_OD

1

, R_DV

2

); PU

4

(R_OD

2

, R_DV

1

)

0.347 0.347 0.347

3R Centralised

PU

1

(R_DOD

1

, R_DCD

1

, R_OD

1

, R_DV

1

);

PU

2

(R_DOD

2

, R_DCD

2

, R_OD

2

, R_DV

2

);

PU

3

(R_DOD

3

, R_DCD

3

, R_OD

3

, R_DV

3

)

0.347 0.347 0.347

3R Distributed

PU

1

(R_DOD

1

,R_DCD

2

,R_OD

3

);

PU

2

(R_DOD

2

,R_DCD

1

,R_DV

3

);

PU

3

(R_DOD

3

,R_OD

1

,R_DV

2

);

PU

4

(R_DCD

3

,R_OD

2

,R_DV

1

)

0.347 0.347 0.347

The failure probability of the door ontrol algorithm subfuntion does not show vari-

ations hanging system on�gurations. However, if we fous on the input subfun-

tions and their underlying failure events there are some harateristis worth mention-

ing. Table 5.26 shows the failure probability of the door losed detetion failure event

(F
DCD

), its orresponding reon�guration sequene failure event (F
R.Seq.

DCD

), and the

reon�guration subfuntion failure event (F
R_DCD

). These events have been analysed

for di�erent on�gurations and alternative values of the health management implemen-

tation's failure rates. We do not have inluded the remainder of input subfuntions

(door open detetion, obstale detetion and door veloity) and their orresponding

failure events beause all the input subfuntions are haraterized equally (i.e., same

number and distribution of redundany, reon�guration and fault detetion implemen-

tations). Besides note that we do not have inluded the 1R distributed on�guration

for simpli�ation (see Table 5.25 for the on�gurations).

From Table 5.26 the following harateristis have been identi�ed:

� As the number of reon�guration's redundany implementations inrease, the fail-

191

Table 5.26: Failure Probability of the Underlying Events of the Door Status Control Main

Funtion (T=10 years)

Events

λHM = 0.05 λHM = 0.15 λHM = 0.25

1RC 2RD 2RC 3RD 3RC 1RC 2RD 2RC 3RD 3RC 1RC 2RD 2RC 3RD 3RC

F
DCD

0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043

F
R.Seq.

DCD

0.013 0.005 0.005 0.003 0.004 0.014 0.008 0.009 0.007 0.007 0.016 0.011 0.011 0.009 0.009

F
R_DCD

0.312 0.138 0.140 0.124 0.127 0.571 0.313 0.316 0.274 0.275 0.761 0.466 0.466 0.390 0.391

ure probability of the reon�guration sequene failure event (FR.Seq._SF) as well

as the reon�guration subfuntion's failure probability (FR_SF) dereases.

� Despite the e�et on the failure probability of the reon�guration subfuntion

failure (FR_SF) is signi�ant for all the on�gurations, when this event is ombined

with other events (FR.Seq._SF) the di�erene between alternative on�gurations

beomes lower due to the sequene dependent onstraint (see Equation 5.5).

� As the failure rate of the health management implementations inreases, the failure

probability of reon�guration sequene (FR.Seq._SF) and reon�guration subfun-

tion failure events (FR_SF) also inrease.

� The failure probability of the subfuntion failures (FSF) are not in�uened neither

by the number of redundanies nor inreased failure rate of health management

implementations, i.e., the onlusions from Table 5.25 are also seen here.

In�uene of Health Management Implementations

Taking the on�guration with 4 heterogeneous redundanies as a starting point (f.

Table 4.7, on�guration #2), the in�uene of the fault detetion, reon�guration and

ommuniation implementations have been analysed assuming ideal and real behaviour

of eah of these implementations.

Figure 5.40 displays the failure probability values of these on�gurations with the on-

�dene level=0.99 and the on�dene interval=0.001.

In Figure 5.40 the in�uene of the ommuniation is more important than

192

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

Time (Years)

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

Real Con�guration

Con�guration with Ideal Communiation

Con�guration with Ideal Reon�guration

Con�guration with Ideal Fault Detetion

Figure 5.40: Door Status Control Failure Probability with Ideal Assumptions

health management implementations. Again this is beause the ommuniation in�u-

enes many subfuntions and implementations at the same time and health management

implementations do not. For instane, at T=15 the following failure probability values

hold:

1. real on�guration = 0.348 ± 0.001;

2. ideal ommuniation = 0.342 ± 0.001;

3. ideal reon�guration = 0.347 ± 0.001;

4. ideal fault detetion = 0.347 ± 0.001;

In this ase, there is no di�erene in the in�uene of fault detetion and reon�guration

implementations and their in�uene an be onsidered negligible.

5.5 Conlusions

Throughout this hapter we have assumed that the repair proess of resoures starts as

soon as a resoure fails and we also have assumed that the repaired resoure is as good

193

as a new one. In this diretion there may be some poins worth analysing:

� It may be possible to implement preventive maintenane strategies so that a om-

ponent is repaired/replaed before its failure.

� The degradation of the resoure after reparation an be onsidered by worsening

the failure rate after eah reparation.

� The in�uene of alternative SW implementations have been analysed by hang-

ing their failure rates. One an also evaluate the in�uene of the repair rates

of elements on system's failure probability to optimize repair and maintenane

parameters.

Depending on the design-spei� deisions for eah main funtion, the in�uene on

dependability and ost varies. As on�rmed in this hapter (and in Chapter 4), opti-

misation of design deisions with respet to the type and number of redundany and

reon�guration strategies are feasible to maximize dependability and minimize the ost.

The in�uene of redundanies on system dependability and ost depend on the anal-

ysed main funtion and its on�guration. There are di�erent fators that in�uene

dependability and ost. Conerning the dependability:

� Number of redundany implementations: the greater the number of redundanies,

the lower the failure probability of the subfuntion.

� Type of redundany implementations: generally speaking the failure probability

of the heterogeneous redundanies is higher than homogeneous redundanies due

to the added extra resoures in order to make implementations ompatible (e.g.,

SW implementations, ommuniation).

� Number of reon�guration's redundanies: while it ontributes diretly to the

improvement of the reon�guration subfuntion's performane, its e�et on the

main funtion is attenuated by intermediate sequene of events and it is usually

negligible.

� Type of redundany strategy: distributed reon�guration redundanies have

shown a lower failure probability of the reon�guration subfuntion than the en-

tralised reon�guration redundanies whih onentrate in a single proessing unit

all the redundany implementations (see Table 5.22);

194

Depending on the on�guration of the main funtion, the in�uene of the type and

number of redundany and reon�guration mehanism varies. When a subfuntion does

not have redundanies (i.e., it is a single point of failure), its ontribution to the main

funtion failure is more important than in�uene of the alternative design deisions for

another subfuntion of the main funtion that has redundanies (type of redundanies;

number and type of reon�guration strategies).

As for the ost in�uenes:

� Downtime ost: the in�uene of the downtime ost is higher with less reliable

arhitetures and it is more penalising than the ost inurred by HW, SW or

ommuniation resoures.

� Type of redundanies: the arhiteture ost (HW, SW and ommuniations re-

soure ost) of heterogeneous redundanies are heaper than homogeneous re-

dundanies, however, when downtime osts are inluded the ost depends on the

system's unavailability (whih is better for homogeneous redundanies);

� Type of heterogeneous redundanies: heterogeneous redundanies arising from

natural ompatibility does not need a spei� software, whereas heterogeneous

redundanies arising from fored ompatibility requires �t-for-purpose software

whih inreases it ost.

� Number of heterogeneous redundanies: if there are similar heteroge-

neous redundanies arising from fored ompatibilities, the ost of eah

heterogeneous redundany is lower. This happens beause the software devel-

opment ost of one software resoure (whih is assumed to be valid for all re-

dundanies with slight modi�ations) is divided among the similar heterogeneous

redundanies. Therefore, the ost per eah heterogeneous redundany is not as

high as for a single (independent) heterogeneous redundany.

The sensitivity of the DEM approah to the ost alulation parameters should also be

addressed to obtain a higher degree of on�dene in the obtained results.

For the analysed on�gurations in Subsetion 5.4.2 and Subsetion 5.4.3, the follow-

ing onlusions are extrated: the in�uene of the ommuniation implementations

on system dependability is not negligible and annot be onsidered ideal (see Figure

5.38, and Figure 5.40). Depending on the number of input, ontrol or output subfun-

195

tion's redundanies, the in�uene of health management implementations gains signif-

iane. In the developed examples the failure of the fault detetion is more in�uential

beause it does not have redundanies. The higher the number of redundanies of

health management implementations, the lower their failure probability and higher the

system ost, but their failure probability improvement is very small (see Table 5.23 and

Table 5.26).

The DEM approah would bene�t from the automati extration of the dependability

evaluation model so that the designer is not exposed to error-prone tasks. Besides, the

automation would allow us to implement optimization algorithms so that it is possible

to explore the design spae with alternative arhiteture on�gurations (with variations

in the number and type of reon�guration and redundany strategies) and hoose the

best arhiteture aording to the given dependability and ost requirements.

The time needed to arry out the simulation of the dependability evaluation model

is onsiderable. This issue originates from the level of (detail and) omplexity of the

dependability evaluation model and the required auray of the results.

196

Chapter 6

D3H2 Methodology: Experimental

Evaluation

To proof the feasibility of the D3H2 methodology in real appliations, a key appliation

onept in our methodology has been validated: we have added reon�guration apabil-

ities to existing hardware train network omponents to reover the system from failures

at runtime using heterogeneous redundanies.

In this hapter we present details about the performed experiments [Aizpurua14℄. The

hapter is organised as follows:

� Setion 6.1 introdues the motivation of this hapter.

� Setion 6.2 overviews urrent industrial railway ommuniation arhitetures and

devies.

� Setion 6.3 desribes the developed appliation senarios in order to validate the

onepts treated throughout this dissertation.

� Setion 6.4 sets the onlusion of this hapter.

6.1 Introdution

The arhiteture of the train ommuniation systems is designed with respet to the

system funtions and their ritiality. The data is transmitted from di�erent ommuni-

ation networks aording to the ritiality of the funtion.

The reuse of resoures emerged from over-dimensioned design deisions is a hallenge

in the railway domain. Namely, when designing safety-ritial funtions, the reuse of

197

resoures may pose hazardous onsequenes that prevent the system from using hetero-

geneous redundanies. However, the reuse of elements with information, entertainment,

or omfort related funtions is feasible beause they do not pose hazardous onsequenes,

e.g., the failure of Air Conditioning Control or Light Control main funtions.

Aording to the D3H2 methodology, the reuse of resoures requires modi�ations in the

system HW/SW arhiteture, namely: (1) �t the system's PUs with fault detetion and

reon�guration mehanisms; (2) design the system with a ommuniation protool whih

enables the runtime addition or removal of ommuniation hannels; and (3) alloate

the reon�guration table to the reon�guration deision PU(s) whih will indiate the

implementation to be reon�gured.

6.2 Industrial Railway Communiation Arhitetures

In Subsetion 6.2.1 we desribe the main ommuniation networks and in Subsetion

6.2.2 we present the ommuniation/proessing devies whih onstitute the train om-

muniation arhiteture.

6.2.1 Communiation Networks

Trains have a standard form of data ommuniation spei�ed in the

Train Communiation Network (TCN) standard IEC 61375 [IEC07℄. TCN is a

real-time data network omprised of an arhiteture inter-onneting train vehiles and

equipments within a vehile. The TCN standard spei�es Wire Train Bus (WTB) for

the inter-onnetion of vehiles and Multi-funtion Vehile Bus (MVB) for intra-vehile

devie ommuniation (f. Figure 6.1). In this work we fous on the ommuniation

within a vehile using MVB.

MVB operates in master-slave on�guration of the devies in a vehile. In this evalu-

ation, the following types of devies are onsidered: intelligent devies partiipating in

the message ommuniation with administration apabilities or onneted I/O elements.

The master guarantees deterministi medium aess managing periodi and sporadi a-

ess to the bus. The ommuniation in MVB follows the publisher/subsriber paradigm:

198

MVBMVBMVB

WTB

Figure 6.1: TCN Con�guration Example [IEC07℄

a publisher broadasts variables and this information is distributed to the subsribers.

To this end, a tra� store is implemented; eah devie holds the variables it produes/-

onsumes in a shared memory that is a partial opy of the whole network's distributed

database.

6.2.2 Communiation Devies

All the used devies have been designed and produed by CAF Power & Automation

to operate on trains, meeting the rail standards in e�et. Thanks to the modularity

and �exibility of eah module, the needs of eah spei� appliation an be ahieved by

hanging the settings of the modules.

The explanation of the harateristis of the devies are limited beause they are part

of the Intelletual Property of CAF Power & Automation. All devies provide total

immunity to eletromagneti interferenes in ompliane with the standard EN50121-3-

2: Railway Appliations - Eletromagneti Compatibility.

Every system developed in CAF Power & Automation has three basi funtions:

1. Control of ommuniations between the equipment of a train ar: the system

provides a TCN ommuniation hannel for all the train equipment and ontrols

all the information transmitted at the vehile bus level.

2. Interfae with the train via its I/O hannels and exeution of the train logi: the

system is equipped with RS485 series digital and ommuniation modules arranged

along the whole train to diagnose and hek the train status and to operate in

aordane.

199

3. Supervision, monitoring and reording of the train performane: from the driver

terminal various train settings and parameters an be entered as well as the on-

dition of every train system an be seen.

We fous on two generi devies to onstrut the HW/SW arhiteture so as to test

some onepts treated in this dissertation: (1) Communiation Interfae Card (TICO)

and (2) Ethernet ommuniation swith.

The Communiation Interfae Card (TICO) board (f. Figure 6.2) has a CPU and a

FPGA separating ommuniation ontrollers and appliation/ontrol/supervision tasks.

It has uClinux operating system and its RTAI real-time extension. Therefore, it is

possible to ombine both real-time and non real-time tasks.

Figure 6.2: TICO Board Figure 6.3: CCU/BA Module

The TICO generi board is expanded into the following

appliation-spei� modules: Multi Interfae board Module (MIM) and

Control and Communiation Unit - Bus Administrator (CCU/BA) module.

200

The main funtion of the CCU/BA module (f. Figure 6.3) is to arry out the logi

of the ontrol of the train and to administrate the MVB bus (master) in the train ar

for whih it has been devised (BA). The CCU part deides whih signals must be used

and the BA part ontrols all information exhange among all the equipment onneted

to the MVB. Eah CCU/BA devie periodially exeutes the information transmission

ommands via MVB and it is able to ommuniate through MVB and RS485 physial

buses.

There shall always be a single CCU/BA with ative ontrol ondition, while other

CCU/BA devies shall be in passive ontrol ondition waiting for an intervention request

(on standby).

MIM module (f. Figure 6.4): it is onstituted by a TICO board in onjuntion with

other I/O boards integrated within a bakplane. It provides multiple I/O interfaes and

ontrol/proessing apability with very low power onsumption. It is able to ommu-

niate through Ethernet, Controller Area Network (CAN), MVB and RS485 physial

buses and it an implement any user appliation with supervisory or ontrol logi.

Figure 6.4: MIM Module

TheMIMmodule ontains di�erent numbers of digital and analogue I/O signal hannels.

Ethernet ommuniation swith (f. Figure 6.5): it permits the ommuniation of dif-

ferent devies onneted through an Ethernet ommuniation bus.

The buses and variable movement between buses is supported by the proprietary

CSTools tool (f. Figure 6.6). This tool reates the software framework aording

to the designed ommuniation buses and the user has to add the logi inside the frame-

work (aording to the aess funtions). Uploading the appliation into the board is

201

Figure 6.5: Ethernet Swith

done through an Ethernet onnetion and any File Transfer Protool (FTP) lient.

Figure 6.6: Snapshot of the CSTools Con�guration Software

Basi Con�guration: Figure 6.7 shows the basi on�guration from whih alternative

senarios have been reated to test alternative senarios (as explained in Setion 6.3).

Figure 6.8 presents the shemati on�guration of the Figure 6.7.

Two TICO boards (TICO

1

, TICO

2

) are onneted to both Ethernet and MVB om-

muniation networks. The CCU/BA board manages the ommuniation through the

MVB network and the Ethernet swith enables the ommuniation of the TICO boards

through Ethernet. Furthermore, a laptop is used for diagnosti purposes so that it man-

ages the data that �ows through the CCU/BA module (MVB) and the data that �ows

through Ethernet.

202

Figure 6.7: Tested Real Con�guration

Figure 6.8: Shemati Con�guration of the Figure 6.7

6.3 Appliation Arhiteture

For the implementation of the reon�guration proess, we identify two phases:

1. Constrution of the reon�guration table: design-time or run-time determined

reon�guration strategies;

2. Ativation/deativation of on�gurations: reon�guration tehniques.

Run-time onstrution of the reon�guration table allows higher �exibility, but requires

exploring the arhiteture dynamially. For safety and preditability purposes, design-

time determined reon�guration strategies are adopted in this study. Regarding the a-

tivation or deativation of on�gurations, while reon�guration hannels �xed at design-

time redue design omplexity, reon�guration hannels established at run-time redue

proessing ost and bandwidth by reating redundant ommuniation hannels exlu-

sively when their need arises.

203

In a train there are safety-ritial funtions whih must meet hard real-time onstraints

(e.g., Door Status Control) and these funtions are transmitted through MVB. Besides,

other ommuniation protools oexist in the train; for instane, Ethernet ommunia-

tion protool transports non-ritial information, entertainment or omfort related data.

Ethernet provides more �exibility to perform arhitetural modi�ations at runtime at

the expenses of losing preditability with respet to MVB. There exist other ommuni-

ation networks in a train (e.g., CAN), but this proof of onept has been foused on

MVB and Ethernet.

Therefore, the following design deisions have been adopted: MVB has been used for

reon�guration hannels �xed at design-time and Ethernet for reon�guration hannels

established at run-time. On one hand, ommuniation hannels using MVB are ob-

tained by assigning reon�guration routes at design-time and ativating them from the

outset. The bandwidth onsumption of these redundant ommuniations is onstant

but their proessing is ativated solely when their need rise up. On the other hand,

in Ethernet, run-time modi�ations are e�etuated using UDP ommuniation threads

in lient/server like on�gurations. Communiation threads are reated and deleted as

their need arises, so that the bandwidth and proessing needs hange exlusively in ase

of reon�guration.

The following reon�guration senarios (SC) have been tested:

� SC1: sensor reon�guration: ommuniation route hanges to handle sensor fail-

ures using heterogeneous redundanies.

� SC2: ommuniation reon�guration: swithing the ommuniation protool to

handle ommuniation failures using heterogeneous redundanies.

� SC3: proessing unit reon�guration: replaing the proessing unit and ommuni-

ation routes to handle proessing unit failures using homogeneous redundanies.

Three reon�guration attributes de�ne the reon�guration spae of these senarios:

� Reon�guration granularity omprehends task or node level reon�gurations. Task

level reon�guration is performed by hanging a single task, and node level

reon�guration is performed by hanging the whole node (PU and orrespond-

ing tasks).

204

� Reon�guration objet addresses SW, HW and ommuniation (Comm.) level

reon�gurations: SW reon�gurations modify the SW implementation hanging

its parameters or struture; HW reon�gurations involve hanging the omplete

HW devie; and ommuniation reon�guration modi�es nominal ommuniation

routes with alternative ones.

� Reon�guration hannel ativation time omprehends design-time or run-time a-

tivation of ommuniation hannels. Note that design-time ativation of ommu-

niation hannels really ativate at system start-up.

Figure 6.9 desribes the reon�guration spae of the tested senarios. For instane, all

the senarios perform task-level and ommuniation-level reon�gurations, but only SC3

addresses node-level and ommuniation-level reon�gurations.

Activation

Time

Object

Granularity

S
W

H
W

C
o
m
m

Design-Time Runtime

Ta
sk

No
de

SC1, SC2, SC3

(MVB)

SC3

(MVB)

SC1, SC3 (MVB)

SC3

(MVB)

SC1, SC2, SC3

(MVB)

SC1, SC2, SC3

(ETH)

SC3

(ETH)

SC1, SC3 (ETH)

SC3

(ETH)

SC1, SC2, SC3

(ETH)

SC1, S
C2, S

C3

SC1, S
C3

SC3

SC3

SC3

SC3

Figure 6.9: Reon�guration Spae of the Tested Senarios

6.3.1 Senario I: Sensor-Level Reon�guration

Without losing the appliability of the senario, SC1 fouses on the example presented

in [Aizpurua12a℄ and desribed in Setion 2.1 (see the funtional model in Table 3.4).

205

A train ar vehile may have di�erent ompartments (f. Figure 6.10 Zone

A

, Zone

B

)

and independent Air Conditioning Control main funtion implementations at eah om-

partment. Assume that 2 PUs are onneted to perform Air Conditioning Control in

eah vehile's ompartment: one PU (PU

1

or PU

3

) measures the temperature (SF1:

temperature measurement) using a sensor (S

1

or S

2

) and gets the referene temperature

(SF2: user referene temperature) using a referene knob (R

1

or R

2

), and the seond PU

(PU

2

or PU

4

) ats as a ontroller (SF3: air onditioning ontrol algorithm) and gives

the output to the onneted heater (SF4: Heating, resoures: H

1

or H

2

).

PU1

H1S1 R1

SC2.A

SC2.B

MVB

ETH

SC3

PU2 PU3 PU4

PUR

RT-Linux

T1.ETH T1.MVB

Car1.ZoneA Car1.ZoneB

H2S2 R2SC1

Figure 6.10: Reon�guration Senarios

Let us fous on the reon�guration of temperature measurement subfuntion at

Car

1

.Zone

A

. The nominal ommuniation Route of the temperature measurement sub-

funtion in eah ompartment is as follows:

Route

1

: S

1

→PU

1

→ETH→PU

2

→H

1

;

Route

2

: S

2

→PU

3

→ETH→PU

4

→H

2

.

Given that one sensor of any ompartment fails, we reuse the already existing one in

the same ar, but in a di�erent ompartment. To reon�gure the temperature mea-

surement implementation in Car

1

.Zone

A

its value-based fault detetion is loated in

the destination proessing unit PU

2

. When sensor S

1

fails, inorret or missing val-

ues are deteted at PU

2

by the fault detetion, and the reon�guration implementation

orders the faulty omponent to stop sending data. It also heks the IP address and

the User Datagram Protool (UDP) port of the next standby implementation of tem-

206

perature measurement subfuntion in its reon�guration table, and it establishes the

ommuniation with S

2

. This proess hanges the ommuniation route from Route

1

to

Route

12

:

Route

12

: S

2

→PU

3

→ETH→PU

2

→H

1

.

The design of the devies identi�ed as heterogeneous redundanies enables them to redi-

ret their information to di�erent information sinks dynamially when a reon�guration

signal is reeived. During the reon�guration, soure and sink PUs synhronize and S

2

ontinues sending data towards PU

2

until S

1

is repaired and reon�gured. Implemented

reon�guration mehanisms are appliable to input subfuntion implementations oper-

ating with heterogeneous redundanies (e.g., Fire Protetion Control example f. Table

3.8). MVB reon�gurations apply the same proess, with the di�erene that Route

12

is

ativated from the outset.

6.3.2 Senario II: PU-Level Reon�guration

Sine a train inorporates di�erent ommuniation protools, there is room to bene�t

from heterogeneous redundant ommuniations. Despite bidiretional ommuniations

have been implemented between PU

1

and PU

2

, for simpliity the following unidiretional

Routes are onsidered:

Route

1

: T

1

.MVB→PU

1

→MVB→PU

2

;

Route

2

: T

1

.ETH→PU

1

→ETH→PU

2

.

Where T

1

.MVB and T

1

.ETH identify MVB and Ethernet tasks respetively (f. Fig-

ure 6.10). When a ommuniation link is down, the general ommuniation-level

reon�guration proess is as follows:

1. The appliation loated in the destination PU detets the ommuniation failure

(time-based fault detetion).

2. Subsequently, it reon�gures itself reating a server to ontinue reeiving data

using the operating ommuniation protool.

3. It informs the soure PU about the ommuniation failure.

207

4. Finally, the soure PU is also reon�gured swithing from the faulty to the oper-

ating ommuniation

Hene, when MVB is disonneted (SC2.A, f. Figure 6.10), UDP ommuniation

threads are reated dynamially to ontinue sending MVB data via Ethernet hang-

ing ommuniation routes from Route

1

to Route

12

where,

Route

12

: T

1

.MVB→PU

1

→ETH→PU

2

.

And vie versa, when Ethernet is disonneted (SC2.B, f. Figure 6.10) the ommuni-

ation route is hanged from Route

2

to Route

22

where,

Route

22

: T

1

.ETH→PU

1

→MVB→PU

2

.

6.3.3 Senario III: Communiation-Level Reon�guration

Point to point unidiretional ommuniation from PU

1

to PU

2

is onsidered with the

next ommuniation routes:

Route

1

: T

1

.MVB→PU

1

→MVB→PU

2

;

Route

2

: T

1

.ETH→PU

1

→ETH→PU

2

.

The tasks that PU

1

is performing are rearranged in another ompatible PU to deal

with the failure of PU

1

. A higher level reon�guration implementation (PU

R

) has been

added to rediret all the data that the failed PU was sending from its ommuniation

interfaes. PU

R

monitors the performane of both PUs (PU

1

, PU

2

) and when it detets

that any of them is down (time-based fault detetion); it is reon�gured sending the

data that it was sending before through MVB and Ethernet. Consequently, Route

1

is

replaed by Route

12

and Route

2

swithes to Route

22

where,

Route

12

: T

1

.ETH→PU

R

→ETH→PU

2

;

Route

22

: T

1

.MVB→PU

R

→MVB→PU

2

.

208

6.4 Conlusions

In this hapter we have presented a real HW/SW arhiteture, that based on industrial

railway ommuniation devies implements the ideas treated throughout this disserta-

tion.

The arhiteture have been tested on di�erent senarios to validate the system's

fault tolerane apabilities under di�erent failure situations. Namely, we have analysed

the arhiteture with respet to sensor, ommuniation and PUs failures by reusing

already existing elements.

The main limitation of the experiments arried out in this hapter is that the senarios

have been tested isolated from the other funtions omprising a real train. Hene, we do

not have to deal with possible memory and bandwidth issues. A more aurate approah

would require taking into aount these requirements as well as performing alulations

so that the system meets all its requirements.

209

210

Chapter 7

Conlusions and Future Work

In this hapter we present the main results and limitations of this dissertation. The

hapter is organised as follows:

� Setion 7.1 summarizes the work performed during the ompletion of the researh

work.

� Setion 7.2 points out the outomes obtained from this dissertation.

� Setion 7.3 identi�es the limitations of the researh work and future researh areas

whih deserve attention to further improve this work.

7.1 Conlusions

This dissertation omprehends multiple engineering �elds inluding systems engineering,

software engineering and reliability engineering. The main ontributions of this disser-

tation are on�ned in the design of reon�gurable systems onsidering optimization of

design deisions with respet to dependability and ost.

During this researh period a omprehensive review and lassi�ation of dependability

analysis, veri�ation and design approahes has been performed [Aizpurua12b℄

[Aizpurua13b℄. These papers review the state of the art approahes in the �eld of

model-based dependable design inluding dependability analysis and veri�ation ap-

proahes. They point out advantages and disadvantages of the well known event-based

and state-based approahes and aordingly, the approahes from the sienti� literature

are lassi�ed based on the addressed limitations.

We have designed the D3H2 (aDaptive Dependable Design for systems with Homoge-

211

neous and Heterogeneous redundanies) methodology with the goal of optimising design

deisions in massively networked senarios. The methodology enables the evaluation of

the in�uene of the di�erent design deisions on dependability and ost, inluding the

reuse of existing resoures. It also aids the designer to hoose between redundany and

reon�guration strategies. Chapter 3 overviews the D3H2 methodology and harater-

izes the key modelling and analysis ativities to design a HW/SW arhiteture taking

into aount its ost [Aizpurua13a℄. Namely, the Funtional Modelling Approah (f.

Subsetion 3.3.1) and the Compatibility Analysis (f. Subsetion 3.3.2) enable the sys-

temati identi�ation of redundanies and single points of failure [Aizpurua12a℄. The

Extended Funtional Modelling Approah (f. Subsetion 3.3.4) enables the system-

ati extension of the initial HW/SW arhiteture and allows the designer to reate the

extended HW/SW arhiteture whih aounts for design deisions with respet to the

distribution and implementation of fault detetion, reon�guration and ommuniation

funtions.

Chapter 4 presents the Dependability Evaluation Modelling approah for non-repairable

systems. This approah is used to perform a omplete and systemati assessment of the

extended HW/SW arhitetures and evaluate the in�uene of alternative arhitetural

design deisions on dependability. The omponent-based nature of the dependability

evaluation algorithm enables to perform the probabilisti analysis of the Dependability

Evaluation Model using the ombination of Dynami Fault Tree and Component Fault

Tree approahes, that is, Component Dynami Fault Trees [Aizpurua14℄.

The outlined approah makes it possible to evaluate the e�et of ideal/non-ideal

health management and ommuniation implementations on the system failure prob-

ability using importane measurements. This approah an be exploited to analyse the

ontribution of these implementations to the system's failure probability. Furthermore,

in order to deal with the lak of exat failure data information of some resoures (e.g.,

software resoures), unertainty analyses have been implemented. Therefore, it is po-

ssible to speify interval failure rates (instead of single value data) of system resoures

and alulate the failure probability distribution of the top event's failure probability,

i.e., seond order failure probabilities.

When analysing non-repairable systems, the evaluation of whih redundany strat-

egy is heaper does not have only one answer. Depending on the type of the

heterogeneous redundany strategy their osts are di�erent. Generally speaking, het-

212

erogeneous redundanies arising from natural ompatibilities require less additional

resoures than heterogeneous redundanies arising from fored ompatibilities and they

are usually more ost-e�etive.

Chapter 5 de�nes the Dependability Evaluation Modelling approah for repairable

systems. It gives methods to assess exhaustively and systematially the in�uene of alter-

native arhitetural design deisions on dependability. Compared with non-repairable

systems, the Dependability Evaluation Modelling approah for repairable systems re-

quires more powerful formalisms for onsidering random failure and repair sequenes.

Based on the Stohasti Ativity Networks formalism, we have implemented the Depend-

ability Evaluation Modelling approah that takes into aount omplex repair strategies.

Depending on the design-spei� deisions for eah main funtion, the in�uene on

system's dependability and ost varies. As on�rmed in Chapter 4 and Chapter 5,

optimisation of design deisions with respet to the type and number of redundany

and reon�guration strategies to maximize dependability and minimize the ost are

feasible.

The in�uene of redundanies on system dependability and ost depend on the anal-

ysed main funtion and its on�guration. There are di�erent variables that in�uene

dependability and ost. Conerning the dependability we identify the next fators:

� Number of redundany implementations: the greater the number of redundanies,

the lower the failure probability of the subfuntion.

� Type of redundany implementations: generally speaking the failure probability

of the heterogeneous redundanies is greater than homogeneous redundanies due

to the added extra resoures in order to make implementations ompatible (e.g.,

SW resoures, ommuniation).

� Number of reon�guration's redundanies: its inrease ontributes diretly to the

improvement of the reon�guration subfuntion's performane. However, its on-

tribution to the redution of the failure probability of the main funtion is almost

negligible beause is attenuated by sequene-dependent intermediate failure events.

� Type of reon�guration strategy: distributed reon�guration redundanies have

shown a lower failure probability of the reon�guration subfuntion than the en-

tralised reon�guration redundanies whih onentrate in a single proessing unit

213

all the funtion redundanies.

� Communiation: if the whole system is onneted using the same ommuniation

network it beomes a ritial fator. In these ases it annot be assumed as ideal

and its ontribution to the top-event failure should be evaluated.

Generally heterogeneous redundanies obtained from natural ompatibilities require less

resoures to make implementations ompatible. In these on�gurations the failure prob-

ability di�erene between homogeneous and heterogeneous redundanies is lower om-

pared with heterogeneous redundanies obtained from fored ompatibilities.

In a main funtion, the failure ontribution of a subfuntion without redundanies is

more important than the ontribution of a subfuntion with redundanies. That is, the

number of redundanies and the number and type of reon�guration redundanies of a

subfuntion beome less e�etive when the same main funtion has another subfuntion

whih has a single implementation (i.e., a single point of failure).

The following are the main fators that in�uene system ost:

� Downtime ost: the in�uene of the downtime ost is higher with less reliable

arhitetures and it is more penalising than the ost inurred by HW, SW or

ommuniation resoures.

� Type of redundanies: the arhiteture ost (HW, SW and ommuniations

resoure ost) of heterogeneous redundanies are heaper than homogeneous re-

dundanies, however, when downtime osts are inluded, the ost depends on the

system's unavailability - whih is ommonly better for homogeneous redundanies.

� Type of heterogeneous redundanies: heterogeneous redundanies arising from

natural ompatibility does not need a spei� software, whereas heterogeneous

redundanies arising from fored ompatibility requires �t-for-purpose software.

� Number of heterogeneous redundanies: if there are similar heteroge-

neous redundanies arising from fored ompatibilities, the ost of eah

heterogeneous redundany is lower. This happens beause the software devel-

opment ost of one software resoure (whih is assumed to be valid for all re-

dundanies with slight modi�ations) is divided among the similar heterogeneous

redundanies. Therefore, the ost per eah heterogeneous redundany is not as

214

high as for a single (independent) heterogeneous redundany (related to SW de-

velopment ost attribution).

Note that our analysis have been performed for the values shown in Appendix E. In

order to ontrast the validity of the obtained results a ost sensitivity analysis should

be performed.

The reuse of system resoures (i.e., heterogeneous redundany) redues system ost

ompared with the addition of an additional hardware omponents. However, this is only

true when the unavailability inurred by the heterogeneous redundany is not greater

(or is slightly greater) than the homogeneous redundany.

Depending on the system on�guration, the in�uene of health management and om-

muniation implementations on system dependability may be negligible or not. In the

following some deliberations about health management implementations:

� Depending on the number of input, ontrol or output subfuntion's redundanies,

the in�uene of health management implementations gains signi�ane. The less

subfuntions, the higher its weight (e.g., a single input subfuntion with redun-

danies).

� The higher the number of redundanies of health management implementations,

the lower the failure probability of the reon�guration and fault detetion imple-

mentations and higher the system ost. However, its e�et on the main funtion

is attenuated due to the sequene-dependent onstraint (health management im-

plementations must fail prior to the subfuntion's implementation).

� If the implementations of the same subfuntion are onentrated in a single PU,

the system beomes more sensitive to ommuniation failures.

The feasibility of the use of heterogeneous redundanies for safety-ritial funtions is

an issue worth mentioning. In some ases, the ost inurred in obtaining evidenes of

the reliability of the heterogeneous redundany an inrease the ost more than using

an homogeneous redundany.

215

7.2 Contributions

The followings are the main ontributions of this dissertation:

� A omprehensive review of the model-based dependability analysis, veri�ation

and design approahes has been developed.

� We have developed a methodology that enables the systemati haraterization

and evaluation of HW/SW arhitetures whih inludes:

� Systemati identi�ation of heterogeneous redundanies.

� Systemati evaluation of the in�uene of design deisions on system

dependability for non-repairable systems. In this ontext, an analysis

paradigm that allows the transformation of the design model to the dy-

nami dependability analysis model has been used (Component Dynami

Fault Trees).

� Systemati evaluation of the in�uene of design deisions on system

dependability for repairable systems. This approah enables the analysis

of the failure probability of the system taking into aount prioritized repair

strategies and inluding omponents with omplex logi and repeated events.

� So far, the researh ommunity has onsidered health management implementa-

tions as ideal when using heterogeneous redundanies. Our methodology inludes

health management mehanisms (and their failure model) as well as homogeneous

and heterogeneous redundanies when designing adaptive dependable systems.

� Hitherto, heterogeneous redundanies have not been integrated in a design

methodology that starts from their identi�ation, moves through the onstru-

tion of the HW/SW arhiteture to use them in massively networked senarios,

and quanti�es their e�et on system's dependability and ost.

� Validation of the onepts treated throughout the dissertation using industrial

railway ommuniation devies.

216

7.3 Future Work

The goals of this work have been foused on the stated researh objetives. However,

there exist some interesting areas that have not been ompleted during this time and they

deserve to be mentioned in order to progress in the use of heterogeneous redundanies

in real systems. Subsequently, we list some points that determine how this thesis an

be further developed.

The presented modelling approahes (Funtional Modelling Approah and Extended

Funtional Modelling Approah) enable an straightforward haraterization of the

system and its subsequent exploitation for redundany identi�ation and further anal-

yses. However, this proess requires studying all the system funtions, resoures, and

their physial loations early at the design time. In order to alleviate the burden of anno-

tations it may be possible to ome up with an approah that enables the auto-annotation

(suggestion) of implementations based on the omponents name.

When using heterogeneous redundanies, the designer needs to be aware of the quality

degradation and evaluate whether it is aeptable or not. To further re�ne the ompat-

ibility analysis, heterogeneous redundanies should be validated exhaustively. To this

end, di�erent arhiteture-spei� requirements subjet to real system operation need

to be taken into aount, suh as aeptable error margins, timeliness, memory and

proessing apaity onstraints of the proessing units.

Another issue worth addressing is the onstrution of the reon�guration table at run-

time. Run-time updates to the reon�guration table would failitate the system main-

tenane and it would re�et the real system status.

The approah would bene�t from the automati extration of the dependability eval-

uation models so that the designer is not exposed to error-prone tasks. Besides, the

automation would help to implement optimization algorithms in order to searh for the

best arhiteture aording to prede�ned dependability and ost requirements.

The time needed to arry out the simulations of the dependability analysis models is

onsiderable: this issue originates from the level of omplexity of the dependability

evaluation model and the required auray of the results. In this diretion, tehniques

suh as dynami simulation stopping riterion an be de�ned: deiding whether to

217

ontinue simulating the model based on simulation parameters (e.g., aeptable standard

deviation of the probability alulations).

In the analysed ase studies the evaluations have been arried out at the funtion level.

However, it ould be interesting to onsider the train ar as a whole. In this way, an

overall evaluation of the train's performane ould be evaluated while onsidering all

the performed funtions simultaneously.

As for the ost assessment, undertaking a ost sensitivity analysis would onsolidate the

onlusions that we have obtained in this dissertation.

When validating the onepts treated throughout the dissertation using industrial om-

muniation elements, the main limitation has been that the senarios have been tested

isolated from the other funtions omprising a real train. Hene, we do not have to deal

with possible memory and bandwidth issues. A more aurate approah would require

taking into aount these requirements as well as performing alulations so that the

system meets all its requirements.

In Chapter 5, we assumed that (1) the repair proess of resoures starts as soon as a

resoure fails and (2) the repaired resoure is as good as a new one. In this diretion,

there may be some points worth analysing:

� It may be possible to implement preventive maintenane strategies so that a om-

ponent is repaired/replaed before its failure.

� The degradation of the resoure after reparation an be taken into aount, e.g.,

inreasing the failure rate after eah reparation.

� It would be interesting to evaluate the in�uene of repair rates on system's failure

probability to optimize repair and maintenane parameters.

218

Appendies

219

Appendix A

Overview of the Basi Dependability

Analysis Approahes

A.1 Event-Based (Combinatorial, Stati) Approahes

Event-based approahes haraterize the system failure behaviour through the ombina-

tion of its onstituent omponents failure events. This haraterization re�ets system's

strutural properties (e.g., redundanies), but it is unable to apture omplex events and

dependenies. The main advantage of these approahes is their simpliity whih has re-

sulted in their widespread use in di�erent industry �elds suh as railway, avionis or

nulear industries. In ontrast, among their disadvantages it should be highlighted that

they are unable to grasp system's dynamis suh as load-sharing, standby redundanies

or dependenies. Their underlying (limiting) assumptions are the followings:

1. Events are haraterized as stohastially independent events.

2. Events are haraterized as binary events: working or failed.

3. Non-repairable events: when events fail for the �rst time, they are assumed to be

failed forever.

4. Charaterization of a single failure/funtioning event at a time.

5. Relations between events expressed by (stati) boolean operators.

In the sienti� literature there has been proposed many approahes to overome the

limitations of these approahes (see [Aizpurua13b℄ for an overview of limitations and

solutions). Some of them are addressed in the Subsetion 2.3.1.

221

Event-based approahes haraterize the failure or funtioning logi of the system

through the struture funtion of the system [Rausand03℄:

A.1.1 Struture Funtion

Consider a system omposed of n omponents, where the state of the omponent i (x

i

),

i=1, 2, . . . , n an be funtioning or failed:

xi =

1, if omponent i is funtioning

0, if omponent i is in a failed state

x = (x1, x2, . . . , xn) is alled the state vetor. The state of a system an be desribed by

a binary funtion:

Φ(x) = Φ(x1, x2, . . . , xn) (A.1)

where

Φ(x) =

1, if the system is funtioning

0, if the system is in a failed state

and Φ(x) is alled the struture funtion of the system. Series, parallel, and K out

of N struture are the lassial arrangements of systems with the following struture

funtions:

Series Struture: a system that is funtioning if all of its n omponents are funtion-

ing:

Φ(x) = x1 · x2 . . . xn =
n
∏

i=1

xi (A.2)

Parallel Struture: a system that is funtioning if at least one of its n omponents is

funtioning:

222

Φ(x) = 1− (1− x1) · (1− x2) . . . (1− xn) = 1−
n
∏

i=1

(1− xi) (A.3)

K out of N Struture: a system that is funtioning if at least k of the n omponents

are funtioning:

Φ(x) =

1, if

∑n
i=1 xi ≥ k

0, if

∑n
i=1 xi < k

(A.4)

Making use of the struture funtion, we will de�ne two well known event-based de-

pendability analysis approahes: Fault Tree Analysis and Reliability Blok Diagrams.

A.1.2 Fault Tree Analysis

The onept of Fault Tree Analysis (FTA) was developed by Bell Telephone Laboratories

as a tehnique with whih to perform a safety evaluation of the Minuteman Launh

Control in 1961. Later Boeing

15

ompany modi�ed it for omputer utilization and now

it is widely used in many �elds suh as aviation, railway or nulear [O�e02℄.

FTA is a top-down dedutive analysis tehnique aimed at �nding all the ways in whih

a failure an our. Starting from an undesirable system-level failure, i.e., top-event, its

immediate auses to our are identi�ed until reahing the lowest-level omponent, i.e.,

basi-event. The top-event is broken down into intermediate and basi-events linked

with logi gates organised in a tree-like struture. The resulting FT, is a model in the

form of ombinations of events whih are neessary to the top-event to our. The

ombination of events are spei�ed using boolean logi gates denoting the relationship

between the di�erent events (see Figure C.1 for a FT model example). Formally,

De�nition A.1. Fault Tree (FT): A fault tree model, ft, is de�ned by a 4-tuple:

ft =< TE,BE,BG,R >

where:

� TE is the top-event of the FT (failure of the modelled system)

15

www.boeing.om

223

� BE is the set of basi events

� BG={AND, OR, KooN} is the set of boolean gates

� R ⊆ (BE x BG) ∪ (BG x BG) ∪ (BG x TE) is the set of relations.

Often the output of a gate whih is then onneted to another gate is named Intermediate

Event (IE). Boolean Gates (BG) are de�ned as follows:

� AND: Y= AND (E

1

, E

2

,...,E

N

); Y is true i� all events {E

1

, E

2

,...,E

N

} are true;

otherwise is false (f. Figure A.1 (b)).

� OR: Y= OR (E

1

, E

2

,...,E

N

); Y is true i� any event {E

1

, E

2

,...,E

N

} is true;

otherwise is false (f. Figure A.1 ()).

� KooN: Y= KooN (E

1

, E

2

,...,E

N

); Y is true i� at least k (1 < k < n) among the

set of N input events {E

1

, E

2

,...,E

N

} is true; otherwise is false (f. Figure A.1

(d)).

Figure A.1: Fault Tree Symbols

Qualitative Analysis: the prinipal qualitative results are the (minimal) ut-sets,

whih re�et the (smallest) ombination of basi events whose simultaneous ourrene

results in the top-event ourrene. The number of possible ut-sets grows exponentially

with the size of the fault tree.

Quantitative Analysis: A FT model an be quanti�ed by asribing probabilities to

the basi events and ombining them to evaluate the probability of the top-event:

� Struture Funtion: replae system variables with the orresponding failure prob-

ability.

224

� Computation based on Minimal Cut-Sets (MCS): determine all the minimal ut-

sets MCS

1

, MCS

2

,. . . ,MCS

k

, and rewrite the struture funtion as follows:

Φ(x) =
k
∏

j=1

∐

i∈MCSj

xi (A.5)

From the resulting struture funtion, one system variables are replaed with

the orresponding probabilities, the inlusion-exlusion formula should be applied

to determine the system unreliability and avoid taking into aount probabilisti

dependeny between events.

Importane Measurements: Importane measurements an be arried out to quan-

tify the ontribution of the BE (or IE) ourrenes to the TE failure. There exist

di�erent importane measurement methods based on the in�uene of the (1) BE's (or

IE) reliability and (2) strutural loation of the BE (or IE) in the system. Di�erent

importane measurements have been de�ned based on these properties, refer to Setion

4.3 for further details and referenes.

Binary Deision Diagram (BDD) based Analysis [Bryant86℄: BDD enodes the

boolean formula underlying a FT model. It allows the redution of the fault tree by

providing advantages from omputational point of view. Working diretly in the logial

expression level it allows to obtain minimal ut-sets and system level unreliabilities.

The BDD approah is based on the Shannon deomposition formula [Shannon38℄ and

its equivalent if-then-else (ite) struture:

F = x1 ∧ F1 ∨ x1 ∧ F0 = ite(x1, F1, F0) (A.6)

That is, if x1 is true then F1 else F0. For instane, if we onsider the next boolean for-

mula, whih expresses the failure logi of a simple system: TE = x∧y∨z; the TE failure

logi an be expressed as follows: TE = ite(x, ite(y, 1, ite(z, 1, 0)), ite(z, 1, 0)). Aord-

ingly, the orresponding BDD whih enodes the boolean formula into ite notation is

shown in Figure A.2.

There exist many algorithms and tools for the synthesis, optimization, veri�ation and

testing of BDDs [Doyle95℄.

225

Figure A.2: The BDD of the formula y = x ∧ y ∨ z

A.1.3 Reliability Blok Diagrams

A Reliability Blok Diagram (RBD) is a suess-oriented network desribing the non-

repairable funtion of the system [Rausand03℄. It shows the logial onnetions of the

omponents needed to ful�l a spei�ed system funtion answering the following question:

whih elements of the item under onsideration are neessary for the ful�lment of the

required funtion and whih an fail without a�eting it? [Alessandro06℄

Eah omponent is illustrated by a blok (reliability blok) and eah of them has its spe-

i� failure harateristis. Bloks are ombined as series struture, parallel struture or

K-out-of-N struture to ful�l the spei�ed system funtion aording to the redundany

sheme (see Figure A.3 for some example on�gurations). Formally,

De�nition A.2. Reliability Blok Diagram (RBD): A reliability blok diagram

model, rbd, is de�ned by a 4-tuple: rbd =< B,C,N, J >

where:

� B is the set of bloks

� C is the set of onnetions between the bloks

� N is the set of nodes

� J ⊆ (N x C x B) ∪ (B x C x N) ∪ (B x C x B) is the onnetion relation with

respet to the input node, output node; and the onnetion relation between bloks

respetively.

Qualitative Analysis: the prinipal qualitative results are the (minimal) path-sets,

226

whih re�et the (smallest) ombination of bloks whose simultaneous ourrene result

in the orret operation of the system.

Quantitative Analysis: A RBD model an be quanti�ed by asribing probabilities to

the bloks and ombining them to evaluate the probability of the system funtioning or

failing:

� Struture Funtion: in the struture funtion replae the system variables with

the orresponding working probability.

� Computation based on Minimal Path-Sets (MPS): determine all the minimal path-

sets MPS

1

, MPS

2

,. . . ,MPS

k

, and rewrite the struture funtion as follows:

Φ(x) =
k
∐

j=1

∏

i∈MPSj

xi (A.7)

From the resulting struture funtion, one system variables are replaed with the

orresponding probabilities, the inlusion-exlusion formula should be applied to

determine the system reliability and avoid taking into aount overlapping events.

A.2 State-Based (Dynami) Approahes

State-based approahes make use of state-spae models to quantify RAMS properties

of the system under study. They haraterize the ourrene of a failure as a transition

from funtional state to a failed state. That transition an be provoked either by another

event whih triggers the state hange or due to the elapsed time in a state. State-based

analysis tehniques mainly di�er in their abstration levels and onsidered probabilisti

distributions.

The advantages of the state-based approahes over event-based approahes are that

they aount for the reliability of system's dynamis. However, their disadvantage are

the omplexity to analyse aurately system's dependability properties and the state-

explosion problem.

The following paragraphs introdue some relevant de�nitions to haraterize state-based

approahes:

227

Figure A.3: Reliability Blok Diagram Strutures and Assoiated Reliability Funtions

[Alessandro06℄

Let S be the possible outomes of a random experiment. The set S is alled sample

spae of the experiment. A random variable is the mapping from s ∈ S a outome to a

real number.

De�nition A.3. Stohasti Proess: family of random variables {X(t) | t ∈ T}

de�ned on a given probability spae.

The values of the random variable X(t) denote system states and T is alled the pa-

228

rameter set. If T is not ountable the proess is said to have a ontinuous parameter ;

otherwise it is alled disrete parameter proess.

De�nition A.4. State Spae: the state spae Ω of the proess {X(t)} is determined

by the set of all possible values that random variables an take. Depending if T is

ontinuous or disrete, the state spae is alled ontinuous state spae or disrete state

spae respetively.

Two events (A, B ∈ F) are said to be independent if: P (A∩B) = P (A)P (B). Thus,

an independent stohasti proess is de�ned as follows:

De�nition A.5. Independent Stohasti Proess: assuming that Fn(x1, x2, . . . , xn)

denotes the �nite dimensional joint distribution of a stohasti proess {X(t) | t ∈ T},

the stohasti proess is independent if:

Fn(x1, . . . , xn) = P{X(t1) ≤ x1, . . . , X(tn) ≤ xn} =
n
∏

i=1

P{X(ti) ≤ xi} (A.8)

Among the state-based approahes, we will fous on two well known basi approahes

from whih di�erent approahes have ome up: Markov Chains and Petri Nets.

A.2.1 Markov Chains

Markov Chain based analysis tehniques desribe states of a system at suessive times

[Haverkort01; Trivedi02℄. The Markov property states that the system depends only on

the urrent state and not on the history of the states:

De�nition A.6. Markov Property: if for any t0 < t1 < t2 < . . . < tn < t, the

onditional distribution of X(t) for given values of X(t0), X(t1), X(t2), . . . , X(tn), X(t)

depends only on X(tn):

P{X(t) ≤ x | X(tn) = xn, . . . , X(t1) = x1, X(t0) = x0}

= P{X(t) ≤ x | X(tn)}
(A.9)

The Markovian property is also known as memoryless property and a stohasti proess

229

whih possesses the Markov property is alled a Markov proess. A Markov proess with

a disrete state spae is referred to as a Markov Chain.

In most Markov proesses it is normal to assume that they are time invariant or time

homogeneous

16

(also known as stationary Markov Chains) satisfying:

P{X(t) ≤ x | X(tn)} = P{X(t− tn) ≤ x | X(0) = xn} (A.10)

The probability that the proess stays in state i at time t > tn given it was in state

i at time tn only depends on state i, but does not depend on how muh time it has

spent in state i (no state age memory). This property implies that the lifetimes be-

tween subsequent events should also have the memoryless property, i.e., sojourn time

is exponentially distributed for ontinuous proesses and geometrially distributed for

disrete proesses.

Depending on ontinuous or disrete transition times between states, Markov hains

are lassi�ed as Continuous Time Markov Chain (CTMC) (f. Figure A.4) or Disrete

Time Markov Chain (DTMC) (f. Figure A.5) respetively:

De�nition A.7. Continuous Time Markov Chain (CTMC): A Continuous Time

Markov Chain model, tm, is a 3-tuple: ctmc =< S, s0, R >

where:

� S = {s0, s1, s2, . . . , sp} is a �nite set of states;

� s0 ∈ S is the initial state;

� R : SxS → ℜ≥0 is the transition rate matrix.

The transition time (sojourn time or delay) is haraterized aording to the exponential

distribution. The transitions in DTMCs are labelled with probabilities instead of rates:

De�nition A.8. Disrete Time Markov Chain (DTMC): A Disrete Time

Markov Chain model, dtm, is a 3-tuple: dtmc =< S, s0, R >

where:

� S = {s0, s1, s2, . . . , sp} is a �nite set of states;

16

In the following we onsider only time-homogeneous Markov hains

230

Figure A.4: Continuous Time Markov Chain Example

� s0 ∈ S is the initial state;

� R : SxS → [0, 1] is the transition probability matrix.

Figure A.5: Disrete Time Markov Chain Example

With homogeneous ontinuous Markov Chains, the sojourn time is exponentially dis-

tributed, but in some ases this is not enough to desribe system's properties adequately.

Besides, Markov Chains are modelled as �at networks, thus, when dealing with omplex

systems, the readability and orret onstrution of the Markov models is ompliated

and in many ases it su�ers from the state explosion problem. In this way, stohasti

extensions were introdued to alleviate the omplexity of the pure Markov Chain models

when haraterizing omplex systems.

De�nition A.9. Renewal proess: let S0 < S1 < S2 < ... be the time instants of

suessive events to our where,

231

S0 = 0 and Sn = Σn
i=1Xi n = 1, 2, ... (A.11)

The sequene of non-negative independent and identially distributed random variables

S = {Sn − Sn−1;n = 1, 2, ...} is a renewal proess; i.e., the sequene of interourrene

times between suessive events are independent and identially distributed.

The state at Sn (the epoh that the n-th event ours) is given by Xn ∈ S. The hain

Xn now forms a proess on its own (DTMC). The points Sn;n = 0, 1, 2, ... are alled

Markov regeneration epohs or Markov renewal moments. Together with the Xn they

de�ne a Markov renewal sequene:

De�nition A.10. Markov Renewal Sequene: a sequene of bivariate random vari-

ables {(Yn, Sn), n ≥ 0} is alled a Markov Renewal Sequene if:

P{Yn+1 = j, Sn+1 − Sn ≤ x | Yn = i, Sn, Yn−1, Sn−1 . . . , Y0, S0}

= P{Yn+1 = j, Sn+1 − Sn ≤ x | Yn = i} (Markov property)

= P{Y1 = j, T1 ≤ x | Y0 = i} (T ime Homogeneity)

(A.12)

In a Markov Renewal Sequene, the future evolution of the stohasti proess depends

on the urrent state of the proess at Markov renewal points, i.e., at time epohs Sn.

Markov Renewal Sequenes are embedded into Markov Renewal Models. Markov Re-

newal Models an be lassi�ed into two ategories [Xie04℄: semi-Markov model and

Markov regenerative model.

De�nition A.11. Semi-Markov proess: onsider a Markov renewal sequene

{Yn, Sn} with state spae I the stohasti proess {Yn, Sn} is alled a semi-Markov proess

with state spae I if Z(t) = Y (n) for t ∈ [Sn, Sn+1).

In Semi-Markov proesses the amount of time spent in eah state before a transi-

tion to the next state ours (i.e., inter-ourrene/sojourn time) is an arbitrary ran-

dom variable that depends on the next state the proess will enter, i.e., the inter-

ourrene/sojourn time is not required to be exponentially distributed, instead it fol-

lows a general distribution. At transition instants a semi-Markov proess behaves like a

232

Markov proess: transitions at Markov renewal points from state to state are made like

a Markov proess.

De�nition A.12. Markov regenerative proess [Henk C.03℄: if there exists a

Markov renewal sequene {(Yn, Tn), n > 0} of random variables suh that all the on-

ditional �nite dimensional distributions of {(Z(Sn + t), n ≥ 0} given {(Z(u), 0 ≤ u ≤

Sn), Yn = i} are the same as those of {(Z(t), t ≥ 0} given Y0 = i.

The Markov regenerative proess is a generalization of the semi-Markov proess: the

Markov regenerative proess has state hanges between Si and Si+1, while semi-Markov

does not.

A.2.2 Petri Nets

Petri Net approah overomes the main drawbak of the Markov Chain analysis, i.e.,

the model does not inrease in size as the number of omponents inreases. While in

a Markov Chain it is neessary to de�ne all the possible ombinations of the system,

in Petri Nets it su�es with speifying the onditions when a omponent will be up or

down. A Petri Net models the system through the following elements [Peterson81℄:

� Plaes whih model state variables and ontain tokens.

� Tokens whih model the spei� value of state variables.

� Transitions whih model ativities that an ause state hanges.

� Ars whih model the interonnetions between plaes and transitions.

A marking in a Petri Net is an assignment of tokens to the plaes of a Petri Net (e.g.,

the marking of the Petri Net depited Figure A.6 is: m(p1)=2, m(p2)=0, m(p3)=1,

m(p4)=1 or m=(2, 0, 1, 1)). The number and position of tokens may hange during

the exeution of a Petri Net. The tokens are used to de�ne the exeution of a Petri net.

Formally:

De�nition A.13. Petri Net (PN): A Petri Net model, pn, is a 5-tuple:

pn =< P, T, I, O,M(0) >

where:

233

� P = {p1, p2, . . . , pp} is a �nite set of plaes;

� T = {t1, t2, . . . , tt} is a �nite set of transitions;

� I: PxT →N is an input funtion that de�nes the direted ars from plaes to tran-

sitions, where N is the set of non-negative integer numbers.

� O: TxP →N is an output funtion that de�nes direted ars from transitions to

plaes.

� M(0)={m1(0), m2(0), . . . , mp(0)} is the initial marking, i.e., the number of tokens

within the plaes.

Figure A.6: Petri Net Example

Transitions an be enabled when all its input plaes are marked at least with as many

tokens as spei�ed by the input funtion (e.g., t1 in Figure A.6). When a transition

�res it removes the number of tokens from its input plaes de�ned by the weight of the

input ar and sets to its output plae(s) the number of tokens spei�ed by the weight of

the output ar. For instane after �ring t1 the resulting marking of the net would be:

m=(1, 1, 0, 1).

A Petri Net model simulates the �token game� based on the marking of plaes. The

marking of a Petri Net determines the state of the system. They are used for analysing

the probability to reah some desired state.

234

Originally they were haraterized by either deterministi or exponential transition

times, whih reated the mapping between Petri Nets and Markov Chains. As o-

urred with Markov Chains, the theory of Petri Nets was also extended introduing

time dependent transitions:

� Stohasti Petri Nets (SPN): Petri Nets with exponentially timed transitions (or

�ring delays). Its underlying stohasti proess is expressed as CTMC [Bause02℄.

� GSPN: Petri Nets with exponentially timed and immediate (zero timed) transi-

tions. Immediate transitions have priority over timed transitions. GSPN are also

analysed by means of CTMCs [Kartson94℄.

� DSPN: deterministi (�xed) and exponentially distributed timed transitions

[Lindemann98℄.

� Markov-Regenerative SPN: immediate transitions, exponentially distributed timed

transitions and generally distributed (arbitrary) timed transitions [Choi94℄.

� SAN: generalization of Stohasti Petri Nets, whih allows de�ning general prob-

ability distributions and ompositional models [Sanders02b℄ (see Chapter 5).

Petri Nets are high-level representations of the system, whih allows (in some ases)

the generation of Markov Chain based models. This is why many works analyse sys-

tems through Petri Nets-based formalisms, whih are haraterized by their underlying

Markov proesses. System's states and events haraterized with temporal properties

yield to aomplish aurate dependability attributes measurement. Most of the Petri

Nets based formalisms haraterize the system model with safe-unsafe or working-failed

states, where the orretness and auray of the analysis depends on the model on-

strution. Petri Nets an also be solved via disrete event simulations [Chiola93b℄.

Arhiteture desription languages [Medvidovi00℄ (e.g., UML [OMG14b℄, AADL

[Feiler07℄) have been widely adopted to alleviate the dependene on the orretness of

the analysis model or quality evaluation model (see Subsetion 2.3.1). These approahes

inlude arhiteture desription information as well as dependability behaviour informa-

tion and automates state-based dependability analysis model generation. However, the

expressiveness of the state-based quality evaluation models omes with a onsiderable

omputational ost, whih is the biggest limitation for state-based approahes, i.e., the

state-explosion problem [Valmari98℄.

235

236

Appendix B

Classi�ation of the Hybrid

Approahes and Tool Support

The goal of this hapter is to lassify the hybrid approahes presented in Chapter 2

and provide information about their tool support. Interested readers please refer to

[Aizpurua13b℄ for more information.

B.1 Classi�ation of the Hybrid Approahes

In order to lassify the overed hybrid approahes in Chapter 2, Table B.1 groups them

taking into aount addressed limitations (see Table 2.5).

Table B.1: Summary of Limitations Overome by Approahes

Group Approah Limitations

1 [Dugan92℄ [Rao09℄ [Walter08℄ [Codetta-Raiteri05℄ [Montani08℄ [Manno14℄ L1

2 [Bouissou07℄ [Manno12b℄ [Arnold13℄ L1, L4

3 [Kaiser03℄ [Fenelon93℄ [Domis09b℄ [Paige08a℄ L2, L4

4 [Joshi07℄ [Adler10a℄ [Papadopoulos11℄ [Priesterjahn11a℄ [Gallina12℄ L2, L3, L4

5 [Kaiser07℄ [Romain07℄ [Distefano09℄ [Signoret13℄ [Niu11℄ L1, L2, L4

6 [Walker09℄ [Montehi11℄ [Rugina07℄ [Riedl12℄ [Cressent11℄ L1, L2, L3, L4

Approahes lassi�ed in the group 1 fous on dynami analysis issues. Di�erenes be-

tween them rely in their failure/repair modelling apabilities and their orresponding

statistial distributions as noted in Subsetion 2.3.1.

237

Approahes within the groups 2, 3 and 5 allow the ompositional evaluation of the

system's dynamis (group 3 exepted) addressing the manageability issues arising from

the resulting dependability evaluation model.

Approahes gathered within the groups 4 and 6 ontain all neessary mehanisms to

analyse dynami systems onsistently and in a manageable way. Compositional failure

annotation, dynami behaviour (group 6) and automati extration of analysis models

are the key features addressed by these approahes. However, when dealing with the

manageability and reusability issues (L4) di�erent approahes arise: groups 4 and 6

address L4 by means of the ompositional haraterization of the design model instead

of the ompositional haraterization of the dependability analysis model. The trans-

formational apability of the design model allows them to ope with design omplexity

issues. However, the analysis model itself is not a ompositional approah, rather it

is a �at model whose manageability/maintenane may be hampered when analysing

omplex systems and dealing with the dependability analysis model diretly.

Utilization of failure annotation patterns promote �exibility and reuse and onsequently,

redue the error proneness. Nevertheless, as noted in [Lisagor10℄, haraterization of the

failure behaviour of omponents depends on the omponent ontext, whih onditions

ompositional and reuse properties. Moreover, automati generation of the analysis

model does not ompletely alleviate the dependeny on the knowledge of the analyst.

However, the management and spei�ation of the failure behaviour is learer and more

onsistent.

B.2 Tool Support

In this setion we introdue the tool support of the approahes presented in Subsetion

2.3.1. Namely, we identify the type of tool (internal, ommerial, aademi, . . .) and

the date of the latest release.

The tool support of dynami approahes, ompositional failure propagation approahes,

and model-based transformational approahes are presented in Subsetion B.2.1, Sub-

setion B.2.2, and Subsetion B.2.3 respetively.

238

B.2.1 Dynami Approahes

Table B.2 displays the dynami approahes addressed in Subsetion 2.3.1 that have tool

support for the spei�ation and analysis of the dynami behaviour of systems.

Table B.2: Tool-Support of the Dynami Approahes

Approah - Work Tool Support Type of Tool

Latest

Release

DFT - [Dugan92℄ Galileo [Virginia03℄

Commerial,

Eduational

2003

DFT -

[Codetta-Raiteri05℄

DrawNET (DFT), GreatSPN(GSPN) Internal 2005

DFT - [Rao09℄ DRSIM tool Internal 2009

DFT - DFTCal

[Arnold13℄

DFTCal [Twente14℄ Available 2014

DFT - Radyban

[Montani08℄

Radyban [Montani08℄ Internal 2011

DFT - MatCarloRe

[Manno12b℄

MatCarloRe Tool [Manno14a℄

Aademi

evaluation opy

2014

DFT - RAATSS

[Manno14℄

RAATS Tool [Manno14b℄

Aademi

evaluation opy

2014

RdP - [Signoret13℄ BStoK [Workshop℄ Comerial 2014

OpenSESAME -

[Walter08℄

OpenSESAME [Walter09℄ Available 2009

BDMP - [Bouissou07℄
KB3 Workbenh [EDF14℄ Available 2014

SEFT - [Kaiser07℄

ESSaRel [Steiner12℄, TimeNET

[TU Berlin07℄

Internal

*

2014

*

Available for researh purposes under agreement

B.2.2 Compositional Failure Propagation Approahes

Regarding the tool support of the Compositional Failure Propagation (CFP) approahes

we an see that all approahes have been turned into tool-sets. Nonetheless, the CFP

approahes are moving one step further, integrating dependability analysis models with

design languages in order to link the design and analysis proesses (f. Subsetion 2.3.1).

239

Table B.3: Tool-Support of the CFP Approahes

Approah - Work Tool Support

Type of

Tool

Latest

Release

FPTN SSAP Toolset [Fenelon93℄ Unavailable 2006

HiP-HOPS

[Papadopoulos11℄

HiP-HOPS Tool [Hull14℄ Available 2014

CFT ESSaRel tool [TU Kaiserslautern09℄ Available 2009

SCM [Domis09b℄ ComposeR Internal 2012

FPTC Epsilon [Paige08b℄ Available 2009

[Priesterjahn11a℄ MehatroniUML, Fujaba [Paderborn12℄ Available 2012

B.2.3 Transformational Approahes

As it is shown in Table B.4, all Arhitetural Design Languages (ADL) have their own

implementation tool-sets. Namely, transformations from ADL models into omposi-

tional failure propagation models have been arried out through metamodels and pro�les

implemented as plugins.

Table B.4: Tool-Support of the Transformational Approahes

Approah - Work Tool Support

Type of

Tool

Latest

Release

Simulink Matlab [MathWorks14℄ Comerial 2014

UML, SysML e.g., Elipse Papyrus [Elipse12℄ Available 2014

AltaRia e.g., AltaRia Tools [Labri14℄ Available 2014

AADL e.g., Osate [CMU12℄ Available 2014

CHESS-ML CHESS Plugins [CHESS12℄

Partially

available

2012

FPTC Epsilon [Paige08b℄ Available 2009

Adler et al. [Adler10a℄ CFT UML Pro�le Internal 2012

HiP-HOPS

EAST-ADL2 Elipse Plugin

[ATESST10℄

Available 2010

LARES [Riedl12℄
LARES toolset [Gouberman14℄ Available 2014

Cressent et al. [Cressent11℄ MéDISIS Framework Internal 2012

240

Appendix C

Analysis of Literature Approahes on a

System Example

In this hapter we will fous on a hypothetial simple example to highlight the strengths

and drawbaks of some of the approahes reviewed in Chapter 2.

This hapter is organised into the next setions:

� Setion C.1 applies traditional Stati Fault Trees [Vesely02℄ on the example system.

� Setion C.2 uses Component Fault Trees [Kaiser03℄ on the example system.

� Setion C.3 employs Hierarhially Performed Hazard Origin and Propagation

Studies (HiP-HOPS) approah [Papadopoulos11℄ on the example system.

� Setion C.4 makes use of repairable Dynami Fault Trees through the Reliability

Availability Adaptive Transition System Solver (RAATSS) tool [Manno14℄ on the

dynami example system.

� Setion C.5 applies Struture Funtion of Dynami Fault Trees [Merle14℄ on the

dynami example system.

� Setion C.6 uses Boolean logi Driven Markov Proesses (BDMP) [Bouissou07℄ on

the dynami example system.

� Setion C.7 models the dynami example system using State-Event Fault Trees

(SEFT) [Kaiser07℄.

241

C.1 (Stati) Fault Tree [Vesely02℄

As Figure C.1 shows, the simultaneous failure ourrene of two subsystems (IE4, IE5)

auses the system failure (IE1). These subsystems are haraterized by the failure

behaviour of their inner basi events (IE4: BE1, BE2, BE3; IE5: BE2, BE4, BE5).

There exist other two ombinations that also ause the system failure (IE2, IE3), whih

are haraterized aordingly with their underlying basi events.

Figure C.1: Example System: (Stati) Fault Tree Model

Note that this model ontains repeated omponents/subsystems (IE4 ↔ IE7, IE5 ↔

IE8) and repeated basi events. In this example we left out the dynami harateristis

that the system's failure behaviour may ontain, sine this is one of the well-known

drawbaks of stati Fault Trees: inability to grasp dynami harateristis of the system.

Another obstale worth onsidering is the �atness of the model. For omplex systems the

manageability, legibility and maintainability of the model beomes tedious and error-

prone. However, due to the simpliity of the Fault Tree modelling proess, still it is a

widely used hoie.

242

C.2 Component Fault Tree (ESSaReL tool) [Kaiser03℄

To overome the inability of stati Fault trees to deal with omplex systems, Component

Fault Trees were introdued. In this simple example we have enlosed IE4 and IE5

omponents/subsystems and reused them to onnet to the required gates aross the

model (see Figure C.2).

BE1 BE2BE3 BE4 BE5 BE6

BE7IE4 IE5 &IE6

&IE1 &IE2 &IE3

TE

≤ 1 ≤ 1

≤ 1

BE2

BE4 BE5 BE6

BE7

IE4 &IE5

C1IE1 C1IE2 &IE3

TE

BE1 BE3
≤ 1

≤ 1

C1

&

≤ 1

Component grouping

Figure C.2: Example System: Component Fault Tree Model

243

As Figure C.2 displays, the resulting model an be presented in a more intuitive manner

than the traditional (stati) Fault Tree model.

As with stati Fault Trees, Component Fault Trees are unable to grasp the dynami

harateristis of the system. In their positive side, note that they are able to deal with

repeated events and more importantly with repeated omponents, so that the readability

and manageability of the whole model is improved.

C.3 HiP-HOPS [Papadopoulos11℄

HiP-HOPS (Hierarhially Performed Hazard Origin and Propagation Studies) enables

to deal with omplex systems fousing on the omponent-based design onept.

Eah design omponent is annotated with their orresponding failure behaviour and

these omponents are onneted to perform the system funtion. By propagating the

failure annotations of eah omponent, the stati Fault Tree of the system is generated

automatially. The whole the system an be seen as a forest of interonneted Fault Trees

[Papadopoulos11℄. Figure C.3 depits the example system using HiP-HOPS annotations.

Figure C.3: Example System: HiP-HOPS Model

244

Apart from the automati onstrution of Fault Tree models, HiP-HOPS is able to

generate FMEA models and it implements automati SIL deomposition and alloation

tehniques [Hull14℄.

Despite an extension to the dynami failure haraterization of HiP-HOPS have been

done [Walker09℄, the approah is not able to grasp the dynami harateristis of the

system ompletely. As with Component Fault Trees, HiP-HOPS an deal with repeated

events and repeated omponents.

C.4 Repairable Dynami Fault Tree (RAATSS tool)

[Manno14℄

In order to re�ne the system's failure behaviour, let us assume that some failure o-

urrenes are required to our sequentially: IE6 have to our prior to IE7 and IE8

have to our prior to BE8. Previously desribed models are unable to apture this

logi, but the Dynami Fault Tree (DFT) approah has the Priority AND (PAND) gate,

whih addresses this logi adequately. To analyse the system using the repairable DFT

approah we will fous on the RAATSS tool (see Figure C.4).

Figure C.4: Dynami Example System: Dynami Fault Tree Model

245

RAATSS enables the dynami analysis of systems with repairable basi events. Besides,

it makes possible modelling any failure/repair distributions. However, its main issues

arises from the �atness of the model. As noted with stati Fault Trees, large-�at models

are di�ult to maintain and understand.

C.5 Struture Funtion of Dynami Fault Trees

[Merle14℄

The dynami system example an be analysed by the algebrai framework for non-

repairable Dynami Fault Trees proposed by [Merle14℄.

Assuming that two events annot happen at the exat same time we will haraterize

the example system of Figure C.4 as follows

17

:

TE = IE1 + IE2 + IE3

IE1 = (BE1 +BE2 +BE3).(BE4 +BE5 +BE2) = BE2 + (BE1 +BE3).(BE4 +BE5)

IE2 = (BE5.BE6) ⊳ (BE1 +BE2 +BE3)

IE2 = (BE5) ⊳ (BE1 +BE2 +BE3).(BE6) ⊳ (BE1 +BE2 +BE3)

IE2 = (BE5 ⊳ BE1).(BE5 ⊳ BE2).(BE5 ⊳ BE3).(BE6 ⊳ BE1).(BE6 ⊳ BE2).(BE6 ⊳ BE3)

IE3 = (BE4 +BE2 +BE5) ⊳ (BE7)

IE3 = (BE4 ⊳ BE7) + (BE2 ⊳ BE7) + (BE5 ⊳ BE7)

TE = BE2 +BE1.BE4 +BE1.BE5 +BE3.BE4 +BE3.BE5

+ (BE5 ⊳ BE1).(BE5 ⊳ BE2).(BE5 ⊳ BE3).(BE6 ⊳ BE1).(BE6 ⊳ BE2).(BE6 ⊳ BE3)

+ (BE4 ⊳ BE7) + (BE2 ⊳ BE7) + (BE5 ⊳ BE7)

(C.1)

The anonial form of TE is the sum of all its Cut Sequene Sets (CSS) [Tang04℄. In

the ompat form it is expressed as follows:

TE =
n
∑

i=1

CSSi (C.2)

It is neessary to hek for non-redundant CSS terms (denoted as Smin) by applying

17

Symbol ⊳ denotes the before operator

246

the algorithm de�ned in [Merle10℄. Assuming that there are m (m ≤ n) non-redundant

ut sequene sets, the probabilisti value of the TE an be alulated applying the

inlusion-exlusion priniple [Trivedi02℄:

Pr{TE} = Pr{CSS1 + CSS2 + . . .+ CSSM}

=
∑

1≤i≤m

Pr{CSSi}

−
∑

1≤i≤j≤m

Pr{CSSi.CSSj}

+
∑

1≤i≤j≤k≤m

Pr{CSSi.CSSj .CSSk}+ . . . +(−1)m−1Pr{CSS1.CSS2.CSSm}

(C.3)

with ∀i ∈ 1, ..., m, CSSi ∈ Smin.

After verifying that there are no redundanies in the CSS terms of Equation C.1, we

apply the inlusion-exlusion formula to the 9 independent ut sequene sets of Equation

C.1. the resulting disjoint terms are 511

18

. Then the orresponding probabilisti formula

should be applied to eah term separately [Merle10℄:

Pr{a.b}(t) = Fa(t)× Fb(t)

Pr{a+ b}(t) = Fa(t) + Fb(t) + Fa(t)× Fb(t)

Pr{a ⊳ b}(t) =

∫ t

0

fa(u)(1− Fb(u))du

Pr{b(a ⊳ b)}(t) =

∫ t

0

fb(u)Fa(u)du

(C.4)

The algebrai framework proposed by Merle is adequate for small systems. However,

when analysing real omplex systems the proess beomes tedious and prone to errors.

Automated tool support to aid in the analysis proess would improve its appliation.

C.6 BDMP [Bouissou07℄

Boolean Driven Markov Proess an be seen as a generalization of Dynami Fault Trees

[Bouissou07℄. Suh a generalization is ahieved by the use of a trigger and triggered

18

∑N
i=1

(

i

N

)

where N=9

247

Markov proesses.

Figure C.5 depits the BDMP model of the dynami system example depited in C.4.

Although the BDMP approah enables onneting the output of a gate to the input of

other multiple gates, the omponent-based onept is not integrated in the approah.

That is, it is not possible to embed user-de�ned logi in a omponent and reuse it

throughout the model. Refer to Subsetion 2.3.1 to see other harateristis and limi-

tations of the BDMP approah.

Figure C.5: Dynami Example System: BDMP Model

C.7 SEFT - DSPN [Kaiser07℄

State-Event Fault Trees (SEFTs) are able to analyse the system's failure and repair

behaviour through the use of omponents. To this end, the approah models the system

failure/repair behaviour using SEFT onepts and subsequently this model is trans-

formed into the TimeNET tool [Ilmenau07℄ for the analysis of its orresponding De-

terministi and Stohasti Petri Nets (DSPN) model. Therefore, the failure and repair

ourrene of its events will be haraterized aording to exponential and deterministi

transitions.

248

Basi SEFT modelling mehanisms inlude (f. Figure C.6): (1) states (e.g., BE1_OK),

(2) transitions (e.g., fault) and (3) state/event ports (e.g., BE1_F). Besides, di�erent

gates are modelled in SEFT formalism: Priority AND (P&), OR (>=1), NOT and

more (see [Kaiser07℄ for a more detailed de�nition of all the gates). All these modelling

mehanisms have de�ned their own ounterpart in the DSPN modelling: both formalisms

inlude transitions, SEFT states are modelled through DSPN plaes and eah SEFT gate

has assoiated its orresponding DSPN net. Thus, so as to analyse an SEFT model its

transformation to DSPN model is neessary.

E

BE1

E

BE1

E

BE2

E
E

BE3

E E

BE4

E E

BE5

E E

BE6

E

BE6

E

BE7

E
E

E E E

>=1

E

E E E

IE4

E

E E E

>=1

E

E E E

IE5

E

E E

H&

E

E E

IE6

E

E E

H&

E

E E

IE1

E

E E

P&

E

E E

IE2

E

E E

P&

E

E E

IE3

E

E E E

>=1

E

E E E

TE

E

S

BE6_OK

S S

BE6_KO

S
E

E

E

E

fault
λ = 0.0045s^-1

E

E

E

E

Init

E

BE6_F

E

E

E

E

Repair

λ = 0.025s^-1

S

BE1_OK

S S

BE1_KO

S
E

E

E

E

fault
λ = 0.001s^-1

E

E

E

E

Init

E

BE1_F

E

E

E

E

Repair
λ = 0.025s^-1

Figure C.6: Dynami Example System: SEFT Model

One the SEFT model of the dynami example system shown in Figure C.4 is reated

(see Figure C.6), its transformation results in the DSPN model depited in Figure C.7.

As it an be seen from the DSPN model (f. Figure C.7) the resulting dependability

249

Figure C.7: Dynami Example System: SEFT's Underlying DSPN Model

analysis model is a �at DSPN model. Therefore, for omplex systems, traing from

the SEFT model towards the DSPN model is not straightforward and it an su�er

from the state-explosion problem. Another issue worth onsidering is the fat that it

250

is not possible to onnet CFTs with SEFT models in order to trigger SEFT model's

state hanges through Component Fault Tree's top-events. These harateristi would

make the approah even more expressive and open the way to analyse further omplex

systems. In its atual version it manages e�etively repairable basi events and it is able

to inlude funtional-design information through omponent-based haraterization.

251

252

Appendix D

Automation/Implementation of the

HW/SW Arhiteture Design

To implement and automate the onstrution of the extended HW/SW arhiteture a

model-based design approah has been implemented [Aizpurua13a℄. As desribed in the

Figure D.1 the design proess is spei�ed as follows:

(1) The proess starts from the onstrution of the system arhiteture model spei�ed

in Simulink. System's resoures (sensors, ontrollers, atuators, network) are mod-

elled using Simulink's subsystem bloks. At the highest or top level, the system

arhiteture model is haraterized as a set of onneted subsystem bloks, whih

will have internally their orresponding funtionality and logi.

(2) System's implementations (whih will be omprised of resoures) are haraterized

based on the token-based spei�ation (f. Charaterization 3.1) aording to the

Funtional Modelling Approah (FMA) and Extended Funtional Modelling Ap-

proah (EFMA). To this end, Simulink model's subsystem bloks are annotated

by previously de�ned token-based spei�ations. Thus, eah subsystem (resoure)

blok in the model will have its own desription annotated in a underlying xml har-

ater string with the prede�ned �elds spei�ed aording to the FMA and EFMA

(see Subsetion 3.3.1 and Subsetion 3.3.4).

(3) One all the system resoures are annotated with their harateristis, the underly-

ing xml annotations of the model's bloks are proessed. Thanks to the algorithm

de�ned for the identi�ation of heterogeneous redundanies (see Algorithm 2 and

Algorithm 3), the approah automatially suggests a list of possible heterogeneous

redundanies.

253

(4) Finally, after proessing the annotations of system resoures, the reon�guration

table is extrated. The reon�guration table identi�es all the possible system im-

plementations to perform the main funtion. These implementations are ordered

aording to their implementation priority.

Figure D.1: D3H2 Metodology: Design Implementation

D.1 Annotations of the System Arhiteture

The annotations of the Simulink model's subsystem bloks are haraterized with prede-

�ned data �elds for exploitation purposes. Two main data strutures have been designed

to haraterize eah system implementation: (1) funtional; and (2) failure data stru-

tures.

As for the �rst struture, depending on the implementations' subfuntion type (I, C,

O), we further divide the funtional data struture into two main groups: (1) input

and output resoure implementations and (2) ontrol resoure implementations. While

input and output resoure implementations enlose the orresponding logi in a single

blok, ontrol resoures (i.e., proessing units) has further inner subsystems bloks in

254

order to model the alloated SW tasks: ontrol, fault detetion, reon�guration and

fault detetion of the reon�guration SW implementations.

Depending on the type of resoure implementation, we de�ne mandatory and optional

�elds. Initially, the subsystem bloks will not have information about the redundanies

that may exist in the system model. Therefore, this information �eld is not neessary

when annotating subsystem bloks, and likewise, the information onerning the priority

of the implementation is not neessary in all the ases. Hene, eah subsystem blok

has a funtional data struture with the following �elds:

� Main Funtion (MF): mandatory �eld.

� Subfuntion Type (SFC): I, C, O, FD, R or FD_R. Mandatory �eld.

� Subfuntion (SF): mandatory �eld.

� Physial Loation (PL): mandatory �eld.

� Implementation: mandatory �eld.

� Priority: optional �eld for redundant implementations (priority > 1); otherwise

(priority=1) mandatory.

� Alloated: mandatory for PUs. Eah PU may has alloated (many) di�erent im-

plementations. This �eld enloses all its inner SW resoures, where eah resoure

has the next mandatory �elds: (1) Identi�er, (2) MF, (3) SFC, (4) SF, (5) PL, (6)

Implementation, (7) Priority.

� Redundany: this data �eld is further divided into homogeneous and heteroge-

neous �elds. One the system model is analysed to searh possible redundanies,

possible andidates are lassi�ed as homogeneous or heterogeneous redundany

and they are annotated to the orresponding resoure as a potential redundany

for the implementation at hand. Eah andidate redundany implementation has

the next �elds: MF, SFC, SF, PL, Implementation, Priority, and Full Name (or

identi�er).

The token (�eld) of the physial loation may ontain di�erent detail (depth) levels

depending on the physial loation. The token of the physial loation is stored in

a variable as a array of strings with its dimension equal to the depth of the physial

255

loation. For instane, to store the annotation: PL=Car

1

.Zone

A

, we will use an array

of length 2.

As for the failure data annotations, the next set of data �elds have been de�ned as

mandatory for all the implementation resoures:

� Implementation: name of the implementation.

� Desription: harater string de�ning the implementations purpose.

� Distribution: probabilisti failure distribution of the implementation: exponential,

onstant, or Weibull.

� Failure Rate (MTTF) and shape parameter (Weibull).

� Time Unit: Billion Hours, Years, Weeks, et.

� Cost: monetary ost of the implementation (Euro).

To aid the designer when �lling the neessary �elds, these data is loaded from a existing

database automatially. This is ahieved by identifying the (possible) mathing imple-

mentation's name (or identi�er) in the database and aordingly, suggesting all possible

implementation names, failure rates, and ost values.

D.2 Identi�ation of Heterogeneous Redundanies

In this subsetion we will introdue the algorithms for the identi�ation of heterogeneous

redundanies. To this end, we fous on a Simulink model onstituted of di�erent bloks

eah of them annotated with funtional data struture �elds.

The algorithm for the identi�ation of heterogeneous redundanies arising from natural

ompatibilities takes as input (Algorithm 2):

� BLOCKSsys: An array of strings with its dimension equal to the number of

implementation (subsystem) bloks in the model. Eah element of the array har-

aterizes funtional annotations of the implementation and aordingly, the whole

set of strings spei�es the design annotations of the system.

256

� BLOCKcheck: The implementation to be heked in order to �nd homogeneous or

heterogeneous redundanies.

Besides, the algorithm makes use of the next funtions:

(1) Y = xml_parse(A) funtion (line 2, 15) with the next input and output variables

respetively: A: an xml harater string (in our ase it will speify the underlying

xml of the system model); Y : the data struture orresponding to the xml string,

with the attributes of the data �elds in the xml string (aessible as Y.attribute).

(2) Y = get_SubSystemComponents(A) funtion (line 6, 19) with the following input

and output variables respetively: A: a variable speifying the referene to a blok;

Y : an array of xml strings with the orresponding underlying annotations of eah

inner blok in A.

Basially, the algorithm for the identi�ation of heterogeneous redundanies arising from

natural ompatibilities heks whether same subfuntions are loated in ontiguous phys-

ial loations (f. line 34).

This algorithm does not provide any output, instead it updates diretly the Simulink

model through the AnnotateRedundancy(A,B,C) funtion (see line 39). The input

parameters of the AnnotateRedundany funtion are:

� A: Blok of the Simulink model to be annotated.

� B: An xml harater string speifying the redundany annotations (see Setion

D.1).

� C: Type of redundany (homogeneous or heterogeneous).

The identi�ation of heterogeneous redundanies arising from fored ompatibilities is

not an automatially performed task. However, Algorithm 3 outlines the proess to

reate a list with possible heterogeneous redundany suggestions. It is the designer who

should have to analyse this list thoroughly to hek if it is possible to use any of the

suggested implementations with additional resoures as an heterogeneous redundany

for the indiated subfuntion.

The outlined algorithm for the identi�ation of heterogeneous redundanies arising from

fored ompatibilities (Algorithm 3) takes as input variables the same data variables as

257

Algorithm 2 Heterogeneous Redundany Identi�ation (Natural Compatibility)

1: funtion HeteRedIdentification(BLOCKSsys, BLOCKcheck)

2: xmla = xml_parse(BLOCKcheck); // parse data struture

3: allocateda = 0; // variable indiating if the implementation is a PU

4: if (strcmp(xmla.SFC, ′C ′)) then // hek subfuntion omponent

5: allocateda = 1; // indiate that it is a PU

6: BlockLista = get_SubsystemComponents(blockc); // get SW implementations

7: for j = 1 : |xmla| do
8: if (allocateda) then // if SFC='C' get inner data

9: xmla = BlockLista(j); // get SW implementations of the PU

10: HwA = xmla.name; // name

11: SFA = xmla.SF ; // subfuntion

12: IA = xmla.Implementation; // identi�er

13: if (xmla.P riority) then // nominal implementation? (Priority=1)

14: for k = 1 : |BLOCKS_SY S| do // parse all the system bloks one by one to

�nd heterogeneous redundanies for the nominal implementation in xml

a

15: xmlb = xml_parse(BLOCKS_SY S(k));
16: allocatedb = 0; // variable indiating if the implementation is a PU

17: if (strcmp(xmlb.SFC, ′C ′)) then// is it a ontrol implementation?

18: allocatedb = 1; // indiate that it is a PU

19: BlockListb = get_SubsystemComponents(xmlb);

20: for i = 1 : |xmlb| do
21: if (allocatedb) then
22: xmlb = BlockListb(i);

23: HwB = xmlb.name; // name

24: SFB = xmlb.SF ; // subfuntion

25: IB = xmlb.Implementation; // identi�er

26: type =′′; // homogeneous or heterogeneous redundany

27: if (strcmp(SFA, SFB)) then // if SFs math

28: if (any(strcmp(xmla.SFC, {′I ′,′O′}))) then
29: PA = xmla.PL;
30: PB = xmlb.PL;
31: sameHw = strcmp(Hwa, Hwb); // same Simulink blok?

32: if (strcmp(Pa(:), Pb(:))) AND (∼ sameHw) then
33: type =′ homogeneous′; // same exat PL

34: else if (|Pa|== |Pb|==2) AND strcmp(Pa(1), Pb(1)) then
35: type =′ heterogeneous′; // same ar, di�erent zone

36: else if (sameHw AND ∼strcmp(IA, IB)) OR ∼sameHw then

37: type =′ homogeneous′;

38: if (∼ isempty(type)) then
39: AnnotateRedundancy(BLOCKcheck, xmlb, type);

258

the Algorithm 2: BLOCKSsys and BLOCKcheck.

Besides it makes use of an additional funtion checkPhysicalCompatibility(A,B) whih

evaluates if the physial loation of the implementations are ompatible or not. The

algorithm (or rules) to evaluate possible ompatible physial loations has been out-

lined in Subsetion 3.3.2. This funtion was not used with the Algorithm 2 beause

depending on the spei� ase of the physial ompatibility, the algorithm determines

if redundanies are homogeneous or heterogeneous (see Algorithm 2 lines [32-37℄).

It does not provide any output variable, instead it updates the Simulink model and

its underlying annotations diretly alling the funtion AnnotateSuggestion(A,B) (line

14) where its input parameters are:

� A: Blok of the model to be annotated

� B: Possible redundany annotations.

Algorithm 3 Heterogeneous Redundany Suggestion (Fored Compatibility)

1: funtion HeteRedSuggestions(BLOCKSsys, BLOCKcheck)

2: xmla = xml_parse(BLOCKcheck);
3: if (any(strcmp(xmla.SFC, {′I ′,′O′}))) AND (xmla.P riority == 1) then
4: MFA = xmla.MF ; // Main Funtion

5: SFCA = xmla.SFC;// SFC={I, C, O}

6: for k = 1 : |BLOCKS_SY S| do // parse all the system bloks

7: xmlb = xml_parse(BLOCKS_SY S(k));
8: if ∼ strcmp(xmlb.SFC, ′C ′) then // non-ontrol implementations

9: MFB = xmlb.MF ;
10: SFCB = xmlb.SFC;
11: compatiblePL = CheckPLCompatibility(xmla.PL, xmlb.PL);
12: if (strcmp(SFCA, SFCB)) AND
13: (∼ strcmp(MFA,MFB)) AND (compatiblePL) then
14: AnnotateSuggestion(BLOCKcheck, xmlb);

D.3 Extration of the Reon�guration Table

One all system implementations/omponents has been annotated with their harater-

istis, in order to extrat the reon�guration table it is enough to parse the xml string

259

of the model and extrat eah omponents annotations with their orresponding �elds.

For the identi�ed homogeneous and/or heterogeneous redundanies and for the imple-

mentations whih do not have user de�ned priority, the prioritization of the implemen-

tations whih onstitute the reon�guration table is based on:

(1) Type of redundany: we assume that homogeneous redundanies have higher prior-

ity than heterogeneous redundanies.

(2) Physial distane between redundanies: among heterogeneous redundanies orig-

inating from natural ompatibilities we set higher priority for those implementa-

tions whih are loser to the nominal implementation. To this end, eah Simulink

model has its own physial loation map. This map links qualitative physial lo-

ation identi�ation tokens, e.g., Car

1

.Zone

A

, with their orresponding quantitative

spae/plane oordinates as depited in Figure 3.3.

(3) Unreliability of the implementation.

(4) Cost of the implementation.

Among equally weighted implementations, we fous on the weighted sum of the unreli-

ability and ost to determine whih implementation's priority is higher. As for the fault

detetion and reon�guration implementations the designer should assign priorities to

the respetive implementations beause these depend on design-spei� assumptions.

Conerning the fault detetion of the reon�guration implementation (FD_R), all these

implementations have priority=1 beause they operate as heartbeat (keepalive) imple-

mentations.

260

Algorithm 4 Reon�guration Table Extration Algorithm

1: funtion ReconfigurationTable = MAIN(BLOCK_SY S)
2: SF_list = {}; // di�erent SFs list, no repetitions

3: pos = 0;
4: for (i := 1 to |BLOCKS_SY S|) do
5: xmla = xml_parse(BLOCKS_SY S(i)); // parse all the system bloks

6: // no FD, R or FD_R AND (list is empty OR urrent SF is not already in the list)

7: if (∼any(strcmp(xmla.SFC, {FD,R, FD_R}))) AND
8: ((isempty(SF_list)) OR (∼any(strcmp(SF_list{:}, xmla.SF)))) then
9: dim = dim+ 1;
10: SF_list{dim} = xmla.SF ; Add SF to the list

11: groupSF = {}; // all implementations of the same SF

12: x = 0;
13: for (j := 1 to |BLOCKS_SY S|) do // parse system bloks to �nd mathing

SF's implementations

14: xmlb = xml_parse(BLOCKS_SY S(j)); // parse all the system bloks

15: if strcmp(SF_list{dim}, xmlb.SF) then // SF already exists in the list

16: x = x+ 1;
17: groupSF{x} = xmlb; // group all the implementations of the same SF

18: if x > 1 then // order implementations wrt priority

19: groupSF = AssignPriority(groupSF);

20: pos = pos+ 1;
21: table{pos} = groupSF ; // store I, C, O implementations in the table variable

22: pos = pos+ 1;
23: table{pos} = xmla; // store FD, R, FD_R implementations in the table variable

24: ReconfigurationTable = createReconfigTable(table); // map the variable to the

table

25: return ReconfigurationTable;

261

262

Appendix E

Failure Rate & Cost Data

The goal of this hapter is to present the failure rate, repair rate, and ost values of the

di�erent hardware, software, and ommuniation resoures.

Table E.1 displays the failure rate and ost values of the di�erent hardware, software

and ommuniation resoures. Despite the applied dependability analysis formalisms

are independent from the statistial distribution of the failure and repair proess (i.e.,

Component Dynami Fault Trees and Stohasti Ativity Networks), for the sake of

simpliity in all the alulations exponential distributions have been assumed.

Table E.1: Failure Rates & Cost Values of HW, SW and Communiation Resoures

Resoure λ (year

-1

) µ (year

-1

) Cost (e)

SW_Det, SW_HM 1 E-2 0.5 80 eah

SW_FP
1 E-2 0.5 -

Fire Detetor [SINTEF09℄ + Mounting 3.77 E-2 0.5 20 + 60e/hour

Temperature Sensor [IAEA88℄
1.49 E-2 0.5 -

Pressure Sensor [IAEA88℄ + Mounting 1.6 E-2 0.5 20 + 60e/hour

Speed Sensor + Mounting 1.8 E-2 0.5 20 + 60e/hour

Camera[jv℄ 9.43 E-2 0.5 -

PU [Vinod08℄ 3.87 E-2 0.5 30

Comm. & Gateway 5 E-3 0.5 200

In Table E.1, resoures with the same harateristis have been grouped as follows:

� Pressure sensor overs open, losed and obstale detetion sensors.

� Proessing unit gathers the harateristis of all di�erent PUs.

� Communiations inlude MVB and Ethernet ommuniation protools and their

gateway.

263

Regarding SW omponents, hypothetial reasonable values are assumed. As noted in

previous hapters (see Setion 4.5), the ost of SW omponents is quanti�ed assuming

that their development ost will be paid in 4 years.

We di�er 4 type of SW omponents: (1) fault detetion software (SW_FD); (2) re-

on�guration software (SW_R); (3) fault detetion of the reon�guration software

(SW_FD_R); and (4) ontrol/detetion software (SW_Det).

The development osts of eah of these 4 SW omponents is onsidered one for di�erent

implementations of the same subfuntion: one developed they are adapted for the

related implementations. This assumption is adopted beause the grouped subfuntion

implementations are losely related and they do not need a signi�ant development ost.

� All fault detetion implementations (SW_FD) adapt to di�erent subfuntions

modifying subfuntion-spei� time/value thresholds.

� Reon�guration implementations' development ost (SW_R) does not di�er for

di�erent subfuntions, alternative implementations will have alloated di�erent

reon�guration tables for di�erent subfuntions, but the reativation logi holds

the same for di�erent subfuntion's reon�guration implementations.

� Reon�guration's fault detetion implementations development ost (SW_FD_R)

for di�erent subfuntions di�er only in the keepalive timeout, but their develop-

ment is independent of the subfuntion.

� All the onsidered ontrol/detetor software implementations (SW_Det) have a

losely related logi, for instane, for the Door Status Control main funtion all

detetion implementations are linked with the position of the door.

SW_FD, SW_R, and SW_FD_R are gathered in the omponent SW_HM referring

to the failure rate and ost values of health management software implementations.

Eah implementation of the SW_Det resoure overs: SW

OpenDetetion

, SW

ClosedDetetion

,

SW

ObstaleDetetion

, SW

DoorVeloity

, SW

DoorControl

, SW

FireDetetion

and SW

FireControl

funtion-

alities. Eah of them is haraterized with the same failure rate, repair rate and ost

values. Aordingly, for the haraterization of the false positive events (SW_FP) we

have applied the same values as for the other software implementations.

The same repair rate values have been assumed for all the hardware, software and

264

ommuniation resoures.

With respet to the sensor's ost, human ost related with mounting and testing tasks

is onsidered assuming 10 minutes/sensor at a rate of 60 e/hour.

Finally, note that the ost of some hardware resoures have been exluded deliberately

in Table E.1. The rationale under this deision is that they are used as heterogeneous

redundanies. Therefore, they already exist in the system and they are not expliitly

added to provide fail-over apabilities. This is why their use does not inur an inrease

in the hardware ost.

265

266

Appendix F

PAND Model for Repairable Systems

The goal of this hapter is to explain the behaviour, implementation and validation of

the PAND gate's model for repairable systems used in Chapter 5.

When onsidering repairable systems, we assume that omponents an fail and repair

repeatedly during the mission time of the system. The basi behaviour of the PAND

gate model for repairable systems is as follows: it will trigger when the ourrene of

events respet the sequene determined by the gate, e.g., assuming Y = PAND(A,B);

Y = 1 if A ours prior to B and then B ours; otherwise Y = 0. However, there are

some details worth mentioning.

Our PAND gate model for repairable systems will onsider the last failure of eah of its

input omponent instead of onsidering only their �rst failure - as it is done with non-

repairable omponents. Furthermore, the restoration of the PAND gate for repairable

systems (from Y = 1 to Y = 0) will be performed one that one of its input omponents

is restored. The logi implemented in the PAND gate for repairable systems of this

dissertation agrees with the logi implemented in the RAATSS tool [Manno14℄.

For the implementation of the gate using the SAN formalism we onsider 2 interon-

neted omponents (see Figure F.1): (1) the omponent A_BF_B heks whether the

event A happens before the event B ; and (2) the omponent A_PAND_B heks that

the order is respeted (A before B) and that the event B ours. If the order is not

respeted or B does not happen, the PAND output will not happen as well. Note that

the implemented PAND gate is not inlusive, i.e., simultaneous failure ourrenes are

not inluded beause they don't respet the sequene.

The model A_BF_B haraterizes the situation in whih the event A fails prior to the

event B (f. Figure F.2). This event is de�ned through the input gates BF and no_BF

267

Figure F.1: Blok Diagram of the Repairable PAND Model

respetively (f. Table F.1).

Figure F.2: Atomi Model of the Component

A_BF_B

Table F.1: Ativities in the SAN model

A_BF_B

Input

Gate:

BF

Input

Gate

Prediate:

(m(A)==1 && m(B)==0 &&

m(A_BF_B)==0)

Input

Gate

Funtion:

m(A_BF_B)=1;

Input

Gate:

no_BF

Input

Gate

Prediate:

(m(A_BF_B)==1 && m(A)==0)

Input

Gate

Funtion:

m(A_BF_B)=0;

The seond model (A_PAND_B) haraterizes the situation in whih the event A have

already failed prior to the event B (A_BF_B) and then the event B ours (f. Figure

F.3).

As for the validation of the gate we have ompared the results for di�erent tests. For

simpliity here we show only the basi on�guration in whih we have 2 basi events

as inputs (A and B) with exponential failure rates of 0.1 and 0.3 respetively and

exponential repair rate of 0.5 for both basi events. To this end, we have shared the

268

Figure F.3: Atomi Model of the Component

A_PAND_B

Table F.2: Ativities in the SAN model

A_PAND_B

Input

Gate:

PAND

Input

Gate

Prediate:

(m(A_BF_B)==1 && m(B)==1 &&

m(A_PAND_B)==0)

Input

Gate

Funtion:

m(A_PAND_B)=1;

Input

Gate:

no_PAND

Input

Gate

Prediate:

(m(A_PAND_B)==1 &&

(m(A_BF_B)==0 || m(B)==0))

Input

Gate

Funtion:

m(A_PAND_B)=0;

plaes of the basi events' failed plaes (haraterized as in Figure 5.3) with the events

A and B haraterized in this Chapter. Figure F.4 displays the output obtained using

SAN and ATS formalisms using the Mobius and RAATSS tools respetively.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3

3.5
·10−2

Time

F

a

i

l

u

r

e

P

r

o

b

a

b

i

l

i

t

y

SAN Output (mean + on�dene)

SAN Output (mean - on�dene)

RAATS Output

Figure F.4: Repairable PAND gate using Mobius and RAATSS Tools

269

270

List of Figures

1.1 Massively Networked Senario: Railway Train Example 4

1.2 Internal Arhiteture of a Building: Funtions and Communiation In-

terfaes . 5

2.1 Train Car Con�guration: Funtions and Communiation Interfaes . . . 12

2.2 Train Car Con�guration: Physial Distribution 13

2.3 Hardware Model of the Door Status Control Funtion 14

2.4 SW/Dependeny Model of the Door Status Control Funtion 14

2.5 Hardware Model of the Video Surveillane Funtion 15

2.6 SW/Dependeny Model of the Video Surveillane Funtion 15

2.7 Hardware Model of Air Condition Control Funtion 16

2.8 SW/Dependeny Model of Air Condition Control Funtion 16

2.9 Hardware Model of the Fire Protetion Funtion 16

2.10 SW/Dependeny Model of the Fire Protetion Funtion 16

2.11 Hardware Model of the Passenger Information System 17

2.12 SW/Dependeny Model of the Passenger Information System 17

2.13 Hardware Model of the Light Control Funtion 18

2.14 SW/Dependeny Model of the Light Control Funtion 18

2.15 Triple Modular Redundany Example . 26

2.16 Diverse Design [Littlewood00a℄ . 27

2.17 Dynami Fault Tree Symbols . 35

2.18 Dynami Parametri Fault Tree Example 37

2.19 Composition Aggregation Method of [Arnold13℄ 37

2.20 Hierarhial Struture and CFP Annotations in HiP-HOPS 42

2.21 Methodology for Designing Distributed Control Systems [Cau�riez04℄ . . 50

2.22 Design Approah of [Clarhaut09℄ . 51

271

2.23 Example of an Adaptation Spei�ation View [Adler10b℄ 55

3.1 D3H2 Methodology [Aizpurua13a℄ . 67

3.2 Funtional Modelling Approah . 69

3.3 Example of a Train Physial Loation Map 70

3.4 Funtional Modelling Approah for Existing Systems 72

3.5 Abstrat Arhiteture of the Main Funtion i and the Health Manage-

ment Implementation of its Output Subfuntion 79

4.1 Extended HW/SW Arhiteture's Failure Model 103

4.2 Component Dynami Fault Tree Overview 110

4.3 Component Dynami Fault Tree Example 113

4.4 FCI Example Time-Diagrams . 117

4.5 Failure Critiality Index Calulation Example 119

4.6 Overview of the Unertainty Analysis . 121

4.7 Relative Failure Probability & Cost of Fire Protetion Control Con�gu-

rations (10

6

iterations) . 128

4.8 Failure Probability of Fire Protetion Control Con�gurations under Dif-

ferent Assumptions (10

6

iterations) . 131

4.9 Fire Protetion Control Failure Probability Distribution: Communia-

tion's Failure Rate In�uene (10

4×5.103 iterations) 133

4.10 Relative Failure Probability & Cost of Alternative Door Status Control

Main Funtion's Con�gurations for the Train.Car

1

.Zone

A

.Door (10

6

iter-

ations) . 139

4.11 FCIDOD - Heterogeneous Redundany (10

6

iterations) 140

4.12 FCIDOD - Homogeneous Redundany (10

6

iterations) 140

4.13 Door Status Control: Ideal Con�gurations Relative Failure Probabilities

w.r.t. Referene Con�guration (10

6

iterations) 142

4.14 Failure Probability Distribution: 2R Centralised Heterogeneous Con�gu-

ration - Communiation's Failure Rate Intervals (10

4×5.103 iterations) . 145

5.1 Challenges Emerging from Repairable Systems (a) Possible Reon�gu-

ration Sequenes (b) System Modelling through Dynami Fault Tree's

Spare Gates and Components . 150

5.2 Graphial Notation of SAN Elements . 158

272

5.3 Atomi Model of Resoures (R01_Res1) 162

5.4 Atomi Model of Implementations without Redundanies

(I03_FD_Impl1, #3) . 164

5.5 Composed Model of Implementations without Redundanies

(top_I03_FD_Impl1) . 164

5.6 Atomi Model of the Implementations with Redundanies (I01_Impl1, #1)165

5.7 Composed Model of Implementations with Redundanies (top_I01_Impl1)165

5.8 Atomi Model of the Reon�guration Logi (Reon�gurationLogi_SF) . 167

5.9 Atomi Model of the Fail while Ative Logi (F01_Impl1_FailAtive) . . 168

5.10 Composed Model of the Fail while Ative Logi

(top_F01_Impl1_FailAtive) . 168

5.11 Atomi Model of the All Fail Event (F07_SF_AllFail) 169

5.12 Composed Model of the All Fail Event (top_F07_SF_AllFail) 169

5.13 Atomi Model of AllRFailed Event (F03_R_SF_AllRFailed) 170

5.14 Atomi Model of Reon�guration Implementation's Reon�guration

Logi (Reon�gurationLogi_R_SF) . 171

5.15 Composed Model of the All Reon�guration Implementation Fail Event

(top_F03_R_SF_AllRFailed) . 171

5.16 Atomi Model of the Reon�guration Unresolved Event

(F04_R_SF_RUnresolved) . 172

5.17 Reon�guration Logi FD_R (Reon�gurationLogi_FD_R_SF) 172

5.18 Composed Model of Reon�guration Unresolved Event

(top_F04_R_SF_RUnresolved) . 173

5.19 Atomi Model of the Reon�guration SF Fail Event (F05_R_SF_Failure)173

5.20 Composed Model of the Reon�guration SF Fail Event

(top_F05_R_SF_Failure) . 173

5.21 Atomi Model of the Control Subfuntion Fail Event

(I09_ControlSF_NoDependenies) . 175

5.22 Composed Model of the Control Subfuntion Fail Event

(top_I09_ControlSF) . 175

5.23 Atomi Model of the Fault Detetion Subfuntion Failure

(F08_FD_SF_Failure) . 176

5.24 Composed Model of the Fault Detetion Subfuntion Failure

(top_F08_FD_SF_Failure) . 176

273

5.25 Composed Model of the F
R Seq.

1

Event (top_F06_Impl1_RF1) 176

5.26 Atomi Model of the F
R Seq._SF

Event (F06_SF_RF) 177

5.27 Composed Model of the F
R Seq._SF

Event (top_F06_SF_RF) 177

5.28 Composed Model of the F
FD Seq.

1

Event 178

5.29 Atomi Model of the F
FD Seq._SF

Event (F09_FD_SF_FU) 178

5.30 Composed Model of the F
FD Seq.

Event (top_F09_FD_SF_FU) 178

5.31 Atomi Model of the F
SF

Event (F10_SF_Failure) 179

5.32 Composed Model of the F
SF

Event (top_F10_SF_Failure) 179

5.33 Atomi Model of the F
ControlSF

Event (I09_ControlSF) 181

5.34 Composed Model of the F
ControlSF

Event (top_I09_ControlSF) 181

5.35 Atomi Model of the F
OutputSF

Event (I10_OutputSF) 182

5.36 Composed Model of the F
OutputSF

Event (top_I10_OutputSF) 182

5.37 Normalized Failure Probability of Fire Protetion Control Con�gurations 183

5.38 Fire Protetion Control Failure Probability with Ideal Assumptions . . . 187

5.39 Normalized Door Status Control Con�gurations Failure Probability . . . 189

5.40 Door Status Control Failure Probability with Ideal Assumptions 193

6.1 TCN Con�guration Example [IEC07℄ . 199

6.2 TICO Board . 200

6.3 CCU/BA Module . 200

6.4 MIM Module . 201

6.5 Ethernet Swith . 202

6.6 Snapshot of the CSTools Con�guration Software 202

6.7 Tested Real Con�guration . 203

6.8 Shemati Con�guration of the Figure 6.7 203

6.9 Reon�guration Spae of the Tested Senarios 205

6.10 Reon�guration Senarios . 206

A.1 Fault Tree Symbols . 224

A.2 The BDD of the formula y = x ∧ y ∨ z 226

A.3 Reliability Blok Diagram Strutures and Assoiated Reliability Fun-

tions [Alessandro06℄ . 228

A.4 Continuous Time Markov Chain Example 231

A.5 Disrete Time Markov Chain Example 231

A.6 Petri Net Example . 234

274

C.1 Example System: (Stati) Fault Tree Model 242

C.2 Example System: Component Fault Tree Model 243

C.3 Example System: HiP-HOPS Model . 244

C.4 Dynami Example System: Dynami Fault Tree Model 245

C.5 Dynami Example System: BDMP Model 248

C.6 Dynami Example System: SEFT Model 249

C.7 Dynami Example System: SEFT's Underlying DSPN Model 250

D.1 D3H2 Metodology: Design Implementation 254

F.1 Blok Diagram of the Repairable PAND Model 268

F.2 Atomi Model of the Component A_BF_B 268

F.3 Atomi Model of the Component A_PAND_B 269

F.4 Repairable PAND gate using Mobius and RAATSS Tools 269

275

276

List of Tables

2.1 Fault Classi�ation . 21

2.2 Failure/Error Classi�ation . 21

2.3 Fault Hypothesis . 29

2.4 Failure/Error Model . 29

2.5 Limitations of Event-Based Approahes [Aizpurua13b℄ 33

2.6 Addressed Charateristis by the Analysed Approahes 47

2.7 Approahes and Addressed Design Properties 61

2.8 Design Deisions and In�uened Attributes 63

3.1 Possible Compatible Physial Loations 73

3.2 Comparison of Redundanies with respet to the Nominal Con�guration 75

3.3 Reon�guration Table Example . 77

3.4 Funtional Model for Air Conditioning Control in Train.Car

1

. 82

3.5 Preliminary HW/SW Arhiteture for Air Conditioning Control in

Train.Car

1

.Zone

A

. 84

3.6 Extended HW/SW Arhiteture for the Air Conditioning Control Main

Funtion in Train.Car

1

.Zone

A

. 85

3.7 Reon�guration Table for the Air Conditioning Control Main Funtion

in Train.Car

1

.Zone

A

. 86

3.8 Funtional Model for the Funtions in Train.Car

1

.Zone

A

. 87

3.9 Preliminary HW/SW Arhiteture for the Fire Protetion Control in

Train.Car

1

.Zone

A

. 88

3.10 Extended HW/SW Arhiteture for the Fire Protetion Control in

Train.Car

1

.Zone

A

. 89

3.11 Reon�guration Table of the Fire Protetion Main Funtion in the

Train.Car

1

.Zone

A

. 90

3.12 Funtional Model for the Funtions in the Train.Car

1

.Zone

A

.Door 91

277

3.13 Preliminary HW/SW Arhiteture for the Door Status Control in the

Train.Car

1

.Zone

A

.Door . 93

3.14 Extended HW/SW Arhiteture for the Door Status Control in the

Train.Car

1

.Zone

A

.Door . 95

3.15 Reon�guration Table of the Door Status Control Main Funtion in the

Train.Car

1

.Zone

A

.Door . 96

4.1 Notation of Failure and Working Events 103

4.2 Approah and Charateristis . 108

4.3 Component Dynami Fault Tree Gates 111

4.4 Fire Protetion Control Con�gurations with Alternative Redundany

Strategies . 127

4.5 Failure Critiality Index Values of the Fire Protetion Control (10

6

iter-

ations) . 130

4.6 Unreliability and FCI values for Fire Protetion Control Con�gurations

under Di�erent Assumptions (10

6

iterations) 132

4.7 Door Status Control Con�gurations with Alternative Redundany Strate-

gies . 138

4.8 Door Status Control Failure Probability for Reon�guration Distribution

Strategies (T=10 years) . 141

4.9 FCIFFD_SF
and FCIFR_SF

using Di�erent Redundany Strategies (10

6

iterations) . 143

4.10 Failure Probabilities and FCI Values for Con�gurations under Di�erent

Assumptions (10

6

iterations) . 144

5.1 Notation of Failure and Working Events II 153

5.2 Repairable HW/SW Arhiteture Example 162

5.3 Ativities in I03_FD_Impl1 . 164

5.4 Ativities in I01_Impl1 . 165

5.5 Ativities in Reon�gurationLogi_SF 167

5.6 Ativities in F01_Impl1_FailAtive . 168

5.7 Fault Detetion and Reon�guration Failure Events and Assigned Names 168

5.8 Ativities in F07_SF_AllFail . 169

5.9 Ativities in F03_R_SF_AllRFailed . 170

5.10 Ativities in Reon�gurationLogi_R_SF 171

278

5.11 Ativities in F04_R_SF_RUnresolved 172

5.12 Reon�gurationLogi_FD_R_SF Ativity Charaterization 172

5.13 Ativities in F05_R_SF_Failure . 173

5.14 Ativities in I09_ControlSF_NoDependenies 175

5.15 Ativities in F08_FD_SF_Failure . 176

5.16 Ativities in F06_SF_RF . 177

5.17 Ativities in F09_FD_SF_FU . 178

5.18 Ativities in F10_SF_Failure . 179

5.19 Ativities in I09_Control_SF_Failure 181

5.20 Ativities in I10_OutputSF_Failure . 182

5.21 Normalized Cost of Alternative Fire Protetion Control Con�gurations . 184

5.22 Fire Protetion Control (FPC) Unavailability for Reon�guration Distri-

bution Strategies (T=10 years) . 185

5.23 Failure Probability of the Fire Detetion and its Underlying Events (T=10

years) . 186

5.24 Normalized Cost of Alternative Door Status Control Con�gurations . . . 190

5.25 Door Status Control (DSC) Unavailability for Reon�guration Distribu-

tion Strategies (T=10 years) . 191

5.26 Failure Probability of the Underlying Events of the Door Status Control

Main Funtion (T=10 years) . 192

B.1 Summary of Limitations Overome by Approahes 237

B.2 Tool-Support of the Dynami Approahes 239

B.3 Tool-Support of the CFP Approahes . 240

B.4 Tool-Support of the Transformational Approahes 240

E.1 Failure Rates & Cost Values of HW, SW and Communiation Resoures 263

F.1 Ativities in the SAN model A_BF_B 268

F.2 Ativities in the SAN model A_PAND_B 269

279

280

List of Algorithms

1 Critiality Analysis . 118

2 Heterogeneous Redundany Identi�ation (Natural Compatibility) 258

3 Heterogeneous Redundany Suggestion (Fored Compatibility) 259

4 Reon�guration Table Extration Algorithm 261

281

282

Glossary

Adaptation The ability of a system to adapt itself to its environment. 3, 52, 54, 55,

57, 63

Arhiteture Alloation of software funtions onto available hardware resoures satis-

fying funtional and dependability requirements. 3, 6�9, 24, 27, 32, 33, 40, 43�46,

49�51, 53, 54, 56, 62, 63, 65, 66, 68, 69, 76, 77, 79, 80, 82, 83, 88, 92, 94, 96,

99�102, 104, 123, 127�130, 138, 140�143, 145�147, 149, 151, 152, 154, 157, 161,

182, 183, 188, 189, 195�198, 200, 203, 209, 212, 214, 216, 217

Con�guration a possible realization of the main funtion omprised of the neessary

subfuntions and their underlying implementations (and resoures) to perform the

main funtion. 71, 75, 76, 92, 127�130, 132, 133, 138, 139, 141�145, 155, 156, 172,

177, 182�196, 202, 203, 213�215

Dependability Ability to avoid failures that are more severe and more frequent than

is aeptable. 2, 3, 5�8, 57�60, 62�66, 68, 99�102, 104, 107, 119, 123, 133, 140,

142, 145, 147, 149, 152, 154, 157, 161, 194�196, 211�213, 215�217

Design A spei�ation of a system intended to aomplish goals in a partiular envi-

ronment, using a set of omponents, satisfying a set of requirements, subjet to

onstraints. 1�3, 6�8, 11, 18, 24, 27, 28, 30�34, 40, 41, 44�46, 48�57, 59, 60, 62�68,

72, 75, 77�80, 83, 93, 94, 96, 99�102, 104, 107, 115, 122, 123, 133, 138, 139, 147,

151, 152, 154, 156, 157, 194�198, 204, 207, 211�213, 216, 217

Fault-Tolerane Mehanisms to avoid system failures in the presene of faults. 1, 24,

26�28, 30�32, 49, 66, 76, 209

283

Funtion What the system is intended to do. 2�8, 12, 14, 16, 17, 21, 22, 25, 31, 32,

50, 51, 58, 60, 63, 64, 66�72, 75�83, 86, 87, 90, 92, 96, 100, 102, 111, 120, 123,

133, 137, 147, 161, 174, 181, 186, 197�199, 201, 204, 206, 209, 212�215, 217, 218

Health Management Reon�guration and fault detetion implementations whih

make possible to manage the system's behaviour in the presene of failures. 3,

6, 53, 65, 66, 68, 76�79, 83, 88, 92, 100, 101, 130, 140, 145, 184�186, 188, 190�193,

196, 212, 215, 216

Heterogeneous Redundany Redundanies whih reuse existing hardware resoures

and provide ompatible funtionality e.g., analytial redundany. 3, 31, 62, 76,

88, 100, 128, 130, 132, 138, 139, 143, 146, 147, 184, 187, 190, 195, 212, 214, 215

Homogeneous Redundany Redundanies whih repliate the nominal funtionality

making use of additional hardware omponents. 82, 128, 138, 139, 143, 183, 189,

215

Reon�guration The proess through whih a system halts operation under its urrent

soure on�guration and begins to operate under a di�erent target on�guration.

3, 6�8, 26, 31, 53�56, 59, 60, 62�66, 68, 69, 76�80, 83, 84, 86, 89, 90, 92�94, 96,

97, 100�102, 104�107, 122�125, 128�131, 133�135, 138, 140�147, 150, 153�157,

165�173, 175�177, 182�188, 190�198, 203�208, 212�215, 217

Resoure A hardware, software or ommuniation devie whih is able to perform a

funtion in onjuntion with other devies or by itself. 1�7, 12, 14, 25, 26, 29�31,

33, 49�52, 54, 56, 57, 63, 66�72, 75, 77, 79, 80, 83, 96, 101, 102, 104, 115, 122,

123, 126, 128, 129, 132, 134, 136, 140, 144, 146, 147, 149�153, 161�167, 169, 173,

174, 180�182, 184, 188, 190, 193�195, 197, 198, 212�215, 217, 218

System set of mutually related elements or parts assembled together in some spei�ed

order to perform an intended funtion. 1�3, 5�9, 11, 13, 18, 28, 29, 31, 33�36, 39,

40, 42�46, 48�60, 62�73, 75�77, 79, 83, 96, 97, 99, 104, 109, 114, 116, 129�133,

139�147, 149�158, 160, 161, 167, 175, 182, 184, 185, 188, 190, 191, 194�200, 209,

211�218

284

Bibliography

[Adahi11℄ M. Adahi, Y. Papadopoulos, S. Sharvia, D. Parker, and

T. Tohdo, �An approah to optimization of fault tolerant ar-

hitetures using HiP-HOPS�, Softw. Prat. Exp., 2011.

[Adler08℄ R. Adler, D. J. Domis, M. Forster, and M. Trapp, �Probabilis-

ti analysis of safety-ritial adaptive systems with temporal

dependenes�, in Pro. of RAMS'08, pp. 149�154, IEEE, 2008.

[Adler10a℄ R. Adler, D. Domis, K. Hö�g, S. Kemmann, T. Kuhn,

J. Shwinn, and M. Trapp, �Integration of omponent fault

trees into the UML�, in MoDELS'10, pp. 312�327, 2010.

[Adler10b℄ R. Adler, I. Shaefer, M. Trapp, and A. Poetzsh-He�ter,

�Component-based modeling and veri�ation of dynami

adaptation in safety-ritial embedded systems�, ACM Trans.

Embed. Comput. Syst., vol. 10, no. 2, 20:1�20:39, De. 2010.

[Adler10℄ R. Adler, D. Shneider, and M. Trapp, �Engineering dynami

adaptation for ahieving ost-e�ient resiliene in software-

intensive embedded systems�, in Pro. of Engineering of Com-

plex Computer Systems, pp. 21�30, IEEE, 2010.

[Agrawal88℄ P. Agrawal, �Fault Tolerane in Multiproessor Systems With-

out Dediated Redundany�, IEEE Trans. Comput., vol. 37,

no. 3, 358�362, Mar. 1988.

[Aizpurua12a℄ J. I. Aizpurua and E. Muxika, �Dependable Design: Trade-

O� Between the Homogeneity and Heterogeneity of Funtions

285

and Resoures�, in Proeedings of DEPEND 2012, pp. 13�17,

2012.

[Aizpurua12b℄ J. I. Aizpurua and E. Muxika, �Design of Dependable Sys-

tems: An Overview of Analysis and Veri�ation Approahes�,

in Proeedings of DEPEND 2012, pp. 4�12, 2012.

[Aizpurua13a℄ J. I. Aizpurua and E. Muxika, �Funtionality and Dependabil-

ity Assurane in Massively Networked Senarios�, in Safety,

Reliability and Risk Analysis: Beyond the Horizon, pp. 1763

�� 1771, CRC Press, 2013.

[Aizpurua13b℄ J. I. Aizpurua and E. Muxika, �Model Based Design of De-

pendable Systems: Limitations and Evolution of Analysis and

Veri�ation Approahes�, International Journal on Advanes

in Seurity, vol. 6, 12�31, 2013.

[Aizpurua14℄ J. I. Aizpurua, E. Muxika, G. Manno, and F. Chiahio, �Het-

erogeneous Redundany Analysis based on Component Dy-

nami Fault Trees�, in Proeedings of PSAM 12, 2014.

[Alessandro06℄ B. Alessandro, Reliability Engineering: Theory and Pratie,

Springer, 2006.

[Ana10℄ �Osillatory failure ase detetion in the A380 eletrial �ight

ontrol system by analytial redundany�, Control Engineer-

ing Pratie, vol. 18, no. 9, 1110 � 1119, 2010.

[Arnold99℄ A. Arnold, G. Point, A. Gri�ault, and A. Rauzy, �The AltaR-

ia formalism for desribing onurrent systems�, Fundamenta

Informatiae, vol. 40, no. 2-3, 109�124, 1999.

[Arnold13℄ F. Arnold, A. F. E. Belinfante, F. I. Van der Berg, D. Guk,

and M. I. A. Stoelinga, �DFTCal: a tool for e�ient fault tree

analysis (extended version)�, Tehnial Report TR-CTIT-13-

13, Centre for Telematis and Information Tehnology, Uni-

versity of Twente, Enshede, June 2013.

286

[ATESST10℄ ATESST, �ATESST2 Homepage�, 2010. Online. Aessed on

06/10/2014. Available at: http://www.east-adl.fr.

[Avizienis85℄ A. Avizienis, �The N-Version Approah to Fault-Tolerant Soft-

ware�, Software Engineering, IEEE Transations on, vol. SE-

11, no. 12, 1491�1501, De 1985.

[Avizienis04℄ A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, �Ba-

si Conepts and Taxonomy of Dependable and Seure Com-

puting�, IEEE Trans. Dependable Seur. Comput., vol. 1, 11�

33, 2004.

[Batteux13℄ M. Batteux, T. Prosvirnova, A. Rauzy, and L. Kloul, �The Al-

taRia 3.0 projet for model-based safety assessment�, in In-

dustrial Informatis (INDIN), 2013 11th IEEE International

Conferene on, pp. 741�746, July 2013.

[Bause02℄ F. Bause and P. S. Kritzinger, Stohasti Petri nets - an intro-

dution to the theory., Advaned studies of omputer siene,

Vieweg, 2002.

[Bernardi12℄ S. Bernardi, J. Merseguer, and D. Petriu, �Dependability

modeling and analysis of software systems spei�ed with

UML�, ACM Computing Survey, vol. 45, no. 1, 2, 2012.

[Bieber02℄ P. Bieber, C. Castel, and C. Seguin, �Combination of Fault

Tree Analysis and Model Cheking for Safety Assessment of

Complex System�, in Pro. of EDCC'02, vol. 2485, pp. 624�

628, Springer, 2002.

[Bieber09℄ P. Bieber, E. Noulard, C. Pagetti, T. Planhe, and F. Vialard,

�Preliminary design of future reon�gurable IMA platforms�,

SIGBED Rev., vol. 6, no. 3, 2009.

[Bieber10℄ P. Bieber, J. Brunel, E. Noulard, C. Pagetti, T. Planhe,

and F. Vialard, �Preliminary Design of Future Reon�gurable

IMA Platforms - Safety Assessment�, in 27th International

Congress of the Aeronautial Sienes, 2010.

287

http://www.east-adl.fr

[Biehl10℄ M. Biehl, C. DeJiu, and M. Törngren, �Integrating safety anal-

ysis into the model-based development toolhain of automo-

tive embedded systems�, in Pro. of LCTES '10, pp. 125�132,

ACM, 2010.

[Blanke11℄ M. Blanke, S. Hansen, and M. R. Blas, �Diagnosis for Control

and Deision Support in Complex Systems�, in Proeedings

Volume from the Speial International Conferene on Complex

Systems, pp. 89�101, 2011.

[Bobbio04℄ A. Bobbio and D. Raiteri, �Parametri fault trees with dy-

nami gates and repair boxes�, in Reliability and Maintain-

ability, 2004 Annual Symposium - RAMS, pp. 459�465, Jan

2004.

[Bondavalli90℄ A. Bondavalli and L. Simonini, �Failure lassi�ation with

respet to detetion�, in Proeedings of the 2nd IEEE Work-

shop on Future Trends of Distributed Proeedings, pp. 47�53,

Publ by IEEE, Cairo, Egypt, 1990.

[Bouissou07℄ M. Bouissou, �A generalization of Dynami Fault Trees

through Boolean logi Driven Markov Proesses (BDMP)�,

in Pro. of ESREL'07, vol. 2, pp. 1051�1058, 2007.

[Bryant86℄ R. Bryant, �Graph Based Algorithms for Boolean Funtion

Manipulation�, IEEE Transations on Computers, vol. C-35,

677�691, 1986.

[Burlando92℄ P. Burlando, L. Gianetto, and M. Mainini, �Funtional Diver-

sity�, vol. 1 of Researh Reports ESPRIT, pp. 49�113, Springer

Berlin Heidelberg, 1992.

[Cau�riez04℄ L. Cau�riez, J. Ciotelli, B. Conrard, and M. Bayart, �De-

sign of intelligent distributed ontrol systems: a dependabil-

ity point of view�, Reliability Engineering & System Safety,

vol. 84, no. 1, 19�32, 2004.

[Cau�riez13℄ L. Cau�riez, D. Renaux, T. Bonte, and E. Coquebert, �Sys-

288

temi Modeling of Integrated Systems for Deision Making

Early on in the Design Proess.�, Cybernetis and Systems,

vol. 44, 1�22, 2013.

[CHESS12℄ CHESS, �CHESS Projet�, 2012. Online. Aessed on

06/10/2014. Available at: http://www.hess-projet.

org/.

[Chiahio11℄ F. Chiahio, L. Compagno, D. D'Urso, G. Manno, and

N. Trapani, �Dynami fault trees resolution: A onsious

trade-o� between analytial and simulative approahes�, Re-

liability Engineering and System Safety, vol. 96, no. 11, 1515�

1526, 2011.

[Chiola93a℄ G. Chiola, C. Dutheillet, G. Franeshinis, and S. Haddad,

�Stohasti well-formed olored nets and symmetri model-

ing appliations�, Computers, IEEE Transations on, vol. 42,

no. 11, 1343�1360, Nov 1993.

[Chiola93b℄ G. Chiola and A. Fersha, �Distributed simulation of timed

Petri nets: Exploiting the net struture to obtain e�ieny�,

in M. Ajmone Marsan, editor, Appliation and Theory of Petri

Nets 1993, vol. 691 of Leture Notes in Computer Siene, pp.

146�165, Springer Berlin Heidelberg, 1993.

[Choi94℄ H. Choi, V. G. Kulkarni, and K. S. Trivedi, �Markov Regener-

ative Stohasti Petri Nets.�, Performane Evaluation, vol. 20,

no. 1-3, 337�357, 1994.

[Clarhaut09℄ J. Clarhaut, S. Hayat, B. Conrard, and V. Coquempot, �Op-

timal design of dependable ontrol system arhitetures using

temporal sequenes of failures�, IEEE Transations On Reli-

ability, vol. 58, no. 3, 511�522, 2009.

[Clements01℄ P. C. Clements and L. Northrop, Software Produt Lines:

Praties and Patterns, SEI Series in Software Engineering,

Addison-Wesley, 2001.

289

http://www.chess-project.org/
http://www.chess-project.org/

[CMU12℄ CMU, �OSATE�, 2012. Online. Aessed on 06/10/2014.

Available at: https://wiki.sei.mu.edu/aadl/index.

php/AADL_tools.

[Codetta-Raiteri05℄ D. Codetta-Raiteri, �The Conversion of Dynami Fault Trees

to Stohasti Petri Nets, as a ase of Graph Transformation�,

Eletroni Notes in Theoretial Computer Siene, vol. 127,

no. 2, 45 � 60, 2005.

[Cortellessa06℄ V. Cortellessa, F. Marinelli, and P. Potena, �Automated sele-

tion of software omponents based on ost/reliability trade-

o��, in Software Arhiteture, pp. 66�81, Springer, 2006.

[Courtney04℄ T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M. Gri�th,

V. Lam, and W. Sanders, �The Mobius modeling environment:

reent developments�, in Quantitative Evaluation of Systems,

2004. QEST 2004. Proeedings. First International Confer-

ene on the, pp. 328�329, Sept 2004.

[Cressent11℄ R. Cressent, V. Idasiak, F. Kratz, and P. David, �Mastering

safety and reliability in a Model Based proess�, in Pro. of

RAMS'11, 2011.

[Crnkovi03℄ I. Crnkovi, �Component-based software engineering - new

hallenges in software development�, in Information Tehnol-

ogy Interfaes, 2003. ITI 2003. Proeedings of the 25th Inter-

national Conferene on, pp. 9�18, 2003.

[Distefano07℄ S. Distefano and A. Pulia�to, �Dynami Reliability Blok Dia-

grams VS Dynami Fault Trees�, In Pro. of RAMS'07, vol. 8,

71�76, 2007.

[Distefano09℄ S. Distefano and A. Pulia�to, �Dependability Evaluation

with Dynami Reliability Blok Diagrams and Dynami Fault

Trees.�, IEEE Transantions on Dependable and Seure Com-

puting, vol. 6, no. 1, 4�17, 2009.

[Domis09a℄ D. Domis, M. Forster, S. Kemmann, and M. Trapp, �Safety

290

https://wiki.sei.cmu.edu/aadl/index.php/AADL_tools
https://wiki.sei.cmu.edu/aadl/index.php/AADL_tools

Conept Trees�, in Reliability and Maintainability Symposium,

2009. RAMS 2009. Annual, pp. 212�217, Jan 2009.

[Domis09b℄ D. Domis and M. Trapp, �Component-Based Abstration in

Fault Tree Analysis�, in Computer Safety, Reliability, and Se-

urity, vol. 5775 of LNI, pp. 297�310, Springer, 2009.

[Doyle95℄ S. A. Doyle and J. B. Dugan, �Dependability Assessment using

Binary Deision Diagrams (BDDs)�, in FTCS, pp. 249�258,

1995.

[Dugan92℄ J. Dugan, S. Bavuso, and M. Boyd, �Dynami fault-tree mod-

els for fault-tolerant omputer systems�, IEEE Trans. on Re-

liability, vol. 41, no. 3, 363�377, 1992.

[Elipse12℄ Elipse, �Elipse Papyrus�, 2012. Online. Aessed on

06/10/2014. Available at: http://www.elipse.org/

papyrus/.

[EDF14℄ EDF, �KB3 Workbenh�, 2014. Online. Aessed on

06/10/2014. Available at: http://soureforge.net/

projets/visualfigaro/files/.

[Edifor12℄ E. Edifor, M. Walker, and N. A. Gordon, �Quanti�ation of

Priority-OR Gates in Temporal Fault Trees.�, in F. Ortmeier

and P. Daniel, editors, SAFECOMP, vol. 7612 of Leture

Notes in Computer Siene, pp. 99�110, Springer, 2012.

[Edifor13℄ E. Edifor, M. Walker, and N. A. Gordon, �Quanti�ation of

Simultaneous-AND Gates in Temporal Fault Trees�, in New

Results in Dependability and Computer Systems, vol. 224, pp.

141�151, Springer, 2013.

[Elegbede03℄ A. Elegbede, C. Chu, K. Adjallah, and F. Yalaoui, �Reliabil-

ity alloation through ost minimization�, Reliability, IEEE

Transations on, vol. 52, no. 1, 106�111, Marh 2003.

[Engel10℄ C. Engel, A. Roth, P. H. Shmitt, R. Coutinho, and

291

http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/
http://sourceforge.net/projects/visualfigaro/files/
http://sourceforge.net/projects/visualfigaro/files/

T. Shoofs, �Enhaned dispathability of airrafts using multi-

stati on�gurations�, in Pro. of ERTS'10, 2010.

[Feiler07℄ P. Feiler and A. Rugina, �Dependability Modeling with the

Arhiteture Analysis & Design Language (AADL)�, Tehni-

al Note CMU/SEI-2007-TN-043, CMU Software Engineering

Institute, 2007, 2007.

[Fenelon93℄ P. Fenelon and J. A. MDermid, �An integrated tool set for

software safety analysis�, J. Syst. Softw., vol. 21, 279�290,

1993.

[Flammini09℄ F. Flammini, A. Gaglione, N. Mazzoa, V. Mosato, and

C. Pragliola, �On-line integration and reasoning of multi-

sensor data to enhane infrastruture surveillane�, Journal

of Information Assurane and Seurity, vol. 4, 183�191, 2009.

[Flammini10℄ F. Flammini, A. Gaglione, F. Ottello, A. Pappalardo,

C. Pragliola, and A. Tedeso, �Towards Wireless Sensor Net-

works for railway infrastruture monitoring�, in Eletrial Sys-

tems for Airraft, Railway and Ship Propulsion (ESARS),

2010, pp. 1�6, Ot 2010.

[Flammini11℄ F. Flammini, N. Mazzoa, A. Pappalardo, C. Pragliola, and

V. Vittorini, �Augmenting Surveillane System Capabilities

by Exploiting Event Correlation and Distributed Attak De-

tetion�, in Proeedings of the IFIP WG 8.4/8.9 International

Cross Domain Conferene on Availability, Reliability and Se-

urity for Business, Enterprise and Health Information Sys-

tems, ARES'11, pp. 191�204, Springer-Verlag, Berlin, Heidel-

berg, 2011.

[Forster09℄ M. Forster and M. Trapp, �Fault Tree Analysis of Software-

Controlled Component Systems Based on Seond-Order Prob-

abilities�, in International Symposium on Software Reliability

Engineering - ISSRE'09, pp. 146�154, IEEE Computer Soi-

ety, 2009.

292

[Forster10℄ M. Forster and D. Shneider, �Flexible, Any-Time Fault Tree

Analysis with Component Logi Models�, in ISSRE, pp. 51�

60, IEEE Computer Soiety, 2010.

[Friks03℄ R. M. Friks and K. S. Trivedi, �Importane analysis with

Markov hains�, in Reliability and Maintainability Annual

Symposium, pp. 89�95, 2003.

[Fuentes04℄ L. Fuentes and A. Valleillo, �An Introdution to UML Pro-

�les�, Journal of UML and Model Engineering, vol. 5, no. 2,

5�13, 2004.

[Galdun08℄ J. Galdun, J. Ligus, J.-M. Thiriet, and J. Sarnovsky, �Relia-

bility inreasing through networked asade ontrol struture

- onsideration of quasi-redundant subsystems�, in IFAC Pro.

Volumes, vol. 17, pp. 6839�6844, 2008.

[Gallina12℄ B. Gallina, M. A. Javed, F. U. Muram, and S. Pun-

nekkat, �Model-driven Dependability Analysis Method for

Component-based Arhitetures�, in Euromiro-SEAA Con-

ferene, IEEE Computer Soiety, 2012.

[Galloway02℄ A. Galloway, J. MDermid, J. Murdoh, and D. Pumfrey, �Au-

tomation of System Safety Analysis: Possibilities and Pitfalls�,

in Pro. of ISSC'02, 2002.

[Go²eva-Popstojanova01℄ K. Go²eva-Popstojanova and K. S. Trivedi, �Arhiteture-

based approah to reliability assessment of software systems�,

Performane Evaluation, vol. 45, no. 2�3, 179 � 204, 2001.

[Gokhale07℄ S. S. Gokhale et al., �Arhiteture-based software reliability

analysis: Overview and limitations�, IEEE Transations on

dependable and seure omputing, vol. 4, no. 1, 32�40, 2007.

[Gouberman14℄ A. Gouberman, C. Grand, M. Riedl, and M. Siegle, �An IDE

for the LARES Toolset�, in K. Fishbah and U. R. Krieger,

editors, Measurement, Modelling, and Evaluation of Comput-

ing Systems and Dependability and Fault Tolerane - 17th In-

293

ternational GI/ITG Conferene, vol. 8376 of Leture Notes in

Computer Siene, pp. 240�254, Springer, 2014.

[Harel87℄ D. Harel, �Stateharts: A Visual Formalism For Complex Sys-

tems�, 1987.

[Haverkort01℄ B. R. Haverkort, �Markovian models for performane and de-

pendability evaluation�, in Letures on Formal Methods and

Performane Analysis, pp. 38�83, Springer, 2001.

[Henk C.03℄ T. Henk C., A First Course in Stohasti Models, Wiley, 2003.

[Hilber05℄ P. Hilber and L. Bertling, �A method for extrating reliabil-

ity importane indies from reliability simulations of eletrial

networks�, Pro. 15th Power Systems Computation Confer-

ene (PSCC), 2005.

[Hoftberger13℄ O. Hoftberger and R. Obermaisser, �Ontology-based Run-

time Reon�guration of Distributed Embedded Real-Time

Systems�, in The 16th IEEE Computer Soiety symposium on

objet/omponent/servie-oriented realtime distributed om-

puting (ISORC 2013), IEEE, 2013.

[Hull14℄ U. Hull, �HiP-HOPS Tool�, 2014. Online. Aessed on

06/10/2014. Available at: http://hip-hops.eu/.

[IAEA88℄ IAEA, �Component Reliability Data For Use In Probabilisti

Safety Assessment, IAEA-TECDOC-478�, Teh. rep., 1988.

[IEC07℄ IEC, �Train Communiation Network, IEC 61375�, Teh. rep.,

2007.

[Illinois14℄ U. Illinois, �MOBIUS Tool - Model based environment for

validation of system reliability, availability, seurity, and per-

formane�, 2014. Online. Aessed on 06/10/2014. Available

at: https://www.mobius.illinois.edu/.

[Ilmenau07℄ T. Ilmenau, �TimeNET Tool�, 2007. Online. Aessed on

294

http://hip-hops.eu/
https://www.mobius.illinois.edu/

06/10/2014. Available at: http://www.tu-ilmenau.de/sse/

timenet/.

[Isermann05℄ R. Isermann, �Model-based fault-detetion and diagnosis�

status and appliations�, Annual Reviews in ontrol, vol. 29,

no. 1, 71�85, 2005.

[Izosimov05℄ V. Izosimov, P. Pop, P. Eles, and Z. Peng, �Design optimiza-

tion of time- and ost-onstrained fault-tolerant distributed

embedded systems�, in Design, Automation and Test in Eu-

rope, 2005. Proeedings, pp. 864�869 Vol. 2, Marh 2005.

[Jean-Pasal13℄ S. Jean-Pasal, A. Rasmus, and K. Sören, �Combining Safety

Engineering and Produt Line Engineering�, in Software En-

gineering (Workshops), pp. 545�554, 2013.

[Johnson84℄ B. W. Johnson, �Fault-Tolerant Miroproessor-Based Sys-

tems�, IEEE Miro, vol. 4, no. 6, 6�21, De. 1984.

[Joshi07℄ A. Joshi, S. Vestal, and P. Binns, �Automati Generation of

Stati Fault Trees from AADL models�, in DNS Workshop on

Arhiteting Dependable Systems, Springer, 2007.

[jv℄ �JVC Professional�, 2014. Online. Aessed on 06/10/2014.

Available at: http://pro.jv.om/.

[Kaanihe02℄ M. Kaanihe, J.-C. Laprie, and J.-P. Blanquart, �A framework

for dependability engineering of ritial omputing systems�,

Safety Siene, vol. 40, no. 9, 731�752, 2002.

[Kaiser03℄ B. Kaiser, P. Liggesmeyer, and O. Mäkel, �A new omponent

onept for fault trees�, in Pro. of SCS'03, pp. 37�46, 2003.

[Kaiser07℄ B. Kaiser, C. Gramlih, and M. Forster, �State-Event Fault

Trees - A Safety Analysis Model for Software-Controlled Sys-

tems�, Reliability Eng. System Safety, vol. 92, no. 11, 1521�

1537, 2007.

295

http://www.tu-ilmenau.de/sse/timenet/
http://www.tu-ilmenau.de/sse/timenet/
http://pro.jvc.com/

[Kanoun01℄ K. Kanoun, �Real-world design diversity: a ase study on

ost�, Software, IEEE, vol. 18, no. 4, 29�33, Jul 2001.

[Kartson94℄ D. Kartson, G. Balbo, S. Donatelli, G. Franeshinis, and

G. Conte, Modelling with Generalized Stohasti Petri Nets,

John Wiley & Sons, In., New York, NY, USA, 1st edn., 1994.

[Knight86℄ J. C. Knight and N. G. Leveson, �An Experimental Evalua-

tion Of The Assumption Of Independene In Multi-Version

Programming�, IEEE Transations on Software Engineering,

vol. 12, 96�109, 1986.

[Krysander08℄ M. Krysander, J. Aslund, and M. Nyberg, �An E�ient Al-

gorithm for Finding Minimal Overonstrained Subsystems for

Model-Based Diagnosis�, Systems, Man and Cybernetis, Part

A: Systems and Humans, IEEE Transations on, vol. 38,

no. 1, 197�206, Jan 2008.

[Labri14℄ Labri, �AltaRia Tool�, 2014. Online. Aessed on 06/10/2014.

Available at: http://altaria.labri.fr/wp/.

[Laprie92℄ J. C. Laprie, A. Avizienis, and H. Kopetz, editors, Dependabil-

ity: Basi Conepts and Terminology, Springer-Verlag New

York, In., Seauus, NJ, USA, 1992.

[Laprie95℄ J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, �De�nition

and Analysis of Hardware-and-Software Fault-Tolerant Arhi-

tetures�, in B. Randell, J.-C. Laprie, H. Kopetz, and B. Lit-

tlewood, editors, Preditably Dependable Computing Systems,

ESPRIT Basi Researh Series, pp. 103�122, Springer Berlin

Heidelberg, 1995.

[Leveson95℄ N. G. Leveson, Safeware - system safety and omputers: a

guide to preventing aidents and losses aused by tehnology,

Addison-Wesley, 1995.

[Lindemann98℄ C. Lindemann, Performane modelling with deterministi and

296

http://altarica.labri.fr/wp/

stohasti Petri nets, Wiley-Intersiene series in systems and

optimization, Wiley, 1998.

[Lisagor10℄ O. Lisagor, Failure Logi Modelling: A Pragmati Approah,

Ph.D. thesis, Department of Computer Siene, The Univer-

sity of York, 2010.

[Littlewood96℄ B. Littlewood, �The impat of diversity upon ommon mode

failures�, Reliability Engineering and System Safety, vol. 51,

101�113, 1996.

[Littlewood00a℄ B. Littlewood and L. Strigini, �A disussion of praties for

enhaning diversity in software designs�, Teh. rep., Centre

for Software Reliability, City University, 2000.

[Littlewood00b℄ B. Littlewood and L. Strigini, �Software Reliability and De-

pendability: A Roadmap�, in Proeedings of the Conferene on

The Future of Software Engineering, ICSE '00, pp. 175�188,

ACM, New York, NY, USA, 2000.

[Littlewood01a℄ B. Littlewood, P. Popov, and L. Strigini, �Design Diversity: an

Update from Researh on ReliabilityModelling�, in F. Redmill

and T. Anderson, editors, Aspets of Safety Management, pp.

139�154, Springer London, 2001.

[Littlewood01b℄ B. Littlewood, P. Popov, and L. Strigini, �Modeling Software

Design Diversity: A Review�, ACM Comput. Surv., vol. 33,

no. 2, 177�208, Jun. 2001.

[Lopatkin11℄ I. Lopatkin, A. Iliasov, and A. Romanovsky, �Rigorous Devel-

opment of Dependable Systems Using Fault Tolerane Views�,

in Proeedings of the 2011 IEEE 22nd International Sympo-

sium on Software Reliability Engineering, ISSRE '11, pp. 180�

189, IEEE Computer Soiety, 2011.

[Lyu07℄ M. R. Lyu, �Software Reliability Engineering: A Roadmap�,

in Future of Software Engineering, 2007. FOSE '07, pp. 153�

170, 2007.

297

[Mahmud12℄ N. Mahmud, M. Walker, and Y. Papadopoulos, �Composi-

tional Synthesis of Temporal Fault Trees from State Ma-

hines�, SIGMETRICS Perform. Eval. Rev., vol. 39, no. 4,

79�88, Apr. 2012.

[Manno12a℄ G. Manno, Reliability Modelling of Complex Systems: and

adaptive transition system to math auray and e�ieny,

Ph.D. thesis, University of Catania, 2012.

[Manno12b℄ G. Manno, F. Chiahio, L. Compagno, D. D'Urso, and

N. Trapani, �MatCarloRe: An integrated FT and Monte Carlo

Simulink tool for the reliability assessment of dynami fault

tree�, Expert Systems with Appliations, vol. 39, no. 12, 10334�

10342, 2012.

[Manno14a℄ G. Manno and F. Chiahio, �MatCarloRE Tool�, 2014. On-

line. Aessed on 06/10/2014. Available at: http://www.dmi.

unit.it/~hiahio/?m=5&projet=matarlore.

[Manno14b℄ G. Manno and F. Chiahio, �RAATSS Tool�, 2014. On-

line. Aessed on 06/10/2014. Available at: http://www.dmi.

unit.it/~hiahio/?m=5&projet=raatss.

[Manno14℄ G. Manno, F. Chiahio, L. Compagno, D. D'Urso, and

N. Trapani, �Coneption of Repairable Dynami Fault Trees

and resolution by the use of RAATSS, a Matlab® toolbox

based on the ATS formalism�, Reliability Engineering & Sys-

tem Safety, vol. 121, no. 0, 250 � 262, 2014.

[MathWorks14℄ MathWorks, �Matlab/Simulink�, 2014. Online. Aessed on

06/10/2014. Available at: http://www.mathworks.om.

[Medvidovi00℄ N. Medvidovi and R. N. Taylor, �A Classi�ation and Com-

parison Framework for Software Arhiteture Desription

Languages�, IEEE Trans. Softw. Eng., vol. 26, no. 1, 70�93,

Jan. 2000.

[Meedeniya11℄ I. Meedeniya, I. Moser, A. Aleti, and L. Grunske,

298

http://www.dmi.unict.it/~chiacchio/?m=5&project=matcarlore
http://www.dmi.unict.it/~chiacchio/?m=5&project=matcarlore
http://www.dmi.unict.it/~chiacchio/?m=5&project=raatss
http://www.dmi.unict.it/~chiacchio/?m=5&project=raatss
http://www.mathworks.com

�Arhiteture-based Reliability Evaluation Under Uner-

tainty�, in Proeedings of the Joint ACM SIGSOFT Confer-

ene � QoSA and ACM SIGSOFT Symposium � ISARCS on

Quality of Software Arhitetures � QoSA and Arhiteting

Critial Systems � ISARCS, QoSA-ISARCS '11, pp. 85�94,

ACM, 2011.

[Merle10℄ G. Merle, J.-M. Roussel, J.-J. Lesage, and A. Bobbio, �Prob-

abilisti Algebrai Analysis of Fault Trees With Priority Dy-

nami Gates and Repeated Events.�, IEEE Trans. on Relia-

bility, vol. 59, no. 1, 250�261, 2010.

[Merle14℄ G. Merle, J.-M. Roussel, and J.-J. Lesage, �Quantitative Anal-

ysis of Dynami Fault Trees Based on the Struture Funtion�,

Quality and Reliability Eng. Int., vol. 30, no. 1, 143�156, 2014.

[Montani08℄ S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri,

�Radyban: A tool for reliability analysis of dynami fault trees

through onversion into dynami Bayesian networks�, Relia-

bility Engineering & System Safety, vol. 93, no. 7, 922 � 932,

2008.

[Montehi11℄ L. Montehi, P. Lollini, and A. Bondavalli, �An Intermediate

Dependability Model for state-based dependability analysis�,

Teh. rep., University of Florene, Dip. Sistemi Informatia,

RCL group, 2011.

[Moore01℄ J. Moore, The Avionis Handbook, hap. Advaned Dis-

tributed Arhitetures, CRC Press, 2001.

[Nelson90℄ V. P. Nelson, �Fault-Tolerant Computing: Fundamental Con-

epts�, Computer, vol. 23, 19�25, July 1990.

[Niu11℄ R. Niu, T. Tang, O. Lisagor, and J. MDermid, �Automati

safety analysis of networked ontrol system based on failure

propagation model�, in Pro. of ICVES'11, pp. 53�58, 2011.

[Nord03℄ R. L. Nord, M. R. Barbai, P. Clements, R. Kaz-

299

man, and M. Klein, �Integrating the Arhiteture Trade-

o� Analysis Method (ATAM) with the ost bene�t analysis

method (CBAM)�, Teh. rep., Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania, Teh-

nial Note CMU/SEI-2003-TN-038, 2003.

[Oberkampf04℄ W. Oberkampf, J. C. Helton, C. A. Joslyn, S. F. Wojtkiewiz,

and S. Ferson, �Challenge problems: unertainty in system

response given unertain parameters.�, Reliability Engineering

& System Safety, vol. 85, no. 1-3, 11�19, 2004.

[O�e02℄ N. O�e, M. Assurane, and N. Headquarters, �Fault Tree

Handbook with Aerospae Appliations�, Diretor, p. 218,

2002.

[OMG03℄ OMG, �MDA Guide Version 1.0.1�, 2003. Online. Aessed on

06/10/2014. Available at: http://www.omg.org/gi-bin/

do?omg/03-06-01.pdf.

[OMG14a℄ OMG, �Systems Modelling Language�, 2014. Online. Aessed

on 06/10/2014. Available at: http://www.omgsysml.org/.

[OMG14b℄ OMG, �The Uni�ed Modeling Language�, 2014. Online. A-

essed on 06/10/2014. Available at: http://www.uml.org/.

[Ou00℄ Y. Ou and J. B. Dugan, �Sensitivity Analysis of Modular Dy-

nami Fault Trees�, in Proeedings of the 4th International

Computer Performane and Dependability Symposium, IPDS

'00, pp. 35�, IEEE Computer Soiety, 2000.

[Paderborn12℄ U. Paderborn, �FUJABA Tool Suite�, 2012. Online. Aessed

on 06/10/2014. Available at: http://www.fujaba.de/no_

ahe/home.html.

[Paige08a℄ R. Paige, L. Rose, X. Ge, D. Kolovos, and P. Brooke, �FPTC:

Automated safety analysis for Domain-Spei� languages�, in

MoDELS Workshops '08, vol. 5421, pp. 229�242, 2008.

[Paige08b℄ R. F. Paige, L. M. Rose, X. Ge, D. S. Kolovos, and P. J.

300

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omgsysml.org/
http://www.uml.org/
http://www.fujaba.de/no_cache/home.html
http://www.fujaba.de/no_cache/home.html

Brooke, �FPTC: Automated Safety Analysis for Domain-

Spei� Languages.�, in M. R. V. Chaudron, editor, MoDELS

Workshops, vol. 5421 of Leture Notes in Computer Siene,

pp. 229�242, Springer, 2008.

[Papadopoulos11℄ Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann,

A. Uhlig, U. Grätz, and R. Lien, �Engineering failure analysis

and design optimisation with HiP-HOPS�, Engineering Fail-

ure Analysis, vol. 18, no. 2, 590�608, 2011.

[Pardo-Castellote03℄ G. Pardo-Castellote, �OMG Data-Distribution Servie: Ar-

hitetural Overview�, in Int. Conferene on Distributed Com-

puting Systems Workshops, vol. 0, pp. 200�206, IEEE, 2003.

[Perez14℄ D. Perez, R. Mirandola, and J. Merseguer, �On the Relation-

ships between QoS and Software Adaptability at the Arhi-

tetural Level�, Journal of Systems and Software, vol. 87, 17,

2014.

[Peterson81℄ J. L. Peterson, Petri Net Theory and the Modeling of Systems,

Prentie Hall PTR, Upper Saddle River, NJ, USA, 1981.

[Portinale10℄ L. Portinale, D. C. Raiteri, and S. Montani, �Supporting reli-

ability engineers in exploiting the power of Dynami Bayesian

Networks�, International Journal of Approximate Reasoning,

vol. 51, no. 2, 179 � 195, 2010.

[Powell95℄ D. Powell, �Failure Mode Assumptions and Assumption Cov-

erage�, Teh. rep., 1995.

[Prie02℄ C. Prie and N. Taylor, �Automated multiple failure FMEA�,

Reliability Eng. & System Safety, vol. 76, 1�10, 2002.

[Priesterjahn11a℄ C. Priesterjahn, C. Sondermann-Wölke, M. Tihy, and

C. Hölsher, �Component-based hazard analysis for meha-

troni systems�, in Pro. of ISORCW'11, pp. 80�87, 2011.

[Priesterjahn11b℄ C. Priesterjahn, D. Steenken, and M. Tihy, �Component-

based timed hazard analysis of self-healing systems�, in Pro-

301

eedings of the 8th workshop on Assuranes for self-adaptive

systems, ASAS '11, pp. 34�43, ACM, 2011.

[Pulia�to14℄ A. Pulia�to, �Web SPN Tool�, 2014. Online. Aessed

on 06/10/2014. Available at: http://mdslab.unime.it/

webspn/home_page.htm.

[Pullum01℄ L. L. Pullum, Software Fault Tolerane Tehniques and Im-

plementation, Arteh House, In., Norwood, MA, USA, 2001.

[Raiteri11℄ D. C. Raiteri, �Integrating several formalisms in order to in-

rease Fault Trees' modeling power�, Reliability Engineering

& System Safety, vol. 96, no. 5, 534�544, 2011.

[Rao09℄ Rao, K. Durga, V. Gopika, V. V. S. Sanyasi Rao, H. S. Kush-

waha, A. K. Verma, and A. Srividya, �Dynami fault tree

analysis using Monte Carlo simulation in probabilisti safety

assessment�, Reliability Eng. and System Safety, vol. 94, no. 4,

872�883, 2009.

[Rausand03℄ M. Rausand and A. Høyland, System Reliability Theory: Mod-

els, Statistial Methods and Appliations Seond Edition,

Wiley-Intersiene, 2003.

[Rawashdeh06℄ O. Rawashdeh and J. Lumpp Jr., �Run-time behavior of

Ardea: A dynamially reon�gurable distributed embedded

ontrol arhiteture�, in IEEE Aerospae Conferene Proeed-

ings, 2006.

[Riedl08℄ M. Riedl, J. Shuster, and M. Siegle, �Reent Extensions to

the Stohasti Proess Algebra Tool CASPA�, in Proeedings

of the 2008 Fifth International Conferene on Quantitative

Evaluation of Systems, QEST '08, pp. 113�114, IEEE Com-

puter Soiety, Washington, DC, USA, 2008.

[Riedl12℄ M. Riedl and M. Siegle, �A LAnguage for REon�gurable de-

pendable Systems: Semantis & Dependability Model Trans-

formation�, in Pro. 6th International Workshop on Veri�a-

302

http://mdslab.unime.it/webspn/home_page.htm
http://mdslab.unime.it/webspn/home_page.htm

tion and Evaluation of Computer and Communiation Sys-

tems (VECOS'12), pp. 78�89, British Computer Soiety,

2012.

[Robidoux10℄ R. Robidoux, H. Xu, L. Xing, and M. Zhou, �Automated Mod-

eling of Dynami Reliability Blok Diagrams Using Colored

Petri Nets�, IEEE Transations on Systems, Man, and Cy-

bernetis, Part A, vol. 40, no. 2, 337�351, 2010.

[Romain07℄ B. Romain, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge,

�Experiments in model based safety analysis: Flight ontrols�,

in DCDS'07, pp. 43�48, 2007.

[Rugina07℄ A. Rugina, K. Kanoun, and M. Kaânihe, �A system depend-

ability modeling framework using AADL and GSPNs�, in Ar-

hiteting dependable systems IV, LNCS, vol. 4615, pp. 14�38,

Springer, 2007.

[Sanders02a℄ W. H. Sanders and J. F. Meyer, �Letures on Formal Meth-

ods and Performane Analysis�, hap. Stohasti Ativity

Networks: Formal De�nitions and Conepts, pp. 315�343,

Springer-Verlag New York, In., New York, NY, USA, 2002.

[Sanders02b℄ W. H. Sanders and J. F. Meyer, �Letures on Formal Meth-

ods and Performane Analysis�, hap. Stohasti Ativity

Networks: Formal De�nitions and Conepts, pp. 315�343,

Springer-Verlag New York, In., New York, NY, USA, 2002.

[Sanders12℄ W. Sanders, �Mobius user manual�, Version 2.4.1, University

of Illinois, 2012.

[Shannon38℄ C. E. Shannon, �A Symboli Analysis of Relay and Swithing

Ciruits�, Transations of the AIEE, vol. 57, 713�723, 1938.

[Sharma11℄ V. K. Sharma, M. Agarwal, and K. Sen, �Reliability evaluation

and optimal design in heterogeneous multi-state series-parallel

systems�, Information Sienes, vol. 181, no. 2, 362 � 378,

2011.

303

[Shelton04℄ C. P. Shelton and P. Koopman, �Improving System Depend-

ability with Funtional Alternatives�, in Pro. of DSN'04, pp.

295�304, IEEE, 2004.

[Signoret13℄ J.-P. Signoret, Y. Dutuit, P.-J. Caheux, C. Folleau, S. Col-

las, and P. Thomas, �Make your Petri nets understandable:

Reliability blok diagrams driven Petri nets�, Reliability En-

gineering & System Safety, vol. 113, 61 � 75, 2013.

[SINTEF09℄ SINTEF, �O�shore Reliability Data Handbook�, Teh. rep.,

2009.

[Somani97℄ A. K. Somani and N. H. Vaidya, �Understanding Fault Tol-

erane and Reliability�, Computer, vol. 30, no. 4, 45�50, Apr.

1997.

[Staroswieki89℄ M. Staroswieki and P. Delerk, �Analytial Redundany

in Non-linear Interonneted Systems by means of Stru-

tural Analysis�, in Proeedings of IFAC/IMACS/IFORS Conf.

AIPAC' 89, vol. 2, pp. 23�27, Elsevier, Nany, Frane, 1989.

[Staroswieki99℄ M. Staroswieki, S. Attouhe, and M. L. Assas, �A Graphi

Approah for Reon�gurability Analysis�, in Pro. DX'99,

Jun. 1999.

[Steiner12℄ M. Steiner, P. Keller, and P. Liggesmeyer, �Modeling the Ef-

fets of Software on Safety and Reliability in Complex Embed-

ded Systems�, in Computer Safety, Reliability, and Seurity,

vol. 7613, pp. 454�465, Springer Berlin Heidelberg, 2012.

[Strigini05℄ L. Strigini, �Fault Tolerane Against Design Faults�, in

H. Diab and A. Zomaya, editors, Dependable Computing Sys-

tems: Paradigms, Performane Issues, and Appliations, pp.

213�241, John Wiley & Sons, 2005.

[Svard10℄ C. Svard and M. Nyberg, �Residual Generators for Fault Di-

agnosis Using Computation Sequenes With Mixed Causality

Applied to Automotive Systems�, Systems, Man and Cyber-

304

netis, Part A: Systems and Humans, IEEE Transations on,

vol. 40, no. 6, 1310�1328, Nov 2010.

[Tang04℄ Z. Tang and J. Behta Dugan, �Minimal ut set/sequene gen-

eration for dynami fault trees�, in Reliability and Maintain-

ability, 2004 Annual Symposium - RAMS, pp. 207�213, Jan

2004.

[Thuel94℄ S. Thuel and J. Strosnider, �Enhaning Fault Tolerane of

Real-Time Systems through Time Redundany�, in G. Koob

and C. Lau, editors, Foundations of Dependable Computing,

vol. 285 of The Kluwer International Series in Engineering

and Computer Siene, pp. 265�318, Springer US, 1994.

[Trapp07℄ M. Trapp, R. Adler, M. Forster, and J. Junger, �Runtime

adaptation in safety-ritial automotive systems�, in Pro. of

International Conferene on Software Engineering, 2007.

[Trivedi02℄ K. S. Trivedi, Probability and Statistis with Reliability, Queu-

ing and Computer Siene Appliations, John Wiley and Sons

Ltd., Chihester, UK, 2nd edition edn., 2002.

[TU Berlin07℄ R.-T. S. TU Berlin and R. group, �TimeNET 4.0�, 2007.

Online. Aessed on 06/10/2014. Available at: http://tu-

ilmenau.de/TimeNET.

[TU Kaiserslautern09℄ A. S. TU Kaiserslautern and F. IESE, �Embedded system

safety and reliability analyzer (ESSaRel)�, 2009. Online. A-

essed on 06/10/2014. Available at: http://essarel.de.

[Twente14℄ U. Twente, �DFT Cal�, 2014. Online. Aessed on

06/10/2014. Available at: http://fmt.ewi.utwente.nl/

tools/dftal/.

[Valmari98℄ A. Valmari, �The state explosion problem�, in Letures on

Petri nets I: Basi models, pp. 429�528, Springer, 1998.

[vanderBorst01℄ M. van der Borst and H. Shoonakker, �An overview of PSA

305

http://tu-ilmenau.de/TimeNET
http://tu-ilmenau.de/TimeNET
http://essarel.de
http://fmt.ewi.utwente.nl/tools/dftcalc/
http://fmt.ewi.utwente.nl/tools/dftcalc/

importane measures.�, Reliability Engineerign and System

Safety, vol. 72, no. 3, 241�245, 2001.

[Vesely02℄ W. Vesely, J. Dugan, J. Fragola, Minarik, and J. Railsbak,

�Fault Tree Handbook with Aerospae Appliations�, Hand-

book, NASA, 2002.

[Vinod08℄ G. Vinod, T. Santosh, R. Saraf, and A. Ghosh, �Integrating

Safety Critial Software System in Probabilisti Safety Assess-

ment�, Nulear Engineering and Design, vol. 238, no. 9, 2392

� 2399, 2008.

[Virginia03℄ U. Virginia, �Galileo�, 2003. Online. Aessed on 06/10/2014.

Available at: http://http://www.s.virginia.edu/

~ftree/.

[Walker09℄ M. Walker and Y. Papadopoulos, �Qualitative temporal anal-

ysis: Towards a full implementation of the Fault Tree Hand-

book�, Control Eng. Pratie, vol. 17, no. 10, 1115�1125, 2009.

[Walter08℄ M. Walter, M. Siegle, and A. Bode, �OpenSESAME: the sim-

ple but extensive, strutured availability modeling environ-

ment�, Reliability Engineering & System Safety, vol. 93, no. 6,

857 � 873, 2008.

[Walter09℄ M. Walter, �OpenSESAME - Simple but Extensive Strutured

Availability Modeling Environment�, 2009. Online. Aessed

on 06/10/2014. Available at: http://www.lrr.in.tum.de/

~walterm/opensesame/.

[Wang04℄ W. Wang, J. Loman, and P. Vassiliou, �Reliability importane

of omponents in a omplex system�, in Reliability and Main-

tainability, 2004 Annual Symposium - RAMS, pp. 6�11, 2004.

[Wang08℄ F.-Y. Wang and D. Liu, Networked ontrol systems, Springer,

2008.

[Wilfredo00℄ T. Wilfredo, �Software Fault Tolerane: A Tutorial�, Teh.

rep., 2000.

306

http://http://www.cs.virginia.edu/~ftree/
http://http://www.cs.virginia.edu/~ftree/
http://www.lrr.in.tum.de/~walterm/opensesame/
http://www.lrr.in.tum.de/~walterm/opensesame/

[Wolforth10℄ I. Wolforth, M. Walker, L. Grunske, and Y. Papadopoulos,

�Generalizable safety annotations for spei�ation of failure

patterns�, Softw. Prat. Exper., vol. 40, 453�483, 2010.

[Workshop℄ G. Workshop, �BStoK Module�, 2014. Online. Aessed

on 06/10/2014. Available at: http://grif-workshop.om/

grif/bstok-module/.

[Wysoki04℄ J. Wysoki, R. Debouk, and K. Nouri, �Shared redundany

as a means of produing reliable mission ritial systems�, in

Pro. of RAMS'04, pp. 376 � 381, 2004.

[Wysoki07℄ J. Wysoki and R. Debouk, �Methodology for Assessing

Safety-ritial Systems�, Int. Journal of Modeling and Sim-

ulations, vol. 27, no. 2, 99�106, 2007.

[Xie04℄ M. Xie, Y.-S. Dai, and K.-L. Poh, Computing Systems Relia-

bility: Models and Analysis, Springer, 2004.

[yangLi10℄ C. yang Li, X. Chen, X. shan Yi, and J. yong Tao, �Heteroge-

neous redundany optimization for multi-state series?parallel

systems subjet to ommon ause failures�, Reliability Engi-

neering & System Safety, vol. 95, no. 3, 202 � 207, 2010.

[Zio13℄ E. Zio, The Monte Carlo Simulation Method for System Reli-

ability and Risk Analysis, Springer Series in Reliability Engi-

neering, 2013.

307

http://grif-workshop.com/grif/bstok-module/
http://grif-workshop.com/grif/bstok-module/

308

Aronyms

AADL Arhiteture Analysis and Design Language. 44�46

ACC Air Conditioning Control. 15

BDMP Boolean logi Driven Markov Proess. 39

CAN Controller Area Network. 201, 204

CCU/BA Control and Communiation Unit - Bus Administrator. 200�202

CDF Cumulative probability Distribution Funtion. 103, 153

CDFT Component Dynami Fault Tree. 109�113, 115�117, 147

CFP Compositional Failure Propagation. 40, 41, 43, 46

CFT Component Fault Tree. 41�43, 45, 55, 59

CTMC Continuous Time Markov Chain. 35, 36, 38, 39

D3H2 . 65, 66, 76, 81, 97, 147, 149�151, 197, 198

DBN Dynami Bayesian Networks. 36

DEM Dependability Evaluation Modelling. 99, 100, 102, 104, 108, 120, 123, 150, 152,

154, 162, 195, 196

DFT Dynami Fault Tree. 34�39, 42, 43, 109

DOE Design of Experiments. 53

DSC Door Status Control. 188

309

DSPN Deterministi and Stohasti Petri Nets. 39, 235

EFMA Extended Funtional Modelling Approah. 69, 77

FCI Failure Critiality Index. 114, 115, 117, 143

FD Fault Detetion. 77

FMA Funtional Modelling Approah. 68, 69

FMEA Failure Mode and E�et Analysis. 41, 46, 51

FP Fire Protetion. 16

FPTN Failure Propagation and Transformation Notation. 41�43

FT Fault Tree. 32, 34, 39�41, 45

FTA Fault Tree Analysis. 51, 53

FTP File Transfer Protool. 202

GSPN Generalized Stohasti Petri Nets. 36, 38, 45, 52, 235

HiP-HOPS Hierarhially Performed Hazard Origin and Propagation Studies. 41�43,

45, 51, 109

IFT Improved Multi Fault Tree. 51

MF Main Funtion. 69, 82, 84, 85, 87�89, 91, 93, 95, 162

MIM Multi Interfae board Module. 200, 201

MVB Multi-funtion Vehile Bus. 198, 201, 202, 204, 207, 208

NCSs Networked Control Systems. 2, 3, 5, 62

NMR N modular redundany. 26

OCI Operational Critiality Index. 115

310

PIS Passenger Information System. 17

PL Physial Loation. 69, 82, 84, 85, 87�89, 91, 93, 95

PN Petri Nets. 53

PU Proessing Unit. 2, 4, 13, 15, 30, 63, 78�80, 83, 84, 86, 90, 94, 96, 100, 107, 125,

128, 129, 135, 139, 140, 143, 157, 174, 183, 198, 204, 206�209, 215

R Reon�guration. 77

RBD Reliability Blok Diagram. 32, 34, 38

RCI Restore Critiality Index. 115

SAN Stohasti Ativity Networks. 157�163, 165, 175, 177, 182, 188, 235

SEFT State-Event Fault Tree. 39, 40, 43

SF Subfuntion. 70, 82, 84, 85, 87�89, 91, 93, 95, 102, 104, 105, 107, 122, 153�157,

162, 167, 168

SPN Stohasti Petri Nets. 235

TCMS Train Control Monitoring System. 13, 14

TCN Train Communiation Network. 198, 199

TFT Temporal Fault Tree. 42, 43

TICO Communiation Interfae Card. 200�202

TMR Triple Modular Redundany. 26

UDP User Datagram Protool. 206, 208

UML Uni�ed Modelling Language. 44, 45

311

	Contents
	Introduction
	Opportunity Identification
	Scope of the Research
	Research Objectives
	Research Hypothesis, Contributions & Limitations
	Research Methodology
	Thesis Outline

	Literature Review
	Application Framework
	Dependability Framework
	Dependability: Definitions and Classifications
	Designing for Fault Tolerance and Dependability
	Fault Hypothesis & Failure/Error Model
	Opportunity Analysis

	Overview of the Main Dependability Analysis Approaches
	Hybrid Approaches
	Opportunity Analysis

	Design of Dependable Systems: Trade-Off Between Dependability & Cost
	Design Approaches using Homogeneous Redundancies
	Design Approaches using Heterogeneous Redundancies
	Opportunity Analysis

	Conclusions

	D3H2 Methodology
	Introduction
	Overview of the D3H2 Methodology
	HW/SW Architecture Design
	Functional Modelling Approach
	Compatibility Analysis
	Reconfiguration Strategies
	Extended Functional Modelling Approach

	Results
	Conclusions

	Dependability & Cost Analysis of Non-Repairable Systems
	Introduction
	Dependability Evaluation Modelling Approach
	Concepts and Notation
	Analysis Algorithm
	Analysis of the State of the Art Approaches
	Implementation: Component Dynamic Fault Trees

	Sensitivity Analysis
	Simulation-based Importance Measurement Indices
	Implementation of the Sensitivity Analysis

	Uncertainty Analysis
	Cost Analysis
	Results
	Fire Protection Control
	Door Status Control

	Conclusions

	Dependability & Cost Analysis of Repairable Systems
	Introduction
	Dependability Evaluation Modelling Approach for Repairable Systems
	Concepts and Notation
	Analysis Algorithm
	Implementation

	Cost Analysis
	Results
	SAN Generic Models
	Fire Protection Control
	Door Status Control

	Conclusions

	D3H2 Methodology: Experimental Evaluation
	Introduction
	Industrial Railway Communication Architectures
	Communication Networks
	Communication Devices

	Application Architecture
	Scenario I: Sensor-Level Reconfiguration
	Scenario II: PU-Level Reconfiguration
	Scenario III: Communication-Level Reconfiguration

	Conclusions

	Conclusions and Future Work
	Conclusions
	Contributions
	Future Work

	Appendices
	Overview of the Basic Dependability Analysis Approaches
	Event-Based (Combinatorial, Static) Approaches
	State-Based (Dynamic) Approaches

	Classification of the Hybrid Approaches and Tool Support
	Classification of the Hybrid Approaches
	Tool Support

	Analysis of Literature Approaches on a System Example
	(Static) Fault Tree FTAHB
	Component Fault Tree (ESSaReL tool) Kaiser2003
	HiP-HOPS Papadopoulos2011
	Repairable Dynamic Fault Tree (RAATSS tool) Manno2014
	Structure Function of Dynamic Fault Trees Merle14
	BDMP Bouissou2007
	SEFT - DSPN Kaiser07

	Automation/Implementation of the HW/SW Architecture Design
	Annotations of the System Architecture
	Identification of Heterogeneous Redundancies
	Extraction of the Reconfiguration Table

	Failure Rate & Cost Data
	PAND Model for Repairable Systems
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Bibliography
	List of Abbreviations

