
Towards a Taxonomy for Eliciting
Design-Operation Continuum Requirements of

Cyber-Physical Systems
Jon Ayerdi∗, Aitor Garciandia†, Aitor Arrieta∗, Wasif Afzal‡, Eduard Enoiu‡, Aitor Agirre†,

Goiuria Sagardui∗, Maite Arratibel§ and Ola Sellin¶

University of Mondragon∗, Ikerlan †, Mälardalen University‡, Orona§, Bombardier Transportation¶,
∗{jayerdi,aarrieta,gsagardui}@mondragon.edu, †{agarciandia, aagirre}@ikerlan.es, ‡{wasif.afzal,

eduard.paul.enoiu}@mdh.se, §marratibel@orona-group.com, ¶ola.sellin@rail.bombardier.com

Abstract—Software systems that are embedded in autonomous
Cyber-Physical Systems (CPSs) usually have a large life-cycle,
both during its development and in maintenance. This software
evolves during its life-cycle in order to incorporate new require-
ments, bug fixes, and to deal with hardware obsolescence. The
current process for developing and maintaining this software is
very fragmented, which makes developing new software versions
and deploying them in the CPSs extremely expensive. In other
domains, such as web engineering, the phases of development
and operation are tightly connected, making it possible to easily
perform software updates of the system, and to obtain operational
data that can be analyzed by engineers at development time.
However, in spite of the rise of new communication technologies
(e.g., 5G) providing an opportunity to acquire Design-Operation
Continuum Engineering methods in the context of CPSs, there
are still many complex issues that need to be addressed, such as
the ones related with hardware-software co-design. Therefore,
the process of Design-Operation Continuum Engineering for
CPSs requires substantial changes with respect to the current
fragmented software development process. In this paper, we build
a taxonomy for Design-Operation Continuum Engineering of
CPSs based on case studies from two different industrial domains
involving CPSs (elevation and railway). This taxonomy is later
used to elicit requirements from these two case studies in order
to present a blueprint on adopting Design-Operation Continuum
Engineering in any organization developing CPSs.

Keywords-DevOps, Design-Operation, Requirements Elicita-
tion, Cyber-Physical Systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) integrate computation with
physical processes whose behavior is defined by both physical
and software parts of the system [1]. While the cyber-physical
controller consists of discrete software, the physical layer is
composed of parallel physical processes running in continuous
time. The cyber layer is composed of computational platforms
and networks that are in charge of monitoring and controlling
physical processes [31]. These systems are part of many
products we use in our daily life, such as vehicles, airplanes,
elevators and trains. As the lifecycle of these systems is rather
long, all their components require maintenance, including their
software components. Given that the software of these systems
is usually extremely complex, the software constantly evolves
during the CPS lifecycle based on several aspects [18], such
as (1) new functional and non-functional requirements, (2)

hardware obsolescence and/or system degradation, and (3)
correction of bugs detected while the system is operating.

In the last few years, there have been several improvements
in terms of modeling and simulation techniques [2], [15], [20]
to develop and validate complex CPSs from the early devel-
opment stages. However, when the software is deployed in
the CPS, the methods used during operation and maintenance
do not have synergies with the methods used in development.
In other contexts, such as web-engineering, there are Design-
Operation Continuum Engineering methods such as DevOps
that permit software development methods to be streamlined
with methods for operation time. DevOps practices efficiently
integrate development and operations, aiming at shortening the
lead time between a change request and the deployment in
production using automation, agile software development and
continuous delivery (CD) pipelines. Yet, for CPSs, traditional
Design-Operation Continuum Engineering methods require
substantial changes in order to be dependable enough. More
specifically, Design-Operation Continuum methods must pro-
vide solutions in order to have a more efficient process which
guarantees that (1) software updates are performed safely and
securely, (2) most of the faults are detected in the design phase
before the software is deployed in the CPS and (3) problems
that can emerge in operation can be reproduced in development
in order to analyse and propose potential solutions.

In order to start developing Design-Operation Continuum
Engineering methods supported by the appropriate tools for
CPSs, a taxonomy of relevant concepts is expected to ease the
understanding of their rather complex development and main-
tenance process. In this paper, we build and instantiate such
a taxonomy in order to assist requirements analysts with the
identification and categorization of the requirements related to
different aspects of the CPS Design-Operation Continuum En-
gineering. The main purpose of this classification is supporting
the elicitation of new requirements and the easier identification
of problems such as omissions, ambiguity, vagueness, conflicts
or duplication in the requirements. Furthermore, this classifi-
cation is also helpful for determining the organisational roles
responsible for each requirement, as well as for the manage-
ment and reuse of the elicited requirements in later stages of
the development lifecycle. This taxonomy is inspired by case



studies from two different industrial domains: the elevation
domain and the railway domain. Both case studies are provided
by companies that are leaders in their sectors. By analyzing the
data provided by these companies through their documentation
(e.g., internal technical documents, repositories, code, etc),
as well as through interviews with their engineers, we were
able to develop a general purpose taxonomy for Design-
Operation Continuum Engineering methods for CPSs. With
this taxonomy, organizations can instantiate their domain-
specific categorization and classification of requirements.

The remainder of this paper is structured as follows: Sec-
tion II describes the taxonomy development process. Sec-
tion III presents the two industrial case studies that inspired
this work, which are also the first systems where this taxonomy
has been applied. Section IV describes the developed taxon-
omy in detail. Section V describes the process of requirements
elicitation using the taxonomy. Section VI reviews related
work and Section VII concludes the paper.

II. TAXONOMY DEFINITION METHOD

To develop the taxonomy, we followed the guidelines
proposed by Ralph [24], which provide a set of steps to
follow. The first step refers to choosing the strategy. We
opted for using the “grounded theory and interpretative case
study” approach as our main strategy, in addition to personal
experiences acquired by the long-term collaboration between
the industrial and academic partners involved in this paper.
In this case, we analyzed two case studies from different
domains, which permitted us to identify their commonalities
and differences. We do not expect that our taxonomy can be
generalized to all CPSs by using only two industrial case
studies as a basis, but at least, we believe that it provides
fundamental evidence that it could be adopted for many
complex and industry-relevant cases. On the other hand, we
unavoidably made use of personal experience to an extent in
order to develop this taxonomy, so a certain degree of bias
can be expected.

The second step is the site selection. Two sites were selected
for developing the taxonomy, which are two organizations of
CPS developers: Orona (elevation domain) and Bombardier
(railway transportation domain). We chose these sites due to
several reasons. Firstly, there is a long-standing collaboration
between the researchers and practitioners that work for these
organizations. Secondly, both sites are developers of complex
CPSs. Thirdly, the domains are sufficiently different (i.e.,
elevation and railway) to ensure a minimum degree of het-
erogeneity for the development of a general taxonomy. Lastly,
and most importantly, both sites are relevant target users for
the taxonomy, they produce rich data and detailed explanations
for their requirements, and are accessible to the authors of this
paper.

As for the data collection, which is the third step proposed
in the guidelines [24], two processes were followed. On the
one hand, the direct observation methodology [24] was em-
ployed. On the one hand, we reviewed internal documentation
provided by both Orona and Bombardier. On the other hand,

we interviewed participants from the companies involved. To
this end, we prepared a set of relevant questions carefully
selected by the researchers. We later interviewed practitioners
from Orona with various positions and experience levels,
who would directly benefit from adopting Design-Operation
Continuum methods into their development processes. As we
were creating a taxonomy from scratch, similar to [13], the in-
terview questions had to be as generic and open-ended as pos-
sible. Therefore, we opted for semi-structured interviews [28],
which combine open-ended questions with specific questions.
Thus, the interviewer had to improvise new questions based
on the interviewee’s response. Additionally, we used internal
documentation from both industrial companies, including test
plans, comments from the code repository, standards, etc.
More information related to the data collection from each of
the case studies is given in Section III.

The fourth step is related to the data analysis [24]. We
took notes based on (1) the interviews to engineers working in
Orona, and (2) by accessing internal documentation at Orona
and Bombardier. We then used an iterative approach to code
our notes and build the taxonomy. We initially developed a
first structure of the taxonomy by having reviewed the state-
of-the-art on Design-Operation Continuum methods. We later
evolved this initial taxonomy with the information extracted
from the interviews as well as the internal documentation of
the case companies.

The last step refers to the conceptual evaluation. Similar
to [13], in order to ensure that the final taxonomy was
comprehensive and representative, we validated the taxonomy
by involving both researchers and industrial participants. These
were different from those involved in the interviews. The
participants were asked to (1) identify potential weaknesses
of the theory, as suggested by Ralph [24], and (2) provide
evaluation criteria based on the credibility and transferability
of the taxonomy.

III. CASE STUDIES

In this section, we describe the two industrial case studies
used to extract the taxonomy. One of the case studies is from
the vertical transport (elevation) domain, whereas the other
one is from the railway domain. Both companies that provide
the case studies are leaders in their domain, and therefore, the
technology that they use is cutting-edge. In this section, we
explain the subsystems considered to build the taxonomy of
the paper and its current software development process, the
specific methodology followed in each of the case studies for
developing it, and how both companies expect to improve their
software development process by adopting Design-Operation
Continuum methods.

A. Case study from the elevation domain

Orona’s activities are focused on the design, manufactur-
ing, installation, maintenance, and modernisation of elevators,
escalators, and moving ramps and walkways. An elevator
installation is a complex CPS composed by a set of elevators
that interact to provide service to passengers with the goal



of minimising the Average Waiting Time (AWT) and, more
recently, also taking into account other criteria such as en-
ergy consumption, transport capacity, or overall transit time.
Nowadays, over 250.000 elevators worldwide use Orona’s
technology. As most of the new functionality in elevators’
installations is provided by software, Orona has a systematic
and well established process for the development and release
of new software versions.

The traffic master manages the passenger flow. It is com-
posed by several software modules such as the dispatcher,
which executes the traffic algorithm to allocate calls to ele-
vators, the signalling to guide passengers (e.g., by commu-
nicating the assigned elevator), or the access control which
disables specific floors for unauthorized passengers. The traffic
master is constantly evolving in order to improve the service
by including new functionalities or adapting to the building
requirements. In conclusion, this system is a good candidate
for the adoption of Design-Operation Continuum methods.

Interviews to the dispatcher manager, two software engi-
neers and a system validation engineer were carried out by
the researchers. The dispatcher manager defines new func-
tionalities and analyzes poor performance in installations. The
software engineers develop and validate the software. Lastly,
the validation engineer tests the dispatcher in the Elevator.

Figure 1 illustrates the process (current tasks, roles and
tools) extracted from the analysis of the data collected during
the interviews. Within the requirement elicitation of a new
release (1), a rigorous validation plan is defined comprising
three main validation phases. The Software-in-the-Loop (SiL)
phase usually encompasses most of the development work for
a new functionality. The software produced in this step (2)
(depicted as system under test (SUT)) is validated (3) in a
purely virtual environment using a domain specific simulator
(i.e., Elevate™).1 At the SiL phase, tests ensure the quality of
service requirements (e.g., AWT over time). The Hardware-in-
the-Loop (HiL) phase (4-5-6) follows the previous SiL phase.
In this phase, both virtual and real components are mixed
together to compose an integrated scenario that is very close
to the real one. Simulators that are used at the SiL phase
are substituted by real hardware (e.g., elevator controllers)
and communication networks, enabling integration tests of the
entire system. Nevertheless, some parts may still be simulated
(e.g., elevator shaft simulator, passenger demand, etc.). At
the HiL phase, test cases check the functional correctness of
the release. Finally, the software is deployed into the real
system, operational phase (7-8), and eventually monitored
by maintenance staff (9). Some installations require a deep
analysis in order to understand the perception of the customers
(10). This analysis is performed by trying to reproduce the
situations observed in reality in simulations at the SiL phase.

Executing the validation plan both at SiL and HiL phases
follows a similar sequence: (a) deploy to validation infras-
tructure; (b) configure the context (i.e., the type of building,
number of floors, etc.); (c) define and configure data to

1https://www.peters-research.com/index.php/elevate

monitor; (d) execute the test cases; (e) analyze the data;
(f) decide whether the version is ready for the next phase.
Configuration, deployment, analysis and decision are mainly
manual steps, while the execution of test cases at HiL is
semi-manual. Therefore, these tasks are error-prone, require
significant effort and are dependent on specific knowledge and
skills. This is especially exacerbated at the HiL phase, where
a configuration of the validation infrastructure requires special
knowledge and can take hours to ensure a proper configuration
and deployment. Besides, test cases are executed in real-time,
and thus, on top of the test execution times being potentially
long, the availability of an engineer is required during this
process.

Once in operation, feedback for new requirements or bug
fixes is received from (a) customers, (b) monitors of the
CPS and (c) regulation changes. Checking customers’ feeling
of poor performance about the installation (i.e., the feeling
that some passengers are waiting too long) by reproducing
the scenario in the domain-specific simulator is always a
time consuming and cumbersome task. Sometimes, an in-situ
monitoring process of the installation is required for a limited
period of time, which is extremely costly. Besides, it is not
always possible to reproduce the situation, and therefore, a
deep analysis to identify differences has to be performed.

B. Case study from the railway domain

Bombardier Transportation (BT) is one of the leading
companies in the rail industry, providing rolling stock and
associated services of system maintenance, signalling, fleet
management and asset life management. It has a broad and
innovative product portfolio in rolling stock, consisting of e.g.,
light rail vehicles, metros, commuter and regional trains. For
the definition of Design-Operation Continuum requirements,
we have selected BT’s Train Control and Management System
(TCMS). This system is the center of the distributed system
that controls the train. It is involved in almost all train
functions, either in a controlling or a supervisory capacity.
Examples of train functions controlled and managed by the
TCMS are collecting line voltage, controlling the train engines,
opening and closing the train doors and uploading diagnostic
data. For collecting data on BT’s current status of the develop-
ment of TCMS as well as finding out opportunities of Design-
Operation Continuum methods for testing and deployment,
we made use of archival data as one of our first steps. We
had access to internal documentation of a relevant BT project.
Documentation such as test plans were read and analyzed.
We used document analysis [4] as a systematic procedure for
reviewing or evaluating these documents. Two experienced
researchers, with extensive experience in research projects
with BT, were involved in the analysis.

At BT, a test plan documents the scope, approach, resources
and schedule of the testing activities per project. The deploy-
ment plan is also partly reflected in the test plan. The test plan
covers the detailed planning regarding the three levels of tests
for TCMS: software component test, function test and system
test. The test plan also mentions the PASS/FAIL criteria for the



Fig. 1. Current software development process at Orona

three levels of tests. The plan touches upon the deployment in
terms of environmental/infrastructure needs. The three levels
of tests are performed in MiL, SiL and HiL simulators.
Component and functional tests are typically performed in
the domain-specific MiL/SiL simulator, while system tests are
typically performed in the HiL simulator. Fig. 2 shows the
development process at TCMS with corresponding simulation
levels. The execution of test plan at MiL, SiL and HiL follows
a somewhat similar sequence: 1) prepare software compo-
nent/function/system test infrastructure; 2) develop software
components/features; 3) develop component/function/system
test cases; 4) build and deploy on test bench; 5) execute
tests; 6) record defects (if any); 7) generate test report; 8)
release software when no critical defects remaining. This
is shown in Fig. 3. Many activities in this process require
manual intervention, such as setting up the test environment
and activities around testing at different simulation levels.

In testing TCMS, the engineering processes of software de-
velopment (including requirement engineering and testing) are
performed according to safety standards and regulations [6].
Specification-based testing is mandated by the EN 50128
standard to be used to design test cases. Each test case should
contribute to the demonstration that a specified requirement
has indeed been covered and satisfied. Executing test cases on
TCMS is supported by a test framework that includes the com-
parison between the expected output with the actual outcome.
Testing at the functional level is done against TCMS design
requirements. The created test suites are based on functional
specifications expressed in a natural language. Stimulation
and responses are checked at the interfaces at the functional
level. The test cases are composed by test steps, which define
a stimulation and the expected output. Test case design is
done in a scripting language and in a test management tool.
Alternatively, if the test management tool is not available, the
test case design can be documented with comments in the test
scripts or in separate word documents.

C. Expected benefits

Design-Operation Continuum methods could automate sev-
eral tasks of a software release. The goals of this approach

Fig. 2. Development process for TCMS at BT.

Fig. 3. Execution of test plan at MiL/SiL/HiL levels at BT.



can be summarized in the following points: (1) Efficiently
manage product variants and configurations throughout the
testing process, reducing the number of errors and the time to
configure a validation context at the MiL, SiL and HiL stages;
(2) Reuse requirements at different levels of abstractions for
validating system designs, ensuring that they are enforced
consistently; (3) Automate the deployment of new software
releases to the SiL, HiL and Operation, considerably reducing
the costs; (4) Automate the execution of test cases at all
phases; (5) Automate the validation of software releases by
using streamlined test oracles that can be re-used across
the whole lifecycle (i.e., MiL, SiL, HiL and Operation); (6)
Automatically collect data during operation, which will enable
reproducing real-life scenarios at design-time (i.e., MiL, SiL
and HiL); (7) Enable the generation of test cases by using
information collected from the whole lifecycle.

Achieving these objectives would result in an improvement
of the software development practice and a reduction of the
overall cost of releasing a new software version. The auto-
mated management of requirements, variants and configura-
tions across all levels of abstraction and lifecycle stages would
not only reduce the cost of the process, but also reduce the
number of errors. Furthermore, the software quality would be
improved by using real data from operation to identify realistic
situations at design-time and to detect potential bottlenecks by
monitoring the quality of service across the different software
releases. This methodology would also allow the detection of
defects earlier in the development lifecycle, further reducing
the cost of testing. In addition, the quality would also benefit
from increasing the likelihood and frequency of detecting bugs
both at design-time and at operation-time by using streamlined
test oracles at all the levels.

IV. TAXONOMY FOR DESIGN-OPERATION CONTINUUM
METHODS OF CPSS

Taxonomies can be organized following one of the two
main classification approaches: enumerative or faceted [27].
Enumerative approaches utilize a fixed set of predefined
classes, which results in simple and easy to apply classification
schemes, but may not be appropriate for unexplored domains
where the knowledge base is still unstable or incomplete.
Faceted approaches, on the other hand, allow the classification
of entities based on multiple perspectives, which provides
a flexibility that is useful when developing taxonomies for
immature domains [32]. In this work, we followed a faceted
classification structure, since the Design-Operation Contin-
uum, particularly when applied to CPSs, is an emerging
domain that has not been fully defined yet. The final taxonomy
contains four facets which are orthogonal to each other, three
of which contain a single level of categories and the last
of which contains several levels of sub-categories. The full
taxonomy is shown in Figure 4.

A. Lifecycle stage

This facet represents the X-in-the-loop system execution
level, which is an aspect specific to CPSs development pro-

cesses. Requirements may be applicable to one or more of
these classes. In this work, we define only the four classes
which we identified as relevant for both of the analyzed case
studies. For CPSs, although we believe that this classification
is general, there could be cases where other levels might need
to be defined. For instance, to the knowledge of the authors,
there are companies where the MiL phase is split into several
sub-phases with different fidelity levels. A few years ago, there
was a step between SiL and HiL named Processor-in-the-Loop,
which had the goal of detecting potential inconsistencies that
the compiler could introduce [29]. However, to the best of
our knowledge, this step is not commonly used any longer.
Furthermore, as this phase was not used in the industrial case
studies used to build our taxonomy, we did not include it.

At the MiL stage, the CPS, including the software, hardware
and environment, is executed as a model by a model execution
software. This setup allows the early and easy detection of
failures in a controlled environment, but there are several
types of errors that cannot be observed at this level, e.g.,
communication errors.

At the SiL stage, the CPS software is run on a simulated
environment. The use of the real software allows the detection
of several errors that could not be detected in MiL, such as
those related with arithmetic precision. Nevertheless, not all
the software errors can be observed yet, since the processor
where the SiL runs is often different from the processor in the
real hardware.

At the HiL stage, the CPS software is deployed on the real
hardware, but within a controlled environment, such as a test
bench. Since physical hardware is involved, the CPS execution
must be real-time, which makes it much more costly than
the previous stages. This execution level allows the detection
of many new classes of errors, such as timing or hardware
interaction issues, which were not observable in previous
stages.

The Operation is the stage where systems are deployed in
real environments, possibly in production. We distinguish this
stage from HiL because usually intrusive testing can no longer
be performed at this level, since the CPS is already running
in real scenarios. Nevertheless, some non-intrusive validation
techniques such as Runtime Verification can still be performed.

B. Scope

We distinguish three different scope classes depending on
the applicability of the requirement. The significance of this
facet is that it enables the reuse of the requirements throughout
their applicable scope. Depending on the product strategy of
a company, the categorization we provide can be refined or
extended beyond the three classes we define. For example,
we could have a family of products that share some common
requirements, in which case a more fine-grained classification,
such as a feature-level scope, would be useful.

Organization refers to the requirements that will be reused
for the Design-Operation Continuum of all the products of
the organization. For example, this category may include



Design-Operation
Continuum

Requirements

Scope
Lifecycle

Stage
Domain

Subsystem

Organization

Product

Release

MiL

SiL

Operation

HiL

Application

Infrastructure

Deployment Monitoring Validation Integration

Specification Automation
Monitoring

Artifact
Storage

Deployable
Artifact

Device
Simulation

Artifact
Oracle

Preconditions

Postconditions

Features

Rollback

Availability

Resources

Communication 
Network

Provided
Variables

Configurable
Parameters

Data Format

Location

Type

Configuration

Resources

Environment

SUT

Tool

Validated
Property

Activation
Criteria

Required
Data

Verdict
Format

Release
Plan

Deployment
Plan

Validation
Plan

Repository

Actions

Tools

Test Input

Data

Format

Fig. 4. Taxonomy of Design-Operation Continuum Requirements for CPSs

requirements such as the deployment subsystem being able
to copy files to a target device running an SSH server.

Product refers to the requirements that are specific of a
particular product, which can therefore be reused across all
of its releases. For instance, this would include being able to
automatically launch the simulators used for the test execution
of an elevator dispatcher.

Release refers to the requirements specific to a particular
software release of a product, which we differentiate from
requirements applicable to all its releases. For instance, the
verification of an optional feature of a product belongs to this
category, as it is only applicable to some specific releases.

C. Domain

This facet categorizes the requirement by the domain in
which it belongs, which we divide into two sub-categories.
This categorization facilitates the assignment of the require-
ments within the organization between two different roles,
usually IT department and development team.

• Infrastructure. On the one hand, we identify the re-
quirements related with the Design-Operation Contin-
uum infrastructure itself, which address concerns such
as the monitoring of the infrastructure elements (e.g.,
deployment progress, status of the deployed components,
etc.). Within the organization, the roles responsible for
these requirements may not be directly related with the
development of CPS products, since they only concern
the development infrastructure.

• Application. On the other hand, we consider the re-
quirements related with the particular applications being
developed (i.e., the CPS), such as the monitoring of the
application itself (e.g., tracking the status of the elevators
based on CAN messages, etc.). These requirements must
be managed by the organizational roles working directly
on the CPS products.

D. Subsystem

This facet classifies a requirement by the Design-Operation
Continuum subsystem for which it is relevant. Our taxonomy
considers the subsystems of Deployment, Monitoring, Valida-
tion and Integration.

1) Deployment: Automating deployment means providing
the infrastructure that allows automated CI server to connect
to the designated production/validation machine and upload
executable and configuration files [21]. The continuous de-
ployment subsystem allows the automatic deployment of a
new software release in the virtual infrastructure for validation
purposes. Afterwards, the new release is deployed in the real
CPS in operation. In this subsystem, requirements that are
necessary to deploy artifacts at the MiL/SiL/HiL/Operation of
the system are specified. It is important to mention that in
this category, the requirements for the Operation stage are the
most demanding ones, since aspects such as heterogeneous
platforms or the status of the CPS before the deployment
need to be considered. Examples of requirements obtained
by our industrial case studies in this category include “The
deployment service shall provide support for ARMV7 boards”,



“The deployment service shall provide support for Linux and
Windows”, “The dispatcher down time during deployment
shall be less than 15 sec” or “The system shall allow
the deployment of artifacts by defining the allocation or by
defining the memory requirements”. Nowadays, releasing and
deploying new software versions is a time-consuming and
error-prone activity. Requirements in this category facilitate
the automation of the continuous deployment for new releases.
Two subcategories have been defined: Devices and Deployable
Artifacts. Note that this category is closely related to the
Continuous Integration category.

• Devices. Description. A CPS is composed by heteroge-
neous platforms. Automation of the deployment process
in CPSs is highly complex due to the number of hetero-
geneous platforms, models and interfaces necessary to
deploy software releases. The goal of this subcategory is
to collect requirements related to the variety and hetero-
geneity of hardware, software and communications for
which the deployment subsystem must provide support.
To gather requirements, an analysis of the platforms of
the CPSs shall be performed. These type of requirements
will have influence on the deployment architecture that
must be designed to provide support for all the devices
in which an automatic deploy will be performed. This
category also has impact on the techniques and methods
used for the deployment, e.g., container based deploy-
ment mechanisms that are valid for Linux based devices
are not for embedded bare metal devices. Subcategories.
There are different aspects to be specified: (1) Resources
of the devices. Hardware, software (e.g., installed OS)
and communication networks (e.g., CAN, Ethernet) that
the deployment subsystem is going to deal with. (2) Avail-
ability of the device during deployment (e.g., maximum
downtime of the device to perform the deploy).

• Deployable Artifacts. Description. A CPS is composed
of different software components distributed in heteroge-
neous devices. Deployable artifacts are “soft” components
which are part of the CPS, such as software of new
releases and configuration files. When using Design-
Operation Continuum methods, test oracles, monitors,
etc. can also be considered deployable artifacts. This
subcategory includes the specification of the features of
the artifacts to be deployed. To gather requirements, an
analysis of the software elements of the CPS shall be
performed. Requirements in this category define the de-
ployment rules, and are useful to ensure the pre and post
deployment conditions and to design the rollback mech-
anisms. Subcategories. There are different aspects to
be specified: (1) Deployment conditions: Pre-conditions
specify criteria to be met before starting the deploy-
ment, e.g., “the Elevator shall be out-of-service”. Post-
conditions are verified after the deployment is completed,
e.g., “the device reboots correctly” (2) Features of the
artifacts: hardware requirements, e.g., minimum CPU or
RAM requirements to execute the artefact, software re-

quirements, e.g., supported OS, communication interface
requirements, e.g., to be deployed in a device with access
to CAN or/and the allocation of the artifact, e.g., in which
device shall be deployed, (3) Rollback policy in case of
deployment failure, e.g., “The system shall support the
remote rollback to a previous version”.

2) Monitoring: Continuous monitoring is a key process in
Design-Operation Continuum. The goal of this process is to
extract data from a system so that it can be analyzed [17].
Monitoring in the deployment ensures that certain conditions
are met before and after deploying. In the validation process,
it provides data to the oracles so that they can provide a
verdict. Besides, it can also be useful to observe and record
the status of the infrastructure/application and later reproduce
real scenarios in simulation. Examples of requirements in
this category include “Monitoring data from MiL/SiL/HiL test
executions shall be available through logs”, “Monitors shall
provide connectors for CAN and Ethernet”, “Monitoring data
for the last day shall be persisted for further analysis”.

This category facilitates gathering monitoring requirements
at different lifecycle stages and levels of a CPS. Two subcat-
egories have been defined:

• Monitoring artifacts. Description. Continuous monitor-
ing can be done (1) at the infrastructure level, e.g.,
to control the CPU or memory usage or (2) at the
application level, to monitor, for instance, the position
and speed of an elevator. The goal of this subcategory is
to collect monitoring needs of both the infrastructure and
the application. To gather requirements, an analysis of the
application data lifecycle and the infrastructure features
(e.g., CPU usage) shall be performed. Requirements in
this subcategory have impact on the design of the mon-
itoring infrastructure. Subcategories. There are different
aspects to be specified: (1) Communication Network, the
source from which data must be collected, e.g., “the
monitor must gather the data from the CAN bus”, (2)
Data fields that will be provided, e.g., “the monitor must
provide the elevator positions”, (3) Format in which the
data will be provided by the monitor, e.g., “the monitor
will provide the current elevator position periodically
via MQTT”, and (4) Configurable parameters for the
monitor,e.g., “the update period for the elevator positions
may be configured with a value between 50 and 500
milliseconds”.

• Storage. Description. Storage of the monitored data is
essential to analyze and reproduce scenarios in simula-
tion. The storage strategy may be different depending
on the data being monitored. Some data could be more
critical and other may need more memory resources.
These requirements might include, for example, dumping
data on a local file, storing it on the edge of the network,
or sending it to a cloud database. The goal of Storage
subcategory is to describe how the data shall be stored in
order to be accessible from other services. To gather re-
quirements, an analysis of the application data usage shall



be performed. Requirements in this subcategory have im-
pact on the design of the storage strategy for the data that
is being monitored. Subcategories. There are different
aspects to be specified: (1) Location describes where the
data is to be persisted, e.g., a shared folder on a NAS or a
database endpoint, (2) Type relates to the database format,
either a relational database, an object oriented database or
even text file based, (3) Configuration includes attributes
such as duration of the saved data, backup replicas or
even availability aspects), (4) Resources specifies the type
of device used for persistence, as well as the disk space
size.

3) Validation: Testing, verification and validation activi-
ties are important in any kind of domain when developing
software. In the case of CPSs, this is particularly important
because most of the functionality of these systems is driven
by software. Furthermore, this functionality is often safety
or mission-critical, and a failure could lead to severe conse-
quences. Both industrial case studies used to build the taxon-
omy rely on simulation-based testing for the validation of soft-
ware. This technique allows raising the level of abstraction of
complex CPSs in which testing is performed [5]. It allows (1)
executing larger test suites and (2) building test oracles that can
automate verification and validation tasks [5]. Furthermore,
simulation-based testing allows modelling the environment in
which the CPS operates (e.g., in the case of the elevators, the
interaction of the elevators with passengers). Test, verification
and validation in Design-Operation Continuum methods for
CPSs needs to be practised from MiL phases through the
Operation. This is because failures that could not be observed
in previous stages can be identified in Operation. To this
end, oracles need to be re-used across all these test levels
to allow full automation. Examples of requirements obtained
by focusing on the industrial needs of the case studies in this
category include “The SUT shall be the relevant version of
the project-specific TCMS software”, “The input to the test
cases at the functional level shall be the stimuli triggering the
execution of a defined functionality”, “The oracles shall be
activated by a test input or by identifying a precondition in
operation”. Note that the elicited requirements in this category
shall provide the validation to be continuous and as automated
as possible. To this end, three sub-categories were identified:

• Simulation Artifact. Description. This category con-
cerns the artifacts that are necessary in order to enable
simulation-based testing, which we divide in three main
categories: Subcategories. (1) Environment refers to the
conditions under which the system runs, which are usu-
ally expressed in the form of simulator parameters (e.g.,
the number of floors in the building); (2) the SUT is
the component of the system that is being tested, which
must usually comply with certain interfaces in order to be
usable for simulation-based testing; and (3) the Tool is the
simulator used to execute the SUT (e.g., Simulink). An
example of a simulation artifact requirement for one of
the industrial case studies is “Test cases shall be executed

by using the Elevate simulator”.
• Test Input. Description. In order to drive the execution

of the selected test cases, test inputs must be injected
into the SUTs before or during their execution. We
divide the requirements for these test inputs into two
main categories. Subcategories. (1) The input data itself,
which is determined by the test cases that need to be
executed (e.g., must test having multiple passenger calls
at the same time), and (2) The format that is used to
define the test inputs (e.g., test inputs must be provided
in a XML file which follows a specific structure).

• Oracle. Description. Test oracles are components in
charge of emmitting a verdict (e.g., PASS/FAIL) based
on the conformance of the system towards a specified
property (e.g., for the Orona’s dispatching system, the
daily average waiting time per passenger shall be less than
30 seconds). Note that although monitoring the system is
required for the validation, we classify monitoring as a
separate subsystem, since monitoring is often performed
beyond the context of system validation. The purpose
of the oracles is to determine whether the observed
behaviour of the system is correct or incorrect, which
is usually done by verifying properties specified by a
domain expert. An example of an elicited requirement
for a test oracle is “test oracles shall be re-used across
all levels (i.e., MiL, SiL, HiL and Operation)”, or “test
oracles shall be capable of validating 100% of functional
requirements”. Subcategories. Four sub-categories were
identified based on the industrial case studies. (1) Val-
idated properties are system’s requirements themselves
(e.g., AWT < 30sec.); (2) activation criteria are pre-
conditions that trigger a test oracle to validate a specific
property; (3) required data refers to the monitoring data
needed by the oracle in order this to be able to check
certain property; (4) the verdict format refers to the
semantics provided by the verdict (e.g.,a quantitative
value (e.g., a quantitative value from 0 to 1, with 1
meaning full compliance and the value becoming closer
to 0 as the degree of compliance decreases).

4) Integration: Continuous Integration encompasses the
subsystems to automate the pipeline from the development
environment to the continuous deployment, monitoring, and
validation subsystems. Automation is achieved by chaining
different tasks together. The process involves software repos-
itories, usage of adequate build tools, automated testing en-
vironments and testing tools, and deployment to operation.
Examples of requirements in this category include “The de-
ployment specification shall provide support to link an artifact
to a device”, “A validation specification shall allow to specify
test cases at SiL and HiL level”, “The source code shall be
available from outside the company”. This category facilitates
gathering requirements related with the integration of all of
the subsystems (deployment, validation and monitoring) into
an automated pipeline. Two sub-categories have been defined:

• Specification. Description. A pipeline is a sequence of



actions that have to be performed from the initial build of
the project to the deployment of the real system. For this,
different aspects must be specified, such a as the valida-
tions to be performed. In this category, requirements re-
lated to the specification of the sequence to be automated
for the CI/CD scenario are provided. These requirements
will be used to select or develop the CI/CD tool and the
languages to specify the pipeline. Subcategories. There
are different aspects to be specified: (1) Release plan:
requirements for the language to specify the configuration
and build process of the software. (2) Deployment plan:
requirements for a language to specify all the steps related
to the deployment. (3) Validation plan. Requirements for
the language to specify the validation of the CPS, which
is a critical step in the continuous integration process.
This plan will describe the configuration, coordination
and management of all the verification artifacts. For
our case studies, for instance, we identified validation
plan requirements such as being able to execute multiple
instances of a system concurrently in order to compare
their behaviour. All of these plans could be integrated
into a single CI/CD plan. However, we have decided to
classify these specification languages separately because
different roles might be involved in the requirements
elicitation for each of them.

• Automation. Description. Implementation of continu-
ous integration or continuous deployment mechanisms
depends on a series of tools that facilitate functions
necessary to achieve fully automated operation. In this
category, requirements that should be considered for
automating the pipeline are defined.These requirements
will be used to select the CI/CD tool and define the
pipeline. Subcategories. There are different aspects to be
specified: (1) Repositories: requirements for the artifact
storage, which may be, for instance, a Git repository
hosted on the cloud. The deployment subsystem will pull
the artifacts from this repository when a deployment is
executed. Availability, security, storage capacity, etc are
defined in this category. (2) Actions: Actions that must
be executed in the CI/CD pipeline, such as automatically
initiating a deployment plan when a new commit is
pushed to the master branch of the repository. (3) Tools:
there might be requirements for using specific tools for
some tasks of the pipeline. For instance, and organization
might decide that the continuous integration process will
be automated with Jenkins.

V. REQUIREMENTS ELICITATION PROCESS

The requirements elicitation process we followed is iter-
ative and and is summarized in Figure 5. In a first phase,
requirements are elicited by considering the four categories.
The initially elicited requirements should be general to any
kind of CPS (or at least, any CPS that includes the categories
that we identified in the taxonomy). Every requirement belongs
to at least one of the sub-categories of each of the four facets
we extracted in the taxonomy (i.e., Subsystem, Scope, Domain

and Lifecycle). It is important to note that one requirement
might affect more than one of the sub-levels of each category
(e.g., both MiL and SiL).

Fig. 5. Requirements elicitation process overview

In a second phase, for each of the elicited requirements, the
industrial companies (i.e., Orona and Bombardier) instantiated
the proposed requirement to their domain and application (e.g.,
in the Orona’s use-case, there are some specific requirements
for adapting the Design-Operation Continuum methods for
the dispatcher, such as the simulator used for SiL). The tool
used to document requirements was ReqIf studio2, because
the researchers involved had previous experience with this
tool. A template with the facets of the taxonomy has been
developed in order to classify each of the requirements, which
includes (1) the general requirement, (2) how the requirement
is instantiated for the case of the Dispatching algorithm in
Orona, and (3) how the requirement is instantiated for the
TCMS of BT. A screenshot of the developed template along
with five elicited requirements is shown in Figure 6.

VI. RELATED WORK

White and Edwards [33] proposed a taxonomy (RE-
Views) to classify system views, subviews and their inter-
dependencies. The requirements are classified into operational
environment, system capabilities, system constraints, devel-
opment requirements, verification & validation requirements
and specification of system growth and change. The authors
also mention a classification of requirements specification
approaches, ranging from informal (natural language) to for-
mal (mathematical) approaches. A more thorough classifica-
tion of requirements specification techniques was given by
Roman [26] in terms of formal foundation, scope, level of
formality, degree of specialization, specialization area and
development method. More recently, Hasan et al. [11] provide
a classification of specification approaches for non-functional
requirements. Hughes et al. [12] provide a two dimensional
taxonomy for requirements analysis; one dimension corre-
sponds to the set of viewpoints of different stakeholders
(concerns) and the second dimension (frames) represents the
views of technical specialists. Examples of a concern and
a frame are functional requirements and behavioral model
respectively. Jarke et al. [14] describe an ontology of re-
quirements engineering of an information system by dividing

2https://reqif.academy/software/reqif-studio/



Fig. 6. Screenshot of a set of elicited requirements using our taxonomy

it into three ‘worlds’: subject world to represent properties
such as timeliness, accuracy; usage world to represent user
interface and functions; development world to represent de-
velopment time, cost and consistency with standardized pro-
cedures. Nuseibeh et al. [22] describe a viewpoint interaction
model to represent heterogeneity in requirements of software
systems. A viewpoint is composed of five slots: style (to show
representation knowledge), work plan (to show development
process knowledge), domain (to show area of system under
development), specification (to show system description) and
work record (to show development history).

Several different domain-specific requirement taxonomies
are also found in literature, e.g., for: safety requirements [7],
security requirements [8], trust-related requirements [30],
mobility-related requirements [10], usability requirements [3]
and web-based enterprise systems [9]. Recently, automatic re-
quirements categorization techniques have also been proposed.
Knauss et al. [16] present a tool-supported approach based on
Bayesian classifiers to identify security-relevant requirements.
Ott [23] uses a similar approach to automatically classify
and extract requirements with related information using text
classification algorithms.

We were also able to find some fragmented evidence on
requirements elicitation approaches for cyber-physical sys-
tems. Reza et al. [25] generated a set of quality attribute
scenarios using pre-defined templates to document key non-
functional requirements of a small spacecraft (CubeSat). The
templates had the following fields: source, stimulus, envi-
ronment, artifact, response, and response measure. Wiesner
et al. [34] present a gamified approach for eliciting stake-
holder requirements for a cabin video surveillance system of
an aircraft. Though lacking in details, the approach works
with storytelling and mutual agreement on requirements from
different stakeholders. Loucopoulus et al. [19] report on the e-
CORE (early Capability Oriented Requirements Engineering)
approach that utilizes modeling for enterprise capabilities,
goals, actors and information objects. This model-driven ap-
proach suggests different models such as capability model,
goal model, actor-dependency model and information model.

Differently to all these studies, the taxonomy that we pro-
pose is related to Design-Operation Continuum Engineering
methods in the context of CPSs. CPS is an emerging domain,
and there is no clear path for adapting Design-Operation Con-
tinuum practices to it, because the challenges are inherently
different from the domains discussed in the existing literature,

such as web development. This taxonomy is used to elicit the
requirements for Design-Operation Continuum Engineering
methods from two different industrial domains developing
CPSs. This sets an example for instantiating a taxonomy for
any other organization developing CPSs.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

This paper proposes a taxonomy for Design-Operation
Continuum methods applied to the context of CPSs, which
has been systematically developed by following the guidelines
proposed by Ralph [24]. To this end, two industrial case
studies have been used, interviews have been performed with
industrial experts, and we have been provided access to
internal documents from both companies. The last phase of
the taxonomy has been the validation with CPSs engineering
experts that were not involved in the development of the taxon-
omy. By using this taxonomy, requirements can be elicited in
two steps: Firstly, generic requirements are derived, which can
be applied to any CPSs. Secondly, these generic requirements
are instantiated for specific systems.

While the proposed taxonomy is applied to two different
case studies, the applicability of it needs further examina-
tion, both for similar and different contexts. The taxonomy
is based on fairly general categories, but we nevertheless
foresee revisions, particularly to cater for the domain-specific
requirements of other types of CPSs. In the future, we would
like to perform a more comprehensive taxonomy considering
(1) other sources from a systematic literature review and (2)
other industrial CPSs. On the other hand, the taxonomy could
also be extended to cover Design-Operation Continuum tasks
beyond the ones identified for our two case studies, such as
fault recovery automation and unforeseen situations detection.

ACKNOWLEDGMENT

This publication is part of a project that has received
funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 871319. Jon
Ayerdi, Aitor Arrieta and Goiuria Sagardui are part of the Soft-
ware and Systems Engineering research group of Mondragon
Unibertsitatea (IT1326-19), supported by the Department of
Education, Universities and Research of the Basque Country.

This work has been partially supported by the Basque
Government through the Elkartek program under the DIGITAL
project (Grant agreement no. KK/2019-00095).



REFERENCES

[1] Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.
[2] Sara Abbaspour Asadollah, Rafia Inam, and Hans Hansson. A survey

on testing for cyber physical system. In IFIP International Conference
on Testing Software and Systems, pages 194–207. Springer, 2015.

[3] H. Belani. Towards a usability requirements taxonomy for mobile aac
services. In Proceedings of the First International Workshop on Usability
and Accessibility Focused Requirements Engineering. IEEE Press, 2012.

[4] G. A. Bowen. Document analysis as a qualitative research method.
Qualitative research journal, 9(2):27, 2009.

[5] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bian-
culli. Testing the untestable: model testing of complex software-intensive
systems. In Proceedings of the 38th international conference on software
engineering companion, pages 789–792, 2016.

[6] CENELEC. 50128: Railway Application: Communications, Signaling
and Processing Systems, Software For Railway Control and Protection
Systems. In Standard Official Document. European Committee for
Electrotechnical Standardization, 2001.

[7] D. Firesmith. A taxonomy of safety-related requirements.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=29419,
2004. Online; accessed 27 Feb 2020.

[8] D. Firesmith. A taxonomy of security-related requirements.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30108,
2005. Online; accessed 27 Feb 2020.

[9] A. Ghazarian. Characterization of functional software requirements
space: The law of requirements taxonomic growth. In 2012 20th IEEE
International Requirements Engineering Conference (RE), 2012.

[10] S. Gopalakrishnan and G. Sindre. A revised taxonomy of mobility-
related requirements. In 2009 International Conference on Ultra Modern
Telecommunications Workshops, 2009.

[11] M. M. Hasan, P. Loucopoulos, and M. Nikolaidou. Classification
and qualitative analysis of non-functional requirements approaches. In
I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan, H. A. Proper, R. Schmidt,
and P. Soffer, editors, Enterprise, Business-Process and Information
Systems Modeling, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[12] K. J. Hughes, R. M. Rankin, and C. T. Sennett. Taxonomy for
requirements analysis. In Proceedings of IEEE International Conference
on Requirements Engineering, 1994.

[13] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella. Taxonomy of real faults in deep learning systems.
International Conference on Software Engineering (ICSE), 2020.

[14] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassilou.
Theories underlying requirements engineering: an overview of nature
at genesis. In [1993] Proceedings of the IEEE International Symposium
on Requirements Engineering, 1993.

[15] Siddhartha Kumar Khaitan and James D McCalley. Design techniques
and applications of cyberphysical systems: A survey. IEEE Systems
Journal, 9(2):350–365, 2014.

[16] E. Knauss, S. Houmb, K. Schneider, S. Islam, and J. Jürjens. Supporting
requirements engineers in recognising security issues. In D. Berry and
X. Franch, editors, Requirements Engineering: Foundation for Software
Quality, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[17] Richard Lai, S Mahmood, R Lai, and Y S Kim. Survey of component-
based software development. The Institution of Engineering and Tech-
nology, 3(May 2007):58–64, 2014.

[18] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[19] P. Loucopoulos, E. Kavakli, and N. Chechina. Requirements engineering
for cyber physical production systems. In P. Giorgini and B. Weber,
editors, Advanced Information Systems Engineering, pages 276–291,
Cham, 2019. Springer International Publishing.

[20] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruck-
mann. Test generation and test prioritization for simulink models
with dynamic behavior. IEEE Transactions on Software Engineering,
45(9):919–944, 2018.

[21] Phu H. Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane
Lavirotte, Jean Yves Tigli, and Arnor Solberg. A systematic mapping
study of deployment and orchestration approaches for iot. In IoTBDS
2019 - Proceedings of the 4th International Conference on Internet of
Things, Big Data and Security, pages 69–82. SciTePress, 2019.

[22] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification.
IEEE Transactions on Software Engineering, 20(10):760–773, 1994.

[23] D. Ott. Automatic requirement categorization of large natural language
specifications at mercedes-benz for review improvements. In Proceed-
ings of the 19th International Conference on Requirements Engineering:
Foundation for Software Quality, Berlin, Heidelberg, 2013. Springer-
Verlag.

[24] P. Ralph. Toward methodological guidelines for process theories and
taxonomies in software engineering. IEEE Transactions on Software
Engineering, 45(7):712–735, 2018.

[25] H. Reza, C. Korvald, J. Straub, J. Hubber, N. Alexander, and A. Chawla.
Toward requirements engineering of cyber-physical systems: Modeling
cubesat. In 2016 IEEE Aerospace Conference, 2016.

[26] G. C. Roman. A taxonomy of current issues in requirements engineering.
Computer, 18(4):14–23, 1985.

[27] J. Rowley and R. Hartley. Organizing knowledge: an introduction to
managing access to information. Routledge, 2017.

[28] C. B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering, 25(4):557–
572, 1999.

[29] Hesham Shokry and Mike Hinchey. Model-based verification of embed-
ded software. 2009.

[30] G. Sindre. Trust-related requirements: A taxonomy. In W. Wojtkowski,
W. G. Wojtkowski, J. Zupancic, G. Magyar, and G. Knapp, editors,
Advances in Information Systems Development, Boston, MA, 2007.
Springer US.

[31] Martin Törngren and Paul T Grogan. How to deal with the complexity
of future cyber-physical systems? Designs, 2(4):40, 2018.

[32] M. Usman, R. Britto, J. Börstler, and E. Mendes. Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy
development method. Information and Software Technology, 85:43–59,
2017.

[33] S. White and M. Edwards. A requirements taxonomy for specifying
complex systems. In Proceedings of First IEEE International Conference
on Engineering of Complex Computer Systems, 1995.

[34] S. Wiesner, J. B. Hauge, F. Haase, and K-D. Thoben. Supporting
the requirements elicitation process for cyber-physical product-service
systems through a gamified approach. In I. Nääs, O. Vendrametto,
J. Mendes R., R. F. Gonçalves, M. T. Silva, G. von Cieminski, and
D. Kiritsis, editors, Advances in Production Management Systems.
Initiatives for a Sustainable World, Cham, 2016. Springer International
Publishing.


