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Abstract

Work
ow-based systems are increasingly becomingmore complex and
dynamic. Besides the large sets of process variants to be managed,
process variants need to be context sensitive in order to accommodate
new user requirements and intrinsic complexity. �is paradigm shi�
forces us to defer decisions to run time where process variants must be
customized and executed based on a recognized context. However, few
e�orts have been focused on dynamic variability for process families.
�is dissertation proposes an approach for variant-rich work
ow-

based systems that can comprise context data while deferring process
con�guration to run time. Whereas existing early process variability
approaches, like Worklets, VxBPEL, or Provop handle run-time
recon�guration, ours lets us resolve variants at execution time
and supports multiple binding required for dynamic environments.
Finally, unlike the specialized recon�guration solutions for some
work
ow-based systems, our approach allows an automated decision
making, enabling di�erent run-time resolution strategies that intermix
constraint solving and feature models.
We achieve these results through a simple extension to BPMN

that adds primitives for process variability constructs. We show
that this is enough to e�ciently model process variability while
preserving separation of concerns. We implemented our approach in
the LateVa framework and evaluated it using both synthetic and real-
world scenarios. LateVa achieves a reasonable performance over run-
time resolution, which means that can facilitate practical adoption in
context-aware and variant-rich work
ow-based systems.
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Chapter 1

Introduction

�e past few years have seen a major change in so�ware engineering,
as so�ware developers need to reach new requirements and context
changes in a 
exible manner, as well as reduce design-time and costs
while maintaining the quality and delivery of the so�ware. As a result,
more andmore industries have adopted code reuse as ameans to speed
up their so�ware development process.
A well-established approach for employing with changing

requirements is So�ware Product Lines (SPLs). An SPL is a set
of so�ware products that are closely related (commonality) on a
particular market segment, but that exhibit signi�cantly di�erent
requirements (variability) [Cle02]. Over the last decade, a wide
range of variability-modeling and product line practices have been
proposed for maximizing reuse [SR13]. However, SPL solutions still
remain challenging in dynamic environments with frequent context
changes, which o�en require run-time adaptation. �is has prompted
the emergence of Dynamic So�ware Product Lines (DSPLs) that
leverage context awareness and dynamic variability to defer product
con�guration to run time [Hal08b].
DSPLs have been featured in many di�erent research areas, like

in work
ow-based systems [SR13], which form the core of this
dissertation. In this type of systems, a work
ow1 is a �rst-class language

1We use the terms work
ow and process interchangeably throughout this work.

1



construct which orchestrates a coordinated set of activities achieve a
common goal [Aal04a]. Work
ows can share variability characterized
by a number of common and variable activities, representing process
variants. Process variability deals with a set of similar processes
(process variants) and adjust them (process con�guration) to meet
custom requirements and context changes.
Process variability modeling and conceptualization have been

supported by peer-reviewed publications in the literature [Fan12,
Döh14, Ayo15]. A major concern for process variability in a
DSPL, though, is the context-aware con�guration of variants [Rei14].
Here, context information in
uences process con�guration, so the
system can dynamically con�gure variants on the basis of contextual
information and e�ectively deal with dynamic situations at run time.
Yet, context-aware dynamic process con�guration has found poorly
suited, leading to awide range of recon�guration approaches [Mur14d].
For example, Worklets [Ada06] enables re-binding of process

fragments guided by rules, and Provop [Hal10] enables context-aware
process con�guration at design-time, as well as recon�guration.
From service-based processes, systems like Discorso [Can08],
DyBPEL [Bar12], and MoRE-WS [Alf14] o�er similar recon�guration
capabilities, i.e., process variants are con�gured at build-time and
changed during execution. With processes requiring 
exibility to be
applied in dynamic settings, it seems that work
ow-based systems
are bound to require dynamic variability for context-aware and
variant-rich processes.
�is dissertation argues that, instead, we can provide a holistic

solution that not only captures process variability, but enables context-
aware process con�guration at run time. In particular, we show that
a simple extension to Business Process Model and Notation (BPMN),
which is interpreted by the LateVa (Late Variability for Context-
Aware Smart Work
ows) engine, can enhance 
exibility. �e resulting
framework has the following characteristics:

2



1. It supports separation of concerns by representing process
variability in separated models (base model, fragment, and
variability model), enabling reuse during process variability
modeling, and o�ering easier development of process families.

2. It enables an automated run-time selection of fragments based
on contextual information. Indeed, our approach yields
process variants usingmultiple binding and subsequently resolves
dynamic variation points at run time.

3. It achieves reasonable performance at fragment binding (around
14 ms). Indeed, it is able to select suitable fragments for
variation points with signi�cantly less computation time than the
status quo, e.g., around 300 ms for process model and instance
migration in [Bar12] and for model operations in [Alf14].

4. It is highly amenable for large-scale process families, allowing to
bind alternative variants at run time.

We implemented our approach in the LateVa framework,
including LateVa modeler as the process variability foundation,
and LateVa engine for run-time variability processing. We evaluated
our framework using both real user applications and traditional
benchmarks for quantitative analysis. Our implementation provides
reasonable performance and scalability at fragment binding, as well as
the �rst platform to let developers compose and execute context-aware
process variants at run time. However, some limitations remain in the
evaluation such as a limited support for context data types and the use
of real-life work
ows.

�esis statement: A process variability model based on contextual
information can e�ciently support process con�guration at run time.

3



In the remainder of this chapter, we explain some of themotivations
for context-aware dynamic con�guration of process variants and
highlight the main contributions.

1.1 Problem Statement

Today’s work
ow-based systems need to tailor reuse practices, as
well as o�er greater 
exibility to deal with large number of variants,
context changes, and intrinsic complexity. While approaches like
C-EPC [Ros07] and Worklets [Ada06] aimed to capture fairly
process variability and adaptation, researchers and practitioners have
developed more and more specialized systems for new application
domains. Recent examples include Provop [Hal10], Template &
Rules [Kum12] and vBPMN [Döh13] for business processes, VxBPEL
[Kon09], DyBPEL [Bar12] and MoRE-WS [Alf14] for service-based
processes, and others.
Although such specializedwork
ow systems seem like a natural way

to scope down the challenging problems in the dynamic environment
such as run-time adaptation, they also come with several drawbacks:

1. Lack of reuse assistance: Many variability-aware work
ow
systems need to solve the same underlying problems, such as
process reuse. For example, a process developer would naturally
try to reuse process fragments from similar process structures.
Having similar process variants, many approaches aggregate all
variants in a con�gurable process; however, reuse need to be
addressed, separating commonality and variability description, in
order to generalize it as the preferred work practice.

2. Context awareness: In the presence of context information,
process con�guration should be context-aware to be able to
customize variants based on 
uctuating context resources.

4



However, in reality, the e�orts have been limited and thus context-
aware process con�guration still remains challenging.

3. Run-time decision making: Run-time decision making is just in
its infancy partially because most process variability approaches
assume that process variant customization at design-time is
su�cient. In such systems, adaptation and recon�guration are
commonly adopted which involve a more intrusive supervision
and enforcement compared to run-time variability.

4. Scalability concerns: Large-scale process families require an
e�cient engine to con�gure variants in a reasonable amount of
time. Even for run-time approaches, scalability must be folded to
achieve a better performance.

Because of these limitations, a uni�ed dynamic variability approach
for work
ow systems would have signi�cant bene�ts in terms of

exibility, especially for context-aware and variant-rich settings.

1.2 Objectives and Contributions

To address this problem, we introduce a new framework, called
LateVa - Late Variability for Context-aware Smart Work
ows, that
allows for con�guring process variants at run time. �e insight
behind LateVa is that although various approaches support schemes
and process 
exibility mechanisms (e.g., adaptation, recon�guration),
they all lack an e�cient context-aware run-time variability for process
variants. With run-time variability capabilities and multiple binding
support, all the decisions for variant con�guration can be deferred to
execution phase, capturing the context data in each placeholder activity
resolution. LateVa o�ers such functionality for variant-rich work
ow-
based systems, in a manner that is e�cient and automated.
In particular, we use LateVa to model and execute variability. In the

modeling phase, LateVa follows the “design by reuse” approach using

5



fragments as �rst-class entities, but at run time, it adds new properties,
such as context awareness, multiple binding support and automated
decision making, that current approaches lack (see Chapter 3). We
discuss the main contributions below.

Variability and Context Management. �is �rst contribution
enables process variability and context modeling in detached models.
By working on process variability with a variability model, we aim
at de�ning a process family and at identifying commonalities and
variabilities along process variants. �is model also permits to de�ne
constraints among variants and context related features. Such context
information is represented in a context model, which ultimately
determines the context data needed. Also, at the context gathering
process, this model is used to determine which context features in the
variability model are mapped to the context variables retrieved from
underlying data services.

Run-time Variability and Multiple Binding. As the second
contribution, the LateVa engine defers process con�guration to run
time. It exposes base models as services, which can be invoked and
started for process variant execution and con�guration. Since variant
con�guration is context sensitive, the engine is capable of collecting,
interpreting and applying contextual information to automatically
decide which of the available fragment options are most appropriate.
It also supports multiple binding to change con�guration behavior,
i.e., the engine can resolve variability using both startup time and pure
run time binding times for DSPLs.

�is exploration aside, we also show empirically that we can
implement some of the specialized work
ow-based systems in use
today, as well as large-scale process variants, using LateVa.

6



1.3 Publications

Contributions entail publications. �e presented dissertation lead
to the following publications, grouped by topic and chronologically
according to the year in which they were published:

On approaches for enabling process 
exibility:

• [Mur13a]: Flexible Processes and ProcessMining: A Brief Survey.
IBM Technical Report (2013)

• [Mur14d]: Process Flexibility in Service Orchestration:
A Systematic Literature Survey. International Journal of
Cooperative Information Systems. (2014)

On the framework for context-aware dynamic con�guration of
process variants:

• [Mur13b]: Process Variability through Automated Late Selection
of Fragments. In: VarIS workshop, CAiSE. (2013)

• [Mur14b]: Context-aware Staged Con�guration of Process
Variants@Runtime. In: International Conference on Advanced
Information Systems Engineering (CAiSE). (2014)

• [Mur15a]: Dynamic Variability Support in Work
ow-based
Systems: An Evaluation of the LateVa Framework. In:
ACM/SIGAPPSymposiumOnAppliedComputing (SAC). (2015)

• [Mur15b]: Runtime Variability for Context-aware Smart
Work
ows. IEEE So�ware. (2015)
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On themulti-perspectives support for process variability:

• [Mur13c]: Multi-perspective Process Variability: A Case for
Smart Green Buildings. In: IEEE International Conference on
Service Oriented Computing and Applications (SOCA). (2013)

• [Mur14c]: On the Support of Multi-perspective Process Models
Variability for Smart Environments. In: International Conference
on Model-Driven Engineering and So�ware Development
(MODELSWARD). (2014)

Oncontextvariability for context-awaredynamiccon�guration:

• [Mur14a]: Context Variability Modeling for Runtime
Con�guration of Service-based Dynamic So�ware Product
Lines. In: DSPL workshop, SPLC. (2014)

On the abstractions for process selection and con�guration:

• [Mur14e]: DRain: An Engine for Quality-of-Result driven
Process-based Data Analytics. In: International Conference on
Business Process Management (BPM). (2014)

Other publications:

• [Mur12b]: Towards a Model-based Hybrid Service Composition
forDynamic Environments . In: EuropeanConference on Service
Computing and Cloud Computing (ECSOC PhD Symposium).
(2012)

• [Mur12a]: Model-driven and Planning for Service Composition
in Dynamic Heterogeneous Environments. In: 6th Advanced
School on Service Oriented Computing (SummerSOCPoster and
PhD session). (2012)
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1.4 ResearchMethodology

�is dissertation has been accomplished by following the guidelines for
performing research in information systems as described by Vaishnavi
and Kuechler2. �is research methodology consists of �ve main steps:

1. Awareness of the problem: �e awareness of the problem
provides the opportunity to unlock new �ndings. In our case, we
identi�ed the problem to resolve and stated it clearly (Chapter 1).

2. Suggestion: �e second step includes a comprehensive state-
of-the-art to extract potential open research issues and thus
suggests a solution to the problem stated based of the formulated
statement. �e improvements of that solution need to be
compared with already existing solutions on the �eld. We
considered the following outputs here: a state-of-the-art review
and a tentative design of the solution (Chapters 2, 3, and 4).

3. Solution design and development: Tentative design is further
developed and improved in this phase. �e novelty is primarily
in the design but can be applied to implementation. Speci�cally,
we designed themain building blocks of LateVa and implemented
associated modules (Chapters 5 and 6).

4. Evaluation: �e evaluation step validates the solution in real and
synthetic scenarios to analyze the performance, feasibility, and
scalability of the approach. In our case, we tested LateVa using
two examples and a quantitative analysis (Chapter 7).

5. Conclusion: Finally, this phase analyzes the results of the speci�c
research e�ort in order to obtain conclusions, limitations, and
delimitate areas for further research (Chapter 8).

2http://bit.ly/1xewPx3
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1. Awareness 
of the 

problem
2. Suggestion 4. Evaluation 5. Conclusion3. 

Development

Outputs

Process
steps

PROPOSAL TENTATIVE DESIGN ARTIFACTS PERFORMANCE MEASURES RESULTS

Feedback by experimentation 
and experts

Figure 1.1: Research methodology.

1.5 Outline

�is dissertation is organized as follows: Chapters 2 and 3 position
the research by reviewing current literature on process variability
approaches. Chapter 4 introduces the LateVa framework and its
main building blocks to enable context-aware con�guration of process
variants at run time. Chapter 5 covers the modeling phase for
implementing di�erent models required on LateVa. Chapter 6
leverages these models and introduces the LateVa engine to support
context awareness and dynamic con�guration at run time. Chapter 7
discusses the applicability of LateVa using experimental scenarios, as
well as its limitations and possible extensions. Finally, we conclude and
discuss potential areas for future work in Chapter 8.
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“When you’re young, you’re not afraid of what comes next. You’re
excited by it.”
-Dave Grohl

Part I

State of the Art
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Chapter 2

Background and Context

�is chapter introduces the fundamental background necessary to
understand the dissertation as a whole. A more speci�c attention
concerns the notion of process variability and DSPLs (dynamic
variability), which are explored in detail in Chapter 3.

Structureof the chapter. �is chapter �rst introduces the notion of
Business Process Management (BPM) (Section 2.1), including process
life-cycle, work
ow-based systems, and process 
exibility aspects with
a special emphasis on process variability. �en, SPLs and DSPLs
are characterized (Section 2.2). Finally, the thesis context is exposed
(Section 2.3), providing some insights on themotivation and objectives
which led to the development of this work.

2.1 Business Process Management

BPM is concerned with the supervisory of business processes
including concepts, methods, and techniques to support the design,
con�guration, enactment, and evaluation within the BPM life-cycle
[Wes12, Dum13]. A business process is described by a process model
(or schema) to de�ne how information (control-
ow) and activities
are passed from one participant to another using a Business Process
Modeling Language (BPML). �e Work
ow Management Coalition
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4. Evaluation 2. 
Configuration

1. Design and 
Analysis

3. Enactment

| Design - Business process 
identification, and modeling. 

Analysis -  Validation, simulation, 
and verification.

| System selection, 
implementation, test, and 

deployment.

| Operation, monitoring, and 
maintenance.

| Process mining, and business 
activity monitoring..

Figure 2.1: Process life-cycle adopted from [Wes12].

(WfMC)1 de�nes a process as “a formalized view of a business process,
represented as a coordinated (parallel and/or serial) set of process
activities that are connected in order to achieve a common goal”. Such
processes are regularly handled through the completion of repetitive
and routine activities.

2.1.1 Process Life-cycle

�e process life-cycle is a continuous loop consisting of four phases
[Wes12], see Figure 2.1. �e life-cycle begins with process design and
analysis, where processes are identi�ed, validated, simulated, veri�ed,
and �nally represented as process models. During the con�guration
stage, process models are developed using a BPML [Kop08, Mil10,
Pic12] (e.g., BPMN, Business Process Execution Language (BPEL),
Petri Nets, UML Activity Diagrams or Event-driven Process Chains
(EPCs)), and tested to ensure their correctness prior to deployment.
�e aim of the enactment phase is to execute such models within a
work
ow execution engine according to the instructions issued by the
implemented process schemes. �e process monitoring task leverages

1http://www.wfmc.org
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information about the current execution of process instances in order
to evaluate them. �e results from the evaluation phase are used to
close the process life-cycle and continuously improve processes, e.g.,
processes can be evaluated through process mining [Gun08].

2.1.2 Work
ow-based Systems

Awork
ow-based system is the major paradigm in use in today’s BPM
practice [Aal13].2 Concretely, a work
ow-based system refers to a
so�ware system that helps to de�ne, execute, and monitor a given
sequence of tasks, arranged as work
ows [Aal04b]. �ose work
ows
(or pipelines) are normally well-structured, involving so�ware systems
and people, and executed in a controlled environment where their
structure and behavior is not regularly updated. However, in recent
years, increased process 
exibility has been a primary concern for the
implementation of work
ow-based systems [Web09].

Process 
exibility

Process 
exibility has been researched formany years [Aal13]. �e term
process 
exibility has been de�ned in various ways by di�erent authors
[Sad01,Reg05,Reg06b,Reg07,Pes08]. In this dissertation, we adopt the
de�nition proposed by Sadiq et al. [Sad01] to consider process 
exibility
as “the ability of the work
ow process to execute on the basis of a loosely,
or partially speci�ed model, where the full speci�cation of the model is
made at run time, and may be unique to each instance”.
Starting from these de�nitions, a number of taxonomies are also

present in the literature to categorize di�erent 
exibility needs [Hei99,
Reg06a, Sch08, Bal10, Rei12]. For instance, Schonenberg et al. [Sch08]
revisited the concept of 
exibility by Heinl et al. [Hei99] and extended
the original taxonomy. �e authors proposed a taxonomy description
of four distinct approaches that can be taken to enhance 
exibility of a

2A work
ow is a part of BPM; conversely BPM is a superset of work
ow.
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Table 2.1: Comparison of process 
exibility taxonomies.
Heinl et al. [Hei99] Schonenberg et al. [Sch08] Reichert andWeber [Rei12]
Flexibility by Selection Flexibility by Design Variability

– Flexibility by Deviation Planned Adaptation
Instance Adaptation Flexibility by (Momentary) Change Unplanned Adaptation
Type Adaptation Flexibility by (Evolutionary) Change Evolution
Late Modeling Flexibility by Underspeci�cation Looseness

particular process. If we compare the taxonomy of Schonenberg et al.
vs. Heinl et al., we can conclude that one 
exibility type is abandoned
and another is added, as shown in Table 2.1.
Reichert and Weber [Rei12] proposed an analogous classi�cation

to de�ne 
exible processes according to four major 
exibility needs,
namely: variability, adaptation, evolution, and looseness. �is
taxonomy adopts comparable terms to those described in Schonenberg
et al.’s taxonomy as follows (see Table 2.1):

• Variability: handles di�erent process variants (similar processes)
depending on the particular process context. Process variability
is further discussed in Section 2.1.3.

• Adaptation: represents the ability to deal with changes and
consequently adapt process behavior and its structure at run time.
Two types of drivers may trigger process adaptation:

– Exceptions: planned adaptations or exception handling
mechanisms that are pursued depending on the type of
the foreseen exception detected during process execution.
Exception handling patterns can be found at [Rus06].

– Special situations: unplanned adaption mechanisms that
require structural adaptations of a single process instance.
Such structural changes can be carried out by change patterns
(i.e., high-level change operations, e.g., inserting a process
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fragment between two edges), or change primitives (e.g., add
node, add edge, etc.). Change patterns are discussed at
[Web08].

• Evolution: represents the ability of process instances to change
as the corresponding process schema evolves. Here, the
assumption is that a process model will a�ect new and running
instances, migrating only running compliant instances to the new
speci�cation, such as in ADEPT2 [Rei09]. More patterns and
examples are thoroughly discussed in [Rei12, Sba14].

• Looseness: relates to knowledge-intensive processes which keep
parts of the process unspeci�ed during build-time to deal with,
for instance, unpredictability, non-repeatability, and emergence
[Kem11]. �is means that future course of action depends on
knowledge acquired through each activity execution. To achieve
such loosely-speci�ed models four di�erent decision deferral
patterns are distinguished:

– Late selection: the selection of the actual content for the
placeholder activity is deferred to run time. �is pattern can
be considered as a synonym for “late binding” or “dynamic
binding” from the Service-oriented Computing (SOC) such
as in CEVICHE [Her10]. More approaches have been
evaluated in [Mur14d].

– Late modeling: the modeling of the placeholder content is
deferred to run time. �erefore, it goes one step beyond than
late selection, due to the run-time modeling nature. Pockets
of Flexibility approach [Sad01] �ts into this category.

– Late composition: it defers work
ow creation to run time.
Over time the initial plan is re�ned by incorporating new
knowledge from the execution phase. Summaries of current
approaches can be found at [Mur14d].
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– Ad-hoc composition: this method enables on-the-
y
composition of process fragments from the process
repository, evolving instances incrementally during run
time by executing activities in an ad-hoc manner. Examples
are given in [Rei14].

In the following, we further explain the details of process variability,
a topic which plays a signi�cant role in this dissertation.

2.1.3 Process Variability

Process variability deals with process variants that share common parts
of a core process (base model) whereas concrete parts change from
variant to variant. For instance, as shown in Figure 2.2, four process
variants conform to the same process family, where {A,C ,D} activities
are common to all process variants {Pv1, Pv2, Pv3, Pv4}. Each variant is
valid on a particular context, i.e., the con�guration of a process variant
depends on contextual information or user requirements.
A con�gurable process model or a base model is customized for

each process context, where a con�guration can be selected from a list
of available choices (fragments), a�er which it is no longer possible to
change. �is selection is called binding, and the stage in the life-cycle
at which binding occurs is called binding time, including con�guration
time, deployment time, startup time, and pure run time [Cap14a]. �e
latter is homonymous with the “late selection” pattern.
Overall, considering the process life-cycle of Section 2.1.1, four

major requirements for process variability can be derived from [Rei14]:

• Modeling: “Design by reuse” should be promoted to create
new consistent variants by taking over existing variants. To
correctly represent variability, three main aspects need to be
determined [Tor12]: (i) what parts of a processmodelmay change,
(ii) what alternatives exist in/for each variation point, and (iii)
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Figure 2.2: Process variability.

conditions that make these alternatives being selected. For that
purpose, two principal modeling bents have been raised (see
Figure 2.2): (i) negative variability (also referred to as variability
by restriction [LR13], behavioral variability [Tor12], or single-
element based variability [Döh14]) where a con�gurable process
model gathers all process variants in a single reference process
model, and (ii) positive variability (or variability by extension,
structural variability, or fragment-based reuse approach) where
process variability is modeled using separated models such as
base models for identifying commonalities and fragment for
individualities. Both methods allow for removing redundancies
by representing variants’ commonalities only once; however,
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the latter manages variability independently clearly reducing its
impact over commonalities, as well as the complexity ofmanaging
large sets of process variants.

• Variant con�guration: �e process variant con�guration may
involve di�erent drivers for customization (e.g., contextual
information, user requirements, etc.). Such con�guration can be
captured by using di�erent decision support techniques such as
Feature Models (FM), decision tables, and questionnaire models
[LR13]. �e �rst two techniques provide abstractions to allow the
system and/or user-based reasoning in terms of domain concepts
rather the process modeling elements. �e latter o�ers guidance
to guide users in making the right decision, for instance in terms
of recommendations. Despite the technique used, context-aware
automated process con�guration is enforced in dynamic settings
where process context is only available at run time [Rei14].

• Execution: During execution, the work
ow-based system should
allow for dynamic variability by deferring variant binding
(includes startup time and pure run time bindings, see Figure 2.2).

• Maintenance and optimization: All recon�guration and run-
time changes should be traced to ensure their correct application
and enforcement to running instances.

As shown in Figure 2.2, process variability can be realized from
di�erent process variability perspectives. In [Ayo15], the authors
examined process variability from �ve di�erent process perspectives:

• Functional perspective: takes activities as �rst class entities
(atomic or complex), so variability is centered on how activities
change from variant to variant.

• Behavioral perspective: focuses on control-
ow variability, i.e.,
how di�erent control connectors (e.g., gateways) and control
edges (e.g., arrows) can change among variants.
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• Organizational perspective: represents the di�erent
stakeholders or actors that are in charge of executing process
variants.

• Informational perspective: covers data 
ow variability, i.e.,
process variability is described based on how data and data 
ow
are passed during execution.

• Temporal perspective: describes the temporal constraints that
may restrict the scheduling and execution of activities (e.g., the
time of an activity to start or �nish, etc.).

• Operational perspective: focuses on the implementation of
atomic process activities and deals with variability of di�erent
services that can be bound to a particular activity.

In this dissertation, we take the functional perspective and analyze
how FMs from So�ware Product Line Engineering (SPLE) can be
employed as a decision support technique to defer process variability
to run time.

2.2 Software Product Lines

In so�ware development, developing from scratch is a tedious and
costly task. Instead, so�ware reuse is adopted in industries to realize
improvements in time to market, cost, and quality, among others.
SPLE is a so�ware development approach that employs reusable

so�ware units (also referred to as core assets) for creating so�ware
[Cle02]. A SPL refers to a set of products that are closely
related (commonality) but exhibit di�erences in their requirements
(variability). Concretely, the main characteristic of a SPL is the shi�
from a single system point-of-view to a set of related so�ware products
where commonality and variability are exploited.
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Figure 2.3: SPL dual life-cycle adopted from [Hal08b].

2.2.1 SPL Dual Life-cycle and Variability Management

One of the SPLE principles is its dual life-cycle, proposed by
Hallsteinsen et al. [Hal08b]. As shown in Figure 2.3, this life-cycle
consists of two principal phases:

• Domain engineering: is the responsible for the development of
reusable core assets, i.e., the architecture of a SPL is built here.

• Application engineering: customizes core assets for developing
new products according to application speci�c requirements, i.e.,
product realization is achieved here.

Another key aspect of the SPLE is the variability management.
Variability management deals with so�ware models across di�erent
stages of the product life-cycle in order to produce a family of
con�gurations [Sin07]. Such variability is commonly described in
terms of variation points and variants. �e former identi�es so�ware
parts that contain variability and in which variant binding occurs. �e
latter, in turn, refers to particular instances of realizing variability.
Variability modeling is intended to capture the essence of how one

product is similar, but still di�erent from another. It allows to specify
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common and variable parts of products using a variability modeling
language [Cza12, Ber12]. In essence, there are two principal ways to
represent variability [Met14]: integrated variability - where dedicated
or specialized variability constructs (e.g., stereotypes) are introduced
into a existing modeling language, and orthogonal variability - where
variability is represented in a dedicated and separated model.
For integrated variability, since the introduction of Feature-

Oriented Domain Analysis (FODA) [Kan90], over 40 di�erent FM
dialects have been proposed [Ben10], grouped into three main
categories: (i) basic feature models o�ering mandatory, alternative and
“or” features, as well as “requires” and “excludes” cross-tree constraints,
(ii) cardinality-based feature models o�ering UML-lie multiplicities
for features [m..n], and (iii) extended feature models to add arbitrary
feature attributes (e.g., integer values) [Kar14]. Orthogonal variability
also comprises some reference languages such as the OMG standard
proposal called Common Variability Language (CVL) [Hau12].
SPLs have been successfully adopted to improve the process of

so�ware design, development, and maintenance, developing a wide
range of product lines in a number of di�erent domains such as
embedded systems [Bos12] and service-oriented systems [Cha07a,
Lee12]. Relevant �ndings on variability modeling adoption on
industries are reported in [Ber13,Vil14]. However, in traditional SPLs,
once the product is created, it turns di�cult to make changes on it
without stopping the system. Consequently, the execution must be
interrupted in order to provide the system with new features and/or
di�erent behavior (e.g., adding or removing variants), thereby creating
a new product, while it could be quite similar to the previous one,
results into a completely di�erent product.

2.2.2 Dynamic Software Product Lines

Product line approaches remain challenging in dynamic environments
with frequent changes such as context-aware or ubiquitous systems,
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o�en requiring run-time adaptation. �ese new requirements have
prompted the emergence of DSPL [Hal08b,Cet08,Mor08] that leverage
context awareness and dynamic variability (also referred to as run-time
variability [Cap11]) to defer product con�guration to run time.
In a DSPL, a con�gurable product is capable of dynamically (re-

)bind variation points at run time by considering context information.
Once changes are detected (e.g., depending on external sensors or new
user requirements) the systemmakes decision on which features of the
con�gurable product must be activated or deactivated, and executed
the decision by using run-time binding. Capilla et al. [Cap14a] de�ne
the following requirements for DSPL realization:

1. Run-time variability support and management: a DSPL
must support run-time con�guration of products by
activating/deactivating features, as well changes in the
structural variability by recon�guration mechanisms (e.g.,
adding/removing features) [Bar15].

2. Multiple and dynamic binding: a DSPL may change from
context to context, so the system should adapt accordingly
providing multiple binding support. �is will allow for staged-
con�guration [Cza04] where choices are resolved in di�erent
binding times, e.g., using di�erent variability transformation
strategies [Cet09b].

3. Context-awareness and self-adaptation for autonomic
behavior: contextual information should be exploited to
dynamically adapt variants and/or select new alternatives
autonomously based on the context conditions.

Starting from 2008, DSPLs have served as baseline for di�erent
research initiatives [Mor09, Par09, Cet10]. However, to the best of
our knowledge, limited research has evaluated the usage of DSPLs for
process families.
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Process 
variability

Dynamic Software
Product Lines

Context-aware Computing

Service-oriented Computing

Figure 2.4: �esis context - Venn diagram.

2.3 Thesis Context

�e association between BPM and SPLs has been documented in
[SR13, Val13a] (see Table 2.2). Bearing in mind such mapping, this
dissertation combines aspects from process variability and DSPLs to
enable context-aware con�guration of process variants at run time.
Apart from process variability and DSPLs, we also adopt some notions
from context-aware computing and from SOC (see Figure 2.4). �e
former enables the annotation of process variants with contextual
information and the latter exposes core processes and fragments
as services, while enabling the system to actively in
uence process
con�guration.
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Chapter 3

State of the Art

�e term DSPL was introduced in 2008 by Hallsteinsein et al.
[Hal08b] to expose run-time variability and self-adaptive properties for
traditional SPLs. Since that date, DSPLs have been applied in various
domains such as mobile systems [Gin10], embedded systems [Bos12],
and service-based systems [Lee12].
In this dissertation, we examine the convergence between DSPLs

and process variability to enable a seamless management of process
variants at run time. To this end, the following chapter positions the
research by reviewing the existing relevant literature in variability-
aware work
ow-based systems, with a greater emphasis on approaches
supporting run-time variability. �is chapter presents and expands
upon work published in [Mur13a,Mur14d].

Structure of the chapter. �is chapter begins with presenting the
existing surveys on design-time process variability (Section 3.1.1).
�ese surveys merely report the existing support for process variability
modeling, and thus serve as a means to motivate the need for dynamic
variability management. Although some of the criteria of these
surveys can be used for run-time analysis, we present additional
criteria (Section 3.1.2) for comparing approaches supporting dynamic
variability, and provide a summary of the state-of-the-art (Section 3.2).
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3.1 Variability on Work
ow-based Systems: A Reality
Check

In this section, we survey di�erent studies that compare and analyze
process variability approaches. We extract meaningful conclusions and
insights from the comparative studies, and at the same time collate
primary approaches dealing with run-time variability.

Table 3.1: Surveys on design-time process variability.
Year Paper Title
2005 Recker et al. [Rec05] On the User Perception of Con�gurable Reference Process

Models
2008 Nurcan [Nur08] A Survey on the Flexibility Requirements Related to Business

Processes and Modeling Artifacts
2010 Kapuruge et al. [Kap10] Support for Business Process Flexibility in Service

Compositions: An Evaluative Survey
2010 Burkhart et al. [Bur10] Flexible Business Processes-Evaluation of Current

Approaches
2010 Aiello et al. [Aie10] Requirements and Tools for Variability Management
2012 Dijkmana et al. [Dij12] Managing Large Collections of Business Process Models -

Current Techniques and Challenges
2012 Fancinato et al. [Fan12] A Survey on Reuse in the Business Process Management

Domain
2012 Torres et al. [Tor12] A Qualitative Comparison of Approaches Supporting

Business Process Variability
2012 Ayora et al. [Ayo12b] Towards Run-Time Flexibility for Process Families: Open

Issues and Research Challenges
2013 Grambow et al. [Gra13] Challenges of Applying Adaptive Processes to Enable

Variability in Sustainability Data Collection
2013 Valença et al [Val13b] A Systematic Mapping Study on Business Process Variability
2013 La Rosa et al. [LR13] Business Process Variability Modeling: A Survey
2014 Döhring et al. [Döh14] Con�guration vs. Adaptation for Business Process Variant

Maintenance: An Empirical Study
2014 Reichert et al. [Rei14] Lifecycle Management of Business Process Variants
2014 Mechrez et al. [Mec14] Modeling Design-Time Variability in Business Processes:

Existing Support and De�ciencies
2015 Ayora et al. [Ayo15] VIVACE: A Framework for the Systematic Evaluation of

Variability Support in Process-Aware Information Systems
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3.1.1 Design-time Variability Surveys

Process variability approaches have been studied for decades, and are
now experiencing a resurgence of interest. For instance, the VIVACE
evaluation framework [Ayo15] has been proposed for comparing
process variability approaches. Some of these approaches have been
analyzed in di�erent surveys (see Table 3.1) in an attempt to compare
the existing support for reuse and design-time process variability. We
have analyzed the results and drawn conclusions as to what has worked
and what can be improved. �e �ndings are summarized below.

Process variability modeling. Process variability modeling started
to impact in 2005, with a major rise in recent years [Dij12]. For
instance, in 2005, the PESOA project [Puh05] was carried out to
propose an approach for the development and customization of
process-oriented so�ware families and transferred to several languages
(e.g., UML Activity Diagrams, BPMN, UML State Machines, and
Matlab/Simulink). Popular BPML includes Event-driven Process
Chains (EPCs) and BPMN [Val13b]; however, although some
extensions have been proposed in the literature (e.g., C-EPC [Ros07],
C-YAWL [Got08], vBPMN [Döh11], VxBPEL [Kon09]) there is still
not a standard extension for process variability [Ayo15]. Similarly,
[Ayo15] does not show a clear evidence in favor of a process variability
technique (negative or positive variability modeling). In [LR13], only
5 out of 19 approaches support positive variability, so there is space
to balance. �e authors also state that positive variability gives more
freedom to developers so they can add or modify parts of the model.
From cognitive psychology perspective, positive variability might also
impose a lower mental e�ort [Tor12]. In [Döh14], for each of the
performancemeasures of success rate, user contentment and execution
speed, vBPMN (positive variability) performs signi�cantly better than
C-YAWL (negative variability). However, correctness can be limited
by using positive variability modeling [LR13]. Overall, we conclude

28



that additional research is needed to determine how each variability
modeling technique works in di�erent settings, e.g., with large-scale
process variants.

Multi-perspectives process variability. Most of the process
variability approaches have been focused on control-
ow perspective,
i.e., they bring functional and/or behavioral perspectives into
reality [Mec14]. �e same evidence is reported by [Ayo15],
where temporal and operational perspectives are largely ignored
by most approaches. Although some e�orts have been made
to integrate multiple perspectives in a coherent and consistent
framework [Mee11, Mee12, LR11, Sai14], there is still a room for
improvement [Rei14, LR13].

Context awareness. Context awareness is one of the major concerns
for context-aware process con�guration [Rei14]. However, only a
few approaches, such as Provop [Hal08a, Hal10], support contextual
information during process con�guration. �is is specially important
not only for design-time process variability, but also for run-time
customization [Gra13]. Beyond context information, other approaches
drive process con�guration based on high-level abstractions such as
requirements [Lap07] or questionnaire models [LR07].

Executable process variants. As it was mentioned, several
approaches have been proposed to enable process variability modeling
[Asa14]. However, a few become executable in practice [LR13]. �is
means thatmost of them stay on conceptualmodeling and do not glean
executable process variants [Rec05,Ayo15]. Other 
exibility properties,
such as adaptation and late binding, have also been considered by
di�erent work
ow-based systems [Nur08,Kap10,Bur10].
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Run-time variability and recon�guration. Dynamic environments
require more 
exibility and competitiveness requires quick
development [Fan12]. As highlighted in [Ayo12b], “current variability
proposals do not provide proper support for run-time con�guration of
process variants.” �is means that none of the approaches support the
resolution of variation points at run time. In contrast, recon�guration
of process variants has been supported, e.g., by Worklets [Ada06]
and Provop [Hal10], but a holistic approach for process 
exibility in
process families is still missing [Ayo12b]. �is point is also emphasized
in the �ndings of [Gra13,Rei14].

Tool-support and validation. Existing tools have been developed
to validate the feasibility of the proposed ideas, and thus constitute
proof-of-concept prototypes to foster industrial uptake [Ayo15, LR13].
While many of such tools have been evaluated through case studies or
experiments, there have been no quantitative evaluations to the present
day. �is indicates that more empirical research is required to evaluate
primary studies supporting process con�guration [Tor12].

3.1.2 Run-time Variability Approaches

In the following, we describe the related work on run-time process
variability. �e approaches are presented chronologically according to
the year in which they were proposed.

Run-time variability criteria

Table 3.2 details the new criteria for approaches supporting dynamic
process variability. Each approach is classi�ed according to two main
criteria: (i) modeling aspects, and (ii) execution environment. We also
include for convenience some general properties such as evaluation
support, tool support, and type of scenario.
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Table 3.2: Comparison criteria for run-time variability approaches.
CodeCriteria De�nition
Modeling aspects
M1 Process variability modeling technique Describes if positive or negative variability is used.
M2 BPML Indicates the language to represent the process models.
M3 Variability modeling language If any, indicates the language to represent the variability models.
M4 Context modeling If case of context-awareness, determines how context information is modeled.
M5 Reuse If reuse practices are integrated and supported in the process variability modeling process.
Execution environment
E1 Run-time con�guration (late selection) De�nes the capability of the work
ow-based system to con�gure and execute speci�c regions of a

process variant at run time, i.e., late binding.
E2 Run-time recon�guration (adaptation) Speci�es if the approach allows to switch from the current process variant instance to another one.
E3 Multiple binding Concretes if multiple bindings are supported.
E4 Context awareness Determines if context information is used for late binding during execution.
E5 Degree of automation De�nes the degree of automation in variability resolution time, e.g., automated, system-supported

or manual.
E6 Decision-making Concretizes the way process con�guration is performed (e.g., rule-based, goal-based, constraint-

based, etc.), i.e., *-driven con�guration.
E7 Evolution of the process family Determines if the system may propagate the changes of a con�gurable process model to already

running process variant instances.
General properties
G1 Empirical evaluation Indicates if the system scales up and down, be relevant to process families of any size, including

context data, and provides an empirical evaluation.
G2 Tool-support Details if the approach provides tool support for managing process variants.
G3 Scenario Speci�es the scenario or application domain in which run-time variability is applied.

Adams et al. [Ada06] present the Worklets approach to build and
execute loosely-speci�ed process models by applying re-binding.

• Modeling: Worklets has been implemented as a Yet Another
Work
ow Language (YAWL). Variants’ restrictions are de�ned by
a set of rules, namely Ripple Down Rules (RDR). During process
speci�cation, each activity can be associated with a set of sub-
process fragments, which can be dynamically extended at run
time. �e Worklet specs repertoire is used to store generated
process models, RDR, and Logs.

• Execution: At run time, choices are made dynamically from the
sub-process fragments repertoire by considering data attributes
and values associated with a speci�c instance, using a pre-de�ned
set of rules. Hence, when activities become enabled, the adaption
can be done by RDRs. Depending on the given rules, the YAWL
process activity is replaced by the selected fragment and executed
by the YAWL engine. Users may also adjust fragment selection
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by rejecting the proposed fragment or adding new rules. In
[Ada07] authors extend the Worklet service with an exception
handling sub-service called Exlets, which provides both expected
and unexpected process exception handling.

Char� et al. [Cha07b,Cha09] present a plug-in architecture to provide
self-adaptation support for BPEL processes by means of monitoring
and adapting aspects, i.e., using an aspect-oriented extension to BPEL,
namely Ao4BPEL.

• Modeling: Every BPEL process activity is an extension point
where the plug-in can execute adaptation logic. Inside plug-ins,
two types of aspects can be used: (i) monitoring aspects, which
collect information to decide whether adaptation is needed, and
(ii) adaptation aspects, which handle events detected by the
monitoring aspects.

• Execution: Once the BPEL processes are deployed, the engine
detects quickly fault handlers that can be invoked to identify
failures in invocations including pre-examination, post-
examination, and wrapping. �ese advices invoke the adaptation
aspects (plug-ins) which replace the faulty partner service. Such
plug-ins can be added or removed from the proposed architecture
during composition execution (user-based provisioning).
Hence, it clearly bene�ts extensibility and enables support for
service adaptation by means of generic requirements (service
unavailability, partner service non-functional property changes
through WS-Policy, and non-functional requirements through
Service Level Agreements (SLAs)) and application speci�c
adaptation support.

Karastoyanova et al. [Kar09] present the BPEL’n’Aspects approach by
combining the standard BPEL, the publish/subscribe paradigm, and
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WS-Policy to improve the 
exibility of service orchestrations.

• Modeling: BPEL processes can be mapped to aspects in three
di�erent forms: (i) for all process instances, (ii) only for a
speci�c instance, and (iii) for a subset of instances. Aspects are
represented using WS-Policies and WS-Policy Attachments as
a means for associating aspects with BPEL processes in a non-
intrusive manner.

• Execution: During execution, the BPEL engine is able to signal
events (by WS-Noti�cation) to the broker, which manages the
subscriptions of the aspects/Web services, and coordinates the
adaptation of process logic. �is mechanism allows attaching
aspects to processes at run time without changing the process
schema itself.

Koning et al. [Kon09] present the VxBPEL approach to address
dynamic composition of Web services by providing variability
constructs in the language level and treats changes as �rst-class entities.

• Modeling: VxBPEL allows to capture variation points, variants,
and realization relations among variation points, in order to deal
with variability of service-based processes (described in BPEL).
Concretely, it provides three types of variability support: service
replacement to change a service by one with the same/di�erent
interface, changing the parameters of a service, and changing the
composition of the system. �e latter de�nes service fragments
that can be modeled in a variation point as variants.

• Execution: VxBPEL is executed by the ActiveBPEL engine. Once
the BPEL process is deployed the ActiveBPEL is able to customize
suitable variants based on �xed con�guration information. Such
data structure associated with con�gurable variation points can
be changed at run time through JMX, enabling recon�guration.
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Hallerback et al. [Hal10] describe the Provop approach for modeling
and managing large collections of process variants by means of base
models and adjustment points (variation points).

• Modeling: In the modeling phase, a base model can be de�ned
in BPMN using adjustment points (variation points). �ese
points de�ne the regions of a base model to which adaptation
can be applied at run time. Four change operations are de�ned:
INSERT fragment, DELETE fragment, MOVE fragment, and
MODIFY attribute. Change operations can be grouped in options
to structure change patterns. Some of the options can also be
correlated using di�erent kind of constraints, such as implication,
mutual exclusion, application order, hierarchy, and at-most-
n-out-of-m-options. During con�guration, the user selects a
sequence of options and applies them to a basemodel, con�guring
a process variant. Such con�guration can also consider contextual
information [Hal08a].

• Execution: Once the process variant is created, the process variant
is executed according to pre-established fragments. However,
Provop allows for process variant changes during execution, i.e.,
run-time recon�guration of process variants, to adequate process
execution to contextual changes.

Ardagnaetal. [Ard11] propose the Discorso (Distributed Information
Systems for Coordinated Service-oriented Interoperability) framework
to o�er a service-based solution for modeling and managing business
processes.

• Modeling: At design-time the Discorso framework lets designers
to de�ne business processes in BPMN, abstract services,
fragments, and Quality of Service (QoS) constraints. Starting
from the extended BPMN speci�cation, it derives a skeleton
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of a WebML hypertext extended with primitives. It also
translates the fragments of the BPMN process that correspond
to automated activities into BPEL. An extended Universal
Description, Discovery and Integration (UDDI) registry stores
concrete Web services and associates them with QoS pro�les.

• Execution: At run time, WebRatio orchestrates the whole process
and invokes concreteWeb services by implementing a late binding
mechanism through wrappers. �is means that if a concrete
Web service is faulty or violates a constraint (these expressions
are speci�ed in a variant of Web Service Constraint Language
(WSCoL)), the framework �nds a suitable substitute satisfying the
QoS constraints. Hence, the system monitors constraints and in
the event of QoS violations, triggers the adaptation of the running
process instance.

Baresi et al. [Bar12] present the DyBPEL approach based on CVL and
BPEL for managing process variability and recon�guration.

• Modeling: �e interplay between CVL and BPEL is conducted by
various elements: (i) CVL choiceswhich represent an user-centric
description of variability, (ii) a base model representing BPEL
processes that include process variables, activities, and partner
links, (iii) a CVL library which exempli�es the additional BPEL
process elements employed to generate variants, (iv) substitutions
which are related to each variant, and (v) production realization
function which allows to select variants to being included in the
process con�guration.

• Execution: Once the process variants is generated, the
Coordinator deploys and stores the process schema in the
repository. At run time, the Coordinator is the responsible
of detecting process models changes and deriving those
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modi�cations to the Runtime Modi�er. �e Runtime Modi�er
intercepts the execution of the running process instances and
applies changes in the repository. �is is achieved through
Aspect-oriented Programming (AOP). Finally, the BPEL
Modi�er handles the migration of process de�nitions to
the new speci�cation. More recently, the same author has
proposed a solution for the run-time evolution of service-based
processes [Bar14].

Cubo et al. [Cub11, Cub13] present an extension of the DAMASCo
framework, the so-called FM-DAMASCo, to deal with service
variability expressed in featured models for dynamic service
composition.

• Modeling: During the modeling phase, the user can de�ne
context information in XML �les, service signatures in Web
Service Description Language (WSDL), business processes in
BPEL, and service variability in a FM representing the service
family. �en, Context-Aware Symbolic Transition Systems (CA-
STSs) are extracted from the BPEL services, which implement the
client(s) and services.

• Execution: In each service request, the DAMASCo model
transformation (CA-STS) and the semantic-based service
discovery tasks are launched. Once the suitable service is
encountered, the self-adaptation process is executed. �is way
the approach is capable of adapting the service 
ow during
execution time. Recently, co-authors follow a similar path for
managing transactional service variability [Gam15].

Alferez et al. [Alf14] propose the MoRE-WS solution based on a
semantically rich variability model to support the dynamic adaptation
of service compositions and context awareness.
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Table 3.3: Summary of modeling and general properties support for
run-time variability.
Approach M1 M2 M3 M4 M5 G1 G2 G3
Worklets - [Ada06] Positive YAWL RDR rule-based ✓ - ✓ casualty treatment
AO4BPEL - [Cha07b,Cha09] n/a BPEL - - - - ✓ travel domain
BPEL’n’Aspects - [Kar09] n/a BPEL - - - - ✓ not speci�ed
VxBPEL - [Kon09] Negative BPEL VxBPEL not speci�ed - - ✓ loan approval
Provop - [Hal10] Positive BPMN Options OWL ✓ - ✓ vehicle repair
Discorso - [Ard11] n/a BPMN/BPEL - - - - ✓ order processing
DyBPEL - [Bar12] Positive BPEL CVL - ✓ ✓ ✓ smart homes
DAMASCo - [Cub11,Cub13] Positive BPEL Feature models CA-STSs ✓ ✓ ✓ navigation service
MoRE-WS - [Alf14] Positive BPEL Feature models OWL ✓ ✓ ✓ online book shopping
LateVa - [Mur14b] Positive BPMN Feature models OWL ✓ ✓ ✓ automated warehouses

• Modeling: In order to support dynamic adaptation, the framework
models abstractions that represent context information (a
context model in Web Ontology Language (OWL)), dynamic
con�gurations of the service compositions (a variability model
using a FM), the composition itself (a composition model in
BPMN), and the adaptation policies necessary to adapt existing
service compositions at run time (a weaving model).

• Execution: Model-based recon�guration is implemented on top
of the MoRE-WS engine, an extension of MoRE [Cet09a]. �e
framework oversees context changes and periodically updates
the context model according to the information collected by
the SALMon context monitor. �is altered model is used as a
baseline for adaptation reasoning (SPARQL) and model changes
(EMFMQ). Finally, changes are materialized by mapping BPMN
variants to BPEL fragments as reported in [Ayo12a].

Summary on Run-time Variability Approaches

Tables 3.3 and 3.4 summarize existing support for process variability at
run time. We use a check mark (✓) if the approach proposes or deals
with the di�erent criteria, and a dash (-) in the opposite case.
Regarding modeling and general properties, positive process
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Table 3.4: Summary of execution properties support for run-time
variability.
Approach E1 E2 E3 E4 E5 E6 E7
Worklets - [Ada06] - ✓ - ✓ system-supported rule-based -
AO4BPEL - [Cha07b,Cha09] - ✓ - ✓ automated aspect-based and SLAs -
BPEL’n’Aspects - [Kar09] - ✓ - ✓ automated aspect-based and WS-Noti�cation -
VxBPEL - [Kon09] - ✓ - - automated data structured based and exposing functionalities through JMX -
Provop - [Hal10] - ✓ - ✓ manual rule-based -
Discorso - [Ard11] ✓ - - - automated QoS-based service discovery -
DyBPEL - [Bar12] - - - ✓ automated aspect-based, interrupting each activity execution ✓

DAMASCo - [Cub11,Cub13] - ✓ - ✓ automated semantic service matching -
MoRE-WS - [Alf14] - - - ✓ automated constraint-based ✓

LateVa - [Mur14b] ✓ - ✓ ✓ automated constraint-based -

variability modeling is o�en adopted for representing run-time
variability. Such variability can be represented in several ways, but
variability modeling techniques from SPLE such as CVL and FMs are
likely common, as reported in [Mon08]. Context awareness is only
addressed by a few approaches. Similarly, only 3 out of 9 show an
empirical evaluation.
As for run-time properties, we �nd marginal support for run-

time con�guration of process variants. Most of the approaches are
usually based on recon�guration or adaptation mechanisms to modify
process instances or service compositions at run time. Some of
the approaches use contextual information and event rules to trigger
adaptations. However, such approaches do not o�er support for run-
time con�guration of process variants, neither for multiple binding.

3.2 Concluding Remarks

In this chapter we have surveyed primary studies in the literature
that are closely related to the main contribution of this dissertation.
Firstly, we have introduced 16 surveys that analyze di�erent approaches
dealing with reuse and design-time process variability. �en, we have
reviewed and compared relevant approaches (9 in total) primarily
focused on run-time 
exibility (variability, recon�guration, and
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evolution), with the aim of strengthen the main goals of LateVa.
�is chapter concludes the second part of this document dedicated

to the study and analysis of the background and state-of-the-art. �e
next three chapters describe the contributions of this dissertation.
We start with a global overview of the main building blocks of
LateVa (Chapter 4), to present the modeling (Chapter 5) and run-time
resolution details (Chapter 6) in subsequent chapters.
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“Failure is an option here. If things are not failing, you are not
innovating enough.”
-Elon Musk

Part II

Contribution
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Chapter 4

Foundations for Context-aware Con�guration of
Process Variants at Run time

In work
ow-based systems, process models need to provide means to
modify their structure and behavior dynamically in order to cope with
context changes and run-time exceptions. In recent years, this has been
tackled by process 
exibility approaches [Web09, Rei12], including
variability, adaptation, evolution and looseness (see Chapter 3).
However, few e�orts have been focused on enabling context-aware
process con�guration at run time. Concretely, dynamic variability
makes use of late selection pattern to defer process con�guration , i.e.,
it combines variability management and late binding. �is is specially
challenging for context-aware and variant-rich scenarioswhere process
context may in
uence the customization of each individual variant.
�is issue has been the focus of our approach and thus constitutes the
main contribution of this dissertation. We have proposed a framework,
called LateVa, to enable context-aware dynamic process con�guration.

Structure of the chapter. �is chapter �rst introduces the main
building blocks of LateVa (Section 4.1). Next, we describe the process
of domain engineering (Section 4.2), making special emphasis on the
design phase artifacts, and focus on the run-time phase in application
engineering (Section 4.3). Finally, we end with a summary of LateVa in
relation to both design and run-time phases (Section 4.4).
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Figure 4.1: LateVa overview.

4.1 LateVa: A Global Overview

�e LateVa framework allows for modeling, con�guration, processing,
and execution of process variants based on context information (the
main building blocks are illustrated in Figure 4.1). In order to isolate
process variants, the developer may sketch or reuse base models
(common activities) and fragments (variants) (expressed as BPMN
2.0 diagrams), and employ a variability model and a context model
for variability/domain speci�cation. Base models may hold custom
decision points, namely variation points, to make reactive fragment
decisions based on contextual information. Once developed, all
these models, except the context model, are deployed to the Models
Repository and made immediately available to the engine.
In each service request, the Process Con�gurator searches for

available base models that can accomplish the request, andmake use of
the process engine to start basemodel execution. During the execution,
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Figure 4.2: A fresh look on domain engineering.

a base model instance might need to interact with di�erent services
exposed in the context through the Context Interactor. Data retrieved
from the Context Application Programming Interface (API) is saved in
the Context Data Repository and utilized by the Fragment Selector to
make an automated decision on candidate fragment using a variability
model and a solver.
�ese steps entail the two phases of a SPLE: the domain engineering

phase in which the core assets (base models and fragments) are
created and the application engineering phase where individual models
(variabilitymodels and contextmodels) are de�ned and resolved either
in the startup time or dynamically at run time.

4.2 Domain Engineering

In this section, we describe the domain engineering process as
illustrated in Figure 4.2. �is process aims to develop the core
assets (base models and fragments) that will be leveraged latter in the
application engineering phase. Assets are divided into two categories:
metamodels - abstract assets that are used to create concrete assets, and
models - models derived from metamodels.
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Process variability as core metamodel. �is metamodel aims to
embrace the commonality and variability of a process family. �e
ultimate goal is to provide a language that allows developers to
describe process variability. �is is achieved by adopting the BVR
(Base, Variation, Resolution) approach [Bay06] tomodel commonality,
variability and relationships in separated models.

Context awareness for augmenting process variability. �is
metamodel allows to extend process variability metamodel with
contextual information. Such context metamodel details di�erent
context types and context data that can be mapped to a variability
speci�cation (i.e., context features), and then used by the engine
to obtain contextual information, including explicit support for on-
demand computation of context-speci�c data.

Metamodels for variability and process modeling. We use
feature modeling (i.e., Clafer1) for variability description and BPMN
2.0 as a target process modeling language (i.e., Activiti2). �e
motivation behind these choices relates to the fact that both
implementations are open source and commonly adopted [Ber13],
written in Java, and provide extension points for customized behavior.
From these metamodels, concrete models are obtained to re
ect

commonality and variability of all process family members. Such
concrete models refer to base models (expressing what is the same
among processes) and fragments (representing process individualities)
that are written by hand in the domain engineering phase and reused
in the application engineering phase.

1http://clafer.org
2http://activiti.org
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4.3 Application Engineering

�e application engineering phase concerns the development of
individual assets. �ose assets represent the whole process family and
restrictions, including all variants that can be con�gured at run time.

4.3.1 Design Phase: Variability Modeling and Deployment

�e design phase involves building the skeleton of the process family.
In this phase, we can determine two models such as a variability model
and a context model. �e former describes the process variability
spectrum and limits the con�guration of each process variant to
context information. �e latter serves as common domain description
necessary to represent contextual information.
�is phase comprises four main steps (see Figure 4.3), including:

process variability modeling where core assets (base models and
fragments) and a variability model are used to de�ne the whole process
family, context modeling to relate context data schema to variability
description, and the compilation and deployment phases.
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4.3.2 Run-time Phase: Variability Con�guration and
Enactment

�e run-time phase aims to con�gure a process variant based on
contextual information, as in a DSPL. One advantage of using DSPLs is
that product derivation (process con�guration in our case) is deferred
to run time. Hence, the developer can have di�erent binding times to
automatically infer decision points based on contextual clues.
�e run-time phase consists of four main steps (see the lower panel

of Figure 4.3), including: context acquisition to collect context data
from context services/APIs, context processing for mapping context
data values to variability description, run-time resolution to decide
on a suitable fragment based on current context data for a particular
variation point, and fragment binding and execution. �ese steps enable
the dynamic process con�guration on LateVa.

4.4 Concluding Remarks

In this chapter we have presented the fundamental building blocks of
LateVa for enabling context-aware dynamic con�guration of process
variants. We emphasized on the two main phases of SPLE, and
introduced the types of models that we employ to model and execute
context-aware process con�guration. Details of each of these two
phases are covered in consecutive chapters.
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Chapter 5

Design Phase: Process Variability and Context
Modeling

Two of the most important challenges in the convergence of SPLE and
work
ow-based systems concern to process variability modeling and
dynamic process con�guration [SR13]. �e former refers to how to
describe, manage, and implement the commonality and variability of
an existing process family (a set of related process variants), whilst the
latter deals with a smart work
ow derivation at run time.
�is chapter focuses on the former to cover the process variability

modeling and deploymentphases at design time, with a special emphasis
on context and process variability modeling. We start by introducing
the process variability and context metamodels, and provide hints on
how feature and process metamodels are mapped to process variability
constructs. �en, we describe the mandatory steps for the modeling,
compilation, and deployment phases.

Structure of the chapter. �is chapter �rst presents the challenges
for the design phase (Section 5.1). We then outline the main building
blocks of the design phase by means of the so-called metamodels
(Section 5.2), and describe the steps to derivate a process family
(Section 5.3). Finally, we revisit the challenges for the design phase and
conclude the chapter (Section 5.4). �is chapter presents and expands
upon work published in [Mur13b,Mur13c,Mur14c].
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5.1 Design Phase Challenges

In Chapter 1, we have identi�ed two main challenges for the design
of work
ow-based DSPLs, such as “design by reuse” and context
awareness. In the following points, we present a more detailed
de�nition of those challenges in order to explicitly deal with the
problems related to separation of concerns, process variability and
contextual information:

1. Ensure clean separation of concerns: to correctly represent
process variability two principalmodeling bents have been raised:
negative variability - where a con�gurable process model gathers
all variants in a single reference model, and positive variability
- where “design by reuse” is promoted by separating process
variability into disjointed models. Both remove redundancies
by representing variants’ commonalities only once; however,
only the latter allows for separation of concerns by modeling
commonality and variability in detached models.

2. Promote reuse: during the process variability modeling phase, it
is possible that the same fragments can be utilized by two ormore
process variants, or even shared among process families. Such
fragments can be understood as a connected and reusable process
structures, which can give an easier and faster development of
variant-rich work
ow-based systems. �erefore, the fragment
repository should serve as the main repository to store, manage,
and access reusable fragment libraries [Sch11,Eka11].

3. Mapping between features, context, and process variability
artifacts: FMs enable the clear speci�cation of so�ware variability
as a feature tree, hierarchical format [Ach12]. �e mapping that
holds between the features in a FM, context data, and inherent
process variability constructs can be complex to de�ne. �is is
especially the case in the presence of context features (features
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mapped to context data) and process variability related features
(variation points and fragments), which may further complicate
the interactions between features.

4. Provide context variability support: although the mapping
between features and context data can be realized by an
appropriate context mapping mechanism, we also need to deal
with the data ambiguity problem. Di�erent context data may
belong to the same feature, i.e., context models may di�er
syntactically and semantically from each other. Such data
heterogeneity may cause unexpected behavior in data processing
and mapping, allowing identical context values to be sent within
di�erent context keys.

To face these challenges, in the following sections, we present the
main building blocks of LateVa backed by the domain engineering and
application engineering phases from SPLE.

5.2 Design Phase: Domain Engineering

�is section describes in detail the metamodels that have been
implemented in LateVa for enabling context-aware process variability
modeling. We di�erentiate four metamodels, but particularly focus of
the former two as part of the contribution. For the latter two, we brie
y
arrange them and present external references for further reading.

5.2.1 Process Variability Metamodel

In our case, we have de�ned a process variability metamodel inspired
from the BVR approach (named from Base, Variation, Resolution
models) presented at [Bay06], and recently revisited at [Hau14]. BVR
is a language built on CVL [Hau12], and enhanced in the VARIES
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Figure 5.1: �e BVR approach by Bayer et al. [Bay06].

project1. Basically, the BVR approach states the separation of models’
commonality, variability and possible con�gurations into isolated
artifacts such as base models, variation models and resolution models,
as illustrated in Figure 5.1. �e major advantage of using BVR though,
is that there can bemore than one variationmodel for each basemodel.
�us, developers can associate as many as variability models to a single
base model, representing variability scenarios at di�erent levels.
We have adopted the same high-level concepts and relationships to

de�ne variability, and expand them to incorporate new process-related
constructs. Nevertheless, we rename the term “variation model” into
“variability model”, due to its greater adoption in the SPLE community
[Hau08]. Our process variability metamodel is shown in Figure 5.2. It
aims to support the functional perspective introduced in Chapter 2 to
represent process’ entities and related variability.2

BaseModel

�eBaseModel represents the commonality shared by a process family
(a set of similar process variants) in a particular domain. �is model
can be seen as the intersection or Greatest Common Denominator
(GCD) of all considered variants, comprising the shared behavior of all
of them. Such variants share a common part of a core process (captured
in the base model) whereas concrete parts (expressed as fragments)

uctuate from variant to variant. In LateVa, a base model is built by

1http://www.varies.eu/
2Although not covered in this dissertation, the author has also worked on

a modeling and execution alternative to show that multi-perspectives process
variability can be realized [Mur13c,Mur14c].
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Figure 5.2: Process variability metamodel.

an extended BPMN2 process modeling language.
A BaseModelElement stands for any kind of BPMN2 element

in a base model. �e relationship between base model element and
variation point has zero-to-one cardinality since not all base model
elements can be a�ected with variability (see Figure 5.2). Apart from
BPMN2 elements, a base model may also hold placeholder activities
(variation points) to point out those parts of the base model where
di�erent alternatives can be applied depending on a speci�c context.
Formally, a base model is de�ned as follows:

De�nition 1 (Base Model). A base Model BM is de�ned as a 2-tuple
<C, VP>, being C the set of commonalities of a process family andVP the
set of feasible variation points. Every base model instance BMI derived
from BM consists of a set of commonalities and a set of variation points:
∀ BMI ∈ BM, BMI = ({C}, {VP}).

In short, a VariationPoint identi�es the part in a base model
where variant binding occurs. It represents a con�gurable base model
element inwhich an alternative (expressed as fragment) can be selected
based on context data, a�er which it is no longer possible to change. In
our own case, the use and placement of variation points emphasizes
two principal factors: points out a local or remote data endpoint from
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which context data is gathered, and indicates a placeholder activity in
a base model where variability may take place.
�e behavior of a variation point becomes context dependant,

requiring itself to 
ock explicit context data for �nal fragment
resolution (dynamic variability). However, not all variation points
might be subjected to dynamic context. For instance, in non-critical
scenarios, i.e., where the resolution is not sought under the run-time
con�guration, a limited amount of variation points can be pre-wired
before base model instantiation (static variability), and thus do not
require any context interaction at all. To cover such behaviors, we
distinguish two types of variation points:

• Static: a StaticVariationPoint denotes a static placement
within a base model. �is will be fully determined at built-time
by means of selecting a suitable fragment alternative from a set of
a limited number of options (see Figure 5.3).

• Dynamic: a DynamicVariationPoint determines a dynamic
placement within a base model that will be bound at run time to
an applicable fragment based on context data (see Figure 5.3).
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Variability Model

A VariabilityModel assembles all the particularities introduced
by each process variant. Accordingly, it o�ers abstraction for the
base model and its variation points when making a customization, in
addition to decision support. Such variability can be expressed using
variability modeling techniques. In LateVa, we make use of FMs3. �is
allows us to make variability elements explicit by describing variability
in a hierarchical, tree format, and le�-over cross-tree constraints. A
variability model is formalized as follows:

De�nition 2 (Variability Model). A variability model VM is de�ned
as a 3-tuple <VE , F , O>, being VE the variability sub-model made up
of the set of domain non-context features, context-features and variation
points,F the set of possible applicable fragments for each variation point,
andO the constraint sub-model made up of restrictions.

As depicted by Figure 5.2, a VariabilityElement refers to any
feature, attribute or constraint element in a FM. A FM stands for
a family of features in the domain and relationships among them.
A VariabilityDescription represents the actual variability of a
variation point which is directly related to a variability element. Here,
we distinguish �ve meta-classes:

• Non-context feature: a NonContextFeature describes any
domain feature not related to context data. As in the domain
featuremodeling, a non-context feature can be of typeMandatory,
Optional, Or and Alternative (xor).

• Context feature: a ContextFeature refers to a variable de�ned
by surrounding context (e.g., fdc1010 : integer). �is type of
feature can be a boolean condition of type {0,1}, or an attribute of
a primitive data type (e.g., integer). �is mapping allows to infer

3As found on [Ber13], FMs have gained widespread adoption in industry.
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and interpret contextual information from di�erent perspectives
[Jar10], e.g., from process variability perspective in LateVa.

• Constraint: a Constraint represents an optimum condition for
variant resolution, expressed as cross-tree restrictions between
variability model elements (e.g., A implies B, C excludes D). Such
cross-tree relations can be de�ned at three levels: complex non-
context feature/non-context feature, non-context feature/context
feature, and context feature/context feature.

• Fragment: a process fragment, or simply Fragment, describes a
single variant realization option for each variation point within
a particular base model. �is can be related to one or more
variation points. Hence, each variation point may have a number
of possible implementations (fragments), intended as a reusable
granule for process variability.

• Transformer: a Transformer includes concrete
transformations associated to a variability speci�cation. When
context values are bound to a particular transformer, it executes
the corresponding resolution. In other words, it is the responsible
for deciding which features should be activated by the current
context data values, i.e., value or fragment resolution.

ResolutionModel

A ResolutionModel de�nes resolutions of a variability model. It
represents a binding of variability speci�cations, which can be used to
derive a new, speci�c model. From the process variability perspective,
it speci�es which of the fragment alternatives described in a variability
model are valid for placed variation points considering current context
conditions. A resolution model is formalized as follows:

De�nition 3 (ResolutionModel). A resolutionModelRM is de�ned as
a 4-tuple <CV , V , VP ,RF>, being CV the set of context variables, V the
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set of context values, VP the referred variation points, andRF the set of
relevant fragments.

A set of resolution elements de�ne how a variabilitymodel is bound.
Concretely, as stated in [Bay06], a ResolutionElement represents
“a binding of a variability speci�cation, i.e., it represents a binding of
variability”. �is is either a complete binding in which all variability is
resolved, or a partial one in which some variability is still present (see
Figure 5.2). A resolution has a number of e�ects which represent the
correlation a resolution has on the variabilitymodel, such as narrowing
a constraint or removing parts of the model. It could either resolve all
the variation points at once or subsequently con�gure each variation
point. We distinguish two subtypes:

• Value Resolution: a ValueResolution determines a value for
the variability model where context values are mapped to context
features. Hence, LateVa correlates context features within a
variability model to those context key/value pairs retrieved from
context data.

• Fragment Resolution: a FragmentResolution represents
resolutions for variation points in the variability speci�cation, as
well as the corresponding mappings in a base model.

�ere can be several resolution models pointing to the same
variability model. For one resolution model, each transformer can
be linked to zero or one resolution element, so not all transformers
must be associated to resolution elements. Even in a static variation
point description, some variability can be beyond the scope due to
higher-level resolutions. In contrast, dynamic variation points are
settled by parsing ContextData and mapping context value pairs to
the corresponding context features.
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5.2.2 Context Metamodel

Process variability metamodel allows to model variants of a particular
process model, whereby each variant is valid in a speci�c scenario or
context. Each context requirements build the process context [Hal08a]
and drive the con�guration of a particular process variant. Context
itself can be referred to as a “any information that can be used to
characterize the situation of entities (i.e., whether a person, place or
object) that are considered relevant to the interaction between a user
and an application, including the user and the application themselves”
[Abo99]. Beyond the established de�nitions, in our case, context
describes the context data coming from underlying data sources
(sensors, services, APIs) that may directly in
uence process context,
and thus drive dynamic process con�guration. All context core
concepts set up the context model, enabling contextual knowledge
modeling, sharing and reuse [Str04,Bet10].
As illustrated in Figure 5.4, a ContextModel describes the data that

can be processed in a particular context, including di�erent entity types
and their relationships. In LateVa, such ContextData is exploited to
correlate expected context features in a variabilitymodel to those being
experienced. Two di�erent context data types are considered:

• Static Context: StaticContextData represents static
preferences of a particular context that are known prior to
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base model instantiation. �is type of context rarely change over
time, so can be foreseen at built-time.

• Dynamic Context: DynamicContextData describes dynamic
context data that change frequently over time and thus can be
only accessible at run time. �is context type is available when
the selection of a dynamic variation point occurs.

Context modeling not only allows for context awareness but also
�lls the gap between process con�guration and process context.

5.2.3 Process Metamodel

Process logic is represented in form of process models using a process
modeling language (e.g., BPMN, Petri Nets, UML Activity Diagrams,
EPC, or BPEL [Lu07, Gro14]), which stands for a particular process
type, consisting of a number of activities to be executed.
As it was stated before, we have adopted the BPMN2 metamodel

de�ned by ObjectManagement Group (OMG)4 as the de-facto process
modeling language in LateVa. Figure 5.5 presents the main concepts
behind the speci�cation. In order to integrate process variability
constructs as part of the BPMN2 description, we have extended and
enriched variation points with ServiceTask behavior.

5.2.4 Feature Model Metamodel

With the increasing popularity of DSPLs [Cap14a], several extensions
have been proposed in order to enhance FMs (i.e., FODA models or
feature diagrams) and add explicit support for cardinalities, feature
groups, feature relationships, and collaborative aspects [Cap13,Cap15].
However, context awareness is the key enabler of context variability
[Har08, Cap14b], where feature models can be used to model context
primitives for each context feature [Jar10].

4http://www.omg.org/spec/BPMN/2.0/
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Figure 5.5: Simpli�ed task metamodel of activity extension.

In LateVa, this can be realized by combining context and feature
modeling as a uni�ed context variability representation which can be
later used for con�guring process variants [Mur14a]. We describe
variability in a feature tree format (using FMs) where non-context
features, context features and constraints are placed. In particular,
we make use of Clafer syntax [Bak11] to represent process variability.
See [Bak13] for more details on Clafer concrete syntax.

5.3 Design Phase: Application Engineering

At the meta-level, metamodels allow de�ning either concerns or
variations in the operational semantics. In order to realize process
variability, in this section we de�ne the application engineering as
a systematic procedure consisting of four phases as illustrated in
Figure 5.6: (i) process variability modeling to create process family
implementation artifacts, (ii) context modeling to provide a context
model that will empower the system to be truly context aware, (iii)
compilation to obtain platform speci�c models out of the process
variability artifacts, and (iv) deployment to store released artifacts onto
the Models Repository.
In a nutshell, the procedure follows these steps (see Figure 5.6):

�rst, the developer in charge of modeling, sketches base models,
fragments, and variability models. �is step is handled together with
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Figure 5.6: Context-aware process variability modeling phases.

the context modeling task, even by the same developer and/or domain
expert. Both steps are considered dependent, so that the linkage
between a base model, fragments, and a variability model must be
valid according to the context description. During compilation phase,
we check that the produced artifacts meet all the required syntax
rules (syntactical correctness). Finally, deployment consists of pushing
process variability artifacts and the corresponding metadata to the
Models Repository.

5.3.1 Variability and Context Modeling

�e goal of variability and context modeling is to identify process and
context variability that may coexist for a process family.

BaseModels, Fragments, and Variability Models

At design-time, the LateVa Modeler provides an extended BPMN2
editor to let developers or process designers reuse or de�ne base
models and fragments. In a base model, static and dynamic variations
can be used in conjunction with standard BPMN2 constructs. Both
variation points include a prefix attribute for naming, e.g., S VP

and D VP; however, the serviceName attribute is just provided by

59



dynamic variation points to indicate speci�c context data endpoints
(e.g., temperature sensor). A fragment may only contain BPMN2
elements. Hence, the granularity of variation points is limited and
simpli�ed, inherently incorporated in the base model speci�cation.
�e variability associated with variation points and fragments is

described within a variability model. LateVa makes use of the Clafer
modeling language to describe a FM including: (i) non-context features
and features related to process variability constructs (variation point
and fragments), (ii) context features that are mapped to both static and
dynamic context data key/value pairs, and (iii) cross-tree constraints to
represent conditions or restrictions for valid process variant resolution.
Features related to variation points and fragments use direct naming
compounds (see patterns below). �is implies that the samenamemust
appear in base model, variability model or fragment. However, the
mapping between context features and context data is de�ned in the
Context Model Mapping.

Pattern for representing static/dynamic variation points
{S_ ,D_} + VP_ + {vpName}

Pattern for representing fragments
FR_ + {fragmentId} + {parentFeatureName}

Context Model andMapping

LateVa allows two ways of context model representation and mapping:
the Context Model Mapping and the ontology+JSON-LD combo.
In the �rst case, the relationships between context features and

context data are described by the Context Model Mapping. �is model
provides a consistent way of mapping to reveal which context data
operate at each context feature in the variability model. As illustrated
in Figure 5.7, it de�nes a contextVariableName - a concrete variable
name in a domain context model, featureName - a context feature or

60



ContextModelMapping

ContextModelContextData

Context
Feature

e1

e2

e5 e6

e3 e4

CONTEXT MODEL

boxInCorridorboxInCorridor 2 3

490

scanner

operationalFlow

boxWidth

P2

boxLength

501

checkpoint

D_VP_Scanner

featureName

boxWeight

boxLength

OperationalFlow

Barcode

287

P2

defaultValue

boxWeight

boxHeight

boxWidth

Barcode

contextValue

5 6

HighRates

530boxHeight

491

D_VP_Checkpoint

280

contextVariableName

HighRates

Context data

{message:{"date":"2015-04-05", "time":"09:40:13", "mappingId" :"Geneva", "service":"storageProcess", 
"instance":"4401", " domain":"SmartLogistics", "operationalFlow":"HighRates", "scanner":"Barcode", 
"checkpoint":"P2", "boxWidth":"280", "boxLenght":"480", "boxHeight":"520", "boxWeight":"5", " 
boxInCorridor ":"0"}}

VARIABILITY MODEL

Figure 5.7: Context Model Mapping.

an attribute in a variability model, contextValue - the value of a context
variable, and defaultValue - a valid value which can be assigned for a
context variable.
As depicted by Figure 5.7, this mapping model allows to correlate

context features with context data; however, this is not a silver bullet as
it can be the case where context variables or even context values can be
misinterpreted. In other words, di�erent context data may belong to
the same context feature partially because context models may di�er
syntactically and semantically from each other. For instance, while
some systems may collect box width in a boxWidth variable, width
can be utilized by others for the same purpose. �e terminology might
be di�erent and manifold context variable names may belong to the
same context feature.

Context Heterogeneity and Ambiguity

Data ambiguity can arise from the same variable names that developers
use for di�erent purposes. Such heterogeneity may cause unexpected
behavior in context data processing for Context Model Mapping, even
allowing identical data values to be sent within di�erent variable
names. For instance, it can be di�cult to integrate JSON documents
from di�erent sources as the data may contain keys that con
ict with
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other data sources.
A machine doesn’t have such an intuitive understanding and

sometimes, even for humans, it is di�cult to resolve ambiguities in
such representations. �is problem can be solved by using concise
identi�ers to denote the di�erent concepts instead of tokens such as
“name”, etc. �erefore, we need a consistent way of mapping to cope
with data ambiguity, incompatibility and inconsistency by de�ning
domain speci�c syntax and semantics in a non-verbose manner.
As an alternative solution to Context Model Mapping, we proposed

another context-FM mapping modeling approach based on Linked
Data, i.e., an ontology+JSON-LD combo [Mur14a]. Ontology details
domain knowledge and de�nes the semantics and relationship among
context concepts. In contracts, JSON-LD5 gives a document context,
short terminology, and it allows to identify context data to ontology
concepts. In [Mur14a], we distinguished between two di�erent
ontologies: data model ontology and process context ontology.

Data model ontology (OntoData) : A context data model describes
the data that can be processed and stored including di�erent entity
types and their relationships. For instance, each system may have a
unique data model (represented by a JSON Schema6) and integrated
in the data model ontology, where an intentional description of data
classes and instances are characterized. Such context information
is exploited to correlate the expected contextual data attributes in a
variability model to those currently being experienced, as illustrated
in Figure 5.8. For example, RotSpd data is mapped to (OntoData)
data property which also links the attr1 context feature attribute.
Feature attributes are used to map context features, e.g., represented as
integer values in the diagram above. �is way, OntoData individuals
data properties are mapped to context variability model attributes.

5http://json-ld.org
6http://json-schema.org
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Figure 5.8: Context variability modeling.

On the other hand,OntoDatamodel is also employed to link piece of
raw data coming from the data realm to individuals and data properties
of the ontology. Two syntactically context data variable/value pairs
(e.g., by two di�erent JSON Schemes) can be semantically equivalent
and thus mapped with the same OntoData concept. For instance,
while RotSpd can be associated to CVmodel2 and RotorSpeed to
CVmodel1, both look for the same data property in the OntoData.
In a similar vein, considering the LDName static context data from
the the example above, this could be related to a context feature B1
which will be activated when the value is met. For that purpose,
we adopt the JSON-LD standard which permits to correlate di�erent
data variable/value pairs to an equivalent ontology concept, as shown
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1 {
2 "@context":
3  {
4 "LDName": {
5 "@id": "http://alstom.com/ontoData/windTurbine",
6 "@type": "@id"
7 },
8 "RotSpd": "http://alstom.com/ontoData/wt/rotorSpeed",
9 "StaTmpA": "http://alstom.com/ontoData/wt/generatorTmp",
10 "H2OInTmp": "http://alstom.com/ontoData/wt/waterTmpInlet",
11 "BearNDe": "http://alstom.com/ontoData/wt/nonDriveAndBearingTmp",
12 },
13 "LDName": "B1",
14 "RotSpd": "12",
15 "StaTmpA": "73.61038",
16 "H2OInTmp": "51.23099",
17 "BearNDe": "47.72831"
18  }

Figure 5.9: Excerpt of a JSON-LD inline context data.

in Figure 5.9. In that excerpt, context data (e.g., RotSpd in line 14)
is mapped to ontology concepts (e.g., ontoData/wt/rotorSpeed
in line 8) so that we are able to preserve semantic meaning. �is
allows to disambiguate data variables shared among JSON documents
from di�erent contexts (e.g. system A, system B) by mapping
them to Internationalized Resource Identi�ers (IRIs) via an ontology.
�us, standards-based di�erent machine interpretable raw data from
various data realms is mapped to ontology concepts (object and data
properties), and adequately linked to corresponding context features.

Process context ontology (OntoProcess) : In conjunction to context
data variability management, two syntactically di�erent features from
di�erent context variability models can be semantically analogous and
thus mapped with the same OntoProcess concept. Our OntoProcess
model de�nes twomain types of primitive classeswhich include several
individuals and object/data properties as follows:
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• Process individuals and properties: We de�ne BaseModel and
Fragment as subclasses of the Process class. Individuals
belonging to those subclasses are connected by a data
property hasServiceName to represent service request and also
include hasVariabilityModel property to VariabilityModel

individuals. Furthermore, they are linked by data property
hasProcessKey to deployed base models/fragments in the
repository.

• VariabilityModel individuals and properties:
VariabilityModel class individuals exemplify di�erent
con�guration options for each BaseModel. �ey contain a
hasFileName property to point a particular FM and also a
hasType for representing the type of FM.

5.3.2 Model Compilation and Deployment

Starting from base models, fragments and variability models, the
LateVa Modeler derives a compilation of all these models before
deployment. In this step, wemake use of theActiviti Engine to translate
*.bpmn2 process artifacts into Java objects of BpmnModel type. Here,
we also validate base models and fragments and check for well-formed
structures according to the validator module. On the other hand,
the Clafer Compiler checks that all features and constraints within a
variability model are well-de�ned, e.g., checks unique names.
As features related to variation points and fragments use

direct naming compounds (i.e., should have the same name) for
corresponding base model IDs, the compiler does not check if the
inserted base model and fragment references already exist in the
Models Repository. Still, such functionality is supported by the LateVa
Engine which directly retrieves mapping names and treats exceptions
in case of mismatch. A�er compilation, the developer deploys the
produced models to the Models Repository.

65



5.4 Concluding Remarks

So far, we have presented the domain engineering and application
engineering phases that cover the design phase of work
ow-based
DSPLs. Following the above principles, LateVa solves several issues
raised at the beginning of the chapter:

1. Ensure clean separation of concerns: LateVa aims for separation
of concerns by using BVR as a baseline. Although this approach
could limit the visibility of existing variants, it allows users to
focus on domain concepts rather than on process elements to
e�ciently manage large sets of process variants. Moreover, this
way it is possible to manage process variability independently
reducing its impact over process variants’ commonalities, as well
as the complexity of managing large sets of process variants.

2. Promote reuse: fragments are considered �rst-class entities in
LateVa. �ey can allow for reuse of process logic among di�erent
process variants. At the same time base models can also be
reused in the description of a process family. �us, developers
can associate as many variability models as needed with a unique
base model, even while aligning fragments to variation points.

3. Mapping between features, context and process variability
artifacts: context-aware process con�guration requires context
awareness. In LateVa, this is achieved by aligning FMs and
context models through a Context Model Mapping, which gives
the correlation between all context features in the FM and context
key/value pairs occurred in the context.

4. Provide context variability support: since the Context Model
Mapping is not preserving data ambiguity and heterogeneity,
LateVa may adopt ontologies and JSON-LD for context mapping.
�e former allows an intentional description of the classes
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and entities, while the latter permits to correlate di�erent data
key/value pairs to an equivalent ontology concept. �is allows to
disambiguate data variables shared among JSONdocuments from
di�erent contexts by mapping them to IRIs via an ontology.

In this chapter, we have presented an approach for context-aware
process variability modeling and illustrated the process variability
realization process combining work
ow variability and context
modeling techniques. Process variability modeling is guided by the
BVR principles and realized through three main models such as base
models, fragments, and variability models. Context modeling and
reasoning is based on Context Model Mapping and ontologies to map
context features. �ese methods allow to identify dependencies and
con
icts between features and context data, and takes such correlations
as a basis to derive an appropriate process con�guration at run time. All
in all, our approach relies on a clean separation of concerns provided
by the underlying process variability metamodel.
In the next chapter, we discuss the challenges of deferring process

con�guration to enable context-aware customization of process
variants at run time. Particularly, we emphasize how LateVa engine
performs process con�guration using the same domain engineering
assets described in this chapter.
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Chapter 6

Run-time Phase: Context-aware Dynamic
Con�guration and Execution

In this chapter, we focus on dynamic process con�guration. In
particular, we describe how to perform context-aware con�guration
of process variants by means of automatically binding fragments to
variation points at execution time. �e LateVa engine interprets
the models introduced in Chapter 5 and uses a solver to �nd
suitable fragments based on current context data. It also provides
extension mechanisms to cope with (un)expected situations, either
removing/adding new fragments to a variability model, to support the
construction of 
exible and variant-rich work
ow-based systems.
We next show how these have been used to implement more

sophisticated run-time execution and binding.

Structure of the chapter. �is chapter begins with several
challenges (Section 6.1) for enabling context-aware process
con�guration at run time. We then present the context-
aware con�guration life-cycle (Section 6.2), and the internal
representation of LateVa engine (Section 6.3). Finally, we revisit
the challenges for the run-time phase and summarize the chapter
(Section 6.4). �is chapter presents and expands upon work published
in [Mur14b,Mur14e,Mur14a,Mur15b]
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6.1 Run-time Phase Challenges

One of major concerns for process variability is the context-aware
con�guration of the di�erent variants [Rei14]. �is means that context
information, not users, may directly in
uence process con�guration
for every particular situation. For instance, when context information
is only available at run time (dynamic context), the speci�c variant can
be determined during execution. To achieve such type of 
exibility and
take advantage of the assets developed at the design phase, we identify
several challenges as follows:

1. Run-time variability: to e�ectively deal with dynamic situations
of the process context, the system should be able to dynamically
con�gure variants at run time. On the other hand, if the process
context is already known before execution, process variants
should be partially con�gured before instantiation. �is allows for
a staged con�gurationwhich considers static and dynamic context
to accomplish e�ective decision making.

2. Multiple binding times: a DSPL demands multiple binding
capabilities to select available options/services dynamically. As
process context could adapt, e.g., from static to dynamic, the
system should change accordingly providing multiple binding
times, e.g., from startup to run time. �at is, a smooth transition
from one binding to another onemust be guaranteed, so the system
may change its binding time without a�ecting already running
instances.

3. Context awareness and autonomic behavior: in a context-
aware process con�guration, the system must handle contextual
information to select di�erent options depending on the
current conditions on-the-
y. To make this happen, context
acquisition and processing should be carried out unobtrusively
and continually by each dynamic variation point. Hence, once
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context information is collected, the systems should perform
context-aware process con�guration in an automated fashion.

4. Abstraction support: context-aware process con�guration and
run-time decisions may rely not only on contextual information
but also on other properties, such as quality levels or user
preferences, that may a�ect the selection of suitable alternatives.
As many base models, fragments and data endpoints with
di�erent quality can be involved in the process con�guration, the
quality of the overall con�guration can vary widely.

6.2 Context-aware Con�guration Life-cycle

To better understand the dynamic con�guration process, we �rst
describe the context-aware con�guration life-cycle for a DSPL. As
illustrated in Figure 6.1, the life-cycle consists of four steps:

1. Context acquisition: when the base model instance reaches a
dynamic variation point execution, the system collects context
data from the pre-established context service/API.

2. Context processing: once context data is retrieved, such context
key/value pairs are mapped to those elements in the variability
model, i.e., the relationships between context data and variability
features are settled, limiting the scope of the solution space.

3. Run-time resolution: based on the altered variability model
(context data is already parsed), this step concludes if any sound
resolution (fragment) exists for a particular variation point.

4. Binding and execution: �nally, the system assigns a suitable
fragment alternative to the dynamic variation point, which is
signaled to re-activate execution and launch a fragment instance.
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Figure 6.1: Context-aware con�guration life-cycle.

We have implemented context-aware process con�guration life-
cycle in the LateVa engine, which is a prototype framework for context
processing and iterative variability resolution.

6.3 Run-time Phase Support

�e following section describes in detail how LateVa supports the
aforementioned dynamic con�guration steps for enabling context
awareness, as well as multiple binding times.

6.3.1 Context-aware Dynamic Con�guration

As illustrated in Figure 6.2, the LateVa engine starts by receiving a
request to trigger a base model execution (Step 1). For each request,
the Process Con�gurator searches for available base models in the
Models Repository (RDBMS) that can actually satisfy the user/system
requirements (indicated as JSON in Figure 5.7). If more than one base
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Figure 6.2: Context-aware dynamic con�guration.

model exists, the systems gets the �rst one and locates the attached
variability model to bind static context properties.
LateVa enables the transition between multiple binding times.

Hence, the user can select a preferred binding time strategy that
will change the moment in which variants are bound. Such binding
may trigger at di�erent stages of the con�guration life-cycle (e.g.,
con�guration-time, deployment-time, startup-time and pure run
time/operational mode), selecting suitable alternatives for partially or
fully customizing process variants [Cap14a]. LateVa supports multiple
binding by allowing only dynamic binding as input, i.e., startup-time
and pure run time. Each of the strategies are marked with one color
in Figure 6.2 (green denotes startup-time, and blue denotes pure run
time). Both are further described below.
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Startup-time Resolution

In the startup binding strategy, the Process Con�gurator starts by
retrieving base model and variability model de�nitions from the
Models Repository. If a basemodel is found to actuallymeet the service
request (see Step 1 in Figure 6.2), the Context Interactor resolves both
static and dynamic variation points (Step 2), and �nally the Fragment
Selector invokes the basemodel execution (Steps 3-4), i.e., a basemodel
instance is created in the Models Repository.
It is worth to mention that, even in the startup binding, static

variation points do not provide contextual information whereas
dynamic variations points involve context interaction. �erefore, for
the latter, all context data is stored and parsed before base model
instantiation in order to enact context-aware process con�guration.

Pure run-time Resolution

In the pure run time binding strategy, the Process Con�gurator works
in a similar fashion than in startup binding, i.e., it fetches a base model
and a variability model from the Models Repository (see Step 1 in
Figure 6.2) to ful�ll the service request. From the selected base model,
the Fragment Selector resolves static variation points (Step 2) and runs
base model execution (Step 3).
During execution, each base model instance interacts with di�erent

services exposed in the context. Such services provide access to existing
context data via Context API. Once a base model execution reaches a
dynamic variation point (Step 4), the LateVa engine follows the steps
depicted inAlgorithm 1. For each dynamic variation point, the Context
Interactor parses and stores context data to set context features in a
variability model (Step 5). �is variability model is restored from
the Models Repository by the speci�ed base model instance ID. �e
Fragment Selector uses this altered model as input, and concludes if
any sound con�guration exists, considering all the solution space, i.e.,
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Algorithm 1 Dynamic variation point execution
1: Given: a dynamic variation point y
2: if yi = f ragmentassigned then
3: Start fragment instance from yi ;
4: else
5: Take applicable data endpoint ds;
6: Invoke ds to get JSON data ji and map to the context model;
7: Get one applicable fragment fs,1, fs,2, ..., fs, j i for yi ;
8: end if
9: return fragment fi for yi ;

considering all the constraints of a variability model. At this point, the
Fragment Selector may handle three di�erent resolution situations:

• No solution: apart from fragment binding, the Fragment Selector
must deal with unexpected situations, such as no solution found
a�er model solving. Pro tem, the Fragment Selector rollbacks all
context mappings for an unexpected context message, and assists
user decision-making.

• One solution: to handle this situation, the Fragment Selector
assigns fragments for all dynamic variation points from the
resulting solution, saves this partial model (resolution model) in
theModels Repository, and enacts a basemodel instance (Step 6).
�is behavior allows to ensure a proper resolution by considering
all the decision space. Finally, when the execution reaches a
particular dynamic variation point, fragment execution starts.

• N-solutions: when the Clafer solver1 returns more than one
valid solution for the current context, the Fragment Selector may
operate by using two di�erent resolution strategies: (a) get-�rst

1https://github.com/gsdlab/chocosolver
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to get the �rst feasible fragment, 2 and (b) manual-selection to
enable user-based decision-making. A�er selecting a fragment
for a dynamic variation point by the preferred resolution strategy
(Step 6), if just one con�guration exists, the remaining dynamic
variation points are also solved by assigning a particular fragment.

Following the above strategy, LateVa allows for a staged
con�guration and execution of context-aware process variability
at run time, which can perform fragment binding subsequently based
on static and dynamic context.

6.3.2 Quality-of-Result driven Dynamic Con�guration

Althoughwork
ows have been used to compose and execute a series of
computational or data manipulation steps, such in scienti�c work
ows
[Alt04,Hau11], a few discussions have been focused on the utilization
of run-time mechanisms to con�gure context-aware process variants
based on user-de�ned quality attributes.
In LateVa, quality is an important concern as many base models,

fragments and data endpoints (context services) with di�erent quality
accuracy can be involved in the process con�guration, so the quality
of the overall con�guration can vary widely and gets uncertain. For
instance, there can be more than one base model that satisfy a given
service request or diverse context services with for context data. In
this way, LateVamay optimize the process con�guration at run time by
applying Quality of Result (QoR) metrics, as in [Mur14e].
Regarding abstraction support in process con�guration, a

requirements driven approach [Lap07] enables the con�guration
of BPEL processes based on quality constraints. Similarly, a
questionnaire-driven approach [LR07] provides a step-wise
con�guration of reference processes at design-time. However, to

2Since Clafer does not support choosing the branding strategy, we cannot tune
the solver to control the order of how possible solutions (instances) are generated.
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the best of our knowledge, no framework is capable of customizing
QoR-driven con�guration of process variants run time.

Quality of Result Model (QoRM)

�e Quality of Result Model (QoRM) is re
ected through a
UML diagram, containing intents representing service requests, and
constraints QoR representing restrictions, see Figure 6.3 (a).

QualityOfResult can determine not only the selection of a
particular base model, but also the binding of inherent fragments
and context services. A Constraint is a key aspect of the QoRM,
that represents some condition, restriction or assertion related to
the context-aware process variability artifacts. It includes a set of
Conditions that are atomic formulae or implications. In a simpli�ed
version of the 6.3 (a) diagram, three constraints are considered:
(i) Time for the entire time (ExecutionTime) that a fragment or
context service takes for execution and its network channel to ping
(ResponseTime), (ii) Cost which represents the cumulative expected
cost of performing action, and (iii) DataQuality to exhibit the
Availability and Accuracy of provided context services.
In [Mur14e], we de�ned the domain model using a single ontology

(see Figure 6.3 (b)), containing six types of primitive classes which
include several individuals and object/data properties as follows:
(i) Intent individuals with hasIntentName data property mapped
to the name parameter in Figure 6.3, (ii) Scope individuals with
hasCon�gurationScope and hasInteractionScope data properties, (iii)
Time , Cost and DataQuality subclasses of QualityOfResult
class, (iv) BaseModel and Fragment as subclasses of Process
individuals, (v) DataEndpoint individuals which contain hasURI,
hasServiceName and hasDataModel data properties, and (vi)
ConfigurationModel individuals with hasFileName property
to point a particular variability model. Hence, the Fragment Selector
is capable of retrieving base models for a given petition and then a
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Figure 6.3: (a) A simpli�ed QoR model and (b) sample ontology

base model that meets user-de�ned QoRM is instantiated.

QoR-driven process con�guration (pure run time)

Once a base model execution reaches a dynamic variation point, the
process engine follows several steps. If there is no fragment assignment
for the current placeholder activity execution, this activity throws an
event to select a suitable fragment based on context data. Such selection
requires two types of processing. In the �rst interaction task, the
event coming from a variation point execution is triggered by the
Context Interactor to �nd a single data endpoint URI that satis�es
pre-established QoR constraints (by running a SPARQL query). Data
collected from a REST resource (in JSON) is mapped to a data
model object (by a hasDataModel data property) to automatically
perform the base model instance con�guration. For the latter, the
context values gathered from the REST service are mapped to placed
attributes in a variability model, in order to get a preferred fragment
choice considering pre-established constraints and fragments for each
variation point. Once a suitable fragment is resolved using the
solver, Fragment Selector signals the particular dynamic variation
point execution which executes the preferred fragment.
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6.4 Concluding Remarks

A�er detailing how LateVa supports context-aware dynamic process
con�guration, let us now revisit the challenges identi�ed at beginning
of the chapter and discuss how LateVa faces each of them.

1. Run-time variability: LateVa engine enables context-aware
dynamic con�guration of process variants. �is is achieved
by resolving dynamic variation points using a pre-established
binding strategy. Such resolution involves fragment selection and
execution bymeans of a variabilitymodel (expressed in a FM) and
Context Model Mapping.

2. Multiple binding times: LateVa supports startup and pure run
time bindings for enabling work
ow-based DSPLs. �e former
allows to determine static and dynamic variation points before
base model instantiation. �e latter con�gures static variation
points prior to base model instantiation, and subsequently
con�gures dynamic variation points during execution.

3. Context awareness and autonomic behavior: during basemodel
instance execution, dynamic variation points can interact with
surrounding context services to collect context data. Such data
is parsed to decide which of the available fragments are suitable
for the current context. �e decision making is realized with
automated decision guidance, using Context Model Mapping, a
variability model and constraint solving.

4. Abstraction support: LateVa has been extended to enable
quality-driven selection and con�guration. Speci�cally, our
framework enables abstractions to select relevant base models
and data endpoints based on user-de�ned QoR, and provides

exibility in terms of run-time con�guration.
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In this chapter we have presented the run-time phase for enabling
context-aware dynamic con�guration of process variants. We have
introduced a dynamic con�guration life-cycle consisting of four phases
such as context acquisition, processing, run-time resolution, and
binding and execution. We have also detailed how LateVa supports
multiple binding times, including startup and pure run time strategies.
To enable dynamic con�guration, LateVa makes use of Context Model
Mapping and constraint solving to decide which of the available
fragment choices �t according to context information. Finally, we have
introduced an extension to deal with abstractions in process variability,
namely QoR-driven dynamic process con�guration.
�is chapter concludes the contribution of this dissertation. �e

next part gives more details on the experimentation and tool support
developed for LateVa.
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“Ideas are easy. Implementation is hard.”
-Guy Kawasaki
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Validation
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Chapter 7

Experimental Evaluation

In this chapter, we present the experimentation results using LateVa
based on automatedwarehouse logistics andwind turbinemaintenance
case studies, which are an extended version of the examples introduced
in previousChapters 5 and 6. Weparticularly emphasize on the support
for run-time variability including the modeling, con�guration and
enactment phases as well as the di�erent processes that are part of those
cases. We also present the tools built around LateVa. �is includes a set
of modelers, services and APIs for interacting programmatically with
the engine. Finally, we discuss the results of the experimentation with
a quantitative assessment, as well as the limitations of our framework.

Structure of the chapter. �e remainder of this chapter is
organized as follows. We �rst describe the automated warehouse
logistics scenario and our experimentation with the case study for
storage operational process family (Section 7.1). As a second case study,
we outline a wind turbine maintenance process family from a wind
turbine manufacturer. �en, we describe the tools developed around
the LateVa framework (Section 7.2). Finally, we present a discussion
on the advantages and limitations of our approach (Section 7.3) and
conclude the chapter (Section 7.4). �is chapter presents and expands
upon work published in [Mur15a].
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7.1 Experimentation

In this section, we intend to extend the LateVa framework to two
industrial case studies to provide validation of the proposed approach.

7.1.1 Case Study 1: AutomatedWarehouse Logistics

In the �rst case study based on [Mur14b], we assessed the framework’s
e�ectiveness through a proof-of-concept storage warehouse
operational process family borrowed from our logistics partner
ULMA1. ULMA provides goods handling systems with a range of
solutions for automated warehouses and storage, baggage handling,
sorting systems, and picking facilities. It designs and develops ad-hoc
integrated logistic services and completes handling installations for
each customer, along with training and support.
Warehouse solutions commonly adopt a Warehouse Management

System (WMS) to control the movement of materials, stock
management and order ful�llment. Along the supply chain, the
role of a WMS is to improve the supply chain e�ciencies and reduce
total running costs of supply chain operations. For that purpose,
a WMS controls the receipt, storage and movement of materials to
intermediate storage locations or even to third party logistics, and
manages the associated transactions, including shipping, receiving,
putaway and picking. In order to monitor the progress of goods
through stages of the warehouse, a WMS interacts with automated
identi�cation and data capture systems, such as barcode scanners,
sensors, wireless LANs, and Radio-frequency Identi�cation (RFID), as
well as industrial control systems, such as SCADA and Programmable
Logic Controller (PLC) systems.
An automated warehouse is a facility where all or some of the tasks

related to storing, retrieving and moving inventory are carried out by
automated systems. Goods in the warehouse are tagged to allow them

1http://www.ulmahandling.com/en/
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to be located by so�ware systems (e.g., WMS) so that the inventory
can be continuously updated as goods move in, out, and around the
warehouse. �is is achieved by automated identi�cation and data
capture systems like RFID. Hence, once data is collected, there can
be either a batch synchronization and/or a real-time transmission to
a datastore, or even such data can report the status of goods in the
warehouse to running operational processes and monitoring tools.
An operational process encompasses a group of structured and

identi�able activities that contribute to moving a speci�ed and
measurable object inside an automated warehouse. As mentioned
before, each automated warehouse can be complex and comprises,
therefore, di�erent operational processes, such as storage, retrieval and
picking. �ese are further described below:

• Storage process: allows goods to be stored based on di�erent
location search strategies detailed in aWMS, for example in terms
of �xed location, next empty location, and storage unit type.

• Putaway process: enables the complete removal of goods from
a warehouse location following disparate extractions strategies,
for example in terms of FIFO, LIFO, least quantity and expiration
date. Extracted goods are then moved to an intermediate area for
custom shipping con�gurations.

• Picking process: merges both storage and putaway processes. It
consists of collecting products in a speci�ed quantity to satisfy
customer orders. A�er each picking operation, the transport unit
(e.g., pallet, cardboard box) with its remaining products is routed
back to a disused warehouse location.

Each of the those operational processes may di�er from the
preceding one, in
uenced in various ways by warehouse types, storage
areas and sensors, but may also expose similarities, which can, to
some degree, actually work in similar conditions. Under the current
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practice, developers can be tempted to reuse some kind of existing
process model parts, but normally operational processes are modeled
from scratch for each new warehouse installation. It is therefore clear
that such operational processes are likely to be susceptible to errors,
for instance in determining the correct activity or control-
ow. In a
similar vein, designing ad-hoc operational processes may also become
a time-consuming and arduous task [Der12,Böh13].
Process reuse can reduce the complexity of managing large

collections of similar process variants; however, operational processes
should o�er greater 
exibility so that a WMS can make appropriate
decision making in near real-time fashion. For instance, depending on
context data coming from presence sensors, the WMS can decide on
suitable movements to ensure high-rates on picking operations. �is
means that we cannot prede�ne which branches of the control-
ow
of a running process should be activated due to the unpredictability
of upcoming PLC and sensor data. It is therefore crucial to pick
up events just-in-time to decide which of the pre-de�ned 
ows must
be activated. Otherwise, inadequate event processing might have a
negative impact on the day to daywarehouse operation, o�en requiring
manual intervention (e.g., intrusive process recon�guration).

Problem: ULMA wants to manage the variability of operational
process families (storage, putaway, and picking) considering
context data at run time.
Solution: Apply LateVa to model and manage operational process
families (storage, putaway, and picking), starting from automated
warehouse storage processes. An adequate support in modeling
such variant-rich operational processes enhances reuse of variable
parts of context-aware operational processes and, by that, may
promise an improvement of e�ciency during development.
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Figure 7.1: Automated warehouse scenario.

Storage Operational Process Family

To provide a �rst step into this direction, the storage operation process
case study analyses the applicability of LateVa as one means to improve
the process variability in the automated warehouse logistics domain.
In the proposed case scenario (see Figure 7.1), the warehouse

consists of a single material entry point where goods are packed in
cardboard boxes, two corridors, 2 picking workstations and a single
material exit point. Once the box is registered in theWMS and checked
as well-formed box according to pre-established location dimensions,
the box is placed in p1 (each p indicates a point in the conveyor system)
to initiate the storage work
ow. �is entrance may take place through
complex material entry strategies (RFID, barcode scanner and manual
entry) in each WMS (S VP Scanner in Figure 7.2). As soon as p1
scanning is completed, the box moves forward to p2 where a loading
gauge checkpoint operates.

85



S_VP_Scanner
Move box 
forward to 
checkpoint

D_VP_Checkpoint

D_VP_Decisionpoint

| The pre-established scanner 
choice will be selected (e.g., rfid, 

barcode, etc.)

| Context data coming from 
checkpoint will be considered for 
moving backward or forward

| Context data coming from 
decision point will be considered 
for moving the box to the right 

location. In case of pending boxes 
in shared conveyors, the box will 

recirculate.

f5BarcodeEntry

f1CheckpointToDecisionPoint

f2CheckpointToInit

f3MoveToLocation

f4Recirculate

Find a disused 
location

Move box to 
decision point

Move from p1 to 
p2

Send error 
message

Move from 
decision point to 

location
Check box status

Move from 
decision point to 

decision point
Call f3ToLocation

Check and 
register the box

invalidBox

validBox

(a) Base model

(b) Fragments

| This includes a "call activity" 
action which subsumes f3

Figure 7.2: (a) Base model and (b) fragments for storage operational
process family.

At p2, the framework gathers checkpoint data to decide
whether the box can be routed to the physical warehouse location
(D VP Checkpoint in Figure 7.2). If not, it dispatches a move-
backward activity to put the box back at p1. Otherwise, if LateVa
concludes that the box is quali�ed by being located inside the
warehouse, the storage process continues its execution up to a
decision point where it would be forced to prevent an operation block
(D VP Decisionpoint in Figure 7.2). In that case, the system will
decide to route the box to a �xed location or recirculate it in case of
pending boxes in a corridor.
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AutomatedWarehouse
xor OperationalFlow

HighRates
Basic

xor D_VP_Scanner
           // different box entry alternatives

RFID
Barcode

FR_f5BarcodeEntry_Scanner
           // simple barcode func. Other entry modes are omitted
 Manual
Layout

D_VP_Checkpoint
xor P2

FR_f1CheckpointToDecisionpoint_P2 // everything ok, move forward
boxWidth : integer // in mm

[this < 288]
boxLenght : integer // in mm

[this < 492]
boxHeight : integer // in mm

                                                                  [this < 531]
boxWeight : integer // in kg

[this < 7]
FR_f2CheckpointToInit_P2 // in case of any error, move backward

xor D_VP_Decisionpoint ?
FR_f4Recirculate_Decisionpoint

boxInCorridor : integer // number of in-transit boxes expected by the scheduler
[this > 1]

FR_f3MoveToLocation_Decisionpoint

// Global constraints
[Basic  => !FR_f4Recirculate_Decisionpoint]
[FR_f1CheckpointToDecisionpoint_P2 => D_VP_Decisionpoint]
[FR_f2CheckpointToInit_P2 => !D_VP_Decisionpoint]

Figure 7.3: Clafer model for storage operational process family.

�e storage work
ow re
ects a typical scenario in which packaged
goods are stored into an automated warehouse based on di�erent
location search strategies. Figure 7.2 presents the storage process’s main
activities, containing one static variation point (colored in green) and
two variation points (colored in blue). It orchestrates the whole process
to track and control all warehouse 
ows, and enables interaction
between physical devices (e.g., conveyor systems, pick to light systems,
RFID, and presence sensors, etc.), and warehouse operators (e.g.,
maintenance manager, workstation agents, and picking operation
workers). �is allows monitoring of current, operational process and
warehouse status, as well as complex event triggering from installed
sensors and PLC/SCADA systems.
An automated warehouse is founded on one simple premise: it

must guarantee a high-rate operational 
ow so that storage, retrieval
and picking work
ows should be aware of existing boxes in shared
conveyors. Intending to produce high-rates, presence sensors must
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indicate the number of total boxes in such shared conveyor systems
in order to ensure that a given threshold is not exceeded. In this
light, LateVa constantly communicates with the scheduler, monitors
processing movements and coordinates operations. For instance, as
illustrated in Figure 7.3, in case of no pending boxes leaving the
warehouse locations, the entry box is routed back to a �xed location
by executing the right fragment (f3MoveToLocation).

Preliminary Results and Discussion

As depicted by Figures 7.2 and 7.3, we generated 1 base model with
3 variation points (one static and two dynamic), 5 fragments and 1
variability model with 22 features and 8 constraints, covering 3x2x2 =
12 process variants. �ese models were used to generate a test case
for 100 storage operations. We ran the experiment as a standalone
application on a 13inchMacBookAirwith 8GB 1600MHzDDR3RAM,
and Core i7 running @2 GHz.
Figure 7.4 shows the minimum, maximum, and average time taken

by each dynamic variation point before fragment execution (pure run
time strategy). Consequently, the average Time-to-resolution (TTR)
that a base model instance has to wait for using this kind of variation
points is 12.83 ms. �e delay can be omitted by including events and
exclusive gateways in the modeling phase. However, in this case study,
we demonstrate the feasibility of applying LateVa to manage dynamic
process variability in an automated warehouse logistics domain. �is
solves several issues raised at the beginning:

• Reuse: this is achieved through separation of concerns, i.e., by
separating commonality and variability speci�cation of process
variability into disjointed models. �e key model (variability
model) captures variability at the domain level in which variant-
rich operational storage processes have been assembled.

• Context awareness: the variability model may contain two
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Figure 7.4: TTR of dynamic variation points for case scenario 1.

types of domain features: features for domain abstraction and
context features related to context data. Dynamic context
data coming from PLC/SCADA systems and installed sensors
can be controlled by establishing constraints and automatically
customizing process variants.

Disclaimer: �e proposed synthetic use case has not been tested
on a real industrial environment. All context interactions have
been simulated using synthetic RESTful services. Context Model
Mapping was adopted for context mapping.

7.1.2 Case Study 2: Wind TurbineMaintenance

�e second case scenario presented in this section has been prepared
at the scope of work with Alstom2, which means to automatically
integrate information from di�erent wind farm data sources into
Operation and Maintenance (O&M) processes. Alstom is one of the

2http://www.alstom.com/
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world’s leading energy solutions and rail transportmanufacturer, active
in the �elds of passenger transportation, signaling and locomotives,
with products including the AGV, TGV, Eurostar, and Pendolino high-
speed trains, in addition to suburban, regional andmetro trains, among
others. Alstom power activities include the design, manufacturing,
and supply of products and systems for the power generation sector
and industrial markets. �e group covers most of the energy sources,
including gas, coal, nuclear, hydro andwind; the latter is our focus here.
Wind farms regularly incorporate sub-stations to provide a

so�ware-de�ned protection for wind farm grid connection and may
also have meteo-stations for weather forecasting. At wind farm
level, multiple stakeholders such asOriginal EquipmentManufacturers
(OEMs), business owners, maintenance manager and other third
parties may store, process, analyze and access real-time and historical
data from di�erent gateways of installed PLC/SCADA systems, as well
as sub-stations and meteo-stations. Beyond the particulars of di�erent
wind turbine providers, an onshore/o�shore wind turbine consists of a
number of components sourced fromOEMs, which o�er hardware that
can be assembled to form a convenient power generation machine.
A simpli�ed version of a wind turbine is shown in Figure 7.5

(a), where seven main components are considered: (i) wind turbine
Blades, (ii) a Pitch for controlling blade’s speed, (iii) a Rotor for
integrating blades, (iv) a Gearbox increases blades’ speed, (v) a Yaw for
controlling the rotation of the tower, (vi) an electricity Generator, and
(vii) a volt AC/DC Converter. Apart from high-level data provided
by wind farms, such components (each having an individual data
model) also emit �ne-grained component-speci�c raw data that can
be accessed by di�erent stakeholders of wind energy domain to get
meaningful insights by structural health monitoring (SHM), condition
monitoring predictive failure analysis (PFA), operation status, and real-
time monitoring such as power curve monitoring [Sch13].
Data services are globally dispersed under control of Alstom and
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| KPIs dashboard and alerts. Alert allows to 
monitor certain critical performance metrics, e.g., 
at component-level. This triggers the O&M process.
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ComponentControlSystem

Rotor Gearbox YawPitch Generator

Component level 
data
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ConverterBlade
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Onshore Offshore SCADASystemProvider
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(xor)

or

Legend
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(a) A simplified wind farm ecosystem

(b) Wind farm scenario

Figure 7.5: (a) A simpli�ed wind farm ecosystem and (b) the wind farm
scenario.

ready to be used whenever needed. Atop of such services, a number of
process models may exist which orchestrate domain-speci�c activities
related to aforementioned services and deal with a huge data streams
for analytics. When a Key Performance Indicator (KPI) goes into an
“alert” state, the Cloud platform triggers a O&M process to check the
status of a particular wind farm and proceed with maintenance work.
An O&M process includes a set of activities to e�cient wind

turbine components maintenance. To that aim, it encompasses
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interconnected companies along its supply chain (see Figure 7.5 (b)),
fromonshore/o�shorewind farmswherewind turbines are installed, to
spare parts suppliers and certi�ed Technical Assistance Service (TAS)
companies which perform di�erent types of interventions such as
periodic maintenances or breakdown repairs.
Wind turbine components incorporate high levels of quality and

reliability due to the harsh conditions they are subjected to, thus
requiring high availability of manufacturing assets in order to reduce
cost of production downtimes and the potential impact on delivery
times. To tackle this issue, Alstom o�ers its customers a technical
maintenance and repair service by means of a O&M process to
minimize the number of unscheduled downtimes and reduce wind
turbine breakdowns. However, considering the di�erent types of wind
farms, components, maintenance contracts and stakeholders, it turns
out that designing ad-hoc O&M processes for a particular scenario is
not e�cient; therefore, variability should be treated andmanaged. �is
would lead to a reduction in O&M process modeling time, as well as
an increase of e�ciency and performance while in operation.

Problem: Alstom wants to manage the variability of its O&M
processes considering context data coming from wind farms.
Solution: Apply LateVa to model and manage O&M process
families, considering two of the components such as rotor blades
and yaw system. �is enhances reuse of existing O&M processes,
as well as an intelligent decision making on suitable spare parts
suppliers based on context data. Hence, Alstom expect to obtain a
reduction of unscheduledmachine downtimes on customer’s plants
and improvements of managing the interventions by managing
dynamic variability of its own O&M processes.
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Figure 7.6: Base model for wind farm O&M process process family.

Wind TurbineMaintenance Process Family

As illustrated by Figure 7.6, in the event that a component wear or
failure in a wind turbine is detected, the systems triggers theO&Mbase
model to determine the actual health status of wind farm components
and evaluate alternatives in case of error.
In case of a real wind turbine error, the O&M base model checks

the maintenance agreement and the work
ow continues by collecting
component-level data to determine the degree of severity of the error
and select a suitable spare part supplier, as well as a convenient TAS
team. In Figure 7.6 two dynamic variation points (D VP RotorBlades

and D VP YawSystem in Figure 7.6) have been placed in order to
consider those components that are potentially vulnerable to errors
[Tch14]. However, this base model can be expanded to consider all the
components shown in Figure 7.5 (a).
�e variability model (see Figure 7.7) shows selectable fragment

alternatives, context features and corresponding constraints. In this
case, we add fake context variables to yaw and rotor blades features.
Apart from component-level context values, aspects such as the

location of the referred wind farm, spare parts suppliers and TAS
companies, availability of spare parts or capacity in suppliers and
skilled sta�, intervention costs and response times can also be taken
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WindTurbine
   xor Type

       Offshore
       Onshore

   xor MaintenanceContract
NonStop
Basic

Component
D_VP_YawSystem

         xor Y01 ?
FR_f1_Y01

yw200 : integer // yw200 < 90
[this < 90]

FR_f3_Y01
ytd5 : integer // ytd5 > 6

[this > 6]
ytd7 : integer // ytd7 > 8

[this > 8]
ytd9 : integer // ytd9 < 34

[this < 34]
ytd11 : integer // ytd11 < 22

[this < 22]
FR_f4_Y01

D_VP_RotorBlades
        xor RB01 ?

FR_f2_RB01
FR_f5_RB01

fr1010 : integer // fr1010 in {300..400}
[this > 300 && this < 400]

fr1011 : integer
[this > 250] // fr1011 > 250

fr1012 : integer
[this > 180] // fr1012 > 180

// Global constraints
[FR_f4_Y01 => FR_f2_RB01] // F4 implies F2
[Basic => !FR_f3_Y01] // Basic excludes F3

Figure 7.7: Clafer model for O&M wind farm process family.

into account in run-time decision-making.
A�er assigning the spare parts supplier for each component and the

TAS company commissioned to perform the work, LateVa starts the
fragment execution.3�iswill facilitate the coordination of the process
reporting events such as the spare part shipping to the customer and its
arrival at the corresponding wind farm. In this way, the selected TAS
company will properly manage their sta� to perform the work at the
right time. Upon completion of the intervention, it will be checked that
the new component correctly emits time series to the Alstom Cloud
platform.

3In this example we just created synthetic fragments due to the lack of real
component-level maintenance information.
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Figure 7.8: TTR of dynamic variation points for case scenario 2.

Preliminary Results and Discussion

In this case study we have employed 2 dynamic variation points, 5
synthetic fragments, and a variability containing 25 features and 10
constraints. As in the previous case scenario, we generated a test case
for 100 base model executions and ran the experiments as a standalone
application on a 13inchMacBookAirwith 8GB 1600MHzDDR3RAM,
and Core i7 running @2 GHz.
Figure 7.8 shows the minimum, maximum, and average time taken

by each dynamic variation point before fragment execution (pure run
time strategy). �e average TTR that a base model instance has to
wait for using dynamic variation points in a parallel gateway is 13.81
ms. Even having such a reasonable TTR, we believe that this can be
improved by using asynchronous activity execution.
In this case study, given themagnitude of the problem, the adoption

of LateVa would have a major impact on the involved stakeholders,
wind farm customers, Alstom and spare part suppliers, e.g., as is
intended in the CREMA project4. �e presented use case might be

4http://www.crema-project.eu
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extended to other critical wind turbine components, increasing the
current service level and maintenance monitoring. �e four issues
raised in this work are resolved as follows:

• Reuse: component-level fragments can be reused along di�erent
wind farms. �is way O&M processes can share pre-established
process structures, avoiding unnecessary ad-hoc modeling.

• Context awareness: data from PLC/SCADA systems can be
gathered in a real-time fashion in order to consider which of the
available options is the most suitable.

Disclaimer: �e proposed synthetic use case has not been tested on
a real industrial environment. We used synthetic RESTful context
services and fragments to test the base model execution, as well as
for performance measures. Context Model Mapping was adopted
for context mapping.

7.2 Tool Support

Automation within DSPLs aims at reducing the load of work on
developers by identifying repetitive tasks that do not need human
intervention and can be automatized. Usually, in work
ow-based
systems these tools are in charge of reusing exiting parts that are
common and can be factorized from di�erent work
ow scenarios.
Such tools allows developers to focus on domain requirements and
thus to spend less time solving common problems, such as in de�ning
and managing context-aware and variant-rich warehouse operational
processes or wind farm O&M processes. LateVa intents to provide
a set of tools that can be used at di�erent stages of the process life-
cycle [Wes12], from the modeling and con�guration, and going all the
way down to the execution and binding of processes at run time.
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1  public interface LatevaEngineAPI {
2
3   BaseModel deployBaseModel(String baseModelName);
4
5   List<BaseModel> listBaseModels();
6
7   FragmentModel deployFragment(String fragmentName); 
8
9   List<FragmentModel> listFragments();
10
11   VariabilityModel deployVariabilityModel(String varModelName, long basemodelId);
12
13   List<VariabilityModel> listVariabilityModels();
14
15   void submit(String jsonRequest, Properties props);
16 }

Figure 7.9: LateVa API interfaces.

In order to have a better understanding of the tools, in this section,
we brie
y describe the set of tools implemented around LateVa.

7.2.1 LateVaModeler

�e LateVa modeler is an extension of the Activiti Designer5 which
includes variability-speci�c constructs such as static and dynamic
variation points inside “LateVa Extension”. �ese tasks implement
their own behavior, as described in process variability metamodel (see
Figure 5.2) and placed in lateva-modeler-uimodule.

7.2.2 LateVa Engine

�e LateVa engine includes the three services mentioned in Chapter 6
such as Process Con�gurator, Context Interactor, and Fragment
Selector. �ese were implemented in the lateva-enginemodule.
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7.2.3 LateVa API

Java API

LateVa API provides programmatic access to deploy and read base
models, fragments and variability models among others. Figure 7.9
summaries the set of interfaces to represents functions in LateVa’s API.

More examples and LateVa source code can be found on Github:
https://github.com/amurguzur/lateva

7.3 Discussion

In this section we present a quantitative evaluation of the LateVa
framework in terms of computation time and scalability, as well as
enumerate the limitations and weaknesses of our toolkit.

7.3.1 Quantitative Analysis

�is section presents a quantitative evaluation of the LateVa framework
to understand how the run-time variability may impact the standard
process instance execution. �rough an empirical study and
comparable evaluation metrics, we evaluate the scalability and
computation time (performance) of the framework using a synthetic
scenario. We do not consider QoR during con�guration and we
employ Context Model Mapping mechanism; however QoR-driven
con�guration using ontologies was evaluated in [Mur14e].

Experimental Setup

For the evaluation, we created a synthetic base model as a baseline (C1
in Table 7.1) which consists of 4 dynamic variation points (D VP act1

5We followed the steps described in http://www.activiti.org/userguide
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and D VP act2 sequentially, and D VP act3 and D VP act4 in a
parallel gateway) and the corresponding control 
ow. Each variation
point comprises 4 fragment choices. Variability is described in a
feature model with 21 features, 8 attributes (2 for each variation point,
producing 8 context features) and 8 constraints. Hence, in C1 we obtain
in total 44 = 256 possible variants. Additionally, we created another
eleven cases and grouped all them into three main sets:

1. C1-C4 increasing number of fragments (Set1): represents
progressively larger number of fragments for each variation
point, from 4 (C1) to 32 fragments (C4).

2. C5-C8 increasing number of data mappings (Set2): represents
progressively larger number of context features, from 16 (C5) to
128 (C8), all having Integer values.

3. C9-C12 increasing number of variation points (Set3): represents
progressively larger number of variation points in the basemodel,
from 5 (C9) to 8 (C12).

Factors

For Sets (1-3), we distinguished three di�erent con�guration factors
that may impact scalability and performance metrics when dealing
with large sets of process variants:

1. Number of fragments (Fra): measures how the increasing
number of fragments per variation point may in
uence system
performance.

2. Number of context features (Con): shows the overall number
of attributes that correlate context variable/value pairs in the
variability model.
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Table 7.1: Aggregated evaluation results (TTR for Min, Max and Avg in
ms)

Set Case Factor Metric (TTR of 500 runs)

Fra Con Var Min Max Avg # of variants

Set1

C1 4 8 4 9 20 10.977 256
C2 8 8 4 9 65 12.079 4,096
C3 16 8 4 10 53 12.595 65,536
C4 32 8 4 12 61 15.118 1,048,576

Set2

C5 4 16 4 9 55 11.790 256
C6 4 32 4 10 54 13.483 256
C7 4 64 4 13 68 15.923 256
C8 4 128 4 17 72 21.730 256

Set3

C9 4 10 5 9 71 12.457 1,024
C10 4 12 6 9 69 13.307 4,096
C11 4 14 7 10 39 14.116 16,384
C12 4 16 8 10 70 15.312 65,536

14.074

3. Number of variation points (Var): supports generalization by
checking how the framework operates with an increasing number
of variation points.

Metrics

In order to get reliable numbers, the base model was processed
500 times for each evaluation case (provided as a supplement �le).
Performance metrics were measured by TTR, which indicates the
time needed by the engine to reactively con�gure a singular dynamic
variation point.6 We evaluated the results against the following three
quantitative metrics:

1. Min. TTR (Min): minimum TTR for each evaluation case
considering all variation point resolutions.

6All datasets and the supplement spreadsheet �le of the evaluation are available
at: http://git.io/vvDV4
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Table 7.2: Evaluation results (Avg TTR for each variation point in ms)
Set Case Metric (Avg TTR)

D VP act1 D VP act2 D VP act3 D VP act4 D VP act5 D VP act6 D VP act7 D VP act8

Set1

C1 10.344 10.356 12.224 10.984 - - - -
C2 11.312 11.438 13.258 12.310 - - - -
C3 11.824 11.880 13.962 12.716 - - - -
C4 14.320 14.420 16.512 15.222 - - - -

Set2

C5 10.956 11.156 13.150 11.900 - - - -
C6 12.848 13.018 14.766 13.300 - - - -
C7 15.014 15.428 17.342 15.910 - - - -
C8 20.047 21.010 23.332 22.502 - - - -

Set3

C9 11.012 11.094 14.732 13.408 12.040 - - -
C10 11.154 11.096 16.398 14.952 13.788 12.454 - -
C11 11.244 11.126 17.672 16.570 15.280 14.140 12.780 -
C12 11.438 11.420 19.734 18.386 17.134 15.962 14.908 13.516

2. Max. TTR (Max): maximum TTR for each evaluation case
considering all variation point resolutions.

3. Avg. TTR (Avg): averageTTR for each evaluation case considering
all variation point resolutions.

Results

�e results of the study in terms of the average number of scenario runs
can be found as numbers in Table 7.1 and Table 7.2, and as graphics
in Figure 7.10. All the results are given in milliseconds (ms) and
numbers, where appropriate. Considering all 500 evaluation runs,
Table 7.2 provides the average TTR for each variation point in each
Case (1-12).
As an aggregated snapshot, Table 7.1 presents the observed metrics

(Min, Max and Avg TTR) for all evaluation cases and related factors
(Fra, Con and Var). Overall, we may state that the complexity of our
framework scales linearly with respect to the number of fragments
(Fra), context features mapped to context data (Con) and variation
points (Var) with little impact on performance. We argue that this
can help to manage large sets of variants (e.g., 1,048,576 in C4 with 8
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Figure 7.10: Quantitative evaluation results.

context features) that involve a wide variety on context data types (e.g.,
128 context features are considered in C8 for 256 variants). Additional
evaluation details are given below.
As depicted by Figure 7.10 (a), the increasing number of fragments

per variation point slightly a�ects the average performance for
resolving a variation point. For instance, as in Table 7.1, the di�erence
between the average TTR for C1 with 4 fragments and C4, where
32 fragments are placed for each variation point, is about 4.141 ms.
Similarly (see Table 7.2), we can �gure out how the resolution of
variation points in a parallel gateway (e.g., 16.512ms for D VP act3 and
15.222ms for D VP act4 in C4) ismore TTR consuming in comparison
to placeholder activities that are coordinated sequentially (e.g., 14.320
ms for D VP act1 and 14.42 ms for D VP act2 in C4).
As can be extracted from Table 7.1, a minimal performance penalty

is obtained when substantially adding more context features to the
variability model. �e average TTR for processing and con�guring
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dynamic variation points based on 128 context features is 21.730 ms.
If we compare this with C5 (see Figure 7.10 (b)), the average execution
time increases to 9.94 ms.
Regarding TTR when the increasing number of variation points in

a base model (see Figure 7.10 (c)), it can be deduced that sequentially
modeled placeholder activities do not a�ect overall processing time
(around 11.012 ms and 11.094 ms for C9 in Table 7.2) , whilst additional
variation points in a parallel gateway employmore TTR (e.g., 14.732ms
for D VP act3 in C9, 16.398ms in C10, 17.672ms in inC11, 19.734ms in
C12). Furthermore, due to the current implementation, LateVa needs
more time to resolve the �rst variation point than similar activities in
a parallel gateway. For instance, while D VP act3 in C9 requires 14.732
ms, it goes down to 12.04 ms for D VP act5. In terms of scalability, the
di�erence between C9 and C12 avg. TTR is still minimal (2.855 ms).
Using the empirical data we can deduce that even though Set3

metrics are competitive andmay constitute an improvement to existing
process recon�guration alternatives (around 300 ms for process model
and instancemigration in [Bar12] and formodel operations in [Alf14]),
even for the more complex cases C11 and C12 in this evaluation
example, due to the fact that LateVa is built to support multiple
binding times such as startup-time and pure run time, this causes its
performance to be lower than that of Set1 and Set2.

Threats to Validity

By deferring process variability to run time, separating process
variability modeling into disjointed models (i.e., positive variability)
and considering context data, the 
exibility of provided processes can
be improved without the need for human intervention. In LateVa, the
time to automatically customize a single variation point is reasonable
(≃ 14 ms) even with a large number of process variants, so that the
total time to complete a process instance execution is slightly increased.
�erefore, we argue that our framework is e�cient when dealing with
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large set of process variants (scalability) in context-aware systems,
under controlled circumstances (Sets 1-3).
Fragments and variability models can be updated when necessary

proving the availability of the system being modeled. �e time
consumption of the adaptation approach scales linearly, even in case
of constraint solving. However, the limited amount of experimental
data may in
uence this result, so it would be interesting to learn more
about the usefulness of the framework in a real-life scenario.

7.3.2 Limitations

LateVa is not a panacea. We have developed a prototype framework to
demonstrate the feasibility of the proposed solution. In the following
lines, we discuss the limitations of the approach both from the point of
the implementation and from the applicability of LateVa.

1. Modeling e�ort: the base models, fragments, variability models
and context mappings used in the empirical study were just
examples. We do not have enough evidence about the e�ort
required during the modeling. Nevertheless, we argue that
LateVa would not exponentially increase human e�ort during
the modeling phase since this phase is fully tool-supported. We
expect to quantify this e�ort as well as validate the metrics of the
empirical study in real world scenarios.

2. Activiti and Clafer dependent: although LateVa implements
the process variability metamodel presented in Figure 5.2, the
framework is tight to Activiti and Clafer. For BPMN processes,
we extended the Activiti framework with special constructs that
could be reused in other BPMN2 compliant framework such as
Camunda7.

7https://camunda.com/
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3. Limited context data types: in the experimental evaluation we
employed Integer data types as context data. �is was mainly
because Clafer only supported such data type (now supports
strings). We should also consider more data types (strings, reals,
etc.) as context features in the variability model speci�cation.

4. Limited context interaction: LateVa only allows RESTful
services to be consumed on context interaction. However, this
could be extended to support other protocols such as SOAP
services, TCP, MQTT or more.

5. Lack of real-world evaluation: we provided a quantitative
evaluation, but we did not have any real-world analysis. �e
lack of real-world evaluation is a common problem in the
�eld of process variability [Ayo15], partially because the lack of
accessibility to real-world processes and datasets.

7.4 Summary

In this chapter we presented the experimentation of the LateVa
framework. �e purpose of both scenarios, i.e., automated warehouse
logistics andwind turbines, was to determine the potential applicability
of LateVa in industrial work
ow-based systems. We also presented
in detail the tools built around LateVa, including the LateVa modeler,
LateVa engine, and an API. �e last part of the chapter focused on
a quantitative evaluation and a justi�cation for the choices made
in the framework. For the evaluation we have discussed how
our approach stands regarding performance and scalability using a
synthetic scenario.
�is chapter concludes the third part of this dissertation dedicated

to the validation of the LateVa framework. In the next chapter we
summarize the main contributions, draw conclusions, and de�ne a set
of perspectives for future work.
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“Your time is limited, so don’t waste it living someone else’s life”
-Steve Jobs

Part IV

Conclusion
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Chapter 8

Conclusion

How should we design and execute variant-rich work
ows for the new
era of data-intensive systems? �is dissertation shows that the answer
can be quite simple: a context-aware dynamic variability modeling
and execution approach, based on FMs and constraint solving, can
achieve a reasonable computation time in awide range process families,
o�ering an e�cient and automated resolution (process con�guration)
mechanism at run time.
While process (variability) modeling and work
ow execution

engines will undoubtedly evolve, we hope that the LateVa framework
proposed here can, at very least, o�er a useful reference point. �e
LateVa framework is currently only 3600 lines of code, and models
built on it are anecdotal examples rather than real-world work
ows.
In an area where application requirements and context changes are fast
evolving, we believe that run-time variability management, over the
di�cult part of the large variability that some particular systems may
exhibit, can enable greater 
exibility in process con�guration.
Even if LateVa has not been tested in real-world industrial settings,

we believe that its main contribution is to enable context-aware
process con�guration of process variants at run time. As work
ow-
based systems grow in complexity, they will need to manage process
variability in order to facilitate reuse and to raise the level of abstraction
for future work
ows and frequently used control-
ow. �e use of

107



process variability in today’s dynamic environments is considerably
more di�cult than the widely studied static problem, partially due
to changing context data. In LateVa, dynamic variability of such
work
ows solves this problem by enabling process con�guration at
run time. At the modeling phase, separation of concerns allows
base models, fragments, and variability models to e�ciently coexist,
improving developer’smodeling e�ort (“design by reuse”). At run time,
the engine can resolve variability in an automated fashion with aminor
performance penalty.

Structure of the chapter. In the rest of this chapter, we summarize
a few of the lessons that in
uenced this work (Section 8.1). Finally, we
sketch areas for short-term/long-term future work (Section 8.2).

8.1 Lessons Learned

The importance of separation of concerns. One interesting
lesson is how to model process variability, i.e., decide between negative
and positive modeling. In many cases, negative has been used to
encompass all process variants in a single con�gurable process model
which actually provides major visibility of all possible alternatives
compared to positive variability. However, as it was pointed out in
the comparison in Chapter 3, positive modeling is taking hype over
the last years. Why is that? �is is partially because it allows to model
commonality and variability is separatedmodels and thus is “scale free”.
Essentially, this is an interesting way to approach large-scale

process families because it means that variants can be created on-
demand without a�ecting ongoing ones. For example, LateVa gives
developers the ability to create base models and fragments within the
domain engineering phase to reuse existing models in the application
engineering phase. During execution, new fragments can also be
created to replace existing ones, without requiring users to choose
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manually which alternative is the right for current context.

Flexibility over complexity. While it can be su�cient to con�gure
process variants at design-time (using either con�guration or
deployment binding), another lesson from our work is that real-world
work
ow-based systems are o�en more complex, and it is 
exibility in
these complex systems that matters. In particular:

• Most process variants will combine context data in data-intensive
environments, e.g., parsing context data from underlying sensors,
services or APIs, and them using this data to decide on the
appropriate 
ow-routing.

• Most process variants will claim 
exibility in context-aware
systems, requiring run-time and automated execution models
that behave well under dynamic conditions.

For example, suppose that a process variant created at design-time,
e.g., using a con�gurable processmodel, was updated during execution.
�e specialized systemmight interrupt the process execution at the end
of each activity that involves intrusive monitoring capabilities to detect
potential changes, and thus might incur performance penalties.
We believe that due to the unpredictable nature of dynamic

environments, context data will continue to be important, requiring
so�ware systems to defer decisions to run time, as in DSPLs. In these
types of environments, we believe that run-time variability engines will
have to be optimized for an e�cient execution and provide 
exibility
bene�ts.

Applicability and performance. One interesting lesson is how
to design an engine that does not look bottleneck. In many cases,
deferring decisions to run time might limit the performance of the
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work
ow-based system, somost of the e�orts have been put on design-
time variability. For example, Provop [Hal10], Template & Rules
[Kum12] and vBPMN [Döh13] enable process con�guration at design-
time. Why is that? �ese approaches assume that in a controlled
environment produced process variants will rarely change over time.
�is type of variability works best in static environments, but not

in dynamic settings where context changes and user requirements may
constantly evolve. We believe that LateVa could be applicable in latter
conditions while performance will not be unnecessarily compromised.

8.2 Perspectives

Even if the results obtained from this research can be considered
consequent, there are still several areas that can be further explored.

8.2.1 Scope and Short-term Perspectives

Several areas are still open for improvement. Here below we present
some of the points that would improve LateVa in the short term.

Correctness checking. In LateVa, we have analyzed our framework
for correctness support including syntactical correctness but not
behavioral correctness. �e former guarantees the correct structure
of the customized models, e.g., avoiding disconnected models. �e
latter guarantees the correct behavior of the customized models to
ensure process instance completion, e.g., by avoiding deadlocks and
livelocks. Since our framework con�gures process variants at run time,
at least the behavioral correctness of each individual customization
a posteriori can be di�cult, as it was reported in [LR13]. However,
behavioral correctness support would provide a more exceptional
solution dealing with data-
ow correctness and providing a guidance
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to avoid livelocks during execution. �is would be a good point for the
near future.

Support formoredata types and sophisticatedmodels. As was
brie
y discussed in Chapter 7, the evaluation only considered Integer
data types as context values. �is was because Clafer solver only
allowed for Integer attributes. It would be desirable to move on to test
more data types and validate evaluation results with a more extensive
collection of data types, as well as more sophisticated models (base
models, fragments, and variability models).

Monitoring UI. Although “Process Explorer” was initially planned
in [Mur13b], LateVa does not support this feature yet. Suchmonitoring
capabilities would provide access to the LateVa engine and its API
for process administration, including: (i) variability management
to manage and change pre-de�ned variability models, (ii) instance
inspection to inspect and �lter details of running process instances, and
(iii) statistical historic data analysis to supervise historical context data.
�e latter might also encompass data ingestion and processing.

REST API. �e REST API will decouple monitoring UI and third-
party application integration. �erefore, clients of the REST API will
use the supplied variability aliases to talk about process variability,
and will be unaware of the connection and location details. �e
same interfaces and resources from Java API can be used, so the
implementation of REST API is fairly straightforward.

Framework agnostic. Although the mentioned API interfaces are
framework agnostic, the various implementations of these interfaces
are framework speci�c (Activiti and Clafer). �is could be expanded
to consider other frameworks and/or languages. It would mean
developers with framework-agnostic LateVa version that would be
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able to quickly get up and running process variants using the desired
platform such as Activiti, Camunda, Apache ODE, Clafer, CVL, etc.

Experimental but real-life evaluation. �e presented evaluation
was based on synthetic models. It would be bene�cial to evaluate the
applicability of the proposed framework in real-life situations. �is
would require to access and analyze existing work
ows and inherent
context data, to successfully model process and context variability in
more elaborated models.

8.2.2 Long-term Perspectives

In order to further improve LateVa, we also sought additional
perspectives in the long-term.

Support multi-perspective con�guration. Although we moved
in such direction [Mur13c, Mur14c], we consider that it would be
interesting to analyze how multi-perspectives process con�guration
can be achieved while preserving separation of concerns and run-time
support. �is means that not only functional perspective will in
uence
con�guration, but also other process perspectives (e.g., organizational
or informational) described in Chapter 2.

Recommendations-driven con�guration. Current Fragment
Selector only supports two di�erent resolution strategies such as
get-�rst and manual selection. As context data acquisition is very
important when designing context aware systems, it can get the same
importance while in process con�guration. In that particular case, the
system could adopt process mining techniques [Aal10] to recommend
possible applicable fragments on the basis of actual context data and
historical fragment/context choices.
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Formal aspects for approach reuse. Several parts of the proposed
approach could be enriched and improved by applying well founded
theoretical studies. For instance, we believe that it could be interesting
to further formalize the mapping between features and context data,
as well as the metamodel showed in Chapter 5. �is would allow us
to express our approach in a formal way and reuse and/or adapt in
di�erent application contexts.
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[Döh13] Markus Döhring. Handling Variants and Adaptation along
the Life Cycle of Event-Aware Work
ows. Ph.D. thesis,
University of Jena, 2013.
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Lucinéia Heloisa �om, Itana Maria de Souza Gimenes,
Roberto dos Santos Rocha, and Diego Zuquim Guimarães
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Lefebvre, Lamia Elabed, and Ghizlane El Boussaidi.

125



Business process modeling languages: Sorting through the
alphabet soup. ACM Computing Surveys, vol. 43(1):p. 4,
2010.

[Mon08] Ildefonso Montero, Joaquin Pena, and Antonio Ruiz-
Cortés. From feature models to business processes. In SCC,
vol. 2, pp. 605–608. IEEE, 2008.

[Mor08] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc
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