Data-driven Workflow Management by utilising
BPMN and CPN in IIoT Systems with the
Arrowhead Framework

Déniel Kozma, Pal Varga

Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics
2 Magyar Tudésok krt., Budapest, Hungary, H-1117

Email: {kozma, pvarga} @tmit.bme.hu

Abstract—Workflow management is realised in manufacturing
at the Enterprise- and Production (workstation) levels. The
characteristics of business processes in these levels differ enough
to prevent the adoption of a conventional modelling or imple-
mentation solution. The conceptualisation of an adequate and
adaptable workflow management model that over-arches the
heterogeneous business process levels is challenging. However,
one of the encouragements of Industry 4.0 is to provide easy-to-
use models and solutions that enable the effective implementation
of production goals.

The current paper addresses this challenge and — as a proof-
of-concept — it demonstrates how the goals mentioned above can
be achieved by combining the different manufacturing process
models. To accomplish this, a workflow control engine needs to
be designed and standardised respectively. Arrowhead is an IloT
(Industrial IoT) framework that dynamically and flexibly sup-
ports automated manufacturing processes following Industry 4.0
expectations. This paper describes how its workflow management
system, i.e., the Workflow Choreographer implements automated
production. Furthermore, it details what the functions of this
system are and how it applies and combines BPMN and CPN in
practice to provide a solution for the given challenge.

To verify its feasibility, the paper showcases a demo application
of the concept as well.

Keywords—Digital Production, Coloured Petri Nets, BPMN,
Productive 4.0, Industry 4.0

I. INTRODUCTION

Workflow management has always played a vital role in
all areas of production. Modelling, optimising processes and
automation are the driving forces of the next generation pro-
duction. Industry 4.0 sets requirements for current industrial
solutions and targets full automation. The task to be solved is
complex. The implementation of Industry 4.0 in many cases
is not just a one-generation industrial change, but very often,
the manufacturers are in the Industry 2.0 phase. Managing and
integrating legacy systems in the new Internet of Things (IoT)
era is, on the one hand, a challenge, and on the other hand, it
raises many questions.

To clarify these issues, the Productive 4.0 [1] research
project was created in response to the Industry 4.0 problem-
setting. Productive 4.0 focuses on three main domains where
current industrial solutions need to evolve: Digital Production

Felix Larrinaga
Mondragon Unibertsitatea
Goiru kalea 2, Arrasate-Mondragon,
Gipuzkoa, Spain, E-20500
Email: flarrinaga@mondragon.edu

(DP), Supply Chain Networks (SCN) and Product Lifecycle
Management (PLM). This article describes the DP advances
in the project which are built upon the Arrowhead frame-
work, hence addressing other Industrial IoT (IloT) require-
ments, such as real-time operation, security, and adopting
the principles of Service Oriented Architectures (SOA). The
paper also describes the concept of the multi-level workflow
execution and demonstrates the draft implementation of the
Arrowhead’s workflow engine, the Workflow Choreographer.
The draft implementation only serves as a proof-of-concept,
a verification of the final application. The development and
operation of the workflow engine presented here could be
completely vendor-specific, but its Arrowhead-compatibility
helps fitting it into the complete (enterprise- or production
level) workflow-management picture.

The structure of the article is as follows. Section II discusses
the related work. Section III briefly summarises the archi-
tecture of the Arrowhead framework. Section IV describes
in detail the automated workflow management engine of the
Arrowhead framework, namely the Workflow Choreographer.
Section V demonstrates the reference implementation of the
concept. Finally, Section VI concludes the paper.

II. RELATED WORK

Due to the Industry 4.0 movement, modelling business
processes is a current ’hot” topic that has been a trigger for
many kinds of research in recent years. Based on the multi-
level workflow concept [2], processes must be divided into two
parts for industrial production: Enterprise (EL) and Production
level (PL). EL workflows overcome high-level processes that
are easy-to-understand and use. For this purpose, the Business
Process Modelling and Notation (BPMN) was selected, which
is the most widely used business process modelling language.
However, BPMN is not able to provide a comprehensive
solution that covers all possible cases at the PL. So at this level,
we use Coloured Petri Net (CPN) as the modelling language.
The following subsections give a brief description of these
languages and describe the most important aspects of them.

A. Brief overview of BPMN

BPMN provides an intuitive and straightforward method
for non-expert users to model business processes. It has
smooth semantics that helps in understanding enterprise-level
processes and reduces misunderstandings from communication
and modelling. BPMN is designed to model a wide range of
areas and enables end-to-end business processes to be created.
The structural elements of BPMN allow the user to distinguish
easily between various aspects of the BPMN diagram. With
BPMN, a company can gain many benefits through a clear
description and understanding of its processes. Due to the
prevalence of the language, BPMN models can be created by
many tools. Using the language and the corresponding tools
provide the following benefits:

« BPMN is suitable for a variety of process modelling, and
it can be flexibly used for current purposes and process
visualisation.

o Graphical elements can be expanded with variables, mak-
ing process analysis and execution more efficient.

o The process models are easy to understand because
BPMN has simple but powerful semantics.

« The BPMN model language is expandable with company-
specific notations.

« It also supports the modelling of event and error handling.

The graphical description provided by the BPMN specifica-
tion has the following components:

o Events: start, intermediate, end;

o Activities:

Tasks: service, user, script, mail, receive, business;
Multiple instances;

Sub-processes;

— Loop.

o Gateways: exclusive, inclusive, parallel, event-based and
complex;
o Data and Flows: data object, association, sequence-,
default- and message flow.
As it was mentioned above, there are several possibilities for
creating and executing BPMN workflows. The most common
process engines currently are Activiti, jJBPM and Bonita BPM

[3].
B. Brief overview of Coloured Petri Nets

CPN [4] has been developed mainly for systems where
communication, synchronisation or resource sharing play an
essential role. The CPN includes the strengths of traditional
Petri Net, which provides primitives for modelling process
interaction, and it is extended by functional programming
language which offers primitives to define data types and
manipulate data values. The CPN model consists of modules
(pages), and it can contain — such its predecessor, the Petri
Net — places, transitions and arcs. The modules can con-
nect through well-defined interfaces, similar to many modern
programming languages. The graphical representation is also
available in case of CPN, which makes the basic structure of
the complex CPN model easier to edit and to assess the impact

of processes as well. There are many tools for designing CPN
models. The most current CPN modelling program is the CPN
Tools [5]. The used functional programming language in CPN
Tools is the so-called Standard Meta Language (SML).

C. Concept of BPMN and CPN together

Many solutions have been introduced during the years about
how to translate BPMN into high-level Petri Nets and vice-
versa [6]-[9]. However, the purpose of this article is not
to present yet another solution, but to show how the two
languages can be used together on a common platform. On
the Enterprise Level, BPMN is easy to understand and enables
monitoring of processes. Furthermore, it is easy to create and
edit new processes. On the contrary, it is not suitable for
modelling complex manufacturing processes [10] — among
other reasons because of incompleteness on the performance
for [11]:

« multiple, parallel starting events;

« exception handling for concurrent sub-process instances;

« more complex gateways like OR-Join;

e process instance completion.

BPMN is developed for modelling business processes, hence
satisfies the requirements at EL but not at the PL. CPN is
suitable for production modelling, but it is harder to under-
stand. Although there are solutions for translation between
CPN and BPMN, a single solution does not satisfy business
processes at both workflow levels. Therefore, the task is to
find a solution that can combine these two approaches and
offers a satisfying option for EL and PL at the same time. Our
approach proposes [2], [12] to use two modelling techniques;
BPMN at the EL and CPN at PL with a single workflow
engine provided by an Enterprise Service Bus (ESB). The
architecture is complemented using the Arrowhead framework,
which enables the connection of loosely coupled systems at
both levels in an SOA. The elements of the architecture and the
methodology to model and implement processes are described
in the following sections.

III. ARROWHEAD FRAMEWORK

The Arrowhead framework [13] has originally come to life
to cover interoperability and integration issues for the IloT
world. It supports the collaboration of newly built as well
as legacy CPS architectures based on the principles of SOA
through applying the System-of-Systems (SoS) approach. One
part of the above-listed issues are tackled through the Local
Cloud concept [14] empowered by inter-cloud communication
capabilities [15]. Each stakeholder has their local cloud(s),
working as an SoS, their systems implement either intra- or
inter-cloud information sharing, as well as security- and other
policies. The Arrowhead framework defines mandatory core
systems for the local clouds, which provide the necessary
functionality. Further, supportive core systems provide gen-
eral services that are often needed in System of Systems,
so integrators do not have to implement their solutions for
such common services. The Application Systems are distinct
elements of the SoS, these provide (and in fact, consume)

the various application services — in a discoverable, late-
bound, loosely coupled way that is defined by the SOA.
Figure 1. describes the current core systems of the Arrowhead
framework.

I. Mandatory Core Systems

Authorisation
System

Qrchestration
System

Registry
.,

Il. Supporting Systems

Event QoS
Handler Manager

Translator
System

Configuration

Workflow Workflow
Choreographer| Executor
]

Historian

Description {Logger)

Svﬁem

Ill. Local Cloud Specific Systems

Application Application Application
System 1. System 2. System X

Fig. 1. The core systems of the Arrowhead framework

In brief, the mandatory core systems [16] are the Or-
chestration System (mainly for service discovery and late
binding), Service Registry (so services providers can an-
nounce their active services), and Authorisation System (to
provide Authorisation and Authentication). Further, supporting
systems are provided by the Gateway [17] and Gatekeeper
Systems [15] for inter-cloud communication (data and control
plane, respectively), the Workflow Choreographer [12] (to
trigger the next step in the process execution), the Event
Handler [18] (to circulate status and event information), and
the Plant Description System [19] (to keep track of SoS-
or Plant-related meta-data), among others. The local cloud-
specific systems can be the local systems; from the smallest
sensor up to the biggest Cyber-Physical Systems (CPS). In
this paper, the Workflow Choreographer and its features are
described in detail.

IV. THE WORKFLOW CHOREOGRAPHER AND ITS
ENVIRONMENT

In order to manage industrial workflows (from Enterprise
Level to Production Level; from manufacturing to logistics),
not only models, semantics and description languages are
needed, but actual entities that handle, manage, execute the
workflow. Depending on the application area, the dynamics
of the production plant, and even external constraints, the
management and execution of the workflows can face various
challenges — which can be described as requirements and
restraints.

Based on the analysis of current Industry 4.0 requirements
at actual plants, Derhamy et al. [20] suggested the separation
of "workflow management” tasks (retrieving process steps and
processing results) and “workflow execution” (issuing job,

progress tracking) tasks on the factory floor. As part of a
research parallel to this, a Workflow Choreographer [12] has
been suggested that enables simultaneous, dynamic workflow
processing controlled by recipes described in Coloured Petri
Nets. The current paper merges these concepts with the
Enterprise Level workflow handling — by ESB.

The Workflow Choreographer [12] is an engine controlling
automated production within the Arrowhead framework. From
the production point of view, the features presented by Figure
2 are provided by the engine. It processes the Production
Order (PO) and accordingly implements the Production Recipe
(PR) [20]. There are extensive requirements within the various
industrial domains; therefore, it is challenging to define one
universal workflow manager. Taking this into account, the
proposal is that the Workflow Choreographer must execute
workflows based on predefined templates according to the
specific procedures. The PR uses these templates, and based on
the production steps; the Workflow Choreographer instantiates
the workstation specific Workflow Executors (WE), which
are the real production accomplishments of the workstations.
Each WEs execute the related activities and tasks according
to the PR, which will be given to workstations for performing
modifications on goods. Based on the PR, the devices and
systems of a workstation will be coordinated to complement
the related workflow step. From the AF point of view, the
Workflow Choreographer pushes requests to the Orchestration
System regarding the services to be used, and it subscribes to
the related events which are reported by the Event Handler.

Push Request Subscribe Event

Workflow
Choreographer

Process Creation of Manage
Production Workflow

order | Workflows |gyacutors

Fig. 2. Main services and features of the Workflow Choreographer

A. Process the Production Order

The Workflow Choreographer gets the Production Order
from the Enterprise Resource Planning (ERP) system — and
based on that, it creates the Production Recipe. The Production
Order is company-specific; therefore, the Workflow Choreog-
rapher must implement the PR accordingly. The established
PR contains only the tasks to be executed with the regarding
services and products specific parameters.

B. Creation of the Workflows

Based on the PR, the Workflow Choreographer creates the
EL and PL workflows, respectively, as Figure 3 shows. The
EL workflow contains the main steps of the production written
in BPMN and these steps are filled with the pre-written CPN
template, i.e. PL logic according to the task to be executed.

io

Tank Installation

Enterprise
Level

Seat Installation

10

19}
Gear Installation

CPN Template v
Tanknstallation

CPN Template
Seatlnstallation

[
>
@
-
=
(=]
=
o
3
b=
(=}
=
o

CPN Template
Gearlnstallation

-

Fig. 3. Concept of the workflow levels — and their model description

C. Communication within the Arrowhead cloud

The Workflow Choreographer needs to oversee how the
current workflow is executed, what is the status of the pro-
cesses. This engine is preferably data-driven and must be
capable of error detection and handling. As it can be seen
on Figure 4., the engine has to rely on the other core systems
of Arrowhead — mostly on the Orchestration System and the
Event Handler [18]. The latter is there to facilitate event no-
tification propagation and monitoring over the network, while
the former is to re-assign interactions between application
systems. The Orchestration System interface can be used in a
”push” manner, as an option. This means that the application
systems might receive new, unsolicited orchestration informa-
tion. This enables for strong central government and allows
for the execution of common goals. During its operation, the
Workflow Choreographer exploits this kind of ”Orchestration
Push” service. When the services are reserved, the Workflow
Choreographer will be informed by the Event Handler, and it
will prepare the related WEs. Then the WEs communicate with
the allocated application systems and informs the Workflow
Choreographer about the associated events. A simple message
sequence is shown in Figure 5.

D. Managing the Workflow Executors

Based on the PR, the Workflow Choreographer allocates
the appropriate Workflow Executors. The basis of the execu-
tors’ functional description is the pre-written template (our
suggestion: in CPN) and contains the detailed workflow steps
for that executor. The pre-written template is filled out (i.e.,
configured) based on the Production Recipe, for the given step.

In general, the workstations are strictly defined points within
a factory, where mostly the same tasks are executed. However,
in the next generation of manufacturing, the allocation of
robots at the workstations can be changed dynamically. For
example, if more resource is needed at a workstation because

I
gOrchestrationyWoREY B
System
O Workflow I
- Executor O

* Consume/Provide Service

Methods
1. configure
2 pushOrchestration

3 signalingSubscribe 5 natifyExecutor 7 executeTask
4 signalingPublish 6. notifyChoreographer 8. reportResult

Fig. 4. Workflow Choreographer and its environment within Arrowhead

of unexpected events such as break down, another robot moves
there to take over the task. Thus, it is a must to ensure that
the Workflow Executors can always be allocated for a given
job based on the PR.

The PR contains the detailed PL logic at the workstation
(based on the CPN template) — which task will be executed,
which robots will be used and how long, etc. Then the
Workflow Executors are connected to the allocated robots — in
the Arrowhead context it is an Application System providing
a service —, and they will control the robots respectively.
The Workflow Executors continuously report the events of
the production. Based on the results, the Workflow Chore-
ographer makes smart decisions, and if it is necessary, it
also re-configures the existing Workflow Executors. When
the production is finished at the workstation, the Workflow
Choreographer releases the related, reserved services, as well.

Workflow Orchestration Event Handler Application Application Workflow
Choreographer E) 1. Executor

— T
“sendPO »l I

| I
createPR |

I

|

I

I
conﬁgure—_’_‘_‘.v-

paralell
I
signaling Subscribe

|
pushQ rcﬁestralion
|

. signaling Subscribe

pushQ rchestration

1
|
|
|
_— i
. mgnalln};ﬁubscnbe

|
signalingPuinsh—i
1

paralell
I
I
!
|
paralell

signalingPublisl

ittt

I
I
I
I
I
4———signalingPublish [
: T notifyExecutor- | : _—
paralell : : : X
i | | | I ecuteTask
I | | reportResult
=] | -notifyChoreographery }
| | I’ uteTask
I | reportResult
I | notifyChoreographer— |
I | | |
I | | |
I | |

Fig. 5. This figure presents a general workflow execution message flow within the local Arrowhead cloud. If a Production Order arrives,

1) The Workflow Choreographer interprets it and use its createPR() feature.

2) It consumes (in parallel) a configure() service from the Orchestration System for the services to be used and it consumes a signalingSubscribe() service
from the Event handler for the reserved services respectively.

3) In parallel, the Orchestration System sends pushOrchestration() requests to the appropriate Application Systems (1-2.) while the Event Handler subscribes
on the related events accordingly — signalingSubscribe().

4) The reserved Application Systems send signalingPublish() messages to the Event Handler when the orchestration is done, indicating that they are ready to
be used.

5) The Event Handler provides signalingPublish() service about the reserved Application Systems to the Workflow Choreographer.

6) The Workflow Choreographer provides notifyExecutor() service to the Workflow Executor, and allocates the reserved Application Systems and the related
workflow logic as well.

7) The Workflow Executor sends executeTusk() service request to the Application Systems which provide reportResult() service to the Workflow Executor
about the events. Then the Workflow Executor provides notifyChoreographer() to the Workflow Choreographer about the performance.

V. REFERENCE IMPLEMENTATION OF THE MULTI-LEVEL The PR template consists of the following elements:

WORKFLOW MODEL o Priorityld: This number identifies the order of priority.

The implementation of the features described in the previous « DocumentVersion: Optional. This applies to specific pro-
sections is divided into several parts. This paper, however, duction schemes, for example, productions which often
focusing on presenting the most significant part of them: occurs with minor differences.

« Creation of Workflows: both at PL and EL; o Plant: This attribute recognises the plant where the work-

o Managing the Workflow Executors: instantiate the execu- flow will be executed.

tors based on the PR; « Steps: Each step identifies a Workflow Executor.
o Communication within the Arrowhead cloud: service — BpmnType: Referring to the BPMN task type.
reservation and subscription on the related events. — Flowld: The number id representation of the task.
To model the processes, we have created a demo PR that can — ProductionStep: The name of the Workflow Execu-

be produced by the Workflow Choreographer from the PO. tor.

— PreviousStepld: Identifier of the previous Workflow
Executor — which is equal to the previous step’s
FlowlId.

— NextStepld: Identifier of the next Workflow Executor
— which is equal to the next step’s Flowld.

— Services: The list of the services to be used by the
current Workflow Executor.

To put this work into an automotive-industrial use case:
let us focus on the final car assembly shop and some of its
workstations. This involves many devices or systems (different
types of robots), executing specific activities with a common
goal. The complete use-case is described within [2] — where it
was put into the Arrowhead context, as well. The related PR
documentation is the following:

{
"PriorityId": 1,

"DocumentVersion": 1,
"Plant": "AssemblyShop",
"Steps": [
{
"BpmnType": "servicetask",
"FlowId": 1,
"ProductionStep": "TankInstallation",
"PreviousStepId": "start",
"NextStepId": "2",
"Services": {
"Servicel": "Transport",
"Service2": "Welding",
"Service3": "Assembling"
}
}I
{
"BpmnType": "servicetask",
"FlowId": 2,
"ProductionStep": "SeatInstallation",
"PreviousStepId": "1",
"NextStepId": "3",
"Services": {
"Servicel": "Transport",
"Service2": "Welding",
"Service3": "Welding",
"Serviced4": "Assembling"
}
by
{
"BpmnType": "servicetask",
"FlowId": 3,
"ProductionStep": "GearInstallation",
"PreviousStepId": "2",
"NextStepId": "end",
"Services": {
"Servicel": "Transport",
"Service2": "Welding",
"Service3": "Assembling",
"Service4": "Trimming"

A. Workflow model implementation at EL and PL

The models at Enterprise and Production Levels are de-
veloped by using Eclipse Java EE IDE for Web Developers
including the necessary plugins to model and deploy processes,
i.e. Activiti, Developer Studio and WSO2. The development
of the processes is represented in the following subsections.

1) Workflow model at Enterprise level: Based on the PR,
the Workflow Choreographer will generate the respective
BPMN model automatically. To achieve this, we use the
Activiti process engine developed by Alfresco [21], which
is the leading lightweight, Java-centric open-source BPMN
engine supporting real-world process automation needs. The
Workflow Choreographer identifies the steps and services from
the PR, and it creates the EL workflow dynamically with the
steps. These are the high-level workflow steps which define
the functional description of Workflow Executors at the same
time. In the current implementation, we use the Activiti engine
Service Tasks function where — amongst others — Java classes
can be passed as input of the Service Tasks. This is the main
pillar of the implementation because the Production Level
logic will be implemented into these Java classes.

O’_' Tankinstallation Seatinstalation Gearinstallation .

[£ Markers | [Properties 27 | 44 Servers Data Source Explorer| [Snippets| & Conscle| 47 Search

General Task type ilava class

Main config

Class name servicetasks, Tanklnstallation java

Documentation
. Result variable
Listeners

Multi instance Skip expression

Fig. 6. BPMN model by Workflow Choreographer using the Activiti engine

2) Workflow model at Production level: The created steps
of the EL workflow must be filled with the appropriate
production-specific logic based on the pre-written CPN Tem-
plates. These steps are the WEs from the production point of
view. To use the features provided by Activiti, the CPN logic
must be converted into Java code — however, the presentation
of the mapping algorithm and the detailed description of the
CPN templates are not the subjects of this paper.

For automated code generation, we use the JavaPoet [22] —
developed by Square —, an open source library that provides
APIs for creating a Java source code. It allows the generation
of primitive types, reference types, and their variants, e.g.
classes, interfaces, enumerated types, inner classes. More-
over methods, parameters, fields, comments, and even Java
doc. JavaPoet automatically manages the import of dependent
classes, and its builder can interpret the logic of generating
Java code.

The exemplary code using JavaPoet:

// WorkflowUtils. java
public void createJavaDelegateClass (String
packageName, String className)
throws IOException {

File directory = new File("src/main/java");
MethodSpec execute = MethodSpec
.methodBuilder ("execute")
.addModifiers (Modifier.PUBLIC)
.returns (void.class)
.addParameter (DelegateExecution.class,
"execution")
/* The CPN logic is implemented here =/

.build();

TypeSpec processName =
TypeSpec.classBuilder (className)
.addModifiers (Modifier.PUBLIC)
.addMethod (execute)
.addSuperinterface (JavaDelegate.class)
Lbuild();

JavaFile javaFile =
JavaFile
.builder (packageName,
.build () ;

processName)

javaFile.writeTo (directory);

These results are the following, automatically generated
Java class regarding the first step (i.e., the Tank Installation)
and another Java class, which shows how the instantiated WE
can reach and control one of the welding robots.

// TankInstallation.java
public class TankInstallation implements
JavaDelegate {
public void execute (DelegateExecution execution) {
WeldingRobot weldingRobot = new WeldingRobot () ;
/+* The CPN logic is implemented here =/
}
}

// WeldingRobot. java
public class WeldingRobot ({
private WebTarget webTarget;
private Client client;
private static final String BASE_URI =
"http://10.1.2.2:8080/ApplicationSysteml/robots";
public WeldingRobot () {
client = ClientBuilder.newClient ();
webTarget = client.target (BASE_URI)
.path ("welding");
}
public String getText () throws
ClientErrorException {
WebTarget resource = webTarget;
return resource.request (MediaType.TEXT_PLAIN)
.get (String.class);
}
public void close() {
client.close();

}

B. Deployment of the artefacts

Our solution uses an Enterprise Service Bus (ESB) named
Web Services Oxygenated 2 (WSO2) [23]. WSO2 Enterprise
Integrator (WSO2 EI) is an open source generic platform that
makes possible the integration of different applications, sys-
tems or even data. It enables enterprise services to collaborate
dynamically between SOA based systems. The following mod-
ules of WSO2 EI are used in the reference implementation:

« Enterprise Service Bus: The enterprise integration capac-
ities allow the creation of service endpoints, sequences
of services and software artefacts to completely deploy
a service architecture and integrate other SOA based
frameworks such as the Arrowhead.

o Business Process Server: Enables to deploy business
processes written in BPMN amongst others and also
operates as the business process management and hosting
environment for SOA systems. It is supported by the
Activiti BPMN Engine and BPEL Apache Orchestration
Director Engine (ODE).

¢ Tooling: This module is an Eclipse plugin that facilitates
the modelling of processes using BPMN. Models are built
using the graphical user interfaces provided by the tool
and generate XML files. The plugin enables to compile
procedures for Activiti [21].

After the implementation of WEs, the next step is the
creation of a Composite Application Project (CAR). The CAR
includes the Service Task artefacts of WEs as dependencies
and enables the selection of the server where the classes will
run (WSO2 Business Process Server in our case). The result
after implementing the software leaves to main archives:

e A .bar zip file that holds the Enterprise level model
implemented in BPMN. This process is represented in
XML.

e A .car zip file that holds the Workflow Executor artefacts.
This file holds an XML file (artefacts.xml) indicating
that the archive holds a Carbon type application, runs
on a Business Process Server and indicates which is the
artefact that holds the jar files and its version. The artefact
is also included in the .car zip file. This artefact includes
the .jar files holding the classes used in the Service Tasks
build with BPMN.

These two files are deployed in the WSO2 infrastructure
available in our experiment environment. The environment
uses the WSO2 Business Process Server where both level
models are run. For the delivery, two kinds of solution can
be used.

1) Manually: Uploading the .bar and .car files using the
Management Console utility provided in the Business Process
Server web interface;

2) Automatically: There are several ways [23] to deploy
CAR files in the environment, e.g., using Maven Deploy
feature of WSO2 Developer Studio, by which it will be sent
directly to the server.

After the delivery, the BPMN process can be run and
monitored using the BPMN Explorer utility, as shown by
Figure 7.

\WS@, BPMN EXPLORER

@ DASHBOARD @ TASKS ~ PROCESSES @ MONITORING ~

REPORTS @ SEARCH

Process Monitoring

Process instance ID

12538 —~

View Details

Filter the instances

Process Details

Fig. 7. Monitoring the workflow with BPMN Explorer

VI. CONCLUSION

Managing workflows has different requirements, toolset,
and mindset on the Enterprise and the Production Levels since
data is starting to flow into various management systems due to
Industry 4.0 efforts. In order to effectively use the production
and business data (for feedback and control), this paper
proposes to utilise the BPMN-based business process descrip-
tions and CPN-based production-level descriptions. Moreover,
this paper demonstrates the feasibility of this merged model
through actual practical tools: Enterprise Service Bus (ESB)
and CPN tools for the two workflow levels. Furthermore, the
whole concept has been fitted into the Arrowhead framework,
which provides support for the IIoT System of Systems
through its Service Oriented Architecture-based principles, and
its core systems.

To provide native support for workflow management both
at the Enterprise and the Production Levels, this paper details
a newly formed element of the Arrowhead framework, the
Workflow Choreographer. This system turns Production Orders
into Production Recipes and instantiates Workflow Executors.
These latter elements are suggested to execute the (CPN-
defined) steps simultaneously, as the incoming production
data allows. The actual Application Systems available for
providing a given service (e.g. positioning, welding, painting,
etc.) are loosely coupled — by the Orchestrator — to the service
consumers, as usual in the Arrowhead framework.

As a proof-of-concept, this paper describes a reference
implementation for the overall model, including the BPMN-
based ESB implementation, the CPN-based production recipe
template-elements, and the automatically generated Java exe-
cution codes for the Workflow Executors. Altogether, the paper
provides validated results that the combined BPMN and CPN
workflow description models can provide with a solution in
practice for the given challenge by utilising the Arrowhead
framework.

ACKNOWLEDGEMENT

The project has been developed by the Embedded System
Group of MGEP together with the Dept. of Telecommu-
nications and Media Informatics of BME. This work has
been supported by the Department of Education, Universities
and Research of the Basque Government under the projects
Ikerketa Taldeak (Grupo de Sistemas Embebidos) and TEK-
INTZE (Elkartek 2018) and the European H2020 research
and innovation programme, ECSEL Joint Undertaking, and
National Funding Authorities from 19 involved countries under
the project Productive 4.0 with grant agreement no. GAP-
737459 - 999978918.

REFERENCES

[1] Productive4.0, “Electronics and ict as enabler for digital industry
and optimized supply chain management covering the entire product
lifecycle,” 2017. [Online]. Available: https://productive40.eu

[2] D. Kozma, P. Varga, and F. Larrinaga, “Multi-level Workflow Manage-
ment for Automated Production: Integrating BPMN-driven ESB with
Coloured Petri Net powered by Arrowhead,” Transactions on Industrial
Informatics, 2019, submitted.

[3]
[4]
[5]
[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

(23]

K. Baina and S. Baina, “User experience-based evaluation of open source
workflow systems: The cases of bonita, activiti, jbpm, and intalio,” in
3rd International Symposium ISKO-Maghreb. 1EEE, 2013, pp. 1-8.
K. Jensen and G. Rozenberg, High-level Petri nets: theory and applica-
tion. Springer Science & Business Media, 2012.

Cpn tools 4.0. [Online]. Available: http://cpntools.org/

C. Dechsupa, W. Vatanawood, and A. Thongtak, “Hierarchical verifica-
tion of the bpmn design model using the state space analysis,” IEEE
Access, vol. PP, pp. 1-1, 01 2019.

M. Ibrahim, “Formal semantics of bpmn process models using cpn,”
IREIT. J, vol. 5, no. 3, 2017.

C. Dechsupa, W. Vatanawood, and A. Thongtak, “Transformation of
the bpmn design model into a colored petri net using the partitioning
approach,” IEEE Access, vol. PP, pp. 1-1, 07 2018.

A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of
complex business processes based on high-level petri nets,” Information
Sciences, vol. 385, pp. 39-54, 2017.

J. Lenhard, V. Ferme, S. Harrer, M. Geiger, and C. Pautasso, “Lessons
learned from evaluating workflow management systems,” in Interna-
tional Conference on Service-Oriented Computing. Springer, 2017, pp.
215-2217.

R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal semantics and anal-
ysis of bpmn process models using petri nets,” Queensland University
of Technology, Tech. Rep, pp. 1-30, 2007.

P. Varga, D. Kozma, and C. Hegedds, ‘“Data-driven workflow execution
in service oriented iot architectures,” in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1. IEEE, 2018, pp. 203-210.

P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson,
J. Delsing, and 1. M. de Soria, “Making System of Systems Interoperable
- the Core Components of the Arrowhead Framework,” Journal of
Network and Computer Applications, Special Issue on Engineering
Future Interoperable and Open IoT Systems, 2016.

J. Delsing, J. Eliasson, J. van Deventer, H. Derhamy, and P. Varga,
“Enabling IoT Automation using Local Clouds,” 2016 IEEE 3rd World
Forum on Internet of Things (WF-1oT), pp. 502-507, 2016.

C. Hegedts, D. Kozma, G. Sods, and P. Varga, “Enhancements of the
arrowhead framework to refine intercloud service interactions,” in 42nd
Annual Conference of IEEE Industrial Electronics Society (IECON),
Florence, Italy, 2016.

J. Delsing, Towards industrial and societal automation and digitisation.
In book: IoT Automation — Chapter 1 — published by CRC Press, 2016.
C. Hegediis, P. Varga, and A. Franko, “Secure and Trusted Inter-
cloud Communications in the Arrowhead Framework,” in 2018 IEEE
Industrial Cyber-Physical Systems (ICPS), May 2018, pp. 755-760.
M. Albano, L. Ferreira, and J. Sousa, “Event Handler System: Publish
/ Subscribe communication for the Arrowhead world,” in /2th IEEE
World Conference on Factory Communication Systems (WFCS), 2016.
O. Carlsson, D. Vera, J. Delsing, and B. Ahmad, “Plant Descriptions for
Engineering Tool Interoperability,” in 14th International Conference on
Industrial Informatics, 2016.

H. Derhamy, M. Andersson, J. Eliasson, and J. Delsing, “Workflow
management for edge driven manufacturing systems,” in 20/8 IEEE
Industrial Cyber-Physical Systems (ICPS). 1EEE, 2018, pp. 774-779.
T. Rademakers, Activiti in Action: Executable business processes in
BPMN 2.0. Manning Publications Co., 2012.
Square, JavaPoet. [Online].
https://github.com/square/javapoet

K. Indrasiri, Beginning WSO2 ESB. Apress, 2016.

Available:

