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Abstract

Context: Software Product Line (SPL) testing is challenging mainly due to the potentially huge number of products under test.
Most of the research on this field focuses on making testing affordable by selecting a representative subset of products to be tested.
However, once the tests are executed and some failures revealed, debugging is a cumbersome and time consuming task due to
difficulty to localize and isolate the faulty features in the SPL.

Objective: This paper presents a debugging approach for the localization of bugs in SPLs.

Method: The proposed approach works in two steps. First, the features of the SPL are ranked according to their suspiciousness (i.e.,
likelihood of being faulty) using spectrum-based localization techniques. Then, a novel fault isolation approach is used to generate
valid products of minimum size containing the most suspicious features, helping to isolate the cause of failures.

Results: For the evaluation of our approach, we compared ten suspiciousness techniques on nine SPLs of different sizes. The results
reveal that three of the techniques (Tarantula, Kulcynski2 and Ample2) stand out over the rest, showing a stable performance with
different types of faults and product suite sizes. By using these metrics, faults were localized by examining between 0.1% and
14.4% of the feature sets.

Conclusion: Our results show that the proposed approach is effective at locating bugs in SPLs, serving as a helpful complement for

the numerous approaches for testing SPLs.
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1. Introduction

Software Product Line (SPL) engineering focuses on the sys-
tematic development of related software products from a set of
reusable features [1]. A feature is defined as any increment in
product functionality [2]. Features and their possible interac-
tions are commonly depicted in a feature model. A Feature
Model (FM) represents all the possible products of a SPL in
terms of features and constraints among them [3]. In this con-
text, a product is a set of features satisfying all the constraints of
the FM. Figure 1 depicts a sample FM representing a simplified
product line of mobile phones.

Most SPL testing approaches focus on deriving and testing
each product individually [4, 5]. Since the number of poten-
tial products in a SPL is typically huge, several sampling tech-
niques have been proposed to derive a manageable subset of
products to be tested (e.g., [6, 7, 5]). Salient among them
are Combinatorial Interaction Testing (CIT) techniques, whose
goal is to select products where every combination of ¢ features
appears at least once, this is also called t-wise testing [8]. An-
other line of research addresses the problem of test case priori-
tization, where products are scheduled for testing in an order
that attempts to increase their effectiveness at meeting some
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performance goal, typically detecting faults as soon as possi-
ble [9, 10, 11, 12]. Both strategies, sampling and prioritization,
are complementary and are often combined.

Developing high-quality software requires not only effective
testing methods to uncover failures, but also debugging tech-
niques to locate and fix the bugs that trigger them. Debugging is
mostly a manual process where testers must identify the defec-
tive code using techniques such as tracing, memory dumps or
step-by-step execution. More sophisticated techniques include
Spectrum-Based Fault Localization (SBFL), which ranks code
components (e.g., statements) according to their probability of
having faults, so-called suspiciousness [13, 14, 15, 16].

Debugging SPLs is challenging due to the difficulty to find
and isolate the faulty features in the SPL. Also, even if a suspi-
cious feature or set of features are detected, it might still be dif-
ficult to generate small valid products (i.e., satisfying the con-
straints of the feature model) where the failure is reproduced
and the defective assets can be pinpointed. Some works have
proposed techniques based on machine learning to locate faults
in configurable software in the past [17]. However, the recent
advances on SPL testing contrast with the low number of stud-
ies that support SPL debugging, which remains a manual and
time-consuming endeavour.

In this paper, we propose an approach to SPL debugging.
The approach works in two steps. First, the outcomes of test-
ing (test coverage and test outputs) are used to rank features
according to their probability of having faults, so-called sus-
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piciousness score. The suspiciousness score of each feature (or
set of features) is calculated using SBFL techniques adapted for
the SPL domain. Then, a fault isolation approach is proposed
to generate, by automatically analysing the feature model, prod-
ucts of minimum size containing the most suspicious features,
in order to facilitate the isolation of the failure causes. A
key contribution of our approach is the application of SBFL
at the feature level (key atomic element in SPLs), rather than at
the statement level, as in conventional SBFL approaches (e.g.,
[18, 13, 19, 14, 20]). In particular, we follow a model-based ap-
proach where the complexity of the code dependencies is man-
aged through a simpler high-level representation of the features
and the constraints among them: a feature model. This also
permits to abstract the complexity of the underlying implemen-
tations such as the use of different programming languages or
the combination of hardware and software features, e.g., cyber
physical systems [21]. For the evaluation of the approach, we
compared ten state-of-the-art SBFL techniques on nine SPLs
of different sizes. Results reveal that SBFL performs well at
locating faults in SPLs. More specifically, we found that three
of the techniques under evaluation (Kulcynski2, Tarantula and
Ample2) stand out over the rest, being able to localize the bugs
by examining between 0.1% and 14.4% of the feature sets.

This paper is structured as follows. Section 2 presents gen-
eral background related to SPL engineering and SBFL. Section
3 presents our approach for fault localization in SPL and the
fault isolation algorithm. An empirical evaluation of our ap-
proach is performed in Section 4. Section 5 highlights the main
issues that threatens our empirical evaluation. Section 6 posi-
tions our work with the current literature. Section 7 concludes
the study and highlights future work.

2. Background

2.1. Feature models

Feature models (FMs) are the de-facto standard for mod-
elling commonality and variability in SPLs [22, 3]. Structurally,
a feature model is a tree-like structure in which nodes represent
features and edges represent constraints among the features.
A feature represents an increment in product functionality [2].
Each feature is related to a set of assets that implement the fea-
ture’s functionality, i.e., code, documentation, test cases, etc. A
product is a set of features satisfying the constraint of the fea-
ture model. Products are implemented by integrating the assets
of the features that are part of them.

Fig. 1 depicts a sample feature model representing a SPL of
mobiles phones. Child features can be divided into mandatory
and optional features. Mandatory features must be included
in all the products including its parent feature, e.g., all mobile
phones in Fig. 1 must provide support for Calls. Optional fea-
tures can be optionally included in those products containing its
parent feature, e.g., phones can optionally provide support for
GPS. Additionally, child features can be grouped into alternative
and or relationships. A set of child features has an alternative
relationship with their parent feature when only one of them can
be selected when its parent feature is part of the product, e.g.,

phones can only support one type of screen: Basic, Colour
or High resolution. Finally, in or relations at least one of
the child features must be included in the products containing
its parent feature, e.g., phones supporting media content must
include the features Camera, MP3 or both of them.

Mobile Phone

Calls | GPS | | Screen | m
|
|
‘——bl Basic || Colour ||High resolutionl | Camera | | MP3 |
T
_________ |
‘ Mandatory /O\ Alternative ———»= Requires
L optional A or «— > Excludes

Figure 1: Example of a product line from the mobile phone industry [22]

In addition to the parental relationships among features, fea-
ture models can include cross-tree constraints among features.
Typical constraints model dependencies such as “A requires B,
indicating the products containing the feature A must also in-
clude the feature B, or “A excludes B”, indicating that the fea-
tures A and B cannot be part of the same product, i.e., they are
incompatible features. In the example, phones including the
feature Camera must include support for a High resolution
screen.

The analysis of feature models deals with the automated ex-
traction of information from feature models. The analysis is
performed in terms of analysis operations. Among others, these
operations allow finding out whether a feature model is void
(i.e., it represents no products) whether it contains errors (e.g.,
dead features) or what is the number of products represented
by the model. Catalogues with up to 30 different analysis op-
erations on feature models have been reported in the literature
[22]. A number of tools support the analysis of feature models
including FaMa [23], SPLAR [24] and FeatureIDE [25].

In the following, we define some of the terms that will be
used throughout the rest of the paper. For the definitions, let F
be the set of features in a feature model.

e Feature set. Non-empty set of features S, S ¢ F, with
IS|> 1, e.g., S= {Media, MP3}.

e Configuration. A configuration is a 2—tuple of the form
(S,R) such that S,R ¢ F being S the set of features to be
selected and R the set of features to be removed such that
SNR=g@gand S UR=F.If S UR c F the configuration is
called partial configuration [22]. For instance, the follow-
ing is a partial configuration of the model in Fig. 1: (S,R)
= ({Media,MP3},{GPS}).

e Product. A product is equivalent to a configuration where
only selected features are specified and omitted features
are implicitly removed [22], e.g., see products in Table 1.

e Product suite. Set of products under test. Table 1 shows
the set of products obtained when applying 2-wise test-



ing to the model in Fig. 1. The product suite is reduced
from 13 products (total number of products in the SPL) to
8 products containing all the possible feature pairs, 41 in
total.

e Core features. These are the set of features included in
all the products of the SPL [22]. In the example the core
features are Mobile phone, Calls and Screen.

e Propagate operation. This operation (also called depen-
dency analysis operation [22]) receives a partial configu-
ration as input, and it automatically selects and unselects
the necessary features to create a valid product according
to the constraints of the model (if such product exists). For
example, suppose that we run the propagate analysis oper-
ation on the selected features {GPS, Camera}. The opera-
tion would propagate the decisions returning the product
{Mobile Phone, Calls, Screen, High resolution,
Media, Camera, GPS}. Notice that the product includes
the core features, plus the features Media and High
resolution (both required by Camera).

ID Product

P1  {MobilePhone, Screen, Calls, High resolution}

P2 {MobilePhone, Screen, Calls, Colour, Media, MP3}

P3  {MobilePhone, Screen, Calls, Colour, GPS}

P4  {MobilePhone, Screen, Calls, High resolution, Media, MP3,
Camera}

P5 {MobilePhone, Screen, Calls, High resolution, Media, Camera,
MP3, GPS}

P6  {MobilePhone, Screen, Calls, Basic, Media, MP3 }

P7 {MobilePhone, Screen, Calls, Basic}

P8  {MobilePhone, Screen, Calls, High resolution, Media, Camera}

Table 1: Product suite (2-wise)

2.2. Spectrum-based fault localization

Spectrum-Based Fault Localization (SBFL) is a technique to
assist on the location of program bugs [13, 26]. SBFL uses the
results of test cases and their corresponding code coverage in-
formation to estimate the risk of each program component (e.g.,
statements) of being faulty. A program spectrum refers to a
collection of data that provides a specific view on the dynamic
behavior of a software program such as statement or branch
coverage [13, 27]. Various forms of program spectra have been
proposed [14]. For example, block-hit is a commonly used pro-
gram spectra, where the program code is divided into statement
blocks [26]. When SBFL with block-hit spectra is used, the
result of the technique is an ordered list of code blocks sorted
by their likelihood to cause the failure, so-called suspiciousness
score.

Table 2 illustrates an example of SBFL with block hit spec-
tra in a C program. To avoid confusion, we remark that Table 2
illustrates an example of SBFL, but in our case we do not apply
this technique at the code level, but at the feature level; for fur-
ther information of the application of SBFL at the feature level,

refer to Section 3.1. Horizontally, the table shows the five code
blocks in which the program has been divided, i.e., the compo-
nents. Note that the code has a bug in block b3. Vertically, the
table shows four test cases of the program. For each test case
(i.e., Ty, Ty, T3 and Ty), a cell is marked with “e” if the pro-
gram block of the row has been exercised by the test case of the
column, creating what is known as the coverage matrix [18].
Additionally, the final row depicts the so-called error vector,
which contains the outcome of each test case, either success-
ful (“S”) or failed (“F”). Based on this information, the suspi-
ciousness score of each block can be calculated using more than
30 different techniques proposed in the literature [15]. One of
the most well-known techniques to calculate the suspiciousness
score is named Tarantula, which, for a program component (in
our example a statement block), is computed as follows [26].

Ner

Nr
Ner | Nes 1)
Np Ns

Suspiciousness(Tarantula) =

where N¢r is the number of failing test cases that cover the
block, N is the total number of failing test cases, N¢g is the
number of successful test cases that cover the block, and Ny
is the total number of successful test cases. The suspicious-
ness score of each block is in the range [0,1], i.e., the higher
the suspiciousness score of the block, the higher the probabil-
ity of having a fault. The values of N¢r, N¢s, N5, Nr and the
Tarantula suspiciousness value of each code block are given in
Table 2. The last column indicates the position of the statement
in the suspiciousness-based ranking where top-ranked blocks
are more likely to be faulty. In the example, the faulty block
(b3) is ranked first.

Suspiciousness techniques may often provide the same value
for different components, being these tied for the same position
in the ranking, e.g., blocks b,, b4, and bs in Table 2. Under
this scenario, different approaches are applicable such as mea-
suring the effectiveness in the best and worst scenarios, using
an additional technique to break the tie, or using some simple
heuristics such as alphabetical ordering [16].

3. Approach

In this section, we present a two-step approach for locat-
ing bugs in SPLs. First, SBFL-based techniques are used to
calculate the suspiciousness of each feature set based on the
testing outcomes, namely code coverage data and testing re-
sults (passes and failures). Second, the obtained suspiciousness
scores are processed by a novel fault isolation approach to gen-
erate the smallest valid product containing the faulty feature
set, helping to isolate the cause of the failure, and thus the bug
causing it.

We may recall that this paper focuses on debugging and not
testing. Thus, we assume the existence of a product suite (e.g.,
pairwise suite) and their corresponding testing results, obtained
using any state-of-the-art testing technique, e.g., manual inte-
gration test cases. Note that a key requirement for the appli-
cation of SBFL is that multiple failed and multiple successful
test cases are available [16]. In what follows, our approach is



Table 2: An example showing the suspiciousness value computed using the Tarantula technique

ID  Program block T, T,

T3 T4 NCF NCS NS NF SUSpiCiOUSl’lCSS Ranking

int count n;
% .
b, E!e proc; . .
List *src_queue, *dest_queue;

if (prio >= MAXPRIO) { /A MAXPRIO=3%/

. ° 1 3 3 1 0.5 2

return;
b2 } [

src_queue = prio_queue[prio];
dest_queue = prio_queue[prio + 1];
b3  count = src_queue->mem_count; .
if (count > 1) {
/* BUG: It should be if (count >= 1) */

n= (int) (count*ratio + 1);
by proc = find_nth(src_queue,n); .
if (proc) {

src_queue = del_ele(src_queue,proc);
proc->priority = prio;
bs dest_queue = append_ele(dest_queue,proc); .
}
}

Execution results S S

Feature model |:>

Product suite |:>

Feature set,

Spectrum-based fault Feature set,

localization in SPL

=

Feature set,

Suspiciousness

ﬁ ranking

Suspiciousness
technique

Figure 2: Overview of our approach on SBFL for SPL

described in detail, including the overall methodology for its
application.

3.1. Spectrum-based fault localization in SPLs

We propose to adapt SBFL techniques to measure the suspi-
ciousness score of each feature set in a SPL. Fig. 2 depicts the
overview of the approach from a black-box perspective. Our
approach receives a feature model and a product suite as inputs,
and it returns a ranking of all the feature sets in the SPL, ordered
by their suspiciousness value in descendent order, according to
a given suspiciousness technique, e.g., Tarantula. The process
to calculate the suspiciousness scores and to break ties in the
final ranking is detailed next.

3.1.1. Constructing the coverage matrix and error vector
Based on the SBFL theory (explained in Section 2.2), we
consider the SPL products under test as the test cases, and the
feature sets as the components where faults must be located.
As an example, consider the feature model in Fig. 1 and the

product suite in Table 1. Table 3 depicts the coverage matrix,
where the products under test are placed in columns, and the
feature sets are listed in rows (note that a bug is simulated in
the feature MP3). For the sake of simplicity, only feature sets
composed of one or two features are considered, although the
approach could be generalized to feature sets of any size. In the
example, only some feature pairs are shown to keep this paper
at a reasonable size. For each product under test (i.e., Py, P»,...,
Pg), a cell is marked with “e” if it contains the feature set of
the row. Additionally, the final row depicts the error vector, that
is, the test outcome of each product, either successful (“S™),
if all the test cases associated to the product passed, or failed
(“F”), if at least one of the test failed. We may recall that test
cases related to each product can be executed using any state-of-
the-art testing technique, e.g., ASTERYSCO for CPS product
lines [21]. Also, we reiterate that an underlying assumption in
SBFL is that multiple failed and multiple successful test cases
are available [16].

Based on the information collected in the coverage matrix
and the error vector, the suspiciousness score of each feature
set can be calculated using any of the state-of-the-art suspi-
ciousness techniques proposed in the literature [15]. To this
purpose, we propose a slight modification of the meaning of the
classical notation used in SBFL formulas, where test cases are
replaced by products and components are replaced by feature
sets, namely:



Ncr  number of failed products that cover a feature set.

Nyr number of failed products that do not cover a fea-
ture set.

N¢s  number of successful products that cover a feature
set.

Nys number of successful products that do not cover a
feature set.

N¢ total number of products that cover a feature set.

Ny total number of products that do not cover a fea-
ture set.

Ng total number of successful products.

Nr total number of failed products.

Table 3 shows the values of Ncr, Ncs, Np and Ng for each
feature set. Based on this information, the suspiciousness of
each feature set using Tarantula is depicted in the column “Sus-
piciousness”, followed by the position of each feature set in the
ranking. As illustrated, the feature sets MP3 (where a fault was
seeded) and MP3-Colour are placed at the top of the ranking,
followed by Media and Camera, with a suspiciousness score
of 0.8 and 0.75 respectively. The rest of single features have a
suspiciousness score of 0.5 according to Tarantula. Finally, the
feature set GPS-Colour has a suspiciousness score of 0.

3.1.2. Breaking ties

The last column in Table 3 indicates the suspiciousness rank-
ing of each feature set. As illustrated, the suspiciousness score
of some feature sets are identical. We have taken three different
strategies to break ties:

o Core features: If a core feature is faulty, all products will
fail, and thus, for some techniques (e.g., Tarantula) all the
feature sets will have the same suspiciousness score. If
this occurs, our SBFL approach places core features at the
top of the suspiciousness ranking. Notice that this does not
happen with all techniques (e.g., Wong).

o Feature interactions: Faults in isolated features may dis-
tort feature groups suspiciousness scores. Take as an ex-
ample the simulated fault in MP3. All feature sets including
the feature MP3 will fail, which will result, for some tech-
niques (e.g., Tarantula), in all feature sets including MP3
having the same suspiciousness score, e.g., the Tarantula
scores of MP3 and MP3-Colour in Table 3 are equal. Un-
der this scenario, when a feature set S has the same suspi-
ciousness that any of its feature subsets S’ c S, then S’ is
ranked over S.

e Parental relations: If a parent feature is faulty, all the prod-
ucts containing one or more of its subfeatures will also
be faulty, since parent and child features must appear to-
gether in products. Hence, for instance, a bug in the fea-
ture Media would make all the products including any of
its child features to fail, that is, those including Camera,
MP3, or both. To address this issue, when a parent feature
has the same suspiciousness score as its child features, the
parent feature is ranked first.

Susp. feature set [:>

Feature model [:>

Debugging product \:>

Minimal product

generator |:> Minimal product

Figure 3: Overview of our approach for fault isolation in SPL

All ties obtained after applying the previous strategies are
broken randomly. We remark, however, that other strategies
would also be feasible and studying their effectiveness remains
for future work.

3.2. Fault isolation

Even if we have a list of the most suspicious feature sets, it
could still be challenging to find a product, hopefully as small as
possible, where the fault can be easily located. This is the goal
of techniques like delta-debugging [28], which aims to generate
minimal inputs inducing the failure in the program under test
(see related work section). Based on this idea, in this section,
we present a debugging approach for the isolation of bugs in
SPLs. The goal is to generate a minimal product, in terms of
number of features, where the fault(s) can be easily located. For
the generation of the product, we leveraged advanced tools for
the automated analysis of feature models. More specifically, we
used the analysis operations on feature models integrated into
the tool SPLAR [24].

The overall overview of the approach for generating the min-
imal product is depicted in Fig. 3. The debugging approach
receives a suspicious feature set (FS ), a feature model (with a
set of features F'), and the failing product being debugged (P)
as inputs. Then, a partial configuration is created in three steps,
namely: (1) unselect the features that are not part of the product
being debugged, (2) select the core features (C), and (3) select
the features in the suspicious feature set (out of the remaining
features). Formally, let S and R be the sets of selected and re-
moved features in the partial configuration respectively. The
partial configuration is defined as follows.

VfeFe f¢P = feRA
feC = feSA 2
feFS = feS

The partial configuration is then provided as an input to the
propagate operation, which generates a minimal valid product
including the suspicious feature set. It is noteworthy that the
minimal product generated is composed of a subset of the fea-
tures in the product being debugged, and thus no new features
are considered, which could result in unexpected results, e.g.,
new faults being introduced.

Continuing with the previous example, let us assume that
the feature MP3 has the highest suspiciousness score, and P5 =
{MobilePhone, Screen, Calls, High resolution, Media,
Camera, MP3, GPS} is the faulty product being debugged. A
partial configuration would be created by unselecting the fea-
tures not contained in the product (Colour, Basic), selecting



Table 3: An example showing the suspiciousness value computed using the Tarantula technique in the Mobile Phone SPL

ID  Feature Set P, P, P3 Py Ps Ps P; Ps Ncrp Ncs Np  Ns  Suspiciousness Ranking
F;  MobilePhone . . . ° 4 4 4 4 0.5 5
F,  Screen o o o . 4 4 4 4 0.5 5
F;  Calls . . . . . . . 4 4 4 4 0.5 5
F, Highresolution e ° . . 2 2 4 4 0.5 6
Fs  Basic o 1 1 4 4 0.5 6
F¢  Colour ) 1 1 4 4 0.5 6
F;  GPS . 1 1 4 4 0.5 6
F3  Media . o o 4 1 4 4 0.8 3
Fy  Camera . . 2 1 4 4 0.75 4
Fio MP3 (BUG) . . o . 4 0 4 4 1 1
Fi;1  GPS-Colour . 0 1 4 4 0 7
Fi, MP3-Colour ° 1 0 4 4 1 2
Execution results S F S F F F S S

the core features (Mobile phone, Calls, Screen), and select-
ing the suspicious feature set (MP3). This configuration would
be then provided as input to the propagate operation, together
with the feature model and the product under debug (i.e., P5).
The propagation function would return the following product
{Mobile phone, Calls, Screen, High resolution, Media,
MP3}. Note that the features Media and High resolution are
automatically selected, whereas the feature GPS is not selected.
On the one hand, the feature Media would be included because
it is the parent feature of the MP3 feature. On the other hand,
the feature High resolution is selected because the product
under debug employs this feature as an alternative child of the
Screen feature, which is one of the core features of the prod-
uct line. We may remark that the products generated by the
propagate operation are always minimal, i.e., only those fea-
tures strictly necessary to make a valid product are selected.
Therefore, the debugger is provided with the smallest product
including the suspicious feature set, contributing to reduce the
effort required to locate the bug.

The reason for proposing an incremental approach instead of
a decremental approach is complexity. Minimizing a product is
an exponential problem: given a product P with t features, the
potential number of sub-products of P (products composed of
a subset of the features of P) is 2 — 1. Of course, not all fea-
ture combinations are valid and, thus, the feature model must
be taken into account, which includes further constraints. In
addition to this, a decremental approach may require re-testing
many large products until finding the faulty feature(s). Instead,
the incremental approach proposed would be faster since it re-
quires a single SAT propagation and, more importantly, it guar-
antees that a minimal product is generated. As a further benefit,
the generated products are as small as possible (since they only
include the core features and the first suspicious feature set in
the ranking), which is good in the case that several iterations
are needed before locating the faulty feature sets (i.e., a product
with less features requires less test effort [29, 30]).

3.3. Methodology

Figure 4 depicts the overall methodology to apply our SPL
debugging approach. First, the suspiciousness scores of each
feature sets are calculated based on the coverage information
and test results, as explained in Section 3.1. Then, for each
faulty product, the most suspicious feature set is selected and a
minimal product is generated and tested. We reiterate that the
tests can be performed using any state-of-the-art testing tech-
nique and it is out of the scope of this paper. If the test outcome
is successful, the next most suspicious feature set is selected and
another minimal product is generated. Conversely, if the prod-
uct fails, the suspicious feature set is reported to the engineer to
fix it. This process is repeated until all faults have been fixed.
Notice that every time a faulty product is selected, the tests must
be executed again to confirm that the product is still buggy,
since the faults could have been fixed while debugging previ-
ous products. Finally, it is noteworthy that the calculation of
the suspiciousness scores is only performed once, unlike related
approach where it is calculated every time a bug is fixed [31].
Although this may affect the accuracy of our approach, we be-
lieve that this is a sensible strategy for SPLs where re-executing
all the tests is usually very costly [29, 12, 32].

4. Evaluation

4.1. Research questions

In order to evaluate the effectiveness of feature-based SBFL
in SPLs we aim to answer the following Research Questions

(RQs):

RQ1: What is the effectiveness of different state-of-the-art
suspiciousness techniques at isolating the causes of failures in
SPLs?

RQ2: How the size of the product suite affects the performance
of the techniques under study?
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Figure 4: Overview of the methodology for SPL fault isolation

RQ3: How the number and type of faults (single or interaction)
affect the performance of the techniques under study?

4.2. Experimental design

4.2.1. Subject models and product suites

We selected nine feature models representing SPLs of differ-
ent sizes for the evaluation. Seven of the models were taken
from the SPLOT repository [24]. Furthermore, we used the
feature model of the Drupal framework, a realistic case study
to evaluate variability testing techniques proposed by Sanchez
et al. [33]. Additionally, we included a case study of an Un-
manned Aerial Vehicle (UAV) that we previously used in other
evaluations (e.g., [21, 30, 34]). For each subject model, the
SPLCAT tool [35] was used to generate two product suites us-
ing 2-wise and 3-wise coverage criteria [36]. Table 4 depicts
the characteristics of the selected models including number of
features, number of cross-tree constraints (CTCs), total number
of products, and number of products in the 2-wise and 3-wise
product suites respectively.

Case Study Features CTC  Products 2-wise  3-wise
Drupal V3 21 9 96,768 11 37
Weather station 23 2 1,056 14 40
Eclipse 29 3 983,150 17 54
Android 45 5 36,240 18 67
UAV 46 4 2.3E6 22 74
Dell Laptop 47 109 2,319 47 142
Arcade 62 35 3.3E9 18 65
HIS 68 4 6,400 12 41
Model transformation 88 0 1.6E13 28 133

Table 4: Subject feature models

4.2.2. Fault seeding and test execution

We faced two obstacles in the selection of case studies for
the evaluation of our approach. First, we found a lack of case
studies with available feature models, source code, and test
cases. Second, based on our experience with industrial part-
ners [37], the execution of test cases in real setting is usually
a time-consuming process, which hinders the use of real test
cases in a large-scale evaluation as the one required in our pa-
per. To address both obstacles, we resorted to a fault simu-
lator in eight of the subject case studies (where no code nor
test cases were available), as previously done in related pa-
pers [11, 38, 39, 9, 40]. Additionally, we used a real-world case
study with available feature model, source code and test cases
(Unmanned Aerial Vehicle), in order to evaluate the approach
in realistic settings.

For the simulation of faults (in all case studies except UAV),
we developed a fault generator to simulate different number and
types of faults in the SPLs under test. The fault generator is
based on the one proposed by Ensan et al. [38] and it has been
used in several works to evaluate the fault detection rate of SPL
test suites (e.g., [38][11][41]). The fault generator simulates
faults in single features as well as faults caused by the interac-
tion of two features. More specifically, our generator receives
a feature model as an input and returns a random list of faulty
feature sets as an output. For instance, the following list sim-
ulates two faults in the SPL in Fig. 1: {{Colour}, {GPS, MP3}},
a fault in the feature Colour and another fault caused by the
interaction of the features GPS and MP3.

In addition to the fault simulator, we developed a test system
to simulate the test outcomes of each product using a simple or-
acle: if a product contains any of the features labelled as faulty,
the execution of the product is classified as failed, otherwise it
is classified as successful. This is an intuitive approach that as-
sumes that the test cases of each product are good enough to
reveal failures in the products under test. Note that this is a
key requirement for the application of SBFL: if test cases are
not able to identify failures, they will certainly not be helpful in
identifying faults. Both, the fault simulator and the test system,
have been previously used in the literature [11].

As for the UAV case study, the experiments were performed
employing a Simulink model in charge of simulating the UAV.
We employed a test suite composed of 120 test cases. A test
case in our case was a set of signals stimulating the inputs of
the SUT over a specific amount of time. The test execution



time for each test case lasts from 30 seconds to 3000 seconds.!
Furthermore, we employed mutation testing to simulate faults.
Mutation testing was employed since it has been demonstrated
to be a good substitute of real faults [42]. For each fault in a
specific feature set, a mutant was created, performing the mu-
tation in one of the assets of that feature sets. This mutant
was later selected when a product included the faulty feature
set. We employed the mutation operators proposed by Hanh
et al. for Simulink models [43]. To speed up the evaluation
process, we prioritized the test cases with an additional greedy
algorithm that used historical data of the test cases. This al-
gorithm demonstrated to be effective in a previous work at de-
tecting faults as fast as possible [32]. Since SBFL only uses
information whether the test execution passed or failed, once
the test cases detected a fault, the test execution was stopped
with the aim of speeding up the evaluation process.

4.2.3. Suspiciousness techniques

We assessed the effectiveness of ten state-of-the-art suspi-
ciousness techniques for the isolation of faults in SPLs. The
chosen techniques were Tarantula, Ochiai, Dstar, Naish2, Wong
and Russel-Rao, as proposed in [26]. We also included Kul-
cynski2, Arithmetic mean, Ample2 and M2, as they showed
promising results in preliminary experiments [15]. The alge-
braic form of the chosen techniques are shown in Table 5 using
the notation presented in Section 3.1. In the Dstar technique’s
formula, the * is an exponent of N¢r. We set * equal to 2 based
on the original paper [20] and other relevant ones (e.g., [19]).

4.2.4. Evaluation metrics
The following metrics were used to measure the effective-
ness of the approach.

Percentage of examined features (EXAMF). The EXAM
score is one of the most common metrics to evaluate the ef-
fectiveness of fault localization techniques [16, 19, 44, 45]. It
is calculated as the number of statements examined with re-
spect to the total number of statements in the program. In our
approach, the number of statements examined could be intu-
itively substituted by the number of feature sets examined, and
the total number of statements by the total number of features
sets. Given a product p being debugged and a faulty feature set
f, we propose a variant of the EXAM score, called EXAMF,
calculated as follows:

NF;
EXAMF (p.f) = 5 % 100% 3)

)4
Where NF is the number of feature sets examined to isolate
the fault in f, and NF, is the total number of feature sets in
p. Since we are aiming at faults caused by a single feature or
interaction between two features, NF, is equal to all the valid
possible combinations of one or two of the features of p. This
was calculated using the SPLCAT tool. The lower the EXAMF
score is, the more effective is the technique.

Notice that this is the simulated test execution time

As an example, consider a fault in the feature MP3, and P5 =
{MobilePhone, Screen, Calls, High resolution, Media,
Camera, MP3, GPS} the faulty product being debugged. Let
us suppose that GPS is the most suspicious feature and MP3
the second most suspicious feature, according to a certain
technique. Accordingly, the debugger would examine first
the GPS feature, proceeding later to examine the MP3 feature.
Considering that the total number of valid feature sets (i.e.,
single features and pairs of features) in P5 is 28, this metric is
calculated as EXAMF(P5,{MP3}) = (2/28) x 100 = 7.14.
This means that 7.14% of the feature sets in P5 had to be
examined in order to locate the fault in MP3.

The EXAMF metric measures the effectiveness of a fault lo-
calization technique at detecting a single fault. In the cases
where several faults are present, the effectiveness of each fault
localization technique was evaluated as the average EXAMF
score. Thus, the average EXAMF score for multiple faulty fea-
ture sets F' in a product p that is being debugged is calculated
as follows:

¥ EXAMF(p, F))
|F|

As an example, let us suppose two faults in the MP3 and GPS
features, and P5 the faulty product being debugged. Let us sup-
pose that 4 feature sets were examined before isolating the fault
in MP3, and 5 feature sets were checked before isolating the bug
in GPS, i.e., EXAMF(P5,{MP3}) = (4/28) x 100 = 14.2 and
EXAMF(P5,{GPS}) = (5/28) x 100 = 17.8. The average
EXAMF is calculated as (14.2 + 17.8)/2 = 16. That is, 16% of
the feature sets need to be examined on average to locate each
faulty feature set in P5.

“

4.2.5. Experiments

In order to answer our research questions, we performed five
independent experiments with different number and types of
simulated faults. Each experiment was conducted on the sub-
ject models depicted in Table 4 assessing the effectiveness of
the ten suspiciousness techniques depicted in Table 5. Table 6
shows the number of simulated faults in single and pairs of fea-
tures in each experiment. As proposed by Sanchez et al. [11],
the maximum number of faults in each model was set to n/10,
being n the number of features in the SPL. For the fifth experi-
ment, where faults due to single features and interaction of two
features are combined, the distribution of the simulated faults
was the same for both type of faults, as proposed in [11]. For
each experiment and case study, five different distributions of
faults were randomly generated, so-called fest scenarios, in or-
der to calculate averages. In total, 40 different test scenarios
were run on each experiment and product suite: 8 case studies
x 5 test scenarios.

4.3. Experimental results

4.3.1. Experiment 1: a fault in a single feature
This experiment aims at evaluating the approach when the
SPL has one fault in a single feature. Tables 7 and 8 report the



Table 5: Algebraic form of the suspiciousness techniques under evaluation

Technique Equation Technique Equation
Ncr/N, N,
Tarantula # Russel-Rao or
NCS/NS]\;—NCF/NF NCF+NF_NCI}"V+NCS +NS_NCS
Ochiai — Kulcynski2 —er
V/Nr(Ncr + Nes) Nyr + Ncs
Ncr)* 2(N, Nys — N, Ncs
Dstar # Arithmetic mean (Ner  Nus vr x Nes)
(Np - NCFX]"’ Ncs (Ncr + Nes) * (NUS]\';NUF) + (Ncr + Nur) x (Nes + Nys)
Naish2 Ner - & Ample2 L o
Nes + (Ns = Nes) +1 Ncr+Np  Ncs + Nys
cr
‘Won, N, M2
£ o Ncr + Ns = Nes +2(Np = Ner + Nes)
Experiment  Single faults Interaction faults fault isolation techniques in this particular experiment.
) ) 0 Overall, the technique performing best with both product
) 5 v/10 0 suites was Tarantula, followed by Kulcynski2, and Ample2.
3 2. I(l)/ 1 1 Conversely, Russel-Rao, Wong and Naish2, which showed ex-
actly the same results in all case studies, resulted in the tech-
4 0 [2, n/10] . . S .
niques with worst performance in this experiment.
5 [1, n/5] [1, n/5]

Table 6: Types of faults simulated in each experiment (n = number of features
in the SPL)

EXAMF values of each suspiciousness technique under eval-
uation on the data collected from the 2-wise and 3-wise prod-
uct suites respectively. The best value on each column is high-
lighted in boldface. We reiterate that the shown values are the
average of five different scenarios with a randomly simulated
fault on each of them. The EXAMF score ranged between
0.07% and 7.6% for the 2-wise product suite, and between
0.07% and 8.43% for the 3-wise suite. That is, both product
suites yielded similar results, with only slight differences in fa-
vor of the 2-wise suite. This means that having more test data
information was not necessarily helpful in this experiment.

The performance of all the techniques was consistent in all
the case studies, and in both product suites. The faulty feature
was successfully ranked as the most suspicious feature in 100%
of the test scenarios for Ample2, Dstar, Kulcynski2, M2, and
Ochiai, i.e., these were the techniques showing the best perfor-
mance. In the case of Tarantula, the most suspicious feature
was ranked first in 98% (88 out of 90) of the test scenarios. The
technique performing worst was Arithmetic mean, followed by
Naish2, Russel-Rao, and Wong.

4.3.2. Experiment 2: multiple faults in single features

This experiment evaluates the approach when the SPL con-
tains multiple faults in two or more single features. Tables 9
and 10 show the average EXAMEF value of each technique un-
der evaluation on the data collected from the 2-wise and 3-wise
product suites respectively. As illustrated, the results obtained
with the 3-wise suite (between 0.10% and 8.89%) were slightly
better than those obtained with the 2-wise suite (between 0.22%
and 12.38%). More specifically, the EXAMF values of the 3-
wise suite outperformed those of the 2-wise suite in 69 out of
the 90 measures (10 techniques x 9 case studies). This means
that the use of more test data improved the performance of the

4.3.3. Experiment 3: fault in a feature interaction

This experiment evaluates the approach under the presence
of one fault due to the interaction of two features. Tables 11
and 12 show the mean EXAMF value of each technique over
the five test scenarios. As in the previous experiment, the re-
sults obtained with the 3-wise suite were significantly better
than those obtained with the 2-wise suite. More specifically,
the EXAMF values of the 3-wise suite outperformed those of
the 2-wise suite in 82 out of the 90 measures. Interestingly, the
mean EXAMEF values were significantly higher (up to 47.57%)
than those observed in the previous experiments, which sug-
gests that, as expected, locating bugs caused by the interaction
of features is harder than isolating bugs in single features. Also,
analogously to Experiment 1, where a single fault was also sim-
ulated, the performance of the techniques was consistent across
all the case studies showing identical conclusions for both prod-
uct suites. More specifically, the techniques performing best
were Ample2, Dstar, Kulcynski2, M2, and Ochiai, all of them
with the same average score. Conversely, the technique Arith-
metic mean performed significantly bad in comparison with the
rest of techniques, with a mean score over 21% with both prod-
uct suites.

4.3.4. Experiment 4: multiple faults in feature interactions
This experiment aims to evaluate our approach when the SPL
has multiple faults caused by feature interactions. Tables 13
and 14 show the average EXAMF values obtained in each of
the case studies for five different test scenarios. As in the previ-
ous two experiments, the techniques showed significantly bet-
ter performance with the 3-wise suite compared to the 2-wise
suite. This improvement was significant in the case of Taran-
tula where the overall average EXAMF value decreased from
5.13% with the 2-wise suite to 0.93% with the 3-wise suite.
Overall, the EXAMF values of the 3-wise suite outperformed
those of the 2-wise suite in 68 out of the 90 measures. It is also
noteworthy that the average EXAMF scores in this experiment
are noticeably higher than in the previous ones. This suggests



Table 7: EXAMEF scores obtained using the 2-wise product suite in Experiment 1. Best values on each column are highlighted in boldface

Technique Drupal V3  Weather St.  Eclipse Android UAV DellL. Arcade HIS ModelT. ‘ Mean
Ample2 1.24 1.20 1.04 0.30 0.31 0.77 0.14  0.07 0.12 0.58
Arithmetic M. 7.64 2.14 42 1.27 2.62 3.86 097 0.64 2.06 2.82
Dstar 1.24 1.20 1.04 0.30 0.31 0.77 0.14  0.07 0.12 0.58
Kulcynski2 1.24 1.20 1.04 0.30 0.31 0.77 0.14  0.07 0.12 0.58
M2 1.24 1.20 1.04 0.30 0.31 0.77 0.14  0.07 0.12 0.58
Naish2 1.73 1.20 1.94 0.30 0.36 1.71 024  0.16 0.34 0.88
Ochiai 1.24 1.20 1.04 0.30 0.31 0.77 0.14  0.07 0.12 0.58
Russel-Rao 1.73 1.20 1.94 0.30 0.36 1.71 024  0.16 0.34 0.88
Tarantula 1.24 1.20 1.17 0.30 0.31 0.77 0.14  0.07 0.12 0.59
Wong 1.73 1.20 1.94 0.30 0.36 1.71 024  0.16 0.34 0.88
Mean 2.03 1.29 1.64 0.34 0.56 1.36 025 0.15 0.38 ‘ 0.90

Table 8: EXAMEF scores obtained using the 3-wise product suite in Experiment 1. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV DellL. Arcade HIS ModelT. | Mean
Ample2 1.92 1.11 0.91 0.29 0.31 0.76 0.13  0.07 0.10 0.62
Arithmetic M. 8.43 1.83 3.83 1.31 2.83 3.82 1.00  0.61 1.98 2.85
Dstar 1.92 1.11 0.91 0.29 0.31 0.76 0.13  0.07 0.10 0.62
Kulcynski2 1.92 1.11 0.91 0.29 0.31 0.76 0.13  0.07 0.10 0.62
M2 1.92 1.11 0.91 0.29 0.31 0.76 0.13  0.07 0.10 0.62
Naish2 2.48 1.11 1.73 0.29 0.36 1.71 024  0.16 0.28 0.93
Ochiai 1.92 1.11 0.91 0.29 0.31 0.76 0.13  0.07 0.10 0.62
Russel-Rao 2.48 1.11 1.73 0.29 0.36 1.71 024  0.16 0.28 0.93
Tarantula 1.92 1.11 0.99 0.29 0.31 0.76 0.13  0.07 0.10 0.63
Wong 248 1.11 1.73 0.29 0.36 1.71 024 0.16 0.28 0.93
Mean 2.74 1.18 1.46 0.39 0.58 1.35 025 0.15 0.34 0.94

Table 9: EXAMEF scores obtained using the 2-wise product suite in Experiment 2. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV DellL. Arcade HIS ModelT. | Mean
Ample2 3.27 1.37 6.26 0.90 0.77 1.11 1.27  0.60 1.42 1.88
Arithmetic M. 7.32 2.95 6.26 1.10 2.36 2.79 098 035 1.32 2.82
Dstar 3.74 1.41 11.50 3.00 3.42 2.04 298  0.89 4.99 3.78
Kulcynski2 3.10 1.21 3.74 0.40 0.46 0.98 049  0.22 0.39 1.22
M2 3.74 1.71 12.06 3.16 3.97 2.28 3.04  0.89 5.60 4.05
Naish2 4.59 2.01 12.38 3.33 4.57 2.54 3.10 094 5.79 4.36
Ochiai 3.58 1.41 10.13 2.48 2.69 1.40 266  0.89 3.89 3.23
Russel-Rao 4.59 2.01 12.38 333 4.57 2.54 310  0.94 5.79 4.36
Tarantula 3.10 1.21 3.59 0.37 0.46 0.98 049  0.22 0.36 1.20
Wong 4.59 2.01 12.38 333 4.57 2.54 310 094 5.79 4.36
Mean 4.16 2.73 9.07 2.14 2.78 1.92 212 0.69 353 3.12

Table 10: EXAMEF scores obtained using the 3-wise product suite in Experiment 2. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV DellL. Arcade HIS ModelT. | Mean
Ample2 2.1 1.10 1.67 0.72 0.62 1.12 .14 0.34 0.80 1.06
Arithmetic M. 8.55 2.80 6.00 1.23 221 2.85 091 0.38 1.08 2.89
Dstar 3.66 1.20 7.14 2.65 2.66 2.23 291 1.22 441 3.12
Kulcynski2 2.50 1.10 1.33 0.34 029 095 038  0.10 0.22 0.80
M2 3.93 1.26 7.72 2.88 3.00 2.40 3.03 1.25 4.72 3.36
Naish2 4.13 1.66 8.89 3.09 3.36 2.60 310 1.27 5.24 3.71
Ochiai 2.61 1.10 5.37 2.20 1.91 1.47 2.62 1.11 3.55 2.43
Russel-Rao 4.13 1.66 8.89 3.09 3.36 2.60 3.10  1.27 5.24 3.71
Tarantula 2.50 1.10 1.21 0.31 029 095 038 0.10 0.20 0.78
Wong 4.13 1.66 8.89 3.09 3.36 2.60 3.10 1.27 5.24 3.71
Mean 3.82 1.46 5.71 1.96 2.11 1.98 207 0.83 3.07 2.56

10



Table 11: EXAMEF scores obtained using the 2-wise product suite in Experiment 3. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV  DellL. Arcade HIS ModelT. | Mean
Ample2 2.2 1.24 1.22 0.27 0.3 0.97 032 0.16 0.31 0.77
Arithmetic M. 36.41 17.05 47.35 13.59 13.57 15.7 1334 534 22.37 20.52
Dstar 2.2 1.24 1.22 0.27 0.3 0.97 032 0.16 0.31 0.77
Kulcynski2 2.2 1.24 1.22 0.27 0.3 0.97 032 0.16 0.31 0.77
M2 2.2 1.24 1.22 0.27 0.3 0.97 032 0.16 0.31 0.77
Naish2 13.89 5.28 232 3.16 4.98 11.59 244 219 6.51 8.14
Ochiai 2.2 1.24 1.22 0.27 0.3 0.97 032 0.16 0.31 0.77
Russel-Rao 13.89 5.28 232 3.16 498  11.59 244 219 6.51 8.14
Tarantula 493 42 3.27 1.29 0.65 1.66 256 034 1.06 2.21

Wong 13.89 5.28 232 3.16 4.98 11.59 244 219 6.51 8.14
Mean 9.40 4.32 12.63 2.57 3.07 5.70 248 1.30 445 5.10

Table 12: EXAMEF scores obtained using the 3-wise product suite in Experiment 3. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV  Dell L. Arcade HIS Model T. | Mean
Ample2 1.42 1.05 0.73 0.21 0.26 0.71 020 0.07 0.10 0.53
Arithmetic M. 38.86 17.73 47.57 12.43 13.89  15.80 14.58 547 229 21.03
Dstar 1.42 1.05 0.73 0.21 0.26 0.71 020 0.07 0.10 0.53
Kulcynski2 1.42 1.05 0.73 0.21 0.26 0.71 020 0.07 0.10 0.53
M2 1.42 1.05 0.73 0.21 0.26 0.71 020  0.07 0.10 0.53
Naish2 5.94 3.14 5.30 2.01 1.68 6.35 1.49 1.16 1.19 3.14
Ochiai 1.42 1.05 0.73 0.21 0.26 0.71 020 0.07 0.10 0.53
Russel-Rao 5.94 3.14 5.30 2.01 1.68 6.35 1.49 1.16 1.19 3.14
Tarantula 1.42 1.86 0.73 0.21 0.26 0.71 047  0.07 0.10 0.65
Wong 5.94 3.14 5.30 2.01 1.68 6.35 1.49 1.16 1.19 3.14
Mean 6.52 343 6.78 1.97 2.05 391 205 094 2.71 3.37

that isolating multiple interaction faults imposes a significantly
hard problem for the techniques under evaluation.

From the results, it is observed that Tarantula is the most ef-
fective technique to isolate multiple interaction faults, achiev-
ing the lowest average EXAMF value in 8 out of the 9 case
studies with both test suites. Conversely, Arithmetic mean was
the technique that showed the worst performance, followed by
Russel-Rao, Naish2 and Wong.

4.3.5. Experiment 5: faults in single features and feature inter-
actions

This experiment assessed the proposed approach in SPLs
containing faults in single features as well as faults due to the
interaction of two features. Tables 15 and 16 show the aver-
age EXAMF values obtained in this experiment for the eight
case studies. As in the previous experiments, the overall per-
formance of most techniques was better when using the 3-wise
suite than when using the 2-wise suite. More specifically, the
EXAMF values of the 3-wise suite outperformed those of the
2-wise suite in 62 out of the 90 measures. In contrast to the pre-
vious experiments, the results with each suite revealed slight
differences, although they overall agree that the techniques per-
forming best were Tarantula, Kulcynski2 and Ample2. Con-
versely, and in line with the previous experiments, the technique
showing the worst performance is Arithmetic mean, followed
by Russel-Rao, Naish2 and Wong.
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4.3.6. Statistical Analysis

Results of the performed experiments were analyzed by
means of statistical analysis. Specifically, for each experiment
of each case study, each pair of the metrics were analyzed with
a post-hoc analysis employing the Kruskal-Wallis test [46],
which is a non-parametric method. This returned a p-value for
each pair of metrics. The p-value indicates whether there is a
statistically significant difference between two different SBFL
techniques or not. As the statistical significance level was set
to 95%, we considered that there was statistical significance be-
tween two different techniques when the p-value < 0.05. When
the p-value of the Kruskal-Wallis test returned a value below
0.05, the Vargha and Delaney test was employed to obtain the
Ay, value [47](48]. The A, value determines the difference
between two techniques and see which of the two techniques is
better.

Tables 17 and 18 summarize the results for the statistical
analysis related to the performed experiments for the 2-wise
and 3-wise suites. These tables indicate the number of times,
out of 45 (5 experiments x 9 case studies), in which the tech-
nique in the row outperformed the technique in the column with
statistical significance (i.e., p-value < 0.05 and the Ay, in favor
of the technique in the row). After the statistical analysis, it can
be appreciated that the best metric was Kulcynski2. In fact, this
metric was not statistically outperformed by any of the other
metrics. However, the rest of metrics were outperformed by



Table 13: EXAMEF scores obtained using the 2-wise product suite in Experiment 4. Best values on each column are highlighted in boldface

Technique Drupal V3  Weather St.  Eclipse Android UAV  DellL. Arcade HIS ModelT. | Mean
Ample2 8.93 3.93 14.47 2.35 3.69 2.38 4.93 1.49 5.15 5.25
Arithmetic M. 44.69 19.86 52.54 11.52 17.44  14.96 1090 5.39 23.23 22.28
Dstar 13.06 7.39 27.70 4.97 6.17 8.85 7.14  3.40 15.06 10.42
Kulcynski2 14.92 5.19 14.49 3.23 227 1.79 3.69 1.48 5.38 5.83
M2 13.19 6.14 27.57 5.89 6.9 5.23 791 342 15.29 10.17
Naish2 23.13 13.01 37.55 8.72 1245  9.53 9.86  4.20 18.56 15.22
Ochiai 11.91 4.51 23.26 3.52 3.78 1.96 599 297 11.16 7.67
Russel-Rao 23.13 13.01 37.55 8.72 1245 953 9.86  4.20 18.56 15.22
Tarantula 12.96 3.73 13.78 2.10 1.75 1.66 3.66 1.45 5.09 513
Wong 23.13 13.01 37.55 8.72 1245 953 9.86  4.20 18.56 15.22
Mean 18.90 8.98 28.65 5.97 7.93 6.54 7.38 3.22 13.60 ‘ 11.34

Table 14: EXAMEF scores obtained using the 3-wise product suite in Experiment 4. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV  DellL. Arcade HIS ModelT. | Mean
Ample2 2.16 1.28 2.03 0.96 0.69 1.43 236 047 1.56 1.44
Arithmetic M. 45.80 20.39 51.16 12.26 11.61 1630 11.02  5.46 22.98 21.89
Dstar 6.14 2.50 18.51 5.44 4.27 3.37 1095 3.73 14.09 7.67
Kulcynski2 3.06 1.29 2.11 0.83 0.55 0.87 098 0.25 0.39 1.15
M2 11.6 4.63 23.00 7.08 541 4.22 11.66  4.19 15.14 9.66
Naish2 18.33 7.63 28.92 8.95 6.85 6.59 12.36  4.92 12.37 13.06
Ochiai 2.18 1.54 7.71 2.78 222 1.28 8.03 2.86 4.19 4.44
Russel-Rao 18.33 7.63 28.92 8.95 6.85 6.59 1236 4.92 12.37 13.06
Tarantula 2.17 1.10 1.68 0.71 0.43 0.87 085 0.22 0.29 0.93
Wong 18.33 7.63 28.92 8.95 6.85 6.59 1236 4.92 16.81 12.37
Mean 12.81 5.56 19.30 5.69 4.57 4.81 829  3.19 11.40 8.40

Table 15: EXAMEF scores obtained using the 2-wise product suite in Experiment 5. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV DellL. Arcade HIS ModelT. | Mean
Ample2 11.29 1.55 4.66 1.55 0.97 1.79 2.13 1.28 2.71 3.10
Arithmetic M. 15.42 8.16 16.47 6.15 4.75 4.92 4.48 1.28 542 7.44
Dstar 10.21 3.68 9.94 4.41 3.99 3.15 4.71 1.85 7.47 5.48
Kulcynski2 9.45 1.85 4.71 2.01 0.82 1.09 226 073 1.94 2.76
M2 10.17 3.54 9.73 4.44 3.86 2.75 4.94 1.89 8.00 5.48
Naish2 9.70 4.57 13.31 5.36 5.04 4.05 53 1.98 8.73 6.44
Ochiai 11.68 2.95 7.92 3.31 2.37 1.85 4.02 1.83 5.98 4.65
Russel-Rao 9.70 4.57 13.31 5.36 5.04 4.05 5.30 1.98 8.73 6.44
Tarantula 12.06 1.85 4.39 2.01 0.82 0.96 226 0.73 1.94 3.00
Wong 9.70 4.57 13.31 5.36 5.04 4.05 5.30 1.98 8.73 6.44
Mean 10.94 3.73 9.77 4.00 3.27 2.87 4.07 1.55 5.96 5.12

Table 16: EXAMEF scores obtained using the 3-wise product suite in Experiment 5. Best values on each column are highlighted in boldface

Technique Drupal V3 Weather St.  Eclipse Android UAV DellL. Arcade HIS Model T. ‘ Mean
Ample2 2.46 1.27 1.99 0.89 0.5 1.22 1.5 0.74 1.69 1.36
Arithmetic M. 1391 7.83 18.29 6.02 5.59 5.43 5.46 1.33 5.26 7.68
Dstar 492 3.05 8.13 4.51 3.61 3.52 545 245 8.24 4.87
Kulcynski2 2.11 1.27 1.97 1.08 038 091 1.58  0.33 0.75 1.15
M2 5.93 3.73 9.31 4.61 3.89 3.03 566  2.56 8.56 5.25
Naish2 7.58 4.22 12.2 5.14 4.44 3.97 585 261 9.26 6.14
Ochiai 3.57 1.72 4.08 3.21 22 1.49 4.86  2.07 6.40 3.28
Russel-Rao 7.58 422 12.2 5.14 4.44 3.97 585 2.6l 9.26 6.14
Tarantula 2.35 1.27 1.72 1.08 038 0.78 1.58  0.33 0.75 1.14
Wong 7.58 422 12.2 5.14 4.44 3.97 585 261 9.26 6.14
Mean 5.80 3.28 8.21 3.68 2.99 2.83 4.36 1.76 5.94 431
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Kulcynski2 at least in one of the experiments for both, the 2-
wise and 3-wise suite.

Apart from Kulcynski2, two techniques can be considered as
valid ones as compared to the rest for solving the fault localiza-
tion problem in SPLs: Tarantula and Ample2. Kulcynski2 sta-
tistically outperformed Tarantula only in one test scenario for
each of the product suites, whereas it statistically outperformed
Ample?2 in one test scenario for the 2-wise suite and in five test
scenarios for the 3-wise suite.

4.4. Discussion
We now summarize the results and what they tell us about
the research questions.

RQI: Effectiveness of different suspiciousness techniques

The results of the experiments and the corresponding
statistical analysis reveal that the approach is effective, with
some of the techniques allowing to detect the faulty features
by examining, on average, 5.13% feature set in the hardest
scenarios (i.e., faults caused by multiple feature interaction).
The results of the experiments and the corresponding statistical
analysis of the data reveal that the techniques Kulcynski2,
Ample2 and Tarantula are the most effective suspiciousness
techniques for fault isolation in SPLs. It is remarkable that
these three techniques showed a very stable performance
with different types of faults and suite sizes. In contrast, the
results of Ochiai, Dstar and M2 were more sensitive to the
type of faults, and diverged significantly among the different
experiments. The techniques Arithmetic mean, Russel-Rao,
Naish2, and Wong performed badly in all experiments. In the
light of these results, RQ1 is answered as follows:

Different suspiciousness techniques may perform very
differently in the context of SPLs. Based on the results
of our study, the most effective suspiciousness tech-
niques are Kulcynski2, Tarantula and Ample2. Con-
versely, the techniques Arithmetic mean, Wong, Russel-
Rao and Naish2 perform badly and they should be
avoided.

RQ?2: Size of the suite

The results obtained with the 3-wise suite were consistently
better when compared with those obtained with the 2-wise
suite. The only exception was Experiment 1 where both suites
yielded similar results. We suspect that this was due to the
simplicity of the problem, which made both suites to obtain
the optimal result easily. Overall, however, the experimental
results were expected and in line with the theory behind SBFL,
which states that the accuracy of the techniques is better as the
size of the test suite increases. Based on our results, RQ2 is
answered as follows:

The accuracy of the fault localization techniques gets
better as the number of products in the suite increases.
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RQ3: Types and Number of Faults

The experimental results show that isolating a single fault
(Experiments 1 and 3) is significantly easier than isolating
multiple faults (Experiments 2, 4, and 5). This was expected
because multiple faults may interfere among them making
the results of the suspiciousness metrics less accurate. The
results also suggest that detecting multiple interaction faults
(Experiment 4) is significantly harder than detecting multiple
single and interaction faults, either in isolation (Experiment 2)
or combined (Experiment 5). In the view of these results, RQ3
is answered as follows:

The number and type of faults have a strong impact in
the effectiveness of the suspiciousness techniques. Iso-
lating single faults is significantly easier than locating
multiple bugs. Locating multiple bugs caused by the
interaction among different features is the hardest sce-
nario.

5. Threats to validity

The factors that could have influenced our work are summa-
rized in the following internal and external validity threats.

Internal validity: Are there factors that might affect the results
of this evaluation? The number of simulated faults in each fea-
ture model could introduce a bias in our evaluation. To mitigate
this threat, we experimented with different numbers of simu-
lated faults, up to a maximum of 10% of the number of fea-
tures, as proposed in [11]. Similarly, it could be the case that
simulated faults affect different types of features differently, or
that the debugging approach performs differently on products
of different sizes. To address these threats, we created five dif-
ferent test scenarios with different simulated faults and two dif-
ferent product suites in each case study. Finally, another threat
is related to the developed test system simulator, which assumes
that test cases and test oracles are always capable of differen-
tiating a faulty product from a non-faulty one. We reiterate,
however, that a key requirement for the successful application
of SBFL is that test cases are able to reveal the faults to be lo-
cated. To mitigate this threat, we also evaluated our approach
using a real-world case study with real test cases and mutation
testing. The results are consistent with those obtained using
simulated faults.

External validity: What are the main limitations of the ap-
proach? As mentioned in Section 3.1.2, if a core feature is
faulty, all products will fail, and thus the results of suspicious-
ness techniques will not be accurate enough to locate the bug.
This is an intrinsic problem of SBFL techniques which depend
on the existence of both successful and failing tests to identify
the suspicious components. To alleviate this threat, when all
the products in the product suite fail, core features are placed
at the top of the suspiciousness ranking. As another limitation,
we considered faults in single features and faults caused by the
interaction between two features, as these are common types of



Table 17: Summary of the Results for the Statistical Analysis for the pairwise suite

Ample2  Arithmetic Dstar Kulcynski2 M2 Naish2 Ochiai Russel-Rao Tarantula Wong
Ample2 - 36 13 0 12 28 8 29 1 29
Arithmetic 0 - 3 0 3 6 2 6 0 6
Dstar 0 28 - 0 0 9 0 9 1 9
Kulcynski2 1 39 12 - 12 29 9 29 1 29
M2 0 27 0 0 - 9 0 9 1 9
Naish2 0 7 0 0 0 - 0 0 0 0
Ochiai 0 32 1 0 0 16 - 16 1 16
Russel-Rao 0 7 0 0 0 0 0 - 0 0
Tarantula 1 33 12 0 13 22 9 21 - 21
Wong 0 7 0 0 0 0 0 0 0
Table 18: Summary of the Results for the Statistical Analysis for the 3-wise suite
Ample2  Arithmetic Dstar Kulcynski2 M2 Naish2 Ochiai Russel-Rao Tarantula Wong

Ample2 - 42 23 0 24 40 17 40 1 40
Arithmetic 0 - 5 0 5 7 4 7 0 7
Dstar 0 34 - 0 1 23 0 23 1 23
Kulcynski2 6 45 20 - 24 39 17 39 1 39
M2 0 33 0 0 - 17 0 17 1 17
Naish2 0 23 0 0 0 - 0 0 0 0
Ochiai 0 37 10 0 12 35 - 35 1 35
Russel-Rao 0 23 0 0 0 0 0 - 0 0
Tarantula 6 45 22 0 23 38 17 38 - 38
Wong 0 23 0 0 0 0 0 0 0 -

faults in software programs [49]. Thus, evaluating the effective-
ness of the approach in isolating faults caused by the interaction
among three or more features remains for future work.

In our evaluation, we assumed that the test suite of each
faulty product is always able to reveal a failure. We think that
this is sensible since the test suite of each product is typically
composed of a large number of test cases. If at least one of the
test cases exercising the faulty feature(s) reveals the failure, the
product is correctly marked as faulty. Thus, we think that this
is a minor threat since it is highly unlikely that none of the test
cases exercising the faulty feature(s) reveal the failure.

To what extent is it possible to generalize the findings? We
used eight case studies, which might not be enough to conclude
that some techniques are better than others. To mitigate this
threat, we chose case studies from different domains with
different sizes and characteristics to assure a sufficient degree
of heterogeneity.

Conclusion validity: A possible conclusion validity threat
could be the configuration for the Dstar technique. Notice that
this technique can be adjusted by setting the *, which is the ex-
ponent of N¢r. To reduce this threat, we set * to 2 based on
previous studies [19].
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6. Related Work

In this section, we overview those works closely related to
our approach in the fields of SPL testing, SBFL and fault isola-
tion.

6.1. Software product line testing

Recent surveys and mapping studies reveal an increasing in-
terest in SPL testing [50, 51, 52, 6]. Lopez-Herrejon et al. con-
ducted a systematic mapping study on combinatorial interaction
testing for SPLs [8]. They identified over forty approaches us-
ing different techniques such as genetic and greedy algorithms.
They also found that a majority of papers focused on deriving
products from variability models (typically a FM) using pair-
wise testing [53, 5, 54]. Similar to those papers, we leverage the
tools for the automated analysis of feature models. In particular,
we propose to use the propagate analysis operation, typically
used during product configuration, to generate minimal prod-
ucts including the suspicious feature set, easing the isolation of
faults. In contrast with previous work, however, this paper fo-
cuses on debugging, not testing. Thus our approach does not
aim to reveal failures but to locate the bugs that trigger them.

Similarly, a number of papers addressed the problem of prod-
uct prioritization in SPLs. Most are based on the use of heuris-
tic [11, 55] and search-based algorithms [56, 6, 57, 12] for re-
ordering the products derived from a feature model according
to different criteria (e.g., complexity of products). Others have



focused on prioritization based on the dissimilarities of prod-
ucts [9][40], following the hypothesis that dissimilar products
are better at finding faults. In our case we prioritize feature sets
according to their suspiciousness score, which is calculated us-
ing state-of-the-art SBFL techniques.

In addition to product prioritization, our fault isolation ap-
proach also shares similarities with delta modeling [58]. Delta
modeling is an approach used in SPL automated product deriva-
tion [58]. It consists of having a core product with a set of fea-
tures as a basis [58]. To derive new products, different delta
operations are applied to the core product [58, 59]. These delta
operations consist of (1) adding new features, (2) removing fea-
tures and (3) modifying features. Our algorithm adds suspi-
cious features to the core features of the SPL and, subsequently,
a propagation function adds required features in order to have
a valid product. These operations can be considered as part of
the delta modeling approach since our algorithm has an initial
product composed of the SPL core features. The algorithm is
designed this way so that the propagation function increases
efficiency. Otherwise, every time the propagation function is
called, the core features would be added to derive a valid prod-
uct.

To the best of our knowledge, SBFL has been applied in the
SPL context only in a recent study [31]. Li et al. proposed
a search-based approach that generates application engineering
level test cases that can be easily reused between different SPL
products [31]. Their approach integrates fault localization tech-
niques with the aim to generate more effective test cases when
locating bugs. However, while Li et al apply SBFL at code
level, in this study we proposed the application of SBFL at fea-
ture level in order to isolate feature sets containing faults.

Yilmaz et al. [60, 17] focused on the generation and schedul-
ing of configurations in configurable software (e.g., Linux) for
efficient fault characterization. To this end, they proposed two
kinds of covering arrays, namely, fixed-strength covering ar-
rays and variable-strength covering arrays [17]. Their empir-
ical evaluation focuses on how different covering arrays per-
form in fault localization with two case studies. As expected,
they found that higher strength covering arrays performed bet-
ter than lower strength ones. In contrast with their approach, we
propose a SBFL approach to locale faulty feature sets in SPLs
following a model-based approach (using feature models). Ad-
ditionally, we assess how different SBFL techniques perform
in different test scenarios (i.e., different amount and types of
faults, with different product suites). We think, however, that
both approaches could be complementary: using their cover-
ing array algorithms to generate and prioritize product suites of
different strengths, and allow for a faster fault localization in
SPLs. Exploring this idea remains for future work.

6.2. Spectrum-based fault localization

Several empirical studies have been carried out to assess the
performance between different SBFL techniques. Pearson et
al. compared the performance of five SBFL techniques and
two mutation-based fault localization techniques for both artifi-
cial and real faults from five open source projects (JFreeChart,
Google Closure compiler, Apache Commons Lang, Apache
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Commons Math and Joda-Time) [19]. They found that Dstar
outperformed the other techniques. They also found that while
Tarantula does not perform better than other techniques (e.g.,
Ochiai) in artificial faults, in real faults there is not a statis-
tically significant difference between Tarantula and the other
techniques. Abreu et al. compared Ochiai with Tarantula in the
Siemens set, finding that Ochiai performed better [18]. Ochiai
is also found to be the best technique in the study performed
by Le et al., where the Siemens set, together with NanoXML,
XML-security and Space were employed as program subjects
[61]. Wong et al. compared 38 techniques on different real-
world programs (e.g., Siemens set, grep, make, gzip, etc.), find-
ing that their proposed Dstar technique outperformed the other
techniques [20]. Jones and Harrold compared five SBFL and
slice-based technique in the Siemens set, finding that Tarantula
was the best technique at finding faults [62]. The use of SBFL
assumes the use of a test oracle, since the SBFL needs test re-
sults. However, as a test oracle is not always available, Xie et al.
adapted SBFL to the metamorphic testing context by proposing
an approach named metamorphic slice [63]. They compared
their approach with three SBFL techniques (Tarantula, Ochiai
and Jaccard) in nine programs and found that their approach is
as effective as traditional SBFL.

The subject programs of previous studies have always been
the source code of program with different languages (e.g., C or
Java). In contrast, we propose the application of SBFL in SPLs
at the feature level. This is a context in which this technique,
to the best of our knowledge, has never been applied. We pro-
vided an empirical evaluation that compared ten different sus-
piciousness techniques in different fault scenarios, across eight
case studies of different complexities. Unlike in previous stud-
ies, where Dstar, together with Ochiai has been found to be one
of the best techniques, we found that in our context the best
techniques are Tarantula, Ample2 and Kulcynski2. Moreover,
we complement the use of SBFL in the SPL context with a fault
isolation algorithm that provides the debugger with the smallest
product to help isolate the faulty feature sets.

6.3. Fault isolation

Many studies have proposed different techniques for pin-
pointing faults in computer programs. The core idea of Delta
Debugging is simplifying large test cases that produce a fault
by removing irrelevant details [28]. The Delta Debugging al-
gorithm has been extended in other studies, proposing a Hier-
archical Delta Debugging approach where the input structure is
taken into account [64]. This enables reducing the number of
test cases and producing smaller outputs. Similar techniques
to the Delta Debugging have been proposed for minimizing the
constraints on the input parameters to isolate the cause of faults
of web applications [65], or for isolating C compiler bugs [66].
Other traditional techniques include program slicing, where ir-
relevant parts of a failing program are removed [67].

Our fault isolation approach builds upon the aforementioned
approaches by employing an incremental approach to build the
minimal product (i.e., the core features are taken as a baseline,
and the most suspicious feature sets are included to form the
smallest product possible) instead of a decremental approach



(i.e., isolating fault by making the input space smaller). More-
over, our approach is designed for the SPL context, a context
where debugging has been paid little attention. This SPL con-
text faces several idiosyncrasies, such as the use of feature mod-
els to manage the variability and the use of reasoning tech-
niques (e.g., SPLAR) to derive valid products.

7. Conclusion and Future Work

In this article we presented a debugging approach for SPLs
using SBFL techniques. Based on the features included on each
product under test and the test outcomes, it is possible to iden-
tify which feature sets were involved in a failure, and which
ones did not, narrowing the search for the faulty feature set that
made the execution fail. As a result, feature sets are ranked
according to their suspiciousness score, assisting debuggers on
the localization of bugs. Additionally, we propose to exploit
the techniques for the automated analysis of feature models to
generate minimal valid products containing the suspicious fea-
ture sets, contributing to reduce the effort required to isolate
and locate faults. We empirically evaluated our approach by
comparing the effectiveness of ten SBFL techniques on eight
case studies. Results show that the approach is effective, with
the techniques Tarantula, Kulcynski2 and Ample2 showing a
good and stable performance with different number and types
of faults. We also found that the effectiveness of the technique
increases with the number of products under test. This work
complements the extensive corpus of papers on SPL testing,
and paves the path for new contributions on fault localization in
SPLs.

In the future we would like to compare other techniques for
fault localization, such as machine learning-based fault local-
ization (similarly as proposed by Yilmaz et al. [17]). In addi-
tion, we would like to compare our incremental fault localiza-
tion approach with the decremental. Furthermore, it could be
nice to expand on the empirical evaluation by including more
case studies with real faults. In addition, an empirical evalu-
ation involving a controlled experiment with humans could be
interesting to better assess our approach in practice. Last, as
previously mentioned, our approach is black box. In the future
a nice complement to our study could be to use white box in-
formation of test cases by using the traceability between feature
sets and test cases, which could lead to further benefits.

Experimental results

Experimental results and statistical analysis scripts in R are
publicly available at http://bit.ly/IST2018AArrieta
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