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Abstract—Multiphase permanent magnet motors are gaining
popularity thanks to their advantages, which include reduced
torque ripple, enhanced torque capability, and fault tolerance.
However, their modelling and control is more complex. Different
harmonics in multiphase motors are separated in different
orthogonal planes, each one having a different inductance value.
This has different implications in airgap flux and torque genera-
tion. In this work, we present a space-harmonic model to analyse
the torque production and the inductances in multiphase motors.
This contributes to understand the interaction between different
harmonics and their implication on the motor characteristics,
which can be helpful for the motor design. To further verify the
results, a three-phase and a dual three-phase motor are compared
with finite element models. The case study confirms the results
obtained from the space-harmonic model.

Index Terms—multiphase, space-harmonic, modelling, Current
Harmonic Injection (CHI), inductance, torque

I. INTRODUCTION

The multiphase permanent magnet motor is gaining popular-
ity in many sectors such as automotive, thanks to its numerous
advantages including reduced torque ripple, enhanced torque
capability, and fault tolerance [1]. Despite its advantages,
multiphase motor modelling is more complex than that of their
three-phase counterparts [2].

Unlike in 3-phase motors, where time-varying variables can
be represented in a single plane (usually called αβ plane),
multiphase motors have more than one orthogonal plane,
each one containing harmonics of a specific sequence [3].
Therefore, it is necessary to characterise each plane, given their
different inductance values. In [4] and [5], an algorithm to get
the inductance in each plane is proposed and experimentally
verified.

The winding function theory has also been used to compute
the inductances in multiphase windings. In [6], it was used to
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calculate the inductances of surface permanent magnet motors.
In [7], it was combined with Finite Element Method (FEM) to
make an accurate model taking into account stator and rotor
reluctance.

Space-harmonic models based on winding function theory
were used to analyse torque production in switched flux per-
manent magnet [8], surface permanent magnet [9], and axial
permanent magnet [10] motors. In [11], the time-harmonics
and space-harmonics were analysed in a multiphase induction
motor using a space-harmonic model.

In the literature, the winding function theory has been
used in multiphase motors to calculate the inductances of
different planes. Moreover, the airgap flux generation has been
analysed with space-harmonic models. Yet, to the best of our
knowledge, the models have not been used to analyse in depth
the interaction of the different harmonics so as in this article.

The aim of this paper is to deepen the understanding of the
different harmonic planes, inductances and torque generation
in multiphase motors thanks to a space-harmonic model.
Different design variables are taken into account (number of
phases, winding configurations, magnet spans, current wave-
forms, and so on), whose effect in the inductances and torque
generation is analysed in depth. This can be helpful in the
motor design stage. The model was validated with a case study
of a three-phase and a Dual Three-Phase (DTP) motors with
FEM.

II. ASSUMPTIONS AND NOTATION

As the objective of the space-harmonic model is to under-
stand how the coupling between different harmonics affects the
inductances and torque ripple, several assumptions are made:

• Slotless stator and rotor: The stator and the rotor are
considered flat, this is, the effect of stator teeth and rotor
salience is disregarded.

• Infinite stator and rotor core permeability: The airgap
defines the permeance of the magnetic circuit.



• No flux leakages: All the flux goes through stator core,
rotor core and coils.

• Unitary pole pairs and periodicity: The analysis is per-
formed in the entire perimeter of the air gap.

• Disregarded airgap length: Stator inner, rotor outer and
airgap diameters are considered the same (Dg). Airgap
(g) is only used for permeance calculation.

When defining the magnitudes (e.g. magnitude X repre-
sented in (1)), subscripts are used to refer to the location of
the magnitude (e.g. phase ph or airgap g), and superscripts
are used to refer to the cause of the magnitude (e.g. phase ph,
whole stator armature s or permanent magnets pm).

X□→Magnitude cause
□→Magnitude location (1)

On the other hand, the mechanical angles in the stator
(θs) and in the rotor (θr) are related by (2). The analysis
is performed in the stationary reference frame (variables are
represented with respect to the stator position θs).

θr = θs − Ωt (2)

III. SPACE-HARMONIC MODEL

Fig. 1 shows the process of calculating the torque and
inductance expressions with the space-harmonic model, which
are described in detail below.

A. Torque production

The winding function of phase ph depends on the stator
angular position. It is expressed as in (3),

Mph (θs) =

∞∑
n=−∞

1

2
M̂ne

jn(θs−θ0,ph) (3)

where M̂n and θ0,ph are the nth winding function harmonic
amplitude and phase shift of the phase winding with respect
to the reference phase.

Conversely, the flux density generated in the airgap by the
permanent magnets is a function of time and position, and is
given by (4),

Bpm
g (θs, t) =

∞∑
p=−∞

1

2
B̂gpe

jp(θs−Ωt) (4)

where B̂gp is the pth harmonic amplitude of magnetic flux
density generated by the permanent magnets in the airgap.

Winding
function

Magnet
flux density

Linked flux
EMF Current

Torque
(a) Torque

Winding
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Magnetomotive force
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Linked flux Inductance
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Fig. 1: Torque and inductance calculation process.

To compute the permanent magnet flux linked in each
phase, the flux density in the airgap must be multiplied by
the corresponding winding function and integrated across the
airgap area. This is written in (5),

Ψpm
ph (t) =

∮
Sg

Mph (θs) ·Bpm
g (θs, t) · dS (5)

where Sg is the airgap area. The differential operator of the
area is expressed in (6) as a function of the stator position θs,

dSg =
LsDg

2
dθs (6)

where Ls and Dg are the length of the stator and the diameter
of the air gap, respectively.

Thus, by replacing (6) in (5), (7) is obtained.

Ψpm
ph (t) =

LsDg

2

∫ 2π

0

Mph (θs) ·Bpm
g (θs, t) · dθs =

=
LsDg

8

∞∑
[n,p]=−∞

M̂nB̂gpe
−j(nθ0,ph+pΩt)

∫ 2π

0

ej(n+p)θsdθs

(7)
To obtain a non-zero value in the integration in (7), p = −n

must be fulfilled. Applying the mentioned equality and solving
the integral results in (8).

Ψpm
ph (t) =

LsDgπ

4

∞∑
n=−∞

M̂nB̂gne
jn(Ωt−θ0,ph) (8)

Equation (8) shows that permanent magnet flux is linked
in the cases that the order of winding factor and permanent
magnet flux harmonics are the same. Other winding factor
harmonics do not have an effect on permanent magnet flux
linkage.

The back electromotive force (EMF) in each phase is the
derivative of the linked magnet flux over time as shown in (9).

EMFph(t) = −
dΨpm

ph (t)

dt
(9)

If the permanent magnet linked flux in (8) is substituted
in (9) and developed, the representation of the phase EMF in
(10) is achieved.

EMFph(t) =
LsDgΩπ

4

∞∑
n=−∞

nM̂nB̂gne
jn(Ωt−θ0,ph)ej

3π
2

(10)
Furthermore, the phase current of phase ph is time depen-

dant and is given by (11),

Iph (t) =

∞∑
k=−∞

1

2
Îke

jk(Ωt−θ0,ph+λk) (11)

where Îk and λk are the amplitude of kth current harmonic
and its angle, respectively.

When it comes to the torque produced by the interaction
between the flux generated by permanent magnets and the



armature winding, one way to calculate it is to calculate the
electromagnetic power, by multiplying the back electromotive
force (EMF) and the armature currents, and then dividing it
by mechanical speed as in (12).

T pm−ph
em (t) =

EMFph (t) · Iph (t)
Ω

(12)

Substituting (10) and (11) into (12) and developing it, (13)
is obtained, which is the expression for the torque generated
by a given phase.

T pm−ph
em (t) =

LsDgπ

8
·

·
∞∑

[k,n]=−∞

nM̂nB̂gn Îke
j(n+k)(Ωt−θ0,ph)ej(

3π
2 +kλk)

(13)

To calculate the overall torque, the sum of torque of all
phases must be computed by substituting θ0 of each phase in
(13) and summing the torque values in all phases, obtaining
(14).

T pm−s
em (t) =

LsDgπ

8

∑
θ0

∞∑
[k,n]=−∞

nM̂nB̂gn Îk·

· ej(n+k)Ωte−j(n+k)θ0ej(
3π
2 +kλk)

(14)

B. Inductances

The MagnetoMotive Force (MMF) generated by each phase
winding is the product between the winding function and
the current in the corresponding phase. This relationship is
represented in (15), which is developed by substituting (11)
and (3), obtaining (16).

MMF ph (θs, t) = Mph (θs) · Iph (t) (15)

MMF ph (θs, t) =

=
1

4

∞∑
[n,k]=−∞

M̂nÎke
j(nθs+kΩt+kλk)e−j(n+k)θ0,ph (16)

Once the MMF generated by each phase is calculated, the
overall MMF generated by the armature winding is calculated
in (17), which is obtained by adding all phase magnetomotive
forces as in (17).

MMF s (θs, t) =
∑
θ0

MMF ph (θs, t) =

=
1

4

∑
θ0

∞∑
[n,k]=−∞

M̂nÎke
j(nθs+kΩt+kλk)e−j(n+k)θ0

(17)

Starting from the MMF, the magnetic flux density in the
airgap generated by a given phase is calculated. This is the
product between the magnetomotive force generated by the
phase and the permeance of the circuit as shown in (18),

Bph
g (θs, t) =

MMF ph (θs, t) · Λg (θs)

Sg
(18)

where Λg is the permeance of the airgap in each airgap point.
The airgap permeance is calculated in (19) and developed by
substituting (6),

Λg =
µ0

g
Sg (19)

being µ0 = 4π ·10−7H/m the air permeability and g the length
of the airgap. By substituting (16) and (19) in (18), the airgap
flux density generated by a single stator coil is shown in (20).

Bph
g (θs, t) =

=
1

4

µ0

g

∞∑
[n,k]=−∞

M̂nÎke
j(nθs+kΩt+kλk)e−j(n+k)θ0,ph (20)

The same way, magnetic flux density generated by the whole
stator armature can be obtained by substituting the MMF
generated by the whole armature (17) in (18), resulting in
(21).

Bs
g (θs, t) =

MMF s (θs, t) · Λg (θs)

Sg
=

=
1

4

µ0

g

∑
θ0

∞∑
[n,k]=−∞

M̂nÎke
j(nθs+kΩt+kλk)e−j(n+k)θ0

(21)
For the kth current harmonic, not all winding function

nth harmonics generate flux in the airgap, and the term∑
θ0
e−j(n+k)θ0 inside (21) determines which harmonics gen-

erate flux.
The same way as permanent magnet linked flux was cal-

culated in (5), linked flux induced by a phase ph1 in another
phase ph2 is calculated by integrating the product between
flux density and winding function in the coil area, which is
shown in (22).

Ψph1

ph2
(t) =

LsDg

2

∫ 2π

0

Mph2
(θs) ·Bph1

g (θs, t) · dθs (22)

By replacing (3) and (20) in (22), (23) is obtained. Note that
the winding function appears twice in the expression. As all
harmonics of the first must be multiplied by all harmonics of
the second, n1 and n2 are used to differentiate both multiplied
nth winding function harmonics.

Ψph1

ph2
(t) =

LsDgµ0

16g
·
∫ 2π

0

∞∑
[n1,n2,k]=−∞

M̂n1
M̂n2

Îk·

· ej((n1+n2)θs+kΩt+kλk)e−jn2θ0,ph2 e−j(n1+k)θ0,ph1dθs

(23)

To get a non-zero value in the integral, n2 = −n1 must be
met, which is substituted in (23) to get (24). n = n1 is used
in this last equation.



Ψph1

ph2
(t) =

LsDgµ0π

8g

∞∑
[n,k]=−∞

M̂2
nÎk·

· ejk(Ωt+λk−θ0,ph1)ejn(θ0,ph2
−θ0,ph1)

(24)

When it comes to the total flux generated by the stator
armature and linked in each phase, the sum of all flux
generating phases (ph1) in (24) must be performed, obtaining
(25).

Ψs
ph (t) =

LsDgµ0π

8g
·

·
∞∑

[n,k]=−∞

Îke
jk(Ωt−θ0,ph+λk)M̂2

n

∑
θ0

ej(n+k)(θ0,ph−θ0)
(25)

As regards the inductance, it relates the current with the
generated flux as in (26).

L =
Ψ(t)

I (t)
(26)

By applying this relationship to current and flux formulas
in (11) and (24), and substituting θ0,ph1

= θ0,ph2
= θ0,ph, the

self-inductance in a given phase ph can be calculated as in
(27).

Lph =
LsDgµ0π

4g

∞∑
n=−∞

M̂2
n (27)

Besides, the inductance value can also be calculated ac-
counting with the flux created by all the stator coils, which
is more interesting for motor control purpose. This way, for
an m-phase motor with θ0 phase shifts, the inductance for kth

current harmonic is calculated in (28),

Lk =
LsDgµ0π

4g

∞∑
n=−∞

M̂2
n

∑
θ0

(
ej(n+k)θ0 + ej(n−k)θ0

)
=

LsDgµ0π

g

∞∑
n=1

M̂2
n · cL (n, k)

(28)
where cL follows the expression in (29).

cL (n, k) =
∑
θ0

cos ((n+ k) θ0) + cos ((n− k) θ0)

2
(29)

Unlike the self-inductance, this time not all winding func-
tion harmonics affect the inductance value. Furthermore, the
inductance for each kth current harmonic is different and
depends on the term cL(n, k).

IV. RESULTS AND DISCUSSION

To discuss about multiphase motors in this section, the DTP
motor has been selected (θ0 =

[
0, π

6 ,
2π
3 , 5π

6 , 4π
3 , 3π

2

]
). This is

compared with the three-phase motor (θ0 =
[
0, 2π

3 , 4π
3

]
).

A. Average torque

To get an average torque value, the term ej(n+k)Ωt must
be 1 in (14). Therefore, n = −k must be substituted there to
obtain the expression in (30).

T pm−s
em,av (t) =

LsDgπ

8

∞∑
k=−∞

kM̂kB̂gk Îke
j(π

2 −kλk) (30)

The maximum value for average torque for the harmonic
k is obtained when λk = π

2k and Îk has a positive value
(assuming that the product M̂k ·B̂gk has also a positive value),
which allows to equal the exponential term in (30) to 1.
Moreover, a high M̂k, B̂gk and Îk produce a higher torque,
which makes it interesting to have a high fundamental winding
factor (M̂k) and airgap flux density (B̂gk ) if high torque is
required.

To sum up, kth magnet flux density harmonic is linked by
means of kth winding factor harmonic, achieving an kth EMF
harmonic. By applying a same-order kth current harmonic,
average torque is achieved. The harmonic combinations that
produce an average torque are marked in green in Fig. 2.

B. Torque ripple

The term ej(n+k)Ωt appears in the torque expression. In
the case of harmonics that do not match the equality n = −k,
they produce an oscillating torque component. Whether torque
ripple is created or not depends on the term

∑
θ0
e−j(n+k)θ0

which, in case of being null, eliminates the oscillating torque
component.

In case of three-phase motors and considering that n and k
are odd numbers, torque ripple appears when n+k is a multiple
of 6. The harmonic combinations that produce torque ripple
(e.g. k = 1 and n = 5) are marked in red with a cross in Fig.
2a.

For higher number of phases, in m phase motors, the
first component of torque ripple appears at 2m (except from
symmetrical even phase number configurations, where it ap-
pears at m) which can be deduced from the mentioned term∑

θ0
e−j(n+k)θ0 . This means that the more phases has a motor,

the smaller is the torque ripple, as more components are
canceled in the expression. The specific case of the DTP motor
is depicted in Fig. 2b. The sum n+ k must be multiple of 12
(e.g. k = 1 and n = 11), and the harmonic combinations are
marked in red with a cross.

C. Current harmonic injection

To use additional current harmonics together with the funda-
mental one is possible in multiphase motors, which is called
current harmonic injection (CHI) in the literature [12]. In a
three-phase motor, the only harmonic that produces an average
torque without ripples is the first one, and this scenario is
depicted in Fig. 2a. In multiphase motors, additional current
harmonics can be used to generate torque.

The case of the DTP motor can be analysed in Fig. 2b. If
only the fundamental current harmonic is used, the 9th and
lower-order EMF harmonics do not produce torque ripple.
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Fig. 2: EMF and current harmonic combinations that generate
average torque and torque ripple.

This scenario is marked in the same figure. Yet, if 3rd and 5th

are injected, same-order EMF harmonics contribute to average
torque without generating torque ripple. This characteristic can
be used to enhance torque capability in multiphase motors.

D. Inductance for each current harmonic

In the three-phase motor case, the term (n + k) in (29)
has to be zero or multiple of 6 to get a non-zero value
in the inductance expression in (28). In Table I, different
combinations of current and winding function harmonics are
represented, together with their inductance coefficients (cL).

Current harmonics can be split into two groups depending
on the inductance value:

TABLE I: Inductance coefficients (cL) for each combination
of current harmonic (k) and winding function harmonic (n) in
three phase motors.

1 3 5 7 9 11 13 . . .

1 3/2 0 3/2 3/2 0 3/2 3/2

3 0 3 0 0 3 0 0 . . .

5 3/2 0 3/2 3/2 0 3/2 3/2

7 3/2 0 3/2 3/2 0 3/2 3/2

9 0 3 0 0 3 0 0 . . .

11 3/2 0 3/2 3/2 0 3/2 3/2

13 3/2 0 3/2 3/2 0 3/2 3/2

...
...

...
. . .

k
n

• Harmonics k = 3h ± 1(h = 0, 1, 2, 3...): they are
represented in green. They generate MMF harmonics of
order 3h± 1(h = 0, 1, 2, 3...) in the airgap. Fundamental
harmonic is located in this group.

• Harmonics k = 6h ± 3(h = 1, 2, 3...): they are repre-
sented in orange. They are homopolar, which makes it
necessary to have a neutral point to have these current
harmonics. If so, they generate MMF harmonics of order
6h± 3(h = 1, 2, 3...) in the airgap.

On the other hand, for DTP motors, Table II collects the
inductance coefficients for each combination of current and
winding function harmonics. Unlike in 3-phase motors, in
DTP ones, three different current harmonic groups can be
distinguished:

• Harmonics k = 12h ± 1(h = 0, 1, 2, 3...): they are
represented in green. They generate MMF harmonics of
order 12h±1(h = 0, 1, 2, 3...) in the airgap. Fundamental
harmonic is located in this group.

• Harmonics k = 12h ± 3(h = 0, 1, 2, 3...): they are
represented in blue. They generate MMF harmonics of
order 12h ± 3(h = 0, 1, 2, 3...) in the airgap. They are
homopolar.

• Harmonics k = 12h ± 5(h = 0, 1, 2, 3...): they are
represented in orange. They generate MMF harmonics
of order 12h± 5(h = 0, 1, 2, 3...) in the airgap.

The more phases a motor has, the more harmonic groups
appear. This way, for a given kth current harmonic, there
are less harmonics of the winding function that generate
magnetomotive force and consequently flux in the airgap. This
implies generating a smoother airgap flux density. Moreover,
only the kth winding function harmonic contributes to creating
an average torque and is useful (all the others create unwanted
flux harmonics in the airgap). Therefore, the effective induc-
tance for a kth current harmonic is calculated by only taking
into account the same harmonic of the winding function of the
same order as in (31).

Leff,k =
LsDgµ0π

g
M̂2

k cL (31)

Having a large effective inductance (Leff,k) ratio within
the total inductance (Lk) is interesting if a small inductance

TABLE II: Inductance coefficients (cL) for each combination
of current harmonic (k) and winding function harmonic (n) in
DTP motors.

1 3 5 7 9 11 13 . . .

1 3 0 0 0 0 3 3
3 0 3 0 0 3 0 0
5 0 0 3 3 0 0 0 . . .

7 0 0 3 3 0 0 0
9 0 3 0 0 3 0 0

11 3 0 0 0 0 3 3

13 3 0 0 0 0 3 3
...

...
. . .

k
n



value is required in the application (to improve power factor),
as the remaining inductance not only behaves as a leakage
inductance but also generates torque ripple. This ratio between
the effective inductance and the total inductance for a given
current harmonic is called in [13] the harmonic leakage factor.

V. FINITE ELEMENT COMPARISON FOR MODEL AND
RESULTS VERIFICATION

In Section IV, the dissimilarities between 3-phase and
multiphase motors were discussed. To further confirm the
mentioned differences, FEM was used in both motor types.
This way, the model and the results were verified. The ideal
3-pole-pair three-phase and DTP surface permanent magnet
motors in Fig. 3 were selected, whose main dimensions and
parameters are given in Table III. To make the motor ideal,
the coils were represented as line regions to avoid the slotting
effect. When it comes to the phase current value, 20 A and
10 A peak current values were used in the 3-phase and DTP
motors respectively (same total ampere-turns).

A. Airgap flux generation

To analyse the airgap flux generated by the windings,
magnets were defined as air in the FEM models. The airgap
flux density created by the three-phase and the DTP motors
can be appreciated in Fig. 4. The DTP motor generated a
higher fundamental harmonic, which led to a higher average
torque. Moreover, the 5th and 7th flux density harmonics did
not appear in the DTP motor as predicted in Table II.

When feeding the DTP motor with different current har-
monics, different winding function harmonics took part in
generating airgap flux. This is illustrated in Fig. 5.

First, when feeding the motor with the 1st current harmonic,
harmonics of electrical order k = 12h ± 1 (where h =
0, 1, 2, 3...) appeared. Second, when fed with the 5th current

TABLE III: Motor dimensions and parameters.

Parameter Parameter

41 mm Coil span 5 º
Magnet remanent flux density 1.2 T

Magnet length 1 mm Magnet relative permeability 1

Airgap length 0.1 mm Steel relative permeability 106 ≃ ∞
Axial length 36 mm Number of turns per phase 120

Value Value

Rotor lamination
radius

5º

A+
A+

C-
C-

B+
B+

A-A-C+C+B-B-

(a) Three-phase
A+
X+

C-
Z-

B+
Y+

A-X-C+Z+B-Y-

(b) DTP

Fig. 3: Single pole pair of the selected motors for model and
results verification.

Fig. 4: Airgap flux density of three-phase and DTP motors
without magnets.

harmonic, airgap flux harmonics of order k = 12h± 5 (where
h = 0, 1, 2, 3...) appeared. These results also match with
Table II and graphically show the existence of the different
inductances.

B. Torque generation

To compare both motors in terms of torque generation, they
were fed with the same total ampere-turns. Fig. 6 shows the
temporal waveforms and the Fast Fourier Transform (FFT).

When it comes to the average torque value, it was 3.5%
higher in the DTP motor. This was due to the higher funda-
mental airgap flux generated by the stator winding, which was
shown in Fig. 4.

Besides, torque ripple was considerably higher in the three-
phase motor (15.3% in 3-phase and 3.4% in DTP peak-to-peak

(a) 1st current harmonic

(b) 5th current harmonic

Fig. 5: Airgap flux density created by different current har-
monics in the DTP motor without magnets.



Fig. 6: Torque ripple in the three-phase and DTP motors at
the same load point.

with respect to average value). The harmonics of electrical
order 5 and 7 generated 6th electrical order torque ripple in
the 3-phase motor as previously discussed in Section IV-B. In
the case of the DTP motor, only harmonics of electrical order
12 and multiples appeared.

VI. CONCLUSIONS

The aim of this investigation was to develop a model to un-
derstand the different harmonic planes, inductances and torque
generation in multiphase motors. The results of this study
show the effects that the interaction of different harmonics
have on inductance values and torque generation. This could
help to improve motor designs, specially in the preliminary
design stage due to the taken assumptions. The current study
was limited by the fact that it did not take into account non-
idealities of the motor, including saturation and reluctance.
Considering non-idealities in the model as well as using it
to analyse other motor topologies (e.g. concentrated winding
designs) would be fruitful areas for further work.
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