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Abstract- This work addresses limitations of the composite 

improved generalized Steinmetz equation for core loss calculation 

and presents a more robust definition of the losses. First, the 

limitations due to extrapolation of the fifth-degree polynomial 

functions used in the previous work are presented, resulting in 

inaccurate predictions in certain cases. As a solution, Bézier curves 

are proposed, which can accurately model the loss transition from 

low frequency (hysteresis loss) to high frequency (eddy loss), while 

remaining tangential outside of the parametrization range. The 

presented approach is not only more robust, but also requires less 

parameters to define the losses, while retaining similar or better 

accuracy than the approach. 

Index Terms- Core loss, Magnetic cores, Ferrites, Curve 

fitting, Numerical analysis. 

I. INTRODUCTION 

Transformers and inductors are one of the key components 

for on power converters, playing major roles in the efficiency, 

power density, weight, and cost of the design [1]-[4]. Thus, the 

meticulous design of these devices for the requirements of each 

specific application is critical to achieve high performance 

power converters. 

Regarding switch mode power supplies (SMPS), the size of 

magnetics has been decreased with the adoption of wide band 

gap (WBG) transistors allowing to push higher frequencies. 

Unfortunately, the optimal design of high frequency magnetics 

is a challenging endeavour, with smaller cores resulting in 

decreased cooling capabilities, giving rise to higher 

temperatures [5]. Thus, the capacity to predict the magnetic 

device losses and temperatures accurately becomes more 

important than ever.  

Focusing on the core losses, various approaches exist, 

starting from the Steinmetz Equation [6]. This approach can 

predict the losses of sinusoidal waveforms accurately, but 

triangular waveforms are often more common in SMPS. The 

improved generalized Steinmetz equation (iGSE) proposes an 

alternative for non-sinusoidal waveforms [7], but it has been 

demonstrated that the accuracy is not adequate for all duty 

cycles [8]. To improve the accuracy of the iGSE, the composite 

improved generalized Steinmetz equation (ciGSE) is proposed 

in [8], which combines the key concepts of both the composite 

waveform hypothesis (CWH) [9] and the iGSE, extracting the 

necessary parameters directly from triangular waveforms of 

variable duty cycles. 

Once all the necessary parameters are obtained, the 

triangular waveform losses can be obtained by evaluating the 

losses of each segment (i) using  

𝑃i = exp(𝑔(ln(Δ𝐵) , ln(𝑑𝐵/𝑑𝑡))), (1) 

and then adding them together in the same manner as the CWH 

approach 

𝑃loss = ∑ 𝐷𝑖 · 𝑃𝑖 . (2) 

Although the ciGSE was proved to offer noticeable 

improvements regarding previous models in a wide range of 

frequency, flux density and duty cycle based on the MagNet 

database [10]-[13]. The implementation of the fifth-degree 

polynomials to define the loss space function (1) reported 

inaccurate results when extrapolation is required [8]. This is an 

innate limitation of high-degree polynomial fitting, which 

becomes divergent at the boundary of the fitting dataset, 

resulting in the function quickly shooting to ±∞ outside the 

fitting boundary. Since the ciGSE polynomial fitting 

methodology is incapable of using data from all duty cycles, 

evaluation of losses at extreme duty cycles (𝐷=0.1 and 𝐷=0.9) 

requires extrapolation. In addition, if the ciGSE is evaluated 

outside of its fitting boundaries 𝑓 ∉  [55 445] kHz 𝐷 ∉ [0.1, 
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0.9] a loss in precision is unavoidable. This is illustrated in Fig. 

1, with the predicted losses quickly increasing outside of the 

parametrized loss space boundaries. 

This work will address this problem by presenting an 

alternative approach to model the loss space function (1) based 

on Bézier curves. As will be demonstrated, the Bézier curve 

allows to describe the curvature of the loss space while 

remaining tangential outside of the parametrization range. Due 

to this tangentiality, the new approach better describes the 

hysteresis and eddy loss phenomena that govern the losses in 

low and high frequency ranges, resulting in an improved 

extrapolation performance and a much-increased accuracy on 

those cases. 

First, SECTION II will present an introduction to Bézier 

curves, demonstrating the key properties of continuity and 

tangentiality. Then, SECTION III discusses the 

implementation of these Bézier curves as an alternative to the 

fifth-degree polynomial functions used for the loss space 

definitions. Lastly, SECTION IV presents the obtained results, 

demonstrating the improvement in accuracy due to a better 

extrapolation process. 

II. BÉZIER CURVES 

Bézier curves are parametric curves commonly used in 

computer graphics to describe paths using a set of control points 

[14]. The curve is defined by a mathematical function, which 

for the cubic Bézier curves used in this work takes the matrixial 

representation 

𝑓(𝑡) =  [𝑡3 𝑡2 𝑡 1] [

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

] [

𝑃0

𝑃1

𝑃2

𝑃3

], (3) 

 with 𝑃0 , 𝑃1 , 𝑃2  and 𝑃3  being the control points and 𝑡 used to 

define the position inside the curve (ranging from 0 to 1). At its 

extremes, a Bézier curve shows a 𝐺1  continuity (tangent 

continuity) with the lines defined by the 𝑃0  and 𝑃1  control 

points (𝑡 = 0) and the 𝑃2 and 𝑃3 points (𝑡 = 1). 

As illustrated in Fig. 2, the control points give complete 

freedom when defining the geometry of the Bézier curve, 

allowing to adjust the edge points, curvature, and tangents of 

the curve. Thus, due to the tangent continuity properties and the 

capabilities to control the curvature, Bézier curves are ideal 

candidates to achieve similar results to fifth-degree 

polynomials while retaining good extrapolation capabilities 

when the tangents are set correctly. 

Lastly, the matrixial form of a Bézier curve is very similar 

to the equations employed in the ciGSE [8], which allows to use 

the Steinmetz parameter extraction techniques described in that 

work. Retaining the capability to obtain the Steinmetz 

parameters of a specific point, since many other works tackling 

the problem of core losses make heavy use of this, allows to 

combine the Bézier curve approach with those presented in 

works regarding the impact of relaxation [15] and influence of 

pre-magnetization [16] in the core losses. 

III. IMPLEMENTATION 

Although the Bézier curves appear to solve all the main 

issues of the fifth-degree polynomials approach, there is still a 

huge issue in their implementation of the problem of core 

losses: the cubic Bézier curves are only applicable to two 

dimensional problems, while the core losses are a three-

dimensional problem: 𝑥 = ln(𝑑𝐵/𝑑𝑡) , 𝑦 = ln(Δ𝐵) , and 𝑧 =
ln(𝑃i). 

 
Fig. 1: Visualization of the ciGSE loss space defined by fifth-degree 
polynomials and its parametrization boundaries for N87 at 25 ºC. Notice how 

the tendencies inside and outside the boundaries are not the same, resulting in 

the extrapolation. 

 
Fig. 2: Demonstration of the effect of the control points in a cubic Bézier curve. 

 
Fig. 3: Rotated ciGSE loss space Fig. 1 into a two-dimensional problem for 

N87 at 25 ºC. There it can be seen how the surface looks like a 2D curve. For 

the 2D representation a new perspective axis (𝑥’  and 𝑦’ ) will be defined. 

Theoretically this remains being a 3D problem but one of the axes is not 
appreciable. 

       

   

  

  



 

 

 Fortunately, in all cases tested, the ciGSE loss space shown 

in Fig. 1 (when confined to its boundaries, no extrapolation) 

resembles a two-dimensional problem when the 𝑥𝑦𝑧 axis are 

rotated accordingly, as illustrated in Fig. 3. 

This can be done by applying the rotational matrixes (notice 

that the rotations are applied by multiplying the data by these 

matrixes) 

𝑅𝑥 =  [

1 0 0
0 cos 𝜃𝑥 − sin 𝜃𝑥

0 sin 𝜃𝑥 cos 𝜃𝑥

], (4) 

𝑅y = [

cos 𝜃𝑦 0 sin 𝜃𝑦

0 1 0
− sin 𝜃𝑦 0 cos 𝜃𝑦

], (5) 

𝑅𝑧 =  [
cos 𝜃𝑧 − sin 𝜃𝑧 0
sin 𝜃𝑧 cos 𝜃𝑧 0

0 0 1

], (6) 

where the 𝑅𝑛 matrix rotates the 𝑥𝑦𝑧 data along the 𝑖 (𝑥, 𝑦 or 𝑧) 

axis. Note that although three rotational matrixes can be 

described, only two rotations are necessary to fully rotate a 

three-dimensional space. 

The initial three-dimensional space where 𝑥 = ln(𝑑𝐵/𝑑𝑡), 

𝑦 = ln(Δ𝐵), and 𝑧 = ln(𝑃i) is transformed into the new 𝑥′, 𝑦′ 
and 𝑧′  coordinates. These new dimensions are linear 

combinations of the initial 𝑥𝑦𝑧 system, but unlike the original 

system they will lose direct physical interpretability (𝑑𝐵/𝑑𝑡, 

Δ𝐵, 𝑃i). The rotation process is completely reversible, hence, 

going in the opposite direction, an 𝑥′𝑦′𝑧′  datapoint can be 

transformed into its 𝑥𝑦𝑧  counterpart, restoring the physical 

interpretability. 

Once the problem has been simplified to two dimensions, 

the control points that will define the Bézier curve can be 

defined. This is done using a multivariable non-linear 

programming solver, which in this case is MATLAB’s fminunc 

function. This solver will adjust the control points, and in turn 

adjust the shape of the Bézier curve to better fit the 

experimental data from the MagNet database [10]-[13]. 

The optimizer will use ln(𝑑𝐵/𝑑𝑡) and ln(Δ𝐵) as set inputs, 

and modify the 𝑃0, 𝑃1, 𝑃2 and 𝑃3 control points. For each set of 

points, the Bézier is rotated back into the 𝑥𝑦𝑧  coordinates, 

allowing to evaluate (1) and (2) to get a core loss prediction for 

each waveform. Then, the results are compared against the 

empirical data, obtaining the root mean relative error, which is 

the parameter the optimizer will try to minimize. The optimizer 

will iteratively repeat these steps until it finds a point where fine 

tuning the control points makes no further improvements. The 

characterization of the initial parameters is approximated from 

the shape of the fifth-degree polynomials (rotation angles and 

control points). Comparison of the Bézier curves obtained in the 

first iteration and final iteration are shown in Fig. 4. 

In total, there are ten parameters required to define the 

𝑥′𝑦′𝑧′  Bézier curve: 𝑃0,𝑥′ , 𝑃0,𝑦′ , 𝑃1,𝑥′ , 𝑃1,𝑦′ , 𝑃2,𝑥′ , 𝑃2,𝑦′ , 𝑃3,𝑥′ , 

𝑃3,𝑦′ , and two angles to rotate back into the original 𝑥𝑦𝑧 

dimensions, in this case 𝜃𝑥 and 𝜃𝑦. These 10 parameters are less 

than half of the 21 required in the fifth-degree polynomials of 

the original ciGSE publication [8], resulting in a more compact 

model. 

To demonstrate the improved extrapolation, Fig. 5 displays 

the loss space used in the original ciGSE expanded beyond its 

boundaries, compared against the Bézier curve expanded to the 

same range. 

IV. OBTAINED RESULTS 

To evaluate the new approach, the same concept presented 

in [8] is followed, the experimental data available on the 

MagNet database [10]-[13] for triangular waveforms will be 

used. This includes 10 materials at 4 different temperatures, 

with frequencies ranging from 55 kHz up to 445 kHz, peak to 

peak flux densities Δ𝐵 up to 500 mT and duty cycles 𝐷 from 

0.1 up to 0.9. 

The ciGSE loss space methodologies are evaluated with the 

fifth-degree polynomials as presented in the original work [8] 

and with the Bézier curve approaches. First, both approaches 

are tested considering all the data points. 

 
Fig. 4: First iteration and last iteration Bézier curves for N87 at 25 ºC. It can be 
seen how outside the P0 and P3 limits the Bezier curve becomes a linear 

function, resulting in linear extrapolation. 

 
Fig. 5: Comparison of the fifth-degree polynomial and Bézier curves outside of 

the parametrization boundaries (extrapolation) for N87 at 25 ºC. The fifth-

degree polynomial surface goes ±∞  on the outside of the parametrization 

boundaries, while the Bézier curve follows the tendency. 
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In general, for materials with many available waveforms, 

the parametrization can be done in a wide range, and thus 

extrapolation is only required in less than 5 % of the data. Still, 

in the case of materials with a lesser number of datapoints, such 

as the 3E6 material, the reduced number of datapoints results in 

a tight parametrization boundary, and extrapolation is necessary 

for more than 5 % of the waveforms. In this work two metrics 

will be used to compare the performance of both fifth-degree 

polynomial and Bézier approaches, the root mean square 

relative error and the 95th percentile. Although the 95th 

percentile falls inside the non-extrapolation required range, this 

metric has been selected for two main reasons: the 95th 

percentile is a common metric used in the works regarding the 

MagNet database [10]-[13], and to keep consistency with the 

previous ciGSE work [8]. 

The results for all the cases are displayed in TABLE I. At 

first glance, the performance of the Bézier approach is similar 

to the fifth-degree polynomials approach, trading blows in 

certain specific materials. Nevertheless, one should remember 

that the newly proposed approach only requires 10 total 

parameters, 8 to define the control points of the Bézier curves 

and 2 to define the rotation angles. Thus, the Bézier approach 

performs slightly better while offering a much more compact 

model. The Bézier approach has a worst-case scenario of root 

mean square relative error of 8.42% (material 3F4 at 70 ºC) and 

a 95th percentile of 18.10% (material 49 at 50 ºC). In contrast, 

the fifth-degree polynomial approach shows higher values, with 

a worst-case scenario of root mean square relative error of 

42.64% (material 3E6 at 70 ºC) and a 95th percentile of 33.80% 

(material 3E6 at 50 ºC). On average, taking the root mean 

square relative error and the 95th percentile into account, the 

new approach performs 1.58 and 1.50 times better than the 

approach from [8], and is more consistent with the performance 

between different materials and temperatures. 

On the opposite, as displayed by TABLE II, if only the 

extrapolation is considered, the Bézier approach performs much 

better. The performance comparison between both approaches 

depends on the materials. However, the further the data is from 

the fitting region, the more significant the improvements 

observed with the Bézier approach. Similarly to the previous 

scenario, the Bézier approach is much more consistent than the 

polynomials approach, with worst case scenarios of 12.88 % 

(material N27 at 25 ºC) and 26.81 % (material 3F4 at 70 ºC), 

while for the polynomials approach these are as high as 41.97 

% (material 3C94 at 25 ºC) and 92.61 % (material 3E6 at 25 

ºC). In this case, taking the root mean square relative error and 

the 95th percentile into account, the new approach performs 2.80 

and 3.56 times better than the approach from [8]. 

 

 

TABLE I 

ACCURACY OF THE ciGSE WITH POLYNOMIAL [8] AND BÉZIER 

APPROACHES (WITH EXTRAPOLATION) 

Material Temp. [ºC] 
Error RMS [%] Error 95 percentile [%] 

Data points 
polynom Bézier polynom Bézier 

N
8

7
 25   2.77   5.91   5.62 11.80   3312 

50   4.00   5.16   8.10 10.14   3299 

70   6.12   5.45 13.69 10.46   3304 

90   9.07   6.36 21.52 11.73   3275 

N
4

9
 25   6.75   7.02 14.76 12.00     708 

50 11.04   8.38 14.06 18.10     682 

70   9.04   8.20 13.01 16.35     705 

90   9.75   7.87 12.21 15.53     744 

N
2

7
 25   5.78   5.51   9.74 11.19     886 

50   8.86   5.08 15.00 10.34     888 

70   7.83   5.71 17.10 10.96     885 

90   8.97   6.82 18.63 12.71     883 

3
C

9
4

 25 11.38   4.87 16.30 10.03   3165 

50 11.65   4.86 16.96   9.94   3162 

70   8.84   5.02 15.16   9.61   3148 

90   7.33   5.80 16.86 10.80   3152 

3
C

9
0

 25   3.67   4.94   6.70 10.13   3302 

50   5.49   5.05 10.89   9.77   3286 

70   7.99   6.14 19.38 11.77   3273 

90 10.70   7.18 25.07 12.87   3262 

3
E

6
 25 16.21   1.25 33.80   2.43     515 

50   8.30   1.67   7.08   3.24     516 

70 42.64   2.08 31.87   4.08     512 

90   7.17   2.93   7.37   5.43     502 

3
F

4
 25   7.07   7.74   9.07 14.29     617 

50 10.44   8.26 11.77 16.43     573 

70 15.58   8.42 17.32 16.40     562 

90   9.36   8.14 13.84 15.60     562 

7
7
 

25   6.75   6.13 10.72 12.50     883 

50 10.32   5.47 16.03 10.94     882 

70 11.86   5.98 24.96 11.37     884 

90 13.10   7.05 30.86 13.16     879 

7
8
 

25   7.38   5.52 13.07 11.10     881 

50   9.67   5.62 23.46 11.17     880 

70 13.34   6.51 30.45 11.75     882 

90 13.96   7.53 33.05 14.01     881 

N
3

0
 25   5.32   3.23   5.63   6.00     678 

50   6.03   3.27   8.21   6.27     678 

70 18.17   3.00 11.88   6.00     674 

90 24.29   3.05 14.06   5.90     661 

OVERALL   8.67   5.63 15.49 10.90 54270 
 

TABLE II 
ACCURACY OF THE ciGSE WITH POLYNOMIAL [8] AND BÉZIER 

APPROACHES (ONLY EXTRAPOLATION) 

Material Temp. [ºC] 
Error RMS [%] Error 95 percentile [%] 

Data points 
polynom Bézier polynom Bézier 

N
8

7
 25   8.35 10.24 15.57 19.85    72 

50   2.72   6.94   5.42 15.29    66 

70   2.40   3.83   5.56   6.29    66 

90   3.59   6.21   6.90 10.35    64 

N
4

9
 25 20.96 11.66 49.53 23.04    46 

50   7.84   7.06 20.55 17.61    51 

70   6.63   8.80 13.06 17.65    49 

90   6.99   8.31   9.02 16.40    56 

N
2

7
 25 19.50   9.04 41.55 16.92    65 

50   8.16   6.01 18.46 11.70    69 

70 18.12   9.23 41.40 17.39    68 

90 13.67   7.92 37.60 16.82    69 

3
C

9
4

 25 41.97   7.44 89.42 13.19  218 

50 38.77   7.70 89.49 14.14  213 

70 11.84   4.66 22.68 10.02  212 

90 30.20   5.91 73.24 12.26  214 

3
C

9
0

 25 13.01   9.06 23.28 15.20  130 

50   4.32   5.07   8.99 10.85  127 

70   3.75   4.39   7.95   9.70  129 

90   6.69   5.92 15.83 12.15  131 

3
E

6
 25 35.62   1.25 92.61   2.19  106 

50 26.38   1.07 77.26   2.09  111 

70 35.34   1.35 92.61   2.42  103 

90 20.87   1.31 53.74   2.38  102 

3
F

4
 25 27.66 12.88 71.62 24.43    29 

50   4.45   5.84   9.13   8.36    30 

70   5.11   9.99 11.14 26.81    39 

90   5.43   5.63 11.42 10.93    27 

7
7

 

25 22.51   9.91 45.85 18.65    65 

50 22.20   9.14 45.96 18.69    63 

70 18.93   8.99 40.92 16.27    67 

90 18.18   8.88 42.29 16.48    62 

7
8
 

25 24.43   8.31 48.35 14.76    67 

50 21.29   7.20 47.89 16.55    66 

70 22.68   7.39 48.35 14.17    67 

90 22.69   7.55 48.35 14.77    67 

N
3

0
 25 13.03   2.92 34.30   5.40  103 

50   9.85   2.75 22.75   5.47  114 

70 11.35   3.56 25.92   6.82  108 

90   8.80   2.83 19.76   5.69  117 

OVERALL 18.48   6.02 42.53 11.77 3628 
 

 



 

 

V. CONCLUSIONS 

This work is a continuation of the composite improved 

Generalized Steinmetz Equation presented in [8], addressing 

the problems generated due to extrapolation with fifth-degree 

polynomials.  

As alternative to the fifth-degree polynomials, Bézier 

curves are presented due to their capacity to modify the 

curvature to fit the existing datasets, while retaining 𝐺1 

continuity (tangent continuity) in the extremes, resulting in a 

better extrapolation performance. 

To implement the two-dimensional Bézier curves to model 

the three-dimensional loss spaces, these are rotated twice (𝑧 and 

𝑥 axes). This transforms the loss space into an 𝑥′ and 𝑦′ two-

dimensional problem, where a multivariable non-linear solver 

can be used to obtain the definitions of the Bézier curves. 

When comparing the fifth-degree polynomials approach 

with the Bézier curves, when extrapolation is not required, the 

Bézier approach is slightly less accurate, but more consistent 

across the different materials and temperatures. On the 

contrary, when extrapolation is required, the Bézier approach 

performs much better while still retaining consistent results. 

Considering that the Bézier approach also requires less 

parameters than the polynomials (10 instead of 21), the new 

proposed approach can be considered an improved version of 

the fifth-degree polynomials approach. 
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APPENDIX A: IMPLEMENTATION OF THE MODEL  

To implement the code from TABLE III and predict the 

losses in the magnetic core of a material with known 

parameters, the following method is proposed. First, the 2D 

curve is created from equation (3) and extended through the 

third dimension, resulting in an overlapping surface. To do so, 

the parameters P_0X, P_0Y, P_1X, P_1Y, P_2X, P_2Y, P_3X and 

P_3Y, are replaced by the parameters 𝑃0,𝑥′ , 𝑃0,𝑦′ , 𝑃1,𝑥′ , 𝑃1,𝑦′ , 
𝑃2,𝑥′, 𝑃2,𝑦′, 𝑃3,𝑥′, 𝑃3,𝑦′ given in the TABLE IV. 

In this way, a grid of points is created, defining a plane. The 

coordinates of the points are stored in a matrix (bez), which 

allows the generated plane to be rotated to the real axes of 

ln(𝑑𝐵/𝑑𝑡) , ln(Δ𝐵) , and ln(𝑃i) . For this purpose, 

multiplications with the matrices (rotM1 and rotM2) of 

equation (4) and (5) are performed, replacing thx and thy by 

𝜃𝑥 and 𝜃𝑦. 

Once the plane is in the original axes, the losses of each 

segment of the wave are searched on the plane on specific dBdt 

and DB. Finally, the concept of composite (2) is applied to obtain 

the total losses. 
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TABLE IV 

VALUES USED FOR THE BÉZIER CURVE PARAMETERS 

Material Temp. [ºC] 𝑃0,𝑥′ 𝑃0,𝑦′ 𝑃1,𝑥′ 𝑃1,𝑦′ 𝑃2,𝑥′ 𝑃2,𝑦′ 𝑃3,𝑥′ 𝑃3,𝑦′ 𝜃𝑥 𝜃𝑦 

N87 

25    5.7391  -3.5867   6.8938 -6.0870   7.3215 -6.0961 10.3246 -6.0706 69.1198 67.8429 

50    4.8612  -3.9287   6.3121 -5.5392   6.0713 -5.9281   9.5325 -5.4661 72.4224 66.5237 

70    3.9286  -3.7865   5.8142 -5.7788   5.4074 -5.6018   8.2823 -5.4247 75.1502 66.0665 

90    3.0939  -3.7658   5.2729 -5.8771   4.7275 -5.4165   7.2791 -5.3540 77.7609 65.8059 

N49 

25    4.8855  -5.1467   5.2328 -5.5469   5.6800 -7.1767   7.7732 -6.1026 75.8926 67.4699 

50    4.4910  -5.1610   4.9782 -5.6242   5.0687 -7.0936   7.2509 -6.2147 77.1117 67.5872 

70    4.4088  -5.0434   5.1215 -5.5898   4.9284 -7.2438   7.8762 -5.9305 77.2225 67.5482 

90    4.5955  -4.9199   5.3138 -5.3343   5.2024 -7.1698   8.0925 -5.9037 76.4815 67.5429 

N27 

25    5.3029  -3.4566   7.3656 -6.0867   7.2800 -5.8012 10.3896 -5.9156 69.2620 66.9968 

50    4.3038  -4.2135   6.2547 -4.8648   5.0605 -6.0028   9.5982 -5.3160 73.5614 65.8915 

70    3.2603  -3.9059   5.5325 -5.5141   4.5405 -5.5387   8.0253 -5.3226 76.9687 65.4898 

90    2.5660  -3.8950   5.3580 -5.5428   3.9514 -5.4798   7.1128 -5.3249 78.6908 65.4322 

3C94 

25    4.9689  -3.4497   6.6795 -6.1817   7.2484 -5.6501 10.1606 -5.7066 70.8012 66.2810 

50    3.5484  -3.3801   5.3954 -5.6595   5.3505 -5.5426   8.3982 -5.3717 75.2513 65.3867 

70    2.5803  -3.2750   4.3642 -5.8233   4.6240 -5.3445   6.8977 -5.3369 78.6951 65.0309 

90   -1.9465  -3.2317   3.5615 -5.9713   4.1271 -5.3365   6.0224 -5.3479 81.1780 65.0559 

3C90 

25    5.2012  -3.7388   6.6689 -6.2937   7.1370 -5.8878   9.7566 -5.8330 71.1699 66.8358 

50    4.1615  -3.7387   5.8131 -6.0712   5.8447 -5.6400   8.3965 -5.5412 74.7049 66.0069 

70    3.3427  -3.7062   5.1317 -6.1265   5.0060 -5.5809   7.2320 -5.5365 77.3234 65.8753 

90    2.7458  -3.7551   4.6459 -6.1330   4.4239 -5.5847   6.4114 -5.5443 79.3129 65.8785 

3E6 

25    4.2243   2.0707   1.8827 -6.4560   6.6706 -4.2225   8.9609 -4.7575 75.4014 63.3406 

50    2.9247  -1.6041   5.3964 -4.3980   5.0308 -4.3981   9.4670 -4.4902 73.3435 62.9580 

70    1.4264   0.5055   6.3202 -4.5251   5.1973 -4.3028 10.4244 -4.4957 70.6461 62.9889 

90    2.5025  -1.6755   6.9215 -5.1643   6.8695 -4.1269 10.3368 -4.5963 71.3051 63.0735 

3F4 

25    5.5211  -3.2084   5.7949 -7.1829   8.5199 -8.6536 10.7660 -5.9271 71.5757 70.8268 

50    5.2621  -4.6082   6.4305 -6.7118   6.9017 -7.1532   8.7123 -6.5080 73.6230 69.0081 

70    5.2520  -4.9036   5.7252 -5.2614   6.0529 -7.4089   8.5249 -6.0008 74.7972 68.0315 

90    5.1188  -4.7167   5.6815 -5.2275   5.6612 -6.8213   8.3305 -5.7190 75.7895 66.9716 

77 

25    5.3320  -3.7053   7.1669 -5.8813   7.1281 -5.9090 10.5850 -5.7596 69.4201 66.8306 

50    3.9689  -3.7467   6.3352 -5.3760   5.5852 -5.7742   9.2110 -5.3832 73.1817 65.8726 

70    2.8307  -3.8601   5.2336 -5.6325   4.4620 -5.5734   7.6585 -5.3342 77.5248 65.5789 

90    2.1165  -3.9203   4.7556 -5.7005   3.8322 -5.5070   6.7154 -5.3312 79.8597 65.5195 

78 

25    5.1349  -4.2347   6.9076 -5.3017   6.1091 -6.0600 10.2174 -5.5862 70.9036 66.5823 

50    3.7737  -4.0712   6.0436 -5.4635   4.9786 -5.7174   8.6569 -5.3961 74.9522 65.8585 

70    2.6901  -3.8314   5.0413 -5.8628   4.4014 -5.5164   7.2761 -5.4013 78.3961 65.7120 

90    2.1240  -3.8889   4.9249 -5.8156   3.8677 -5.5052   6.6282 -5.3990 79.7837 65.6653 

N30 

25    2.7119  -2.2919   4.1502 -4.6404   3.9475 -4.8862   7.1703 -4.8284 78.9221 63.8312 

50    2.7177  -2.3260   4.7143 -4.5492   4.2544 -4.6975   7.9731 -4.6787 77.9210 63.5422 

70    2.4222  -2.0233   4.7024 -4.5892   4.5544 -4.4759   7.8878 -4.5619 77.9856 63.2004 

90    1.3336  -1.7463   4.8554 -4.7151   4.5213 -4.1591   7.6585 -4.4106 79.3049 62.6711 
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