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ABSTRACT
This work introduces the design and assessment of a voice-controlled elevator system aimed at facilitating
touchless interaction between users and hardware, thereby minimising contact and improving accessibility for
individuals with disabilities. The research distinguishes three distinct deployment scenarios – on cloud, on edge
and embedded – with the ultimate goal of integrating the entire system into a low-resource environment on
a custom carrier board. An objective evaluation measured acoustic conditions rigorously using a dataset of
2900 audio files recorded inside a laboratory elevator cabin featuring two internal coatings, five audio input
devices, and under four distinct noise conditions. The study evaluated the performance of two Automatic Speech
Recognition systems: Google’s Speech-to-Text API and a Kaldi model adapted for this task, deployed using
Vosk. Additionally, latency times for these transcribers and two communication protocols were measured to
enhance efficiency. Finally, two subjective evaluations on clean and noisy conditions were conducted simulating
a real world scenario. The results, yielding 84.7 and 77.2 points respectively in a System Usability Scale
questionnaire, affirm the reliability of the presented prototype for industrial deployment.

INDEX TERMS Automatic speech recognition, embedded systems, human-machine interaction

I. INTRODUCTION
In an era marked by a growing emphasis on touchless inter-
action, the development of voice-controlled Human Machine
Interaction (HMI) systems has become pivotal [1]. This study
delves into the design and experimental evaluation of a
voice-controlled elevator system, exploring its significance
in mitigating contact concerns, and enhancing accessibility
for individuals with disabilities. The adoption of voice inter-
action serves a dual purpose. First and foremost, it addresses
the pressing need for touchless control, crucial in environ-
ments where hygiene is paramount, such as hospitals; and
desirable, in the context of recent pandemics, in public spaces
such as elevators. Additionally, a voice-controlled elevator
system contributes to inclusiveness by simplifying access for
individuals with disabilities, ensuring a more seamless and
equitable vertical mobility experience.

However, several challenges arise during the design and
development process. Opting for online voice recognition

would demand Internet connectivity in every elevator, a
complex and impractical endeavour. In contrast, an offline
solution would require embedding the speech processing
technology in a low-resource environment, a task that poses
considerable challenges and demands careful consideration
of efficiency and overall system performance. Furthermore,
the acoustics within the elevator cabin pose a significant hur-
dle, where external noise and reverberation can potentially
affect the accuracy of the voice recognition software. All
these factors add each an extra layer of complexity to the
system’s design and performance.

A succinct yet effective solution has been implemented
in this work to address these challenges. The system em-
ploys offline voice interaction within the elevator cabin,
eliminating dependence on external connectivity. An array
of microphones is also incorporated to mitigate the adverse
effects of cabin reverberation and ambient noise on command
detection. Central to its functionality, a voice recognition
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model has been meticulously trained, specifically tailored for
elevator commands, ensuring a seamless and responsive user
experience. The presented study investigates the viability and
efficiency of the proposed voice-controlled elevator system,
considering its implications for public health and acces-
sibility, together with the practical challenges encountered
in its implementation. The focus is placed on overcoming
acoustic challenges found within the elevator environment,
with the ultimate goal of developing a customised carrier
board incorporating all essential embedded technologies.

The subsequent sections of this work are organised as
follows: Section II delves into the relevant literature in the do-
main of HMI deployed on low-resource environments. Sec-
tion III provides a comprehensive description of the proposed
voice-controlled elevator system. In Sections IV and V two
conducted evaluations, one objective and one subjective, are
rigorously detailed. Lastly, Section VI presents the primary
conclusions drawn and outlines future avenues for research.

II. RELATED WORK
The inclusion of voice commands as a type of HMI in the
elevation sector has already been discussed and explored in
several works. Regarding simulated environments, in [2] a
small set of voice commands was integrated in a 3 floor
elevator mock-up controlled by an Arduino Nano board
using a Voice Recognition Module V31. As another example,
Meenatchi et al. [3] implement a voice command detection
system based in CMUSphinx [4] and a single condenser
microphone on a software simulating a real elevator. In the
research conducted by [5], a set of touch-less sensors which
activate the elevator controls are presented as substitutes to
conventional buttons. Even though this approach presents a
feasible alternative for ensuring safety in hazardous environ-
ments such as hospitals, it is not sufficient for enhancing
accessibility for users with motor disabilities since a phys-
ical interaction is needed for their activation. In the case
of [6], the speech recognition system that includes wake-up
word detection and intent classification enables an external
hardware for activating the corresponding floor button on the
original panel. This approach would address the two main
issues of safety and accessibility, but requiring an ad hoc
implementation adapted to each button panel design is not
viable for commercialisation on cabins that are already in
use.

In a broader sense, voice interaction has been used for
controlling different types of machines in many industrial
sectors. For example, the authors’ previous work [7] explores
the use of voice commands alongside a predefined ontology
for controlling an industrial collaborative robot. Other studies
evaluate the effectiveness of a multi-modal approach for
HMI systems, complementing the use of voice commands
with other inputs such as computer vision or augmented
reality [8]–[11]. In addition, some studies evolve voice in-

1https://www.elechouse.com/elechouse/images/product/VR3/VR3_
manual.pdf

teraction by means of a Natural Language Understanding
(NLU) component, which gives the user the capability of
communicating with the system via natural language instead
of using predefined commands [12].

Nevertheless, such systems still encounter problems linked
to the acoustic conditions of the environment. Industrial or by
any means noisy environments may decrease the accuracy of
voice interaction systems [13]. In the case of elevators, apart
from the possible noise reaching the main cabin, reverbera-
tion due to the closed space can also play an important role
in the quality of the recognition [14], prompting the design
of novel techniques to address this issue in terms of feature
extraction [15] or machine learning models [16].

Moreover, the implementation of voice recognition soft-
ware within a low-resource environment presents another
challenge. Various methodologies have been explored in
the literature regarding this matter. These approaches span
from employing compact, lightweight neural networks ex-
clusively trained on specific commands [17], to integrating
large vocabulary recognition engines within the primary
system [18]. Even one of the most promising recognition
models developed recently such as OpenAI’s Whisper [19]
has also embraced quantisation as a strategic approach for its
deployment in said challenging environment, as seen in its
C++ implementation, whisper.cpp [20].

In this work, a voice-controlled elevation system is im-
plemented across three deployment scenarios: a dedicated
server in the cloud, a system on the edge, and ultimately
embedded on the main board alongside the complete system.
With the objective of enabling a more natural interaction
than with voice commands, the speech processing unit was
built using the Vosk Automatic Speech Recognition (ASR)
module [21], an offline speech recognition toolkit based on
Kaldi [22] suited for deployment on low resource environ-
ments, while the Google Speech-to-Text API was employed
as a contrastive recogniser. In order to evaluate the effect of
external noise, the audio acquisition hardware, comprising
five different input devices (single or multi-microphone), un-
derwent performance assessment based on Signal-to-Noise
Ratio (SNR) and Word Error Rate (WER) metrics, by means
of a dataset recorded for the specific purpose of analysing
the impact of noise and reverberation across various audio
capturing devices. The performance of both ASR systems
has also been measured in terms of transcription accuracy
and inference speed across various acoustic conditions. Con-
cluding the study, a subjective evaluation involving end-users
was conducted in a simulated environment featuring a real
elevator cabin in order to gauge the overall usability of the
final system.

Hence, the contributions of this work with respect to the
state of the art are the following:

• Instead of voice commands, a more natural interaction
with the system was pursued.

• The system has been developed in a non-English lan-
guage, i.e. in Spanish; being easily extendable to other
languages.
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• It featured a more realistic scenario in a real elevator
cabin with two different coatings.

• The acoustic environment was analysed using a sound
level meter and multiple microphones.

• Two different ASR systems deployed in different envi-
ronments were compared in terms of performance and
latency.

• The whole system was evaluated with real users in a
near-real situation featuring clean and noisy conditions.

III. PROPOSED SYSTEM DESCRIPTION
Our proposed system will be placed inside the cabin of an
elevator. Ideally, it will occupy a small enough space to be
integrated inside the button panel of the elevator. This piece
of hardware will be in charge of both the audio acquisition
and the communication with an Automatic Speech Recog-
nition (ASR) software that will process the contents of the
captured signal. Finally, the obtained textual response will be
processed using a rule based approach to detect the intention
of the speaker and send the order to the elevator.

Regarding the placement of the ASR module, three differ-
ent scenarios were studied:

1) Deploying the ASR in cloud
2) Deploying the ASR on edge
3) Embedding the ASR in the HMI component
Scenario 1) adds the possibility of having a more power-

ful dedicated server that could process the requests of one
or more elevator systems more easily, or even handle the
Speech-to-Text task to a third-party operator such as Google.
However, an open Internet connection is mandatory, adding
more failure modes to the system, such as in the transmission
of the data.

In Scenario 2), a less powerful dedicated machine could
be placed near the cabin, e.g. in the engine room, without
the need for an open Internet connection. Nonetheless, the
audio signal could not be sent to a third-party operator for
processing, requiring an on-premise ASR module for the
task.

Ideally, the targeted deployment of the entire system is that
of Scenario 3). Embedding the ASR in the same hardware
where the audio acquisition component resides would solve
all connectivity issues and reduce the costs of the whole
setup. Still, the hardware should also be powerful enough
for supporting a Speech-to-Text module while keeping the
construction and maintenance costs low.

With these objectives in mind, the hardware selected for
embedded deployment is a VAR-SOM-MX8M-PLUS Sys-
tem on Module (SOM), which includes a 1.8 GHz Quad
Cortex-A53 i.MX 8M Plus processor and 4 GB of RAM.
In order to minimise hardware and operating system set-up
time, an Evaluation Kit was used for the proof of concept.
The final goal, however, is to build a custom carrier board
that only integrates the SOM and the necessary components.

A diagram of the whole system and the three scenarios is
shown in Figure 1.

Audio 
acquisition

1)

2)

3)

ASR

Intent 
detection

1 2

3 4

5 6

Figure 1. Diagram of the proposed system including the main three validation
scenarios: Scenario 1) with the ASR deployed on cloud, Scenario 2) with the
ASR on edge, and Scenario 3) with the ASR embedded on board.

A. AUDIO ACQUISITION HARDWARE

In the case of audio acquisition hardware, different sensors
were explored. First of all, the VAR-SOM-MX8M-PLUS
SOM includes an integrated omnidirectional digital stereo
microphone, named internal, which could be easily inte-
grated in the final carrier board due to its small footprint and
reduced number of digital signals required to connect to the
processor.

Next, two different ReSpeaker microphone arrays were
also considered: a 4-microphone circular array2, named cir-
cular; and a 4-microphone linear array for Raspberry Pi3,
named linear. The circular disposition of microphones incor-
porates an XMOS XVF-3000 processor that integrates mul-
tiple advanced Digital Signal Processing (DSP) algorithms.
The linear array, on the other hand, uses a Raspberry Pi for
the implementation of similar procedures. In this context, a
delay-sum beamforming algorithm was implemented in C
programming language in order to reduce the noise captured
by the sensor and improve the incoming speech signal.

Two more microphones were also used for contrasting
the chosen audio acquisition hardware. First, a headset
equipped with a unidirectional short-distance microphone,
named headset. This microphone is not physically suitable
for this task since users would need to wear it in order to
interact with the elevator. However, a unidirectional short-
distance sensor would reduce the undesired effects of re-
verberation and external noise and can therefore serve as
a valuable contrast for determining their influence on the
whole system. And finally, a commercial speakerphone Jabra
Speak 5104, named jabra, consisting of an omnidirectional
microphone specifically designed for communication in of-
fice meetings that integrates built-in DSP algorithms.

2https://wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/
3https://wiki.seeedstudio.com/ReSpeaker_4-Mic_Linear_Array_Kit_

for_Raspberry_Pi/
4https://www.jabra.es/business/speakerphones/jabra-speak-series/

jabra-speak-510

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 3

This article has been accepted for publication in IEEE Open Journal of the Industrial Electronics Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2024.3483552

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/
https://wiki.seeedstudio.com/ReSpeaker_4-Mic_Linear_Array_Kit_for_Raspberry_Pi/
https://wiki.seeedstudio.com/ReSpeaker_4-Mic_Linear_Array_Kit_for_Raspberry_Pi/
https://www.jabra.es/business/speakerphones/jabra-speak-series/jabra-speak-510
https://www.jabra.es/business/speakerphones/jabra-speak-series/jabra-speak-510


A. González-Docasal et al.: Design and Evaluation of a Voice-Controlled Elevator System to Improve Safety and Accessibility

B. SPEECH RECOGNITION MODULE
Vosk [21] was chosen as the main ASR architecture im-
plemented for this system, which uses Kaldi [22] models
for recognition. In this work, an Acoustic Model (AM)
was trained using the nnet3 DNN configuration on a
chain acoustic model based on a factorised time-delay neu-
ral network (TDNN-F) [23]. This model consisted of 16
TDNN-F layers with an internal cell-dimension of 1536,
a bottleneck-dimension of 160 and a dropout schedule of
0,0@0.2,0.5@0.5,0. It was trained for 4 epochs with
a learning rate of 1.5 · 10−4 and a mini-batch size of 64.
As input, it received a concatenation of 40 high-resolution
Mel Frequency Cepstral Coefficients (MFCC), augmented
using speed perturbation with factors of 0.9 and 1.1 [24] and
volume perturbation on a random factor between 0.125 and
2 [25], concatenated with a 100-dimensional i-vector. It was
trained on the datasets of Albayzín [26], Multext [27] and
version 5.0 of the Spanish corpus of Common Voice [28]. The
corresponding number of files and duration of each corpus
can be found in Table 1.

Table 1. Number of audio files and duration of the main corpora used to train
the acoustic model of the adapted Kaldi model.

Audio files Duration

Common Voice 205 869 287:09:07.95
Albayzín 6200 5:33:05.01
Multext 669 47:39.46

Total 212 738 293:29:52.42

In the case of the Language Model (LM), the character-
istics of the final system allow us to focus on the desired
input for controlling the elevator instead of using a large
vocabulary approach. Therefore, a collection of voice com-
mands was chosen to align with the primary functions that
this technology is expected to perform. These include:

• Going to a specific destination
• Elevator control commands:

– Opening of doors
– Closure of doors
– Maintaining the doors open
– Request of assistance

Different versions of these commands were introduced in
order to give the user the sensation of naturalness in the
interaction with the system. For example, “vete al primer
piso” (go to the first floor) or “llévame a la planta uno”
(carry me to the storey one5) were both added to the language
model as the same intent of going to the first floor. In addition
to floor numbers, facilities such as “recepción” (reception),
“garaje” (garage) or “restaurante” (restaurant) were also
added as destinations.

A total of 1122 voice commands were mapped to 27
destinations (13 floors, from -6 to 6, and 14 facilities) and the

5Odd expression in English, but completely normal for a native Spanish
speaker to utter.

4 control commands. The minimum and maximum number
of words per command is 2 and 8, respectively; with a mean
of µ = 5.18 and a standard deviation of σ = 1.28 words. The
lexicon is composed out of 67 different words.

Once the interactions were defined, a 7-gram model with
modified Kneser-Ney smoothing was built using the KenLM
toolkit [29], which also included two special words that mark
the beginning and the end of the sentence.

As a contrastive ASR system, Google’s Speech-to-Text
API6 was also integrated in the on-cloud scenario.

IV. OBJECTIVE EVALUATION
In order to test the efficacy of the proposed system, a series of
objective tests were executed on a set of audios specifically
recorded for this task.

A. CONSTRUCTED DATABASE
A subset of 15 commands chosen from the texts used for
training the LM were recorded by 5 speakers inside an
elevator cabin used for evaluation purposes. Said cabin was
placed in a laboratory that presented some background noise
due to working personnel. The 5 microphones described in
Section III-A were all placed near the button panel of the
cabin parallel to the wall, and all recorded simultaneously
the utterances of each speaker. The linear ReSpeaker was
placed horizontally. A small table was set inside the cabin for
placing the additional equipment needed. The cabin doors re-
mained closed during the recordings. For better visualisation
purposes, a diagram of the disposition of the cabin is shown
in Figure 2.

210 cm

138 cm 108 cm

88 cm

80 cm

50 cm

Figure 2. Diagram of the elevator cabin (not to scale).

In order to check the impact of external noise to the
system, a second speakerphone Jabra 510 set on the table
was used for emitting predefined sounds in loop during the
recording sessions. A total of 4 different noise conditions
were scheduled: no injected noise (base), the noise of an

6https://cloud.google.com/speech-to-text
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elevator (noise), a conversation recorded inside an elevator
in high volume (conv), and the same conversation in lower
volume (c soft). The name c soft should not imply that the
injected noise is a soft conversation, but a softer version of
the injected noise conv. The elevator noise (noise) began and
ended with a bell, an audio clue normally used for indicative
purposes. The conversation (conv and c soft) also featured
a quieter version of machinery noise since it was recorded
inside a lift cabin. The spectrograms of these injected noises
are shown in Figure 3.
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Figure 3. Spectrograms of the two injected noises (above: noise, below: conv
and c soft) played in the background during the recording session.

The elevator cabin featured two interchangeable internal
coatings: wood and metal. Two recording sessions were
performed using each of these coatings.

All these scenarios resulted in a total of 2900 recorded
audio commands.

B. ACOUSTIC ANALYSIS
To begin with the evaluation, an analysis at the acoustic level
was performed on the recorded database.

Given that the conditions in which the database was
recorded were far from being a clean environment, the noise
levels while recording the database were characterised by
means of a sonometry using a PCE-MSM 4 Sound level
meter7 configured to measure C-weighted sound pressure
levels in dB (dBC) on a slow range (1 measurement per
second). The device was placed on the table next to the
microphones, and a person was inside the cabin during the
recording. The obtained results of these measurements can
be seen in Figure 4.

The first conclusion that can be obtained from this data
is that, even with no external noise added (base), the sound
pressure levels obtained are quite elevated due to the back-
ground noise of the working personnel in the laboratory

7https://www.pce-instruments.com/eu/measuring-instruments/
test-meters/pce-instruments-sound-level-indicator-pce-msm-4-det_
5971763.htm
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Figure 4. Density histogram of measured sound pressure levels for the four
different injected noise conditions on the two internal coatings of the evaluation
cabin (left: wood, right: metal). The average value is marked with a dashed
line. The average and standard deviation values are indicated with the
symbols µ and σ respectively.

where the cabin is placed. Moreover, the lowest and aver-
age values obtained from the sonometries with the metallic
coating are higher than those with the wooden interior, which
indicates that the effect of the reverberation inside the cabin
with the metallic coating is indeed more relevant than for its
wooden counterpart.

In addition, the Signal-to-Noise Ratio (SNR) of the audio
signals captured by the microphones was estimated by com-
paring the power of the signal when the speaker uttered a
command (X) with the trailing noise until the next command
(N ) using the following formula:

SNR = 10 log10
max

(
P (X)− P (N), 10−6

)
P (N)

where P (A) is the estimated power of the signal A. The
signal X was estimated during speech activity, and the noise
N using the pauses between commands. The results are
shown in Figure 5. The mean value of the obtained SNR
on each recording configuration is shown in Table 2. Please
note that the reported SNR values are not directly comparable
to the noise level measurements shown in Figure 4. This
discrepancy is due to the differing positions of the sound level
meter and the microphones, as well as the influence of signal
enhancement algorithms used by the recording devices.

It can be seen that the SNR drops in presence of the
conversation at a higher volume (conv noise) when compared
with the rest of noise setups, which correlates with the higher
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Figure 5. SNR (dB) values of the audio signals constituting the recorded
dataset recorded by the different microphones divided by coating (left: wood,
right: metal), microphone (per row) and speaker (marker colour).

sound pressure levels obtained in the sonometries of this
particular noise injection.

Regarding the microphones, it can be easily deduced that
the best and worst sensors in terms of SNR are the headset
and the internal microphone embedded on the evaluation
board (internal), respectively. These two microphones are
discarded for the final prototype due to the impracticality of
the former and the low performance of the latter.

The average SNR values obtained by the 4-microphone
linear array (linear) are lower than those from its circular
counterpart (circular). However, the sparsity of the data is

Table 2. Mean SNR values for each microphone, injected noise and coating
(wood: W, metal: M). The total SNR value for each microphone and coating is
included in the last column.

Setup base conv c soft noise Total

headset W 23.2 22.6 22.7 22.3 22.7
M 25.3 19.6 23.3 24.1 22.8

internal W 11.2 7.8 10.5 7.1 9.2
M 6.5 2.1 5.2 5.2 4.9

jabra W 22.3 11.3 16.1 11.2 15.2
M 25.6 7.0 13.7 14.7 14.7

linear W 17.8 10.6 14.3 8.8 12.9
M 16.1 4.8 11.0 8.0 10.0

circular W 20.0 13.3 17.0 11.0 15.3
M 23.0 7.6 15.0 12.9 14.6

slightly lower in the case of the linear microphone as seen
in Figure 5. Curiously, the point clouds obtained by the
speakerphone jabra and the circular ReSpeaker give almost
equivalent SNR values in the column Total of Table 2.

Also, excepting the headset that reduces the impact of
the reverberation, the audios recorded on a metallic coating
setup present in general a higher noise than their wooden
counterparts.

In addition, impulse response measurements of the cabin
were conducted for both coatings with a person inside, the
acoustic conditions of the recorded database, estimated by
a T20 measurement, resulting in similar RT60 values to be
approximately 420± 40 ms.

C. ASR EVALUATION
The second evaluation conducted on the proposed system
tried to characterise the performance of both used ASR
engines: our adapted model deployed on Vosk in comparison
with Google Speech-to-Text’s generic Spanish model. In
order to do so, the WER obtained by both ASR engines on
the previously recorded dataset was measured. The results are
shown in Figure 6.

As these results show, the WER values obtained by
Google’s Speech-to-Text are higher than those obtained by
the Vosk model for all cases. This is mainly due to the fact the
former is a generic large-vocabulary model whilst the latter
was specifically adapted for the voice commands present on
the database. Nevertheless, despite the WER values for Vosk
are significantly low, the ASR system still suffers notably in
presence of a conversation played on high volume (conv noise
injection) due to the appearance of other words in the audio
signal.

In most of the cases, the WER values obtained on the voice
commands recorded with the metallic coating are higher
than their wooden counterparts, which aligns with the SNR
and sound pressure measurements obtained in the acoustic
analysis of the audio files.

Thanks to the capability of the microphone headset to
reduce the surrounding noise, the WER values for said sensor
are practically zero for all configurations. This indicates that
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Figure 6. WER values obtained by both ASR engines (blue: Vosk, orange:
Google’s Speech-to-Text) on the audio files constituting the recorded dataset,
separated by coating (left: wood, right: metal) and microphone (per row).

the higher error values on the rest of the microphones are
indeed due to the quality of the signal.

D. INFERENCE TIME EVALUATION
Latency is a key aspect to consider in order to decide which
of the three proposed scenarios (on cloud, on edge and
embedded) is the most suitable for the targeted task. This is
why another set of measurements was conducted in order to
characterise the Speech-to-Text systems’ inference speed on
the different deployment scenarios.

In the case of the on-cloud scenario, Google’s Speech-to-

Text API and two instances of Vosk were deployed: on an
Intel Core i9-13900K up to 5.8 GHz and on an Intel Xeon
CPU E5-2683 v4 up to 2.1 GHz. Regarding the on-edge
scenario, Vosk was deployed on an Intel Core i5-7500 up
to 3.4 GHz. And finally, for the embedded scenario, on the
i.MX 8M Quad Cortex-A53 up to 1.8 GHz.

In order to present a faithful measurement, 1500 of the
recorded audio files were sent to the tested environments
a total of 10 times each and their response times were
averaged. Since the goal of this evaluation is to observe the
performance of the deployed ASR on each CPU, this test
was conducted without taking data transmission into account,
except for Google’s Speech-to-Text since this information
was not available to the user. The obtained latency values
as a function of the duration of the tested audio commands
are presented in Figure 7. A dashed black line representing a
Real Time Factor (RTF) of 1 is also marked in the figure.
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Figure 7. Averaged latency values obtained by Google and Vosk deployed on
4 different architectures when transcribing 1500 of the voice commands
recorded in the dataset as a function of their duration. A dashed black line
represents a RTF of 1.

The most notable remark that can be drawn from these data
is that Vosk deployed on the i.MX 8M processor requires
significantly more time than the rest of the environments,
even sometimes reaching values higher than the duration of
the transcribed audio, i.e. a RTF greater than 1. However,
thanks to the capability of Vosk to transcribe the audio in
streaming, these latency times lower than a RTF of 1 will
produce responses in almost real time as perceived by the
final user.

Regarding the rest of the environments, no significant
difference between them can be drawn since the purpose
of the whole system is to perform real-time recognition.
Obviously, a faster CPU such as the Intel Core i9 provides a
response in less time than a slower one such as the Intel Xeon,
but since all presented an averaged RTF value less than 1,
these results conclude that any of the measured environments
could be used as the main ASR system.
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E. COMMUNICATION PROTOCOL EVALUATION
In scenario 2) described in Section III, where the ASR is
deployed on the Edge, a test environment was created in a
private network in order to evaluate two different communi-
cation protocols.

On the one hand, the Message Queuing Telemetry Trans-
port (MQTT) protocol was utilised, whereas on the other,
a REST API over HTTP was developed. In both scenarios,
the Transport Layer Security layer was not considered, al-
lowing network traffic to be captured using the Wireshark
application to log timestamps for each network event and the
exchanged messages between client and server.

The test environment consisted of a client and a server
connected to the same private Ethernet network and with
controlled traffic. The client was in charge of capturing the
audio and sending it to the server (via MQTT broker or HTTP
Web server), where the ASR was executed and the result was
sent back to the client. The server operates on Ubuntu Linux
20.04 LTS on an Intel Core i9 13900K and had other services
running in background. In the case of the communication
using MQTT, a Mosquitto8 broker and an Apache Web
server was deployed in separate Docker containers; whereas
in the case of the HTTP protocol, Python’s FastAPI9 web
framework including a WSGI module was chosen.

In order to simplify the data capture and processing asso-
ciated with evaluating the protocols, it was considered to use
a PC as the client instead of the Evaluation Kit based on the
VAR-SOM-MX8M-PLUS. Since the focus was placed on the
latency times inherent in the protocol itself, the processing
power of the client was a secondary concern.

The evaluation was performed using the same 1500 audio
files previously used for ASR latency evaluation, which were
sent 10 times each to the server for processing and averaged.
The results are shown in Figure 8.
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Figure 8. Averaged latency times obtained by the protocols HTTP (blue) and
MQTT (orange) when sending and receiving the content and respective
transcriptions of 1500 of the voice commands recorded in the dataset as a
function of their duration.

8https://mosquitto.org/
9https://fastapi.tiangolo.com/

According to the obtained results, the use of a REST
API is considered more efficient than the use of the MQTT
protocol in terms of latency. This could be due to the fact that
the MQTT protocol requires the use of an external broker
that manages the communication between client and server,
whereas the messages are sent without an intermediary pro-
gram directly to the recipient on the REST API.

Nevertheless, to ascertain the potential impact of process-
ing power on the latency times, a new test was executed
locally using the i9 processor and the VAR-SOM-MX8M-
PLUS SOM, deploying both the client and the server concur-
rently on the same machine. The assessment used the identi-
cal set of 1500 audio files employed in the aforementioned
evaluation. The corresponding outcomes are illustrated in
Figure 9.
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Figure 9. Averaged latency times obtained by the HTTP protocol client-server
API deployed on an Intel Core i9 13900K (blue) and on the
VAR-SOM-MX8M-PLUS Evaluation Kit (orange) when sending and receiving
the content and respective transcriptions of 1500 of the voice commands
recorded in the dataset as a function of their duration.

As it can be seen in the obtained results, the latency times
achieved by the Intel Core i9 processor exhibit a relatively
consistent performance across varying lengths of input audio.
In contrast, due to the significantly lower computational
capability of the i.MX 8M processor, the communication
time with the REST API increases with the length of the input
audio file.

V. SUBJECTIVE EVALUATION
Additionally to the objective evaluation presented in the
previous section, in order to test the usability of our system,
two subjective evaluations with end users were executed as
well, one featuring no external noise, and another injecting
the external noise labelled as conv.

A. EVALUATION SETUP
With the productisation of the final system in consideration,
the chosen layout for this evaluation does not correspond
with the most optimal configuration of microphone, coating,
ASR system and CPU.
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First, the metallic coating was chosen for this evaluation
even though it had more adverse acoustic conditions since
many elevators feature this material on their inside walls.
Forcing a wooden coating would exclude a remarkable per-
centage of already deployed machines from integrating the
proposed system.

Concerning the ASR system, the trained Vosk model was
chosen to be deployed in the i.MX 8M processor. Despite
this CPU requiring a higher computing time than the rest of
tested environments, this integration allows the whole system
to be a single SOM independent from external more powerful
devices and network connection protocols, reducing the costs
and maintenance required for the other scenarios. Moreover,
the use of Vosk instead of Google’s Speech-to-Text API
enables a higher degree of freedom for adjusting the AM or
the LM to specific deployments, as well as no additional fee
for the usage of the transcription pipeline.

In terms of the input sensor, the ReSpeaker 4-microphone
linear array including the delay-sum algorithm (linear) was
chosen. The difficulty of integrating this microphone on a
custom SOM is lower. This is due to the fact that the sen-
sors are the only required hardware since the beamforming
algorithm can be implemented on the same CPU as the ASR
system is deployed. The WER obtained in the evaluation for
this configuration supposing no external noise was of 1.09 %,
and of a 24.00 % when adding the external noise labelled as
conv.

In order to avoid false positives and make the implemented
voice-controlled system responsive only to requested com-
mands, the wake-up word “Oye Orona” was implemented
using Picovoice’s Porcupine toolkit10. The ASR only recog-
nised audio once the wake-up word was detected. Thanks
to the Spanish sentence structure, the intent of the user
extracted from the final part of the transcription, checking if
this result matched any of the available destinations or control
commands, emitting a cached audio response.

The two evaluations were conducted within the laboratory
and cabin where the database was recorded. This assessment
simulated a practical scenario of a voice-controlled elevator
system situated in a multi-storey hotel with various facilities.
Participants were provided with instructions, including a set
of 12 predefined interaction scenarios. The instructions pro-
vided to the end users can be found in Appendix A. Finally,
evaluators were presented with a questionnaire featuring the
System Usability Scale (SUS) [30], comprising 10 questions
(Appendix B) related to user experience, rated on a scale
from 1 to 5. The final score, ranging from 0 (worst case)
to 100 (perfect score), is derived by considering the inverse
polarity of even and odd-numbered questions. Thus, a perfect
SUS score of 100 is achieved with a rating of 5 for odd-
numbered questions and a rating of 1 for even-numbered
questions. Additionally, an optional comments section for
gathering user feedback was also provided.

10https://picovoice.ai/platform/porcupine/

B. RESULTS
The described system was evaluated two times: one evalua-
tion featured no added noise, whilst the other was conducted
while injecting the noise labelled as conv inside the cabin.

The evaluation with no additional noise was conducted
by a total of 22 end users – 14 male and 8 female – with
maximum, minimum and average ages of 40, 19 and 27,
respectively. Regarding the noisy evaluation, a total of 16
end users – 9 male and 7 female – volunteered for the test,
with maximum, minimum and average ages of 50, 25 and
34, respectively. The authors acknowledge that these age
distributions are not the most representative, since a higher
representation of older users would have been preferable.
However, this range is contingent on the final set of volun-
teers who agreed to participate. The evaluators exhibited a
wide range of Spanish accents, including Northern, Andalu-
sian, Canarian, and Latin American, as well as bilingual users
of other Spanish languages such as Catalan or Basque. Addi-
tionally, some participants were non-native Spanish speakers.
The obtained values for the SUS questionnaire are displayed
in Figure 10.
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Figure 10. Colormap of the obtained values on the 10 questions of the SUS
questionnaire in clean (blue) and noisy (orange) conditions.

The result of the evaluation with no injected noise yielded
an average SUS value of 84.7 and a standard deviation of
10.9, with minimum and maximum values of 55 and 97.5
respectively. In the case of the evaluation with added noise,
the SUS value obtained by the questionnaires was of 77.2 and
a standard deviation of 15.7, with minimum and maximum
values of 42.5 and 95 respectively.

In the experiment conducted by Bangor et al. [31], where
SUS values were associated with a 7-word adjective scale,
the average SUS value corresponding to the second and third
best adjectives “Excellent” and “Good” were found to be
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85.5 and 71.4 respectively. According to their findings, the
obtained results of 84.7 and 77.2 fall into the range of these
two categories. As stated by Lewis and Sauro [32], a SUS
score exceeding 84.1 is indicative of an A+ grade, surpassing
over 96 % of the industrial usability studies and surveys
analysed by the authors. Furthermore, as highlighted in that
study, a minimum SUS score of 80 is considered desirable
for labelling a product as providing an “above-average user
experience” in industrial applications. Therefore, the main
conclusion derived from the evaluation with no added noise
indicates a satisfactory performance of the proposed system,
even though the evaluation was conducted with a micro-
phone, coating, and ASR system configuration proven not to
be the most optimal among those tested. Regarding the eval-
uation on a noisy environment, the obtained results suggest a
B grade according to the same study, which indicates that the
proposed system performs acceptably even on hard acoustic
conditions.

In addition to the numerical data, the most valuable in-
sights obtained from the questionnaire is the feedback offered
by the evaluators. Numerous users complained that some of
the command structures they used were not registered on the
system. Fortunately, addressing these concerns is manage-
able, as implementing new rules or modifying the LM of the
ASR does not require significant effort. A notable number
of comments highlighted difficulties with the wake-up word
module, including instances of poor detection, specially re-
markable on the noisy evaluation. This was the case for the
lowest given SUS score of 42.5, since this user stated that the
functioning of the system was correct once the wake-up word
was detected. It is important to mention that this user was not
a native Spanish speaker. Additionally, users expressed dis-
satisfaction with the lag between the wake-up word detection
and the initiation of recognition. Therefore, the improvement
on the wake-up word engine could lead to higher SUS values
in future evaluations, even for the more adverse conditions
when injecting the conv noise. Unfortunately, the participant
with an associated SUS score of 55 in the evaluation with
no injected noise did not contribute suggestions for system
improvement. Notwithstanding, this user’s responses indicate
that the perceived problem stems from the system’s excessive
complexity and difficulty.

Concerning the answers to the clean evaluation, Q6 (I
thought there was too much inconsistency in this system)
received the lowest score, marked by a notably high fre-
quency of responses greater than 2. This observation is likely
associated with the earlier mentioned feedback concerning
transcription and wake-up detection errors. Conversely, Q10
(I needed to learn a lot of things before I could get going
with this system) received the highest ratings, indicating
that the system was perceived as user-friendly and intuitive.
This positive perception is potentially attributed to the re-
semblance of the system’s behaviour to other commercially
available voice assistants. Additionally, questions Q1 (I think
that I would like to use this system frequently) and Q9 (I
felt very confident using the system) stand out as the only

ones where the majority of responses do not align with the
values associated with highest SUS scores. This suggests that
evaluators may find themselves using the proposed system
to interact with the elevator, but notable inclination towards
alternative channels exists. Additionally, despite the system’s
high reliability, it may not be perceived as optimal. However,
this perception could change once the system is evaluated on
target users such as elderly or disabled people.

Finally, when comparing the differences between the two
evaluations, the number of questions not receiving the highest
score increases to five, specifically in the “positive” odd-
numbered questions. Since Lewis and Sauro do not asses
a significant difference when altering the polarity of the
“negative” questions [33], this result can be considered co-
incidental rather than a consequence of the questionnaire
formulations. Nonetheless, the two questions that yielded a
lower SUS score in the evaluation with added noise, Q1 and
Q9, coincide with those in the cleaner evaluation.

VI. CONCLUSIONS
In this work, the viability and effectiveness of a voice con-
trolled elevator system has been evaluated, both objectively
and subjectively, focusing on the suitability of the multiple
elements that compose the system in various acoustic condi-
tions.

In order to objectively evaluate the proposed system, a
database consisting of a total of 2900 audio files was created.
It is constituted by a selection of voice commands recorded
on an elevator cabin by multiple speakers on various mi-
crophones and different acoustic environments: two interior
coatings (metal and wood) and four noise conditions.

The differences between the two coatings of the evalu-
ation cabin were characterised my means of a sonometry,
concluding that the effect of the reverberation and therefore
the perceived noise is more prominent when using a metallic
interior. In terms of SNR, the same conclusion was observed,
this time using the contents of the recorded dataset. More-
over, the performance of the 5 different microphones used to
record the voice commands was gauged, concluding that the
ReSpeaker 4-microphone circular array obtained an overall
cleaner signal than its linear counterpart that implemented
a delay-sum beamforming algorithm. However, the latter
presented the advantage of being embeddable in the final
SOM with less hardware requirements.

The recorded dataset was transcribed using two different
ASR systems: a Vosk model whose LM was adapted to this
specific task and Google’s Speech-to-Text API. In terms of
WER, the error obtained by the former was lower than the
latter in all cases, thanks to the LM suited for the voice com-
mands. Moreover, the effect of a background conversation
and the reverberation of the cabin were found more relevant
than noise in terms of transcription errors.

For the purpose of deciding if the three proposed sce-
narios (on cloud, on edge and embedded) are suitable for
this task, latency times on the ASR inference and on the
communication protocol were measured using 1500 voice
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commands from the recorded dataset. When deployed on
powerful CPUs, Vosk has no issue on transcribing audios
with small RTF values, as well as Google’s Speech-to-Text
API. In the case of the i.MX 8M processor, however, the
inference time increases drastically almost reaching a RTF of
1, or even greater in a few cases. Regardless of this limitation,
Vosk is able to process an audio in streaming and is still
perceived as real time by end users. In addition to the ASR
system’s inference time, the latency of the MQTT and HTTP
communication protocols has also been compared. Since
MQTT requires the use of an external broker for managing
the packages sent between client and server, a slightly greater
latency has been observed when compared with a REST API
over HTTP.

Alongside the quantitative analysis, two subjective evalu-
ation in clean and noisy environments have been undertaken
in order to gauge the usability of the system by means of
a SUS questionnaire. The setup used for this test was not
the configuration that scored the best results in the previous
measurements, but the most optimal one in terms of produc-
tisation. Despite of this, the average SUS scores of 84.7 and
77.2 given by the participants in the clean and noisy environ-
ments respectively reflect the satisfactory experience when
testing the system. The feedback provided by the evaluators
reflected the following highlights. First, the need of adding a
more diverse set of commands, specifically those regarding
the request of assistance from an external operator. This is
an issue easy to overcome due to the nature of the ASR
system and its adapted LM. Additionally, regarding the used
wake-up word engine and the unexpected noisy laboratory
acoustic conditions, participants considered the system to
be too prone to false negatives. This suggests that another
implementation more robust to this particular external noise
could significantly increase the usability scores in future
evaluations.

Regarding future work, a more complex interaction system
could be tested, including intent classification for more elab-
orated or less direct queries. This would also require the im-
plementation of a low resource Text-to-Speech algorithm in
order to synthesise non-cached responses. The integration of
more complex transcribers in embedded environments, such
as OpenAI’s Whisper’s C++ implementation whisper.cpp,
could also improve the capabilities of the overall system in-
cluding, for example, multilingual support. The performance
of these ASR systems in terms of WER and inference time on
embedded systems should also be compared with those used
in this study. Moreover, a more exhaustive research focused
on reducing these models for even less powerful hardware
could decrease the price of the final product. Regarding the
subjective evaluation, as it was previously discussed, the lack
of target end-users such as elderly or disabled people should
encourage a future research on the viability of the presented
system focused specifically on these vulnerable collectives.
Besides, the use of an actual elevator rather than a simulated
environment in eventual tests will be a primary objective for
the ongoing work. Lastly, following the main goal of this

project, a final prototype integrated on a single Main Carrier
featuring the whole pipeline will be assembled and tested,
first in laboratory conditions, and finally integrated in real
deployed elevators.

.

APPENDIX A SUBJECTIVE EVALUATION SCENARIO
Orona has equipped a hotel elevator with voice interaction
capabilities.
To start communication with the elevator, it is necessary to
use the activation word “Oye Orona”, after which the elevator
will begin to listen.
The voice assistant may help you with:

• Movements between floors (e.g. “go to the first floor”;
“go down to the garage”, “I would like to go to the
reception”)

• Opening and closure of elevator doors (e.g. “open the
doors”, “close the doors”)

• Contacting an operator (e.g. “I would like to contact an
operator”)

This is the distribution of the hotel floors where the elevator
is located:

Floor Services
Attic Swimming pool

6 Hair saloon
5
4
3
2
1 Café / Restaurant

Ground floor Hall / Reception
-1 Garage / Parking
-2 Basement

You may refer to them both by the name of the floor or by the
name of each service.
Your task is to interact with the elevator using your voice in
the following scenarios:

1) You have arrived at the hotel by car and parked in the
garage. Now you have to do the check-in.

2) You go to your room 404 to unpack.
3) You are hungry and decide to eat something at the

restaurant.
4) You go to your room to put on your swimsuit.
5) You take a dip in the swimming pool.
6) You go to shower and change in your room.
7) A taxi is waiting for you at reception to take you to a

work meeting.
8) You return to the hotel for dinner.
9) The elevator has stopped and you need help from an

operator.
10) You sleep in your room.
11) The next day, you check out.
12) You take the car to leave.

APPENDIX B SYSTEM USABILITY SCALE
1) I think that I would like to use this system frequently.
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2) I found the system unnecessarily complex.
3) I thought the system was easy to use.
4) I think that I would need the support of a technical

person to be able to use this system.
5) I found the various functions in this system were well

integrated.
6) I thought there was too much inconsistency in this

system.
7) I would imagine that most people would learn to use

this system very quickly.
8) I found the system very cumbersome to use.
9) I felt very confident using the system.

10) I needed to learn a lot of things before I could get going
with this system.
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