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Motivation

• Batteries are key components in the transition towards a sustainable carbon-free future

• Accurate Remaining Useful Life (RUL) prediction of batteries is a crucial activity

• Estimating the state-of-health (SOH) is crucial for designing RUL prognostic models
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2. Proposed Approach
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Proposed Approach Overview
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Offline Phase

Data Preprocessing
• Padding: Ensures all battery discharge curves are of equal length by extending them with

the last observed value

• Normalization: Scales data, improving neural network efficiency
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Offline Phase

Diverse Model Training
Ensemble Base Models: Bayesian Convolutional Neural Networks (BCNNs)

• Variational inference to approximate posterior distributions

• Epistemic and aleatoric uncertainty quantification

• LOOCV strategy for diverse model training
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Online Phase

Log-score Weights
• Proper scoring rule used to evaluate the accuracy of probabilistic forecasts

• Optimal method to combine posterior predictive distributions

• Regularization term λreg is added to the likelihood function, penalizing large weights

ŵ = argmax
w

1

N

N∑
i=1

log
K∑

k=1

wkp(yi | y−i,Mk) + λreg
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k=1

w2
k (1)
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Online Phase

Stacking
• Stacking to average Bayesian predictive distributions instead of point predictions

• The stacking of the predictive distribution enables the fusion of uncertainties from
various models into a unified predictive framework

• The fusion of predictive distributions is done by sampling from the weighted distribution

p̂(ỹ|y) =
K∑

k=1

ŵkp(ỹ|y,Mk) (2)
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Forecasting

• One-step-ahead capacity distribution prediction

ŷPDF (t+ 1) = f(X (t)) (3)

• Previous data until the instant t is used, plus an uncertainty factor expressed as noise

X (t) = {V (t), T (t), ϵ} (4)

Forecasting
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3. Case Study

11/22



Case Study

Dataset Description
The proposed approach tested with a battery dataset from NASA Ames Prognostics Center

• Li-ion batteries with maximum capacity of 2Ah; batteries #5, #6, #7 and #18

• Discharge cycles involved a constant load at 2A

• Variations in capacity degradation rates for identical batteries. This is an indicator of
uncertainty inherent in the manufacturing process
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Case Study

Benchmarking
• Leave-one-out mean squared error as scoring rule to determine stacking weights

• L2 regularization term (λreg)

ŵ = argmin
w

n∑
i=1

(
yi −

K∑
k=1

wkf̂
(−i)
K (xi)

)2

+ λreg

K∑
k=1

w2
k (5)

Stacking of point prediction

ŷ =
K∑

k=1

ŵkfk(x|θk) (6)
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4. Results
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Results

Probabilistic Ensemble Strategies
• Comparative analysis in terms of accuracy and probabilistic metrics

• Batteries #5 and #6 exhibited superior outcomes in probabilistic metrics (NLL and CRPS)
for the proposed approach

• For batteries #7 and #18 the same based model minimizes the MSE and maximizes the
likelihood at the same time.

Baseline Model Benchmarking Ensemble Proposed Ensemble

MSE(↓) NLL(↓) CRPS(↓) MSE(↓) NLL(↓) CRPS(↓) MSE(↓) NLL(↓) CRPS(↓)

B0005 0.0007 2.3397 0.0183 0.0002 -1.9523 0.0145 0.0003 -2.1001 0.0131
B0006 0.0013 8.0947 0.0213 0.0009 -1.8222 0.0183 0.0009 -1.9358 0.0178
B0007 0.0005 -0.0409 0.0149 0.0003 -1.9755 0.0145 0.0004 -1.9769 0.0145
B0018 0.0013 9.0342 0.0223 0.0010 -1.9478 0.0174 0.0010 -1.9312 0.0178

Table 1: Comparison of different ensemble strategies for different batteries used as test.
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Results

Probabilistic Ensemble Strategies
• Comparative analysis of baseline, benchmarking ens. and proposed ens. of battery #5

• Ensemble models enhance baseline model in terms of accuracy and uncertainty

• Stacking of predictive distribution shows an improvement in prediction uncertainty

(a) Baseline model. (b) Stacked point prediction. (c) Stacked predictive distribution.
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Results

Calibration and Sharpness of Probability Distribution Function (PDF)
Calibration plot #5

• The proposed ensemble model has a miscalibration area of 0.12, showing better
calibration compared to point prediction model with 0.26

Sharpness plot #5

• The proposed ensemble model has a sharpness of 0.05, showing more confident
predictions compared to point prediction model with 0.06

(a) Stacked point prediction method. (b) Stacked predictive distribution method. 17/22



Results

Sensitivity of the Ensemble Strategy with Base-Models
Individual components contribute as follows: w1 = 0.0058, w2 = 0.5811 and w3 = 0.4131

(a) Ensemble Forecast

(b) Forecast from first base-model (c) Forecast from second base-model (d) Forecast from third base-model

Figure 3: Model forecasts comparison
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5. Conclusions

19/22



Conclusions

Framework Validation

• Developed a probabilistic stacking method using BCNNs

• Tested on NASA’s battery dataset, showing improved accuracy and uncertainty
quantification.

Research Contributions

• Logarithmic score for the stacking of BNN

• Demonstrated the importance of probabilistic and ensemble methods in addressing
manufacturing and operational uncertainties

Implications

• Robust tool for improving the reliability and safety of battery systems

• Supports enhanced decision-making in battery management and operational strategies
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6. Future Lines
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Future Lines

Expanding Dataset Diversity and Scope

• Increase the diversity of battery dataset

• Include dynamic discharge profiles to replace static discharge conditions

Advanced Comparative Analysis of Fusion Strategies

• Comparative analysis of fusion strategies such as Bayesian Model Averaging (BMA),
Pseudo Bayesian Model Averaging (PBMA), and Bayesian Mixture Models.
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