Towards a Probabilistic Fusion Approach for Robust Battery Prognostics

Jokin Alcibar¹ Jose I. Aizpurua^{1,2} Ekhi Zugasti¹

¹Electronics & Computer Science Department, Mondragon University, Spain.

²Ikerbasque, Basque Foundation for Science, Bilbao (EH)

3 - 5 July 2024 • Prague

Outline

- 1. Motivation
- 2. Proposed Approach
- 3. Case Study
- 4. Results
- 5. Conclusions
- 6. Future Lines

Mondragon Unibertsitate

1. Motivation

Motivation

- Batteries are key components in the transition towards a sustainable carbon-free future
- Accurate Remaining Useful Life (RUL) prediction of batteries is a crucial activity
- Estimating the state-of-health (SOH) is crucial for designing RUL prognostic models

2. Proposed Approach

Proposed Approach Overview

Probabilistic Ensemble of Bayesian Convolutional Neural Networks

Offline Phase

Data Preprocessing

- Padding: Ensures all battery discharge curves are of equal length by extending them with the last observed value
- Normalization: Scales data, improving neural network efficiency

m

Offline Phase

Diverse Model Training

Ensemble Base Models: Bayesian Convolutional Neural Networks (BCNNs)

- Variational inference to approximate posterior distributions
- Epistemic and aleatoric uncertainty quantification
- LOOCV strategy for diverse model training

Mondragon Unibertsitate

Online Phase

Mondragon Unibertsitate

Log-score Weights

- Proper scoring rule used to evaluate the accuracy of probabilistic forecasts
- Optimal method to combine posterior predictive distributions
- Regularization term λ_{reg} is added to the likelihood function, penalizing large weights

$$\hat{w} = \arg\max_{w} \frac{1}{N} \sum_{i=1}^{N} \log \sum_{k=1}^{K} w_k p(y_i \mid y_{-i}, M_k) + \lambda_{reg} \sum_{k=1}^{K} w_k^2$$
(1)

Online Phase

Stacking

- Stacking to average Bayesian predictive distributions instead of point predictions
- The stacking of the predictive distribution enables the **fusion of uncertainties** from various models into a unified predictive framework
- The fusion of predictive distributions is done by sampling from the weighted distribution

$$\hat{p}(\tilde{y}|y) = \sum_{k=1}^{K} \hat{w}_k p(\tilde{y}|y, M_k)$$
⁽²⁾

Mondragon Unibertsitate

Forecasting

One-step-ahead capacity distribution prediction

$$\hat{y}_{PDF}(t+1) = f(\mathcal{X}(t)) \tag{3}$$

• Previous data until the instant t is used, plus an uncertainty factor expressed as noise

$$\mathcal{X}(t) = \{V(t), T(t), \epsilon\}$$
(4)

3. Case Study

Case Study

Dataset Description

The proposed approach tested with a battery dataset from NASA Ames Prognostics Center

- Li-ion batteries with maximum capacity of 2Ah; batteries #5, #6, #7 and #18
- Discharge cycles involved a constant load at 2A
- Variations in capacity degradation rates for identical batteries. This is an indicator of uncertainty inherent in the manufacturing process

Case Study

Benchmarking

- Leave-one-out mean squared error as scoring rule to determine stacking weights
- L_2 regularization term (λ_{reg})

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - \sum_{k=1}^{K} w_k \hat{f}_K^{(-i)}(x_i) \right)^2 + \lambda_{reg} \sum_{k=1}^{K} w_k^2$$
(5)

Stacking of point prediction

$$\hat{y} = \sum_{k=1}^{K} \hat{w}_k f_k(x|\theta_k) \tag{6}$$

4. Results

Probabilistic Ensemble Strategies

- Comparative analysis in terms of accuracy and probabilistic metrics
- Batteries #5 and #6 exhibited superior outcomes in probabilistic metrics (NLL and CRPS) for the proposed approach
- For batteries #7 and #18 the same based model minimizes the MSE and maximizes the likelihood at the same time.

	Baseline Model			Benchmarking Ensemble			Proposed Ensemble		
	$MSE(\downarrow)$	$NLL(\downarrow)$	$CRPS(\downarrow)$	$MSE(\downarrow)$	$NLL(\downarrow)$	$CRPS(\downarrow)$	$MSE(\downarrow)$	$NLL(\downarrow)$	$CRPS(\downarrow)$
B0005 B0006 B0007 B0018	0.0007 0.0013 0.0005 0.0013	2.3397 8.0947 -0.0409 9.0342	0.0183 0.0213 0.0149 0.0223	0.0002 0.0009 0.0003 0.0010	-1.9523 -1.8222 -1.9755 -1.9478	0.0145 0.0183 0.0145 0.0174	0.0003 0.0009 0.0004 0.0010	-2.1001 -1.9358 -1.9769 -1.9312	0.0131 0.0178 0.0145 0.0178

 Table 1: Comparison of different ensemble strategies for different batteries used as test.

Mondragon Unibertsitate

Probabilistic Ensemble Strategies

- Comparative analysis of baseline, benchmarking ens. and proposed ens. of battery #5
- Ensemble models enhance baseline model in terms of accuracy and uncertainty
- Stacking of predictive distribution shows an improvement in prediction uncertainty

C) Stacked predictive distribution.

Calibration and Sharpness of Probability Distribution Function (PDF)

Calibration plot #5

• The proposed ensemble model has a miscalibration area of 0.12, showing better calibration compared to point prediction model with 0.26

Sharpness plot #5

• The proposed ensemble model has a sharpness of 0.05, showing more confident predictions compared to point prediction model with 0.06

Stacked point prediction method.

Sensitivity of the Ensemble Strategy with Base-Models

Individual components contribute as follows: $w_1 = 0.0058$, $w_2 = 0.5811$ and $w_3 = 0.4131$

18/22

5. Conclusions

Conclusions

Framework Validation

- Developed a probabilistic stacking method using BCNNs
- Tested on NASA's battery dataset, showing improved accuracy and uncertainty quantification.

Research Contributions

- Logarithmic score for the stacking of BNN
- Demonstrated the importance of probabilistic and ensemble methods in addressing manufacturing and operational uncertainties

Implications

- Robust tool for improving the reliability and safety of battery systems
- Supports enhanced decision-making in battery management and operational strategies

6. Future Lines

Future Lines

Expanding Dataset Diversity and Scope

- Increase the diversity of battery dataset
- Include dynamic discharge profiles to replace static discharge conditions

Advanced Comparative Analysis of Fusion Strategies

• Comparative analysis of fusion strategies such as Bayesian Model Averaging (BMA), Pseudo Bayesian Model Averaging (PBMA), and Bayesian Mixture Models.

22/22

Towards a Probabilistic Fusion Approach for Robust Battery Prognostics

Jokin Alcibar¹ Jose I. Aizpurua^{1,2} Ekhi Zugasti¹

¹Electronics & Computer Science Department, Mondragon University, Spain.

²Ikerbasque, Basque Foundation for Science, Bilbao (EH)

3 - 5 July 2024 • Prague

