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Abstract: PEO constitutes a promising surface technology for the development of protective and func-
tional ceramic coatings on lightweight alloys. Despite its interesting advantages, including enhanced
wear and corrosion resistances and eco-friendliness, the industrial implementation of PEO technology
is limited by its relatively high energy consumption. This study explores the development and opti-
mization of novel PEO processes by means of machine learning (ML) to improve the coating thickness.
For this purpose, ML models random forest and XGBoost were employed to predict the thickness
of the developed PEO coatings based on the key process variables (frequency, current density, and
electrolyte composition). The predictive performance was significantly improved by including the
composition of the used electrolyte in the models. Furthermore, Shapley values identified the pulse
frequency and the TiO2 concentration in the electrolyte as the most influential variables, with higher
values leading to increased coating thickness. The residual analysis revealed a certain heteroscedas-
ticity, which suggests the need for additional samples with high thickness to improve the accuracy of
the model. This study reveals the potential of artificial intelligence (AI)-driven optimization in PEO
processes, which could pave the way for more efficient and cost-effective industrial applications. The
findings achieved further emphasize the significance of integrating interactions between variables,
such as frequency and TiO2 concentration, into the design of processing operations.

Keywords: plasma electrolytic oxidation (PEO); machine learning; prediction models; cast Al-Si
alloys; coating thickness; process digitalization

1. Introduction

Plasma electrolytic oxidation (PEO) is an advanced surface engineering technology
used to produce protective ceramic coatings on lightweight alloys such as Al, Ti, and Mg.
This electrochemical technique involves the application of a high voltage between the
surface of the metallic material and a cathode, both submerged in an electrolyte, resulting
in the generation of microarc discharges at the interface between the material and the
electrolyte [1,2]. By employing aqueous-based alkaline electrolytes, PEO processes are eco-
friendly and induce to the growth of ceramic-like films with high hardness and thickness
and enhanced wear and corrosion properties [3,4]. Several parameters that control this
process, including electrical parameters and electrolyte composition, play a major role
in critical coating features such as thickness, morphology, topography, density, porosity,
hardness, crystalline structure, and chemistry, which ultimately influence properties such
as wear, corrosion, and tribocorrosion behavior [5–8].
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Nowadays, the implementation of PEO technology remains restricted due to the
relatively high costs associated with using high current densities (up to 10–100 A·dm−2)
and high voltages (up to 400–1000 V). This results in a high energy consumption, which
increases the cost of power supplies and cooling equipment [9–11]. Novel approaches
have been increasingly employed to solve these problems, based on the application of
special current regimes using bipolar pulses in the kHz range [12,13]. Pulsed bipolar
polarization stands out among the existing electrical regimes since, by means of time-
varying current waveforms that alternate between anodic and cathodic pulses, this regime
enables the formation of coatings with enhanced performance [12,14]. More specifically,
several studies have been shown that the use of pulsed bipolar current results in a better-
quality coatings, particularly in terms of thickness and compactness, which strongly impact
coatings properties [7,15]. However, the design of PEO processes that produce coatings
with multiple functionalities while displaying low energy consumption, and therefore a
feasible cost to be implemented at industrial scale, is still missing. Pulsed bipolar power
supplies have increasingly shown a high potential to overcome these limitations.

Pulsed bipolar power supplies allow for a more specific process design, enabling
the development of PEO coatings with a wider range of properties to meet more precise
requirements [16,17]. Although the simultaneous design and optimization of all parameters
to be adjusted in these power supplies is challenging, especially considering the nonlinear
multiscale nature of PEO, proper control of the entire process would allow for a more com-
prehensive and efficient design of PEO coatings according to different requirements [18].
Therefore, the development of artificial intelligence (AI) approaches to optimize and dig-
italize PEO processes becomes particularly relevant. In order to carry out these actions,
the collection of adequate process data is essential, together with the selection of the most
relevant variables to be optimized [18]. For this aim, it is necessary to properly collect
PEO process data, focusing on the most influential process variables (such as potentials,
currents, and temperature), and to link the data from each process to the characterization
of the corresponding coating.

Given the nonlinear characteristics of the aforementioned process, there is a body
of work on modelling and explaining nonlinear processes using ML techniques. Finke
et al. [19] aimed to relate the time required for the visual appearance of corrosion and
the extent of corrosion to the electrochemical input parameters to the process, including
three electrolyte compositions using an artificial neural network (ANN), which showed
90% accuracy in predicting coating corrosion after 200 h of accelerated salt spray testing.
Tagirova et al. [18] also recently developed ML and neural network models to predict the
thickness and other properties of PEO coatings. The neural network model for calculating
the coating thickness was developed based on the approximation of the experimental
dependencies of the coating thickness on time and the current parameters. The results
of these experiments have shown that the thickness of PEO coatings was dependent on
the process duration, being observed that for the first 400 s of the process, as the duration
increased, the thickness increased, and then the thickness remained constant with time.
However, no predictions were made between the coating thickness and the frequency
applied during the PEO process.

Furthermore, Rodriguez et al. [20] highlighted the difficulties faced by the scientific
community as a result of differences in coating production between different research
teams, due to the complex mechanisms involved in coating formation. Therefore, they
proposed the use of AI techniques for data processing to increase the knowledge of the
relations between the input parameters and the tribological aspects of the coating. Similarly,
other studies focus on the use of neural networks to predict coating thickness over other
processes. Varol et al. [21] used ANN to simulate the milling process and were able to
determine that an increase in milling time resulted in an increase in coating thickness. Thus,
ML and AI methods can help to understand and optimize the coating layer formed by
PEO processes. To the best of the authors’ knowledge, there are no publications using ML
methods for the development of PEO coatings.
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One of the major drawbacks of some ML/AI algorithms is that they behave as black
boxes, limiting the interpretability of the importance of individual input data. A large
body of literature has grown around the theme of the use of AI explainability tools such as
model-agnostic explanations (LIME) or Shapley additive explanations (SHAP). A number
of studies have shown that these tools increase the transparency of predictions. Baptista
et al. [22] suggested that LIME explanations are not stable with nonlinear models. Therefore,
the authors of the present work employed SHAP values due to the nonlinear nature of the
process. These tools allow for the understanding of the direction and magnitude of each
feature’s impact on the output.

The main objective of this work involved the development and evaluation of AI ap-
proaches for the optimization of the PEO process, digitalizing the information generated,
and linking it to the process for future analytical use. On the other hand, this research
carried out the selection of appropriate inputs and ML methods to build numerical pre-
dictive models. In addition, the predictive capability of predictive ML models was used
to predict materials or properties not previously studied, as well as the use of explainable
artificial intelligence (XAI) methods for the explicability of the models created, promoting
the understanding of the properties of the predicted materials.

2. Materials and Methods
2.1. PEO Treatments

In the present work, PEO coatings were grown on a secondary cast Al-Si substrate
(A380|EN AC-46500) that was recycled from scrap and manufactured by high-pressure
die-casting (HPDC). Cast Al-Si samples were machined into 24 and 54 mm diameter discs
with surface areas of 15.08 and 22.90 cm2, respectively. Before the PEO treatments, all
the discs were rinsed with distilled water and cleaned with isopropanol, without any
other pre-treatment or polishing. It should be noted that the PEO process parameters
were adjusted to accommodate the different sample diameters (24 mm and 54 mm discs),
ensuring consistent thickness results across varying sample sizes, both in the center and
the edges.

The PEO processes were performed under pulsed bipolar polarization, applied by a
two GX-series DC power supplies (Analoge & Digitale Leistungselektronik GmbH, Darm-
stadt, Germany) connected through a MAGPULS 1000/35/200 bp-as (Magplus Stromverso-
gungen GmbH, Kartung, Germany). The PEO process was driven by means of symmetric
bipolar pulses with a duty cycle of 40%. The treatments were carried out in 2 L and 5 L
homemade electrochemical cells equipped with a steel cathode, while the immersed treated
samples acted as anodes.

Several electrolytes were formulated and used in the development of the PEO pro-
cesses. These electrolytes were composed of the different combinations of the following
reagents: KOH, Na2HPO4, Na2WO4, Na2WO4·2H2O, Na4P2O7·10H2O, NaAlO2, TiO2
(size particle: 100–200 nm), and α-Al2O3. Each electrolyte was prepared by dissolving
the reagents in distilled water under magnetic stirring, and the electrolytic baths were
continuously stirred during the PEO treatments.

The average thickness of each developed coating was measured by using a Dual-Scope
device (Fischer Technology Inc., Waltham, MA, USA).

2.2. Data Pre-Processing and ML Model Building
2.2.1. Input Variables and Pre-Processing

For the generation of the ML models, (i) electrolyte composition; (ii) electrical parame-
ters, including frequency, Janodic, Jcathodic, R, Ianodic, Jcathodic, and duration of the initial ramp
in anodic potential; and (iii) process parameters, time, and applied area were considered.
These parameters were chosen to build the models, as they most significantly influence
the properties of the resulting PEO coatings. The acronyms used, their description, and
measuring units can be found in Table 1.
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Table 1. Employed PEO process related variables for thickness model generation.

Variable Description Units

Electrolyte composition
Sum of electrolyte composition elements

(e.g.: “10 g/L NaAlO2 + 10 g/L
Na2HPO4”)

g·L−1

Frequency Pulse frequencies applied during the
processes (i.e., 1000; 500; 200; 100; 50 Hz) Hz

Janodic

Anodic (+) current densities applied during
the processes (i.e., 213; 175; 137.5; and

125 mA·cm−2)
mA·cm−2

Jcathodic

Cathodic (−) current densities applied
during the processes (i.e., 100; 125; 137.5;

140; 150; 175; 210; 227.5; 245; and
255.6 mA·cm−2)

mA·cm−2

R
Relation between the cathodic and anodic
current densities: R = Jc/Ja (i.e., 0.8; 1.0; 1.2;

1.3; 1.4)
-

Ianodic

Anodic (+) currents applied during the
processes (i.e., 1885; 2639; 2862.5; 3148.75;

3212 mA)
mA

Icathodic

Cathodic (−) currents applied during the
processes (i.e., 1508; 1885; 2111.2; 2262;

2290; 2639; 2862.5; 3148.7; 3166.8;
3430.7;3435; 3694.6; 3854.5 mA)

mA

Time Duration of the PEO processes (i.e., 20; 30;
36; 40; 45 min) min

Area Total coated areas (i.e., 15.08; 22.90 cm2) cm2

Duration of the initial
ramp of potential

Duration of the initial ramp of potential
applied at the beginning of the processes
(V+ = 300 V and V− = 50 V) (i.e., 15; 30 s)

s

Thickness Coating layer thickness—this is the ML
model output µm

Regarding the pre-processing of the data used, it was decided to create one column
per constituent element found in the electrolyte, which means having as many columns
as there are elements in the dataset (also known as one-hot encoding): KOH, Na2HPO4,
Na2WO4, Na2WO4·2H2O, Na4P2O7·10H2O, NaAlO2, TiO2, and α-Al2O3. In case of the
absence of one of the components in the test performed, the value of that chemical element
for that specific test shall be 0. This ensures that each element is represented independently,
preventing the model from interpreting any ordinal relationship between the elements.

Besides this initial pre-processing, exploratory data analysis (EDA) was employed to
uncover underlying patterns, identify anomalies, and test hypotheses, setting the stage for
precise model development in digitalizing the PEO process.

2.2.2. Tested Models

In this study, an ML approach is used to predict the thickness of a PEO coating. As a
first step, a model selection process is applied first. Model selection involves comparing
and evaluating different models created with different ML algorithms to determine which
one provides the best results based on certain established criteria. As for the algorithms
used, the random forest and XGBoost algorithms were selected, both in their regression
versions. These two models are two of the most commonly used in classic ML projects and
where more advanced techniques such as deep learning cannot be used due to lack of data:
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Random forest is an ensemble learning method that constructs multiple decision trees
during the training phase and outputs the mean prediction of individual trees in case of
regression problems. Random forests correct for decision trees’ habit of overfitting to their
training set by introducing randomness in two ways: firstly, by selecting a random subset
of the training data to build each tree (bootstrap sampling), and secondly, by choosing a
random subset of features to consider at each split in the tree.

XGBoost is another ensemble learning algorithm. However, unlike random forests, its
core functioning is based on the boosting technique. This is an ML method that combines
multiple weak learning models to build a stronger model. Boosting is based on the idea of
building a sequence of models, where each model tries to correct the errors of the previous
model. This error or loss minimization is carried out by using advanced techniques such as
gradient descent.

The training of the models for subsequent selection was carried out using cross-
validation. This validation is a technique used in data analysis and ML to evaluate and
validate the performance of a model. It consists of dividing the dataset into multiple subsets
and performing several iterations of training and evaluation, using different combinations
of subsets as training and test data. This provides a more accurate and reliable estimate of
model performance, reducing the bias introduced by a single data split. This validation
has been used both in the model selection phase and in the hyperparameter optimization
where it has been performed.

The comparison of the models was carried out based on two regression metrics (RMSE
and R2), selecting the best one for the subsequent optimization of the final model. This
optimization, also known as hyperparameter optimization, is a process in which the
hyperparameter values of the ML algorithms are found and adjusted in order to maximize
the performance of the model based on a specific evaluation metric.

The Hyperopt (Hyperopt: Distributed Asynchronous Hyper-parameter Optimization,
https://hyperopt.github.io/hyperopt (accessed on 24 July 2024)) library was used to
optimize the hyperparameters of the generated models. The hyperparameters are set before
training a model and determine its performance and behavior. Unlike traditional grid
search, which methodically tests all possible combinations, Hyperopt leverages Bayesian
optimization for a more strategic search. Bayesian optimization is a sequential optimization
method that uses probabilistic models to guide the search. It automatically explores the
hyperparameter space intelligently, focusing on the areas that are likely to produce the
best results.

For each set of hyperparameters evaluated during the optimization process, a cross-
validation with K = 5 is applied. Cross-validation consists in separating the dataset into a
number K of subsets, in this case into 5 subsets of data. The algorithm will be trained on 4
of these subsets and tested on the remaining subset, and repeated K times until all subsets
have been used to test the model. The objective during model optimization is to minimize
the aggregation of the 5 metrics obtained during cross-validation. In this case, the metric to
be minimized was the root mean square error (RMSE). It measures the average difference
between values predicted by a model and the actual values, a critical indicator of regression
model performance.

For training, selection and validation of the generated models, the data were separated
into a training set, which constitutes 80% of the data (56 samples), while 20% of the data
(14 samples) were used for the model validation. The model selection and optimization
processes were performed on 80% of the data selected for training while 20% were used for
final model validation.

One of the tests carried out in terms of variable selection was to evaluate the impact of
introducing or not the concentrations of the electrolyte elements to generate the model. In
the case of introducing a new component in the composition, the model has to be re-trained
to consider this new feature.

A residual analysis was performed for final model validation. Residual analysis
involves the examination of the differences between the actual values measured in the

https://hyperopt.github.io/hyperopt
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laboratory and the predictions made by the models. The objective of the residual analysis is
to detect patterns in the predictions made and to propose possible areas for improvement
of the models created.

For the identification of the most influential variables or parameters on the output
variables of the models, Shapley values were obtained. In the context of machine learning,
Shapley [23] values are used to identify the most influential parameters or features in model
prediction. By attributing a value to each feature based on its impact on model output,
Shapley values help to understand which features contribute most to model performance.
In the case of identifying the most influential variables or parameters for model output
variables, Shapley values can be calculated to determine the relative importance of each
parameter in driving the model prediction toward a more positive value or a more negative
value.

All the above methods were employed to model the effects of PEO process parameters
and predict coating features. The main results achieved employing these methods are
described and discussed in the next section.

3. Results and Discussion
3.1. Modelling of PEO Processes

In this work, models were developed to correlate the multiple-input PEO process
variables with critical features of the resulting PEO coatings: the coating thickness. Among
all the critical features related to PEO coatings (e.g., thickness, roughness, hardness, mor-
phology, microstructure), the thickness was selected to be predicted by the current model
(Figure 1) after considering it as a representative key variable strongly related to the func-
tionality of the coating, such as wear and corrosion resistance.
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Figure 1. Schematic illustration on ML models’ application to predict PEO coating thickness.

The data used to carry out this work were obtained by performing several PEO pro-
cesses with different process parameters (e.g., frequency) in order to study their influence
on certain coating properties, such as thickness. Figure 2 is a representative example of
some of the PEO processes carried out in this study, showing the evolution of anodic
and cathodic potentials and the appearance of plasma microdischarges during the PEO
processes performed at frequencies of 50 Hz, 200 Hz, and 1000 Hz. These processes were
carried out under a current ratio, R = Jcathodic/Janodic, of 1.2.

As can be depicted from Figure 2, the anodic potential decreases earlier during the
process as the frequency increases. This decrease in anodic potential during the process is
known as “soft sparking” and represents a specific regime of thinner and softer plasma
discharges that has been correlated with the development of coatings of higher density and
smaller pore size, along with a reduction in the energy consumption of the process [24,25].
Despite the already demonstrated benefits of soft-sparking, the transition to this regime is
undesirable when the potential drop is excessive, as this would cause known issues with
corrosion properties [26] or even coating delamination [27]. In particular, the PEO process
carried out at the highest frequency (1000 Hz, R = 1.2) revealed a significant decrease in the
intensity and density of the discharges after 690 s of process. This decrease in the intensity
of the discharges was also observed in the process carried out at 200 Hz and R = 1.2,
although in this case, it did not appear until 1600 s into the process. In contrast, the process
carried out at the lowest frequency, 50 Hz and R = 1.2, did not show this drop in potential or
change in microdischarge (Figure 2). This may be related to the complex reactions that take
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place during PEO processes performed at different frequencies, as discussed in previous
works [28,29].
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out at 1000 Hz, 200 Hz, and 50 Hz, under a constant current ratio of 1.2. Appearance of the plasma
microdischarges during the PEO processes carried out applying frequencies of (b) 1000 Hz, (c) 200
Hz, and (d) 50 Hz.

Thickness measurements of the resulting coatings developed under different PEO
process conditions were performed to be used later in the ML models to predict their
trend. Since each of the thickness values were measured in multiple replicates to ensure
the accuracy and consistency of the data collected, no outliers or out-of-range values were
considered in either the input variables or the thickness measurements.

Figure 3 shows the kernel density estimation of the variable thickness, together with
the mean, first quartile, and third quartile of the mentioned variable. When analyzing the
distribution of the data, it is observed that approximately 50% of the thickness measure-
ments obtained in this study are concentrated in the range of 50 to 65 µm; this is equivalent
to the interquartile range of analyzed data, which is defined as the zone between the first
(Q1) and third (Q3) quartiles. In addition, approximately 25% of the thicknesses are below
50 µm (below Q1), while another 25% are above 65 µm (above Q3).

The correlations between thickness and various parameters demonstrate that TiO2
(0.6) and frequency (−0.6) exert the most significant influences, with TiO2 exhibiting a
positive and frequency a negative effect on thickness. Moderate positive correlations are
observed for Na2HPO4 (0.4), Na2WO4 (0.5), NaAlO2 (0.4), and time (0.4), indicating that
these parameters contribute to an increase in thickness. Conversely, moderate negative
correlations are observed for Janodic (−0.4), which implies a decrease in thickness. Weak
correlations are seen with KOH (−0.3), Na2WO4·2H2O (−0.3), and IRA (0.3), which sug-
gests minor influences on thickness. Overall, TiO2 and frequency are the most significant
factors affecting thickness.
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The moderate positive linear relationship of frequency suggests a relationship between
lower pulse frequencies and thicker coatings during the PEO process. This insight may
be very useful to select the range of frequency values to be used in a PEO process that
aims to produce coatings with specific thickness values. This finding has significant
practical implications, particularly in industrial applications where stringent dimensional
requirements must be met.

For the selection of variables to build the models, the results returned by the random
forest model were observed. Random forest is preferred for variable selection because of its
simple feature importance ranking, which allows for easy identification of key predictors.
For this, it was considered to introduce or not the concentrations of the electrolyte elements.
Table 2 shows the results (RMSE and R2) including and excluding the electrolyte elements
and without considering them.

Table 2. Results considering the concentrations of the electrolyte elements and excluding them in the
random Forest model.

Model RMSE R2

Random forest “without electrolyte” 9.27 0.74

Random forest “with electrolyte” 7.54 0.83

According to preliminary results, an improvement in the RMSE (~20% of the decrease)
and R2 (~12% of the increase) coefficients is observed when the electrolyte composition
is considered as a variable in the prediction model. This led to the decision to keep the
elements composing the electrolyte in the analysis. It is important to note that if a new
chemical element is added to the prediction, the model developed in this work must be
retrained to incorporate that element. This implies adding an additional variable to the
model input dataset. During this analysis, it was observed that the variables “Duration
of the initial ramp of anodic potential” and “Area” had no significance in terms of the
predictions made and were therefore eliminated for the creation of the models.

A generalized approach for the development of machine learning models is illustrated
in Figure 4. This figure shows the input variables, which are composed of all the electrolyte
elements present in the dataset, as well as the process conditions applied to the PEO process.
In addition, the target variable is represented, which is, in this case, the thickness.
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thickness prediction obtained in PEO processes.

Table 3 shows the results obtained for the models considered in this study with
the hyperparameters of the default algorithms and the optimized hyperparameters. The
optimization of the hyperparameters has a positive impact on the final model, improving
the two metrics used to evaluate the models, both when using the random forest model
and when using the XGBoost algorithm. Thus, a residual analysis helps in the selection of
the best model to predict the thickness of the coating on PEO processes.

Table 3. Results of the random forest and XGBoost models using the default hyperparameters and
optimized hyperparameters.

Model RMSE R2

XGBoost “default” 11.42 0.44

XGBoost “optimized” 8.48 0.81

Random forest “default” 12.07 0.37

Random forest “optimized” 7.93 0.81

XGBoost and random forest exhibit significant improvement in performance after
hyperparameter optimization. Optimized models show lower RMSE and higher R2 values
compared to their default implementations. Random forest slightly outperforms in terms
of RMSE, indicating a small advantage in prediction accuracy.

3.2. Data-Driven Optimization of PEO Processes Assisted by AI Methods

For the evaluation of the created model, a plot of the residuals was generated for
both the training subset and the test subset, as shown in Figure 5. The residuals are the
difference between the observed values and the predicted values. For 50% of the model
core data (thicknesses between 50 and 65 µm), the plot shows that the model performance
is accurate in terms of predictions. However, for values closer to the tails of the distribution,
the model tends to have a larger dispersion.
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subset and the test subset for predictions of coating thickness (µm) over PEO processes.

When analyzing the residuals, a certain heteroscedasticity is observed in Figure 5a
XGBRegressor, i.e., the higher the thickness values, the more error the predictions tend to
have. This heteroscedasticity can have a significant impact on the accuracy and reliability
of thickness predictions. To address this situation and improve the quality of predictions, it
is suggested to consider increasing the number of samples from the third quartile of the
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target variable. Increasing the number of samples can help to reduce heteroscedasticity and
improve accuracy in these regions. The Q-Q plot shows that near the mean, the distribution
follows a normal distribution, and there is good alignment between the theoretical quantiles
and the observed quantiles. In Figure 5b, a more random pattern is shown, suggesting better
distributed residuals in this model. Additionally, the Q-Q plot for this model illustrates a
closer adherence to normality across the dataset.

Figure 6 shows the SHAP values obtained for each variable. The most influential
variables are frequency and titanium dioxide concentration. As can be seen, the thickness
tends to increase both at low frequencies and for higher concentrations of titanium dioxide
in the electrolyte. In addition, other influential effects are identified, although of lesser
relevance, such as the “Ianodic” variable, which tends to increase the thickness as its values
increase, and the opposite effect is observed in the R variable, where the lower the value,
the higher the thickness of the coating.
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Observing the effects of these variables on the prediction, it is interesting to analyze
the possible interactions that could exist between them. Figure 7 shows the independent
effect of each of the variables. As suggested in the EDA, the effect of frequency is confirmed,
as well as titanium dioxide’s effect, with values of 10.0 and 5.4, respectively. In addition,
the interaction between these variables is observed with a value of 4.4. Also, to explore the
possible interactions that might occur between variables on the prediction, Figure 8 provides
a visual representation of the independent effect of each variable under consideration
and the possible interactions between the variables. The data in this figure support the
existence of a significant effect of both frequency and titanium dioxide on the final thickness
prediction. However, the detection of an interaction between these variables, evidenced by
a value of 4.4, suggests that the effect of one variable on prediction cannot be considered in
isolation. This indicates that the relationship between frequency and titanium dioxide is
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more complex than could be inferred by simply examining their individual effects. This
information improves the ability to interpret and predict the results.
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It can be seen in Figure 9 that when the titanium dioxide concentration is zero, an
increase in frequency can lead to an increase in the obtained thickness. Therefore, the ML
model developed in this work suggests that frequency plays a significant role in thickness
prediction, especially when the titanium dioxide concentration is low.
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Controversial results are still found in the literature regarding the influence of fre-
quency on the thickness of PEO coatings [30]. On the one hand, Martin et al. [8] previously
investigated the effect of electrical parameters of the PEO process on the properties of
the obtained coatings by building a correlation between microdischarge characteristics
and oxide layer features, including morphology, growth rate, and surface roughness. The
highest coating growth rate was achieved for the combination of higher current density and
the highest current pulse frequency. Ceriani et al. [31] also worked with PEO processes con-
ducted at different electrical regimes to produce functional coatings on titanium substrates
and during their experiments observed that when working at higher frequency (1000 Hz),
thicker PEO coatings were produced with a uniform structure, providing improved corro-
sion resistance. On the other hand, Aljohani et al. [32] addressed the impact of processing
parameters of bipolar waveform PEO on corrosion resistance of a magnesium alloy. The
authors found that the size of micropores of the PEO coatings is interrelated with the duty
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cycle and current polarities, and that higher frequencies cause thinner coatings layers,
with fewer micropores (denser), and, consequently, improved corrosion resistance. These
results could be explained by the fact that the application of lower frequencies induces the
appearance of longer and more intense discharges that promote higher temperatures in the
coating. The increased molten material generated by the higher temperatures exits more
easily through the discharge channels of the coating, leaving larger pores, and promoting
faster coating growth [30,33]. Otherwise, the use of higher frequencies would shorten the
lifetime of the plasma discharges, decreasing the size of the discharge channels [34]. Pulsed
power bipolar power supplies are regulated by multiple parameters, each influencing the
properties of the final coatings in distinct ways. Developing machine learning methods to
correlate PEO process parameters with the features of the resulting coatings is therefore
of paramount importance to develop PEO coatings with advanced features. Machine
learning algorithms, by analyzing vast datasets, identifying complex, nonlinear relation-
ships that traditional methods might miss, will allow for optimizing the PEO process with
unprecedented precision due to the complexity that all the variables involved might have
on PEO coating growth mechanisms and respective features. Regardless of the frequency
employed in this study, the relation between titanium dioxide concentration and thickness
was studied: an increase in titanium dioxide concentration correlates with an increase in
the obtained thickness (Figure 9). This indicates that titanium dioxide concentration exerts
a direct and consistent influence on thickness, regardless of how the frequency varies. The
importance of carefully considering the interaction between these variables in thickness
analysis and prediction should be emphasized. These results provide valuable information
for the understanding of the phenomenon studied and may have practical implications
in the control and adjustment of thickness through the proper manipulation of frequency
and titanium dioxide concentration in the system. Ceriani et al. [31] studied the effect of
anatase and rutile TiO2 microparticle incorporation in PEO coatings produced on titanium
substrates. In agreement with the results achieved in the present work, the authors ob-
served that the addition of rutile TiO2 particles to the PEO electrolyte induced growth in
the coatings, with significantly higher thickness and homogeneity.

4. Conclusions

In this work, digital models were successfully developed to establish a correlation
between PEO process input variables (e.g., electrolyte composition, duty cycle, period, R
factor, current density, negative/positive voltage, etc.) and the selected output variable—
thickness. Frequency and TiO2 concentration were identified as the variables most signifi-
cantly influencing the thickness of the PEO coatings: the higher the frequency and TiO2
concentration, the greater the thickness of the PEO coatings obtained. Additionally, it was
found that the influence of TiO2 concentration on thickness is independent of variations in
frequency.

The relationship identified in this study between frequency, electrolyte composition,
and the thickness of the PEO coatings may represent the first step towards PEO process
modeling and digitalization. Developing machine learning methods to correlate PEO pro-
cess parameters with the features of the resulting coatings is of paramount importance for
advancing materials science and industrial applications. This approach can lead to the pro-
duction of coatings with tailored properties such as enhanced thickness, hardness, corrosion
resistance, and wear resistance, thereby meeting specific application requirements while
optimizing processes for energy consumption. Furthermore, machine learning can signifi-
cantly reduce experimental costs and time by predicting optimal parameters, facilitating
more efficient and sustainable manufacturing processes. Ultimately, integrating machine
learning into PEO research not only accelerates the development of high-performance
coatings but also drives innovation in various industries, from aerospace to biomedical
engineering.
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