
DOCTORAL THESIS

FEDERATED LEARNING APPROACHES TOWARDS INTRUSION DETECTION
IN INDUSTRIAL INTERNET OF THINGS

X
A

B
IE

R
 S

Á
E

Z
D

E
 C

Á
M

A
R

A
G

A
R

C
ÍA

 |
 F

ed
er

at
ed

 L
ea

rn
in

g
A

pp
ro

ac
he

s
To

w
ar

ds
 In

tru
si

on
 D

et
ec

tio
n

in
 In

du
st

ria
l I

nt
er

ne
t o

f T
hi

ng
s

XABIER SÁEZ DE CÁMARA GARCÍA | Arrasate-Mondragón, 2023

PhD Thesis Dissertation

Federated Learning Approaches Towards Intrusion
Detection in Industrial Internet of Things

Author:
Xabier Sáez de Cámara García

Supervisor:
Dr. Urko Zurutuza Ortega

Co-Supervisor:
Dr. Cristóbal Arellano Bartolomé

PhD Program in Applied Engineering
Electronics and Computing Department

Faculty of Engineering
Mondragon Unibertsitatea

Arrasate/Mondragón
July 11, 2023

i

Abstract

Intrusion detection refers to methods for determining whether a computer
system or network has been compromised or is currently under attack. Multiple
types of intrusion detection systems exist according to the technologies used
for threat detection and the environment or devices in which it is intended
to be deployed. This thesis is framed in the context of machine learning (ML)
techniques applied to intrusion detection in Internet of Things (IoT) settings.
This is a timely line of research as, despite the benefits and pervasiveness of
IoT, several vulnerabilities and poor security practices have led to malware
specifically designed to target and exploit the IoT ecosystem.

In particular, in this thesis, we explore federated learning (FL) approaches,
a relatively new ML training framework especially suitable for distributed
settings such as IoT. In short, FL is a ML training paradigm with the objective of
training a model between multiple collaborating clients while maintaining the
training dataset local and private to each device, thereby addressing challenges
such as data privacy, availability and communication cost concerns that arise
in traditional cloud or edge ML model training methods. While FL has been
successfully applied to many practical settings, including next-word prediction
for mobile keyboards or voice classification, to name a few, the application of
these settings to IoT security has not been as widely researched. Moreover, this
setting presents significant gaps and challenges that have served as motivation
for this thesis, including the scarcity of public IoT security datasets for ML
training purposes specifically designed for FL experimentation, the cost of
data labeling, the high heterogeneity of IoT deployments that can hinder FL
model training convergence and the need for explainability to address the
black-box nature of many ML models, which is crucial to increase the trust
of these techniques by security analysts but presents additional issues in FL
settings.

While those are not the only challenges, this thesis presents three main
contributions towards reducing the mentioned gaps. First, we develop an emu-
lated testbed to generate datasets in a reproducible, extendable and shareable
way specifically designed to allow FL experimentation. The testbed presents
many threat models, including real malware samples. Then, we present a FL
architecture for unsupervised network anomaly detection that addresses the
high heterogeneity of IoT deployments by using an automatic client clustering
technique integrated into the FL process. Finally, we propose a methodology
to incorporate an explainability layer on top of the unsupervised anomaly
detection models that uses FL techniques to characterize, group, summarize
and auto-label the detected anomalies throughout the federated network.

ii

Laburpena

Intrusioen detekzioak sistema edo sare informatiko batek baimenik gabeko
sarbideak izan dituen edo erasopean dagoen bermatzeko metodoak garatzea
du helburu. Teknologia aurreratu ahala, hainbat intrusio detekzio sistema
mota ezberdin sortu dira mehatxuak antzemateko erabiltzen den teknologiaren
arabera edo babestu nahi diren gailuen edo inguruaren arabera. Tesi hau
machine learning (ML) tekniketan oinarrituta dauden intrusio detekzio sistemak
Gauzen Internet (IoT, Internet of Things) ingurua babesteko arloaren barruan
kokatzen da. Hain zuzen ere, IoTaren abantailak eta erabilera handia izan arren,
hainbat segurtasun ahultasunen eta praktika txarren ondorioz, IoT gailuen
aurkako hainbat malware ugaritu dira.

Zehazki, tesi honetan federated learning (FL) teknikak aztertu ditugu, ML
modeloak entrenatzeko teknika berri bat sistema banatuetarako bereziki ego-
kitua, hala nola IoT ingurunerako. Laburki, FL-en helburua ML modelo bat
kolaboratiboki entrenatzea da hainbat gailuren (bezeroak FL prozesuan) artean.
FL-en bereizgarritasun nagusiena entrenatzeko datu guztiak lokalki bezero
bakoitzean mantentzen direla da, horri esker, beste ohiko tekniketan (hodeiko
edo perimetroko konputazioan) sortzen diren datuen pribatutuasun, eskuraga-
rritasun eta komunikazio kostuen erronkei aurre egin ahal zaie FL-ari esker.
Nahiz eta FL-ek arrakasta ona izan hainbat kasu praktikoetan, esate baterako
mugikorren teklatuetan hurrengo hitzak aurresateko edo ahotsaren azterketa-
rako, IoT inguruan intrusio detekziorako ez da hain sakonki ikertu. Halaber,
arlo honek dituen hainbat erronka eta hutsuneak tesi honetarako motibazio
gisa erabili ditugu; besteak beste, FL esperimentuetarako egokiak diren IoT
segurtasun datu publikoen falta, datuen etiketatzearen kostua, IoT inguru-
nearen heterogeneotasun handia dela eta sortutako arazoak FL-ko modeloen
entrenamenduan eta FL inguruan entrenatutako ML modeloei azalgarritasuna
emateko beharra. Azken puntu hau funtsezkoa da segurtasun analistek ML
tekniketan konfiantza hobetzeko.

Aipatutako erronkak arlo honetako bakarrak izan ez arren, tesi honetan ho-
riek izan dira bereziki landu ditugunak. Bertatik, hiru ekarpen nagusi aurkeztu
ditugu. Lehenik, saiakuntza-banku emulatu bat aurkezten dugu IoT segurtasun
datu-multzoak sortzeko eta FL-ekin esperimentatzeko modu erreproduzible,
moldagarri eta erraz banatzeko moduan. Saiakuntza-bankuak hainbat mehatxu-
aktore emulatzen ditu malware errealak erabiliz. Ondoren, FL arkitektura bat
aurkezten dugu anomalien detekziorako gainbegiratu-gabeko modeloak en-
trenatzeko. IoT ingurunearen heterogeneotasun handiak eragindako arazoei
aurre egiteko, FL prozesuan integratutako bezeroen taldekatzeko algoritmo bat
proposatzen dugu. Azkenik, aldez aurretik entrenatutako anomalia detekziora-
ko modeloei azalgarritasuna aurkezteko metodologia bat proposatzen dugu.
Horretarako, FL teknikak ere erabiltzen ditugu federatutako sareko bezero
guztietan antzemandako anomaliak automatikoki deskribatzeko, taldekatzeko,
laburtzeko eta auto-etiketatzeko.

iii

Resumen

La detección de intrusiones trata principalmente del desarrollo de métodos
para determinar si un sistema informático o red de ordenadores tiene indicios
de estar comprometido o están siendo objeto de un ataque. A lo largo de los
años se han desarrollado distintos sistemas de detección de intrusiones en base
a las técnicas usadas para la detección de las amenazas o a las características de
los dispositivos que se quieren proteger. Esta tesis se enmarca en el contexto del
uso de métodos basados en el aprendizaje automático (ML, machine learning)
aplicado a la detección de intrusiones en entornos del Internet de las Cosas
(IoT, Internet of Things), ya que a pesar de las ventajas y la alta adopción del
IoT, múltiples vulnerabilidades y malas prácticas de seguridad han dado lugar
a la proliferación demalware específicamente diseñado para explotar esta clase
de dispositivos.

En particular, en esta tesis exploramos el uso del aprendizaje federado (FL,
federated learning), una técnica reciente para entrenar modelos de ML que es
especialmente adecuada para entornos distribuidos como el IoT. En esencia, FL
tiene como objetivo entrenar un modelo global mediante la colaboración de
múltiples clientes. Tiene la particularidad de que los datos de entrenamiento de
cada cliente se mantienen en local, permitiendo abordar retos como la privaci-
dad y la disponibilidad de los datos o los costes de comunicación que surgen en
otras técnicas habituales como el entrenamiento en la nube o en el perímetro.
A pesar de que FL se ha usado con éxito en casos prácticos como la predicción
de palabras en los teclados de dispositivos móviles o el reconocimiento de voz,
su uso en el ámbito de la ciberseguridad para el IoT no ha sido ampliamente
estudiado. Asimismo, este entorno presenta ciertos retos y lagunas que han
servido de motivación para esta tesis, incluyendo la falta de conjuntos de datos
públicos de seguridad en IoT que sean adecuados para la experimentación con
FL, el coste del etiquetado de datos, la alta heterogeneidad del ecosistema IoT
que dificulta el entrenamiento de modelos en FL y la necesidad de proporcionar
explicabilidad para hacer frente a la naturaleza opaca de los modelos ML, que
es crucial para mejorar la confianza de estas técnicas por parte de los analistas
de seguridad, pero presenta problemas adicionales debido a los requisitos de
FL.

Los retos mencionados anteriormente no son los únicos que existen en este
ámbito, sin embargo, son los que hemos abordado en esta tesis presentando
tres contribuciones principales. Primero, desarrollamos un banco de prueba
emulado que permite la generación de conjuntos de datos adecuados para
la experimentación con FL de un modo reproducible, adaptable y de fácil
distribución. Usamos el banco de pruebas para presentar un escenario con
varios actores de amenaza, incluyendo muestras reales de malware. Después,
presentamos una arquitectura de FL para el entrenamiento de modelos no
supervisados de detección de anomalías. La arquitectura incluye un algoritmo
de agrupación de clientes integrado en el proceso de FL para abordar los
problemas causados por la alta heterogeneidad de estos entornos. Finalmente,
proponemos una metodología para incorporar una capa de explicabilidad sobre
los modelos previamente entrenados. Esta capa también hace uso de técnicas
de FL para caracterizar, agrupar, sintetizar y etiquetar automáticamente las
anomalías detectadas por los distintos dispositivos de la red federada.

iv

Acknowledgments

First, I would like to thank my supervisors. To Urko Zurutuza for his sound guidance
and insights throughout the duration of this thesis, and to Cristóbal Arellano for his
confidence and valuable feedback. All their contributions have shaped and improved
this work. I am also very grateful to Jose Luis Flores, who provided me with his time,
dedication and technical knowledge to help and enhance the contributions in this
thesis.

I’d also like to extend my gratitude to the ZPD and ZST teams at Ikerlan for their
encouragement (I think I still owe them some food).

Finally, I would like to thank my family, and especially my parents, for their
support and patience over many years, and sorry for being even more grumpier
while writing this thesis.

Contents

Abstract . i
Laburpena . ii
Resumen . iii
Acknowledgments . iv

1 Introduction 1
1.1 Motivation . 1
1.2 Objective, hypotheses and operational objectives of the research . . 4

1.2.1 General objective . 5
1.2.2 Hypotheses . 5
1.2.3 Operational objectives . 6

1.3 Scope and limitations . 6
1.4 Contributions and publications . 7
1.5 Outline of the thesis . 9

2 Background 11
2.1 Internet of Things . 11

2.1.1 Internet of Things (IoT) . 12
2.1.2 Cyber-Physical Systems (CPS) 12
2.1.3 Industrial Control Systems (ICS) 13
2.1.4 Industrial Internet of Things (IIoT) 13

2.2 Threat landscape in IoT devices . 13
2.2.1 Mirai lifecycle . 17
2.2.2 Merlin C&C agent and server 19

2.3 Security measures . 21
2.3.1 Hardening operations . 21
2.3.2 Intrusion detection and prevention 21
2.3.3 Security Information and Event Management 23
2.3.4 Alert message exchange formats 24

2.4 Machine learning concepts . 25
2.4.1 Data modeling . 25
2.4.2 Dimensionality reduction 25
2.4.3 Clustering . 26
2.4.4 Evaluation metrics . 27

v

vi CONTENTS

2.4.5 Explainable AI . 30
2.5 Federated learning . 30

2.5.1 Federated learning assumptions 31
2.5.2 Federated learning settings 32

3 Related work 35
3.1 Machine learning applications in cybersecurity 35
3.2 Limitations of machine learning training architectures in IoT settings 36
3.3 Federated learning advances . 38
3.4 Heterogeneity problems in federated learning 39

3.4.1 Clustered federated learning 40
3.5 Federated learning for IoT intrusion and anomaly detection 41
3.6 Alternative approaches to federated learning 42

3.6.1 Collaborative intrusion detection systems 43
3.6.2 Distributed computation . 44
3.6.3 Split learning . 44

3.7 Explainability for cybersecurity . 44
3.7.1 Explainability for cybersecurity anomaly or attack detection

in non-FL settings . 45
3.7.2 Explainability for cybersecurity in federated learning settings 46

3.8 IoT testbeds and datasets . 47
3.8.1 General IoT simulators and testbeds 47
3.8.2 Testbeds and datasets for IoT security 48

3.9 Discussion of the state-of-the-art and identified gaps 50
3.9.1 Overreliance on labeled data 50
3.9.2 Suitability of the datasets and testbeds 50
3.9.3 Suitability of the proposals to FL settings 52
3.9.4 Lack of heterogeneity considerations 53

4 Gotham testbed 55
4.1 Testbed requirements and platform features 56

4.1.1 General testbed and dataset requirements 56
4.1.2 Required testbed features 57
4.1.3 Comparison with related work 60

4.2 Testbed architecture . 62
4.2.1 Gotham middleware components 63

4.3 IoT scenario use case . 65
4.3.1 Scenario diagram . 65
4.3.2 Emulated devices . 67
4.3.3 Threat model and attacks 73
4.3.4 Full network topology . 77

4.4 Evaluation . 78
4.4.1 Reproducibility . 78
4.4.2 Communication link emulation 78

CONTENTS vii

4.4.3 Hardware resource emulation 79
4.4.4 Testbed scalability . 80
4.4.5 Measurability . 81
4.4.6 Normal IoT behavior scenario 82
4.4.7 Attack behavior scenario . 82

4.5 Discussion . 84

5 Clustered federated learning for anomaly detection in heteroge-
neous IoT networks 87
5.1 Proposed system model . 88

5.1.1 Deployment setting and architecture 88
5.1.2 Clustered federated learning process for heterogeneous devices 90
5.1.3 Model fingerprinting for device clustering 93
5.1.4 Anomaly detection model 94

5.2 IoT testbed and experimental setup 95
5.2.1 IoT testbed . 95
5.2.2 Data generation and collection method 97
5.2.3 Machine learning and federated learning setup 99

5.3 Implementation . 99
5.3.1 Network data processing . 99
5.3.2 Autoencoder model selection 101
5.3.3 Device clustering . 103
5.3.4 Federated hyperparameter tuning 103
5.3.5 Clustered federated learning 104
5.3.6 Anomaly detection . 104
5.3.7 Baseline experimental comparisons 105

5.4 Results . 106
5.4.1 Autoencoder model selection 106
5.4.2 Device clustering . 106
5.4.3 Federated hyperparameter tuning 112
5.4.4 Clustered federated learning 112
5.4.5 Anomaly detection . 117
5.4.6 Baseline experimental comparisons 118

5.5 Discussion . 122

6 Federated explainability for anomaly characterization 125
6.1 Proposed system model . 126

6.1.1 Federated learning setting 126
6.1.2 Threat model . 127
6.1.3 SHAP background . 127
6.1.4 Architecture of the proposed method 128

6.2 Algorithm details . 129
6.2.1 Federated learning for explainer model training 130
6.2.2 Federated learning for anomaly clustering 131

viii CONTENTS

6.2.3 Explaining clusters . 133
6.2.4 Anomaly message exchange 134

6.3 Evaluation . 134
6.3.1 Datasets . 135
6.3.2 Federated learning model training 135
6.3.3 Federated learning SHAP explainer and SHAP values 136
6.3.4 Federated learning anomaly clustering 138
6.3.5 Anomaly cluster alert explanation 140
6.3.6 Anomaly message exchange 141
6.3.7 Possible integration with other IDSs 143

6.4 Discussion . 145

7 Conclusions 147

Bibliography 151

A Clustered federated learning additional experiment: clustering in
compromised settings 173
A.1 Methodology . 173
A.2 Results . 174

B Federated explainability for anomaly characterization: additional
figures 183

CHAPTER 1
Introduction

This chapter begins with an introduction describing the topic and motivation of this
thesis, establishing a niche, and briefly highlighting some relevant gaps that need
to be addressed. Then, we define the main objectives and hypotheses used to guide
our work. We also present the general scope and limitations of this thesis. Next, we
detail the main contributions of the thesis and list the publications that support them.
Finally, we outline the general structure of the chapters included in this document.

1.1 Motivation

The Internet of Things (IoT) and Machine to Machine (M2M) communication pro-
tocols are rapidly developing technologies of great interest to the industrial sector.
They have the potential to improve the efficiency and reliability of manufacturing
operations and processes, as well as foster the creation of new products, applications
and business models [1]. Due to the pervasiveness of IoT, security and privacy
guarantees should be one of the main concerns to be addressed. Unfortunately, mul-
tiple sources of weaknesses and vulnerabilities, such as deficient physical security,
inadequate authentication, improper encryption, unnecessary open ports, insuffi-
cient access control, improper patch management, weak programming practices and
insufficient audit mechanisms, are the main reasons why many of these types of
devices are currently susceptible to attacks and are actively being exploited [2].

Poor security practices and vulnerabilities, coupled with the mass adoption and
high interconnectivity, make IoT an attractive target for malware designers. The
compromised devices are usually leveraged to perform different attack campaigns,
including Distributed Denial of Service (DDoS) attacks, cryptocurrency mining,
spamming or advertisement click fraud [3]. Exposed industrial IoT (IIoT) systems
are also the targets of numerous attacks that may pose additional risks due to the
critical nature of these devices, including ransomware, sabotage, intellectual property

1

2 CHAPTER 1. INTRODUCTION

theft, or be used as a pivot point to infiltrate into other systems in the IT or OT
infrastructure [4], [5].

The concern regarding the inadequate security of many IoT devices is also
highlighted by recent regulations, such as the EU Cyber Resilience Act1 (2022) and
the US IoTCybersecurity Improvement Act of 20202, with the objective of establishing
minimum security standards for IoT devices and ensure that manufacturers improve
the security of their products.

To improve the security of the devices, several good practices and mitigation
strategies have been proposed to reduce the attack surface and defend against these
threats. For instance, using specialized operating systems, providing reliable update
mechanisms, event loggers and performing basic hardening operations such as
removing nonessential services [6]. However, those mitigations do not guarantee
a secure environment; misconfigurations, the discovery of new vulnerabilities and
zero-days still make IoT devices (and general computer systems) prone to attacks [7].
Therefore, incorporating an Intrusion Detection System (IDS) or Intrusion Prevention
System (IPS) as an additional security layer is a common practice to protect the assets.
Based on the detection technique, an IDS can be broadly classified as signature-
based or anomaly-based. Signature-based IDSs match the incoming data with a
predefined set of rules for known attacks. In the case of network intrusion detection,
examples of rules can be particular string or byte patterns known to be present in
the payload or header of network packets generated by some attacks, or searching
for suspicious source or destination IP addresses or domains in reputation lists. In
contrast, anomaly-based IDSs aim to model the normal behavior of the monitored
assets and raise alarms when deviations from this model are detected.

Signature-based IDSs usually offer good detection for known attacks; however, a
major disadvantage of signatures is that they are unable to detect new attacks for
which no rules have been defined, or fail to detect some modifications of known
attacks due to evasion strategies adopted bymalware distributors, including the usage
of packed binaries, string modifications, and obfuscation techniques [8]. Moreover,
the rapidly evolving IoT threat landscape makes signature-based IDSs struggle to
keep up with new IoT threats as a result of long delays between the malware analysis
and the publication of the corresponding rules [9]. Similarly, IP address reputation
and domain blocklists are also not particularly effective due to the rapid changes in
botnet control infrastructure [10].

Anomaly-based IDSs are an extensively researched field with roots dating back
to the 1980s [11], [12]. The basic idea of these types of IDSs is to characterize
the legitimate use of a computer system by measuring multiple parameters from
audit trails and defining normal ranges for various statistics of those parameters.
Deviations from those ranges might be indicative of computer misuse. Over the
years, following the advances in Machine Learning (ML) and Deep Learning (DL)
methods, these types of data modeling techniques have been incorporated into the

1https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
2https://www.congress.gov/bill/116th-congress/house-bill/1668

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.congress.gov/bill/116th-congress/house-bill/1668

1.1. MOTIVATION 3

design of new anomaly-based IDSs, showing promising results and exhibiting more
flexibility and generalization than traditional signature-based detection methods [13].
However, many anomaly-based systems are usually characterized by limitations
such as high false positive rates, which can cause alert fatigue to security analysts
triaging and investigating the logs.

Meanwhile, from the point of view of ML model training infrastructure, tradi-
tional architectures exhibit many problems in IoT settings due to the massive scale
and heterogeneity of these deployments. In cloud-based centralized architectures,
where data from all devices is transmitted to a central server and used for ML/DL
model training, problems such as high bandwidth consumption, network resource
congestion and load balancing arise, leading to packet loss, transmission delays, high
latency and traffic peaks [14] that can adversely affect the training process or even
make cloud training infeasible. In addition, data centralization can raise privacy con-
cerns and the need to comply with regulations such as the General Data Protection
Regulation (GDPR) [15]. As an alternative, proposals to shift the computation toward
the “edge” of the network are being made [14], [16]. While edge computing can
alleviate some of the problems of centralized architectures, other additional issues
like data islands and isolation arise, which can hinder the application of ML because
it effectively reduces the volume of data available for training [17].

A promising alternative that could address the aforementioned network overhead,
privacy and data isolation issues, and which is gaining significant attention, is
federated learning (FL). FL is a ML setting introduced in 2016 by McMahan et al. [18]
with the objective of training a single model (the global model) from data distributed
at multiple remote devices (clients). The most particular characteristic of FL is that
each device’s local training dataset does not leave the device; instead, each client
independently computes some local model update and communicates the partially
trained model parameter updates to a central server, which aggregates the local
updates from all the clients to train the global model iteratively. Data is kept locally on
each device, and only model updates are transmitted to the aggregation server, which
preserves data privacy requirements. Since model updates are typically smaller than
the size of the dataset, network overhead problems can also be reduced. Additionally,
data isolation is minimized because multiple clients participate in training the global
model.

FL has shown promising results in some academic fields and production systems,
for example, in training ML language models for next-word prediction in mobile
phones [19]. However, the use of this approach in cybersecurity has not been
extensively studied.

Moreover, despite the promises and positive results of ML and DL for anomaly
detection in cybersecurity, multiple challenges still limit the practical and widespread
adoption of these methods. The deployment of these systems is still limited in
practice, creating a gap between the academic settings, focused on ML/DL-based
anomaly detection systems, and operational environments, which mostly rely on
rule-based systems [20], [21]. Challenges such as the availability and cost of data
labeling for model training or the need for more interpretation and explainability of

4 CHAPTER 1. INTRODUCTION

the output provided by the ML/DL models have been [20] and continue to be [22]
present since the use of these methods for intrusion detection. In addition, while FL
allows an efficient training of models in a highly distributed network, it presents
additional challenges when the network is composed of many heterogeneous devices,
as in IoT settings.

Regarding the data availability for model training, one of the main reasons
for this gap is the lack of representative public datasets that include up-to-date
traffic and attacking patterns to develop ML-based systems [13], [20], [23]. This
issue is particularly relevant for IoT and M2M environments, where the number
of special-purpose public datasets is currently insufficient [24], and the attacking
behaviors included in the datasets are outdated or underrepresented due to the rapidly
evolving IoT threat landscape. Furthermore, most available datasets are not designed
or suitable to perform experiments in a FL setting, hindering the experimentation
with these techniques.

With reference to the need for model output explainability, the ML community
has increased its efforts in the field of eXplainable Artificial Intelligence (XAI) to
provide interpretation and explainability of both the models and the predictions
made with them [25], and thus, address the black box nature of ML and especially
DL models. In cybersecurity, some IDS proposals have also adopted XAI methods,
which is crucial to increase the trust of these techniques by security analysts [26].
However, the integration of XAI methods into FL is an area that has received little
attention and presents additional challenges due to the particularities of this setting.
For instance, the distributed nature of the datasets, high heterogeneity regarding
data distribution and client capabilities, large scale in terms of the number of clients
in the federated network, and the need to maintain the training data local to each
client are challenges that need to be considered for using XAI methods into FL [27],
[28].

Moreover, there are still some difficulties to be considered for a practical FL
deployment. Even though FL assumes that the data generation does not follow
Independent and Identically Distributed (IID) assumptions across all the clients, in
practice, highly non-IID settings can hinder global model convergence [29]. This
can happen in highly heterogeneous settings such as large IoT networks composed
of devices communicating with a diverse set of protocols.

1.2 Objective, hypotheses and operational objectives of
the research

This section first establishes the general objective of the thesis. Then, based on the
gaps identified in the relevant literature, we present the main hypotheses and further
divide the general objective into several operational objectives used to guide this
work.

1.2. OBJECTIVE, HYPOTHESES AND OPERATIONAL OBJECTIVES 5

1.2.1 General objective

The general objective of this thesis is the design and implementation of FL architec-
tures to develop ML-based anomaly detection systems to improve the security of
IoT networks. The proposed FL architectures should be suitable to address the main
properties of IoT networks which are mainly highly distributed, heterogeneous and
large-scale, as well as consider the main threat models of IoT networks.

1.2.2 Hypotheses

To develop the hypotheses, we have relied on the identified gaps that have been
briefly outlined in the previous motivation section, and which will be further detailed
in the chapter devoted to the state of the art. Based on those gaps, we have defined
the following hypotheses:

H.1 IoT and IIoT networks show properties such as large scale, highly distributed,
heterogeneity, data privacy needs, large data transmissions, etc. Those proper-
ties make FL architectures more suitable than cloud-centric or isolated edge
computing architectures. Additionally, intrusion detection models trained
using the FL approach perform better than models trained in isolation for each
IoT/IIoT device from the point of view of anomaly detection performance.

H.2 FL architectures can be integrated into advanced security systems such as
SIEMs, thus better adapting these solutions to the IoT and IIoT ecosystem.
The integration can help to reduce alert volume overload, address seasonal
variations in the behavior of the devices and also might help to detect more
advanced attack scenarios.

H.3 Output generated by anomaly detection models provides limited contextual
information to security analysts at a Security Operations Center (SOC), as they
usually lack the means to know why a sample was classified as anomalous
or cannot distinguish between different types of anomalies, difficulting the
extraction of actionable information and correlation with other indicators.
Integrating ML explainability techniques into SIEMs can provide more context
to the generated anomalies.

H.4 During the FL training process, the local ML model updates sent from each
client to the FL aggregation server can be used as a proxy to measure the data
heterogeneity level throughout the IoT/IIoT network. This measurement can
be leveraged to address the model convergence problems in the FL training
process due to highly heterogeneous environments. Integrating the IoT net-
work heterogeneity measurements into the FL pipeline will allow to reduce
deployment complexity and increase automation.

6 CHAPTER 1. INTRODUCTION

1.2.3 Operational objectives

To tackle the main objective of the thesis, we have divided the general objective into
the following specific objectives:

O.1 To design and implement a ML-based anomaly detection system leveraging
FL techniques for IoT networks.

O.2 To design and implement a system that analyzes the anomalies generated by
the distributed anomaly detection models (from objective O.1) using again FL
techniques, and the integration of this system with Security Information and
Event Management (SIEM) tools.

O.3 To evaluate the viability of FL techniques for the training of the anomaly
detection models and anomaly analysis methods regarding the anomaly de-
tection performance, adaptability to device heterogeneity and data imbalance
problems.

O.4 To validate the obtained results from the previous objectives in a reproducible
and easily distributable way. To this end, a platform for emulating a network
with many heterogeneous IoT devices and attackers will be developed. The
platform will be used for experimentation, data collection and validation of
the implemented algorithms.

1.3 Scope and limitations

Securing IoT networks or devices can be approached from many different layers.
A comprehensive security solution would likely need to monitor events from all
different layers to provide defense in depth. From the point of view of data sources,
examples of layers include network traces, system calls, application logs, binary
analysis and more. Besides, from the point of view of physical location, security
measures can be implemented at different layers, such as edge layer IoT devices,
networking equipment or cloud data centers, following a typical three-tiered IoT
architecture.

Among the mentioned approaches, in this work, we have focused on network-
level anomaly detection placed at the edge layer devices, as devices in this location
are the ones that could benefit the most from FL due to the potentially large-scale
and distributed nature of edge devices in IoT architectures, and more prone to attacks
as they are usually exposed to the Internet. While at the beginning of this thesis it
was considered as an objective to explore the integration of heterogeneous input
data sources to train the anomaly detection models, we have finally restricted to
network-level data and left the integration of different data sources as future work.

Regarding anomaly detection methods, we have focused on ML-based algorithms
(trained using FL), as explained in the objectives section. The training of many ML
models for classification requires the data to be labeled into a finite set of classes

1.4. CONTRIBUTIONS AND PUBLICATIONS 7

(for instance, a label for each attack type and another label to identify benign data)
so that the model learns to differentiate between them. However, obtaining and
labeling network traces is costly, time-consuming, and often infeasible in practical
scenarios. For this reason, we have focused on ML models that do not require the
presence of labeled data for the model training step.

Additionally, in this thesis, we have prioritized lightweight ML models (models
with few parameters), which makes them especially suitable for IoT deployment
scenarios because it requires less computational load for model training or inference
in constrained devices. However, we have not selected any particular IoT hardware
as a reference device nor performed experiments of ML model training in these types
of devices. Several works explore various techniques to run ML models in highly
constrained devices, and thus we consider it outside of the scope of this thesis.

We also note that for the evaluation testbed development (related to objective O.4),
the emulated IoT devices, attackers and networking equipment run all Linux-based
operating systems, including different versions of Alpine, Debian, Fedora and Ubuntu,
for instance. While the developed testbed can run devices with other operating
systems in virtual machines, we have not considered them. Microcontrollers are also
outside of the scope of this document.

1.4 Contributions and publications

In order to achieve the defined objectives, this thesis presents several contributions
that are supported by academic journal and conference publications. The following
are the main contributions of this thesis:

C.1 We design an emulated IoT network testbed for the deployment of different
network scenarios in a reproducible manner. The testbed is flexible enough to
incorporate any type of physical, virtualized or containerized clients, servers
and applications, as well as generate real network traffic data. Furthermore,
we provide a set of properties that an emulation platform should meet for
these purposes. We have used the testbed to perform security experiments
and extract network datasets.

C.2 We use the testbed to implement a scenario composed of many emulated IoT
and IIoT devices that communicate using multiple protocols. Additionally,
the scenario includes a threat model comprising three different threat actors
executing real botnet malware and other red-teaming attack tools.

C.3 We propose and test a clustered FL architecture for unsupervised anomaly
detection IDSmodel training applied to a network of heterogeneous IoT devices.
The architecture includes an unsupervised model fingerprinting for device
clustering method fully integrated into the FL pipeline to address global model
convergence problems in heterogeneous FL settings.

8 CHAPTER 1. INTRODUCTION

C.4 We introduce a methodology to explain and characterize anomalies gener-
ated by ML/DL-based anomaly detection models in a FL setting by leveraging
explainability techniques in a federated way. We also incorporate an alert mes-
sage exchange format to enable the interoperability of the proposed method
with third-party security solutions such as SIEMs.

The publications that support our contributions are detailed below, including a
link to the papers and implementation source code if available:

P.1 X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Gotham testbed: A reproducible iot testbed for security experiments and
dataset generation”, IEEE Transactions on Dependable and Secure Computing,
pp. 1–18, Feb. 22, 2023. doi: 10.1109/TDSC.2023.3247166

• Journal IF 2022 7.3; Q1 Computer Science, Information Systems 20/158;
Q1 Computer Science, Software Engineering 6/108.

• Article available online (open access) at: https://ieeexplore.ieee.
org/document/10049670

• Implementation source code available at: https://github.com/xsaga/
gotham-iot-testbed

P.2 X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Clustered federated learning architecture for network anomaly detection
in large scale heterogeneous iot networks”, Computers & Security, vol. 131,
p. 103 299, Aug. 1, 2023, issn: 0167-4048. doi: 10.1016/j.cose.2023.103299

• Journal IF 2022 5.6; Q2 Computer Science, Information Systems 41/158.

• Article available online (open access) at: https://www.sciencedirect.
com/science/article/pii/S0167404823002092

P.3 X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Federated explainability for network anomaly characterization”, in Proceedings
of the 26th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2023), (Hong Kong, China), Oct. 16–18, 2023, forthcoming

• RAID: Class 1 (A+ Rating) GII-GRIN-SCIE (GGS) Conference Ranking.
CORE 2021: A

• Article available online after publication.

• Implementation source code available at: https://github.com/xsaga/
federated-xai-anomalies

https://doi.org/10.1109/TDSC.2023.3247166
https://ieeexplore.ieee.org/document/10049670
https://ieeexplore.ieee.org/document/10049670
https://github.com/xsaga/gotham-iot-testbed
https://github.com/xsaga/gotham-iot-testbed
https://doi.org/10.1016/j.cose.2023.103299
https://www.sciencedirect.com/science/article/pii/S0167404823002092
https://www.sciencedirect.com/science/article/pii/S0167404823002092
https://github.com/xsaga/federated-xai-anomalies
https://github.com/xsaga/federated-xai-anomalies

1.5. OUTLINE OF THE THESIS 9

P.4 X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Aprendizaje federado con agrupación de modelos para la detección de anoma-
lías en dispositivos iot heterogéneos”, in Proceedings of the XVII Reunión es-
pañola sobre criptología y seguridad de la información. RECSI 2022., (Santander,
Spain), Editorial Universidad de Cantabria, Oct. 19–21, 2022, pp. 198–204, isbn:
978-84-19024-14-5. doi: 10.22429/Euc2022.028

• Proceedings available online at: https://recsi2022.unican.es/wp-
content/uploads/2022/10/LibroActas-978-84-19024-14-5.pdf

1.5 Outline of the thesis

The rest of this thesis is structured as follows. Chapter 2 introduces the foundations
and background concepts in the scope of this thesis, including a description of the
Internet of Things and related terms, a general overview of the threat landscape in
the IoT ecosystem and security measures, a description of machine learning concepts
related to the contributions of this thesis and, finally, a general introduction to
federated learning. Chapter 3 covers the related work and state-of-the-art approaches
applied in the context of the thesis. We discuss the reviewed articles and highlight
the gaps identified in the literature. The following three chapters are devoted to
the main contributions arising from the work of this dissertation. In Chapter 4,
we describe the emulated testbed and scenario for security experiments, which is
directly related to contributions C.1, C.2 and publication P.1. Then, in Chapter 5, we
leverage the testbed to introduce the clustered FL architecture for network anomaly
detection in heterogeneous IoT networks, which details the contribution C.3 and is
based on publication P.2 (a significantly improved version of the P.4 publication). In
Chapter 6, we introduce themethodology to add a federated explainability layer to the
previously trained anomaly detectionmodels, which is related to contribution C.4 and
publication P.3. Finally, Chapter 7 concludes the dissertation and lays out directions
for future work.

https://doi.org/10.22429/Euc2022.028
https://recsi2022.unican.es/wp-content/uploads/2022/10/LibroActas-978-84-19024-14-5.pdf
https://recsi2022.unican.es/wp-content/uploads/2022/10/LibroActas-978-84-19024-14-5.pdf

CHAPTER 2
Background

This chapter provides the foundations and background concepts related to the main
topics of this thesis. We begin by describing the Internet of Things and related terms
like Cyber-Physical Systems, Industrial Control Systems and Industrial Internet
of Things, which usually appear together when reading literature on these topics.
Then, the security and threat landscape of domestic and industrial IoT devices is
reviewed. We give special attention to the Mirai worm, which will play an important
role in the following chapters. Next, some relevant security measures are presented,
including hardening, intrusion detection and prevention, security information and
event management systems and the importance of exchanging alert messages. Addi-
tionally, we introduce the machine learning concepts used throughout this thesis,
including data modeling, dimensionality reduction, clustering, evaluation metrics
and explainability. Finally, the chapter concludes by describing the general idea of
federated learning.

2.1 Internet of Things

There is no common definition for the Internet of Things (IoT) or its industrial
counterpart, the Industrial Internet of Things (IIoT). The meaning of those names
evolved over time after the IoT term was first coined in 1999 [36] by Kevin Ashton,
focused on RFID technologies for object tracking. In essence, the idea is based on
adopting new technologies to enhance computers or other everyday devices with the
ability to collect data from the physical environment and share it with other devices
or humans to build some kind of distributed intelligence. The combination of the
physical world with the digital infrastructure enables the creation of new products,
applications and business models [1].

When researching this topic, multiple related keywords such as IoT, IIoT, CPS,
and ICS appear, usually with overlapping definitions and concepts. In the following
subsections, those terms will be described.

11

12 CHAPTER 2. BACKGROUND

2.1.1 Internet of Things (IoT)

The IoT can be defined as a group of infrastructures that connect devices embedded
with sensors and actuators that carry out specific functions and allow their manage-
ment, data access and mining [37]. The key value in IoT technologies is not limited
to the values of each individual “things” in the network, but to the interconnection
of all those “things” by enhancing the functionality of some device thanks to the
data generated by other related or complementary products in the IoT network [1].

A more abstract but comprehensive definition is given in [38]: “A conceptual
framework that leverages on the availability of heterogeneous devices and inter-
connection solutions, as well as augmented physical objects providing a shared
information base on global scale, to support the design of applications involving at
the same virtual level both people and representations of objects”.

The same authors in [38] also list the following common and basic features
that should be present in IoT technologies that help to distinguish more traditional
architectures from real IoT deployments:

• The inclusion of a global network (not necessarily TCP/IP based) to enable
integration, interoperability and addressing of the IoT devices.

• Sensors and actuators embedded into everyday objects which can be readable,
writable, addressable, locatable and controllable.

• Autonomous and self-managed devices.

• Includes interfaces both between humans and things, and between things and
other things. People and objects all interact with each other to create rich
applications.

• Includes a mix of heterogeneous technologies.

• Each object has certain associated services based on the information gathered
by each of them.

2.1.2 Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) can be described as smart systems encompassing com-
putational and physical components, seamlessly integrated and closely interacting
to sense the changing state of the real world [39].

CPSs are essentially networked feedback systems that integrate human, phys-
ical and cyber elements focused on the control of processes in real-time. Some of
the main characteristics of CPSs are to operate in real-time, make intelligent deci-
sions, be capable of adaptive and predictive control, and be highly networked and
distributed [40].

According to a recent NIST publication [41], modern IoT definitions are largely
interchangeable with those for CPS, and small differences between some definitions
are insufficient for drawing a reliable distinction between both concepts.

2.2. THREAT LANDSCAPE IN IOT DEVICES 13

2.1.3 Industrial Control Systems (ICS)

Industrial Control Systems is a term used to describe different types of control systems
and associated instrumentation, which include the devices, systems, networks and
controls used to operate and automate industrial processes [42]. ICS are extensively
used in energy, transportation, water, food, chemical and other critical infrastructures.
Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control
Systems (DCS), and more generic Programmable Logic Controllers (PLC) are all part
of ICS [43], [44].

There is still ongoing discussion between those who consider ICS systems part of
the IIoT ecosystem and those who view IIoT as the successor to these systems [42].

2.1.4 Industrial Internet of Things (IIoT)

In its simplest form, the Industrial Internet of Things can be defined as the use of IoT
technologies for industrial or business environments. The “things” in the IIoT refer
mainly to industrial assets such as engines, power grids, CPSs and ICSs, instead of
standard consumer devices [45].

In [42], the authors provide a more complete and precise definition for the
Industrial Internet of Things. They define it as a system comprising networked
smart objects, CPSs, generic IT devices and technologies and optional cloud or edge
computing platforms. These systems should enable the collection, communication,
exchange, access and analysis of process, product and service information within an
industrial environment in a timely, intelligent and autonomous manner. The main
purpose of implementing such a system is to optimize processes, improve products
or services, boost productivity, reduce costs, waste, energy and more.

While the main functions of IIoT devices are to collect, share, process andmonitor
the data, there is a great emphasis on enabling the exchange of information to
human users and other IIoT machines to be able to control and change their own
behavior or command other devices to modify its behavior without the need of
human intervention. Additionally, IIoT might require tighter constraints to ensure
reliability, availability, latency, robustness, security and safety compared to IoT
devices.

2.2 Threat landscape in IoT devices

The increased use of IoT, coupled with poor security practices and multiple sources
of vulnerabilities1, has led to the development of malware specifically designed to
target and exploit IoT devices. A notable example with high media attention is the
2016 Mirai worm. One of the first public reports about the Mirai botnet appeared in a
blog post fromMalwareMustDie2 on September 1, 2016. Mirai is a worm type of virus
that exploited the widespread use of weak or hardcoded passwords to compromise a

1https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
2https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html

https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html

14 CHAPTER 2. BACKGROUND

diverse set of Linux IoT devices such as NAS servers, home routers, IP cameras, digital
video recorders, printers and TV receivers from various manufacturers. However,
Mirai is not the first malware that infected IoT devices. Other preceding botnets, such
as BASHLITE3 (2014), also infected similar IoT devices by exploiting the Shellshock
vulnerability, and launched various attacks. Mirai represents an evolution over
BASHLITE.

Antonakakis et al. present in [8] the first comprehensive analysis and measure-
ment of Mirai’s botnet growth and impact over a seven-month time frame starting
from the first observation of the threat. The infection reached a peak of 600,000
devices, which were used to launch more than 15,000 organized DDoS attack cam-
paigns mainly against telecommunication providers and game servers. The original
Mirai strain infected devices via brute forcing known Telnet and SSH credentials
from a dictionary of 62 usernames and passwords. Later, other variants were found
with the capability to exploit a vulnerability on some routers through the CWMP pro-
tocol [8], which allows ISPs to remotely manage their customers’ network appliances
and was exploited by this Mirai variant4. The use of bigger credential dictionaries,
obfuscation, domain generation algorithms, scanning of new ports, packed binaries,
etc. was also observed.

According to [6], Mirai ELF binaries targeting 18 different architectures have
been found, including ARM 5, 6, and 7, MIPS, PowerPC, Renesas SH, SPARC, and
x86. Since the public release of the Mirai source code [46], the number of variants
has increased considerably. There is also evidence that new Mirai variants, and other
similar malware, are exploiting multiple software vulnerabilities instead of only
relying on trivial username and password combinations. Moreover, botnets are now
being used for other purposes in addition to DDoS attacks, such as cryptocurrency
mining. For example, in [10], Vervier and Shen show a more recent description of the
security landscape in IoT using data captured over six months from a combination of
seven open source low-interaction honeypots and three high-interaction ones. They
noticed scans and/or attacks to multiple protocols such as Telnet, HTTP, SSH, UPnP,
SMB, Modbus, FTP, MQTT, etc. They found 411 attempts to exploit vulnerabilities
in high interaction honeypots, leveraging different vulnerabilities for each device,
some of them recent ones disclosed only a few weeks prior to the attempts (at that
time, 2018). Another interesting finding is that for the collected 3,385 files dropped
by the attackers, 85.2% of those were not detected by VirusTotal at the time of the
upload.

Aside from Mirai and the proliferation of its variants, there is a wide range of
malware targeting the IoT ecosystem and competing with each other for their share.
Figure 2.1, compiled and created by Valeros [47], shows a timeline of multiple IoT
malware, with indications of when each malware was first seen, source code leaks
and estimates of how long each malware was active.

3Also known as GafGyt, GayFgt, Torlus, LizKebab, Qbot, PinkSlip and LizardStresser
4https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-

offline/

https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/

2.2. THREAT LANDSCAPE IN IOT DEVICES 15

To name a few notable ones, Hajime is an IoT botnet that uses a public peer-
to-peer (P2P) system using the BitTorrent distributed hash table (DHT) network
as command and control instead of the usual centralized architectures, and can
download files and updates from other peers using a custom application protocol
based on the uTorrent transport protocol to improve its resiliency [48]. Mozi is
another more recent botnet that also relies on P2P networks based on the DHT
protocol and exploits weak Telnet passwords and known exploits targeting various
IoT devices to propagate itself5. Other IoT malware such as Torii rely on the Tor
network to launch attacks6. VPNFilter is a sophisticated IoT malware that has
been presumably attributed to a state-sponsored group; it mainly targets networking
equipment andNAS devices, includes functionality tomonitorModbus-based SCADA
protocols and can exfiltrate data using the Tor network7. Meris is a recent (approx.
June 2021) IoT botnet that launched the largest reported HTTP DDoS attack at
the time of writing 8. Other recent attack campaigns from 2022 and 2023 include
Mirai variants such as V3G49 and IZ1H910, leveraging several recent vulnerabilities
(additionally including older ones) exploiting IoT devices.

5https://malpedia.caad.fkie.fraunhofer.de/details/elf.mozi
6https://malpedia.caad.fkie.fraunhofer.de/details/elf.torii
7https://malpedia.caad.fkie.fraunhofer.de/details/elf.vpnfilter
8https://krebsonsecurity.com/2021/09/krebsonsecurity-hit-by-huge-new-iot-

botnet-meris/
9https://unit42.paloaltonetworks.com/mirai-variant-v3g4/
10https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/

https://malpedia.caad.fkie.fraunhofer.de/details/elf.mozi
https://malpedia.caad.fkie.fraunhofer.de/details/elf.torii
https://malpedia.caad.fkie.fraunhofer.de/details/elf.vpnfilter
https://krebsonsecurity.com/2021/09/krebsonsecurity-hit-by-huge-new-iot-botnet-meris/
https://krebsonsecurity.com/2021/09/krebsonsecurity-hit-by-huge-new-iot-botnet-meris/
https://unit42.paloaltonetworks.com/mirai-variant-v3g4/
https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/

16
C
H
A
PTER

2.
BA

C
K
G
RO

U
N
D

FI
RS

T
SE

EN

FI
RS

T
SE

EN

FI
RS

T
SE

EN

FI
RS

T
SE

ENFI
RS

T
SE

EN

FI
RS

T
SE

EN

FI
RS

T
SE

EN

FI
RS

T
SE

EN

2010 20142012 2016 2018 20202011 2013 2015 2017 2019

Gafgyt / BASHLITE / Lizkebab / Torlus / Qbot / LizardStresser

FI
RS

T
SE

EN

SO
U

RC
E

CO
D

E
LE

AK
ED

Mirai

FI
RS

T
SE

EN

20092008

Hydra

FI
RS

T
SE

EN

Muhstik

FI
RS

T
SE

EN

Amnesia

FI
RS

T
SE

EN

SO
U

RC
E

CO
D

E
LE

AK
ED

Masuta

Okiru

Satori

FI
RS

T
SE

ENFI
RS

T
SE

ENFI
RS

T
SE

EN

Hide ‘N Seek

FI
RS

T
SE

EN

Carna Botnet

FI
RS

T
SE

EN

FI
RS

T
SE

EN

Linux Moose / Elan

FI
RS

T
SE

EN

KTN- RM / Remaiten

FI
RS

T
SE

EN

Tsunami / Kaiten

FI
RS

T
SE

EN

LightAidra / Linux Aidra

IRCTelnet / LinuxIRCTelnet / NewAidra

FI
RS

T
SE

EN

Psyb0t / NetworkBluePill

FI
RS

T
SE

EN
NyaDrop

FI
RS

T
SE

EN

LUABot

FI
RS

T
SE

EN

FI
RS

T
SE

EN

Linux.Wifatch / Ifwatch / REINCARNA

FI
RS

T
SE

EN

Spike / Dafloo / MrBlack / Wrkatk / Sotdas / AES.DDoS

FI
RS

T
SE

EN

Chuck Norris

FI
RS

T
SE

EN

TheMoon

Persirai

FI
RS

T
SE

EN

IoTroop / Reaper / IoTrooper

FI
RS

T
SE

EN

BrickerBot

FI
RS

T
SE

EN

Zendran

FI
RS

T
SE

EN

Linux Darlloz / Zollard

Work in progress by @verovaleros - April 2020

Dark Nexus

FI
RS

T
SE

EN

Mozi

FI
RS

T
SE

EN

Silex

Handymanny

Moobot

Hajime

Mukashi

Echobot

Ares

FI
RS

T
SE

EN

FI
RS

T
SE

EN
FI

RS
T

SE
EN

FI
RS

T
SE

EN

FI
RS

T
SE

EN

FI
RS

T
SE

EN

VPNfilter

Umbreon / Umreon / Rebonum / Neobrum

FI
RS

T
SE

EN

IoT Malware Timeline

RHOMBUS
DoubleDoor

PureMasuta

GoScanSSH

JenX / Jennifer / Jen- X

UPnProxy / ETERNALSILENCE

Linux.MulDrop.14

LinuxProxyM

Special thanks to @costinandrei for contributions.

FI
RS

T
SE

EN

Torii

FI
RS

T
SE

ENFI
RS

T
SE

EN

Figure 2.1: IoT malware timeline from 2008 to 2020. Image credit Veronica Valeros, from [47].

2.2. THREAT LANDSCAPE IN IOT DEVICES 17

Exposed industrial IoT systems are also the targets of numerous attacks that,
compared to domestic IoT, may pose additional risks due to the critical nature of these
devices. Potential threats include sabotage, physical damage, intellectual property
theft or being used as a pivot point to infiltrate into other systems in the IT or OT
infrastructure [4], [5].

For example, [49] analyses Industrial Control System related threats using a low-
interaction honeypot system distributed across different locations around the world
over a period of 28 days in 2015. The honeypots exposed Modbus, DNP3, ICCP, IEC-
104, SNMP, TFTP and XMPP protocols in different combinations. SNMP and Modbus
protocols were the ones generating most interactions; specifically, they identified
that China, USA and Spain were the prevailing countries generating most Modbus
port scanning activities. The authors noticed that honeypots indexed by search
engines such as Shodan received much higher interactions than non-indexed ones.
However, most recorded events were limited to reconnaissance activities and no
targeted attacks were logged, which might be explained due to the low interactivity
of the honeypots.

In [50], Fachkha et al. deploy 7 passive /24 network telescopes to measure large-
scale activities against 26 widely used CPS services over one month. They detected
33,897 probing events (14,415 unique) targeting 20 CPS protocols, withModbus, ICCP,
Niagara Fox and DNP3 among the most targeted ones. They also reported over 9,000
large-scale orchestrated probing events from 58 campaigns. From those campaigns,
two were identified as an academic institution and a research organization, while
the rest were considered malicious activities originating from the USA, Germany,
China and Russia.

López-Morales et al. in [51] present a high-interaction honeypot capable of
realistically simulating protocols (TCP/IP stack, S7comm, HTTP and SNMP) from
multiple PLC devices (Siemens, Allen-Bradley and ABB) used in ICS with the aim
to obtain ladder logic malware samples. It also includes mechanisms to deceive
network scanning tools such as Nmap, PLCScan and Shodan honeyscore to avoid
being detected as a honeypot. After exposing several honeypots for 5 months, they
found evidence that attackers go beyond reconnaissance steps. They received 4 PLC
stop commands and more than 200 HTTP login attempts, but they did not record
any attempt to modify the ladder logic programs on the honeypots.

Even though the number of academic works covering IIoT/CPS/ICS cyberthreats
is not as extensive as those covering the general IoT threat landscape [42], from
the point of view of industry there is also evidence of an increasing number of
vulnerabilities and threats against those industrial assets, especially from reports of
security companies like [52]–[57].

2.2.1 Mirai lifecycle

In this section, we will describe the lifecycle of the Mirai botnet, as it will play an
important role during the experimentation and evaluation of the methods developed
in this work. It is important to note that the description is based on the original

18 CHAPTER 2. BACKGROUND

Download
server

C&C
server

Bot
initial

IoT
victims

Attack
target

Scan
listener Loader

Botmaster Botnet
customers

MySQL

cnc.changeme.com

report.changeme.com

DNS

8.8.8.8

ke
ep

-a
liv

e
co

m
m

an
ds

SYN scan TCP port 23 or 2323

Telnet brute-force

ip:
por

t u
ser

:pa
ss

DoS DoS

W
get

/ T
FTP

Te
ln

et

telnet cnc.changeme.com

Figure 2.2: Mirai botnet infrastructure and lifecycle diagram.

source code published in 2016; newer variants can be more sophisticated and provide
more capabilities.

An overview of Mirai’s infrastructure and operation is shown in Figure 2.2. One
of the main components that support the infrastructure is the C&C part, which
includes the C&C server and a database holding the state of the botnet, all the
performed attacks and customer11 management information (Figure 2.3c). The other
parts of the infrastructure include the scan listener, loader and download servers.
Additionally, it requires an initial node (or several nodes) running the Mirai bot
program.

The main targets of Mirai are Linux-based devices running BusyBox. First, the
initial bot(s) establish a connection with the C&C using DNS (Figure 2.3b), which
is hardcoded to use the Google public DNS (8.8.8.8). Then, it starts the scanning
phase. The bot selects a pseudorandom IP address (excluding internal networks
and address ranges owned by certain corporations or organizations) and performs a
SYN scan to the TCP port 23 (90% times) or 2323 (10% times). If the connection is
successful, it attempts to brute-force Telnet credentials using a hardcoded dictionary
of 62 username and password combinations. If the brute-forcing finds a successful
credential, the bot sends the victim’s IP address, port, username and password details
to the scan listener server (the scan listener server’s address is again resolved using
DNS).

11Customers pay the botmaster (the person(s) who operate the C&C infrastructure) to rent the
botnet to launch attacks against targets.

2.2. THREAT LANDSCAPE IN IOT DEVICES 19

Then, the loader will use the list of credentials provided by the scan listener
server to connect to each victim. After connecting to the victim, it performs basic
checks, such as identifying the processor architecture, and then issues a command to
download the Mirai bot program from the download server. Now, the newly infected
devices will follow the same pattern as the initial bot. They will connect to the C&C
server and perform the scan-brute-report loop.

The botmaster and other customers can connect to the C&C server to command
all or part of the bots to launch various DoS attacks against selected targets. As
shown in Figure 2.3a, the bot is capable of launching 10 different types of DoS attacks.
Once an attack is issued, the attack type and parameters are sent to the bots through
the C&C channel. The bots receive the command and start the attack against the
targets for the specified duration, as shown in the last two lines in Figure 2.3b.

For a more detailed description of Mirai’s behavior, operation, lifecycle and
attacks, please refer to [6], [8].

2.2.2 Merlin C&C agent and server

Merlin is a free software project implementing a cross-platform C&C server and
agent. This project differs from the previously mentioned malware samples, as it
is mainly used as a red-teaming tool12 (and is not necessarily IoT focused). We are
not aware of real attacks leveraging Merlin; however, multiple antivirus vendors do
have specific signatures to detect the Merlin server and agent binaries. For example,
the binaries for the latest Merlin version available at the time of writing this work
(v.1.5.1, released 2023-03-09) are flagged in Virus Total by 30 over 61 vendors for
the Linux agent, 19/60 for the Linux server, 46/70 for the Windows agent and 21/69
for the Windows server (checked May 2023).

Here we provide a brief description of Merlin, as we include it in many steps of
the experimentation.

Compared to Mirai, Merlin has much simpler infrastructure requirements. It
only consists of a single C&C server (Merlin server) and a Merlin agent running in
each bot. Both the server and the agent can run in multiple OSs and architectures
(any target supported by the Go language).

The agents periodically communicate with the server to keep the connection
alive and transmit commands. The Merlin server supports multiple protocols for
C&C, including HTTP/1.1 clear-text, HTTP/1.1 over TLS, HTTP/2, HTTP/2 clear-text
and HTTP/2 over QUIC.

Merlin does not include any propagation steps to infect other vulnerable devices
(such as the scanning and brute-forcing steps of Mirai) or capabilities to perform
attacks. However, unlike Mirai’s C&C capabilities, the Merlin C&C server can
instruct the agents to send or receive arbitrary files, execute arbitrary commands,
inspect and change environment variables, etc. Hence, if desired, the propagation or

12For instance, Merlin is mentioned in: https://www.cisa.gov/news-events/cybersecurity-
advisories/aa23-059a

https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-059a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-059a

20 CHAPTER 2. BACKGROUND

(a) Access to C&C server. Shows the bot count, available attack types

and an example of scheduling an attack.

(b) Bot running in debug mode shows connection to C&C server and

receiving attack commands.

(c) C&C database tables.

Figure 2.3: Screenshots of Mirai bot and C&C.

2.3. SECURITY MEASURES 21

attack functionality can be implemented with other programs and use the Merlin
C&C capabilities to load and execute them in the bots.

2.3 Security measures

In this section, we detail the usual security measures taken to address some of the
mentioned threats, starting with system hardening methods, intrusion detection
and prevention, and security information and event management systems. We also
highlight the importance of alert message exchange to allow information sharing
between different security components.

2.3.1 Hardening operations

Several strategies have been proposed to defend against the mentioned threats:
for instance, the use of specialized Operating Systems for IoT, software update
mechanisms, event loggers and basic hardening operations. Among the hardening
operations, the most straightforward ones are the removal of nonessential services
and open ports, stricter firewall rules, VPN access if remote administration is needed,
restricting execution of binaries for specific users only, account locking policies,
changing default passwords, disabling UPnP, and more [6].

However, the application of those measures do not guarantee a fully secure
system. Misconfigurations, user mistakes, complex or slow updating mechanisms
and the continuous discovery of new vulnerabilities still make IoT devices prone to
attacks. For instance, the recently discovered “BadAlloc” is a set of vulnerabilities
in widely used Operating Systems and libraries for embedded applications that
span more than 25 CVEs affecting a wide range of consumer and medical IoT, IIoT
devices and ICS systems [58]. Other recent examples include “Amnesia:33” [59],
“NAME:WRECK” [60] and “Ripple20” [61] family of vulnerabilities in widely used
TCP/IP stacks for IoT, IIoT and IT devices.

Moreover, there exist multiple different types of attacks against popular trans-
mission technologies used in IoT and IIoT settings, such as ZigBee, Bluetooth Low
Energy, 6LoWPAN for short-range communications, and LoRaWAN for long-range
communications [7]. Additionally, other popular communication protocols could
pose security issues, for example, CoAP [7] and MQTT [62], two highly used IoT
application layer protocols [63].

2.3.2 Intrusion detection and prevention

As discussed above, while hardening should be the first step to protect the assets
against different threats, total prevention is not guaranteed due to vulnerabilities,
mistakes or difficulty applying updates or patches. In these situations, device moni-
toring is a widespread practice to identify devices performing unauthorized actions.
For this, IDS and IPS solutions are extensively used in IT as an additional security
layer to detect a wide range of malicious activities. If an attack bypasses the basic

22 CHAPTER 2. BACKGROUND

security measures, an IDS can notify the system administrators or security operation
center (SOC) analysts about the breach in a timely manner. Besides detecting threats,
IDSs are useful in multiple situations, for example, detecting systems with abnormal
behavior, notifying policy violations, helping with forensic investigations and more.
Similarly, IPSs are like IDSs but with the additional functionality to actively perform
automatic mitigation actions, which might or might not be desirable depending on
the situation or environment.

One of the main components of an IDS/IPS is what is known as an agent or
sensor. The agents are responsible for collecting the information that will later be
processed. The collected information can be anything relevant for monitoring, such
as log files, running processes or network data. Based on the agent location, an IDS
can be classified into multiple categories [64]:

Host-based IDS (HIDS): The agents are located at a single device or host, and they
monitor the internal data. This data can include logs, file integrity, processes,
system calls, network data (from its own network interfaces), etc.

Network-based IDS (NIDS): The agents are placed at strategic choke points in the
network to monitor network traffic between multiple hosts. These devices are
usually connected to a port in a network switch with mirroring enabled or
using network taps.

Distributed IDS (DIDS): The agents are distributed across a network. It can be
a combination of HIDS and NIDS that aggregate both data sources to create
more sophisticated detection methods.

Other specialized IDS: According to others [65], the classification of IDSs can be
extended to include Protocol-based IDS (PIDS), which are IDSs specialized to
monitor single protocols, for instance, IDS for HTTP data. And also Applica-
tion Protocol-based IDS (APIDS) that monitor specific applications such as an
IDS for SQL queries.

Additionally, an IDS/IPS can also be classified according to the techniques used
to detect the possible threats [64]:

Signature-based: Each event is compared with a set of predefined signatures. A
signature is a group of rules that describe some pattern of a known attack. If
the event matches one or more signatures, an alert is raised.

Specification-based: Similar to signature-based methods, but in this case each
signature defines the set of allowed actions (specifications) of the device. It
raises an alert if an action differs from the specifications.

Anomaly-based: Using some kind of statistical methods, the IDS builds models
that capture the normal behavior of the monitored system and raises an alert
when an event drifts away from the expected normal behavior.

Hybrid methods: IDS that use more than one detection technique in conjunction.

2.3. SECURITY MEASURES 23

2.3.3 Security Information and Event Management

Usually, IDS/IPS platforms (and other security hardware or software components)
are parts of a more sophisticated and complex system known as a Security Infor-
mation and Event Management (SIEM) system. SIEMs are a collection of multiple
technologies that provide visibility, monitoring, control and security in the whole IT
environment of an organization. While SIEM implementations can vary greatly, the
basic structure of a SIEM system is composed of the following main components [66]:

Log management: Responsible for capturing the logs and events generated from
all the monitored devices in the network and storing them in a centralized
database. This includes logs generated by the computer OS, running applica-
tions, network appliances, IDS/IPS systems, antivirus software, vulnerability
assessment data and more (anything considered relevant). The log manage-
ment system is also responsible for the parsing and normalization of the
captured logs. This step is essential to ensure that all the data generated by
different applications and vendors have a common format and syntax. Other
important features include data retention periods, data destruction and backup
plans.

Event correlation: Here, stored events are aggregated to trigger actions. Logs
generated from all the different hosts, data sources and collected at different
times can be combined to create more or less complex rule sets.

IT regulatory compliance: Includes filters and rules to audit the logs generated
by the monitored systems to check for policy violations, automatic report
generation and other requirements.

Active response: The system can automatically respond to certain events triggered
by the rules. Used to actively change the status of the affected monitored
systems or simply to notify the administrators.

Endpoint security: Checks the health of the monitored systems, for example, to
check if software is updated, antivirus programs are running, firewall rules
are enabled, etc.

SIEM products are common in IT, and sometimes mandatory due to regulatory
compliance in certain industries. However, in IoT, industrial IIoT and ICS systems,
SIEM and IDS/IPS solutions are not as focused as in the IT environment. Indeed, the
huge scale of IoT, the heterogeneity in functionality or computational capabilities of
the devices and the fact that they are typically placed in uncontrolled environments,
are the main difficulties in applying advanced security measures such as SIEMs in
this type of networks. They offer few and generic correlation rules for industrial
protocols and cannot handle huge volumes of data efficiently [64]. The same authors
note that IDS/IPS proposals focused on the smart grid infrastructure are not scalable
because they do not monitor or process data from multiple heterogeneous sources

24 CHAPTER 2. BACKGROUND

nor combine multiple intrusion detection techniques. In [65], they remark that
commercial SIEMs using relational databases can become a bottleneck in Big Data
challenges such as the amount of data produced in large IoT settings. They suggest
using next generation storage systems, and state that more focus should be placed on
gathering security data from a wider variety of heterogeneous sources and evaluating
how sharing of events, alerts, analysis, and knowledge across many organizations
could enhance the detection.

2.3.4 Alert message exchange formats

An IDS has little use if the generated alerts are ignored or do not reach the SOC
analysts. The alerts need to be transmitted to a SIEM or other type of management
platform to provide actionable information.

As previously noted, the log management component of a SIEM needs a data nor-
malization step. This is usually required as IDSs from different manufacturers might
exchange alerts in various formats that are not compatible with each other. Using a
standard message format allows advantages such as using existing processing tools
and allowing interoperability between different systems for security information
sharing [67].

One of the standard formats for sharing security events generated by IDSs is
the Intrusion Detection Message Exchange Format (IDMEF), which is described
in RFC 4765 and RFC 4766 [68] (2007). IDMEF represents alerts using an object-
oriented data model that can accommodate simple alerts and more detailed ones. It
is implemented in the Extensible Markup Language (XML). The top-level class in the
object hierarchy is the IDMEF-Message, which contains two sub-classes: Heartbeat
and Alert.

The Heartbeat message is used to periodically indicate the status of the IDS to
the managers and to ensure that the communication channel is available. The Alert
message includes other sub-classes that are populated with details of the detected
alerts. An alert can represent a single event or multiple events detected by an IDS.
The sub-classes include timestamps, source and target information, assessment and
additional data relevant to the type of IDS and detected events.

Additionally, IDMEF considers aggregate classes intended to group multiple
Alert messages to represent more complex alerts, such as correlated alerts.

Recently the IDMEFv213 has been proposed as an evolution from IDMEF. Besides
cybersecurity alerts, IDMEFv2 is intended to be a universal format that also comprises
incidents from physical or natural hazards. At the time of writing, it is still pending
for approval.

13https://www.ietf.org/id/draft-lehmann-idmefv2-01.html

https://www.ietf.org/id/draft-lehmann-idmefv2-01.html

2.4. MACHINE LEARNING CONCEPTS 25

2.4 Machine learning concepts

In this section we introduce some ML definitions and algorithms. ML is a vast field;
hence, to keep this section focused, wewill limit to concepts and particular algorithms
that will be mentioned and used in later chapters related to the contributions of the
thesis.

2.4.1 Data modeling

ML and DL-based IDS generally take three different approaches, among others,
for data modeling: supervised [69], unsupervised [70] and semi-supervised [22].
Training supervised learning models require the data to be labeled into a finite set of
classes, each representing a specific malicious activity and a class for normal (benign)
activity. The objective is then to classify new incoming data samples into those classes.
Regarding unsupervised approaches, they are popular for anomaly detection, where
the model learns a representation of the legitimate or benign behavior and flags all
samples that deviate from that baseline as anomalous. Unsupervised approaches do
not need labeled data, but they typically assume that the training samples are benign
(sometimes referred to as one-class classification); however, other unsupervised
approaches consider unknown data that might include benign and attack samples.
Lastly, semi-supervised models follow a hybrid approach where labeling information
is limited to a subset of the training data while the rest are unlabeled.

2.4.2 Dimensionality reduction

Given a dataset where the samples are in an 𝑁 -dimensional space, the objective of
dimensionality reduction techniques is to transform the samples in the dataset to a
new 𝑀-dimensional space, where 𝑀 < 𝑁 , while maintaining as much as possible
structure from the original space to prevent information loss. Dimensionality re-
duction techniques have many useful applications, such as data compression, data
visualization by transforming high-dimensional datasets to 2D or 3D spaces for plot-
ting and as a preprocessing step for some ML algorithms. In general, preprocessing
a dataset by reducing its dimensionality speeds up the computation or reduces the
memory requirements of many ML algorithms and thus allows working with bigger
datasets.

In the following, we will mention two dimensionality reduction techniques used
in the experimentation section of this work:

PCA The objective of Principal Component Analysis is to find a linear transforma-
tion of the data into a new coordinate system with the same number of dimensions.
The new basis is selected so that each axis (which are called the principal compo-
nents) is uncorrelated to the other axes. The first principal component is selected
to have the direction that maximizes variance in the original dataset; the second
component is perpendicular to it and in the direction of the greatest remaining

26 CHAPTER 2. BACKGROUND

variance, and so forth. This is obtained by finding a new basis that diagonalizes the
covariance matrix of the original data; hence, the eigenvectors of the matrix are the
new directions, and the eigenvalues are the explained variance of each direction.
Dimensionality reduction is achieved by projecting the data to some of the first
principal components explaining the most variance.

UMAP The Uniform Manifold Approximation and Projection for Dimension Re-
duction is a non-linear dimensionality reduction technique. The data embedding
is found by searching for a low-dimensional projection of the original data that
maintains a similar topological structure. UMAP is an alternative with better run-
time performance than t-SNE, another similar non-linear dimensionality reduction
technique, which allows applying it to larger datasets.

2.4.3 Clustering

Clustering is a family of techniques for discovering distributions and patterns in a
dataset. The main task is to divide samples in the dataset into clusters (or groups)
such that all samples belonging to the same cluster are similar to each other and
distinct from samples in different clusters for some definition of similarity [71].

There are multiple clustering algorithms; however, they usually fall into the
following families: partitional clustering, hierarchical clustering, density-based
clustering and grid-based clustering. Additionally, clustering can be divided into
hard and soft (or fuzzy). In hard clustering, a sample belongs to only one cluster;
meanwhile, in soft clustering methods, samples can belong to multiple clusters with
different proportions.

Many clustering algorithms exist; however, in the following, we will describe
some algorithms used in this thesis.

k-means Clusters the data by partitioning the space into k regions. The number
of clusters k is an algorithm input and needs to be selected a priori. It is an iterative
algorithm. The first step is to choose k points (which become cluster centers) from
the dataset at random or using more advanced initialization strategies to improve
convergence and results. Then, the samples in the dataset are clustered by assigning
them to the nearest cluster center. For each cluster of samples, a new cluster center
is recomputed as the mean of the samples. The process is repeated until the k centers
converge to a minimum.

k-means is a hard clustering method that tends to prefer compact and isotropic
cluster shapes, as the main objective function is based on the minimization of the
within-group sum of squares. Since it is really a space partitioning algorithm, outliers
will also be clustered to the nearest cluster center.

DBSCAN The Density-Based Spatial Clustering of Applications with Noise algo-
rithm clusters the data by identifying areas with high density surrounded by areas
of lower density.

2.4. MACHINE LEARNING CONCEPTS 27

Table 2.1: Confusion matrix example for binary classification.

Predicted

A
ct
ua
l Anomaly Normal

Anomaly TP FN
Normal FP TN

Contrary to k-means, it can cluster samples with arbitrary shapes and identifies
outliers leaving them as non-clustered noise. DBSCAN automatically identifies the
number of clusters k; however, the algorithm depends on two hyperparameters: a
distance (𝜖) that defines the neighborhood and the minimum number of samples in
a neighborhood to be considered a dense region.

HDBSCAN The hierarchical DBSCAN is an extension of DBSCAN, converting
it into a hierarchical clustering algorithm. While DBSCAN is limited to cluster
regions that have a similar density, HDBSCAN can deal with variable density clusters.
HDBSCAN can also provide soft clustering assignments.

2.4.4 Evaluation metrics

Model evaluation is a fundamental step in the ML pipeline. This section includes
metrics for evaluating binary classification performance and clustering quality. For
the clustering metrics, we cover those requiring external information to evaluate
the fitness of the results, and methods that use only internal measures.

2.4.4.1 Binary classification performance

The usual way to represent the results of a binary classification is using a confusion
matrix, represented in Table 2.1. Considering the anomaly label as the positive class,
the confusion matrix counts the number of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) results of the classifier.

Many evaluation metrics can be derived using the results of the confusion matrix.
Some of those evaluation metrics are the accuracy, F1 score and the Matthews
correlation coefficient (MCC).

Accuracy =
TP + TN

TP + TN + FP + FN (2.1)

F1 =
2TP

2TP + FP + FN (2.2)

MCC =
TPTN − FPFN√︁

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(2.3)

28 CHAPTER 2. BACKGROUND

2.4.4.2 Clustering quality

There are two primary questions to address when applying any clustering algorithm
to our data: determining the correct number of clusters and measuring the validity
of the clustering results [72]. Additionally, clustering validity can be divided into
two methods: external and internal clustering validation methods [71].

External validation (supervised) External validation measures use a priori
knowledge to evaluate the results. For instance, one can know by experience the
correct number of clusters in the data or can have a ground truth assignment of how
the clustering results should be. Therefore, external validation metrics are useful
for selecting the best clustering algorithm and hyperparameters (algorithm input
parameters) that fits a specific dataset.

The following are the definitions of external validationmetrics that arementioned
in the experimental results of this thesis. Many more exist in the literature14.

Adjusted Rand Index Measures the similarity of two partitions of the same data
(clustering results and ground truth). The original Rand index (unadjusted)
can be seen as equivalent to the accuracy metric (equation (2.1)), but using a
contingency matrix counting pairs in the same group and pairs in different
groups. The adjusted Rand index is a correction so that the expected value
of random partitions is zero. A score of 1 represents identical labeling, while
values near 0 represent random labeling.

Adjusted Mutual Information Measures the mutual information between the
two partitions. It is adjusted to compensate for the expected mutual infor-
mation between two randomly clustered partitions. A score of 1 represents
identical labeling, while values near 0 represent random labeling.

V measure Considers the homogeneity and completeness of the partitioning. Ho-
mogeneity measures the level that each cluster contains only members of a
single class from the ground truth partition. Completeness measures the level
that data points from a certain ground truth class that fall into the same cluster.
The V measure is the harmonic mean of both metrics. A score of 1 represents
identical labeling, while 0 represents the worst case. It is not adjusted for
random clustering.

All these metrics make no assumption on the used clustering algorithm or cluster
shapes.

Internal validation (unsupervised) In most clustering scenarios and in many
practical settings, there will not be any a priori knowledge that can help with the

14https://scikit-learn.org/stable/modules/clustering.html#clustering-
performance-evaluation

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

2.4. MACHINE LEARNING CONCEPTS 29

clustering process. In this case, only internal validation metrics can be used for
cluster validation. Internal validation metrics mostly rely on measures such as
compactness and separation of the dataset. Compactness refers to how similar the
data points assigned to the same cluster label are, while separation refers to how
distinct one cluster is with respect to the other clusters.

Calinski–Harabasz Is proportional to the ratio of the between-group sum of
squares (BGSS) and the within-group sum of squares (WGSS). For each cluster,
the WGSS measures the dispersion as a sum of the squared distance of every
sample in the same cluster to the cluster centroid. The BGSS measures the
squared distance between the center of the dataset to each cluster centroid.
Since compact clusters (low WGSS) and separated cluster centers (high BGSS)
are desired, higher scores indicate better clustering under this assumption.

Davies–Bouldin Is based on a ratio of the within-cluster scatter and between-
cluster distance. This ratio defines a similarity metric between two clusters.
The Davies–Bouldin index is defined as the similarity between a cluster and its
most similar one, averaged over all the clusters in the dataset. Since compact
and separated clusters are desired, lower values indicate a better fit under its
assumptions [73].

Silhouette This score differs from the previous ones as a Silhouette score is assigned
to each sample of the dataset. This score considers two metrics, the mean
distance between the sample to all other samples assigned to the same cluster,
and the mean distance between the sample to other samples assigned to the
nearest cluster center. The global Silhouette score can be computed as the
average Silhouette of all samples. Higher scores indicate a better fit under its
assumptions [74].

S_Dbw Considers density variations among the clusters. It is a sum of the intra-
cluster variance and inter-cluster density, where it assumes that for well-
defined clusters, the density in the regions between clusters is significantly
lower than the density in the clusters. Since compact clusters and low density
between the regions of the clusters are desired, lower scores indicate a better
fit under its assumptions [75].

The internal validation metrics can be used to select the optimal15 number of
clusters in the dataset. For clustering algorithms that create a partition of the space
to cluster the data (e.g., k-means), we can repeat the clustering process by sweeping
the number of clusters from 2 up to some value. For each repetition, we measure
the clustering validity using the internal validation metric of choice and select the
optimal number of clusters that yield the best score. For hierarchical clustering
algorithms, the metrics can be used to identify the point to prune the tree. For

15Optimal under some assumptions, as close as to the real partitioning.

30 CHAPTER 2. BACKGROUND

density-based clustering algorithms that contain many input hyperparameters, the
validation metrics can help to select appropriate ones.

2.4.5 Explainable AI

In general terms, explainability in the context of AI refers to the ability to understand
why a model makes a certain prediction. Simpler models, such as linear regression
or decision trees, are often used as they offer a clear interpretation or explanation of
their results. In contrast, the highest accuracy in many problems is achieved with
complex ML models, which are often considered black boxes that are difficult to
interpret. This creates a trade-off between accuracy and interpretability [25].

XAI is a vast and actively researched field that includes many approaches to
attain its goals. One of those approaches, which will be referred to later in this
thesis, is post-hoc explainability techniques. Post-hoc explainability refers to various
techniques used to provide interpretation to non-interpretable models. A compre-
hensive taxonomy of different XAI approaches is provided in [76]. In particular, a
state-of-the-art post-hoc technique is SHAP [25], which will be discussed later in
this thesis.

2.5 Federated learning

The standard federated learning, introduced in 2016 by McMahan et al. [18], is
a ML setting with the objective of training a single model (the global model or
shared model) from data distributed at multiple remote devices (or clients). The most
particular characteristic of FL is that each device’s local training dataset does not
leave the device. Instead, each client independently computes some local updates
and communicates the results to a central server (or aggregation server), which
aggregates the local updates from all the clients to build the global model. FL is
usually an iterative process performed in several rounds; however, some approaches
can learn the global model using a single round of communication. These approaches
are sometimes referred to as one-shot FL.

A typical FL process usually consists of the following main steps, also shown in
Figure 2.4:

1. Initialization: The central server initializes the parameters of a selected ML
model.

2. Client selection: A subset of the clients (or all of them) is selected based on
some eligibility criteria. For instance, in [18], eligible devices include mobile
phones which are charged, plugged-in and on unmetered network connections.

3. Global model broadcast: The selected clients download the global model from
the central server. This might also include additional metadata needed for the
training process.

2.5. FEDERATED LEARNING 31

4. Local computation: Each selected client trains the model for a certain number
of iterations using only its own local dataset. In the end, each client sends the
locally updated model back to the central server.

5. Aggregation and model update: The server collects all the local updates for
each client. The updates are aggregated to create the next iteration of the global
model. A typical aggregation method is FederatedAveraging, first introduced
in [18].

6. A FL round is now finished. Repeat from step 2 until training is completed
based on some stopping criteria, such as a certain number of communication
rounds, convergence of the global model or when the testing accuracy reaches
some threshold.

= 𝛴

Aggregation and model update

Global model
broadcast

Local
computation

Figure 2.4: Illustration of the FL training steps to collaboratively learn a global model

without disclosing the clients’ data. At each FL round, a subset of clients is selected

(in this case, all of them), and each of them perform local training of the ML model

using only their local dataset. After the training, each client sends the model update

to the global server. The server aggregates the received updates to create the next

iteration of the global model; then, the server sends the recently updated global

model to another subset of devices. The process is repeated until the stop criteria is

met.

2.5.1 Federated learning assumptions

FL was designed for deployments where training directly on the devices is an advan-
tage over training on the cloud, and the data is large and sensitive from a privacy
point of view. Moreover, communication efficiency is a priority because these algo-
rithms were designed to be applicable to clients with constrained capabilities, such as

32 CHAPTER 2. BACKGROUND

mobile phones [18]. This makes FL suitable for modern IoT/IIoT networks. Privacy
and security risks are reduced because the training data is always kept local to each
device and is never communicated to any external party (with some caveats that
we are going to briefly mention later). Only model updates are transmitted to the
central server, which can be discarded after the server aggregates them to build the
global model. Model updates are typically smaller than the size of the dataset, thus
also reducing network overhead. Experiments show orders of magnitude reduction
in the communication cost [18] compared to other alternatives.

Furthermore, FL settings are based on some assumptions that differentiate it from
prior research in distributed optimization problems (mainly in data centers) [18], [77].
Those assumptions also share many common properties with IoT/IIoT deployments:

• Non-IID data (statistical heterogeneity): The data generation does not follow
Independent and Identically Distributed (IID) assumptions across all the clients.
Any client’s local dataset distribution might not be representative of the overall
population distribution.

• Systems heterogeneity: The federated network of clients is composed of dif-
ferent devices with varying computational, storage and communication capa-
bilities.

• Highly unbalanced: Some clients will generate more data than others.

• Massively distributed: FL assumes that the number of participating clients can
be greater than the number of data points per client.

• Limited communication: Communication is a bottleneck in FL settings. Ad-
ditionally, other practical problems exist, such as devices not always being
online or using unreliable links to communicate.

• Privacy concerns: Data privacy is a major issue to be considered in FL applica-
tions. The local dataset of each device is never transmitted.

2.5.2 Federated learning settings

FL settings can be further classified based on the types of clients participating in the
FL process or on the data partitioning within the clients.

2.5.2.1 Cross-device and cross-silo settings

The original setting considered in FL is the one in which there are a massive number
(in the order of thousands or even millions) of mobile or edge clients that are poten-
tially unreliable and have limited communication bandwidth. Some clients might
only be available at certain times and do not participate in all rounds of FL; hence,
each round is usually a stateless process that does not track each and every client.
This setting is called the cross-device FL.

2.5. FEDERATED LEARNING 33

Due to the rising interest in FL, it has also expanded into other types of de-
ployments. Another representative setting is the cross-silo FL, which consists of
deployments involving only a relatively small number of reliable clients (from 2
to hundreds). In cross-silo settings, clients can be large organizations willing to
collaborate on model training; they are generally available, indexable and participate
in all rounds, which allows a stateful process.

In both cases, the basic assumption that data is generated locally and remains
decentralized still holds. While cross-device and cross-silo are the two representa-
tive settings, they are not exclusive, and other settings can include a mix of those
approaches [29].

2.5.2.2 Horizontal, vertical and transfer learning partitioning

Another method to characterize FL is based on the data distribution characteristics
across the clients. According to Yang et al., they classify FL into horizontal FL,
vertical FL and federated transfer learning [78].

Horizontal FL refers to settings where the data that holds each client have the
same features (columns), but each client has different observations or samples (rows)
(sample overlaps between clients can also occur). Horizontal FL is the usual data
partitioning scheme in cross-device settings.

In vertical FL, all the participating clients have the same (or mostly overlapping)
observations or samples, but each client holds a different set of features. Vertical FL
can usually occur in some cross-silo settings. For instance, a financial institution and
a medical institution that participate in the same FL process can have overlapping
customers (because they are based in the same geographical region, for example),
but each one extracts a different set of features for each customer.

Federated transfer learning is suitable for settings where both observations
and features differ across the participating clients. In these cases, transfer learn-
ing techniques from ML can be integrated into the FL process to train the model
collaboratively.

Additional approaches and considerations regarding FL will be mentioned later
in Chapter 3.

CHAPTER 3
Related work

This chapter describes and discusses related literature on the various topics covered
by the contributions of this thesis.

The chapter starts with the application of ML methods in cybersecurity and the
related issues that arise with traditional ML training architectures applied to large-
scale IoT networks, leading to FL approaches as an alternative. Then, we describe
the advances in FL, but also its limitations in highly heterogeneous networks. We list
several proposals to address the heterogeneity limitations in FL, prioritizing those
related works that use clustered FL methods. Then, we describe relevant works that
apply FL for intrusion or anomaly detection in IoT devices. To place our work in the
context of other options, we also describe alternative approaches to FL. Next, we
review proposals using explainability techniques for anomaly or intrusion detection
in both non-federated and federated settings. We then review IoT testbeds that focus
on dataset generation for security experiments.

Finally, the last section of this chapter highlights the major gaps that have been
identified, which will serve as guidelines for the following chapters.

3.1 Machine learning applications in cybersecurity

Intrusion or anomaly detection by means of statistical data modeling techniques is
not a new research field in cybersecurity. It is a decades-old problem dating back
to the early 1980s. In [11], Anderson presents a technical report with methods
to characterize the use of computer systems by computing statistics for multiple
parameters in audit trails and setting ranges considered as normal usage. Denning
presents IDES [12], an intrusion detection expert system that uses statistical methods
to monitor audit records for abnormal patterns and an expert system to analyze the
alerts. Debar et al. present in [79] the use of neural networks as a component of an
IDS. The neural network is used to learn user’s behavior from time series of audit

35

36 CHAPTER 3. RELATED WORK

data; then, an expert system is used to analyze the output of the neural network for
intrusion detection combined with the knowledge base of the expert system.

Following the advances and increasing popularity of ML methods, there was an
increasing tendency to incorporate ML-based approaches into the design of new
anomaly-based IDSs, including Bayesian networks, neural networks, Markov models,
fuzzy logic, genetic algorithms and clustering techniques [80].

Much of the research on applying ML methods in cybersecurity is not only
limited to network or host intrusion detection. They span multiple areas, such as
malware detection and classification, identification of malicious domains generated
with domain generation algorithms, detection of drive-by download attacks, file
type identification, network traffic identification, spam identification, insider threat
detection, Border Gateway Protocol anomaly detection, user authentication and
verification, false data injection attack detection and more [23], [81]. Additionally,
there is a high volume of work researching different ML and DLmodels, architectures
and also input data sources for intrusion and anomaly detection, for example [13],
[82], [83]. Besides, there are also proposals that use ML methods to help in reducing
the security analyst’s workloads by automatically triaging and filtering the huge
volume of streaming raw logs and alerts being fed to security systems such as
SIEMs [84], [85].

3.2 Limitations of machine learning training
architectures in IoT settings

A typical IoT architecture can be described as a hierarchical architecture composed
of three main layers: (i) the IoT device layer composed of all the sensors, actuators
and embedded devices; (ii) the networking layer comprised of network switches,
routers and gateways interconnecting all the heterogeneous devices; (iii) the cloud
layer which includes the business logic, and is the main hub for interacting with
users [63]. In many existing deployments, IoT devices heavily rely on the cloud
layer for their functionality. Hence the typical IoT deployment shares many of the
properties of traditional cloud computing paradigms.

Despite the advantages of ML, incorporating these types of solutions needs a
solid infrastructure and training data availability. From the point of view of ML
model training infrastructure, traditional cloud-based centralized architectures have
generally been adequate for training complex ML models in many applications
and environments. In these centralized settings, the data generated by each client
(including cybersecurity or any other applications such as predictive maintenance,
image or speech recognition) is sent to a server, and the ML training is offloaded to
the cloud. After the training, the model inference or prediction is usually offered
as a service. Clients that want to use the model upload some input data to the
cloud, and in return, they receive the output of the model. Alternatively, clients can
download the trained model for local inference. However, for IoT settings, these
traditional cloud architectures exhibit several problems due to the massive scale and

3.2. LIMITATIONS OF ML TRAINING ARCHITECTURES IN IOT SETTINGS 37

heterogeneity of IoT deployments continuously producing and transmitting high
volumes of data.

With an increasing number of devices and data transmission volumes, the per-
formance of the network will decrease, exhibiting problems such as high bandwidth
consumption, network resource congestion and load balancing. Those problems
lead to several related issues like packet losses, transmission delays, high latency or
traffic peaks [14] that can adversely affect the training process or even make cloud
training infeasible. This can be especially challenging for time-sensitive applications,
where computations must be made under tight time requirements, for example, in
smart transportation or to detect cybersecurity threats timely.

Besides network overhead limitations or strict timing requirements, cloud train-
ing architectures still face additional challenges that make applying ML solutions
and other data mining techniques difficult. Regarding data regulation and privacy
considerations, data is shared from the IoT devices to the cloud infrastructure. For
most ML applications, and particularly for cybersecurity operations, the data shared
by the IoT devices could be considered personally identifiable information (PII), and
also contain confidential or sensitive corporate information in the IIoT case. Due to
the potentially global nature of IoT networks, the devices and the network or cloud
infrastructure can span different countries and be under the control of multiple ven-
dors or service providers. Deploying ML applications that comply with regulations
such as the General Data Protection Regulation (GDPR) [15] can be challenging in
these situations. Additionally, users’ privacy concerns, technical difficulties, and
companies not wanting to share data with third parties (or even internally) due to
competitive reasons or because it includes sensitive or PII information, tend to create
data islands or data silos. These issues are exacerbated in IoT networks due to their
highly distributed nature.

As an alternative to the traditional centralized cloud architecture, edge comput-
ing is also proposed to mitigate some of those issues. Edge computing consists of
migrating the data, computation and storage to the network edge devices below the
cloud layer, including the IoT devices themselves. That is, move the computation
closer to where the data is generated or used. Distributing computation across
multiple devices will reduce the dependency on the cloud, considerably decrease
bandwidth consumption, network overload problems, and also reduce latency and
response times due to physical proximity to the end users (humans or other de-
vices) [14], [16], [86]. However, while edge computing can alleviate some of the
mentioned problems of centralized architectures, other issues like data islands and
isolation still remain, which can hinder the application of ML because it effectively
reduces the volume of data available for training [17].

As previously noted, FL is a ML training setting alternative that could simul-
taneously address the network overhead, privacy and data isolation issues. Data
is kept locally on each device, and only model updates are transmitted to the ag-
gregation server, which preserves data privacy requirements. Since model updates
are typically smaller than the size of the dataset, network overhead problems can
also be reduced. Additionally, data isolation is minimized because multiple clients

38 CHAPTER 3. RELATED WORK

participate in training the global model.

3.3 Federated learning advances

FL has been successfully deployed in production systems. For example, a FL archi-
tecture designed for Android phone applications can be seen in [87]. Applications
include a language model for next word prediction in the Google keyboard for An-
droid [19], [88], QuickType keyboard prediction and audio classification for wake
word detection in Apple devices [89], medical purposes [90], [91], applications in
banking for anti money laundering [92] and fraud detection [93] and more. We are
going to discuss the use of FL for IoT/IIoT cybersecurity in the next section.

After the introduction of FL in 2016, there has been a large volume of academic
work that improved upon the standard FL process described previously in section 2.5.
Regarding communication efficiency, recall that data is transmitted between the
clients and the server after each round. Therefore, to reduce the volume of the
data, we can either reduce the total number of communication rounds by increasing
the local computation at each client (for example training the model locally for
more iterations), we can reduce the number of clients in each round by selecting a
smaller subset of clients, or we can also reduce the size of the transmitted data at
each round. The naïve method to reduce the size of the transmitted data is to use
standard compression techniques to compress the size of the local update. More
sophisticated compression methods to reduce even more the communication cost
include restricting the updates to a space with a smaller number of parameters with
low-rank structures, using random masks to force sparsity or approximating or
encoding the update in a lossy compressed form [94].

From an architectural point of view, the standard FL is based on a centralized
server coordinating all the clients. The clients are connected to the central server in
a star topology. However, other proposals also include alternative architectures like
decentralized FL [95] or hierarchical FL [96].

The standard FL follows a synchronous approach, where the central server
waits to receive the updates from all the selected clients before aggregating them.
This means that clients with low computational capabilities or unreliable network
links can be serious bottlenecks. To overcome this, asynchronous alternatives have
been proposed. Related to the problems generated due to the heterogeneity of the
devices, new active and passive client sampling methods for client selection have
been researched, as well as fault-tolerant methods that take into account device
failures or errors [77].

For the aggregation method, FederatedAveraging (FedAvg) proposed in [18] is
still one of the most commonly used methods. A generalization of FedAvg known
as FedOpt was proposed in [97] by Reddi et al., which allows for more flexibility.
Other alternatives, such as FedProx [98], FedDane [99], and FedPd [100], include reg-
ularization terms to avoid local model drifts towards heterogeneous local objectives.
There also exist other alternatives beyond weighted averaging [101].

3.4. HETEROGENEITY PROBLEMS IN FEDERATED LEARNING 39

As stated before, privacy and security risks are reduced with FL because only
model updates are sent to the central server. But this assumes that the central server
is a trusted machine. To further enhance privacy, differential privacy, homomorphic
encryption and secure multiparty computation techniques are being incorporated
into FL settings [29]. Moreover, while model updates are inherentlymore private than
sending raw training samples, data leakage can still occur. Furthermore, adversarial
attacks or poisoning against FL-based models are also under research [102].

For more comprehensive information about FL, the reader is encouraged to
consult recent surveys and guides such as [29], [77], [101].

3.4 Heterogeneity problems in federated learning

Even though FL is based on the assumption that data is non-IID, in practice, it can
show convergence problems when learning a single global model in settings with
many heterogeneous clients. To overcome these problems, many proposals have
emerged to make FL more effective. Some of these proposals include developing
novel FL model aggregation or training optimization algorithms, data augmentation
techniques to reduce the heterogeneity across clients or training more than one
global model to provide more personalization [29], [77]. Tan et al. present in [27]
a taxonomy of different strategies for personalized FL, grouping and summarizing
some common approaches.

Someworks that try to improve the performance of the global model by proposing
different aggregation or optimization algorithms include FedDane [99], FedProx [98],
FedPd [100], SCAFFOLD [103] or FedOpt [97] (some of them mentioned in Sec-
tion 3.3). Data augmentation approaches based on over-sampling or under-sampling
to provide more statistical homogeneity across clients is also a studied approach;
however, it requires local data sharing or obtaining server-side proxy datasets, which
sometimes is not feasible, imposes additional network transmission costs and breaks
some FL privacy assumptions [27], [77].

Training a single global model might not be the best approach for some FL
settings. Other methods include using different models for different clients in the FL
network. Some of those methods include performing local fine-tuning of the global
model at each client after the last FL round but before inference. Multi-task learning
models are another method where each client is considered as a separate task. Instead
of personalizing the models to each client, models can also be personalized to a
subset of clients selected manually based on some heuristics or using clustering
techniques [29].

The strategies based on client or data clustering methods are particularly suitable
for environments with inherent partitioning among FL clients [27]. This partitioning
among clients can occur in IoT settings, and will be further discussed in the following
subsection.

40 CHAPTER 3. RELATED WORK

3.4.1 Clustered federated learning

This section focuses on proposals that use a clustering strategy integrated into the
FL process to mitigate the mentioned convergence problems, as this approach is
used for one of the contributions from this thesis detailed in Chapter 5. However,
none of the identified articles were applied to the IoT security field.

Sattler et al. propose Clustered FL [104], which groups the client population into
clusters based on the cosine similarity of clients’ gradient updates. The clustering is
performed as a post-processing step after the FL has converged. Ghosh et al. [105]
present an outlier robust clustering algorithm based on k-means that also considers
an adversarial setting. In [106], Briggs et al. introduce a clustering step to group
clients according to the similarity of their local updates using hierarchical clustering
methods. Then, FL is performed on each group independently.

Ghosh et al. develop IFCA [107], which iteratively solves the estimation of cluster
identities and model training. When the cluster structure is ambiguous, they leverage
weight sharing techniques from multi-task learning. The method does not require a
centralized clustering algorithm. However, since clients need to identify their own
cluster membership, each client receives all 𝑘 models, increasing transmission cost
and client computation load. Additionally, the value of 𝑘 must be known at the start
of the FL process.

A Community-based FL algorithm for processing medical records is presented by
Huang et al. [108], which includes a clustering step to group the distributed data (not
the clients) into several communities and a FL training step on each community. Their
method requires two FL processes. The first one consists of training an autoencoder
model for 1 FL round. The trained encoder is applied to each local data sample, and
the averages are sent to the server to train a k-means model. In the second step, 𝐾
different neural networks are trained in multiple rounds of FL. Each client receives
and transmits all 𝐾 models at each round. Locally, the autoencoder and k-means are
used to segment the data into 𝐾 fractions, one for each global model, significantly
increasing the client’s workload and data transmission.

Duan et al. present FedGroup [109], a framework that groups the clients using a
proposed metric based on the cosine similarity between the optimization direction.
The number of groups needs to be known a priori, and the selection of this parameter
is not thoroughly discussed. Before the client clustering, a subset of the clients need
to perform full pretraining of the model. After the groups are identified, the FL
training process begins. In [110], they propose an updated version that considers
client distribution changes; when the shift is significant, they treat them as newcomer
devices.

Long et al. [111] propose a multi-center aggregation algorithm to learn multiple
global models in a supervised learning scenario. This is performed by solving a joint
optimization problem that minimizes the supervised loss function and the distance to
the nearest global model of each cluster. The number of global models 𝐾 needs to be
known a priori, and since𝐾 is embedded into the optimization problem, selecting the
optimal value of 𝐾 requires repeating several FL processes fully until convergence,

3.5. FL FOR IOT INTRUSION AND ANOMALY DETECTION 41

difficulting its application in practical settings.
Li et al. [112] exploit the natural geographical clustering of factories to group

the clients and propose a method that considers the divergence in class label distri-
bution between the clients’ data to minimize heterogeneity. However, the number of
clusters needs to be selected prior to the training, and it requires data class labeling
information, which is unsuitable for unsupervised approaches. Similarly, Hiessl et
al. [113] group clients with similar data distributions using two approaches. The
first one requires labeled data. The second one sends clients’ training data statistics
to the server, increasing communication costs and partially disclosing information.

Guo et al. [114] mitigate the data imbalance by presenting a data adjustment
method that finds the samples corresponding to the minority class label and over-
samples them. They require the FL central server to have training data to infer the
data distribution of the clients and retrain the global model on the oversampled
data. When the data is insufficient, the server will dynamically group clients with
an adequate data class balance and use them to refine the global model at each FL
round.

Other lines of work relax the hard clustering assumptions, where a client is
associated with a single cluster, to a soft clustering model that allows combining
data from different distributions with varying mixture ratios (see Section 2.4.3), as
in Ruan et al. [115].

3.5 Federated learning for IoT intrusion and anomaly
detection

Recently, several proposals have emerged that use FL techniques for IoT intrusion
detection. In [116], Nguyen et al. present DÏot, an unsupervised system for network
anomaly detection applied to consumer IoT devices for detecting Mirai-like worm
behavior. First, an external fingerprinting tool groups all the devices based on their
network behavior. Then, the FL process trains multiple global models, each one
of them specific to an IoT device type group. However, one limiting factor in this
approach is that a software for automatically identifying IoT device types must be
available in each gateway prior to the FL process, making the model training and the
device grouping not fully integrated into the same process and requiring additional
time to deploy and train the system. Applied in a similar environment, Rey et al.
develop in [117] a framework based on FL to detect cyberattacks against IoT devices
using the N-BaIoT dataset. Additionally, they evaluate several adversarial attacks
against the proposed FL framework. In [118], Popoola et al. use the Bot-IoT and N-
BaIoT datasets to train a single supervised classification global model in a FL setting
and compares it with centralized and localized architectures. Another comparison
between a FL intrusion detection scheme with a centralized and on-device training
is shown by Rahman et al. in [119].

Other proposals focus on training models, or ensembles of models, that combine
different input data types or views. Attota et al. propose in [120] an IDS using a

42 CHAPTER 3. RELATED WORK

multi-view ensemble of models trained with FL; three specific models are trained
for each different view (network packets, unidirectional flow and bidirectional flow).
Features are selected via a Grey Wolves optimization process. A random forest
classifier is used to combine the prediction of the three models. Similarly, Qin et
al. [121] introduce a greedy feature selection algorithm to obtain appropriate feature
sets according to a single attack type that each device wants to detect. They suggest
training multiple global models by grouping the devices based on the feature set
selected in each client and initiating an independent FL process for each group.
However, in practice, this grouping method requires prior knowledge of attacks that
may not be available in a realistic environment and leaks feature set information to
the aggregation server. Additionally, devices can be under multiple types of attacks
at different time intervals, which will not be detected based on this method. Zhao et
al. [122] train a single multi-task model in a FL setting to perform network anomaly
detection, traffic classification and Tor traffic identification simultaneously using
multiple input datasets.

Alternative architectures like hierarchical FL, are also being explored for IoT
intrusion detection. Wang et al. [101] describe an FL architecture based on four levels
and assumes some of them are untrusted. Saadat et al. [123] compare a standard
FL architecture with a hierarchical one in terms of model training loss progression
and testing accuracy for the training of an IDS using a supervised multilayer neural
network on the NSL-KDD dataset. Wei et al. apply it to a 5G network [124].

For more industrial approaches, in [125] Li et al. present an IDS for industrial
CPSs based on a FL scheme combined with a Paillier cryptosystem to increase the
security of the model updates during the training. A recent example by Mothukuri
et al. [126] shows a FL-based IDS for IoT networks. They use a dataset composed
of labeled network traffic data from industrial Modbus protocol. Kelli et al. [127]
propose an IDS for industrial DNP3 protocol specific attack detection combining FL
and active learning to perform local model personalization for each client.

Outside of the network intrusion detection field, FL settings for IoT devices have
also been proposed in sectors such as healthcare [108], [128], [129] and predictive
maintenance [17], to name a few.

3.6 Alternative approaches to federated learning

FL brings collaboration to the ML model training process. The concept of collabora-
tion is not new in cybersecurity; it has also been used in systems such as collaborative
IDSs, although mainly from the alert (or other indicators of compromise) message-
sharing perspective. Training a ML model in collaboration with multiple parties is
also not a new idea brought by FL; distributed computation methods to train ML
models have also existed prior to FL. Other alternatives with similar concepts to
FL, such as split learning, have also emerged. In this section, we will describe those
alternatives in more detail and compare them to FL.

3.6. ALTERNATIVE APPROACHES TO FEDERATED LEARNING 43

3.6.1 Collaborative intrusion detection systems

Stand-alone IDSs that operate in isolation do not scale well to big networks; moreover,
they fail to detect sophisticated and distributed attacks targeting multiple parts of
the network because each IDS instance lacks a global view of the entire network.
Therefore, multiple Collaborative IDS (CIDS) architectures have been proposed that
emphasize collaboration between the different IDSs to detect advanced threats by
means of event sharing between the different instances in a centralized, hierarchical
or fully distributed approach [130].

EMERALD [131] is an early example of a hierarchical CIDS. Each EMERALD
monitor performs a hybrid detection using both signature and anomaly-based meth-
ods and includes a resolver module that can correlate alerts generated by its detection
methods with alerts coming from other external resources. Additionally, the resolver
can disseminate the alerts to other monitors in the network.

Recently, CIDS architectures focused on IoT and IIoT environments have also
been proposed. In COSMOS [132], the authors propose a centralized CIDSwhere each
node includes signature-based IDSs for network traffic monitoring and ML models to
classify Android apk files. The collaborative part is implemented in a centralized way
using an event sharing server that receives and sends hashes from detected malicious
file samples. The authors of [133] present the SPEAR architecture to secure the smart
grid IIoT infrastructure. It consists of three main components: a SIEM, a forensic
framework and an incident repository. Each distributed sensor transmits the collected
data to the SIEM server data acquisition module. In addition to signature-based
techniques, SPEAR also includes anomaly detection ML models trained centrally
with the data collected at the data acquisition module. The information sharing
mechanism is achieved via an anonymous repository of cybersecurity incidents.

In the context of intrusion detection, the application of FL techniques to this
field can be considered as an extension to current research in CIDS architectures
instead of as a replacement. Most CIDS proposals are limited to sharing only threat
or alert information to a centralized server or other peers; however, FL extends the
concept of collaboration to also include cooperation between devices for the joint
training of anomaly detection IDS models for more accurate detection.

In [132], the ML model is trained externally using a centralized dataset, and
then the model is deployed to each node. The authors in [131] train the statistical
models in an isolated way. In these cases, FL can help to integrate the training
process better in each of the nodes and effectively increase the training data samples
with which to train the models due to the collaborative training process. Each
sensor in [133] transmits training data to a central server; therefore, in massive IIoT
networks, this can be a bottleneck. In those situations, FL could aid in reducing the
communication overhead. Additionally, the need for information sharing and the
distribution of nodes or sensors between different organizations [133] or independent
administration domains [131] is compatible with the privacy properties that FL
provides.

FL can help fulfill multiple requirements of CIDS defined in [130], including

44 CHAPTER 3. RELATED WORK

accuracy, scalability, privacy and resilience but at a potentially higher cost of com-
putational overhead in each node due to local training of the ML models.

3.6.2 Distributed computation

FL is rooted in many methods that came from the distributed computation field in
data center settings, including techniques such as iteratively averaging locally trained
ML models, which are central to FL [18]. However, most distributed computation
methods only consider high-performance training in data centers, where clients
are compute nodes in a cluster, and data is distributed in a balanced way across
clients and can be arbitrarily repartitioned [29]. The assumptions in distributed
computation settings highly differ from those in FL settings, where statistical and
system heterogeneity, data unbalance, limited communication and privacy concerns
are critical, as mentioned in Section 2.5.1. This makes FL better tailored to IoT
settings compared to classical distributed computation methods.

3.6.3 Split learning

Similar in concept to the objectives of FL, split learning (SL) is another technique
for collaboratively training deep neural network models without sharing raw data
between participating clients. However, in contrast to FL, SL increases the distributed
nature of the training process by also splitting the deep learning model layers across
the clients. Each client trains the model up to a specific layer and transmits the
activations and gradients only from that layer to the rest of the clients [134].

In [135], the authors compare different distributed settings consisting of a small
and large number of clients and model sizes and compare the communication effi-
ciency trade-offs between FL and SL for each setting. They determine that SL has
better communication efficiency for an increasing number of clients and model sizes,
while FL is more efficient with an increasing number of data samples while using a
smaller number of clients and model sizes. SplitFed [136] is a hybrid approach that
combines FL and SL to incorporate the advantages of both approaches, providing
better communication efficiency and faster computation times per round. SL is also
susceptible to various attacks that steal client’s functionality, private data used as
input for the model and the data labels [137].

3.7 Explainability for cybersecurity

Many applications require both high accuracy and interpretability of the results. For
the latter, the ML community has increased its efforts in the field of XAI to provide
interpretation and explainability of both the models and the predictions made with
them, and thus, address the black box nature of ML and especially DL models (see
Section 2.4.5). A state-of-the-art technique presented by Lundberg et al. is SHAP
(SHapley Additive exPlanation) [25], a framework for interpreting predictions that
unifies six existing explainability methods, including LIME, DeepLIFT and classical

3.7. EXPLAINABILITY FOR CYBERSECURITY 45

Shapley values. The process requires a certain number of training data samples
as a baseline for the computation of the SHAP values. SHAP is focused on local
explanations; the prediction of a particular sample is explained by assigning an
importance score to each input feature of the sample. While the exact computation
of SHAP values is challenging, they offer multiple model-agnostic and model-specific
approximation methods.

For an explanation method designed for models applied to general cybersecurity
applications, Guo et al. present LEMNA [138], an explainer based on a mixture
regression model and fused lasso penalty term. They test the method in malware
classification for PDF files and binary reverse-engineering examples.

Some IDSs have also adopted XAI methods, which is crucial to increase the trust
of these techniques by security analysts [26]. The survey by Nadeem et al. [139]
shows different XAI methods and applications for various security domains.

3.7.1 Explainability for cybersecurity anomaly or attack detection
in non-FL settings

Most of the works regarding XAI techniques for cybersecurity are mainly focused
on using them as an end for visualization or model/prediction verification purposes.

Wang et al. [140] propose a framework that uses SHAP to provide local and global
explanations of IDS to help security analysts interpret the predictions. Explanations
are evaluated and compared for two supervised models trained on the NSL-KDD
dataset1. They show how different attack types generate different SHAP value
patterns; however, they only use it for visualization purposes and do not discuss
analysis on top of these values to extract further information.

Antwarg et al. [141] use SHAP to explain anomalies detected by an unsupervised
autoencoder model to provide additional information for domain experts. They first
identify the features with high reconstruction error and then use SHAP to explain
them. They evaluate the proposal on the KDDCup 1999 dataset, among other datasets
from different fields. The explanations are visualized for easier understanding and
triaging of anomalies.

Liu et al. present FAIXID [142], a generic framework to add explainability to IDS
at different layers. The layers include data cleaning, explaining the internals of a
trained supervised model, local explanations of the predictions, and presenting the
results to security analysts using different visualizations depending on the expertise
or role of each analyst.

Rao et al. [143] train an isolation forest on the NSL-KDD dataset to classify
normal and anomalous samples. They use SHAP and LIME to extract and visualize
explanations. In addition, they auto-generate labels for the attacks by assigning to
each anomaly the name of the most important feature to make the prediction.

1https://www.unb.ca/cic/datasets/nsl.html

https://www.unb.ca/cic/datasets/nsl.html

46 CHAPTER 3. RELATED WORK

Other proposals leverage or provide additional analysis on top of the explainabil-
ity results to extract further information from the detected anomalies or predicted
classes.

Nguyen et al. present GEE [144], an explainable variational autoencoder (VAE)
for network anomaly detection, which is tested on NetFlow traces from the UGR16
dataset. In addition, they provide a gradient-based technique to explain the anoma-
lous samples by identifying the main features that cause the anomaly. Furthermore,
they use gradient information as a fingerprint to group similar anomalies. However,
this particular point is underexplored in the paper, and the gradient method is spe-
cific to the VAE model. Liyanage et al. [145] leverage GEE to develop a framework
for characterizing attacks from network flow anomalies. Instead of using XAI tech-
niques or GEE’s gradient-based explanation methods, they use two levels of frequent
itemset mining (FIM) to extract anomalous data patterns. Some steps of the mining
require labeled data samples.

Barnard et al. [146] present a network IDS divided into two stages. The first
stage involves training a supervised XGBoost model for binary classification of
network flow data and SHAP to explain the predictions. The second stage trains an
autoencoder which uses as input the SHAP explanations from the previous stage.
The central hypothesis they are testing is whether the system can use the first stage
to distinguish normal from anomalous flows, and the second stage to distinguish
known from unknown behavior. The proposal is evaluated on the NSL-KDD dataset.
However, the second stage is tightly coupled to the first one, which requires labeled
data, and they do not consider the characterization of different attack behavior
clusters within the explanations.

Sudheera et al. [147] develop ADEPT, a framework for network flow anomaly
detection and attack-stage identification in a distributed IoT network based on
multiple clients and a centralized server. It works in three phases. Each client locally
detects anomalous network flows, which are then sent to the central server. Then,
the central server uses FIM for data mining across all the anomalous flows from all
the clients. While explainability is not regarded in this work, the patterns extracted
with FIM have the benefit of being interpretable. Finally, the malicious flows are
classified into attack stages using supervised learning approaches, which require
ground truth data labels. While their distributed approach benefits from improved
privacy and reduced bandwidth compared to a fully centralized one, anomalous
flows containing sensitive data are still sent to the central server. In contrast, FL
architectures can offer greater privacy and data reduction while still being able to
cooperate with clients.

3.7.2 Explainability for cybersecurity in federated learning settings

Haffar et al. [148] use random forests (RF) as surrogates of the supervised FL model.
Each client in the network trains a RF using its local training data. When the FL
model misclassifies a sample, they leverage the trees in the RF to compute feature
importance values. The feature importance is used to detect and explain attacks

3.8. IOT TESTBEDS AND DATASETS 47

against the FL model training process. The explanations are performed at the client
level and require labeled training data. Each client has its own explainer model,
which might differ from the rest as they are trained independently and not in a
federated way, difficulting the interpretation of the explanations globally. Their
focus is not on explaining and characterizing predictions but on detecting potential
attacks against the FL training process.

Huong et al. [149] propose a FL-based anomaly detection architecture for in-
dustrial control systems. They use SHAP to interpret and verify the trained FL
model, and provide visualizations as a supporting tool to domain experts. The SHAP
model explainer itself is not trained in a federated way. SHAP needs background
data samples as a baseline; however, the authors do not discuss how the baseline is
extracted, which should be given special consideration due to the distributed nature
of data in FL settings.

3.8 IoT testbeds and datasets

Using real IoT hardware on operational networks is one of the preferred methods
to generate an accurate and representative dataset, and can be a necessary step in
assessing the final validity of the proposed ML solutions. Nevertheless, testing on
real networks is not always feasible. Network traffic data can include confidential and
personally identifiable information, making it difficult to publish. Experimentation
in real deployments can also be challenging, time-consuming and expensive. Fur-
thermore, using real malware samples or attacking tools to generate representative
threats can potentially harm the devices and raise ethical considerations [20], [21],
[150], [151].

An alternative to real settings is the use of emulation-based systems [150]. Emu-
lation software enables researchers to create network testbeds composed of multiple
emulated devices that can be used for various purposes, including evaluating security
solutions, testing network topologies, personnel training exercises or other research.
The activities performed within the testbed generate traces (such as network packets,
system logs, and syscalls) that can be captured and used, for instance, to create
datasets to develop or evaluate ML models for the detection of attacks or malicious
behavior performed in the testbed.

3.8.1 General IoT simulators and testbeds

Multiple IoT simulators and testbeds are currently available for general IoT network
research and development purposes [152]. Most of those simulators, such as ns-3,
OMNeT++ and CupCarbon, are discrete-event simulators specialized in the physical
and media access layer protocol simulations. However, those simulators still lack
the support for many application layer IoT protocols out of the box, and are not
specifically designed for cybersecurity applications [152]. Some recent versions
of those simulators support protocols such as MQTT [153], but the integration of
arbitrary application protocols is still lacking. In contrast, to achieve objective O.4

48 CHAPTER 3. RELATED WORK

of this thesis (Section 1.2.3), we are interested in emulating devices, servers and
network equipment that run real production libraries, network switching software
and routing operating systems, as well as real malware samples and attack tools.

3.8.2 Testbeds and datasets for IoT security

In this section, several publications about IoT testbeds and datasets for network
security are described and discussed. Many IoT datasets are usually generated using
a testbed composed of real or emulated devices.

Meidan et al. [154] present N-BaIoT, a dataset generated using a small laboratory
setup composed of 9 real commercial IoT devices. They deploy Mirai and BASHLITE
botnets to capture traffic in both normal and compromised states. However, they
do not consider the whole botnet lifecycle and only focus on the DoS attacking
stages; the botnet propagation, infection and communication with the command
and control server stages are not included. The deployment does not represent a
realistic network topology because all the IoT devices and servers needed for the
botnet infrastructure are located in the same LAN connected to a single switch. Raw
network traces in pcap format are not available; only processed features are included.

Koroniotis et al. [155] design a testbed composed of emulated IoT devices as well
as emulated PCs and servers, which is used to extract the Bot-IoT network traffic
dataset. They include a total of 8 Windows and Linux virtual machines (VM) to
implement the normal and attacking nodes, all of them connected to the same LAN.
Node-red is used to emulate the traffic of 5 IoT sensors that send messages via the
MQTT protocol to a public AWS broker in addition to the Ostinato traffic generator
to simulate normal network activity. They use several Kali Linux VMs to perform
the attacks. As an evolution from the previous work, Moustafa [156] builds an
emulated testbed architecture including a mix of IoT devices and regular IT clients to
generate the TON_IoT dataset. The dataset includes network traffic, application and
OS logs. The testbed is composed of 17 VMs and includes a single VM simulating 7
different IoT sensors, a smart TV, 2 smartphones and several client systems based on
Windows, Linux and purposefully vulnerable VMs. As in the previous version, they
use Node-red to generate the MQTT IoT traffic to a public broker and the Ostinato
traffic generator for the rest of the normal traces. The previous datasets lack attack
heterogeneity, real botnet malware is not included, and while they contain a diverse
set of attacks, they do not include attacks targeted against the MQTT IoT protocol.

Hindy et al. [157] publish theMQTT-IoT-IDS2020 dataset to evaluate the effective-
ness of ML techniques to detect MQTT-based attacks. The dataset is generated using
a VM-based emulated testbed composed of 12 simulated MQTT sensors publishing
random messages of varying length to a single broker, two machines simulating a
UDP stream and one attacker. All the sensors are located at the same LAN, while
the broker, stream server and the attacker are in another network separated by a
single router. The attacks are limited to generic network scans and an MQTT brute
force attack.

3.8. IOT TESTBEDS AND DATASETS 49

IoT-Flock [158] is a traffic generator to simulate MQTT and CoAP-based IoT
devices and attacks. Vaccari et al. [159] present MQTTset; they use IoT-Flock to
simulate 8 simple sensors publishing data to an MQTT broker and a single malicious
node that can launch DoS attacks, malformed data and brute force attacks. All the
emulated devices are directly connected to the same LAN. The deployment does
not represent a realistic network topology, and the attacks only target the broker.
Similarly, Hussain et al. [160] use IoT-Flock to create a dataset consisting of MQTT
and CoAP network traces. They create a testbed mimicking an IoT-based healthcare
system with 9 emulated simple sensors, an MQTT broker and a CoAP server. The
attacks include MQTT packet floods, packet crafting and CoAP replay attacks.

Guerra-Manzanares et al. [161] design a testbed composed of real and emulated
devices to generate the MedBioT dataset. They use 3 real commercial IoT devices
and 4 emulated MQTT-based IoT sensor templates, of which they instantiate 20 of
each using containerization technologies for a total of 83 devices. Three real botnet
malware samples (Mirai, BASHLITE and Torii) are included to generate the attacks.
The larger scale of this testbed enables a more realistic botnet propagation pattern
compared to smaller ones. However, all the IoT devices and the botnet infrastructure
are directly connected to a single switch in the same LAN, which does not reflect a
realistic IoT topology. Additionally, they only focus on the first stages of the botnet
lifecycle (infection, propagation and command and control communication), but
they neither include attacking stages nor IoT-specific attacks. They do not provide
details about the source code modifications and command and control infrastructure
configuration needed to run real malware in the testbed.

Ferrag et al. [162] present Edge-IIoTset, an IoT/IIoT dataset that includes MQTT
and Modbus traffic generated using a testbed composed of real low-cost sensors and
emulated devices. For the IoT and IIoT devices, they wire 11 sensors to an Arduino
Uno board; they deploy MQTT brokers and Modbus master/slave nodes using the
Node-red Modbus extension on various Raspberry Pi boards. They also emulate
multiple vulnerable services, applications and attackers using VMs. There are no
precise details about the total number of nodes, configuration options and network
topology; however, all the attackers and victims seem to be connected to the same
wireless router, which does not reflect a realistic IoT topology. They perform a varied
set of attacks, yet, most attacks target the services in the vulnerable VMs instead
of the IoT devices. The attacks targeting the IoT nodes include generic flooding,
scanning and spoofing attacks, but attacks against IoT protocols are lacking.

The literature also presents some works that put more emphasis on the re-
producible and shareable aspects for their testbeds. Antonioli et al. [163] present
MiniCPS, an extendable and reproducible testbed to emulate communication in
CPSs such as PLCs and HMIs using the Ethernet/IP and Modbus TCP/IP protocols.
They use Mininet for the network emulation layer. The purpose of the testbed is
to perform attacks on CPS systems and develop defenses; they provide an example
of ARP spoofing and man-in-the-middle (MITM) traffic manipulation attacks and
develop a detection method using a custom software-defined network controller.
Eckhart et al. [164] present CPS Twinning, a Mininet-based testbed for creating digi-

50 CHAPTER 3. RELATED WORK

tal twins used to test or monitor security/safety rules and data capturing purposes.
CPS Twinning includes a generator module that can automatically create the virtual
testbed in a reproducible way based on parsing specification files defined in the
AutomationML data format. The prototype includes PLCs and HMIs running native
code and communicating with Modbus TCP/IP protocol. The threat scenario presents
an ARP spoofing and MITM attack and shows successful detection by monitoring
various states of the digital twin.

3.9 Discussion of the state-of-the-art and identified gaps

This section provides additional comments on the reviewed literature and highlights
some of the identified gaps that will serve as motivation for the contributions in the
following chapters.

3.9.1 Overreliance on labeled data

From the point of view of data modeling and ML algorithms, most of the proposed
approaches use supervised methods to train the intrusion detection models, either
using a binary normal/attack classification or a limited set of different attack classes.
However, unsupervised methods or one-class classification methods that attempt to
model the normal behavior of the devices do not receive as much attention in the
literature. In real production cases or deployments, obtaining labeled network data to
train the supervised models is not viable at a practical level. Labeling network traces
is a costly and time-consuming process that can require input from field experts [70].

In particular, for FL approaches, the research in this field has been mostly con-
sidered in supervised learning settings, with labels available on all the clients (where
each client can have a different distribution of labels to create a more or less hetero-
geneous setting). Extending FL to other tasks, including unsupervised methods, is
still an open challenge [29].

Regarding FL approaches that use client or data clustering strategies to miti-
gate the global model convergence problems in highly non-IID environments, all
those approaches assume a supervised learning setting. Some of them even require
the presence of labels to perform the clustering or personalization process [112],
[114], making them unsuitable for unlabeled settings. Additionally, none of those
approaches were applied to the cybersecurity field.

From the point of view of the works that introduce XAI techniques into the
IDS pipeline, again, most of those works require labeled data in certain stages of
their proposal [140], [142], [145]–[148], which may not be feasible in practical or
deployment settings.

3.9.2 Suitability of the datasets and testbeds

As previously noted, many of the relevant datasets for network security were gen-
erated using a real or emulated testbed. In general, the presented cybersecurity

3.9. DISCUSSION OF THE STATE-OF-THE-ART AND IDENTIFIED GAPS 51

datasets lack heterogeneity in terms of attacks regarding IoT threats (however, some
of them do include a wide variety of attacks against typical IT services). Most do not
include real botnet malware samples, one of the most prominent threats to current
IoT devices [10], and the ones that do include them [154], [161] are limited to some
botnet stages instead of the whole lifecycle. Additionally, only a few include attacks
targeting popular IoT protocols such as MQTT and CoAP. Moreover, most testbeds
represent simplified topologies where all the devices and attackers are connected to
the same LAN, which can lead to unrealistic threat models. Testbeds need to include
multiple networks and routing layers to represent a realistic botnet propagation and
attacking scenario.

Additionally, there is a general lack of documentation regarding IoT node behav-
ior, server configuration options (e.g., MQTT broker configuration) and the exact
implementation or parameters used to perform the attacks in the cited testbeds
or datasets. This information is crucial because many attacks can behave differ-
ently depending on the configuration of both the victim and attacker. For example,
some MQTT broker implementations and versions are not affected by the MQTT
authentication bypass and packet crafting attacks included in [160], rendering those
attacks irrelevant. Similarly, in the works that use real botnets for the attacks, the
malware source code usually needs certain modifications to make them work in a
testbed; sometimes, they are also modified to limit some potential threats to external
networks as a safeguard. However, those patches (or compiled malware binaries) are
not provided or documented, but they can significantly impact the behavior of the
malware. The scarcity of details on the devices, software versions, and configuration
files or command-line arguments used in attacking tools hinders the reproducibility
of the datasets. This issue was recently raised in [69] when analyzing the popular
CICIDS2017 [165] dataset.

To the best of our knowledge, the cybersecurity testbeds used to generate the
cited datasets are not published2, except for the testbeds in [163] and [164] (which
are mainly focused on PLC and HMI emulation). This limits extensibility and re-
producibility because it prevents other researchers from building upon, reusing or
adapting the testbed to generate specialized datasets that best suit their needs.

Another aspect is the transferability of the ML models trained on public datasets
into real deployment settings. The data generated at different deployments might
have very little in common and not be directly applicable to other settings. Moreover,
traces that are considered normal in some settings could be anomalous in others.
Therefore, the feasibility of the proposals that use public labeled datasets must be
evaluated extensively in each instance when translating it into a real environment.
While transfer learning techniques exist to adapt pre-trained models to other settings,
in some cases, ML models learned from public datasets may not generalize well
to other network settings [166], [167]. As remarked in the previous paragraph,
providing adaptable testbeds for dataset generation, in contrast to static datasets that

2We refer mainly to testbeds based on emulation or simulation. Testbeds using real hardware are,
of course, difficult to share or distribute.

52 CHAPTER 3. RELATED WORK

can not be easily updated or modified, could allow researchers to generate datasets
specific to their deployments of interest, reducing this gap.

3.9.3 Suitability of the proposals to FL settings

Related to the difficulty of finding a suitable dataset for intrusion detection, there is
an additional challenge if we want to explore FL-based solutions in this field. Most
datasets and testbeds were not designed to be applicable to large distributed IoT
environments, where the data is often offered as a single aggregated blob. Therefore,
due to this difficulty, many researchers resort to artificially partitioning the dataset to
simulate distributed environments in which to apply FL. Even though this artificial
dataset partitioning technique may be interesting to study the performance of FL
under different client data heterogeneity settings (such as IID, non-IID or different
attack distributions in each client), it is not indicative of a realistic distributed
environment and heterogeneity level.

Furthermore, most articles limit themselves to the order of 10 participating clients
or less in the FL process, which does not reflect typical IoT environments, making it
difficult to draw conclusions on the applicability of FL for IoT anomaly detection.
This might be related to the small scale of the testbeds used to generate the datasets
(in the order of 10 devices, usually less than 20), as they are not mainly designed for
FL purposes and small scalability due to the use of real devices or resource-hungry
VMs, except for the work at [161], which uses containerization technology.

Regarding XAI techniques, most of the literature is focused on using explanations
for visualization and model verification purposes. Meanwhile, works that leverage
and build on top of the explanations to provide additional functionalities (such as
giving context to anomalies in order to group or characterize them) are scarce and
are designed for centralized or distributed architectures that do not offer the same
benefits as FL. Additionally, while some works use XAI techniques in FL settings,
the objective is to verify the FL training process to detect adversarial attacks [148]
or visualize and verify the trained model [149]. The explainer models were not
trained in a federated way; this requires breaking the FL assumptions/properties
to offer the explanations or using a different explainer on each client, difficulting
the interpretation across the federated network because the same sample can have
different explanations on different clients.

None of the works using the SHAP explainability technique in FL consider or
discuss how to extract a baseline for SHAP in a federated way, which is required
to generate the explainer. The baseline selection is critical in SHAP because the
generated explanations depend on them [168], [169]. In FL, explanations from all the
clients should have a “common ground”, so the same event happening in different
clients is explained in the same terms so the information can be shared with all the
federated devices.

3.9. DISCUSSION OF THE STATE-OF-THE-ART AND IDENTIFIED GAPS 53

3.9.4 Lack of heterogeneity considerations

Only a few papers consider the heterogeneity of IoT devices for the design of FL-
based IDSs. In the cases where the heterogeneity is considered, they require a manual
segmentation of the IoT devices [128], hardcoded device properties such as the 6-
tuple in [124], prior knowledge of attack types that target the IoT devices [121] or the
help of external tools that are not fully integrated into the FL training pipeline [116].

Regarding general clustered FL proposals, the approaches that group model
parameters using centralized clustering algorithms [104]–[106] lead to high com-
putation costs and may not be practical for setting with large models and a large
number of clients. Other proposals require each client to process 𝐾 models [107],
[108], increasing the clients’ local computation requirements and the bandwidth
load of the network. In [107], [109]–[112], the number of clusters needs to be known
a priori, and selecting an optimal value for it requires completing the full clustered
FL training, which is costly and complicates the hyperparameter selection step in
practical settings. Besides, as mentioned in the gap regarding the Overreliance on
labeled data (3.9.1), all assume a supervised learning setting, and some require the
presence of labels, making them unsuitable for unlabeled settings. Finally, none of
those methods were applied to the IoT security field.

CHAPTER 4
Gotham testbed

Challenges in the availability of up-to-date public datasets for cybersecurity applica-
tions and, in particular, those related to IoT settings [24], is a general shortcoming in
this field. However, the scarcity of representative datasets for IoT security is not the
only gap in this area. As discussed in Chapter 3, one of the identified gaps regarding
the Suitability of the datasets and testbeds (3.9.2) highlighted the generalized lack of
documentation that leads to datasets difficult to reproduce or adapt. Moreover, while
many of the datasets generated from emulated or simulated testbeds are openly
available to the community, the testbeds themselves used to generate those datasets
are rarely published. This prevents other researchers from adapting the testbed, and
the generated data, to their particular use cases.

Additionally, as mentioned in the Suitability of the proposals to FL settings (3.9.3)
gap, most testbeds and datasets were not designed for distributed scenarios, diffi-
culting their use for FL-based experiments. Hence, many works resort to artificially
partitioning the datasets and using a low number of clients, which is not representa-
tive of IoT settings.

We argue that sharing static datasets alone for ML model training is not enough
to reduce the gap between the experimental and deployment environments. Espe-
cially considering that, in some cases, ML models learned from public datasets may
not generalize well to other network settings (3.9.2). Sharing a reproducible and
extendable testbed allows researchers and practitioners to leverage and adapt the
platform to be as close as possible to the network setting of interest.

To address those gaps, this chapter describes the developed testbed for repro-
ducible security experiments and dataset generation, giving special emphasis to the
scalability to allow FL-based experiments with many clients. The main contributions
of this chapter are directly related to objective O.4 from Section 1.2.3, and they can
be summarized as follows:

• We provide a set of properties and requirements based on the literature that

55

56 CHAPTER 4. GOTHAM TESTBED

a security testbed should meet (Section 4.1). We perform an experimental
validation of the proposed platform based on those properties in Section 4.4.

• We present an IoT network security testbed implemented as a middleware
over the GNS3 network emulator in Section 4.2. It allows the deployment of
different network topologies and is flexible enough to incorporate any type of
physical, virtualized or containerized clients, servers and applications, as well
as generate real network traffic data.

• Using the testbed, we implement a ready-to-use scenario composed of 100
emulated IoT and IIoT devices, servers and attackers. The devices are connected
in a realistic topology with 30 network switches and 10 routers. Particularly,
the emulated IoT nodes communicate primarily via the MQTT and CoAP
M2M protocols and the RTSP streaming protocol. The scenario is detailed in
Section 4.3.

• The threat model of the scenario includes 3 different threat actors executing
real botnet malware and other red-teaming attack tools. The testbed includes
the (i) Mirai worm (see Section 2.2.1) and all its required C&C infrastructure;
(ii) a second botnet based on the Merlin C&C server (see Section 2.2.2) and
(iii) network scans and attacks specifically targeting the MQTT and CoAP
services.

The source code to reproduce the testbed is available at [31].

4.1 Testbed requirements and platform features

This section details the main requirements that have been defined in the literature
for the creation and evaluation of testbeds and datasets to provide a rigorous experi-
mentation platform. We classify and group those requirements in a novel way to
provide a list of the features to be fulfilled by the Gotham testbed.

4.1.1 General testbed and dataset requirements

Over the last years, the community has defined a set of requirements for network
testbeds and datasets that should be met to provide accurate and reliable results.
According to Siaterlis et al. [150], [170], the basic testbed requirements include fidelity
to reproduce a real system to the sufficient level of detail needed for the current
experiment, a controlled environment to allow the reproducibility of the scenarios,
and being able to correctly measure and monitor the experiment. Additionally, the
testbeds should be comprised of heterogeneous elements, be extendable to include
new protocols or devices and be scalable to support networks with many nodes [152],
[171].

4.1. TESTBED REQUIREMENTS AND PLATFORM FEATURES 57

For testbeds designed to run security experiments, additional requirements
have been defined given the presence of malware and attack tools. These require-
ments include the safe execution of malicious software without interfering with
the testbed [170], containment to prevent the transmission of attacks to an exter-
nal operational network [172] and the ability to emulate scenarios with complex
topologies to properly study the whole botnet lifecycle [151].

Many of the defined requirements for testbeds also overlap with the criteria that
network security datasets should meet [24], [69], [165]. The criteria can be summa-
rized as follows: the dataset provides real and complete network traces; the traffic is
generated using a valid network topology that includes clients, servers and network
equipment; the dataset is labeled to distinguish between benign and malicious traces;
highly heterogeneous regarding included services, network protocols, normal and
attack behaviors; easily extendable; reproducible; shareable and documented.

4.1.2 Required testbed features

Considering the requirements from the literature summarized in the previous sub-
section, we classify and group them into five main properties: fidelity, heterogeneity,
scalability, reproducibility and measurability.

Broadly, fidelity refers to the ability to reproduce the hardware and software
of all the components to a sufficient level of detail and being able to do it without
the need for external resources for increased isolation when dealing with malware.
Heterogeneity refers to the diversity of behaviors, especially if the data is used for
ML model training. Scalability refers to the ability to create networks with a large
number of nodes. Reproducibility is needed to enable replication of the results and
building upon them to keep improving the platform. Measurability refers to the
ability and easiness of extracting relevant data from the testbed.

For each property, we derive a set of desired features that should be met to create
a comprehensive testbed platform, as shown in Figure 4.1. In the following, we
describe the rationale for each feature:

4.1.2.1 Fidelity

This property is further divided in terms of three different categories describing the
basic elements of a networked system: nodes (devices, servers, switches, routers, etc.),
links (network links between the nodes) and network topology (the arrangement of
nodes and links).

F1: Fidelity in terms of node hardware resource emulation. To allow the emula-
tion of devices with different computational capabilities, the testbed should be able
to adjust the memory and CPU resources assigned to each node.

F2: Fidelity in terms of node behavior emulation. All IoT nodes, as well as servers,
switches and routers, should support running real production applications, libraries
and operating systems to generate real network traffic and logs.

58 CHAPTER 4. GOTHAM TESTBED

Measurability
Node (M2) Application-level logs

Link (M1) Raw packet captures

Reproducibility
Topology (R3) Reproducible topology

Node
(R2) Reproducible attack scripts

(R1) Reproducible device configuration

Scalability Topology (S1) Node resource utilization

Heterogeneity
Topology (H3) Service diversity

Node
(H2) Attack behavior diversity

(H1) Protocol diversity

Fidelity

Topology (F5) Complex topology emulation

Link (F4) Communication link emulation

Node

(F3) Attacker behavior emulation

(F2) Device behavior emulation

(F1) Hardware resource emulation
Property Category Feature name

Figure 4.1: Required testbed features grouped under different properties and cate-

gories.

F3: Fidelity in terms of attacker behavior emulation. The testbed should support
and provide nodes running real malware samples found in the wild and popular red
teaming tools.

F4: Fidelity in terms of communication link emulation. Many nodes, especially
IoT devices, can be connected to the internet using links of different quality. The
testbed should allow the modification of network link QoS properties such as band-
width limits, delay, jitter and packet loss to emulate different network link types.

F5: Fidelity to emulate complex topologies. The ability to represent real-world
network deployments with many clients, servers, switches and routers is necessary
to correctly represent several attacks, including botnet propagation, network-wide
scans and DDoS attacks. The testbed should also provide all the necessary services
and infrastructure (command and control, name resolution, databases, etc.) for the
actual malware samples in a contained and isolated manner to avoid leaking traffic
or attacks into the Internet.

4.1.2.2 Heterogeneity

This property is described in terms of node and topology category levels.

4.1. TESTBED REQUIREMENTS AND PLATFORM FEATURES 59

H1: Heterogeneity in terms of node protocols. The testbed should include nodes
that communicate using a diverse set of network protocols. The diversity includes
IoT nodes sending telemetry using different protocols, routers communicating with
each other topology information using routing protocols and network services such
as name resolution.

H2: Heterogeneity in terms of attacks. Besides offering different types of attacks,
diversity within the same attack type should also be provided. This procedure
includes combining different attack tools that perform similar actions and using
multiple options and flags for each attack [69].

H3: Heterogeneity in terms of services in the topology. Devices and attackers
behave differently depending on the configuration of the service; hence protocol
heterogeneity (H1) might not be enough for a realistic emulation. The testbed should
also provide multiple equivalent services configured in different ways. For instance,
services with or without authentication, communicating in plain text or over an
encrypted channel.

4.1.2.3 Scalability

It is defined at the topology level.
S1: Scalability to support topologies with many nodes. IoT networks are usually

large scale; the ability to include many nodes can increase the realism of the emulated
network.

4.1.2.4 Reproducibility

Defined at the node and topology level, the following features should be included
and documented to enable a reproducible scenario.

R1: Reproducibility in terms of node configuration. Description of the behavior of
each node, including all the programs executing in the node and their configuration.

R2: Reproducibility in terms of attack scripts. Description of the performed
attacks, including software, configuration and command-line options.

R3: Reproducibility in terms of topology description. The way in which all
the nodes are connected to form the network topology, including the network link
properties, should be detailed.

4.1.2.5 Measurability

Defined in terms of link and node categories.
M1: Ability to measure raw network packets from any node. Different experi-

ments might need to capture network traffic at many locations. The testbed should
provide packet capturing from arbitrary links in the topology.

M2: Ability to measure application-level logs. Some security solutions work
with application-level logs; the testbed should provide this type of data to create
datasets of heterogeneous sources. Other additional measurements could include
node CPU and memory resource usage metrics.

60 CHAPTER 4. GOTHAM TESTBED

With the ability to emulate complex topologies (F5) that include all the necessary
services and devices, the platform can be entirely isolated from the network and
thus prevent the possible propagation of attacks from the testbed to the outside
network. Extensibility is also achieved thanks to the reproducibility of all the nodes
(R1) (R2). The reproducibility allows other researchers to adapt existing nodes or
create new ones to suit their needs. In addition, (R2) also allows labeling of the
datasets generated by the testbed.

4.1.3 Comparison with related work

To expand on the discussion presented in sections 3.8.1 and 3.8.2 regarding related
work on IoT testbeds for cybersecurity, Table 4.1 compares the cited works according
to the testbed property taxonomy outlined in this section (Figure 4.1). When a
proposal does not meet a particular feature (lack of it or not considered by the
authors), it does not imply a fault in the testbed; however, it is insufficient for our
needs to create a reproducible and flexible testbed that can additionally be used for
FL experiments.

For instance, many testbeds are only focused on specific protocols [157], [159],
[160] and, thus, lack heterogeneity. While others include a wide variety of attacks,
they lack fidelity because real malware activities are not included [155], [156], [162]
or vice versa [154], [161]. RegardingM1, while all can capture network data, most
only do it at specific choke points (port mirroring in a switch or router) instead
of an arbitrary node. More importantly, most testbeds are unavailable and cannot
be reproduced even if the main parts are mostly virtualized or containerized (the
datasets created with them are available). Two of them [163], [164] are reproducible
and available; however, they are focused on PLC and HMI emulation, which differs
from our proposal.

4.1.
TESTBED

REQ
U
IREM

EN
TS

A
N
D
PLA

TFO
RM

FEA
TU

RES
61

Table 4.1: Comparison With Related Work Based on the Required Testbed Features (Figure 4.1)

Reference Type F1 F2 F3 F4 F5 H1 H2 H3 S1 R1 R2 R3 M1 M2 Testbed avail-
able

physical layer
IoT protocols

N-BaIoT [154] real ✓ ✓ ✓ - x - x - x x x x ∼ x x x
Bot-IoT [155] VM - ✓ x - x x ∼ - x x ✓ x ∼ x x x
TON_IoT [156] VM - ✓ x - x x ✓ - x x ✓ x ∼ ✓ x x
Hindy [157] VM - ✓ x ∼ x x x x x x x x ∼ x x x
MQTTset [159] IoT-Flock - ✓ x - x x x x x x ✓ x ∼ x x x
Hussain [160] IoT-Flock - ✓ x - x x x x x x ✓ x ∼ x x x
MedBIoT [161] real, container ✓ ✓ ✓ x x - x x ✓ x x x ∼ x x x
Edge-IIoTset [162] real, VM ✓ ✓ x - x ✓ ✓ x x x x x ✓ ✓ x x
MiniCPS [163] mininet - ✓ x - ✓ x x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
CPSTwinning [164] mininet - ✓ x - ✓ x x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
Gotham (Ours) container, VM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
ns-3, CupCarbon, . . . [152] discrete event sim x x x ✓ x x x x ✓ ✓ - ✓ ✓ x - ✓

’✓’: yes. ’∼’: partially. ’-’: information not discussed or available or not applicable. ’x’: no.

F1: Hardware resource emulation (different computational capabilities, CPU, memory).
F2: Device behavior emulation (run real production OSs, libraries, applications).
F3: Attacker behavior emulation (real malware samples and red teaming tools).
F4: Communication link emulation (modification of link QoS).
F5: Complex topology emulation (realistic network topologies with necessary services and infrastructure).
H1: Protocol diversity (diverse set of network protocols).
H2: Attack behavior diversity (multiple attacks, combinations of different options and flags).
H3: Service diversity (different configuration for similar services).
S1: Node resource utilization (ability to include many nodes).
R1: Reproducible device configuration (offer details regarding the programs and configuration options).
R2: Reproducible attack scripts (provide exact configuration, command-line options).
R3: Reproducible topology (reproducible details regarding network topology).
M1: Raw packet captures (ability to capture raw network data from arbitrary nodes).
M2: Application-level logs (ability to extract logs (or other OS metrics) from the nodes).

62 CHAPTER 4. GOTHAM TESTBED

Our testbed differs from both cited testbeds in [163] and [164] in several ways.
In [163], creating a new type of emulated host or adding support for another commu-
nication protocol requires modifications to the testbed code and porting the code to
Python, limiting its extensibility to add heterogeneous nodes communicating with
diverse protocols. CPS Twinning [164] assumes that the organization already uses
the AutomationML language to define its physical infrastructure and is only focused
on Modbus TCP/IP. Each emulated host in our approach is intended to run arbitrary
programs and communicate using arbitrary protocols over TCP/IP. The created sce-
narios in both testbeds lack attack diversity and do not include real malware samples.
In contrast, we provide an extensive threat model that includes real malware samples
to generate various attacks. From the implementation point of view, we use GNS3
to manage the network layer, and we use Docker-based containers (and VMs) to
provide a reproducible specification and emulation for each host. Mininet-based
testbeds use a lighter containerization model where each host is a group of processes
in a network namespace, but all share the same filesystem by default. However,
due to the use of real malware samples, we use Docker-based containerization for
a more comprehensive isolation at the expense of greater overhead. Additionally,
while Mininet can impose CPU resource constraints in the emulated hosts, currently,
memory constraints are not supported, which limits the fidelity to emulate each
host’s hardware resources compared to Docker-based hosts.

The physical lower-layer IoT communication protocols (e.g., Bluetooth, Zigbee,
LoRa) are currently outside the scope of the testbed. This is further discussed in
sections 4.3 and 4.5.

4.2 Testbed architecture

The developed IoT network security testbed is based on the GNS3 network em-
ulator [173]. GNS3 allows the creation of complex topologies composed of VMs,
containerized images and real devices. It is actively developed and widely used in
the industry and as a teaching tool for academia; the familiarity of this platform can
ease the adoption of the proposed testbed. GNS3 is free software under the GNU
GPLv3 license.

Figure 4.2 illustrates the proposed architecture, which includes the GNS3 compo-
nents and the middleware built on top of it to implement the Gotham testbed. The
central GNS3 component is the Controller server, which is responsible for managing
all the projects, and it serves as an interface between the Clients and the Compute
servers. The Clients allow the user to build the emulated network topology and
interact with it by sending API requests to the Controller. The Compute servers are
the software components that manage the different emulation engines supported
by GNS3, such as Docker [174] containers, VMs based on QEMU [175] or other
hypervisors and Dynamips to emulate Cisco hardware. GNS3 allows running nodes
in multiple compute server instances to achieve higher scalability [176].

4.2. TESTBED ARCHITECTURE 63

GNS3 Controller server

GNS3 Compute server 1 GNS3 Compute server n

Private REST API Private REST API

GNS3 Web
GUI client

Public REST APIWebsockets

GNS3 multiplatform
GUI client

Public REST APIWebsockets

D
oc

ke
r

Q
E

M
U

V
ir

tu
al

B
ox

V
M

w
ar

e

D
yn

am
ip

s

D
oc

ke
r

Q
E

M
U

V
ir

tu
al

B
ox

V
M

w
ar

e

D
yn

am
ip

s

GNS3

Public REST API

IoT testbed orchestrator

- Dockerfiles
- GNS3 appliances
- ISO images

- Router and device
 configuration - Attack scripts

Gotham middleware

Topology builder Scenario generatorTemplate creation engine

Figure 4.2: Gotham testbed architecture. Components with shaded background

refer to the Gotham middleware.

4.2.1 Gotham middleware components

Gotham is implemented as a GNS3 client and a set of programs that communicate
with the GNS3 Controller via the public REST API. In the following, we describe the
four components of the Gotham middleware shown in Figure 4.2.

4.2.1.1 IoT testbed orchestrator

A set of functions that wrap around the GNS3 REST API [176] to automate and
simplify various tasks such as node creation, node configuration (network interfaces,
environment variables, executing configuration scripts, etc.), link creation, starting
and stopping packet capturing in links and more. The rest of the components rely on
these functions to build the topology and run the scenarios. They are executed in the
following order: template creation engine, topology builder and scenario generator.

4.2.1.2 Template creation engine

Gotham uses QEMU VMs to emulate routers and Docker containers to emulate all
the IoT nodes, attackers, servers and switches. The template creation engine builds
all the Dockerfiles, sets up the ISO images of the VMs and generates GNS3 appliance
templates representing those nodes. A template is a device model used to instantiate
a node in the topology; GNS3 can create many nodes from a single template. GNS3

64 CHAPTER 4. GOTHAM TESTBED

allows emulating networking equipment from multiple vendors; however, those
images are usually proprietary and under licensing restrictions. We only include
nodes based on free and open source software to ease reproducibility. Docker-based
node templates include settings such as Docker image name, additional environment
variables, start command and Docker volumes. The QEMU-based templates include
settings like disk image files, RAM and CPU limits and other QEMU command-line
parameters. After the template creation, the topology builder is executed.

4.2.1.3 Topology builder

The topology builder module describes the full topology of the scenario being em-
ulated. After execution, it automatically instantiates all the nodes (based on the
previously created templates), configures them and creates the necessary links
to define the topology. The Docker-based images are configured by editing the
/etc/network/interfaces file and setting the appropriate environment variables
for each of them. In Gotham, the QEMU routers are configured from scratch by first
installing the router operating system into the disk image and then configuring all
interfaces and routing protocols for each VM. Once the topology has been defined,
the scenario generator is executed to start the experiment.

4.2.1.4 Scenario generator

The scenario generator module starts all the nodes in a specific order and sets runtime
options such as limiting the amount of memory and CPU quota a Docker container
can use, setting bandwidth limits to network interfaces or starting and stopping
packet capturing. Then, the scenario generator can schedule the launch of some
attacks, or any other type of behavior, by running arbitrary scripts on the testbed
nodes.

Regarding link and hardware resource emulation, currently, GNS3 has many
features but also some limitations. Gotham addresses them in the following ways:

Link emulation GNS3 allows modifying network link behavior by applying
filters to packets in both directions, including packet dropping by frequency, packet
loss percentage, delays, packet corruption percentage and filtering packets that
match a Berkeley Packet Filter expression. However, applying bandwidth limits
is not currently supported. To circumvent this limitation, we rely on tc (Linux
Traffic Control) [177] to provide a more realistic link emulation. In addition, GNS3
includes link status detection for QEMU-based nodes. When a link in the topology is
suspended or removed, GNS3 will inform the node that the link status has changed,
allowing a better router and routing protocol behavior emulation.

Hardware resource emulation GNS3 only supports memory and CPU limits for
nodes running in a hypervisor such as QEMU. Docker containers are not limited and
can use all the available resources. However, to overcome this limitation, Gotham

4.3. IOT SCENARIO USE CASE 65

RCLOUD

RTHREATRCITY

RC1 RC2 RC3 RC4 RT1 RT2 RT3

SCLOUD

SCITY STHREAT

192.168.0.1/20

192.168.32.1/20192.168.16.1/20

10.0.0.0/31

10.0.0.1/31

10.0.0.2/31

10.0.0.3/31

10.0.0.4/31

10.0.0.5/31

192.168.16.10/20 192.168.16.11/20 192.168.16.12/20 192.168.16.13/20

192.168.17.1/24 192.168.18.1/24 192.168.19.1/24 192.168.20.1/24

192.168.32.10/20 192.168.32.11/20 192.168.32.12/20

192.168.33.1/24 192.168.34.1/24 192.168.35.1/24

N
et

w
or

k
la

ye
r

E
dg

e
la

ye
r

C
lo

ud
 la

ye
r

Natural history
museum
network

Bristol
neighborhood

network

Rennington
steel

network

Gotham Light
and Power
network

Maroni
crime
family

Falcone
crime
family

Calabrese
crime
family

Figure 4.3: Network diagram for the emulated scenario.

integrates the Docker API to apply memory and CPU constraints for resource emu-
lation in containers.

4.3 IoT scenario use case

To illustrate the capabilities of the testbed, we have designed, implemented and
validated the Gotham city scenario. An IoT use case scenario that contains multiple
network segments, including building monitoring devices, domotics for a small
neighborhood, industrial companies and malicious actors.

In this section, first, we outline the general network diagram of the scenario
in terms of three layers: edge, network and cloud. Then, we detail the technical
implementation regarding all the different emulated devices that run at each layer.
Next, we describe the three threat models included in the scenario and the various
attacks each can perform. Finally, we show the entire network topology of the
scenario.

4.3.1 Scenario diagram

The network diagram for the scenario, including IP addresses and subnet masks for all
interfaces, is shown in Figure 4.3. For the purposes of the scenario, the 192.168.0.0/16
range is considered a publicly addressable range. The diagram only shows a partial
view; the entire topology, including all the devices, servers and attackers, will be
shown later in this section. The emulated scenario is divided into three main layers:
edge, network and cloud layers.

4.3.1.1 Edge layer

The edge layer is composed of the emulated IoT/IIoT devices and attacker nodes. As
shown in Figure 4.3, the edge layer devices are located across twomain zones: the city
and the threat zones. The city zone devices include all the IoT and IIoT devices under

66 CHAPTER 4. GOTHAM TESTBED

the routers labeled RC1 to RC4. They communicate with the corresponding services
at the cloud layer using different protocols and communication patterns. All the
edge layer devices are addressable from any other node. These devices represent the
publicly accessible devices located, for example, at the DMZ or outside the firewall
of different industrial or residential networks of Gotham. The city zone is further
divided into four segments. Each segment represents a different establishment
generating traffic patterns based on realistic use cases:

• Natural history museum: A big building with many monitoring sensors and
surveillance IP camera streams sending data to the cloud.

• Bristol neighborhood: A group of houses that transmit data related to domotic
systems, air quality measurements and IP camera streams.

• Rennington steel: An industrial network sending telemetry data to the cloud
for predictive maintenance purposes such as motor or tool failure event moni-
toring.

• Gotham Light and Power : Another industrial network with IIoT nodes sending
condition monitoring data from power generation plants and hydraulic test
rigs.

The threat zone devices are located under the RT1, RT2 and RT3 router segments,
each corresponding to a different threat actor, namely, the Maroni, Falcone and
Calabrese crime families:

• Maroni crime family: Portrays a threat model where external attackers scan
and compromise IoT devices to turn them into bots. Includes a C&C server and
the supporting infrastructure for botnet propagation and launching attacks.

• Falcone crime family: Depicts a threat model where legitimate IoT devices (in
the city zone) have been previously compromised and maintain a connection
with a C&C server for remote control.

• Calabrese crime family: Represents threats that externally scan IoT devices
and launch attacks specifically targeting weaknesses in MQTT and CoAP
protocols.

The details about the malicious activities and attacks are going to be described
later in this section.

4.3.1.2 Network layer

The network layer devices are the switches and routers shown in Figure 4.3 that pro-
vide connectivity between the edge and cloud layers. Routers RCLOUD, RTHREAT
and RCITY are the backbone routers of the testbed. They are configured with the
OSPF routing protocol to update their routing tables dynamically. The edge layer
routers from the city and threat zones are configured with static routing tables.

4.3. IOT SCENARIO USE CASE 67

4.3.1.3 Cloud layer

The cloud layer includes the infrastructure that provides services to the edge layer
devices. It includes additional services such as DNS and NTP. The cloud layer devices
are connected to the RCLOUD router network.

4.3.2 Emulated devices

Here we provide the technical details referring to the implementation of the IoT/IIoT
devices, attackers, network equipment and cloud infrastructure included in the
scenario. Each node’s implementation source code and artifacts are publicly available
at [31]. The description is structured again in terms of edge, network and cloud layer
devices.

4.3.2.1 Edge layer devices

Edge layer devices are responsible for generating the majority of the testbed’s
workload, including both legitimate and malicious network traffic. All the edge layer
nodes are implemented as Docker containers and are fully reproducible thanks to
Dockerfiles and the included dependencies, such as the programs implementing
the node’s behavior and the configuration files. The developed edge layer device
templates, including IoT and attack nodes, can be instantiated multiple times in the
testbed, and each instance can be configured differently to emulate distinct behavior
patterns. The three main protocols used for IoT communication are MQTT, CoAP
and RTSP.

The included IoT nodes represent devices located in urban or residential zones
as well as IIoT devices for industrial equipment. The devices emulate IoT hubs or
gateways, i.e., devices that connect to and gather data from various sensors, actuators
or lower-level IoT devices and then communicate the collected data to the cloud
or accept connections from external devices to query data or control the device.
These types of IoT hubs and gateways that provide network layer connectivity are an
integral part of IoT systems [63]. The low-level connection between the emulated IoT
hubs and the sensors (e.g., Bluetooth, Zigbee, etc.) is currently outside the scope of
the testbed and not included; however, the data collection process is simulated in each
IoT device by reading data obtained from multiple publicly available datasets related
to specific IoT use cases. The data is used to generate a realistic-looking payload in
terms of data volume and variety. The generated network traffic depends on how the
emulated IoT devices transmit their payload, including the transmission protocol,
periodicity, network conditions and interactions with other emulated devices defined
in the scenario.

Regarding the data transmission behavior, we differentiate two modes: Open-
close and Always-open. In Open-close, each time the device needs to send telemetry
data, it opens a new connection to the cloud, sends the data and then closes the
connection. In Always-open mode, the device opens a single connection with the
cloud at the beginning and keeps it alive by periodically sending data and keep

68 CHAPTER 4. GOTHAM TESTBED

alive messages. Regarding the periodicity profiles, we also differentiate two modes:
Continuous and Intermittent. In Continuous mode, the device is always actively
sending telemetry data periodically. In Intermittent mode, the device has both active
and inactivity time ranges. Active ranges work like the Continuous mode, but during
inactivity ranges, no telemetry is transmitted, only background traffic. A summary
of the edge layer devices is provided in Table 4.2.

MQTT-based edge devices Each MQTT-based device behavior is implemented
in a Python program that uses the Eclipse Paho [178] MQTT Python client library.
The program’s main thread periodically reads each line of the dataset, processes the
data, builds the telemetry payload formatting it as a JSON, XML or Base64 encoded
string and sends it to a broker using one or more topics in plain text or using TLS
encryption. Furthermore, to increase the devices’ heterogeneity and fidelity, the
program includes other threads executing in parallel to create background traffic
such as DNS, NTP requests and sending ICMP messages. The following lists the six
MQTT-based edge layer device templates:

Air quality: Emulates an air quality chemical multisensor device based on
the [179] dataset. It includes 15 sensor readings such as temperature, humidity
and gas concentration sensors. The sensor data is transmitted as an XML payload
of ≈1190 bytes/record using a single MQTT topic in Continuous and Open-close
mode.

Building monitor: Emulates a building condition monitoring based on the
[180] dataset. It includes 27 humidity, temperature and energy consumption sen-
sors located in different rooms. The sensor data is transmitted as a JSON payload
of ≈100 bytes/record using 11 MQTT topics in Continuous and Open-close mode.

Cooler motor: Emulates a device to monitor the vibration patterns of a fan
based on the [181] dataset. It includes 5 sensors, such as acceleration and rotational
speed sensors. The sensor data is transmitted as a Base64 encoded binary payload
of ≈56 bytes/record using a single MQTT topic in Intermittent and Always-open
mode.

Domotic monitor: Emulates a monitoring system mounted in a domotic house
based on the [182] dataset. It includes 24 sensors, such as wind, precipitation, CO2
concentration, and lighting. The sensor data is transmitted as an XML payload
of ≈1743 bytes/record using a single MQTT topic in Continuous and Open-close
mode.

Hydraulic system: Emulates a devicemeasuring process values from a hydraulic
test rig based on the [183] dataset. It includes 17 sensors measuring quantities such
as pressure, power, flow, temperature and vibration. The sensor data is transmitted
as a JSON payload with Base64 encoded values of ≈7678 bytes/record using a single
MQTT topic in Continuous and Always-open mode.

Predictive maintenance: Emulates a predictive maintenance system based
on the [184] dataset. It includes 14 sensors such as temperature, speed and torque

4.3. IOT SCENARIO USE CASE 69

for different product variants. The sensor data is transmitted as a JSON payload
of ≈632 bytes/record using 3 MQTT topics in Continuous and Open-close mode.

CoAP-based edge devices Each CoAP-based device implements a CoAP server
using the libcoap C library [185]. The device creates a CoAP resource for each
variable in the dataset, and it is served to clients at the cloud layer in plain text or
using DTLS encryption. The clients periodically request data from the edge CoAP
devices and perform other actions like resource discovery or sending ICMP messages.
The following lists the two CoAP-based edge layer device templates:

City power: Emulates a city power consumption meter based on the [186]
dataset. It includes 9 sensors, such as power consumption in three city zones and
weather information. Each sensor data size is ≈10 bytes and serves 9 CoAP resources.

Combined cycle: Emulates the monitoring of a combined cycle power plant
based on the [187] dataset. It includes 5 sensors: temperature, pressure, humidity,
exhaust vacuum and energy output. Each sensor data size is ≈10 bytes and serves 5
CoAP resources.

RTSP-based edge devices The devices based on RTSP are the IP cameras and
IP camera stream consumers. The IP cameras send a looped video file through
the network using FFmpeg [188] to an RTSP server at the cloud layer. The stream
consumers read the video feed from the server also using FFmpeg. They use a variety
of protocols, including RTP, RTCP, RTSP, ICMP and DNS. The following lists the
three camera edge layer device templates:

IP camera (x2): Includes 2 templates using different video files and settings:
Video 1, adapted from [189], sends 1280x720 resolution, 15 fps, color, no audio,
libx265 codec, 40s looped stream. Video 2, adapted from [190], sends 1280x720
resolution, 25 fps, grayscale, no audio, libx264 codec, 16s looped stream. On average,
the Video 1 stream generates ≈1.2 Mbit/s traffic, and Video 2 generates ≈1.8 Mbit/s
traffic. They write to the stream server in Continuous mode.

IP camera consumer: Emulates a system reading from a video stream generated
by an IP camera. Each stream generates ≈1.8 Mbit/s traffic. It reads from the stream
server in Intermittent mode.

For comparison with real IoT IP cameras, in [70], the authors show a table with
specifications and statistics of some real IoT IP cameras used in their experiments.
The specifications are close to our emulated camera nodes. They communicate with
RTSP/RTP protocol, use the same image resolution, H.264 codec and 15 fps framerate.
They generate around 1.4 – 1.8 Mbit/s traffic on average, similar to our emulated
cameras.

Attacker or malicious edge devices Regarding the attacker or malicious nodes,
the scenario includes the following ten templates:

Mirai bot: This device includes the Mirai bot binary adapted and compiled
from [46]. After execution, the bot can perform several steps: network scanning,

70 CHAPTER 4. GOTHAM TESTBED

brute force authentication, reporting gathered credentials to the scan listener server
and performing multiple DoS attacks.

Mirai C&C: This device is composed of a MySQL database, and the Mirai
Command & Control server adapted and compiled from [46]. With the appropriate
username and password, clients can connect to the C&C to schedule DDoS attacks.
The database holds credentials, client information and attack records.

Mirai scan listener: This is the Mirai scan listener binary compiled from [46].
The server listens to the bot scanning results when a successful Telnet username
and password have been found.

Mirai loader: This device includes the main Mirai loader binary adapted and
compiled from [46] and Mirai downloader binaries for 9 architectures. The loader
program takes the scanning reports from the scan listener server and logs into each
device to download and execute the Mirai bot.

Mirai download server: It is an HTTP server hosting the Mirai bot binary.
Merlin C&C: This device includes the Merlin cross-platform post-exploitation

Command & Control server [191]. All the devices compromised with the Merlin
agent report to the Merlin C&C. Users can connect to this node to control each bot.

Scanner: The scanner node contains the Nmap [192] and Masscan [193] network
scanners. Additionally, Nmap can probe MQTT brokers.

MQTT attacks: The node includes the SlowTT [194] and MQTTSA [195] tools
to perform attacks against MQTT.

CoAP attacks: The node includes the AMP-Research [196] tool to perform
amplification attacks against CoAP devices.

Metasploit: It includes the Metasploit Framework [197] for executing exploit
codes against remote targets.

Including the Mirai botnet in the scenario requires multiple nodes, at least
the five Mirai nodes that have just been mentioned (and a DNS server that will
be described later in the cloud layer devices subsection). Recall that the general
description of Mirai’s lifecycle, including a brief explanation of the role of each Mirai
node, is described in Section 2.2.1. Similarly, the Merlin C&C server is described in
Section 2.2.2.

4.3. IOT SCENARIO USE CASE 71

Table 4.2: Edge layer device templates.

Device tem-
plate

Description Protocols Behavior

Air quality Emulates an air quality chemical multisensor device based on the [179] dataset. It includes 15 sensor
readings such as temperature, humidity and gas concentration sensors. Sensor data is transmitted as XML
payload of ≈ 1190 bytes/record.

MQTT, TLS,
ICMP, NTP,
DNS, ARP.

1 MQTT topic.
Continuous†.
Open-close∗.

Building
monitor

Emulates a building condition monitoring based on the [180] dataset. It includes 27 humidity, temperature
and energy consumption sensors located in different rooms. Sensor data is transmitted as JSON payload
of ≈ 100 bytes/record.

MQTT, TLS,
ICMP, NTP,
DNS, ARP.

11 MQTT topics.
Continuous†.
Open-close∗.

City power Emulates a city power consumption meter based on the [186] dataset. It includes 9 sensors, such as power
consumption in three city zones and weather information. Each sensor data size ≈ 10 bytes.

CoAP, DTLS,
ICMP, ARP.

Serves 9 CoAP re-
sources.

Combined cy-
cle

Emulates the monitoring of a combined cycle power plant based on the [187] dataset. It includes 5 sensors:
temperature, pressure, humidity, exhaust vacuum and energy output. Each sensor data size ≈ 10 bytes.

CoAP, DTLS,
ICMP, ARP.

Serves 5 CoAP re-
sources.

Cooler motor Emulates a device to monitor the vibration patterns of a fan based on the [181] dataset. It includes 5 sensors
such as acceleration and rotational speed sensors. Sensor data is transmitted as Base64 encoded binary
payload of ≈ 56 bytes/record.

MQTT, TLS,
ICMP, NTP,
DNS, ARP.

1 MQTT topic.
Intermittent‡.
Always-open∗∗.

Domotic
monitor

Emulates a monitoring system mounted in a domotic house based on the [182] dataset. It includes 24
sensors such as wind, precipitation, CO2 concentration, lights and more. Sensor data is transmitted as XML
payload of ≈ 1743 bytes/record.

MQTT, TLS,
ICMP, NTP,
DNS, ARP.

1 MQTT topic.
Continuous†.
Open-close∗.

Hydraulic
system

Emulates a device measuring process values from a hydraulic test rig based on the [183] dataset. It includes
17 sensors measuring quantities such as pressure, power, flow, temperature and vibration. Sensor data is
transmitted as a JSON payload with Base64 encoded values of ≈ 7678 bytes/record.

MQTT, TLS,
ICMP, NTP,
DNS, ARP.

1 MQTT topic.
Continuous†.
Always-open∗∗.

IP camera Emulates an IP camera writing to a video stream. The testbed includes 2 different cameras. Video 1 (Adapted
from [189]): 1280x720, 15fps, color, no audio, 40s looped. Video 2 (Adapted from [190]): 1280x720, 25fps,
grayscale, no audio, 16s looped. Each stream generates ≈ 1.8Mbit/s traffic.

RTP, RTCP,
RTSP, ICMP,
DNS, ARP

Write to
stream server.
Continuous†.

IP camera
consumer

Emulates a system reading from a video stream generated by an IP camera. Each stream generates ≈ 1.8
Mbit/s traffic.

RTP, RTCP,
RTSP, ICMP,
DNS, ARP

Read from
stream server.
Intermittent‡.

Predictive
maintenance

Emulates a predictive maintenance system based on the [184] dataset. It includes 14 sensors such as
temperature, speed and torque for different product variants. Sensor data is transmitted as a JSON payload
of ≈ 632 bytes/record.

MQTT, TLS,
ICMP, NTP,
DNS, ARP.

3 MQTT topics.
Continuous†.
Open-close∗.

Mirai bot This device includes the Mirai bot binary (adapted and compiled from [46]). After execution, the bot can
perform several steps: network scanning, brute force authentication, reporting gathered credentials to the
scan listener server and performing multiple DoS attacks.

DNS, Telnet,
UDP, TCP

Manual or auto-
matic activation.

Mirai C&C This device includes a MySQL database and the Mirai Command & Control server (adapted and compiled
from [46]). With the appropriate username and password, clients can connect to the C&C to schedule DDoS
attacks. The database holds credentials, client information and the attack records.

TCP Always active.

Mirai scan lis-
tener

This device includes the Mirai scan listener binary (compiled from [46]). The server listens to the bot
scanning results when a successful Telnet username and password have been found.

TCP Always active.

Mirai loader This device includes the main Mirai loader binary (adapted and compiled from [46]) and Mirai downloader
binaries for 9 architectures. The loader program takes the scanning reports from the scan listener server
and logs into each device to download and execute the Mirai bot.

Telnet, UDP,
TCP

Manual or auto-
matic activation.

Mirai down-
load server

This device includes an HTTP server hosting the Mirai bot binary. HTTP Always active.

Merlin C&C This device includes the Merlin cross-platform post-exploitation Command & Control server [191]. All the
devices compromised with the Merlin agent report to the Merlin C&C. Users can connect to this node to
control each bot.

HTTP, TLS,
HTTP/2,
QUIC

Manual or auto-
matic activation.

Scanner The scanner node includes the Nmap [192] and Masscan [193] network scanners. Additionally, Nmap can
probe MQTT brokers.

MQTT, TCP,
UDP

Manual or auto-
matic activation.

MQTT at-
tacks

The node includes the SlowTT [194] and MQTTSA [195] tools to perform attacks against MQTT. MQTT Manual or auto-
matic activation.

CoAP attacks The node includes the AMP-Research [196] tool to perform amplification attacks against CoAP devices. CoAP Manual or auto-
matic activation.

Metasploit It includes the Metasploit Framework [197] to perform attacks against MQTT. MQTT Manual or auto-
matic activation.

∗ Open-close: Each time the device needs to send data it opens a new connection to the cloud, sends the data and then closes the connection.
∗∗ Always-open: Opens a single connection with the cloud at the beginning and keeps it alive by periodically sending data and keep alive messages.
† Continuous: Device always active sending telemetry data periodically.
‡ Intermittent: Device is active for a period (sending telemetry data periodically) and inactive for another period (no telemetry, only background traffic).

72 CHAPTER 4. GOTHAM TESTBED

Table 4.3: Network Layer Device Templates.

Device Description

Switches Docker image with Open vSwitch [199] version 2.12.3.
Each switch has 16 network interfaces.

Backbone routers:
RCLOUD, RTHREAT,
RCITY

QEMU VMwith VyOS [200] version 1.3.0-rc6. OSPF pro-
tocol is used to configure the routing tables dynamically.

Edge routers:
RC1–5, RT1–3

QEMU VM with VyOS [200] version 1.3.0-rc6. The
routers are configured using static routing tables and
Proxy ARP is enabled.

Edge device configuration Each device instance created from the described tem-
plates can be configured by setting environment variables for the Docker containers.
These variables are set in the topology creation program. The configuration options
include the MQTT broker address or domain name, CoAP server address, MQTT
topic, MQTT username and password authentication, MQTT QoS values, enabling
TLS for MQTT or DTLS for CoAP, sleep times (mean value and random standard
deviation) for each thread or setting the active and inactive time periods to enable
and disable the telemetry thread temporarily. Additionally, all the IoT devices in-
clude the BusyBox [198] binary. To make some devices vulnerable to Mirai, the
scenario generator program configures some nodes with a username and password
combination found in Mirai’s brute forcing table, running the BusyBox Telnet server
and setting the login shell to the BusyBox shell.

4.3.2.2 Network layer devices

The information about the switches and routers used in the testbed is summarized
in Table 4.3. The configuration of all the routers is performed automatically by the
topology creation program. After completing the image installation, each router is
configured by executing a Bash script with all the necessary VyOS CLI commands.
All routers are provided with 512MB RAM, 1 virtual CPU, KVM acceleration and the
virtio para-virtualized network adapter to increase the performance of the network
adapters.

4.3.2.3 Cloud layer devices

The cloud layer comprises multiple MQTT brokers running differently configured
instances of the Eclipse Mosquitto [201] broker, CoAP clients based on the libcoap
library and IP camera streaming servers running the RTSP-simple-server [202] that
allows clients to publish and read audio and video streams. Additionally, it includes

4.3. IOT SCENARIO USE CASE 73

Table 4.4: Cloud Layer Device Templates.

Device template Description

MQTT broker
plain text

Docker with Eclipse Mosquitto [201] 1.6 in its default
configuration.

MQTT broker
plain text with
authentication

Docker with Eclipse Mosquitto [201] 1.6 configured with 2
username/password combinations to only accept authen-
ticated clients.

MQTT broker
TLS encryption

Docker with Eclipse Mosquitto [201] 2.0 configured with
X.509 certificates to enable encryption.

Combined cycle
CoAP client

Ubuntu Docker image with a libcoap [185] client request-
ing services provided by the Combined cycle IoT servers
from the edge layer. Can communicate in plain text or
encrypted using DTLS with pre-shared keys.

City power
CoAP client

Ubuntu Docker image with a libcoap [185] client request-
ing services provided by the City power IoT servers from
the edge layer. Can communicate in plain text or en-
crypted using DTLS with pre-shared keys.

IP camera
stream server

Alpine docker image. RTSP-simple-server [202] is in-
stalled and configured.

DNS Ubuntu Docker image. Dnsmasq [203] is installed and
configured to provide DNS services.

NTP Alpine Docker image. Chrony [204] is installed and con-
figured to provide NTP services.

DNS and NTP services used by most edge layer devices. The topology creation
program automatically configures the testbed-specific configuration parameters,
such as device addresses or DNS hosts and names. A description of the cloud layer
device templates is shown in Table 4.4.

4.3.3 Threat model and attacks

Here we detail the three threat actors included in the scenario, portrayed by three
crime families in Gotham: Maroni, Falcone and Calabrese. Each threat actor models
different malicious activities, which in conjunction, represent a comprehensive threat
model to the IoT.

74 CHAPTER 4. GOTHAM TESTBED

First, Maroni represents external attackers that perform automated actions to
scan, exploit and control IoT devices. Then, Falcone represents previously compro-
mised IoT devices by an unknown method (e.g., by insiders, manufacturers or supply
chain attacks) that connect to an external network controlled by the attacker. Finally,
Calabrese represents attacks specifically targeting some IoT protocol weaknesses.

While we include a diverse set of activities in this particular scenario, the testbed
scenario can be extended to include even more attacks depending on the interest of
researchers or to test new attacks as they are discovered.

4.3.3.1 Maroni crime family

This threat actor represents an attacker-controlled network that remotely scans,
attacks and compromises other devices to incorporate them into a botnet. The
devices in this threat actor include the four Mirai nodes in the RT1 network and the
single bot located at the cloud layer. All the nodes are based on binaries compiled
from the published Mirai source code [46]. See Section 2.2.1 for a description of
Mirai’s lifecycle and how the nodes interact with each other.

To adapt the malware to the closed testbed environment, several modifications
had to be made to the Mirai source code. All the modifications and details are
available in the testbed repository [31]. Briefly, the changes include: (i) replacing the
hardcoded DNS address (8.8.8.8) with the address of the DNS server in the scenario,
(ii) replacing the hardcoded loader address with the one used in the scenario, (iii)
removing C preprocessor directives to enable port scanning and launching attacks
when compiling in debug mode (to be able to see Mirai log messages), (iv) patching
the function to generate random IP addresses to include the ranges used in the
testbed and other minor changes such as (v) using Unix sockets instead of TCP to
open the database locally and (vi) fixing some errors in the database creation scripts.
The following is a list of the included malicious behavior:

• Periodic C&C communication: Mirai bots perform periodic communication
with both the C&C server and the loader server.

• Network scanning: Each Mirai bot scans the network in a pseudorandom
order sending TCP SYN packets to the 23 and 2323 ports.

• Brute forcing: When a potential victim is found during the network scanning
phase, the bot tries to brute force the victim’s Telnet credentials using a
hardcoded list of username and password combinations.

• Reporting: After a successful brute forcing, the Mirai bot sends the victim’s IP
address, port, username and password combination to the Mirai scan listener
server.

• Ingress tool transfer: For each vulnerable device listed in the listener server,
the loader program logs in and downloads the malware into each device.

4.3. IOT SCENARIO USE CASE 75

• Remote command execution: The Mirai C&C server can instruct the bots
to launch various attacks against the victims.

• Denial of service attacks: Mirai includes 10 DoS attack types, including
network and application layer attacks: generic UDP flood, UDP flood optimized
for higher speeds, flood against game servers running the Valve Source engine,
DNS flood, TCP SYN, TCP ACK attacks, TCP stomp flood, GRE IP flood, GRE
Ethernet flood and HTTP flood.

4.3.3.2 Falcone crime family

This threat actor represents a set of devices that have been previously compromised
but are still running by legitimate users inside the city zone network. The infection
vector is not relevant in this case; this could represent, for instance, supply chain
attacks, malware installed by the manufacturer or insider attacks. The attacker-
controlled node is a single Docker container running the Merlin [191] multi-platform
post-exploitation Command and Control (C&C) server, and the compromised devices
run the Merlin agent. See Section 2.2.2 for more details on Merlin. To generate
attacks against the victims, the Merlin server node from the scenario also includes
the hping3 [205] TCP/IP packet assembler and analyzer.

To increase the variety within the same attack categories, the currently imple-
mented attacks for this threat actor are DoS-based attacks similar to Mirai’s attacking
behavior as described in its source code [46] but implemented using hping3. However,
since the Merlin C&C allows the execution of arbitrary commands in the controlled
machines, it can be used as a generic tool to perform various attacks. The following
is a list of the currently performed malicious behavior and attacks:

• Periodic C&C communication: The Merlin C&C server is initialized and
starts listening for incoming connections. All the compromised nodes ex-
ecute the Merlin agent and connect to the server. The clients periodically
communicate with the server to keep alive the C&C channel.

• Ingress tool transfer: The C&C server transfers the hping3 binary into each
of the compromised devices. The tool is used to perform subsequent DoS
attacks against other targets in the network.

• Remote code execution: The server remotely executes commands into
the compromised machines to prepare the environment for the previously
uploaded hping3 binary.

• Denial of service attacks: The Merlin C&C server commands the compro-
mised devices to send various flooding attacks against a selected target. The
attacks include sending ICMP echo requests, UDP generic flood to different
random ports, TCP SYN and TCP ACK attacks.

76 CHAPTER 4. GOTHAM TESTBED

4.3.3.3 Calabrese crime family

This threat actor first performs network-wide scanning activities to identify all the
IoT devices in the testbed as a precursor to launching targeted attacks against the
devices that use the MQTT and CoAP protocols. The scanning is performed by the
Scanner node, which includes two different tools: Nmap [192] and Masscan [193].
Nmap can additionally be used to establish a connection to an MQTT broker to
listen and read all the messages being published by the clients. Attacks against the
MQTT broker are implemented using the MQTT attacks node, which includes the
MQTTSA [195] and SlowTT-Attack [194] tools, and the Metasploit node, which
includes the Metasploit Framework [197]. The attack against CoAP nodes is im-
plemented using code provided by AMP-Research [196]. The malicious behavior
performed by this threat actor includes:

• Network scans: Performs network-wide scans to identify and collect infor-
mation about all the available hosts in the testbed and the different services
they are running. It uses Nmap and Masscan.

• MQTT sniffing attack: Intercepts MQTT connect packets and searches for
credentials to connect to the MQTT broker. It uses the MQTTSA tool.

• MQTT brute force: Uses multiple wordlists containing common usernames
and passwords to brute force login credentials to the broker. It uses MQTTSA
and Metasploit for the attack, with wordlists also provided by Metasploit.

• MQTT information disclosure: For unauthenticated brokers, or after dis-
covering the credentials by sniffing or brute forcing, it reads all the messages
being published to an MQTT broker by subscribing to all data topics (#), con-
trol topics ($SYS) or only some specific topics. It uses Nmap and MQTTSA
tools.

• MQTT malformed data: Sends malformed packets to the broker in order to
trigger exceptions caused by errors in the server’s input validation methods.
It uses the MQTTSA tool.

• MQTT denial of service: First, it includes a slow DoS attack by creating a
high number of parallel connections to the broker and keeping them alive
indefinitely. Then, it saturates the broker by publishing large payloads with
many clients. It uses MQTTSA and SlowTT-Attack tools.

• CoAP amplification attack: The attacker sends a small request to a CoAP
server that generates a response payload larger than the request. The attacker
can abuse this by spoofing the source address, causing the response to be
directed to a victim. If this attack is rapidly repeated, it can cause a denial
of service on the victim, and since the traffic is reflected using legitimate
servers, it can be challenging to block by using simple blocklists. It uses the
AMP-Research tool.

4.3. IOT SCENARIO USE CASE 77

R
R

R

S

S

S

S

S
S
S

S

R

S
R

S

R

S

R

S

R S
R

SR
S

S

S
S

S

S

S

S

S

SSSS

S

S
S

RCLOUD

RTHREAT

RCITY

RT1

RT2
RT3

RC1
RC2

RC3

RC4

Threat netw
ork

C
loud netw

ork

C
ity

 n
et

w
or

k

Figure 4.4: The full network topology of the scenario as an undirected graph. ® and

Ⓢ represent routers and switches, respectively, and the colored circles represent

different instances of edge and cloud layer devices.

The increase in threats that specifically target exposed MQTT and CoAP devices
has been raised in an industry report in which they scan and find numerous exposed
and vulnerable production systems and show how those attacks operate [206].

4.3.4 Full network topology

The complete topology of the emulated scenario, including all instances of edge,
network and cloud devices, is shown in Figure 4.4. There are 100 edge and cloud
devices, 30 switches and 10 routers.

The devices at the cloud layer include: 1 DNS, 1 NTP, 1 Mirai bot, 5 MQTT
brokers (3 plain text, 1 with authentication and 1 with TLS), 2 stream servers, 1 City
power CoAP client and 2 Combined cycle CoAP clients (plain text and with DTLS
encryption).

Regarding the threat zone, the devices connected to RT1 include the Mirai-related
nodes except for the Mirai bot (located at the cloud layer), for a total of 4 devices.
RT2 includes 1 Merlin C&C server, and RT3 includes 1 Scanner, 1 MQTT attacker, 1
CoAP attacker and 1 Metasploit node.

78 CHAPTER 4. GOTHAM TESTBED

The city zone includes most of the devices. The natural history museum network
(RC1) comprises 5 Building monitors communicating in plain text and without
authentication, 2 IP cameras and 2 IP camera consumers. Bristol neighborhood (RC2)
contains 5 Domotic monitors transmitting in plain text and without authentication,
2 IP cameras, 1 Air quality and 1 City power. The Rennington steel network (RC3)
is composed of 15 Cooler motor nodes (10 communicating in plain text but with
authentication and 5 using TLS), 15 Predictive maintenance nodes (10 in plain
text with authentication and 5 encrypted with TLS). The Gotham Light and Power
network (RC4) includes 15 Combined cycle nodes (10 communicating in plain text
without authentication, 5 encrypted with DTLS), 15 Hydraulic system nodes (10 in
plain text and without authentication and 5 with TLS).

4.4 Evaluation

This section presents the discussion to validate the features from Figure 4.1 based on
the design of the testbed, the behavior of the included nodes and various experiments.

4.4.1 Reproducibility

As mentioned in sections 4.2 and 4.3, the template creator builds node templates
using Dockerfiles that describe all the dependencies, configuration variables and
behavior in a reproducible way (R1). To provide reproducible attack scripts (R2), the
scenario generator can launch attacks by running programs in arbitrary nodes. The
network topology builder is a program that automatically reproduces the scenario
topology (R3) after its execution. The use of formal languages to describe devices,
behavior and topology allows an automated and reproducible setup to replicate the
scenario.

4.4.2 Communication link emulation

IoT devices may be connected to the network via links of varying quality that should
be emulated in the testbed. Here we are evaluating the link emulation fidelity for
TCP and UDP traffic in terms of bandwidth shaping. We first select two edge layer
nodes connected through a network switch from the testbed. The first experiment
consists of limiting the network rate of the first node and measuring the maximum
bitrate using the iPerf3 [207] TCP test. One of the nodes runs iPerf3 in server mode,
while the other runs it in client mode. The client limits the link rate using tc to 1, 10,
25, 50, 75 and 100 Mbit/s 1. iPerf3 runs for 10 seconds for each rate limit, and each
measure is repeated 20 times. The results are shown in Table 4.5 with the measured
mean bitrate, error and the coefficient of variation.

In the second experiment, iPerf3 UDP traffic performance is tested by sending
UDP data at fixed bandwidths from the first node and measuring it at the receiver

1For example: tc qdisc add dev eth0 root netem rate 100mbit

4.4. EVALUATION 79

Table 4.5: Link Emulation Fidelity Using iPerf3 in TCP Mode.

Rate limit Measured Error (%) CV (%)

100 Mbit/s 93.739 6.261 0.695
75 Mbit/s 71.502 4.664 0.501
50 Mbit/s 47.757 4.486 0.755
25 Mbit/s 23.867 4.532 0.379
10 Mbit/s 9.551 4.490 0.296
1 Mbit/s 0.957 4.300 0.044

0 20 40 60 80 100 120
Sender bitrate (Mbits/s)

0

50

100

R
ec

ei
ve

r b
itr

at
e

(M
bi

ts
/s

)

512 bytes
1024 bytes
1280 bytes
1448 bytes

Figure 4.5: Link emulation fidelity using iperf3 sending udp data to a 100Mbits/s

limited node.

end. The link rate from the sender node to the switch is limited to 100 Mbit/s. The
methodology is similar to the network performance test done in [150]. The generated
traffic ranges from 1 Mbit/s up to 120 Mbit/s, and it is repeated for UDP packet sizes
from 512 bytes to 1448 bytes. The results are shown in Figure 4.5. For large packet
sizes, the curve resembles the ideal behavior: a line with a slope of one up to the
network link maximum rate limit and a horizontal line for faster bitrates. There are
significant packet losses for smaller packet sizes before reaching the 100 Mbit/s link
limit; the saturation point for each packet size depends on the hardware running
the GNS3 emulator. However, the traffic rates generated by the emulated edge layer
nodes all fall in the linear region of the curve.

Using the built-in GNS3 link emulation tools and installing tc into all the nodes
to increase the link emulation features in the proposed testbed, the (F4) feature is
satisfied.

4.4.3 Hardware resource emulation

Due to hardware heterogeneity, IoT devices can vary greatly in terms of compu-
tational capabilities. To evaluate the fidelity of hardware resource emulation of
Docker-based nodes, we run the stress-ng [208] tool inside a container while impos-
ing CPU constraints using the Docker API. The container is limited to a single core,
and the available CPU resources shared with the container are limited from 10% to

80 CHAPTER 4. GOTHAM TESTBED

0 1000 2000 3000
Time (s)

0
20
40
60
80

100

C
PU

 u
sa

ge
 (%

)

10 20 30 40 50 60 70 80 90 100
CPU limit (%)

2000

4000

6000

Sc
or

e
(a

rb
. u

ni
t)

Figure 4.6: Hardware resource emulation fidelity. Top: actual CPU usage for varying

CPU constraints. Bottom: stress-ng CPU benchmark scores under different CPU

constraints.

100% in 10% increments. For each CPU resource limit, the stress-ng runs multiple
CPU stressing methods for 30 seconds and repeated 11 times. Figure 4.6 (top) shows
the total CPU usage of the core where the container is pinned for the entire duration
of the experiment. The staircase pattern shows that the container does not use more
CPU resources than the imposed limit. The slight increment is due to other processes
outside the container running in the same CPU core. Figure 4.6 (bottom) depicts
the obtained stress-ng benchmarking scores for each CPU limit. The exact value
of the score is hardware dependent; however, it clearly shows a linear relationship
between the benchmarking scores and CPU limits. The testbed can emulate different
hardware resources (F1) using the provided features by the Docker engine.

4.4.4 Testbed scalability

The scalability is measured in terms of the memory consumption required to in-
stantiate all the scenario nodes from Figure 4.4. The additional memory usage as a
function of the number of running QEMU node instances (VyOS routers) is shown in
Figure 4.7. To measure the memory usage for the Docker-based nodes, a new node is
started every 5 seconds, beginning from the switches, followed by the nodes acting as
servers, and finally, the rest of the nodes (Figure 4.8). The jumps in memory are due
to cached memory. Both figures show a linear trend for memory usage, which allows
estimating memory requirements depending on the desired scale of the scenario. In

4.4. EVALUATION 81

0 1 2 3 4 5 6 7 8 9 10
Number of QEMU nodes

0

2000

4000

6000
M

em
or

y
us

ag
e

(M
B

)

Figure 4.7: Memory scalability for QEMU nodes.

0 25 50 75 100 125
Number of Docker nodes

0

2000

4000

M
em

or
y

us
ag

e
(M

B
)

run 1
run 2
run 3
run 4

Figure 4.8: Memory scalability for Docker nodes.

total, for the scale presented in the scenario from Figure 4.4, slightly more than 10Gb
of memory is required, allowing the emulation of medium to large-scale deployments
even on a single machine (S1).

The presented Gotham testbed scenario is currently implemented using a single
GNS3 instance running on a single machine, which can be a limiting factor in
emulating scenarios with thousands of nodes based on the scalability measures
shown here. However, GNS3 is not restricted to a single instance. Multiple GNS3
servers can be connected to one another through a physical network that acts as
one large network to achieve higher scalability to create even larger scenarios.

4.4.5 Measurability

GNS3 allows packet capturing on any link connected between nodes of any type
(independent of the underlying emulation engine) (M1). The user can also save
artifacts (log files, binaries, etc.) (M2) by connecting to any node, allowing the
creation of datasets that mix network and host-level data sources. The following
experiments about normal and attack scenarios show examples of measurability.

To generate datasets from the testbed, the user can define in the scenario genera-
tor module all the links where the network traffic will be captured. To extract device
log data, the user can leverage the docker API to get arbitrary files or command
output inside any container, which can also be automated at the scenario generator
script. The data capturing can be started and stopped at any time. All raw network

82 CHAPTER 4. GOTHAM TESTBED

Table 4.6: List of Identified Protocols After One Hour of Normal IoT Traffic Capture

(No Attacks) at the Link Between RCLOUD and SCLOUD.

Service Packets (%)

rtp 87.638
tcp 5.384
mqtt 2.581
tls 1.728
dns 1.533
ntp 0.278
rtcp 0.265

Service Packets (%)

dtls 0.180
icmp 0.139
coap 0.121
arp 0.120
rtsp 0.020
icmpv6 0.009
sdp 0.002

traces and logs generated by the testbed can then be processed depending on the
use case.

An example of this use case will be explored in the contributions related to
Chapter 5, where multiple network traces will be captured from the devices in this
scenario to perform FL experiments.

4.4.6 Normal IoT behavior scenario

This scenario allows us first to check the ability to deploy and run multiple devices
communicating with different protocols and, secondly, to capture and verify network
traffic data measurements. We start all the nodes included in the scenario (Figure 4.4)
except for the attackers. As explained in Section 4.3, to ensure device behavior fidelity
(F2), the nodes run real production libraries to send the telemetry and also create
diverse background traffic, including ICMP, DNS and NTP requests. The number
of emulated devices and networking equipment included in the scenario allows the
deployment of a sufficiently complex network topology that meets the (F5) feature.
Additionally, the inclusion of multiple services with different configurations in the
topology complies with the (H3) feature.

To verify the generated protocol diversity, we capture network traffic data for
one hour at the link between RCLOUD and SCLOUD, and use Wireshark’s [209]
dissectors to identify the list of protocols and packet volume, as shown in Table 4.6.
The traffic related to the IP cameras and stream consumer devices generate the
largest number of packets due to the high volume of data transmitted compared to
the devices using lighter MQTT and CoAP protocols. The currently included devices
generate a varied protocol diversity, which satisfies (H1) for the purposes of the
scenario.

4.4.7 Attack behavior scenario

Here we validate the ability to execute attacks from the included threat models
in the scenario, and measure the generated network traffic and logs. The attack
scenario is prepared by making 24 edge layer nodes vulnerable to Mirai (setting

4.4. EVALUATION 83

0 50 100 150 200 250 300
Time (s)

67.5

70.0

72.5
Le

ng
th

 (b
yt

es
) Direction

bot -> cnc
cnc -> bot

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

Le
ng

th
 (b

yt
es

)

Figure 4.9: Periodic network packet communication between a bot and its C&C

server. Top: Mirai. Bottom: Merlin.

appropriate usernames and passwords, starting BusyBox telnet server and changing
the login shell to BusyBox sh; all automatically performed by the scenario generator
module) and running the Mirai bot from the Maroni threat actor. Another node
is compromised by installing the Merlin bot agent and running the Merlin C&C
from the Falcone threat actor. After executing the Mirai bot and the Merlin agent
programs, the periodic communications with their respective C&C can be observed
in Figure 4.9 (top) for Mirai and Figure 4.9 (bottom) for Merlin. After the connection
with the C&C is established, the Mirai bot starts the scanning phase. Figure 4.10
shows some successful brute forcing attempts reported to the Mirai scan listener
node. Besides the network traffic, indications of the Mirai bot activity can be found,
for instance, by inspecting the DNS logs inside the DNS server node. At this stage,
the user can interact (manually or programmatically) with the corresponding C&C
servers to perform the attacks described in Section 4.3.3.

Regarding theCalabrese threat actor, Nmap andMasscan are used to perform both
horizontal and vertical scans to any network in the testbed. Attacks can be launched
against the identifiedMQTT brokers using theMQTT attacks, Metasploit and Scanner
nodes. For instance, a successful brute forcing attack can be performed against the
authenticated MQTT broker using the word lists provided by the Metasploit node.
The CoAP attack node can leverage any CoAP server in the testbed to launch an
amplification attack against a victim. The CoAP amplification attack sends a GET
request to the .well-known/core resource with a spoofed source address to the
server, which generates a response with a bigger payload directed to the victim.

84 CHAPTER 4. GOTHAM TESTBED

Figure 4.10: Mirai scan listener reports.

The request generates a 21 bytes CoAP payload and response of around 430 bytes
(depending on the server), implying an amplification factor of approximately 20.

The included real botnet and the red-teaming tools can be launched against
various targets in the testbed (F3). Also, by including overlapping tools that perform
similar attacks using different implementations, the attack behavior diversity (H2)
is achieved.

4.5 Discussion

In this chapter, we have described one of the contributions of this thesis, the Gotham
testbed: a security testbed that builds upon the GNS3 network emulator to provide a
reproducible and flexible testbed that allows the creation of security scenarios to test
attacks, defenses or extract datasets for ML model training. To generate real network
traffic, we are leveraging QEMU-based VMs and Docker-based containerization tech-
nology to implement a scenario composed of emulated IoT/IIoT devices, servers and
network equipment that run real production libraries, network switching software
and routing operating systems as well as real malware samples. The implemented
scenario comprises more than 30 different emulated device templates. The topology
definition, creation and execution consist of several scripts that automatically in-
stantiate and configure 140 nodes and set various runtime options, such as hardware
limits and network link shaping.

The presented testbed has some potential limitations and considerations arising
from the architectural design choices and the way in which scenarios are created.
Currently, GNS3 does not directly support the emulation of wireless physical links
and protocols, which can limit its use for low-power wireless sensor network se-
curity research. Similarly, while the simulation of IoT node mobility is not directly
supported in GNS3, the Gotham testbed can simulate network quality that varies
over time by periodically changing network link properties for certain nodes using
the scenario generator script. To overcome these limitations, future work can explore
the integration of the Gotham testbed with other lower-level network simulators
with wireless simulation capabilities, such as ns-3.

Another consideration regarding the creation of different scenarios is the number
of configuration steps a user needs to perform to integrate new IoT devices, servers,

4.5. DISCUSSION 85

network equipment or malware nodes. The configuration includes steps such as
configuring routers, modifying the source code of legitimate or malware applications,
recompiling them, and creating Docker images. Most of the nodes included in the
scenario described in this chapter are independent and can be directly reused for
different scenarios. However, other nodes can show a higher coupling between the
node’s behavior and the scenario. For example, the Mirai binary in the Mirai bot
node includes some hardcoded values that are scenario specific. Nevertheless, due
to the reproducibility property of the Gotham testbed, those nodes can be rebuilt to
adapt them to different scenarios with minimal configuration changes. However, for
this to be possible, a user creating new nodes must be careful and use good practices
to maintain the reproducibility property and create flexible nodes that can run under
different scenarios.

Regarding security considerations of the testbed itself, the user should be aware
that, by default, GNS3 runs Docker containers in privileged mode. This detail
could open the way for Docker-aware malware to escape the container. In such
cases, or when unknown malware binaries are to be integrated into the scenario
topology, the user should carefully consider the emulation engine to run the node
to properly contain the malware, for example, using QEMU-based VMs instead of
Docker containers and additionally hardening or isolating the machine(s) where the
GNS3 cluster is running.

While the emulation of some scenarios and attacks might also be achieved using
a simpler topology and with fewer nodes than in the scenario shown in this chapter,
the capability of the Gotham testbed to emulate complex scenarios that represent
real-world network deployments can have multiple benefits. First, the fidelity to
emulate complex topologies and node behavior allows the creation of new scenarios
that act as digital twins that reflect real network deployments. Organizations can
build scenarios to evaluate solutions before using them in production systems, use
the testbed as a cyber range and generate relevant network/log datasets for model
training instead of solely relying on publicly available datasets to reduce the gap
between the experimental and deployment environments. Secondly, using a complex
scenario that includes heterogeneous nodes located at multiple network segments
opens up the possibility of using the testbed to capture data at different network links
for testing new algorithms for distributed computation, such as federated learning,
which is precisely the topic we are going to explore in the next chapter.

Gotham can be extended by increasing the included library of devices, attackers,
scenarios, and for sure, using it as a platform to train, implement or validate super-
heroes that react against the attacks from threat actors. We hope that instead of only
sharing static datasets for network security that are difficult to adapt for different
scenarios and might get outdated, researchers and practitioners can use and build
upon the testbed to create and share other complex scenarios for network security
that allows the dynamic creation of new datasets tailored to the network setting of
interest.

CHAPTER 5
Clustered federated learning for

anomaly detection in
heterogeneous IoT networks

In Chapter 3, we discussed the gap regarding the Overreliance on labeled data (3.9.1),
where most proposals adopt supervised learning techniques to develop IDSs, even
though it might be infeasible in practical settings as labeling network traffic data is
costly and time-consuming. We also highlighted the Lack of heterogeneity consider-
ations (3.9.4) in many works that develop FL-based IDSs for IoT. These issues have
to be taken into account since IoT environments are usually heterogeneous, and
FL presents convergence problems in these cases. In many works in this field, the
heterogeneity of IoT environments is not considered, or they use manual or heuristic
methods that are not integrated into the FL process.

To address the described issues, in this chapter we propose a FL architecture
for training anomaly-based IDS in large networks of heterogeneous IoT devices. To
aggregate knowledge from all the devices, the system will leverage the FL framework
to collaboratively train the anomaly detection models between multiple participants
without sending each device’s local data, thus reducing network overhead and
tackling data isolation and privacy considerations.

In particular, to address the mentioned global model convergence problems
that arise in typical FL settings with heterogeneous clients, we propose a clustered
FL process that can be divided into two steps. First, before the local models are
aggregated in the initial FL round, the local partially trained models from all the
clients are clustered in a fully unsupervised way based on similarities between model
parameters, following the hypothesis that clients with similar data distributions
will converge towards models with similar parameter values. In this step, each
client is assigned to a cluster center. This is related to hypothesis H.4 described in

87

88 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

Section 1.2.2. Then, an independent FL training process is started for each identified
cluster of devices.

The contributions of this chapter are related to objectives O.1 and O.3, and they
can be summarized as follows:

• We propose and test a clustered FL architecture for unsupervised anomaly
detection IDSmodel training applied to a network of heterogeneous IoT devices
(see Section 5.1). We test and optimize different FL aggregation functions. The
detection model is based on autoencoders trained on benign instances of IoT
network traffic data to model their normal behavior. Attack traces are not used
for training, only for evaluation; hence, a labeled attack dataset is unnecessary
for model training.

• Wepropose an unsupervisedmodel fingerprinting for device clusteringmethod
to address global model convergence problems in heterogeneous FL settings.
The method is performed on the local model updates; thus, there is no need to
send additional metadata to the FL server, incorporate external fingerprinting
tools or perform manual clustering. The method is fully integrated into the FL
pipeline and does not need human intervention.

• We evaluate the clustered FL architecture on the emulated network scenario
based on the Gotham testbed from Chapter 4. The data generation and collec-
tion setup is detailed in Section 5.2. Section 5.3 describes the implementation
methodology of the experiments.

• We provide experimental results for the trained FL models in Section 5.4.
Including comparisons with a state-of-the-art approach andwith non-clustered
FL methods.

5.1 Proposed system model

This section first shows a high-level overview of the proposed system architecture
and the targeted deployment setting. Then, we present the proposed clustered
FL architecture, describing our contributions on top of the standard FL process to
include the integrated model fingerprinting for the device clustering step. We finally
have a brief review of autoencoder neural networks for anomaly detection.

5.1.1 Deployment setting and architecture

The proposed architecture to train the IDS is depicted in Figure 5.1. It comprises
many clients and a central aggregation server and also shows potential attackers.
This architecture is similar to the diagram shown in Figure 2.4; however, Figure 5.1
indicates the tasks done by the clients and the central server. All the model fin-
gerprinting for device clustering and the per-cluster model aggregation steps are
performed only by the server.

5.1. PROPOSED SYSTEM MODEL 89

Federated learning
aggregation server

Clustered model
aggregation

Model fingerprinting
and device clustering

Global ML model
initialization

ML model/metadata
reception. Global ML

model distribution

IoT device 1

ML model
local training

Local dataset

ML and metadata
upload / download

Feature extraction

IoT device 2

ML model
local training

Local dataset

ML and metadata
upload / download

Feature extraction

IoT device n

ML model
local training

Local dataset

ML and metadata
upload / download

Feature extraction

InternetAttacker

Cloud

Legend

Federated learning data

IoT normal operational data

Attacker traffic

Figure 5.1: Proposed system architecture. Each IoT device (FL clients) holds a copy of

the ML model for local training and inference. The FL training process is mediated

by the aggregation server. The FL aggregation server can also be part of the IoT

cloud, but here it is shown separately for clarity.

90 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

5.1.1.1 Clients

The proposed system is devised to operate in a large network of heterogeneous IoT
devices such as gateways, CPS and industrial machines that communicate using
different protocols. Those devices can be located in different network segments or
geographically distributed, which may influence their behavior. The devices are
constantly sending/receiving data to/from the cloud layer.

Each device is considered a client in the FL process. They are responsible for
capturing relevant data, local ML model training, and model inference for anomaly
detection after the training is completed. No training data is transmitted to the
aggregation server, only model parameters and minimal metadata relevant to the FL
process. Devices are expected to perform lightweight ML tasks, but for low-powered
IoT devices such as sensors and actuators, the system is expected to be deployed
at the hub or gateway level. In this work, we prioritize the use of lightweight ML
models for anomaly detection to limit the computational overhead during model
training or inference.

5.1.1.2 Aggregation server

It coordinates all the FL training process by initializing and distributing the model
and training hyperparameters to the clients, receiving model updates from the clients,
performing the model fingerprinting and device clustering, running the per cluster
aggregation of the received models and sending the corresponding aggregated global
model to each client. These steps are explained in the next subsection.

5.1.1.3 Attackers

In this chapter, we consider two primary threat models executed by the three threat
actors presented in the previous Chapter 4 related to the IoT scenario implemented
with the Gotham testbed. The first one considers external actors that remotely
scan the IoT devices in the network, find vulnerable devices to exploit and remotely
compromise them. The second assumes a local adversary compromising one or many
IoT devices within the protected network and leveraging them to launch attacks
against other devices in the same network or target external victims. In section 5.2,
we will detail the performed attacks and malicious behaviors.

5.1.2 Clustered federated learning process for heterogeneous
devices

For the FL deployment, we consider a typical cross-device setting with a large
number of devices and horizontal data partitioning (see Section 2.5.2). However,
due to availability guarantees required by many IoT devices, especially in industrial
settings, we expect most devices to participate in the FL training process. This allows
the server to maintain a persistent state for each client to perform the clustering
step. In this work, we assume that no IoT device is infected prior to the FL model

5.1. PROPOSED SYSTEM MODEL 91

Algorithm 5.1: Generalized federated learning process. The ClientOpt,

ServerOpt, their respective learning rates (𝜂, 𝜂𝑠) and the pseudogradient

concepts are explained in detail by Reddi et al. [97]

1 Function LocalTrain(w, epochs):
2 for local epoch e← 1 to epochs do
3 for batch b in local training data do
4 g← compute gradient
5 w← ClientOpt(w, g, 𝜂, e)
6 end
7 end
8 return w, number of local training samples
9

Input: A set of clients C, initialized model W0
Result: Trained global model WG

10 E← number of local epochs
11 R← total federated learning rounds
12 WG ←W0
13 for federated learning round t = 1, 2, . . . , R do
14 foreach client 𝑐 ∈ C in parallel do
15 receive WG from the server
16 Wc, 𝑛𝑐 ← LocalTrain(WG, E)
17 local model delta Δ𝑐 ←Wc −WG
18 send (Δ𝑐 , 𝑛𝑐) to the server
19 end
20 𝑛 ← ∑

𝑖∈C 𝑛𝑖
21 pseudogradient gG ← −

∑
𝑖∈C

𝑛𝑖
𝑛
Δ𝑖

22 WG ← ServerOpt(WG, gG, 𝜂𝑠 , 𝑡)
23 end

training and that none of them behave in an adversarial manner. Model poisoning
attacks against FL are outside the scope of this thesis, even if already considered in
some academic works, as mentioned in Section 3.3.

Our clustered FL builds upon the generalized FL setting proposed by Reddi et
al. [97]. This generalized FL setting, described in Algorithm 5.1, improves over
standard FL optimization methods such as the popular Federated Averaging (Fe-
dAvg) [18] by including adaptive optimization methods for the local model training
at each client and also at the server level during the model aggregation process.

The proposed clustered FL is described in Algorithm 5.2. First, the aggregation
server initializes the model weights W0 and selects the training hyperparameters.
Then, the server sends those values to all the participating clients. In the next step,
each client partially trainsW0 using only its local data for 𝜖 epochs. The local training
is performed using the ClientOpt [97] gradient-based optimizer to minimize the

92 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

Algorithm 5.2: Proposed clustered federated learning for heterogeneous

clients. The LocalTrain and FederatedLearning functions are described
in Algorithm 5.1.

1 Function ModelFingerprinting(𝑤𝑒𝑖𝑔ℎ𝑡_𝑙𝑖𝑠𝑡):
2 W ← empty list
3 for w in𝑤𝑒𝑖𝑔ℎ𝑡_𝑙𝑖𝑠𝑡 do
4 append flattened w toW
5 end
6 W ← apply PCA dimensionality reduction toW
7 S ← empty list
8 L ← empty list
9 for n← 2 to max number of clusters do
10 k-means clustering ofW into n clusters
11 append clustering labels to L
12 append clustering quality score to S
13 end
14 𝐾 ← number of clusters with optimal score in S
15 return labels from L corresponding to 𝑛 = 𝐾 , 𝐾
16

Input: A set of clients C
Result: A set of global models

17 initialize model W0 on server
18 𝜖 ← number of local epochs for clustering
19 foreach client c ∈ C in parallel do
20 receive W0 from the server
21 Wc, 𝑛𝑐 ← LocalTrain(W0, 𝜖)
22 send Wc to the server
23 end
24 W ← list of all the received Wc∈C
25 L, 𝐾 ← ModelFingerprinting(W)
26 foreach label 𝑘 ∈ {1, . . . , 𝐾} in parallel do
27 C𝑘 ← subset of clients ∈ C with labels L = 𝑘

28 WC=k
G ← average ofW with labels L = 𝑘

29 WC=k
G ←FederatedLearning(C𝑘 ,WC=k

G)
30 end

local training loss. ClientOpt is an abstraction for optimizers such as SGD, Adam
or RMSprop. After the local training, each client sends the partially trained model to
the aggregation server. The aggregation server collects all the local models and uses
them to group the clients into 𝐾 clusters based on similarities between the trained
model parameters (weights and biases). The grouping process is discussed in more
detail in the next subsection.

5.1. PROPOSED SYSTEM MODEL 93

For each identified cluster 𝑘 , an independent FL process is executed in parallel
(Algorithm 5.1). We perform multiple FL rounds (R rounds) until the global model
for each cluster converges, resulting in a set of 𝐾 global models. At each round, the
clients transmit the difference between the weights from the received global model at
the start of the round and the locally updated model weights. The server uses these
weight deltas to compute what the authors in [97] call as pseudo-gradient, i.e., the
negative of the averaged model deltas. The pseudo-gradient, along with the server
learning rate 𝜂𝑠 is used for the model aggregation process, which is generalized in
the ServerOpt function as shown in Algorithm 5.1. The ClientOpt and ServerOpt
abstraction allows incorporating momentum or other adaptive optimization methods
to both client-side training and server-side model aggregation compared to the
FedAvg algorithm [97]. The popular FedAvg aggregation method can be considered
a special case where ServerOpt is set to SGD with server learning rate 𝜂𝑠 = 1.0.

5.1.3 Model fingerprinting for device clustering

In a network of heterogeneous devices, the underlying data distribution might not
be IID. In a FL setting, a single global model complex enough could be able to fit
the data properly; however, training a complex model in IoT devices might not
be possible due to hardware constraints. Consequently, we will group the devices
with similar behavior to create a set of global models specifically tailored to each
group of devices. With this method, each IoT device is assigned a group label in an
unsupervised manner that is going to be used during the FL process.

The main advantages of using the locally trained model updates as inputs for
the clustering method are that i) there is no need to integrate any external device
fingerprinting algorithms or manual methods, ii) does not require waiting for a
certain amount of time to identify the devices before starting the model training
process and iii) everything is completely integrated into the FL training pipeline.

As detailed in Algorithm 5.2, the first step for the model fingerprinting consists
of partially training each local model for 𝜖 epochs, and sending the partially trained
model to the aggregation server. Then, the server flattens the parameters (weights
and biases) of each model and performs Principal Component Analysis (PCA) to
reduce the dimensionality of the parameters, as explained in Section 2.4.2. The
reduced dimensionality helps speed up the computation of the clustering step and
can limit the problems of clustering high dimensionality data in models with a
considerable number of parameters. We use the k-means algorithm (see Section 2.4.3)
with the k-means++ initialization scheme [210] to cluster the reduced dimensionality
data. The hypothesis is that clients with similar data distributions will converge to
models with similar parameter (weights and biases) values, provided that all clients
start from the same initial random model W0.

Due to the unsupervised nature of our proposal, we will use internal clustering
validation metrics to select an optimal value for the number of clusters 𝐾 . Internal
validation metrics do not rely on any external data and are mainly based on measures
such as the compactness of samples within the same cluster and separation between

94 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

different clusters [71]. Specifically, we will evaluate the following internal validation
metrics: Silhouette, Davies–Bouldin and S_Dbw scores to select the value of 𝐾 . For
more details on those internal clustering validation metrics, refer to Section 2.4.4.2.

5.1.4 Anomaly detection model

We are going to employ autoencoder neural networks as the anomaly detection
models, which have already been used in similar domains for network-based attack
detection [70], [154]. We are going to prioritize lightweight autoencoders (small
number of parameters), which makes them especially suitable for our deployment
scenario because it not only requires less computational load for model training
or inference in constrained devices, but also reduces the network traffic volume
between the devices and the aggregation server during the FL rounds due to less
number of parameters compared to more complex models.

Autoencoders are unsupervised neural networks that attempt to replicate the
input data on their output layer under some constraints to avoid learning the identity
function. The autoencoder is composed of two networks, the encoder and the decoder.
The encoder takes the input features x ∈ R𝑛 and transforms them into a hidden
encoded space h ∈ R𝑒 , where 𝑒 < 𝑛 to impose a constraint to avoid learning the
identity function. Then, the decoder transforms h into x′ ∈ R𝑛 . The objective of
the autoencoder is to minimize the mean squared error (MSE, reconstruction error)
between x and x′ as in equation (5.1). The autoencoder is trained using the loss
function shown in equation (5.2), which in addition to the MSE, it includes the 𝐿2
regularization term, where w refers to all the parameters of the model, and 𝜆 is a
number that weights the contribution of the regularization.

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝑥 ′𝑖)2. (5.1)

L = 𝑀𝑆𝐸 + 𝜆
∑︁
𝑖

𝑤2
𝑖 (5.2)

We train the autoencoder using samples of normal (legitimate or benign) IoT
network traffic which does not contain attacks; this way, the model learns a repre-
sentation of the normal behavior of these devices. Once the autoencoder is trained
(using the proposed FL approach), it is evaluated on network traces containing legit-
imate and attack samples. The reconstruction error between the input and output
layers is used as a measure of the anomaly level in the new incoming data. New
network samples that came from a similar distribution as the training data will have
a small reconstruction error; however, we expect that attack samples diverge from
the trained data distribution, and thus, the reconstruction error will be higher.

5.2. IOT TESTBED AND EXPERIMENTAL SETUP 95

Table 5.1: Included IoT/IIoT device templates in the testbed scenario.

Template name Instances Main protocol

Air quality 1 MQTT (plain)
Building monitor 5 MQTT (plain)
City power 1 CoAP (plain)
Combined cycle 10 CoAP (plain)
Combined cycle tls 5 CoAP (DTLS)
Cooler motor 15 MQTT (plain and TLS)
Domotic monitor 5 MQTT (plain)
Hydraulic system 15 MQTT (plan and TLS)
IP camera street 2 RTSP
IP camera museum 2 RTSP
IP camera consumer 2 RTSP
Predictive maintenance 15 MQTT (plain and TLS)

5.2 IoT testbed and experimental setup

In this section, we present the experimental setup, which is based on the Gotham
testbed scenario from Chapter 4. We begin by briefly recalling the different IoT
nodes emulated in the scenario used to extract the distributed network dataset and
implement the experiments. We then continue to detail the training and validation
network traffic datasets generated with the testbed. For the validation datasets, we
include a list of the malicious activities performed according to our threat model.

5.2.1 IoT testbed

As previously stated, the experimental setup is based on the default case study
scenario presented in Section 4.3, which is composed of many heterogeneous nodes.
The scenario comprises threemain networks connected by 10 routers and 30 switches:
the city network, the cloud network and the threat network.

A summary of the emulated IoT/IIoT devices in the city network is shown in
Table 5.1, described previously in Section 4.3.2.1. In total, there are 12 device templates
to simulate a heterogeneous environment. The Gotham testbed scenario includes a
total of 78 instances of those device templates, each having small random deviations
and jitter following a normal distribution in the periodicity of the communications.
Note that initially, in Table 4.2 from Section 4.3.2.1, we list ten edge layer templates
instead of the 12 listed in Table 5.1. This is because Table 5.1 separates into different
templates the two IP camera clients (street and museum) and the Combined cycle
(plain text and DTLS encrypted) ones.

The distributed dataset generated by the testbed is highly non-IID due to all
the different client behaviors implemented in it. It primarily includes high feature
distribution skew and data quantity skew (all clients do not generate the same
amount of data). Additionally, due to the data being network traces, samples can be

96 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

non-independent. The described behaviors are some of the common ways in which
data is non-IID, as described by Kairouz et al. [29].

5.2.1.1 Performed attacks

To launch realistic attacks, we leverage the three threat actors from the testbed
scenario described in Section 4.3.3.

Maroni crime family All the nodes in this threat actor allow the execution of
the whole Mirai malware lifecycle. Refer to Section 4.3.3.1 for more details. We use
this threat actor to perform the following attack activities:

• (A1) Mirai C&C communication: Includes the periodic communication
between the Mirai bots and the Mirai C&C server.

• (A2) Mirai network scanning: Each bot infected with Mirai scans the net-
work in a pseudorandom order sending TCP SYN packets to the Telnet 23 and
2323 ports.

• (A3) Mirai brute forcing: If the Mirai scanner detects an open telnet port, it
tries to brute force the credentials using a list of common IoT usernames and
passwords.

• (A4) Mirai reporting: After a successful brute forcing, the Mirai bot reports
the victim’s IP address, port, username and password to the Mirai scan listener.

• (A5) Mirai ingress tool transfer: Includes the infection phase of Mirai. The
Mirai loader connects to vulnerable nodes listed in the Mirai scan listener
server and proceeds to download and execute the malware.

• (A6) Mirai remote command execution: The Mirai bot master connects to
the Mirai C&C and sends commands to the bots to perform subsequent DoS
attacks against other targets in the network.

• (A7) Mirai denial of service attacks: The following list enumerates the
performed DoS attacks by the Mirai bots against the targets (it does not include
all attack types supported by Mirai): (i) UDP plain attack, (ii) UDP attack, (iii)
Valve Source engine attack, (iv) DNS attack, (v) TCP ACK attack, (vi) TCP
SYN attack, (vii) GRE IP attack, (viii) GRE Ethernet attack. All attacks were
performed for a duration of 10s. All attacks targeted other IoT devices in the
city network, except for the DNS attack, which targeted the DNS server at the
cloud network.

5.2. IOT TESTBED AND EXPERIMENTAL SETUP 97

Falcone crime family This threat actor includes the Merlin C&C server and IoT
devices infected with the Merlin agent. Refer to Section 4.3.3.2 for more details. We
perform the following attacks:

• (A8) Merlin C&C communication: Periodic communication between the
IoT nodes infected with the Merlin agent and the Merlin C&C server.

• (A9) Merlin ingress tool transfer: The Merlin C&C server transfers the
hping3 binary into each of the compromised victims through the C&C channel.

• (A10) Merlin remote command execution: The Merlin bot master connects
to the Merlin C&C and sends commands to the bots to perform subsequent
DoS attacks against other targets in the network.

• (A11) Merlin denial of service attacks: The DoS attacks are implemented
using hping3: (i) ICMP echo-request, (ii) UDP, (iii) TCP SYN and (iv) TCP
ACK flood attacks. Each attack generates approximately 5000 packets at a
1 ms/packet rate. The UDP flood payload consists of 512 bytes of random data,
with TTL set to 64 and TOS to 0, which corresponds to the default values for
the UDP attack in Mirai.

Calabrese crime family It is comprised of nodes that include the Nmap and
Masscan scanners and the AMP-Research tool for implementing amplification attacks
against the CoAP servers. Refer to Section 4.3.3.3 for more details. We use this threat
actor to perform the following attacks:

• (A12) Network-wide scans: Masscan is used to scan the city network for the
TCP ports 80, 8000–8100, 5683 at three different packet rates: (i) 100, (ii) 1000
and (iii) 10000 packets/s. Nmap is used to scan some IoT nodes to check for
open UDP ports using three strategies: (iv) the 5683 port, (v) 600 random ports
and (vi) the 1000 most used UDP ports.

• (A13) CoAP amplification attack: The attacker leverages a CoAP device
in the city network to launch an amplification attack against a victim for a
duration of 10s.

5.2.2 Data generation and collection method

The data captured under normal traffic conditions (without attacks) will be used
to train the clustered FL anomaly detection models. Then, the validation data is
captured, consisting of two sets: validation-normal and validation-attack. The
validation-attack is further divided into different datasets depending on the attack
scenario.

All this data is captured in a federated way. Each device holds its own part of the
data (captured on its network interface), as shown in Figure 5.1. This data is never
aggregated into a single dataset.

98 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

5.2.2.1 Normal traffic data

This data is composed of the normal behavior of the city network IoT/IIoT devices
periodically communicating the telemetry and background data with the cloud. Net-
work packet traces are collected for each device and saved in pcap format while the
scenario runs without any attack. This dataset will be used for feature preprocessing,
hyperparameter selection and the clustered FL training.

The normal traffic data has been captured in a period including the first two
hours (the first hour for the IP camera related devices, due to the high data volume
they create), generating a total of 3.3 GB of raw packet data for all the 78 devices in
the network.

5.2.2.2 Validation-normal traffic data

The validation-normal dataset consists of traces including only the normal behavior
of the city network devices captured with the same methodology from the previously
described normal dataset. However, it is extracted later so that it does not include
the same events. It includes captures over a two-hour period (one hour for the IP
cameras) starting after the end of the normal traffic capture. This data is not used
during training; it will only be used for the anomaly threshold selection.

5.2.2.3 Validation-attack traffic data

While the city network devices are performing their normal activities, the attacker
nodes become active and start launching the previously mentioned attacks against
the city network IoT/IIoT devices. The validation-attack traffic data is captured
during this period and consists of both normal and attacking traces.

We configure the testbed’s three threat actors to create five attacking scenarios.
For each scenario, we extract network packet captures from the city network devices.

validation-attack-mirai-scan-load Some city network devices are first config-
ured to make them vulnerable to Mirai, as detailed in [30]. The testbed’s Mirai bot
node is activated (A1) and starts scanning all city network devices (A2). When
vulnerable devices are identified, the Mirai bot performs the (A3) and (A4) activities.
After a vulnerable device is reported, the (A5) activity is performed to integrate the
device into the botnet. After becoming part of the botnet, the device repeats the
described Mirai lifecycle.

validation-attack-mirai-cnc-dos This data also includes Mirai malware activity,
but in this case, we recompile the Mirai bot binary to disable the scanning and brute-
forcing modules. This modification is done to make Mirai stealthier. The modified
Mirai bot is manually installed in some city network devices. After executing the bot,
the C&C communication activity starts (A1). By connecting to the Mirai C&C server,
we command each bot (A6) to launch multiple DoS attacks (A7) against random
targets in the testbed.

5.3. IMPLEMENTATION 99

validation-attack-merlin-cnc-dos The Merlin agent is installed in some city
network devices. After executing the agents, they connect to the Merlin server
(A8). For each bot, the Merlin server performs (A9) and (A10). Finally, each bot is
instructed to launch DoS attacks (A11) against random targets in the testbed.

validation-attack-masscan Network traffic data is captured from the city net-
work devices while they are being scanned by the Masscan node (A12).

validation-attack-scan-amplification This data is captured on the CoAP-based
city network devices. First, Nmap is used to scan the network (A12) to search for
CoAP devices; then, those devices are leveraged to perform (A13) attacks against
random targets in the testbed.

5.2.3 Machine learning and federated learning setup

We used the PyTorch [211] Python library to implement the ML models and training
procedures. The FL model aggregation (the ServerOpt server-side optimization) is
also implemented using the PyTorch library directly. For the client’s local training
process, we used GNU Parallel [212] to coordinate and execute all the jobs in paral-
lel. We implemented the clustering algorithms, validation metrics, dimensionality
reduction, etc. with scikit-learn [213].

5.3 Implementation

This section will describe the methodology followed to perform the experimentation.
A visual representation of all the steps is shown in Figure 5.2. We first explain
the network data processing step, which includes filtering, feature extraction and
preprocessing. Then, we detail the autoencoder model selection procedure. Next, we
describe the implementation for the clustered FL process, starting from the model
fingerprinting for device clustering, followed by the federated hyperparameter tuning
and then the FL training process for each identified cluster. Finally, we review the
trained models’ anomaly detection evaluation process and metrics. We additionally
explain the baseline comparisons done with other state-of-the-art IDS methods.

5.3.1 Network data processing

After collecting the dataset, the raw pcap files are first filtered, then relevant network
features are selected, and finally, those features are preprocessed to make them
suitable as input to the ML models. Note that the dataset is federated and not
centralized; each device holds its fraction of data.

The first step consists of filtering the raw pcap files to drop all IPv6 and ARP
packets. The filtered packets are passed to the feature extraction process. For each
network packet in the filtered pcap file, a set of 11 features are extracted as listed
in Table 5.2. The source and destination IP addresses were discarded to prevent the

100 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

Normal traffic data
(no attack traces)

Validation-normal data (normal traces)

Validation-attack data (normal + attack traces)

Autoencoder
model

selection

Device
clustering

Federated
hyperparameter

tuning

Clustered
federated
learning

Federated

Network data
processing

Feature
processingFiltering validation-attack

validation-normal

Network data
processing

Feature
processingFiltering

Anomaly detection

Threshold
selection

Anomaly
detection

Figure 5.2: Implementation method pipeline.

Table 5.2: Selected packet feature names and descriptions.

Feature name Description

len Full packet length in bytes.
iat Inter arrival time from the previous packet.
h Entropy (base 2) of the full packet.
ip_tos IP type of service.
ip_flags IP flags (MF, DF, R bits).
ip_ttl IP time to live.
ip_proto IP protocol (TCP, UDP, ICMP).
src_port Source port number.
dst_port Destination port number.
tcp_flags TCP flags (F, S, R, P, A, U, E, C, N).
tcp_win TCP window size.

model from learning the machines themselves instead of the attacking nature. The
main reason for using those features is that attacking patterns from IoT malware
such as Mirai includes options to craft packets with tweaked values for the payload
size, IP header fields, and TCP flags, among others [46]. Additionally, the attack
packet payload usually includes randomized or some fixed values that can lead to
high or low entropy. By selecting those features and training on the normal traffic
dataset, the model learns the distribution of normal IoT communication. Deviations
from it (large MSE between the input and the autoencoder reconstructed output)
allows to potentially detect not only Mirai but, in general, other malware with similar
network attacking behavior and C&C communication like the attacks performed
with hping3 and Merlin C&C as described in the previous section.

Due to the different orders of magnitude of some features and the mixture of
both numerical and categorical variables, a feature preprocessing step is necessary
before using them as inputs for the ML models.

The numerical features are normalized by the maximum value of each field
defined in the TCP/IP stack. len is divided by 1514 (the Ethernet maximum transmis-
sion unit plus the header), both ip_tos and ip_ttl are divided by 255 and tcp_win is
divided by 65535. h is divided by 8 and iat is transformed with the natural logarithm

5.3. IMPLEMENTATION 101

of iat plus one. The categorical variables ip_flags, ip_proto and tcp_flags are
directly one-hot encoded.

5.3.1.1 Source and destination port feature processing

The src_port and dst_port feature processing requires special consideration. The
application port numbers are numerical features that can take 216 different integer
values; however, treating the ports just as a numerical feature does not maintain
the semantics of the services that use those port numbers. In other words, port
numbers that are numerically close to each other does not mean that the programs
that communicate with those ports are used to perform similar tasks.

In this work, we are going to discretize the source and destination port numbers
into a smaller number of bins using two different strategies: three-range discretiza-
tion and hierarchical discretization. After the discretization, the bin numbers are
one-hot encoded. In section 5.4, we will evaluate the differences between the two
strategies and select the most appropriate one for this use case.

Three-range discretization The source and destination port numbers are di-
vided into the three ranges assigned by the Internet Assigned Numbers Authority
(IANA) [214]: the System Ports, or Well Known Ports, from 0 to 1023; the User Ports,
or Registered Ports, from 1024 to 49151; and the Dynamic Ports, or Ephemeral Ports,
from 49152 to 65535. These ranges are large, and might not capture the semantics of
the ports.

After all the previously mentioned transformations and using the three-range
discretization for the source and destination ports, the 11 features of Table 5.2 are
transformed into a set of 27 features.

Hierarchical discretization The source and destination port numbers are dis-
cretized based on the generalization hierarchy presented in [215] and adapted to
include information about the MQTT, CoAP and RTSP ports used in the testbed. The
hierarchy used is summarized in Table 5.3. When classifying a port number, bins
from the top of the table have precedence over the bins from the bottom.

After all the previously mentioned transformations and using the hierarchical
discretization for the source and destination ports, the 11 features of Table 5.2 are
transformed into a set of 69 features.

5.3.2 Autoencoder model selection

In FL, there is a much larger set of hyperparameters to be tuned compared to
a typical centralized ML setting. Those parameters include the ML model itself
(number of layers, number of nodes per layer, activation functions, etc.), client-side
optimizer algorithm ClientOpt and learning rate 𝜂, server-side optimizer algorithm
ServerOpt and learning rate 𝜂𝑠 , number of local training epochs 𝐸, number of FL
rounds 𝑅 and number of clients sampled per FL round 𝑀 . Due to the infeasibility

102 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

Table 5.3: Port number generalization hierarchy.

Bin name Ports

mqttPorts 1883, 8883
coapPorts 5683, 5684
rtspPorts 8554, 8322, 8000–8003, 1935, 8888
httpPorts 80, 280, 443, 591, 593, 777, 488, 1183, 1184, 2069, 2301, 2381,

8008, 8080
mailPorts 24, 25, 50, 58, 61, 109, 110, 143, 158, 174, 209, 220, 406, 512,

585, 993, 995
dnsPorts 42, 53, 81, 101, 105, 261
ftpPorts 20, 21, 47, 69, 115, 152, 189, 349, 574, 662, 989, 990
shellPorts 22, 23, 59, 87, 89, 107, 211, 221, 222, 513, 614, 759, 992
remoteExecPorts 512, 514
authPorts 13, 56, 113, 316, 353, 370, 749, 750
passwordPorts 229, 464, 586, 774
newsPorts 114, 119, 532, 563
chatPorts 194, 258, 531, 994
printPorts 35, 92, 170, 515, 631
timePorts 13, 37, 52, 123, 519, 525
dbmsPorts 65, 66, 118, 150, 156, 217
dhcpPorts 546, 547, 647, 847
whoisPorts 43, 63
netbiosPorts 137–139
kerberosPorts 88, 748, 750
RPCPorts 111, 121, 369, 530, 567, 593, 602
snmpPorts 161, 162, 391
privilegedPorts 0–1023
nonprivilegedPorts 1024–65535

to explore all the combinations simultaneously, we are going to simplify the search
tuning those hyperparameters step by step using different subsets of combinations.
Additionally, considering the unsupervised nature of the problem (or rather semi-
supervised, given that it is trained on normal data without attacks), the selection is
going to be based on those values that minimize the MSE loss in fewer rounds/epochs.

First, we start defining the general architecture of the autoencoder. We select
a small subset of the normal traffic data (corresponding to various IoT clients) and
use it to explore different autoencoder models. This exploration is not performed in
a federated way. Each dataset is partitioned into 80% training and 20% evaluation.
Among the tested models, we selected the simplest one (fewer parameters) that
produced low enough evaluation loss to minimize overfitting problems.

Regarding the minimization of overfitting problems, the autoencoder training
loss function includes a 𝐿2 regularization term controlled by the 𝜆 parameter, as
noted in equation (5.2). The regularization directs the training in such a way as to
make the model parameters smaller and prevent a single or few features from having
too much weight in the model prediction results. While the autoencoder model

5.3. IMPLEMENTATION 103

selection step is performed in a non federated way, the final FL training process
of the following steps can also have added advantages for preventing overfitting
problems. According to McMahan et al. [18], one of the benefits of model averaging
in FL is that it produces a regularization effect similar to the one achieved by dropout.
In this case, FL helps to mitigate the overfitting problems that can occur in clients
with fewer training data samples.

The number of nodes for the input and output layer of the autoencoder is fixed to
the same number as the input feature dimensions (which can be 27 or 69, depending
on the discretization method for the source and destination ports). For the encoder
part, we evaluated different combinations with 1, 2 and 3 hidden layers, with each
following layer having half as many nodes as the previous one ⌊ # nodes previous layer2 ⌋,
and a symmetric decoder. The selected autoencoder model and hyperparameters
will be used in the next step: device clustering.

5.3.3 Device clustering

Using the selected autoencoder model from the previous step, the device clustering
process begins, which consists of the first phase detailed in Algorithm 5.2.

The FL server initializes the selected autoencoder model and distributes it to all
IoT clients (78 nodes in the city network). Each client locally trains the model for
𝜖 epochs using as the ClientOpt optimizer, the optimizer selected from the previous
step. The partially trained models are uploaded back to the server to start the model
fingerprinting and clustering process. As detailed in Algorithm 5.2, the server flattens
the parameters of each model and performs PCA to reduce the dimensionality of the
parameters. We are going to select the number of components needed to explain
at least 90% of the variance. We use the k-means algorithm with the k-means++
initialization scheme to cluster the models, and hence the clients.

The experiments are repeated for different values of 𝜖 = 1, 2, 4, 8, 16 and 32, and
the optimal number of clusters 𝐾 is automatically selected based on the analysis of
the following internal validation metrics: Silhouette, Davies–Bouldin and S_Dbw.

5.3.4 Federated hyperparameter tuning

In this step, we are going to tune the rest of the FL hyperparameters. Each cluster
identified in the previous step will have its own federated hyperparameter tuning.
First, we are going to tune the ClientOpt and ServerOpt optimizer algorithms.
Then, for the selected ClientOpt and ServerOpt, we are going to further refine the
client and server learning rates. While in the previous step of autoencoder model
selection the client optimizer and learning rates were selected, these values might
not be optimal for the FL training process.

The ClientOpt and ServerOpt are tuned by comparing multiple combinations
of SGD (with and without momentum) and Adam optimizers both for the clients
and the server. SGD is tested without momentum and with momentum set to 0.9
(as suggested in [216]), for Adam two combinations are tested: 𝛽1 = 0.9, 𝛽2 = 0.999,

104 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

𝜖 = 1 × 10−8 (default values defined in PyTorch) and 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 0.001
(as suggested in [216]). In total, 16 combinations are evaluated. Each client trains on
80% of its local data and is evaluated on the remaining 20%; both losses are reported
to the aggregation server. We select the optimizer combination that minimizes the
average evaluation loss across all the cluster clients in fewer FL training rounds.

Then, the 𝜂 and 𝜂𝑠 learning rates are refined via grid search. For all the hyper-
parameter tuning we set 𝐸 = 1, and use the same random seed to initialize the ML
model parameters in order to reduce the effects of the random model initialization
noise.

5.3.5 Clustered federated learning

After the device clustering and federated hyperparameter tuning steps, we perform
the clustered federated learning using the fine-tuned ClientOpt and ServerOpt
optimizers and their respective learning rates. We perform 𝑅 FL rounds to train the𝐾
global models, one for each identified cluster. In this case, we repeat the process for
different values of the number of local training epochs 𝐸 = 1, 2, 4 and 8 to evaluate
its effect on the training process.

Similar to the previous steps, each client trains on 80% of its local data and
evaluates the model on the remaining 20%. Each client records the loss for the
training and evaluation splits after the local model training and sends it to the server.
This is repeated for all the FL rounds. This way, the server can monitor both the
training and evaluation loss progression and check if there are any overfitting signs.

5.3.6 Anomaly detection

After training the models with FL, we are going to evaluate the anomaly detection
performance of the resulting 𝐾 global models. Recall that at this step, each device
holds a local copy of the global model that corresponds to its cluster. To estimate
the unsupervised anomaly detection capabilities, we are going to use the validation-
normal and validation-attack datasets.

5.3.6.1 Threshold selection

For each client, we will first evaluate the trained global model on its corresponding
validation-normal dataset to estimate the anomaly detection threshold. Note that
the evaluation is local; therefore, each device will compute its own threshold value.
We will opt for a simplistic approach and select the largest MSE from the validation-
normal dataset as the threshold. Packets with MSE > threshold will be considered
anomalous. Then, we will evaluate the same model on the multiple validation-attack
datasets to identify all the anomalous packets.

5.3. IMPLEMENTATION 105

5.3.6.2 Anomaly detection performance

The anomaly detection performance is measured by evaluating the trained global
models on the multiple validation-attack datasets detailed in section 5.2.2. To obtain
performance metrics, we will manually label the validation-attack datasets to provide
ground truth labels to be comparedwith the detected anomalies from the autoencoder.
The labeling process is based on the known IP addresses of the attacker, victim, IoT
and cloud nodes, and attack timestamps extracted from the scenario. We recall that
this ground truth labeling is only used to compute the performance metrics and is
never used for training; also, the IP addresses are never used for model training. In a
real deployment, prior labeling of the network data might not be feasible, but here it
will give us an estimate of the performance of the global models to detect the attacks
considered in our threat model; however, note that the manual labeling process is a
heuristic and might misclassify some packets.

We provide the standard confusion matrix metrics: true positives (TP), false
negatives (FN), false positives (FP), true negatives (TN) and their derivate metrics,
including accuracy, F1 score and Matthews correlation coefficient (MCC).

5.3.7 Baseline experimental comparisons

We are considering Kitsune [70] network IDS and two non-clustered FL approaches
for the baseline experimental comparisons.

5.3.7.1 Kitsune

Kitsune is a state-of-the-art network IDS that uses an ensemble of autoencoders
trained in an unsupervised and online manner. The similarities of being unsupervised
and based on autoencoders make it an interesting comparison; however, there are
some fundamental differences between Kitsune and the proposed method. First,
Kitsune does not use FL to train the model; it is deployed in each machine and only
uses local data. Second, Kitsune uses features based on temporal statistics of network
packets taken over multiple damped windows; instead, we extract features obtained
from each packet in isolation. Third, Kitsune is trained in an online manner, so
the training is performed using one sample at a time instead of multiple training
iterations over batches of the data. Another difference is that Kitsune does not filter
IPv6 or ARP packets.

5.3.7.2 Non-clustered FL with weighted aggregation

This FL baseline is identical to the proposed approach from Algorithm 5.2, except
that the clustering step is removed. That is, we consider 𝐾 = 1 (all clients belong to
the same cluster), and the objective is to train a single global model that fits all the
clients in the federated network.

106 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

5.3.7.3 Non-clustered FL without weighted aggregation

In the server model aggregation step, the contribution of each client is weighted by
the number of training samples used by that client (Algorithm 5.1). This process can
bias the global model towards clients with more training samples. Hence, this FL
baseline is the same as the previous non-clustered FL baseline (𝐾 = 1, single global
model for all clients), except that at the server aggregation step, the contribution of
all clients will be equally weighted.

Both non-clustered FL baselines are used to experimentally compare whether
clustering offers significant advantages for unsupervised anomaly detection in FL
settings.

5.4 Results

In this section, we present the results obtained from the experiments described in
section 5.3.

5.4.1 Autoencoder model selection

As previously stated, the input and output shapes of the autoencoder are the same
as the number of input data feature dimensions. Depending on the selected source
and destination port discretization method from the network data processing step,
the dimensions are 27 or 69 for the three-range and hierarchical discretization,
respectively. For the autoencoder model selection, we will consider both cases. The
distinction between the two methods will be shown later in the device clustering
results.

We detected no significant improvement in the validation loss after 2 hidden
encoder layers, irrespective of the port discretization method. Thus, for the three-
range discretization method, the final autoencoder model is a two hidden layer
encoder with 13 and 6 nodes, respectively, and a symmetric decoder with 6 and 13
nodes. For the hierarchical discretization, the encoder layers include 34 and 17 nodes
with a symmetric decoder. We use the 𝑅𝑒𝐿𝑈 activation function after each layer.
The optimizer is Adam with a 1 × 10−3 learning rate, 𝐿2 regularization weight from
equation (5.2) 𝜆 = 1 × 10−5 and a batch size of 32.

5.4.2 Device clustering

The clustering experiments are repeated for the two port discretization methods
and multiple values of the local training epochs 𝜖 = 1, 2, 4, 8, 16 and 32 using the
client optimizer parameters obtained from the previous autoencoder model selection
step. For each value of 𝜖 , to identify the optimal number of clusters 𝐾 , we perform
k-means clustering with 𝐾 ranging from 2 to 40 cluster centroids. The results for
𝜖 = 4 using the three-range port discretization method are shown in Figure 5.3,

5.4. RESULTS 107

while the results for 𝜖 = 4 using the hierarchical discretization method are shown in
Figure 5.4.

The unsupervised clustering quality scores are shown in Figure 5.3a and Fig-
ure 5.4a. For Silhouette higher scores represent better clusters, for Davies–Bouldin
and S_Dbw lower scores represent better clusters. The dotted vertical line marks the
selected 𝐾 for each discretization method. For the three-range discretization, the
Silhouette score is maximized at 𝐾 = 16, and the Davies–Bouldin score shows a dip
at the same point. For S_Dbw the score is monotonously decreasing; however, 16 is a
good number of clusters based on the elbow method. For the hierarchical discretiza-
tion method, the Silhouette score is maximized at 𝐾 = 8 and both Davies–Bouldin
and S_Dbw show a dip at that point. A 2D projection of the model fingerprints and
the clustering results is represented in Figure 5.3c with 𝐾 = 16 and Figure 5.4c with
𝐾 = 8.

Due to the differences in the clustering results depending on the port discretiza-
tion strategy, we perform an additional experiment. For each strategy, we measure
the similarity between the k-means clustering labels and the ground truth clustering
using the adjusted Rand index, adjusted mutual information score and the V mea-
sure score (see Section 2.4.4.2). To create the ground truth labeling, we assign each
instance a label based on its template type according to the data in Table 5.1 (12
different labels). The results are shown in Figure 5.3b and Figure 5.4b. For the three-
port discretization, the score is maximized when 𝐾 = 12 (in contrast to the 𝐾 = 16
from the internal validation metrics). The results for the hierarchical discretization
method in Figure 5.4b show a maximum in 𝐾 = 8 (same results as with the internal
validation metrics) and overall higher scores compared to the previous method.

Using the hierarchical discretization method, we obtain an agreement in the
optimal value for 𝐾 between the unsupervised clustering and the similarity with
the ground truth scores. It also creates a clearer distinction between the clusters
(Figure 5.4c) compared to the three-port discretization method (Figure 5.3c). Addi-
tionally, it may be desirable to lean towards small 𝐾 values so that the FL process
benefits from a larger cohort size for each cluster. From now on, we are going to use
the hierarchical discretization method and 𝐾 = 8 for the rest of the experimentation.

In real deployment settings, where there might be no ground truth labels for
the device types, only unsupervised internal clustering validation metrics will be
available to analyze the clustering quality. Hence, from the experimental results,
we infer that in order to select the number of clusters 𝐾 , a robust approach is first
to consider the value that maximizes the Silhouette score. In cases where there
are different values of 𝐾 with similar scores, break ties by considering the Davies–
Bouldin and S_Dbw metrics.

The device clustering results from Figure 5.4c are shown in Table 5.4. All the IP
camera related devices are grouped into the same cluster. Interestingly, for devices of
the same type, the clustering method can distinguish between those communicating
via plain text or over an encrypted channel; for example, the Predictive maintenance
devices in Cluster 5 and Cluster 6 or the Combined cycle in Cluster 2 and Cluster 7.
Clusters 0, 2 and 4 are composed of heterogeneous devices; however, the devices in

108 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

Table 5.4: Unsupervised clustering results using the hierarchical port discretization

strategy for 𝜖 = 4 and 𝐾 = 8.

Cluster name Cluster contents

Cluster 0 Air quality (x1), Building monitor (x5), Domotic monitor (x5)
Cluster 1 Hydraulic system (x15)
Cluster 2 City power (x1), Combined cycle (x10)
Cluster 3 Cooler motor (x15)
Cluster 4 IP camera museum (x2), IP camera street (x2), IP camera consumer (x2)
Cluster 5 Predictive maintenance (x10)
Cluster 6 Predictive maintenance (x5)
Cluster 7 Combined cycle tls (x5)

the same cluster communicate using the same primary protocol: MQTT, CoAP and
RTSP, respectively.

Regarding the clustering results for the other tested values of 𝜖 , the results in
the 𝜖 = 8 case are very similar to the discussed 𝜖 = 4 case, where the unsupervised
and supervised clustering validation metrics agree on the optimal number of groups.
However, in some cases, the number of clusters decreases to 7, merging the groups
of the same device types that communicate in plain or over an encrypted channel.
In the 𝜖 = 2 case, the number of clusters according to the unsupervised metrics is 9,
and in the 𝜖 = 1 case, it is increased to 11. Both cases tend to split the groups formed
by the IP camera devices and Predictive maintenance ones. For 𝜖 = 16 and 32, the
number of identified clusters using unsupervised metrics also tends to increase to
around 11 and 17, respectively; moreover, for both cases, the supervised metrics
still show the optimum at 8, indicating a discrepancy between the unsupervised and
supervised metrics for higher values of 𝜖 .

From Figure 5.4c, while some clusters are clearly separated from the rest, others,
such as clusters 0, 1 and 7 or clusters 6 and 5, seem to be close in the 2D projec-
tion. The dimensionality of the model fingerprints is the same as the number of
PCA components needed to explain at least 90% of the model parameter variance,
which in this particular case is 23. Figure 5.4c only shows the first two dimensions,
corresponding to approximately 40% of the explained variance. This might indicate
that clusters that are close to each other in the 2D representation are also close
in the higher-dimensional space. When the training data amount of each device
is insufficient or due to the random model initialization influence, the clustering
results’ stability might be affected for those groups close to each other. In order to
study the clustering stability, we are going to perform an additional experiment.

5.4.2.1 Cluster stability for varying training data size

In this experiment, we will repeat the device clustering process for the 𝜖 = 4 and the
hierarchical discretization port method case. However, we will vary the fraction of
training data used to partially train the models. The server initializes an autoencoder

5.4. RESULTS 109

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sc
or

es

Silhouette (max)
Davies-Bouldin (min)
S_Dbw (min)

(a) Unsupervised clustering quality scores.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of clusters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sc
or

es

Adjusted Rand
Adjusted Mutual Information
V Measure

(b) Clustering quality scores compared to ground

truth labeling.

2 1 0 1 2 3 4
principal component 1

1

0

1

2

3

pr
in

ci
pa

l c
om

po
ne

nt
 2

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11Cluster 12

Cluster 13
Cluster 14

Cluster 15

(c) 2D projection of the model fingerprints clus-

tered into 𝐾 = 16 groups.

Figure 5.3: Device clustering results for 𝜖 = 4 using the three-range discretization
strategy for the source and destination ports.

110 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of clusters

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

sc
or

es

Silhouette (max)
Davies-Bouldin (min)
S_Dbw (min)

(a) Unsupervised clustering quality scores.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of clusters

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sc
or

es
Adjusted Rand
Adjusted Mutual Information
V Measure

(b) Clustering quality scores compared to ground

truth labeling.

2 1 0 1 2 3
principal component 1

2

1

0

1

2

3

pr
in

ci
pa

l c
om

po
ne

nt
 2

Cluster 0

Cluster 1

Cluster 2
Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

(c) 2D projection of the model fingerprints clus-

tered into 𝐾 = 8 groups.

Figure 5.4: Device clustering results for 𝜖 = 4 using the hierarchical discretization
strategy for the source and destination ports.

5.4. RESULTS 111

1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 99.0
training data fraction (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ad
ju

st
ed

 ra
nd

 sc
or

e

Figure 5.5: Cluster stability results for varying training data sizes. Each training

data fraction percentage shows a boxplot for 30 repetitions of the adjusted Rand

score with the clustering results from Table 5.4 (𝐾 = 8). Circles indicate outliers, i.e.,
samples outside 1.5x of the inter-quartile range. The orange line in each boxplot

shows the medians.

model, and each client will randomly subsample a fraction of its own local training
data. The clustering procedure is the same as explained before, only that each client
performs local training for 𝜖 epochs using only the specified fraction of the data.
A different experiment is conducted for the following fractions: 1%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% and 99%. All those experiments are going to be further
repeated 30 times to account for any variability in the results due to the random
model initialization effect at the server and the random subsampling process at each
device.

To measure the cluster stability for varying training data sizes, we select 𝐾 = 8
and compare the clustering results of the new experiments with the clustering results
obtained in Table 5.4. The similarity is measured using the adjusted Rand score. A
value of 1.0 is obtained when the clusterings are identical, and values near 0.0 indicate
random labeling. The results are shown in Figure 5.5. For training data fractions
≥ 50%, the majority of runs achieve a score of 1.0, showing that the clustering results
are mostly stable, but some outliers appear. The number of outliers is reduced with
increasing training data fraction. When the training data fraction is reduced below
50%, the clustering quality is negatively affected.

We also note that for small training data fractions, the optimal value of 𝐾 shown
by unsupervised internal clustering validation metrics tends to decrease, is more
unstable from repetition to repetition and diverges considerably from the optimal
value shown by supervised clustering metrics using the ground truth labeling. The
contrary occurs when the training data fraction is ≥ 60%, where the unsupervised
and supervised metrics are close, and 𝐾 is around 8 ± 1.

112 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

5.4.3 Federated hyperparameter tuning

To select the ClientOpt and ServerOpt optimizer algorithms, for each cluster we
performed 16 trials consisting of different combinations of SGD and Adam as defined
in Table 5.5. Client learning rates are fixed to 𝜂 = 1 × 10−3 and the 𝐿2 regularization
weight from equation (5.2) is set to 𝜆 = 1 × 10−5.

We show the results of the mean evaluation loss progression for 100 FL rounds
and all the trials for Clusters 0, 2 and 4 in Figure 5.6, as these three clusters are
more complex than the others because they are formed by heterogeneous devices.
In general, including adaptive optimization methods for ClientOpt, ServerOpt or
both provides faster convergence and smaller losses compared to the standard SGD;
however, some combinations have difficulty to converge, showing an increasing
loss trend as in Trial 10 for Cluster 0 (Figure 5.6a). For Cluster 0, Trial 9 clearly
shows faster convergence speeds and a smaller evaluation loss after 100 FL rounds.
Trial 12 also shows a similar evaluation loss at the last round, but at a much slower
convergence rate. For Clusters 2 and 4 (Figure 5.6b and Figure 5.6c), Trials 9 and
10 show the best performance. Trial 10 from Cluster 2 reaches a smaller loss than
Trial 9; however, by fine tuning the Trial 9 learning rates, it can reach the same loss
values.

The client and server learning rates (𝜂 and 𝜂𝑠 , respectively) for each cluster
are fine tuned by performing a grid search varying both values simultaneously.
The results are shown in the heat maps from Figure 5.7. The heat maps show the
logarithm of the evaluation loss after 60 FL rounds; darker colors show a smaller
loss. For the three cases, many combinations achieve a similar low loss; we are going
to select the combination with a smaller loss for all cases.

The final optimizer selection are as follows. Cluster 0 ClientOpt is Adam1 with
𝜂 = 0.005, and ServerOpt is SGD with 𝜂𝑠 = 0.75. Cluster 2 ClientOpt is Adam1
with 𝜂 = 0.005, and ServerOpt is SGD with 𝜂𝑠 = 1.25. Cluster 4 ClientOpt is
Adam1 with 𝜂 = 0.001, and ServerOpt is SGD with 𝜂𝑠 = 1.5.

5.4.4 Clustered federated learning

The final FL training process is performed using the client-side and server-side
optimizers and learning rates obtained after the federated hyperparameter tuning
described in the previous step for each identified cluster. We repeated the experiments
for different values of the number of local training epochs 𝐸 = 1, 2, 4 and 8. Increasing
the number of local training epochs generally leads to lower loss values and fewer
FL rounds to reach convergence at the expense of more local computation time.
However, we also observed an increased variance in the loss distribution across
the devices of the cluster when using large numbers of local training epochs. The
training results for 𝐸 = 4 local epochs and 𝑅 = 100 FL rounds are shown in Figure 5.8
for Clusters 0, 2 and 4. Each boxplot shows the evaluation loss distribution across
the devices of the cluster at a certain FL round.

The progression of both training and evaluation losses was checked, there was

5.4. RESULTS 113

10 20 30 40 50 60 70 80 90 100
FL rounds

10 3

10 2

10 1

ev
al

ua
tio

n
lo

ss

Trial
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(a) Cluster 0 (MQTT).

10 20 30 40 50 60 70 80 90 100
FL rounds

10 3

10 2

10 1

ev
al

ua
tio

n
lo

ss

Trial
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(b) Cluster 2 (CoAP).

10 20 30 40 50 60 70 80 90 100
FL rounds

10 4

10 3

10 2

ev
al

ua
tio

n
lo

ss

Trial
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(c) Cluster 4 (Camera).

Figure 5.6: Federated hyperparameter tuning, ClientOpt and ServerOpt optimizer

selection. 𝐸 = 1. The trials are defined in Table 5.5.

114 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

client learning rate

0.5

0.75

1.0

1.25

1.5

se
rv

er
 le

ar
ni

ng
 ra

te

-1.51 -2.94 -2.99 -3.57 -3.34 -2.89 -1.32

-1.91 -3.02 -3.04 -3.58 -3.44 -2.8 -1.86

-2.32 -3.2 -3.13 -3.43 -3.39 -2.77 -1.37

-2.58 -3.22 -3.05 -3.49 -3.32 -2.88 -2.46

-2.78 -3.03 -3.25 -3.54 -3.36 -2.88 -2.11

3.5

3.0

2.5

2.0

1.5

(a) Cluster 0 (MQTT). Grid search for Trial 9.

0.00010.0005 0.001 0.005 0.01 0.05 0.1

client learning rate

0.5

0.75

1.0

1.25

1.5

se
rv

er
 le

ar
ni

ng
 ra

te

-1.13 -1.75 -2.59 -3 -3.01 -2.18 -1.34

-1.23 -2.43 -2.79 -3.13 -3.03 -2.23 -1.34

-1.31 -2.59 -2.89 -3.11 -3.08 -2.31 -1.35

-1.35 -2.68 -2.93 -3.2 -3.06 -2.15 -1.68

-1.4 -2.8 -2.96 -3.14 -2.85 -1.53 -1.03 3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

(b) Cluster 2 (CoAP). Grid search for Trial 9.

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

client learning rate

0.5

0.75

1.0

1.25

1.5

se
rv

er
 le

ar
ni

ng
 ra

te

-2.61 -4.52 -4.52 -4.36 -4.41 -3.17 -1.98

-4.51 -4.52 -4.52 -4.38 -4.41 -3.1 -1.96

-2.29 -4.52 -4.52 -4.44 -4.35 -3.04 -2.14

-4.5 -4.52 -4.52 -4.4 -4.34 -3.14 -1.84

-4.52 -4.53 -4.57 -4.44 -4.41 -3.37 -1.84

4.5

4.0

3.5

3.0

2.5

2.0

(c) Cluster 4 (Camera). Grid search for Trial 9.

Figure 5.7: Federated hyperparameter tuning, 𝜂 and 𝜂𝑠 learning rate grid search.

The values represent base 10 logarithm of the evaluation loss after 60 FL rounds.

5.4. RESULTS 115

Table 5.5: ClientOpt and ServerOpt combinations for each hyperparameter tuning

trial. “SGD” is SGD without momentum, “SGDm” refers to SGD with momentum

0.9, “Adam1” refers to 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1× 10−8 and “Adam2” refers to Adam

𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 10−3. 𝜆 is set to 1 × 10−5 for all trials.

Trial ClientOpt 𝜂 ServerOpt 𝜂𝑠

Trial 1 SGD 1 × 10−3 SGD 1.0
Trial 2 SGD 1 × 10−3 SGDm 1.0
Trial 3 SGD 1 × 10−3 Adam1 1 × 10−2
Trial 4 SGD 1 × 10−3 Adam2 1 × 10−2
Trial 5 SGDm 1 × 10−3 SGD 1.0
Trial 6 SGDm 1 × 10−3 SGDm 1.0
Trial 7 SGDm 1 × 10−3 Adam1 1 × 10−2
Trial 8 SGDm 1 × 10−3 Adam2 1 × 10−2
Trial 9 Adam1 1 × 10−3 SGD 1.0
Trial 10 Adam1 1 × 10−3 SGDm 1.0
Trial 11 Adam1 1 × 10−3 Adam1 1 × 10−2
Trial 12 Adam1 1 × 10−3 Adam2 1 × 10−2
Trial 13 Adam2 1 × 10−3 SGD 1.0
Trial 14 Adam2 1 × 10−3 SGDm 1.0
Trial 15 Adam2 1 × 10−3 Adam1 1 × 10−2
Trial 16 Adam2 1 × 10−3 Adam2 1 × 10−2

a small gap between the training and evaluation loss, however, this gap remained
more or less constant for all the FL rounds and did not show overfitting patterns.

5.4.4.1 Training baseline

As a training baseline, we performed additional experiments to compare the training
evaluation loss progression between FL and isolated edge training, where each device
trains on its local data without cooperation. In isolated training, each device in the
cluster starts with a random initialization of the autoencoder and trains it using the
same client-side optimizer as in the FL case. The training is performed for a total
of 𝑅 × 𝐸 epochs so that the amount of local training performed by each device is
comparable to the FL case. The comparison is shown in Figure 5.8.

For Clusters 0 and 2, there is a noticeable gap in the evaluation loss between
the FL and isolated training methods, where FL shows a faster convergence rate,
especially in early rounds. For Cluster 4, while FL shows a lower average loss, the
loss distribution is similar to the isolated training.

This difference might be explained due to the different training data volumes
generated by each device. Cluster 4 devices generate a much larger data volume
because they are comprised of image streaming devices, ranging between 300 to 800
MB of raw pcap data; this extensive training data can benefit local isolated training.
However, the raw pcap data for Cluster 0 devices ranges approximately between
230 KB to 270 KB. For Cluster 2 devices, the raw data is between 100 KB to 170 KB.

116 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

4 40 80 120 160 200 240 280 320 360 400
isolated edge training epochs

1 10 20 30 40 50 60 70 80 90 100
FL rounds

10 4

10 3

10 2

ev
al

ua
tio

n
lo

ss

FL
FL weighted mean loss
Isolated edge
Isolated edge mean loss

(a) Cluster 0 (MQTT).

4 40 80 120 160 200 240 280 320 360 400
isolated edge training epochs

1 10 20 30 40 50 60 70 80 90 100
FL rounds

10 5

10 4

10 3

10 2

10 1

ev
al

ua
tio

n
lo

ss

FL
FL weighted mean loss
Isolated edge
Isolated edge mean loss

(b) Cluster 2 (CoAP).

4 40 80 120 160 200 240 280 320 360 400
isolated edge training epochs

1 10 20 30 40 50 60 70 80 90 100
FL rounds

10 5

10 4

ev
al

ua
tio

n
lo

ss

FL
FL weighted mean loss

Isolated edge
Isolated edge mean loss

(c) Cluster 4 (Camera).

Figure 5.8: Clustered FL training progression for 𝐸 = 4 local training epochs and

𝑅 = 100 FL rounds (blue boxplots). It is compared with isolated edge training where

each device trains on its own dataset for 𝑅 × 𝐸 = 400 epochs (orange boxplots).

5.4. RESULTS 117

Table 5.6: The number of packets after the IPv6 and ARP filtering step in the

validation-attack datasets.

validation-attack-* Cluster 0 Cluster 2 Cluster 4

mirai-scan-load 110,354 70,592 888,833
mirai-cnc-dos 6,810,612 7,777,427 7,924,688
merlin-cnc-dos 32,282 31,014 868,586
masscan 816 571 203,814
scan-amplification n/a 68,422 n/a

This suggests the advantages of using FL for devices that generate a low volume of
training data samples.

5.4.5 Anomaly detection

Here we provide the anomaly detection performance results for clusters 0, 2 and
4 by evaluating the trained global models from the previous step on the multiple
validation-attack datasets described in section 5.2.2. The number of packets (normal
and attack) after filtering the pcaps is shown in table 5.6. As explained in section 5.3,
the anomaly threshold of each device is selected so that there are no false positives
in the device’s validation-normal dataset. The attack packets are considered as the
positive class.

5.4.5.1 Cluster 0 (MQTT)

We evaluate the global model of Cluster 0 on the four validation-attack datasets
captured from one instance of the Building monitor device.

For the mirai-scan-load data, the reconstruction error of all anomalous packets is
above the threshold, and the normal packets have a low reconstruction error except
for a single false positive: TP, FN, FP, TN = 108532, 0, 1, 1821 (0.9999 accuracy, 0.9999
F1 and 0.9997 MCC). Similarly, for the masscan data the model correctly classified
all packets: TP, FN, FP, TN = 528, 0, 0, 288 (1.0 accuracy, F1 and MCC).

For the mirai-cnc-dos and merlin-cnc-dos datasets, some false negatives are
reported. In the mirai-cnc-dos case, the C&C activity and seven out of eight DoS
attacks were all correctly classified; however, some (but not all) of the attack packets
corresponding to the same time frame when the DNS attack was being performed
were below the anomaly threshold: TP, FN, FP, TN = 6743222, 66190, 0, 1200 (0.9903
accuracy, 0.9951 F1 and 0.1328 MCC). For the merlin-cnc-dos case, the C&C activity,
ingress tool transfer and three out of four attacks were all correctly classified. The
model did not detect the anomalous packets corresponding to the ICMP flood attack:
TP, FN, FP, TN = 25828, 5277, 0, 1177 (0.8365 accuracy, 0.9073 F1 and 0.3891MCC). The
reconstruction error scatter plot for the merlin-cnc-dos case is shown in Figure 5.9a.

118 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

5.4.5.2 Cluster 2 (CoAP)

The global model of Cluster 2 is evaluated on the five validation-attack datasets
captured from one instance of the Combined cycle device.

This model correctly classified all normal and anomalous packets for all the
validation-attack datasets except for a single false negative packet. The mirai-scan-
load case obtained: TP, FN, FP, TN = 70195, 0, 0, 397 (1.0 accuracy, F1 and MCC).
For the mirai-cnc-dos data: TP, FN, FP, TN = 7777173, 0, 0, 254 (1.0 accuracy, F1 and
MCC). In the merlin-cnc-dos case: TP, FN, FP, TN = 30754, 0, 0, 260 (1.0 accuracy, F1
and MCC). The masscan data obtained: TP, FN, FP, TN = 522, 0, 0, 49 (1.0 accuracy,
F1 and MCC). And lastly, the scan-amplification: TP, FN, FP, TN = 68237, 1, 0,
184 (0.9999 accuracy, 0.9999 F1 and 0.9973 MCC). The reconstruction error for the
scan-amplification dataset is shown in Figure 5.9b.

5.4.5.3 Cluster 4 (Camera)

We evaluate the global model of Cluster 4 on the four validation-attack datasets
captured from one instance of the IP camera museum.

For the mirai-scan-load data, the reconstruction error of all anomalous packets
is above the threshold, and the normal packets are correctly classified except for a
false positive: TP, FN, FP, TN = 81604, 0, 1, 807228 (0.9999 accuracy, 0.9999 F1 and
0.9999 MCC). This case is shown in Figure 5.9c. The number of false positives and
false negatives is slightly increased in the mirai-cnc-dos dataset, part (but not all)
of the packets corresponding to the time frame where the Mirai GRE IP and GRE
Ethernet attacks are below the threshold: TP, FN, FP, TN = 7424929, 224, 4, 499531
(0.9999 accuracy, 0.9999 F1 and 0.9997 MCC).

For the merlin-cnc-dos dataset, all the packets were correctly classified: TP, FN,
FP, TN = 30990, 0, 0, 837596 (1.0 accuracy, F1 and MCC). Similarly, the packets of the
masscan dataset were also correctly classified: TP, FN, FP, TN = 548, 0, 0, 203266 (1.0
accuracy, F1 and MCC).

5.4.6 Baseline experimental comparisons

Here we provide anomaly detection performance results for the considered baseline
approaches.

5.4.6.1 Kitsune

For the comparison with Kitsune, we use its publicly available Python implementa-
tion [217]. We configure Kitsune to use the default parameters (𝑚 = 10 maximum
size for any autoencoder in the ensemble layer). Kitsune does not use FL, so for
each device on which we deploy it, we use its corresponding normal traffic data for
training (the first 10% to learn Kitsune’s feature mapping and the remaining 90% for
the training of the autoencoder ensemble itself). Then, it is evaluated on the device’s
corresponding validation-attack datasets. In this comparison experiment, we are not

5.4. RESULTS 119

46000 47000 48000 49000 50000 51000
timestamp +1.6581000000e9

0.000

0.025

0.050

0.075

0.100

0.125

M
SE

A B C D E F G
packet type

normal
Merlin C&C
DoS victim

(a) Cluster 0 global model evaluated on validation-

attack-merlin-cnc-dos dataset for the same clus-

ter. (A) start Merlin agent. (B) hping3 upload.

(C), (D), (E) and (F) ICMP, UDP, SYN and ACK

attacks, respectively. (G) stop Merlin agent. The

(C) event packets are below the threshold.

69500 70000 70500 71000 71500 72000 72500 73000
timestamp +1.6581000000e9

0.00

0.02

0.04

0.06

M
SE

packet type
normal
Scanner
Victim

A B CD E F

(b) Cluster 2 global model evaluated on validation-

attack-scan-amplification dataset for the same

cluster. (A)–(B) Nmap random port scan. (C)

Nmap port 5683 scan. (D)–(E) Nmap top 1000

ports scan. (F) CoAP amplification attack.

5000 6000 7000 8000 9000
timestamp +1.6577100000e9

0.00

0.02

0.04

0.06

M
SE

A B
packet type

normal
Mirai bot
Mirai C&C
Others

(c) Cluster 4 global model evaluated on validation-

attack-mirai-scan-load dataset for the same clus-

ter. (A) testbed’s Mirai bot is started. (B) This

Cluster 4 device (IP camera museum) gets in-

fected with Mirai. Packets labeled as ’Others’

are other Mirai-infected IoT devices scanning

the network.

Figure 5.9: Anomaly detection examples. Dotted line indicates the anomaly threshold,

packets with MSE above the threshold are considered anomalous.

120 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

primarily interested in the results of the anomaly detection metrics; however, we
are interested in what kind of attacks or malicious behavior detection our proposed
method differs from Kitsune.

Regarding the mirai-scan-load dataset, the measured metrics ranged from 0.9729–
0.9771 accuracy, 0.9861–0.9883 F1 and 0.3518–0.4525 MCC depending on the device
type. Overall, most packets related to the Mirai scanning, brute-forcing and malware
loading stages appeared above the anomaly threshold. However, most Mirai C&C
related traffic went undetected.

The results on the Mirai C&C related traffic are best observed on the mirai-cnc-
dos datasets, shown in Figure 5.10b. Themeasuredmetrics are 0.9998 accuracy, 0.9999
F1 and 0.7397 MCC. Kitsune correctly detected all the performed DoS attacks as
anomalous, but failed to detect the C&C related traffic. During the period between the
Mirai bot activation and the first attack, the device periodically communicates with
the Mirai C&C server. This traffic went undetected for Kitsune as its reconstruction
error is close to the error for normal traffic. In contrast, while our proposed method
failed to detect some packets related to the DoS attacks, all the Mirai C&C traffic is
well separated from the normal activity, as shown in Figure 5.10a.

The masscan dataset also shows significant differences between Kitsune and
the proposed clustered FL model. The measured metrics ranged from 0.7781–0.8122
accuracy, 0.8026–0.8865 F1 and 0.4665–0.5971 MCC. All the low-volume scanning
activity and a significant number of packets from the medium-volume scanning
activity were below Kitsune’s threshold, as shown in Figure 5.11b. However, our
proposed method detected all activity irrespective of the scanning rate, as shown in
Figure 5.11a.

Unlike Mirai’s C&C behavior, Kitsune was able to detect the Merlin C&C activ-
ity, which is noisier than Mirai’s. Some packets related to the ICMP attack went
undetected; however, all attacks included packets above the anomaly threshold:
0.9791 accuracy, 0.9891 F1 and 0.7392 MCC. Most anomalous packets from the scan-
amplification data were also correctly classified: 0.9912 accuracy, 0.9955 F1 and
0.5988.

5.4.6.2 Non-clustered FL with weighted aggregation

In this baseline, we train a single global model for all the clients, i.e., we are consid-
ering the 𝐾 = 1 case. The architecture for the anomaly detection autoencoder model
is the same as in the clustered FL approach. We performed the federated hyperpa-
rameter tuning step, and the final optimizer selection is as follows: ClientOpt is
Adam1 with 𝜂 = 0.005, and ServerOpt is SGD with 𝜂𝑠 = 1.25. The full FL training
is performed with 𝐸 = 4 and 𝑅 = 100, as in the clustered case. Finally, we evaluate
the trained global model on the mentioned validation-attack datasets. The anomaly
detection threshold is selected in the same way as in the clustered version.

The evaluation of the global model on the devices that belonged to Cluster 0 and
Cluster 2 resulted in subpar anomaly detection performance. All presented some
normal packet instances with high reconstruction error that raised the anomaly

5.4. RESULTS 121

36000 37000 38000 39000 40000 41000
timestamp +1.6577000000e9

0.00

0.02

0.04

0.06

M
SE

A B C D
packet type

normal
Mirai C&C
DoS victim

(a) Proposed clustered FL method.

36000 37000 38000 39000 40000 41000
timestamp +1.6577000000e9

10 1

101

103

105

R
M

SE

A B C D
packet type

normal
Mirai C&C
DoS victim

(b) Kitsune.

Figure 5.10: Anomaly detection results for the validation-attack-mirai-cnc-dos

dataset on one of the Building monitor devices. (A) Start Mirai bot on the de-

vice. (B)–(C) DoS attacks. (D) stop Mirai bot. Dotted line indicates the anomaly

threshold.

1600 1800 2000 2200 2400 2600
timestamp +1.6581500000e9

0.00

0.02

0.04

0.06

0.08

M
SE

A B C
packet type

normal
Scanner

(a) Proposed clustered FL method.

1600 1800 2000 2200 2400 2600
timestamp +1.6581500000e9

10 1

100

R
M

SE

packet type
normal
Scanner

A B C

(b) Kitsune.

Figure 5.11: Anomaly detection results for the validation-attack-masscan dataset on

one of the Building monitor devices. (A) Masscan node performs low-volume scan.

(B) Masscan node performs medium-volume scan. (C) Masscan node performs high

volume scan. Dotted line indicates the anomaly threshold.

detection threshold. The reconstruction error of anomalous samples was close to the
error for normal traffic samples, yielding a near-zero value for F1 and MCC. While
the anomaly detection performance could be improved by lowering the threshold at
the expense of more false positives, most attacks would still be misclassified for all
the tested validation-attack datasets.

On the contrary, the evaluation of the global model on the devices that belonged
to Cluster 4 offered good anomaly detection performance, similar to the performance
of the clustered anomaly detection version. While the anomaly detection threshold
was larger than the clustered one due to some packets with higher reconstruction
error, most anomalous packets were above the threshold. The measured metrics were
greater than 0.9999 F1 or 0.9997 MCC for all the tested validation-attack datasets.

This baseline shows that the single FL global model is highly biased towards the

122 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

six devices that belonged to Cluster 4 (IP cameras and stream consumers), which
generate more data volume compared to the rest of the devices in the network.
This effect might be caused because the aggregation server weights the client’s
contribution based on the number of training samples of that client. To adjust for
this effect, the following FL baseline will equally weigh the contribution of all the
federated clients.

5.4.6.3 Non-clustered FL without weighted aggregation

We train a single global model (𝐾 = 1) using the same architecture for the anomaly
detection autoencoder model as in the previous cases, but equally weighting the
contribution of all the federated clients instead of by the amount of training data on
each client. We use the following optimizers: ClientOpt is Adam1 with 𝜂 = 0.005,
and ServerOpt is SGD with 𝜂𝑠 = 1.0. The full FL training is performed with 𝐸 = 4
and 𝑅 = 100, as in the previous cases.

The evaluation of the global model on the devices that belonged to Cluster 2
showed bad anomaly detection performance, similar to the previous baseline results
with near zero metrics for F1 and MCC. However, the devices that belonged to
Cluster 0 and Cluster 4 showed better anomaly detection metrics, but worse than
the clustered FL approach: For the mirai-scan-load dataset, Cluster 0 showed 0.441
accuracy, 0.603 F1 and 0.111 MCC; Cluster 4 showed 0.947 accuracy, 0.599 F1, 0.636
MCC. For mirai-cnc-dos, Cluster 0 showed 0.213 accuracy, 0.194 F1 and 0.119 MCC;
Cluster 4 showed 0.180 accuracy, 0.222 F1 and 0.094 MCC. For the merlin-cnc-dos
dataset, Cluster 0 showed 0.146 accuracy, 0.205 F1 and 0.068 MCC; Cluster 4 showed
0.972 accuracy, 0.348 F1 and 0.452 MCC. Finally, for the masscan dataset, Cluster 0
showed 0.783 accuracy, 0.799 F1 and 0.642 MCC; Cluster 4 showed 0.999 accuracy,
0.816 F1 and 0.830 MCC.

5.5 Discussion

In this chapter, we have proposed a clustered FL architecture that allows training
unsupervised anomaly and intrusion detection models in large networks of hetero-
geneous IoT devices. The proposed FL architecture does not need supervised data
labeling, making it appropriate for real deployments where precise network traffic
labeling is not feasible. To address the problems that arise with FL in heterogeneous
environments, the proposed architecture includes an unsupervised device clustering
algorithm that works by inspecting the parameters of the partially trained models.
This clustering method is fully integrated into the FL training pipeline. It does not
rely on any external fingerprinting tools or manual clustering methods, which can
ease the implementation of FL-based architectures in deployment settings.

The architecture was implemented and evaluated on the emulated Gotham
testbed scenario described in Chapter 4, which comprises multiple heterogeneous
IoT and IIoT devices running real production libraries that generate traffic with a
diverse set of network protocols. The proposed device clustering method showed

5.5. DISCUSSION 123

successful grouping of the devices with similar communication patterns. However, as
shown in the experiments, it must be noted that the clustering quality can be reduced
in cases where the local training data in each device is not sufficient. Nevertheless,
there was a wide margin of training data amount where the clustering results were
mainly stable, and this can be mitigated by ensuring enough data is available before
starting the process. It may also be advisable for the server to do several repetitions of
the clustering step to ensure the stability of the process. Since the clustering step does
not require much local training computation and only one round of communication
is needed, it does not incur much cost. Additionally, training using FL exhibited a
faster model convergence rate compared to the isolated edge method, especially for
the devices that generate low volumes of training data.

The global models were evaluated on real attacks showing low false positive rates
and high detection for most of the attacks. While few DoS-based attacks were not
correctly classified as anomalous for some of the device clusters, the proposed model
successfully detected stealthier malicious actions such as the Mirai C&C heartbeat
packets and slow scanning activities. In contrast, the comparison with the ML-based
Kitsune network IDS showed that Kitsune correctly detected those DoS attacks but
misclassified stealthier activity. This can indicate that for a more comprehensive
detection, we could deploy alongside the clustered FL model a simpler model that,
for instance, uses the frequency of packets over a time window to detect generic
volumetric attacks. Additionally, the proposed clustered approach outperformed
non-clustered FL baselines. Training a single global model for all the heterogeneous
devices showed high bias towards the devices that generate more training data or a
lack of generalization of the single global model. This highlights the advantage of
personalization using clustered FL approaches for unsupervised network anomaly
detection.

The IoT device types considered in the experimental scenario are devices with low
mobility capabilities. The inclusion of devices with high mobility, such as intelligent
vehicles and UAVs, presents additional challenges due to their frequent transitions
between multiple wireless networks with varying quality of service. This movement
can cause continuous changes in the extracted network features. Evaluating or
adapting unsupervised clustered FL approaches in high mobility settings is a future
line of work. If the data distribution of a device changes after the clustering process
but before finishing the complete FL training, dynamic or soft clustering approaches
might be considered to increase the flexibility when dealing with high-mobility
IoT networks. Additionally, analyzing the root cause of an anomaly to distinguish
intrusions or attacks between other causes, such as device updates, is another line
of future work. The contributions presented in the next chapter are partially geared
towards that goal by providing a method to explain and characterize the detected
anomalies in a FL setting.

Lastly, we note that the unsupervised model training assumes that the devices
are operating in normal conditions (i.e., during the training phase, the devices are
not compromised). This assumption might not hold for some adversarial settings.
Future work can include exploring how compromised or adversarial devices in the

124 CHAPTER 5. CLUSTERED FL AD IN HETEROGENEOUS IOT NETWORKS

network affect the unsupervised device clustering stage of the proposed method.
Compromised devices might deviate from other normal devices that should belong
to the same cluster. This drift might be indicative of anomalous behavior, and the
device can be flagged or filtered out before the FL process starts. Toward answering
this question, in Appendix A, we present an additional experiment that explores the
device clustering process when some of the devices are compromised prior to the
training. However, more refinements could be made for a more robust approach.

CHAPTER 6
Federated explainability for

anomaly characterization

The primary motivation for this chapter comes from the identified gaps regarding
the Suitability of the proposals to FL settings (3.9.3) and the Overreliance on labeled
data (3.9.1) from the point of view of XAI techniques for IDSs, as most works require
labeled data in certain stages of their proposals, or are not fully designed for FL
architectures.

Moreover, as previously stated, the integration of XAI methods into FL is an
area that has received little attention and presents additional challenges due to the
particularities of this setting. For instance, the distributed nature of the datasets,
high heterogeneity regarding data distribution and client capabilities, large scale in
terms of the number of clients in the federated network, and the need to maintain
the training data local to each client are challenges that need to be considered for
using XAI methods into FL [27], [28].

The contributions in this chapter aim to fill these gaps by proposing a method
to characterize and explain the anomalies detected by unsupervised ML/DL-based
IDS models in a FL setting. In particular, we use XAI and clustering techniques to
explain anomalies and group common anomalous patterns. The method is evaluated
on anomalies generated by network attacks from real IoT malware, namely Gafgyt
and Mirai (see Section 2.2). Each client in a FL setting might be exposed to different
attacks; hence, by characterizing the anomalies in a federated way, all clients can be
aware of the various anomalous patterns that have occurred across the federated
network. In summary, our work aims to address the following questions in the
context of FL:

1. What features have been the most decisive in classifying those samples as
anomalous?

2. Can the explainability model identify different groups of anomalies?

125

126 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

3. What do all anomalies in a specific group have in common?

The contributions presented in this chapter are aligned with the objective O.2
from Section 1.2.3 and hypothesis H.2 and H.3 from Section 1.2.2. The contributions
can be summarized as follows:

• We introduce a novel methodology to explain and characterize anomalies
generated by ML/DL-based anomaly detection models in a FL setting. The
proposed methodology is described in Section 6.1. Particularly, the characteri-
zation is based on training SHAP [25] explainability models in a federated way.
Additionally, to make all the clients aware of the various anomalous patterns
that occurred across the whole network, we leverage a federated version of
k-means [218] and also adapt a clustering internal validation metric to be
computed in a distributed manner, shown in Section 6.2.

• We perform an experimental validation of the methodology on two different
IoT network security datasets with a wide variety of attacks and malicious
behaviors. The first is based on network packet-level data captured using
the Gotham testbed from Chapter 4, and the second uses network flow-level
data from the N-BaIoT [154] dataset. Autoencoders are used as the anomaly
detection model for both datasets.

• We show the results of the generated explanations and characterization of the
anomalies. Additionally, we leverage IDMEF as an alert message exchange
format to enable the interoperability of the proposed method with third-party
security solutions such as SIEMs so that the characterized anomalies can be
used for correlation with events generated by other data sources.

The source code for the implementation is available at [34].

6.1 Proposed system model

In this section, we first describe the considered FL setting and the threat model.
Then, we provide background knowledge on the SHAP explanation model. Finally,
we present an overview of the proposed method’s architecture.

6.1.1 Federated learning setting

The proposed system is designed to be deployed in a standard cross-device FL
architecture (see Section 2.5.2), composed of many clients and a single FL aggregation
server. Low-powered IoT clients are expected to be connected to the FL aggregation
server via a hub or gateway. Meanwhile, more capable IoT clients or other endpoints
might be directly connected to the aggregation server without any intermediary.

All data (training and evaluation data) is generated locally at each device and
remains decentralized throughout the process, including at the model training and

6.1. PROPOSED SYSTEM MODEL 127

explanation generation phases. The aggregation server coordinates the process and
only receives model updates or highly aggregated data.

This FL setting is similar to the previous one defined in Chapter 5; however, it is
not limited to clustered FL architectures. The proposed method is generic enough to
be applicable to many FL settings.

All the clients are expected to be able to performMLmodel training and inference
tasks. We do not assume any particular ML model for the unsupervised anomaly
detection process. The explanations are also performed independently of the selected
MLmodel, as we are adopting the model-agnostic Kernel SHAP algorithm to generate
the explanations (further detailed in section 6.1.3). However, to implement and
evaluate the proposal (section 6.3.2), we use autoencoders as we build upon the
results obtained in Chapter 5.

6.1.2 Threat model

The threat model we are considering for this chapter is, again, the same as in
Chapter 5. Similarly, this work assumes that no IoT device is compromised prior to
the FL model training. However, they can be attacked or compromised after model
training and during the generation of explanation models. We also assume that no
device behaves in an adversarial manner, and model poisoning attacks against FL
are again outside the scope of this thesis.

6.1.3 SHAP background

In Section 2.4.5, we mentioned that SHAP is a state-of-the-art post-hoc technique to
provide interpretation to ML models. Here we provide further details on SHAP as it
is relevant to the contributions of this chapter.

Lundberg et al. [25] introduce the observation that any explanation for the
prediction of a model 𝑓 is itself a model 𝑔. Here, 𝑔 is the explanation model, a simpler
and more interpretable model that approximates 𝑓 . They focus on explanation
models following additive feature attribution methods, a linear function of binary
variables. The binary variables are simplified inputs 𝑥 ′, where 𝑥 ′ ∈ {0, 1}𝑀 and
𝑀 is the number of features. The simplified inputs are derived from the original
inputs 𝑥 by a mapping function 𝑥 = ℎ𝑥 (𝑥 ′) defined for each input. Additive feature
attribution methods follow the definition shown in equation (6.1).

𝑓 (𝑥) = 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 (6.1)

The 𝜙𝑖 ∈ R values represent the importance effect of the corresponding feature
for a particular prediction. The class of additive feature attribution methods presents
a unique solution where the 𝜙𝑖 values are the Shapley values [25] from cooperative
game theory. The computation of Shapley values involves testing different subsets of
data features, and the importance value is assigned based on the effect on the model
prediction of including that feature. SHAP values are adapted Shapley values; since

128 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

most ML models cannot handle changes in the number of sample features, SHAP
represents an absent feature by approximating it using a conditional expectation
function of 𝑓 . The SHAP value of a particular feature gives the change in the expected
model prediction with respect to the base value when conditioning on that feature.
Adding the SHAP values of all the features results in the same value as the prediction
𝑓 (𝑥). The base value (𝜙0) represents the value that would be predicted if all the
sample features were absent.

Kernel SHAP is a model-agnostic method to approximate those values more
efficiently than classic Shapley samplingmethods. Themethod requires a background
dataset to compute the expected values. For large datasets, this background data is
usually subsampled from the training data because the computation time for the
SHAP values increases linearly with the size of the background data. However, in
FL settings, the dataset is distributed across all the clients, and no party (including
the FL aggregation server) can directly access the raw data of others. Therefore,
the selection of the background data requires special attention in order to capture
representative samples from all the clients in the network while also respecting data
locality requirements (privacy reasons) and data transmission volume minimization.
Ensuring that all the clients use the same background samples will guarantee that
all the explanations provided by the clients are computed with respect to the same
background and be comparable to each other.

6.1.4 Architecture of the proposed method

The diagram of all the components involved in the proposed method is shown
in Figure 6.1. The diagram is divided into three main blocks: (i) anomaly detec-
tion model training, (ii) model inference and (iii) explainer model training and the
characterization of the anomalies.

The main focus of this chapter is not on the FL anomaly detection model training
or inference, but on the third block regarding the FL explainer training and anomaly
characterization, as denoted by the steps with a shaded background in Figure 6.1.

As shown in Figure 6.1, the last block includes two steps that are performed
in a federated way: the explainer model training and the characterization of the
anomalies. We will use Kernel SHAP to train the explainer model, and as mentioned
in section 6.1.3, it requires two inputs, the prediction model 𝑓 and a background
dataset. The output of this step is the explainer model 𝑔. The prediction model 𝑓 is
the global anomaly detection model trained with FL, which is common to all clients.
To ensure that all clients have the same explainer model 𝑔, the same background
dataset must be used, which is usually a representative subsample of the training
data. However, the data in FL settings are distributed across all clients and not shared.
To generate a common representative background set as a subsample of the entire
distributed dataset, we will leverage and adapt a federated version of k-means based
on k-FED [218]. In this step, the 𝑘 from k-means refers to the number of subsampled
data samples to be used as the background for SHAP.

6.2. ALGORITHM DETAILS 129

FL
aggregator

FL
aggregatorTraining raw data Trained FL

model
Training processed

data for ML

Incoming raw data Incoming processed
data for ML

Anomaly
detection

Normal

Anomalous

Train XAI explainerGenerate explanations

Save

SIEM

Federated process

Federated process

Anomaly
detection
model training
block

Model
inference
block

Explainer
training and
anomaly
characterization
block

Characterize
FL

aggregator

Federated process
IDMEF

Figure 6.1: Diagram of the proposed methodology. The components within the

dashed frames represent steps performed using FL. Components with shaded back-

ground refer to the main contributions of this chapter.

The anomaly characterization process is the second step that requires the use of
FL. One of the inputs of this process is the generated explanations for the anomalous
samples, that is, the 𝜙𝑖 SHAP values showing the importance of each feature. The
other inputs are the processed data and the raw data of the anomalous samples. While
some features, such as source and destination IP addresses or timestamps, are not
suitable as inputs to theMLmodel to prevent learning from spurious correlations [21],
[139], they are certainly valuable for security analysts for correlating with other
events. Hence, we use both for the characterization. Since the anomaly explanations
are local to each client, we use FL to ensure that all clients are able to know and
identify all the different anomalous activities found across the federated network,
even if each client has been exposed to a different set of attacks. Specifically, we
will again leverage k-FED [218] to group the explainability results in each client and
share it with other peers in the network so that all can have the same clustering
labels to refer to the same anomalous instances. In this step, 𝑘 refers to the global
number of anomalous behaviors found throughout the federated network.

6.2 Algorithm details

In this section, we detail the procedures to perform the explainer model training
and the anomaly clustering in a FL setting. Additionally, we describe the cluster
explanation and the anomaly message exchange format.

As explained in section 6.1.4, we leverage and adapt k-FED [218] for both FL
processes. k-FED includes several practical advantages that make it suitable for large
federated networks. First, it is a one-shot process that only requires a single round
of communication to compute the global clustering results, significantly reducing
the communication overhead. Second, the computation is done locally at each client
and is independent of each other; therefore, it does not require synchronization and
can be easily parallelized.

130 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

Algorithm 6.1: FL training for the Kernel SHAP explainer model.

Input: A set of clients 𝑍 each with local data 𝑵 (𝑧) , local number of clusters for
each client 𝑘 (𝑧) and number of global clusters 𝑘 .

Result: A trained Kernel SHAP model at each client.
1 foreach client 𝑧 ∈ 𝑍 in parallel do
2 Run k-means with 𝑘 (𝑧) in local data 𝑵 (𝑧) and obtain cluster centers

Θ(𝑧) = (𝜽 (𝑧)1 , . . . , 𝜽 (𝑧)
𝑘 (𝑧)).

3 Compute number of data samples in each cluster 𝐶 (𝑧) = (𝑐 (𝑧)1 , . . . , 𝑐
(𝑧)
𝑘 (𝑧)).

4 for 𝑖 ∈ {1, 2, . . . , 𝑘 (𝑧) } do
5 for 𝑗 ∈ {1, 2, . . . , d} do
6 t← argmint (|𝑵 (𝑧) [t, 𝑗] − 𝜽

(𝑧)
𝑖
[𝑗] |)

7 𝜽 (𝑧)
𝑖
[𝑗] ← 𝑵 (𝑧) [𝑡, 𝑗].

8 end
9 end

10 Send Θ(𝑧) and 𝐶 (𝑧) to the central server.
11 end
12 Pick any 𝑧 ∈ [𝑍] and let𝑀 ← Θ(𝑧) (in server).
13 while there are less than 𝑘 points in𝑀 do
14 Let 𝜽 ← argmax𝑧∈[𝑍],𝑖∈[𝑘]𝑑𝑀 (𝜽

(𝑧)
𝑖
). That is, the farthest 𝜽 (𝑧)

𝑖
from the set𝑀 .

15 𝑀 ← 𝑀 ∪ {𝜽 }.
16 end
17 Run one round of Lloyd’s heuristic (k-means), using the points in𝑀 as initial

centers, to cluster points 𝜽 (𝑧)
𝑖

, 𝑧 ∈ [𝑍], 𝑖 ∈ [𝑘] into 𝑘 clusters: B = (𝒃1, 𝒃2, . . . , 𝒃𝑘).
18 𝐶 ← Estimate total number of data samples in the global clustering results using B

and 𝐶 (𝑧) .
19 for 𝑖 ∈ {1, 2, . . . , 𝑘} do
20 𝒃𝒊 ← Θ(𝑧) [argmin(𝑑 (𝒃𝒊,Θ(𝑧)))].
21 end
22 foreach client 𝑧 ∈ 𝑍 in parallel do
23 Receive B and 𝐶 from the server.
24 Train Kernel SHAP model (B, 𝐶).
25 end

6.2.1 Federated learning for explainer model training

The FL method to train the Kernel SHAP explainer models is described in Algo-
rithm 6.1. The main objective of this algorithm is to compute SHAP background
baseline samples common to all the clients in the federated network. Using a similar
notation as in [218], 𝑵 (𝑧) ∈ R𝑛 (𝑧)×𝑑 denotes the local training dataset of a particular
client 𝑧 with 𝑛 (𝑧) local training samples, each having 𝑑 dimensions.

Each client computes a local k-means process (as described in [218]) using 𝑘 (𝑧)
centroids. Unlike the original k-FED, we include two additional steps to adapt it for
SHAP background data extraction. First, we compute the number of data samples
in each cluster (𝐶 (𝑧) , line 3 in Algorithm 6.1). Then, we round the obtained cluster

6.2. ALGORITHM DETAILS 131

Algorithm 6.2: FL clustering of the SHAP values of the identified anomalies.

Input: A set of clients 𝑍 with anomalous samples, and number of global clusters 𝑘 .
Result: The global clustering results of the anomalies across all the clients in the

federated network.
1 foreach client 𝑧 ∈ 𝑍 in parallel do
2 Run trained Kernel SHAP on the anomalous samples to create the local dataset

𝚽
(𝑧) .

3 𝚽
(𝑧)
norm ← independently scale samples from 𝚽

(𝑧) to unit norm.
4 Estimate 𝑘 (𝑧) with HDBSCAN on 𝚽

(𝑧)
norm. Send it to the server.

5 end
6 𝑘 ′ ← max𝑧 (𝑘 (𝑧)). Send 𝑘 ′ to the clients.
7 foreach client 𝑧 ∈ 𝑍 in parallel do
8 Run k-means with 𝑘 ′ in local data 𝚽(𝑧)norm and obtain cluster centers

Σ(𝑧) = (𝝈 (𝑧)1 , . . . ,𝝈 (𝑧)
𝑘 ′).

9 Send Σ(𝑧) to the central server.
10 end
11 Pick any 𝑧 ∈ [𝑍] and let𝑀 ← Σ(𝑧) (in server).
12 while there are less than 𝑘 points in𝑀 do
13 Let �̄� ← argmax𝑧∈[𝑍],𝑖∈[𝑘]𝑑𝑀 (𝝈

(𝑧)
𝑖
). That is, the farthest 𝝈 (𝑧)

𝑖
from the set𝑀 .

14 𝑀 ← 𝑀 ∪ {�̄� }.
15 end
16 Run one round of Lloyd’s heuristic (k-means), using the points in𝑀 as initial

centers, to cluster points 𝝈 (𝑧)
𝑖

, 𝑧 ∈ [𝑍], 𝑖 ∈ [𝑘] into 𝑘 clusters: S = (𝒔1, 𝒔2, . . . , 𝒔𝑘).
Send S to clients.

center values so that the features of each center are equal to the value of the closest
feature in 𝑵 (𝑧) (lines 4–9). This rounding step is included to match the non-federated
implementation of k-means sampling in the SHAP source code [219]. The rounded
cluster centers Θ(𝑧) and the 𝐶 (𝑧) are sent to the server.

At the server, the global clustering into 𝑘 groups is performed in the same way
as in k-FED. However, we again include two additional postprocessing steps. We
estimate the total number of samples in each global cluster (𝐶 , line 18) based on the
received 𝐶 (𝑧) values and the final clustering result B. Then, each global centroid is
assigned to the nearest center from the local cluster candidates Θ(𝑧) (lines 19-21).
This rounding step is performed to ensure that the final clustering centroids include
values representative of the training data from all 𝑵 (𝑧) .

The global results B and 𝐶 are sent to all clients; therefore, they use the same
values as SHAP background baseline samples during the Kernel SHAPmodel training.

6.2.2 Federated learning for anomaly clustering

The anomaly clustering process across the federated network is detailed in Algo-
rithm 6.2. The main objective of this step is to compute a global clustering of the

132 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

anomalies found across all the clients using FL. The results are shared with all clients,
so they can identify and know all the found activities throughout the network (even
if each client has not been exposed to all attacks or no attack at all).

Using the explainer model trained with Algorithm 6.1, first, each client computes
the SHAP values of all its anomalous samples (𝚽(𝑧) ∈ R𝑛

(𝑧)
anom×𝑑). Then, each sample

from 𝚽
(𝑧) is scaled to unit norm to create 𝚽(𝑧)norm; this step is performed so that the

subsequent clustering steps give more weight to the direction of the SHAP values
instead of the magnitude.

After the normalization step, each client locally applies the HDBSCAN clustering
algorithm (see Section 2.4.3) to automatically estimate the number of clusters (𝑘 (𝑧))
in 𝚽

(𝑧)
norm (at this step, we are only interested in the local estimation of the number of

clusters, not the clustering results themselves). HDBSCAN is used due to easier and
more intuitive hyperparameter selection compared to sweeping through different
values of 𝑘 (𝑧) , clustering the data, and then using internal clustering validation
metrics to evaluate the fitness, which might require manual inspection to interpret
the fitness results. Since the number of clients in a FL setting can be very large, using
HDBSCAN can improve the automation of this process.

After estimating 𝑘 (𝑧) in each client, the value is sent to the server. The server
selects 𝑘 ′ as the maximum 𝑘 (𝑧) for all clients 𝑧. 𝑘 ′ is the number of clusters per
device, and 𝑘 is the total number of clusters over the federated network.

The rest of the federated k-means clustering is performed in the same way as in
k-FED. In the end, all clients will have the clustering results S corresponding to the
different anomalous patterns found throughout the network.

In Algorithm 6.2, we assume for simplicity that 𝑘 is known and it is an input of
the algorithm. However, 𝑘 will be unknown in practice, as it refers to the number of
anomalous behavior clusters found throughout the network. Therefore, to address
this issue, we are going to consider 𝑘 as unknown and will estimate and select it
based on unsupervised internal clustering validation metrics (see Section 2.4.4.2),
with the added complexity that the metric must be computed efficiently in a federated
(distributed) setting. For this purpose, we are going to adapt the Calinski–Harabasz
(CH) score to a FL setting, shown in Algorithm 6.3. Since the CH score is based
on the between-group and within-group sum of squares ratios, these values can be
easily computed in a distributed setting and only incur minimal transmission costs.
Alternative metrics, such as the Silhouette score, may not be suitable in FL settings
because it requires computing pairwise distances between all the samples. Since
samples in the same cluster can be distributed among different clients, this would
require higher data transmission and computation costs.

For the estimation of 𝑘 , we repeat the steps from lines 7–16 in Algorithm 6.2 for
different values of 𝑘 , starting from 𝑘 ′ to no more than 𝑘 ′ |𝑍 |. After each repetition,
we use Algorithm 6.3 to measure the clustering performance, where a higher CH
score indicates a better fit.

6.2. ALGORITHM DETAILS 133

Algorithm 6.3: Computation of the Calinski–Harabasz score in a federated

(distributed) way.

Input: A set of clients 𝑍 with local data X(𝑧) , cluster labeling results L(𝑧) for the
local data and global cluster centers GC.

Result: Calinski–Harabasz score CH.
1 𝐾 ← total number of unique labels (clusters).
2 foreach client 𝑧 ∈ 𝑍 in parallel do
3 𝑛 (𝑧) ← number of samples in X(𝑧) .
4 𝑠 (𝑧) ← sum of X(𝑧) along the columns (features).
5 Send 𝑛 (𝑧) and 𝑠 (𝑧) to the server.
6 end
7 𝑁 ← sum of 𝑛 (𝑧) for all clients 𝑧 ∈ 𝑍 . (total number of samples)
8 𝐶𝑔 ← sum of 𝑠 (𝑧) along columns for all clients 𝑧∈𝑍

𝑁
. (dataset center)

9 𝑊𝐺𝑆𝑆 ← 0 (within-group sum of squares).
10 𝐵𝐺𝑆𝑆 ← 0 (between-group sum of squares).
11 for 𝑘 in range 𝐾 do
12 foreach client 𝑧 ∈ 𝑍 in parallel do
13 X(𝑧)

𝑘
← X(𝑧) where L(𝑧) = 𝑘 .

14 𝑊 (𝑧) ← sum of squared distances between X(𝑧)
𝑘

and GC𝑘 .
15 𝑛

(𝑧)
𝑘
← number of samples in X(𝑧)

𝑘
.

16 Send𝑊 (𝑧) and 𝑛 (𝑧)
𝑘

to the server.
17 end
18 𝑊𝐺𝑆𝑆 ←𝑊𝐺𝑆𝑆+ sum𝑊 (𝑧) for all clients 𝑧 ∈ 𝑍 .
19 𝐵𝐺𝑆𝑆 ← 𝐵𝐺𝑆𝑆+ (sum 𝑛

(𝑧)
𝑘

for all clients 𝑧 ∈ 𝑍) × squared distance between
GC𝑘 and 𝐶𝑔.

20 end
21 CH← 𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
𝑁−𝐾
𝐾−1 .

6.2.3 Explaining clusters

After executing the steps described in Algorithms 6.1 and 6.2, each client has the
information about which features have been the most decisive in classifying the
samples as anomalous by means of the SHAP values. Additionally, those samples can
be grouped using the global clustering results computed using FL. Thus, groups of
anomalies can be broadly characterized by the SHAP values of their corresponding
cluster center.

However, SHAP values only give the importance of a feature for the prediction
of the model, not the actual values of said feature. To find out which feature values
the anomalies for a specific cluster have in common, we will compute basic summary
statistics (e.g., min, max, mean, std, percentiles) over the features of all anomalous
samples for each cluster. More sophisticated data extraction processes could be used
to extract additional patterns from the anomalies in each group, but the description
of those methods is currently outside the scope of the contributions in this chapter.

134 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

6.2.4 Anomaly message exchange

Grouping the anomalies based on a similar explanation allows several benefits, such
as capturing more context of the events, alert volume reduction (reducing overload
for the security analysts) and fewer data transmission costs when exchanging the
alerts to a security management system (e.g., SIEM). Anomalies detected in the new
incoming data can be automatically assigned to one of the learned global clusters
based on proximity (in the explanation space) to the nearest center and auto-tagged
with the cluster’s index to provide a context that is common to all the clients in the
federated network.

Additionally, since a single attack can generate multiple anomalous activities
corresponding to different clusters, providing alert messages related to the temporal
correlation of the anomalous clusters occurring simultaneously could help identify
the tools or methods used to perform the attack.

To this end, using a standard anomaly message exchange format makes commu-
nicating with all the clients in the network easier. Moreover, it allows interoperability
with other intrusion detection systems and event correlation engines to create ac-
tionable information by combining alerts from this type of unsupervised anomaly
detection systems and other traditional solutions. To allow this interconnection
and communication, we rely on the Intrusion Detection Message Exchange Format
(IDMEF). Fore more information on IDMEF, refer to Section 2.3.4.

The Alert IDMEF message type provides a way to describe detailed event infor-
mation. In our case, we use the Alert type to create a message generated by a group
of anomalous events corresponding to a single cluster. To also provide temporal
correlation of anomalies falling into different clusters at similar time windows, we
use the CorrelationAlert class, which groups one or more Alert messages.

Since we still keep the raw network data available for the anomaly characteriza-
tion step, as shown in Figure 6.1, we can populate the Source and Target classes
with information regarding the source and destination addresses involved in the
anomalous events. As the Classification class, we include the cluster’s index of
the anomalies. Besides, the AdditionalData class allows us to include the relevant
context regarding the group of anomalies, such as the summary statistics described
in the previous section. Since the average SHAP values of each cluster (centroids) are
known to all clients and the FL server, they can also be sent to the security analysts,
so they know which features require more attention.

6.3 Evaluation

In this section we present the experimental results evaluated on two network-based
attack detection datasets. The first relies on characteristics found in individual
network packets, while the second dataset extracts features across packets in a
network flow and several temporal windows.

6.3. EVALUATION 135

6.3.1 Datasets

For the first dataset, we rely on the network dataset extracted using the Gotham
testbed scenario fromChapter 4 and the data processing and anomaly detectionmodel
training methodology described in the clustered FL architecture from Chapter 5.

For the evaluation in this chapter, the selected behaviors and attacks generated
with Mirai comprise most stages from the botnet life cycle (which includes stealthier
as well as volumetric activities): C&C communication, network scanning for vulner-
able devices, credential brute forcing, reporting victims to the C&C server, infecting
the victims with the Mirai binary and remote command execution. DoS attacks are
included in the following flow-level dataset. Red-teaming tools include activities
such as Masscan and Nmap network-wide scans with different packet rates and port
ranges, and CoAP amplification attacks.

Additionally, for the second dataset, we use N-BaIoT [154] to evaluate the pro-
posed method in a dataset based on network flow-level features. When a packet
arrives/leaves, the feature extraction process computes a total of 115 features, which
includes summary statistics taken over several temporal windows of packets and
aggregated by different combinations of source IP, MAC and port addresses. Further
details on the feature extraction process are given in [70]. For the attack evaluation,
N-BaIoT includes two real IoT malware binaries, Gafgyt (a.k.a. BASHLITE) and Mirai,
that generate the following volumetric attacks. For Gafgyt: Scan (network scanning
for vulnerable devices), Junk (sending spam data), UDP flooding, TCP flooding and
Combo (combination of Junk and opening connections to specific hosts). For Mirai:
Scan, ACK flooding, SYN flooding, UDP flooding, UDPplain (UDP flooding with
higher packet rate).

6.3.2 Federated learning model training

The federated model training corresponds to the first block depicted in Figure 6.1
(anomaly detection model training). The selected anomaly detection model for
both datasets is an autoencoder trained and tuned on benign instances from their
respective datasets and evaluated on data not used for training.

For the packet-level dataset, we use the same autoencoder described in [32],
with input and output sizes of 69 nodes and 2 hidden encoder layers composed of
34 and 17 nodes, respectively. The decoder part is symmetric. The ReLU activation
function is used after each layer. The model is trained in a FL setting composed of
11 clients, corresponding to one City power and ten Combined cycle nodes from [30],
which use CoAP as the primary protocol to transmit the telemetry data. FL is
performed for 100 rounds and 4 local training epochs using the Adam optimizer with
a 0.005 learning rate and 1 × 10−5 𝐿2 regularization weight.

The anomaly threshold for each device is computed using another separate
validation set of benign instances (also local to each device and not used during
training), the maximum value of the autoencoder reconstruction error is selected as

136 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

a threshold to minimize the number of false positives. After evaluating the FL model
on the attacking instances, we obtain F1 scores greater than 0.9999.

For the flow-level dataset, we reproduce the autoencoder model from [154]. The
autoencoder has an input and output size of 115 nodes and 4 hidden encoder layers
composed of 86, 57, 37 and 28 nodes, respectively, with a symmetric decoder. We
use the ReLU activation function after each layer. For the FL training, we select
2 clients, the two Doorbell IoT devices Danmini and Ennio from [154]. Features
are transformed using a MinMax scaler fitted across the federated network. FL is
performed for 30 rounds and 1 local training epoch using the Adam optimizer with
a 0.008 learning rate and 1 × 10−5 𝐿2 regularization weight.

In this case, the anomaly detection threshold for each device is selected in the
same way as in [154], taking the sum of the reconstruction error mean and standard
deviation over a separate validation set of benign instances not used during training
(scaled using the previously fitted MinMax scaler). The FL model evaluation on the
scaled attack samples gives F1 scores greater than 0.9997.

6.3.3 Federated learning SHAP explainer and SHAP values

In this section, we are going to show the application of the FL SHAP explainer
training and the generated explanations. These results correspond to the “Train
XAI explainer” and “Generate explanations” steps from the third block shown in
Figure 6.1.

As noted in Algorithm 6.1, the FL Kernel SHAP explainer model training requires
a set of clients 𝑍 , the local number of clusters for each client 𝑘 (𝑧) and the number
of global clusters 𝑘 . Since the computation time increases linearly with the size
of the background data 𝑘 , we are going to select small values for 𝑘 relative to the
available number of training samples and set 𝑘 (𝑧) = 𝑘 ∀𝑧 ∈ 𝑍 to simplify the
parameter selection for Algorithm 6.1. However, since the selection of 𝑘 can affect
the generated SHAP values, we are going to repeat the process for two values, 𝑘 = 5
and 𝑘 = 20, to explore their effect.

After sampling the 𝑘 background values and using them as a baseline to create
the Kernel SHAP explainer (Algorithm 6.1), each client evaluates the explainer on the
identified anomalous samples, and then, the SHAP values are normalized (lines 2–3
in Algorithm 6.2).

For the packet-level dataset, among the 11 clients used for the federated model
training, 2 of them received attacks. Each attacked device is exposed to different
anomalous activities; however, some are common to multiple devices. The first
device is exposed to Mirai C&C traffic and the initial stages of the malware (scanning,
preinfection and infection phases). The second device received various scanning
activities from Nmap first, and then it was exploited to perform reflected DoS CoAP
amplification attacks.

The generated SHAP values of the anomalies are local to each client; however,
for illustrative purposes, Figure 6.2 shows, for both 𝑘 = 5 and 20, a 2D visualization
of the SHAP values of all the anomalous samples in a centralized way using the

6.3. EVALUATION 137

20 10 0 10 20
UMAP embedding 1

20

10

0

10

20

U
M

A
P

em
be

dd
in

g
2

Label
normal
Mirai bot
Others
Mirai C&C
Scanner
Victim CoAP

(a) SHAP using 𝑘 = 5 samples as background.

10 5 0 5 10 15
UMAP embedding 1

10

5

0

5

10

15

U
M

A
P

em
be

dd
in

g
2

Label
normal
Mirai bot
Others
Mirai C&C
Scanner
Victim CoAP

(b) SHAP using 𝑘 = 20 samples as background.

Figure 6.2: 2D visualization of the packet-based SHAP values of anomalous samples

(centralized) total: 138,435 anomalies.

UMAP dimension reduction technique. In practice, centralizing the data would not
be feasible in federated settings because it requires each client to transmit the SHAP
values to the central server. Figure 6.2 highlights the difference between using 𝑘 = 5
samples as baseline (Figure 6.2a) and 𝑘 = 20 samples (Figure 6.2b). We use the same
UMAP random seed initialization for both cases to make them comparable. The
𝑘 = 20 case shows more clearly defined clusters compared to 𝑘 = 5. Each anomalous
point is colored according to an attack label (the normal label represents a few
false positives). The labeling process is performed using a heuristic based on the IP
source and origin addresses and timestamps, and it is only used for visualization
purposes and not for training. Under the same label, there might be more than
one anomalous behavior, and different labels can also have patterns in common, as
shown in Figure 6.2.

We use the same methodology for the flow-level dataset as in the previous one.
However, in the N-BaIoT dataset, for each device, the attack samples are provided in a
separate file for each distinct attack type. The attacks for the Danmini device include
5 Gafgyt and 5 Mirai attacks, whereas, for Ennio, it only includes 5 Gafgyt attacks.
Therefore, to train the Kernel SHAP explainer and the generation of the SHAP values,
we are going to simulate 15 clients in the federated network, where each attack file
is assigned to a simulated IoT client. To compute the SHAP background samples,
the benign instances from Danmini are shared among the 10 simulated clients, and
the benign instances from Ennio are shared for the remaining 5. Each simulated
client then computes the SHAP values of its corresponding attack type anomalies
(all simulated clients use the same trained FL anomaly detection model described in
section 6.3.2).

Figure 6.3 shows the 2D visualization of the SHAP values (all centralized) for
𝑘 = 5 (Figure 6.3a) and 𝑘 = 20 (Figure 6.3b). In this case, the difference between
the sizes of the SHAP background samples is not as apparent as in the packet-level
dataset. The visualization shows interesting patterns in the SHAP values of the
anomalous samples. For instance, Gafgyt Junk and Combo are close to each other
and span a similar region in the embedding. According to [154], Gafgyt Combo

138 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

10 0 10 20
UMAP embedding 1

10

0

10

20
U

M
A

P
em

be
dd

in
g

2
Label

gafgyt_combo
gafgyt_junk
gafgyt_scan
gafgyt_tcp
gafgyt_udp
mirai_ack
mirai_scan
mirai_syn
mirai_udp
mirai_udpplain

(a) SHAP using 𝑘 = 5 samples as background.

10 0 10 20
UMAP embedding 1

10

0

10

20

U
M

A
P

em
be

dd
in

g
2

Label
gafgyt_combo
gafgyt_junk
gafgyt_scan
gafgyt_tcp
gafgyt_udp
mirai_ack
mirai_scan
mirai_syn
mirai_udp
mirai_udpplain

(b) SHAP using 𝑘 = 20 samples as background.

Figure 6.3: 2D visualization of the flow-based SHAP values of anomalous samples

(centralized) total: 1,285,084 anomalies.

comprises Gafgyt Junk and additional connections. Similarly, Gafgyt TCP and UDP
share the same space in the embedding, both are attacks with similar behavior, but
the feature extraction process does not distinguish between TCP and UDP. Mirai
scan and Gafgyt scan activities are also placed in a similar embedding space.

6.3.4 Federated learning anomaly clustering

The federated anomaly clustering step is going to be performed using the SHAP
values obtained with the 𝑘 = 20 background samples case for both datasets. As noted
in Algorithm 6.2, we estimate each 𝑘 (𝑧)—the number of anomalous clusters local
to each device—using HDBSCAN and compute 𝑘 ′ at the server as the maximum
of all the received 𝑘 (𝑧) . We use the same HDBSCAN parameters for all the clients:
minimum cluster size set to 300, min number of samples to 1 and cluster selection
epsilon to 0.05.

For the packet-level dataset, the estimated number of clusters for the first client
is 𝑘 (1) = 14, and 𝑘 (2) = 4 for the second. Thus, the final value for 𝑘 ′ is set to 14 for
both clients when performing the federated k-means process. Since 𝑘—the optimal
value of the total number of anomalous clusters over the federated network—is
unknown, we will perform multiple federated k-means trials for 𝑘 ranging from 𝑘 ′

to (𝑘 ′ × number of devices) − 1 (from 14 to 27) and compute the corresponding CH
scores, as explained in section 6.2.2. Additionally, we will perform 30 repetitions
for each trial to account for the effects caused by the random initialization of the
k-means centroids.

The obtained clustering validation metrics are shown in Figure 6.4. The results
of the unsupervised internal validation metrics using the CH score computed in a
federated (distributed) way are shown in Figure 6.4a, where higher scores indicate
a better fit. Figure 6.4b shows an additional experiment to measure the clustering
quality results between the federated and centralized settings. For this comparison,
we compute the adjusted Rand score between the federated k-means and the central-
ized HDBSCAN on the joined data using the same parameters as for the estimation

6.3. EVALUATION 139

14 15 16 17 18 19 20 21 22 23 24 25 26 27
Number of global clusters

0

1

2

3

C
al

in
sk

i-H
ar

ab
as

z
sc

or
e

1e6

(a) Calinski–Harabasz score computed in a feder-

ated way.

14 15 16 17 18 19 20 21 22 23 24 25 26 27
Number of global clusters

0.7

0.8

0.9

1.0

A
dj

us
te

d
R

an
d

sc
or

e

(b) Adjusted Rand score between the federated k-
means and centralized HDBSCAN clustering.

Figure 6.4: Federated k-means clustering validation metrics for the packet-based

dataset. Horizontal axis represents the global number of clusters 𝑘 . For each 𝑘 , the

box plot shows the scores for 30 repetitions.

Table 6.1: Distribution of the 22 global clusters for the packet-based dataset across

the 2 clients that received attacks. The values are shown as percentage (%) of samples

that belong to each cluster per client. A value of ’-’ represents 0 samples.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Client 1 3.47 12.2 16.6 31.3 1.08 0.87 0.87 11.1 0.94 1.04 0.70 0.87 18.3 0.66 0.00 - - - - - 0.01 -
Client 2 - - - - - - - - 2.70 - 0.00 - - - 47.1 0.15 47.1 0.02 2.44 0.01 0.06 0.33

of the 𝑘 (𝑧) values for each client. The global HDBSCAN clustered the data into 16
clusters (and some non-clustered samples, which are considered noise). However,
unlike HDBSCAN, k-means does not consider any samples as non-clustered noise.

In a deployment FL scenario, using ground truth clustering results or centralizing
all the data is not feasible for selecting the optimal value for 𝑘 . Accordingly, the
decision will be only based on the unsupervised internal validation metrics, selecting
the smallest number of clusters that show a high enough CH score. According to
Figure 6.4a, 𝑘 = 22 is an acceptable value. The final distribution of the number of
anomalous samples for each cluster and client is detailed in Table 6.1. For each client,
the table shows the percentage of the anomalous samples grouped into a particular
cluster.

For the flow-level dataset, we follow the same methodology as in the previous
case and use the same HDBSCAN parameters to estimate 𝑘 ′, yielding a value of 8.
This time we test 𝑘 from 8 to 59 to reduce the number of repetitions. Figure 6.5 shows
the results of the clustering validation metrics. Based on the results from Figure 6.5a,
we select 11 as the global number of clusters. While the CH score seems to have an
increasing trend for higher values of 𝑘 , 11 is the smallest number of clusters that
show a spike in the score. The final distribution of the clusters for each client is
shown in Table 6.2.

140 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

8 12 16 20 24 28 32 36 40 44 48 52 56
Number of global clusters

106

107

C
al

in
sk

i-H
ar

ab
as

z
sc

or
e

(a) Calinski–Harabasz score computed in a feder-

ated way.

8 12 16 20 24 28 32 36 40 44 48 52 56
Number of global clusters

0.85

0.90

0.95

1.00

A
dj

us
te

d
R

an
d

sc
or

e

(b) Adjusted Rand score between the federated k-
means and centralized HDBSCAN clustering.

Figure 6.5: Federated k-means clustering validation metrics for the flow-based

dataset. Horizontal axis represents the global number of clusters 𝑘 . For each 𝑘 , the

box plot shows the scores for 30 repetitions.

Table 6.2: Distribution of the 11 global clusters for the flow-based dataset across the

15 clients that received attacks. The values are shown as percentage (%) of samples

that belong to each cluster per client. A value of ’-’ represents 0 samples.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Danmini_Doorbell gafgyt_combo - 83.10 0.01 14.28 2.30 - 0.23 0.07 0.01 - -
Danmini_Doorbell gafgyt_junk - 60.49 0.02 32.56 6.59 - 0.18 0.16 0.01 - -
Danmini_Doorbell gafgyt_scan - - 0.01 - - - 95.13 4.85 0.01 - -
Danmini_Doorbell gafgyt_tcp - - 0.00 - - - - - 99.91 0.09 -
Danmini_Doorbell gafgyt_udp - 0.00 0.02 - - - - - 99.91 0.03 0.03
Danmini_Doorbell mirai_ack 61.20 - 0.01 - - 4.17 33.68 0.94 - - -
Danmini_Doorbell mirai_scan - - - - - - 99.99 - 0.01 - -
Danmini_Doorbell mirai_syn 62.54 - 0.00 - 0.00 6.88 28.35 2.22 0.00 - -
Danmini_Doorbell mirai_udp 62.84 - - - - 2.59 33.79 0.77 0.00 - -
Danmini_Doorbell mirai_udpplain 0.01 - 0.01 - - - 42.63 1.42 - - 55.93
Ennio_Doorbell gafgyt_combo - 88.05 0.01 11.62 0.00 - 0.24 0.07 0.01 - -
Ennio_Doorbell gafgyt_junk - 65.44 0.02 31.76 2.43 - 0.18 0.15 0.01 - -
Ennio_Doorbell gafgyt_scan - - 0.01 - - - 95.62 4.32 0.06 - -
Ennio_Doorbell gafgyt_tcp - - 0.00 - - - - - 99.92 0.08 -
Ennio_Doorbell gafgyt_udp - - 0.01 - - - - - 99.95 0.04 0.01

6.3.5 Anomaly cluster alert explanation

Here we show the interpretation or explanation of the results obtained after the
federated k-means clustering of the SHAP values from the anomalous samples from
Table 6.1 and Table 6.2.

For the packet-level dataset (Table 6.1), we can see little overlap in the anomaly
clustering results between the two clients, which is reasonable considering the
different types of attacks that target the two clients. However, there is a signifi-
cant overlap in the anomalies belonging to cluster C8. The most salient features
given by SHAP that contribute towards classifying the packets as anomaly are
ip_tos, ip_flag_DF, sport_PRIVILEGED_PORTS, dport_PRIVILEGED_PORTS and
ip_proto_ICMP. The packets corresponding to C8 from both clients are composed
of ICMP destination unreachable messages as a response to some port scanning

6.3. EVALUATION 141
pa

ck
et

 le
ng

th ia
t h

ip
 to

s
ip

 tt
l

w
in

do
w

ip
 p

ro
to

 T
C

P
ip

 p
ro

to
 U

D
P

ip
 p

ro
to

 IC
M

P
sp

or
t m

qt
tP

or
ts

sp
or

t c
oa

pP
or

ts
sp

or
t r

ts
pP

or
ts

sp
or

t h
ttp

Po
rts

sp
or

t m
ai

lP
or

ts
sp

or
t d

ns
Po

rts
sp

or
t f

tp
Po

rts
sp

or
t s

he
llP

or
ts

sp
or

t r
em

ot
eE

xe
cP

or
ts

sp
or

t a
ut

hP
or

ts
sp

or
t p

as
sw

or
dP

or
ts

sp
or

t n
ew

sP
or

ts
sp

or
t c

ha
tP

or
ts

sp
or

t p
rin

tP
or

ts
sp

or
t t

im
eP

or
ts

sp
or

t d
bm

sP
or

ts
sp

or
t d

hc
pP

or
ts

sp
or

t w
ho

is
Po

rts
sp

or
t n

et
bi

os
Po

rts
sp

or
t k

er
be

ro
sP

or
ts

sp
or

t R
PC

Po
rts

sp
or

t s
nm

pP
or

ts
sp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
sp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
dp

or
t m

qt
tP

or
ts

dp
or

t c
oa

pP
or

ts
dp

or
t r

ts
pP

or
ts

dp
or

t h
ttp

Po
rts

dp
or

t m
ai

lP
or

ts
dp

or
t d

ns
Po

rts
dp

or
t f

tp
Po

rts
dp

or
t s

he
llP

or
ts

dp
or

t r
em

ot
eE

xe
cP

or
ts

dp
or

t a
ut

hP
or

ts
dp

or
t p

as
sw

or
dP

or
ts

dp
or

t n
ew

sP
or

ts
dp

or
t c

ha
tP

or
ts

dp
or

t p
rin

tP
or

ts
dp

or
t t

im
eP

or
ts

dp
or

t d
bm

sP
or

ts
dp

or
t d

hc
pP

or
ts

dp
or

t w
ho

is
Po

rts
dp

or
t n

et
bi

os
Po

rts
dp

or
t k

er
be

ro
sP

or
ts

dp
or

t R
PC

Po
rts

dp
or

t s
nm

pP
or

ts
dp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
dp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
ip

 fl
ag

 M
F

ip
 fl

ag
 D

F
ip

 fl
ag

 e
vi

l
tc

p
fla

g
F

tc
p

fla
g

S
tc

p
fla

g
R

tc
p

fla
g

P
tc

p
fla

g
A

tc
p

fla
g

U
tc

p
fla

g
E

tc
p

fla
g

C
tc

p
fla

g
N

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9

C10
C11
C12
C13
C14
C20

0.50

0.25

0.00

0.25

0.50

0.75

Figure 6.6: Client 1 SHAP values for each cluster center in the packet-based dataset.

activity.
The SHAP values corresponding to the nearest anomalous sample to each cluster

center for the first client in the packet-based dataset is shown in the heat-map from
Figure 6.6. The remaining heat-maps are all shown in the Appendix in Figure B.1
and Figure B.2 for the first (again) and second clients, respectively.

C4 and C10 are related to the Mirai binary downloading stage from the first client.
The second client also has a few packets in C10, which correspond to port scanning
in the HTTP range. Most clusters C1-C3, C5-C7, C9 and C11-C13 are related to Mirai
port scanning activities.

Some interesting clusters in client 2 are C14 and C16, which correspond to CoAP
amplification attacks that send a flood of GET requests to the .well-known/core
resource with a spoofed source address using code from the AMP-Research [196]
tool. The legitimate training data of this particular device does include packets with
the same request; however, the packets from the attack are correctly classified as
anomalous. In particular, the anomalies from C16 show high SHAP values in the
ip_ttl and ip_flag_DF. After inspecting the source code of the attack from [196],
those fields are specifically set to certain values, which differed from the normal
behavior, and the model detected those implementation particularities.

For the flow-level dataset (Table 6.2), we can see that clients do share samples
from many clusters. In particular, the different activity from Gafgyt across the two
IoT devices (Danmini and Ennio) show very similar distribution, while Mirai related
attacks show different set of clusters, except for Mirai scan, which is similar to Gafgyt
scan activity.

The SHAP values corresponding to the nearest anomalous sample to each cluster
center are shown in the Appendix from Figure B.3 to Figure B.17 for all 15 clients.

6.3.6 Anomaly message exchange

Listing 6.1 shows an example of an IDMEF alert message generated as a response
to many anomalous samples from client 2 in the packet-based dataset falling under
cluster C16. In addition, the message includes the CorrelationAlert class referenc-
ing another alert message of anomalies co-occurring in time that belong to another

142 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

cluster center. The AdditionalData class is populated with extra information, such
as the number of anomalies included in the alert and summary statistics (including
mean, variance and percentiles) of the features of the data taken over all anomalous
samples in the referenced cluster.

Listing 6.1: IDMEF alert message example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE IDMEF-Message PUBLIC
"-//IETF//DTD RFC XXXX IDMEF v1.0//EN" "idmef-message.dtd">

<IDMEF-Message >
<Alert messageid="000064185718162468100002 A6D0001">

<Analyzer analyzerid="fl-client-01"/>
<CreateTime ntpstamp="0xe7c2d598 .0x0">2023 -03-20-T12 :52:40Z
</CreateTime >
<DetectTime >2023 -03-20-T12 :30:51Z</DetectTime >
<Source >

<Node>
<Address category="ipv4-addr">

<address >192.168.0.200 </address >
</Address > </Node> </Source >

<Target >
<Node>

<Address category="ipv4-addr">
<address >192.168.20.10 </address >

</Address > </Node>
<Service >

<portlist >5683</portlist >
</Service > </Target >

<Classification text="anomalies from cluster C16"/>
<CorrelationAlert >

<name>anomalies from multiple clusters in short time </name>
<alertident >000064185585629925100002 A620001 </alertident >

</CorrelationAlert >
<AdditionalData meaning="packet_length-std" type="real">0.0
</AdditionalData >
<AdditionalData meaning="packet_length-mean" type="real">63
</AdditionalData >
<!-- (...) More data omitted (...) -->
<AdditionalData meaning="anomalies count" type="integer">32171
</AdditionalData >

</Alert >
</IDMEF-Message >

While the correlation alert we describe is only temporal and computed from
anomalies generated at each device in isolation, more sophisticated correlation
processes could be made at the SIEM level. Including alert correlation across clients,
analyzing alert clusters that usually appear together that could be attributed to
attacks from certain tools or malware by correlating with alerts triggered from other
security solutions and indicators of compromise.

The IDMEF data model includes other classes that could also be leveraged by the
proposed system. One of those classes is the Confidence inside the Assessment class.
The confidence could be assessed based on the distance of the detected anomalous
samples to the centroid of it’s corresponding cluster, density-based measurements or

6.3. EVALUATION 143

other types of fitness scores. Samples with low confidence scores in an alert could
indicate that the network is facing new anomalous behaviors not observed during
the training stages.

6.3.7 Possible integration with other IDSs

In the previous subsection, wementioned the idea of correlating the detected anomaly
clusters with alerts triggered by other security solutions as a way to gain additional
insights into the network’s level of security. Unfortunately, we have not fully
developed this concept in the thesis. However, in this subsection, we want to
provide a brief and simplified proof of concept towards this idea.

For this experiment, we are going to compare the anomalies occurring in the first
client of the packet-based dataset with alerts generated by the Suricata1 rule-based
IDS/IPS. The comparison is shown in Figure 6.7. The top part of the figure shows the
timeline of the detected anomalies (the vertical axis is the autoencoder reconstruction
error); this is analogous to the figures presented in the previous chapter (such as
Figure 5.9), but each anomaly is colored according to the assigned cluster (Client
1 line from Table 6.1) using the method explained in this chapter. The bottom part
of Figure 6.7 shows the timeline of the alerts raised by Suricata. Each colored bar
represents a single alert event; the color of the bar (and its position on the vertical
axis) distinguishes alerts coming from different signatures.

We used Suricata version 6.0.10 and configured the IP addresses considered as
the home network. We downloaded the most recent (as of April 2023) version of the
Emerging Threats (ET) Open ruleset to prepare the signatures. After processing the
pcap file with Suricata, we filtered the generated eve.log file to only extract alert
events with the following command (single line):
$ jq --compact -output 'select (. event_type ==" alert") | {" signature ": .alert.

signature , "category ": .alert.category , "timestamp ": .timestamp}' eve.
json > eve -filtered.json

Note that Suricata detected the Mirai activity because there are signatures that
search for packets to TCP ports 23 and 2323 with contents matching the hardcoded
password strings2 in the Mirai bot followed by carriage return and newline (the
Mirai nodes from our emulated testbed use the same password sets as the original
malware). Meanwhile, the anomaly detection model does not directly inspect the
packet payload.

Methods to match (or not) anomalies from a cluster to one or more signatures
based on the cluster explanations could be an interesting option to correlate both
methods.

1https://suricata.io/
2e.g., 1111111, 7ujMko0admin, klv1234, etc.

https://suricata.io/

144
C
H
A
PTER

6.
FL

EX
PLA

IN
A
BILITY

FO
R
A
N
O
M
A
LY

C
H
A
RA

C
TERIZA

TIO
N

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
M

SE
Cluster

C 0
C 1
C 2
C 3
C 4
C 5
C 6
C 7

C 8
C 9
C 10
C 11
C 12
C 13
C 14
C 20

15000 16000 17000 18000 19000 20000 21000 22000
timestamp +1.6577e9

GPL ICMP_INFO PING *NIX

ET HUNTING SUSPICIOUS Path to BusyBox

ET TELNET busybox MIRAI hackers - Possible Brute Force Attack

GPL TELNET Bad Login

GPL TELNET root login

ET EXPLOIT HiSilicon DVR - Default Telnet Root Password Inbound

ET POLICY Executable and linking format (ELF) file download

ET INFO x86 File Download Request from IP Address

ET HUNTING Suspicious GET Request for .x86

ET INFO Python SimpleHTTP ServerBanner

ET POLICY Executable and linking format (ELF) file download Over HTTP

ET MALWARE Possible Linux.Mirai Login Attempt

ET TELNET busybox ECCHI hackers - Possible Brute Force Attack

Figure 6.7: Comparison of the detected anomalies colored by their assigned cluster (top) with alerts generated by the Suricata IDS (bottom) applied on the pcap file

for Client 1 in the packet-based dataset.

6.4. DISCUSSION 145

6.4 Discussion

In this chapter, we have proposed a methodology to explain and characterize anoma-
lies of unsupervised intrusion detection models in a federated learning setting, where
the clients throughout the network can have differences in data or behavior dis-
tribution and might also be exposed to distinct types of attacks. The explanations
are based on the Kernel SHAP model-agnostic method, using a federated version
of the k-means algorithm to subsample the background dataset required for SHAP
model training across all the clients. We leverage the generated explanations by
clustering (in the SHAP space) all the identified anomalies in the network using
again an adapted version of the federated k-means algorithm. Since the number of
anomalous patterns or groups is not known a priori, we also presented an adaptation
of the Calinski–Harabasz internal cluster validation metric for distributed settings
to allow the estimation of a suitable number of anomalous clusters found among all
the clients.

A practical benefit of the proposed method is that all the federated steps can be
performed in a one-shot manner (a single round of communication), which reduces
the data transmission between the clients and the FL aggregation server. However,
we note that selecting the number of anomalous clusters requires repeating the
federated k-means process for different values of 𝑘 . Additionally, it is recommended
to perform various trials for the same 𝑘 to account for the random initialization
of the centroids in k-means, as the experimental results show high variability in
the Calinski–Harabasz scores. Nevertheless, each trial requires only minimal data
transmission overhead proportional to 𝑘 .

Both k-means and the Calinski–Harabasz algorithms tend to prefer isotropic
cluster shapes as their main objective function is based on the minimization of the
within-group sum of squares. However, some anomalous patterns might naturally
cluster into elongated shapes. Studying and adapting other types of clustering and
validation algorithms (such as density-based ones) to federated settings is a relevant
line of future work. In addition, another future step is the identification of an optimal
or suitable number of SHAP background samples required for each dataset.

Regarding the SHAP model, this chapter focused on Kernel SHAP, as it is a
general and model-agnostic approach to provide explanations. However, Kernel
SHAP is computationally expensive, and the computation time increases linearly
with the size of the background data. Nevertheless, other faster approaches exist for
particular types of ML models, including Tree SHAP for trees and ensembles of trees,
Deep SHAP or Gradient Explainer for many DL algorithms, or Linear Explainer for
linear models. Exploring and applying the proposed method for those model-specific
approaches could be a relevant future line of work.

The proposed method identified several anomalous behaviors in the evaluated
datasets and assigned a label to each of them that can be used to identify and
characterize groups of anomalies. The labels are shared and known to all the clients
and serve as a naming system to refer to the same anomalous patterns across all
the clients in the federated network. New incoming alerts can be grouped and auto-

146 CHAPTER 6. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

labeled into the known anomaly behaviors, which can be used to send contextualized
alerts representing multiple anomalies using the IDMEF message format, as shown
in the results, for interoperability with third-party tools.

CHAPTER 7
Conclusions

The aim of this thesis has been to explore federated learning (FL) approaches to
secure Internet of Things (IoT) deployments by developing anomaly detection sys-
tems focused on IoT particularities and considering their usual threat models. The
contributions presented throughout this dissertation can be summarized from two
general and complementary viewpoints: the machine learning (ML) operations and
security operations perspectives.

From the point of view of ML operations, first, we presented the Gotham testbed
(Chapter 4), which allowed us to generate datasets suitable for FL experimentation
in a reproducible, extendable and shareable way. Then, using the scenario from the
testbed, we developed a FL architecture (Chapter 5) to collaboratively train anomaly
detection models that take into account the high heterogeneity of IoT deployments
by proposing a novel client clustering approach integrated into the FL pipeline that
improves the anomaly detection results compared to the vanilla FL process. Finally,
to address the black-box nature of ML models, we included an explainability layer
on top of the anomaly detection models (Chapter 6) by incorporating FL methods
into existing explainability techniques.

Regarding the security operations viewpoint, the contributions show a transi-
tion in the processing of the detected anomalies. First, we start from distributed
anomaly detection models that, despite being trained collaboratively with FL, raise
anomalies in an independent and isolated manner (Chapter 5). Then, we turn into
a method where FL and explainability techniques are leveraged to provide context
to the anomalies raised across all the clients in the network and aggregate them
to reduce the volume of redundant anomalies and create more elaborate alert mes-
sages (Chapter 6). As explained in that chapter, the presented method enables the
integration of FL techniques into security solutions such as SIEMs.

The developed Gotham testbed allowed us to meet the fourth objective (O.4) of
the thesis, which is backed up by publication P.1. While this objective mainly focused
on data collection for ML model training and performing FL experimentation for the

147

148 CHAPTER 7. CONCLUSIONS

rest of the contributions, the testbed can potentially be useful for other purposes,
including as a cyber range or for security red/blue team training exercises. With
the clustered FL architecture for network anomaly detection, with publications
in P.2 and P.4, we achieved the first (O.1) and third (O.3) objectives by leveraging FL
methods for network anomaly detection adapted to the high device heterogeneity
and data imbalance settings of IoT. With the proposed methodology to fuse FL and
the SHAP explainability techniques to explain, characterize, group and summarize
the anomalies raised by unsupervised models that occur across all devices in the
network, we reached the second objective (O.2) of the thesis, which is supported
by publication P.3. However, related to this second objective, we feel that there is
ample room for improvement, and it is an interesting future work to be considered.

Previous sections of this thesis acknowledged the main limitations of this work
(Section 1.3) and discussed specific conclusions, limitations, gaps and possible future
work for each of the main contributions in Sections 4.5, 5.5 and 6.4, respectively.
Therefore, here we will provide insights and future work that take into account all
the contributions of the entire dissertation as a whole:

Improving usability This is an important topic to ensure the adoption of tech-
nologies to a broader audience. In the frame of this thesis, we are mainly referring
to the Gotham testbed (Chapter 4) and the federated explainability for anomaly
characterization (Chapter 6).

The testbed contains many moving parts (such as the definition, creation and
configuration parameters of the nodes and the scenario), and currently, most of the
burden to maintain reproducibility falls on the good practices1 of the user defining
the nodes and the scenario. Creating new tools to ease all the steps could improve
the adoption of this testbed.

Regarding the federated explainability for anomaly characterization, the ex-
plainability techniques are useful for knowing which inputs had the most weight
in the output of the model. While this increases the visibility of the predictions,
determining how helpful these explanations are to aid human security analysts is
still an open question. User surveys could be used to determine the real impact of
the explanations.

Toomany hyperparameters FL has more hyperparameters that need to be tuned
compared to regular ML settings. In addition, the number of client clusters of our
clustered FL approach from Chapter 5, the number of samples required for the SHAP
background and the number of identified anomalous clusters from Chapter 6 also
need to be considered as values to be tuned.

Moreover, as noted in the respective chapters, the need to account for the in-
herent variability of some algorithms and the effect of random initialization of the
models implies that some experiments need to be repeated multiple times to draw a

1Pin to specific Docker, Git, binary release tags instead of the latest version, be aware of depen-
dencies, compilation options, etc.

149

meaningful conclusion about the optimal value of the parameters. For example, in
Chapter 5, we recommend performing several repetitions of the device clustering
method with different model initializations to ensure the clusters are stable. In
Chapter 6, the high variability of the federated k-means process required repeat-
ing the process multiple times for the same number of clusters and computing the
Calinski–Harabasz score for each repetition to determine a good value of clusters.

All these hyperparameters and repetitions have a practical impact. One of the
advantages of FL, in many cases, is the reduced communication cost compared to
constantly sending training data to a centralized host. However, due to the need
to tune many hyperparameters, the repetition of many FL experiments can lead to
using more communication rounds (and client computation time) than expected.
While the mentioned examples of our proposals for client clustering and federated
k-means were performed as a one-shot process (a single FL communication round),
multiple repetitions could incur in higher costs.

One of the methods to overcome the effect of the high number of hyperparam-
eters could be the use of Bayesian optimization techniques and early stopping for
hyperparameter selection instead of exhaustive grid searches. Another interesting
approach involving the Gotham testbed could be the creation of new scenarios that
mimic the real deployment scenario, similar to a digital twin. The hyperparameter
selection could be performed in this emulated scenario to find optimal values or to
reduce the search space. Then, the optimal values could be used in production for
the real setting.

Data fusion In this thesis, we have focused on network-level anomaly detection.
However, some attacks ormalicious behaviormight have a larger footprint in the CPU
or memory consumption than in the network activity (e.g., cryptocurrency mining)
or use a different set of system calls. Data fusion techniques that combine network
and host features, or combining network packet-level and flow-level features is an
interesting line of research. This combination could allow a fine-grained detection
of different activities or the reduction of false positives.

Adversarial settings A key difference between ML approaches for cybersecurity
and other areas, such as image recognition or text prediction, is the adversarial
nature of cybersecurity. Threat actors can adapt and change strategies, creating an
arms race between them and security solutions. Methods to improve the robustness
of FL settings to adversarial settings are always an important research direction.
Additionally, considering that all devices start from a clean and uncompromised
state might not be true for certain threat models. In those cases, strategies to analyze
the initial state of devices or data cleaning process might be required before model
training. This particular case is briefly explored in a proof of concept experiment
presented in the Appendix A, but more experiments are needed.

150 CHAPTER 7. CONCLUSIONS

Higher-level alerts and correlation In Chapter 6, we leveraged XAI and clus-
tering in FL settings to create an anomaly “naming system” so that all devices in
the same federated network could refer to similar discovered anomalies (from unsu-
pervised models) with a common name (the cluster index in our case). This system
works on devices of the same federated network that use the same anomaly detection
model (and SHAP background samples). From this, some new questions arise. Does
this naming system also work in settings with different anomaly detection models?
Can these names be “normalized” across different federated networks so that they
can be shared with anyone, similar to other indicators of compromise? Another
interesting future line of work includes the correlation of those named alerts gen-
erated by unsupervised models with other traditional IDS signatures. Can we use
generative AI, such as recent large language models, to label the anomalies based on
the explanations or provide automatic correlation with other security systems?

Bibliography

[1] F. Wortmann and K. Flüchter, “Internet of things”, Business & Information
Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015, issn: 1867-0202. doi:
10.1007/s12599-015-0383-3.

[2] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “De-
mystifying iot security: An exhaustive survey on iot vulnerabilities and a
first empirical look on internet-scale iot exploitations”, IEEE Communications
Surveys Tutorials, vol. 21, no. 3, pp. 2702–2733, 2019. doi: 10.1109/COMST.
2019.2910750.

[3] G. Kambourakis, M. Anagnostopoulos, W. Meng, and P. Zhou, Botnets: Archi-
tectures, Countermeasures, and Challenges. CRC Press, 2019.

[4] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy chal-
lenges in industrial internet of things”, in Proceedings of the 52nd Annual
Design Automation Conference, (San Francisco, CA, USA), ser. DAC ’15, New
York, NY, USA: Association for Computing Machinery, Jun. 7–11, 2015, isbn:
978-1-4503-3520-1. doi: 10.1145/2744769.2747942.

[5] S. McLaughlin, C. Konstantinou, X.Wang, et al., “The cybersecurity landscape
in industrial control systems”, Proceedings of the IEEE, vol. 104, no. 5, pp. 1039–
1057, May 2016. doi: 10.1109/JPROC.2015.2512235.

[6] G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and the iot
zombie armies”, in MILCOM 2017 - 2017 IEEE Military Communications Con-
ference (MILCOM), (Baltimore, MD, USA), ser. IEEE Military Communications
Conference, IEEE, Oct. 23–25, 2017, pp. 267–272, isbn: 978-1-5386-0595-0.
doi: 10.1109/MILCOM.2017.8170867.

[7] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “Iot:
Internet of threats? a survey of practical security vulnerabilities in real iot
devices”, IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8182–8201, 2019.
doi: 10.1109/JIOT.2019.2935189.

[8] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai bot-
net”, in 26th USENIX Security Symposium (USENIX Security 17), (Vancouver,
BC, Canada), USENIX Association, Aug. 2017, pp. 1093–1110, isbn: 978-1-
931971-40-9. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis.

151

https://doi.org/10.1007/s12599-015-0383-3
https://doi.org/10.1109/COMST.2019.2910750
https://doi.org/10.1109/COMST.2019.2910750
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/MILCOM.2017.8170867
https://doi.org/10.1109/JIOT.2019.2935189
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

152 BIBLIOGRAPHY

[9] A. Costin and J. Zaddach, Iot malware: Comprehensive survey, analysis frame-
work and case studies, Paper presented at Black Hat USA conference, Ac-
cessed 2023/04/27, Las Vegas, Aug. 9, 2018. [Online]. Available: https://
i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-
Malware - Comprehensive - Survey - Analysis - Framework - and - Case -
Studies-wp.pdf.

[10] P.-A. Vervier and Y. Shen, “Before toasters rise up: A view into the emerging
iot threat landscape”, in Proceedings of the 21st International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2018), (Heraklion, Greece),
M. Bailey, T. Holz, M. Stamatogiannakis, and S. Ioannidis, Eds., ser. Lecture
Notes in Computer Science, vol. 11050, Springer International Publishing",
Sep. 10–12, 2018, pp. 556–576, isbn: 978-3-030-00470-5. doi: 10.1007/978-
3-030-00470-5_26.

[11] J. P. Anderson, “Computer security threat monitoring and surveillance”,
James P. Anderson Co., Tech. Rep., Feb. 26, 1980.

[12] D. E. Denning, “An intrusion-detection model”, IEEE Transactions on Software
Engineering, vol. SE-13, no. 2, pp. 222–232, Feb. 1987. doi: 10.1109/TSE.
1987.232894.

[13] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning
for cyber security intrusion detection: Approaches, datasets, and comparative
study”, Journal of Information Security and Applications, vol. 50, p. 102 419,
Feb. 2020, issn: 2214-2126. doi: 10.1016/j.jisa.2019.102419. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2214212619305046.

[14] W. Yu, F. Liang, X. He, et al., “A survey on the edge computing for the internet
of things”, IEEE Access, vol. 6, pp. 6900–6919, 2018. doi: 10.1109/ACCESS.
2017.2778504.

[15] European Parliament and Council of the European Union. “Regulation (eu)
2016/679 of the european parliament and of the council of 27 april 2016 on
the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/ec
(general data protection regulation)”. Accessed 2023/02/07. (Apr. 27, 2016),
[Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679.

[16] Y. Zhang, H. Huang, L.-X. Yang, Y. Xiang, and M. Li, “Serious challenges and
potential solutions for the industrial internet of things with edge intelligence”,
IEEE Network, vol. 33, no. 5, pp. 41–45, Oct. 2019, issn: 0890-8044. doi: 10.
1109/MNET.001.1800478.

[17] Y. Liu, S. Garg, J. Nie, et al., “Deep anomaly detection for time-series data
in industrial iot: A communication-efficient on-device federated learning
approach”, IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6348–6358, Apr.
2021, issn: 2327-4662. doi: 10.1109/JIOT.2020.3011726.

https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://doi.org/10.1007/978-3-030-00470-5_26
https://doi.org/10.1007/978-3-030-00470-5_26
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1016/j.jisa.2019.102419
https://www.sciencedirect.com/science/article/pii/S2214212619305046
https://www.sciencedirect.com/science/article/pii/S2214212619305046
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/ACCESS.2017.2778504
https://eur-lex.europa.eu/eli/reg/2016/679
https://doi.org/10.1109/MNET.001.1800478
https://doi.org/10.1109/MNET.001.1800478
https://doi.org/10.1109/JIOT.2020.3011726

BIBLIOGRAPHY 153

[18] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, “Com-
munication-efficient learning of deep networks from decentralized data”, in
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, A. Singh and J. Zhu, Eds., ser. Proceedings of Machine Learning
Research, vol. 54, PMLR, 2017, pp. 1273–1282. [Online]. Available: https:
//proceedings.mlr.press/v54/mcmahan17a.html.

[19] A. Hard, K. Rao, R. Mathews, et al., “Federated learning for mobile keyboard
prediction”, CoRR, 2018. arXiv: 1811.03604 [cs.CL].

[20] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection”, in 31st IEEE Symposium on Security
and Privacy, S&P 2010, (Oakland, CA, USA), IEEE Computer Society, May 16–
19, 2010, pp. 305–316. doi: 10.1109/SP.2010.25.

[21] D. Arp, E. Quiring, F. Pendlebury, et al., “Dos and don’ts of machine learn-
ing in computer security”, in 31st USENIX Security Symposium (USENIX
Security 22), (Boston, MA, USA), USENIX Association, Aug. 2022. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/
presentation/arp.

[22] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice, and L. Cav-
allaro, “Insomnia: Towards concept-drift robustness in network intrusion
detection”, in Proceedings of the 14th ACM Workshop on Artificial Intelligence
and Security, (Virtual Event, Republic of Korea), ser. AISec ’21, New York,
NY, USA: Association for Computing Machinery, 2021, pp. 111–122, isbn:
9781450386579. doi: 10.1145/3474369.3486864.

[23] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey of
deep learning methods for cyber security”, Information, vol. 10, no. 4, Apr.
2019, issn: 2078-2489. doi: 10.3390/info10040122. [Online]. Available:
https://www.mdpi.com/2078-2489/10/4/122.

[24] H. Hindy, D. Brosset, E. Bayne, et al., “A taxonomy of network threats and
the effect of current datasets on intrusion detection systems”, IEEE Access,
vol. 8, pp. 104 650–104 675, 2020. doi: 10.1109/ACCESS.2020.3000179.

[25] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions”, in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, et al., Eds., vol. 30, Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/
file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

[26] S. Neupane, J. Ables, W. Anderson, et al., “Explainable intrusion detection
systems (x-ids): A survey of current methods, challenges, and opportunities”,
IEEE Access, vol. 10, pp. 112 392–112 415, 2022. doi: 10.1109/ACCESS.2022.
3216617.

https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1811.03604
https://doi.org/10.1109/SP.2010.25
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1145/3474369.3486864
https://doi.org/10.3390/info10040122
https://www.mdpi.com/2078-2489/10/4/122
https://doi.org/10.1109/ACCESS.2020.3000179
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1109/ACCESS.2022.3216617
https://doi.org/10.1109/ACCESS.2022.3216617

154 BIBLIOGRAPHY

[27] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning”, IEEE Transactions on Neural Networks and Learning Systems, pp. 1–
17, 2022. doi: 10.1109/TNNLS.2022.3160699.

[28] S. Arisdakessian, O. A. Wahab, A. Mourad, H. Otrok, and M. Guizani, “A
survey on iot intrusion detection: Federated learning, game theory, social
psychology and explainable ai as future directions”, IEEE Internet of Things
Journal, pp. 1–1, 2022. doi: 10.1109/JIOT.2022.3203249.

[29] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open problems
in federated learning”, Foundations and Trends in Machine Learning, vol. 14,
no. 1-2, pp. 1–210, 2021, issn: 1935-8237. doi: 10.1561/2200000083.

[30] X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Gotham testbed: A reproducible iot testbed for security experiments and
dataset generation”, IEEE Transactions on Dependable and Secure Computing,
pp. 1–18, Feb. 22, 2023. doi: 10.1109/TDSC.2023.3247166.

[31] X. Sáez-de-Cámara. “Gotham testbed repository.” Accessed 2023/04/27. (2022),
[Online]. Available: https://github.com/xsaga/gotham-iot-testbed.

[32] X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Clustered federated learning architecture for network anomaly detection
in large scale heterogeneous iot networks”, Computers & Security, vol. 131,
p. 103 299, Aug. 1, 2023, issn: 0167-4048. doi: 10.1016/j.cose.2023.
103299.

[33] X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Federated explainability for network anomaly characterization”, in Proceed-
ings of the 26th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2023), (Hong Kong, China), Oct. 16–18, 2023, forthcoming.

[34] X. Sáez-de-Cámara. “Source code repository for article: Federated explain-
ability for network anomaly characterization”. Accessed 2023/06/27. (2023),
[Online]. Available: https : / / github . com / xsaga / federated - xai -
anomalies.

[35] X. Sáez-de-Cámara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zurutuza,
“Aprendizaje federado con agrupación demodelos para la detección de anoma-
lías en dispositivos iot heterogéneos”, in Proceedings of the XVII Reunión es-
pañola sobre criptología y seguridad de la información. RECSI 2022., (Santander,
Spain), Editorial Universidad de Cantabria, Oct. 19–21, 2022, pp. 198–204,
isbn: 978-84-19024-14-5. doi: 10.22429/Euc2022.028.

[36] K. Ashton et al., “That ‘internet of things’ thing”, RFID journal, vol. 22, no. 7,
pp. 97–114, 2009.

[37] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien, “Internet of
things: A definition & taxonomy”, in 2015 9th International Conference on Next
Generation Mobile Applications, Services and Technologies, 2015, pp. 72–77.
doi: 10.1109/NGMAST.2015.71.

https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1109/JIOT.2022.3203249
https://doi.org/10.1561/2200000083
https://doi.org/10.1109/TDSC.2023.3247166
https://github.com/xsaga/gotham-iot-testbed
https://doi.org/10.1016/j.cose.2023.103299
https://doi.org/10.1016/j.cose.2023.103299
https://github.com/xsaga/federated-xai-anomalies
https://github.com/xsaga/federated-xai-anomalies
https://doi.org/10.22429/Euc2022.028
https://doi.org/10.1109/NGMAST.2015.71

BIBLIOGRAPHY 155

[38] L. Atzori, A. Iera, and G. Morabito, “Understanding the internet of things:
Definition, potentials, and societal role of a fast evolving paradigm”, Ad Hoc
Networks, vol. 56, pp. 122–140, 2017, issn: 1570-8705. doi: 10.1016/j.adhoc.
2016.12.004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1570870516303316.

[39] S. Ying and J. Sztipanovits, “Foundations for innovation in cyber-physical
systems”, in Workshop Report, Prepared by Energetics Incorporated, Columbia,
Maryland, US For the National Institute of Standards and Technology, 2013.
[Online]. Available: https://www.nist.gov/system/files/documents/
el/CPS-WorkshopReport-1-30-13-Final.pdf.

[40] S. S. Sunder, E. A. Lee, P. Asare, et al. “Cyber-physical systems”. Accessed
2023/04/27. (Mar. 13, 2012), [Online]. Available: https://ptolemy.berkeley.
edu/projects/cps//.

[41] C. Greer, M. Burns, D. Wollman, and E. Griffor, Cyber-physical systems and
internet of things, NIST Special Publication 1900-202, Ed., 2019. doi: 10.6028/
NIST.SP.1900-202. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.1900-202.pdf.

[42] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial internet
of things (iiot): An analysis framework”, Computers in Industry, vol. 101,
pp. 1–12, Oct. 2018, issn: 0166-3615. doi: 10.1016/j.compind.2018.04.
015. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0166361517307285.

[43] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, Guide to
industrial control systems (ics) security, N. S. P. 8.-8. R. 2, Ed., 2015. doi:
10.6028/NIST.SP.800-82r2. [Online]. Available: https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf.

[44] ENISA ICS SCADA. “Critical infrastructures and services ics scada”. (), [On-
line]. Available: https://www.enisa.europa.eu/topics/critical-
information-infrastructures-and-services/scada.

[45] World Economic Forum. “Industrial internet of things safety and security
protocol”. Accessed 2023/06/28. (Apr. 25, 2018), [Online]. Available: https:
//www.weforum.org/whitepapers/industrial-internet-of-things-
safety-and-security-protocol/.

[46] J. Gamblin. “Leaked mirai source code for research/ioc development pur-
poses”. Accessed 2023/02/07. (2016), [Online]. Available: https://github.
com/jgamblin/Mirai-Source-Code.

[47] V. Valeros. “Iot malware timeline”. Accessed 2023/04/27. (Apr. 26, 2020),
[Online]. Available: https://www.stratosphereips.org/a-study-of-
iot-malware.

https://doi.org/10.1016/j.adhoc.2016.12.004
https://doi.org/10.1016/j.adhoc.2016.12.004
https://www.sciencedirect.com/science/article/pii/S1570870516303316
https://www.sciencedirect.com/science/article/pii/S1570870516303316
https://www.nist.gov/system/files/documents/el/CPS-WorkshopReport-1-30-13-Final.pdf
https://www.nist.gov/system/files/documents/el/CPS-WorkshopReport-1-30-13-Final.pdf
https://ptolemy.berkeley.edu/projects/cps//
https://ptolemy.berkeley.edu/projects/cps//
https://doi.org/10.6028/NIST.SP.1900-202
https://doi.org/10.6028/NIST.SP.1900-202
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1900-202.pdf
https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/10.1016/j.compind.2018.04.015
https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://doi.org/10.6028/NIST.SP.800-82r2
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/scada
https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/scada
https://www.weforum.org/whitepapers/industrial-internet-of-things-safety-and-security-protocol/
https://www.weforum.org/whitepapers/industrial-internet-of-things-safety-and-security-protocol/
https://www.weforum.org/whitepapers/industrial-internet-of-things-safety-and-security-protocol/
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://www.stratosphereips.org/a-study-of-iot-malware
https://www.stratosphereips.org/a-study-of-iot-malware

156 BIBLIOGRAPHY

[48] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Measurement
and analysis of hajime, a peer-to-peer iot botnet”, in 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, (San Diego, CA,
USA), The Internet Society, Feb. 24–27, 2019. [Online]. Available: https:
//www.ndss-symposium.org/ndss-paper/measurement-and-analysis-
of-hajime-a-peer-to-peer-iot-botnet/.

[49] A. V. Serbanescu, S. Obermeier, and D.-Y. Yu, “Ics threat analysis using a
large-scale honeynet”, in 3rd International Symposium for ICS & SCADA Cyber
Security Research 2015 (ICS-CSR 2015) 3, 2015, pp. 20–30.

[50] C. Fachkha, E. Bou-Harb, A. Keliris, N. D. Memon, and M. Ahamad, “Internet-
scale probing of CPS: inference, characterization and orchestration analy-
sis”, in 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, (San Diego, CA, USA), The Internet Society, Feb. 26–Mar. 1,
2017. [Online]. Available: https://www.ndss-symposium.org/ndss2017/
ndss- 2017- programme/internet- scale- probing- cps- inference-
characterization-and-orchestration-analysis/.

[51] E. López-Morales, C. Rubio-Medrano, A. Doupé, et al., “Honeyplc: A next-
generation honeypot for industrial control systems”, in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security,
(Virtual Event, USA), ser. CCS ’20, New York, NY, USA: Association for
Computing Machinery, Nov. 9–13, 2020, pp. 279–291, isbn: 9781450370899.
doi: 10.1145/3372297.3423356.

[52] Dragos, Inc. “2020 ics cybersecurity year in review”. Accessed 2023/06/22.
(2021), [Online]. Available: https://www.dragos.com/blog/industry-
news/2020-ics-cybersecurity-year-in-review/.

[53] Symantec. “Symantec security summary - june 2020”. Accessed 2023/06/22.
(2020), [Online]. Available: https://symantec-enterprise-blogs.security.
com/blogs/feature- stories/symantec- security- summary- june-
2020.

[54] CyberX.io. “2020 global iot/ics risk report”. (), [Online]. Available: https:
//web.archive.org/web/20220303170920/https://cyberx-labs.com/
wp-content/uploads/2020/09/CYBX_2020_Risk-Report.pdf.

[55] K. Lunden, D. K. Zafra, and N. Brubaker. “Crimes of opportunity: Increas-
ing frequency of low sophistication operational technology compromises”.
Accessed 2023/06/22. (2021), [Online]. Available: https://www.mandiant.
com/resources/blog/increasing-low-sophistication-operational-
technology-compromises.

[56] Kaspersky ICS CERT. “Reports”. (2021), [Online]. Available: https://web.
archive.org/web/20210624021002/https://ics- cert.kaspersky.
com/reports/.

https://www.ndss-symposium.org/ndss-paper/measurement-and-analysis-of-hajime-a-peer-to-peer-iot-botnet/
https://www.ndss-symposium.org/ndss-paper/measurement-and-analysis-of-hajime-a-peer-to-peer-iot-botnet/
https://www.ndss-symposium.org/ndss-paper/measurement-and-analysis-of-hajime-a-peer-to-peer-iot-botnet/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/internet-scale-probing-cps-inference-characterization-and-orchestration-analysis/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/internet-scale-probing-cps-inference-characterization-and-orchestration-analysis/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/internet-scale-probing-cps-inference-characterization-and-orchestration-analysis/
https://doi.org/10.1145/3372297.3423356
https://www.dragos.com/blog/industry-news/2020-ics-cybersecurity-year-in-review/
https://www.dragos.com/blog/industry-news/2020-ics-cybersecurity-year-in-review/
https://symantec-enterprise-blogs.security.com/blogs/feature-stories/symantec-security-summary-june-2020
https://symantec-enterprise-blogs.security.com/blogs/feature-stories/symantec-security-summary-june-2020
https://symantec-enterprise-blogs.security.com/blogs/feature-stories/symantec-security-summary-june-2020
https://web.archive.org/web/20220303170920/https://cyberx-labs.com/wp-content/uploads/2020/09/CYBX_2020_Risk-Report.pdf
https://web.archive.org/web/20220303170920/https://cyberx-labs.com/wp-content/uploads/2020/09/CYBX_2020_Risk-Report.pdf
https://web.archive.org/web/20220303170920/https://cyberx-labs.com/wp-content/uploads/2020/09/CYBX_2020_Risk-Report.pdf
https://www.mandiant.com/resources/blog/increasing-low-sophistication-operational-technology-compromises
https://www.mandiant.com/resources/blog/increasing-low-sophistication-operational-technology-compromises
https://www.mandiant.com/resources/blog/increasing-low-sophistication-operational-technology-compromises
https://web.archive.org/web/20210624021002/https://ics-cert.kaspersky.com/reports/
https://web.archive.org/web/20210624021002/https://ics-cert.kaspersky.com/reports/
https://web.archive.org/web/20210624021002/https://ics-cert.kaspersky.com/reports/

BIBLIOGRAPHY 157

[57] Fortinet. “2023 state of operational technology and cybersecurity report”.
Accessed 2023/07/11. (May 24, 2023), [Online]. Available: https://www.
fortinet . com / content / dam / fortinet / assets / reports / report -
state-ot-cybersecurity.pdf.

[58] Microsoft Security Response Center team. ““badalloc” – memory allocation
vulnerabilities could affect wide range of iot and ot devices in industrial, med-
ical, and enterprise networks”. (2021), [Online]. Available: https://msrc-
blog.microsoft.com/2021/04/29/badalloc- memory- allocation-
vulnerabilities - could - affect - wide - range - of - iot - and - ot -
devices-in-industrial-medical-and-enterprise-networks/.

[59] FORESCOUT RESEARCH LABS. “Amnesia:33 how tcp/ip stacks breed crit-
ical vulnerabilities in iot, ot and it devices”. Accessed 2023/04/27. (Dec. 20,
2020), [Online]. Available: https://www.forescout.com/resources/
amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-
in-iot-ot-and-it-devices/.

[60] FORESCOUT RESEARCH LABS and JSOF. “Name:wreck breaking and fixing
dns implementations”. Accessed 2023/04/27. (Apr. 21, 2021), [Online]. Avail-
able: https://www.forescout.com/resources/namewreck-breaking-
and-fixing-dns-implementations/.

[61] JSOF. “Ripple20 19 zero-day vulnerabilities amplified by the supply chain”.
Accessed 2023/04/27. (Jun. 16, 2020), [Online]. Available: https://www.jsof-
tech.com/disclosures/ripple20/.

[62] I. Vaccari, M. Aiello, and E. Cambiaso, “Slowtt: A slow denial of service
against iot networks”, Information, vol. 11, no. 9, p. 452, 2020. doi: 10.3390/
info11090452.

[63] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition of the internet
of things (iot)”, IEEE Internet Initiative, vol. 1, no. 1, pp. 1–86, May 27, 2015.
[Online]. Available: https://iot.ieee.org/images/files/pdf/IEEE_
IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.
pdf.

[64] P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, “Securing the smart
grid: A comprehensive compilation of intrusion detection and prevention
systems”, IEEE Access, vol. 7, pp. 46 595–46 620, 2019, issn: 2169-3536. doi:
10.1109/ACCESS.2019.2909807.

[65] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and big
heterogeneous data: A survey”, Journal of Big Data, vol. 2, no. 1, pp. 1–41,
Feb. 27, 2015, issn: 2196-1115. doi: 10.1186/s40537-015-0013-4.

[66] D. Miller, S. Harris, A. Harper, S. VanDyke, and C. Blask, Security Informa-
tion and Event Management (SIEM) Implementation. Mcgraw-hill, 2010, isbn:
9780071701099.

https://www.fortinet.com/content/dam/fortinet/assets/reports/report-state-ot-cybersecurity.pdf
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-state-ot-cybersecurity.pdf
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-state-ot-cybersecurity.pdf
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://www.forescout.com/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.forescout.com/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.forescout.com/resources/amnesia33-how-tcp-ip-stacks-breed-critical-vulnerabilities-in-iot-ot-and-it-devices/
https://www.forescout.com/resources/namewreck-breaking-and-fixing-dns-implementations/
https://www.forescout.com/resources/namewreck-breaking-and-fixing-dns-implementations/
https://www.jsof-tech.com/disclosures/ripple20/
https://www.jsof-tech.com/disclosures/ripple20/
https://doi.org/10.3390/info11090452
https://doi.org/10.3390/info11090452
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
https://doi.org/10.1109/ACCESS.2019.2909807
https://doi.org/10.1186/s40537-015-0013-4

158 BIBLIOGRAPHY

[67] CERT capability team at ENISA and CERT Polska, “Standards and tools
for exchange and processing of actionable information”, ENISA, Tech. Rep.,
Jan. 19, 2015. doi: 10.2824/37776. [Online]. Available: https://www.enisa.
europa.eu/publications/standards-and-tools-for-exchange-and-
processing-of-actionable-information.

[68] B. Feinstein, D. Curry, and H. Debar, The intrusion detection message exchange
format (idmef), RFC 4765, Mar. 2007. doi: 10.17487/RFC4765. [Online].
Available: https://www.rfc-editor.org/info/rfc4765.

[69] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an intrusion detec-
tion dataset: The cicids2017 case study”, in 2021 IEEE Security and Privacy
Workshops (SPW), 2021, pp. 7–12. doi: 10.1109/SPW53761.2021.00009.

[70] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble
of autoencoders for online network intrusion detection”, in 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, (San Diego,
CA, USA), The Internet Society, Feb. 18–21, 2018. [Online]. Available: http:
//wp.internetsociety.org/ndss/wp-content/uploads/sites/25/
2018/02/ndss2018%5C_03A-3%5C_Mirsky%5C_paper.pdf.

[71] Y. Liu, Z. Li, H. Xiong, X. Gao, and J.Wu, “Understanding of internal clustering
validation measures”, in 2010 IEEE International Conference on Data Mining,
IEEE, Dec. 2010, pp. 911–916. doi: 10.1109/icdm.2010.35.

[72] U.Maulik and S. Bandyopadhyay, “Performance evaluation of some clustering
algorithms and validity indices”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 12, pp. 1650–1654, 2002. doi: 10.1109/
TPAMI.2002.1114856.

[73] D. L. Davies and D. W. Bouldin, “A cluster separation measure”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp. 224–
227, Apr. 1979. doi: 10.1109/tpami.1979.4766909.

[74] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis”, Journal of Computational and Applied Math-
ematics, vol. 20, pp. 53–65, 1987, issn: 0377-0427. doi: 10 . 1016 / 0377 -
0427(87)90125- 7. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0377042787901257.

[75] M. Halkidi and M. Vazirgiannis, “Clustering validity assessment: Finding
the optimal partitioning of a data set”, in Proceedings 2001 IEEE International
Conference on Data Mining, IEEE Comput. Soc, 2001, pp. 187–194. doi: 10.
1109/icdm.2001.989517.

[76] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, et al., “Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai”, Information Fusion, vol. 58, pp. 82–115, 2020, issn: 1566-2535.
doi: 10.1016/j.inffus.2019.12.012. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1566253519308103.

https://doi.org/10.2824/37776
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
https://doi.org/10.17487/RFC4765
https://www.rfc-editor.org/info/rfc4765
https://doi.org/10.1109/SPW53761.2021.00009
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_03A-3%5C_Mirsky%5C_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_03A-3%5C_Mirsky%5C_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_03A-3%5C_Mirsky%5C_paper.pdf
https://doi.org/10.1109/icdm.2010.35
https://doi.org/10.1109/TPAMI.2002.1114856
https://doi.org/10.1109/TPAMI.2002.1114856
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1109/icdm.2001.989517
https://doi.org/10.1109/icdm.2001.989517
https://doi.org/10.1016/j.inffus.2019.12.012
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103

BIBLIOGRAPHY 159

[77] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions”, IEEE Signal Processing Magazine, vol. 37,
no. 3, pp. 50–60, 2020. doi: 10.1109/MSP.2020.2975749.

[78] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept
and applications”, ACM Transactions on Intelligent Systems and Technology,
vol. 10, no. 2, Jan. 2019, issn: 2157-6904. doi: 10.1145/3298981.

[79] H. Debar, M. Becker, and D. Siboni, “A neural network component for an
intrusion detection system”, in Proceedings 1992 IEEE Computer Society Sym-
posium on Research in Security and Privacy, 1992, pp. 240–250. doi: 10.1109/
RISP.1992.213257.

[80] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,
“Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges”, Computers & Security, vol. 28, no. 1, pp. 18–28, 2009, issn: 0167-4048.
doi: 10.1016/j.cose.2008.08.003. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167404808000692.

[81] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey”, CoRR, 2019. arXiv: 1901.03407 [cs.LG].

[82] M. Alabadi and Y. Celik, “Anomaly detection for cyber-security based on
convolution neural network : A survey”, in 2020 International Congress on
Human-Computer Interaction, Optimization and Robotic Applications (HORA),
2020, pp. 1–14. doi: 10.1109/HORA49412.2020.9152899.

[83] M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber, “System log clus-
tering approaches for cyber security applications: A survey”, Computers &
Security, vol. 92, p. 101 739, 2020, issn: 0167-4048. doi: 10.1016/j.cose.
2020.101739. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404820300250.

[84] S. McElwee, J. Heaton, J. Fraley, and J. Cannady, “Deep learning for priori-
tizing and responding to intrusion detection alerts”, in MILCOM 2017 - 2017
IEEE Military Communications Conference (MILCOM), 2017, pp. 1–5. doi:
10.1109/MILCOM.2017.8170757.

[85] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep learn-
ing for unsupervised insider threat detection in structured cybersecurity
data streams”, in The Workshops of the The Thirty-First AAAI Conference
on Artificial Intelligence, (San Francisco, CA, USA), ser. AAAI Workshops,
vol. WS-17, AAAI Press, Feb. 4–9, 2017. [Online]. Available: http://aaai.
org/ocs/index.php/WS/AAAIW17/paper/view/15126.

[86] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An overview
of machine learning in internet of things”, IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4921–4934, 2019. doi: 10.1109/JIOT.2019.2893866.

https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1145/3298981
https://doi.org/10.1109/RISP.1992.213257
https://doi.org/10.1109/RISP.1992.213257
https://doi.org/10.1016/j.cose.2008.08.003
https://www.sciencedirect.com/science/article/pii/S0167404808000692
https://www.sciencedirect.com/science/article/pii/S0167404808000692
https://arxiv.org/abs/1901.03407
https://doi.org/10.1109/HORA49412.2020.9152899
https://doi.org/10.1016/j.cose.2020.101739
https://doi.org/10.1016/j.cose.2020.101739
https://www.sciencedirect.com/science/article/pii/S0167404820300250
https://www.sciencedirect.com/science/article/pii/S0167404820300250
https://doi.org/10.1109/MILCOM.2017.8170757
http://aaai.org/ocs/index.php/WS/AAAIW17/paper/view/15126
http://aaai.org/ocs/index.php/WS/AAAIW17/paper/view/15126
https://doi.org/10.1109/JIOT.2019.2893866

160 BIBLIOGRAPHY

[87] K. A. Bonawitz, H. Eichner, W. Grieskamp, et al., “Towards federated learning
at scale: System design”, in Proceedings of Machine Learning and Systems 2019,
MLSys 2019, (Stanford, CA, USA), A. Talwalkar, V. Smith, andM. Zaharia, Eds.,
mlsys.org, Mar. 31–Apr. 2, 2019. [Online]. Available: https://proceedings.
mlsys.org/book/271.pdf.

[88] T. Yang, G. Andrew, H. Eichner, et al., “Applied federated learning: Improv-
ing google keyboard query suggestions”, CoRR, 2018. arXiv: 1812.02903
[cs.LG].

[89] Apple Inc. “Designing for privacy. wwdc 2019”. (2019), [Online]. Available:
https://developer.apple.com/videos/play/wwdc2019/708.

[90] Nvidia Corporation. “Medical institutions collaborate to improve mammo-
gram assessment ai with nvidia clara federated learning”. (Apr. 15, 2020),
[Online]. Available: https://blogs.nvidia.com/blog/2020/04/15/
federated-learning-mammogram-assessment/.

[91] Nvidia Corporation. “Nvidia clara federated learning to deliver ai to hospitals
while protecting patient data”. (Dec. 1, 2019), [Online]. Available: https:
//blogs.nvidia.com/blog/2019/12/01/clara-federated-learning/.

[92] WeBank. “Utilization of fate in anti money laundering through multiple
banks”. (2020), [Online]. Available: https://www.fedai.org/cases/
utilization-of-fate-in-anti-money-laundering-through-multiple-
banks/.

[93] Intel Corporation. “Intel and consilient join forces to fight financial fraud
with ai”. (Dec. 8, 2020), [Online]. Available: https://www.intel.com/
content/www/us/en/newsroom/news/fight- financial- fraud- ai.
html#gs.9scuzo.

[94] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency”,
CoRR, 2016. arXiv: 1610.05492 [cs.LG].

[95] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized
federated learning”, in Third workshop on Bayesian Deep Learning (NeurIPS),
2018.

[96] A. Wainakh, A. S. Guinea, T. Grube, and M. Mühlhäuser, “Enhancing privacy
via hierarchical federated learning”, in 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS PW), 2020, pp. 344–347. doi: 10.1109/
EuroSPW51379.2020.00053.

[97] S. J. Reddi, Z. Charles, M. Zaheer, et al., “Adaptive federated optimization”, in
9th International Conference on Learning Representations, ICLR 2021, (Virtual
Event, Austria), OpenReview.net, May 3–7, 2021. [Online]. Available: https:
//openreview.net/forum?id=LkFG3lB13U5.

https://proceedings.mlsys.org/book/271.pdf
https://proceedings.mlsys.org/book/271.pdf
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1812.02903
https://developer.apple.com/videos/play/wwdc2019/708
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2019/12/01/clara-federated-learning/
https://blogs.nvidia.com/blog/2019/12/01/clara-federated-learning/
https://www.fedai.org/cases/utilization-of-fate-in-anti-money-laundering-through-multiple-banks/
https://www.fedai.org/cases/utilization-of-fate-in-anti-money-laundering-through-multiple-banks/
https://www.fedai.org/cases/utilization-of-fate-in-anti-money-laundering-through-multiple-banks/
https://www.intel.com/content/www/us/en/newsroom/news/fight-financial-fraud-ai.html#gs.9scuzo
https://www.intel.com/content/www/us/en/newsroom/news/fight-financial-fraud-ai.html#gs.9scuzo
https://www.intel.com/content/www/us/en/newsroom/news/fight-financial-fraud-ai.html#gs.9scuzo
https://arxiv.org/abs/1610.05492
https://doi.org/10.1109/EuroSPW51379.2020.00053
https://doi.org/10.1109/EuroSPW51379.2020.00053
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5

BIBLIOGRAPHY 161

[98] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Fed-
erated optimization in heterogeneous networks”, in Proceedings of Machine
Learning and Systems 2020, MLSys 2020, (Austin, TX, USA), I. S. Dhillon,
D. S. Papailiopoulos, and V. Sze, Eds., mlsys.org, Mar. 2–4, 2020. [Online].
Available: https://proceedings.mlsys.org/book/316.pdf.

[99] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Fed-
dane: A federated newton-type method”, in 53rd Asilomar Conference on
Signals, Systems, and Computers, ACSCC 2019, (Pacific Grove, CA, USA),
M. B. Matthews, Ed., IEEE, Nov. 3–6, 2019, pp. 1227–1231. doi: 10.1109/
IEEECONF44664.2019.9049023.

[100] X. Zhang, M. Hong, S. V. Dhople, W. Yin, and Y. Liu, “Fedpd: A federated
learning framework with optimal rates and adaptivity to non-iid data”, CoRR,
2020. arXiv: 2005.11418 [cs.LG].

[101] X. Wang, S. Garg, H. Lin, et al., “Towards accurate anomaly detection in
industrial internet-of-things using hierarchical federated learning”, IEEE
Internet of Things Journal, pp. 1–1, 2021. doi: 10.1109/JIOT.2021.3074382.

[102] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to back-
door federated learning”, in Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, S. Chiappa and R. Calandra,
Eds., ser. Proceedings of Machine Learning Research, vol. 108, PMLR, 2020,
pp. 2938–2948. [Online]. Available: https://proceedings.mlr.press/
v108/bagdasaryan20a.html.

[103] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
“SCAFFOLD: Stochastic controlled averaging for federated learning”, in Pro-
ceedings of the 37th International Conference on Machine Learning, H. D. III
and A. Singh, Eds., ser. Proceedings of Machine Learning Research, vol. 119,
PMLR, 2020, pp. 5132–5143. [Online]. Available: https://proceedings.
mlr.press/v119/karimireddy20a.html.

[104] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints”, IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–13, 2020. doi:
10.1109/tnnls.2020.3015958.

[105] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated learning
in a heterogeneous environment”, CoRR, 2019. arXiv: 1906.06629 [cs.LG].

[106] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical cluster-
ing of local updates to improve training on non-iid data”, in 2020 International
Joint Conference on Neural Networks (IJCNN), (Glasgow, UK), ser. IEEE Inter-
national Joint Conference on Neural Networks (IJCNN), IEEE, Jul. 19–24, 2020,
pp. 1–9, isbn: 978-1-7281-6926-2. doi: 10.1109/IJCNN48605.2020.9207469.

https://proceedings.mlsys.org/book/316.pdf
https://doi.org/10.1109/IEEECONF44664.2019.9049023
https://doi.org/10.1109/IEEECONF44664.2019.9049023
https://arxiv.org/abs/2005.11418
https://doi.org/10.1109/JIOT.2021.3074382
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html
https://doi.org/10.1109/tnnls.2020.3015958
https://arxiv.org/abs/1906.06629
https://doi.org/10.1109/IJCNN48605.2020.9207469

162 BIBLIOGRAPHY

[107] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient framework
for clustered federated learning”, in Advances in Neural Information Pro-
cessing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H.
Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 19 586–19 597. [Online].
Available: https : / / proceedings . neurips . cc / paper / 2020 / file /
e32cc80bf07915058ce90722ee17bb71-Paper.pdf.

[108] L. Huang, A. L. Shea, H. Qian, A. Masurkar, H. Deng, and D. Liu, “Patient
clustering improves efficiency of federated machine learning to predict mor-
tality and hospital stay time using distributed electronic medical records”,
Journal of Biomedical Informatics, vol. 99, p. 103 291, 2019, issn: 1532-0464.
doi: 10.1016/j.jbi.2019.103291. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1532046419302102.

[109] M. Duan, D. Liu, X. Ji, et al., “Fedgroup: Efficient federated learning via
decomposed similarity-based clustering”, in 2021 IEEE Intl Conf on Parallel
& Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), 2021, pp. 228–237. doi: 10.1109/
ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042.

[110] M. Duan, D. Liu, X. Ji, et al., “Flexible clustered federated learning for client-
level data distribution shift”, IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 11, pp. 2661–2674, 2022. doi: 10.1109/TPDS.2021.
3134263.

[111] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center
federated learning: Clients clustering for better personalization”,World Wide
Web, vol. 26, no. 1, pp. 481–500, 2023, issn: 1573-1413. doi: 10.1007/s11280-
022-01046-x.

[112] Z. Li, Y. He, H. Yu, et al., “Data heterogeneity-robust federated learning via
group client selection in industrial iot”, IEEE Internet of Things Journal, vol. 9,
no. 18, pp. 17 844–17 857, 2022. doi: 10.1109/JIOT.2022.3161943.

[113] T. Hiessl, S. Rezapour Lakani, J. Kemnitz, D. Schall, and S. Schulte, “Cohort-
based federated learning services for industrial collaboration on the edge”,
Journal of Parallel and Distributed Computing, vol. 167, pp. 64–76, 2022, issn:
0743-7315. doi: 10.1016/j.jpdc.2022.04.021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0743731522000995.

[114] J. Guo, J. Wu, A. Liu, and N. N. Xiong, “Lightfed: An efficient and secure
federated edge learning system on model splitting”, IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 11, pp. 2701–2713, 2022. doi:
10.1109/TPDS.2021.3127712.

https://proceedings.neurips.cc/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://doi.org/10.1016/j.jbi.2019.103291
https://www.sciencedirect.com/science/article/pii/S1532046419302102
https://www.sciencedirect.com/science/article/pii/S1532046419302102
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
https://doi.org/10.1109/TPDS.2021.3134263
https://doi.org/10.1109/TPDS.2021.3134263
https://doi.org/10.1007/s11280-022-01046-x
https://doi.org/10.1007/s11280-022-01046-x
https://doi.org/10.1109/JIOT.2022.3161943
https://doi.org/10.1016/j.jpdc.2022.04.021
https://www.sciencedirect.com/science/article/pii/S0743731522000995
https://www.sciencedirect.com/science/article/pii/S0743731522000995
https://doi.org/10.1109/TPDS.2021.3127712

BIBLIOGRAPHY 163

[115] Y. Ruan and C. Joe-Wong, “Fedsoft: Soft clustered federated learning with
proximal local updating”, Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 7, pp. 8124–8131, Jun. 2022. doi: 10.1609/aaai.
v36i7.20785. [Online]. Available: https://ojs.aaai.org/index.php/
AAAI/article/view/20785.

[116] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R.
Sadeghi, “Dïot: A federated self-learning anomaly detection system for iot”,
in 2019 IEEE 39th International Conference on Distributed Computing Sys-
tems (ICDCS), (Richardson, TX, USA), ser. IEEE International Conference
on Distributed Computing Systems, Jul. 7–9, 2019, pp. 756–767, isbn: 978-1-
7281-2519-0. doi: 10.1109/ICDCS.2019.00080.

[117] V. Rey, P. M. Sánchez Sánchez, A. Huertas Celdrán, and G. Bovet, “Feder-
ated learning for malware detection in iot devices”, Computer Networks,
vol. 204, p. 108 693, 2022, issn: 1389-1286. doi: 10.1016/j.comnet.2021.
108693. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1389128621005582.

[118] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and O. Jogunola,
“Federated deep learning for zero-day botnet attack detection in iot edge
devices”, IEEE Internet of Things Journal, pp. 1–1, 2021. doi: 10.1109/JIOT.
2021.3100755.

[119] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of things intrusion
detection: Centralized, on-device, or federated learning?”, IEEE Network,
vol. 34, no. 6, pp. 310–317, Sep. 2020, issn: 0890-8044. doi: 10.1109/MNET.
011.2000286.

[120] D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An ensemble
multi-view federated learning intrusion detection for iot”, IEEE Access, vol. 9,
pp. 117 734–117 745, 2021. doi: 10.1109/ACCESS.2021.3107337.

[121] Y. Qin and M. Kondo, “Federated learning-based network intrusion detection
with a feature selection approach”, in 2021 International Conference on Elec-
trical, Communication, and Computer Engineering (ICECCE), 2021, pp. 1–6.
doi: 10.1109/ICECCE52056.2021.9514222.

[122] Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network anomaly
detection using federated learning”, in Proceedings of the 10th International
Symposium on Information and Communication Technology (SoICT), (Hanoi,
Ha Long Bay, Viet Nam), ser. SoICT ’19, New York, NY, USA: Association for
Computing Machinery, Dec. 4–6, 2019, pp. 273–279, isbn: 978-1-4503-7245-9.
doi: 10.1145/3368926.3369705.

[123] H. Saadat, A. Aboumadi, A. Mohamed, A. Erbad, and M. Guizani, “Hierarchi-
cal federated learning for collaborative ids in iot applications”, in 2021 10th
Mediterranean Conference on Embedded Computing (MECO), 2021, pp. 1–6.
doi: 10.1109/MECO52532.2021.9460304.

https://doi.org/10.1609/aaai.v36i7.20785
https://doi.org/10.1609/aaai.v36i7.20785
https://ojs.aaai.org/index.php/AAAI/article/view/20785
https://ojs.aaai.org/index.php/AAAI/article/view/20785
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/10.1016/j.comnet.2021.108693
https://www.sciencedirect.com/science/article/pii/S1389128621005582
https://www.sciencedirect.com/science/article/pii/S1389128621005582
https://doi.org/10.1109/JIOT.2021.3100755
https://doi.org/10.1109/JIOT.2021.3100755
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/MNET.011.2000286
https://doi.org/10.1109/ACCESS.2021.3107337
https://doi.org/10.1109/ICECCE52056.2021.9514222
https://doi.org/10.1145/3368926.3369705
https://doi.org/10.1109/MECO52532.2021.9460304

164 BIBLIOGRAPHY

[124] Y. Wei, S. Zhou, S. Leng, S. Maharjan, and Y. Zhang, “Federated learning em-
powered end-edge-cloud cooperation for 5g hetnet security”, IEEE Network,
vol. 35, no. 2, pp. 88–94, 2021. doi: 10.1109/MNET.011.2000340.

[125] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated deep
learning for intrusion detection in industrial cyber–physical systems”, IEEE
Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5615–5624, Aug. 2021,
issn: 1551-3203. doi: 10.1109/TII.2020.3023430.

[126] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and
G. Srivastava, “Federated-learning-based anomaly detection for iot security
attacks”, IEEE Internet of Things Journal, vol. 9, no. 4, pp. 2545–2554, 2021.
doi: 10.1109/JIOT.2021.3077803.

[127] V. Kelli, V. Argyriou, T. Lagkas, G. Fragulis, E. Grigoriou, and P. Sarigiannidis,
“Ids for industrial applications: A federated learning approach with active
personalization”, Sensors, vol. 21, no. 20, 2021, issn: 1424-8220. doi: 10 .
3390/s21206743. [Online]. Available: https://www.mdpi.com/1424-
8220/21/20/6743.

[128] W. Schneble and G. Thamilarasu, “Attack detection using federated learning
in medical cyber-physical systems”, in 2019 28th International Conference on
Computer Communication and Networks, ICCCN, 2019, pp. 1–8.

[129] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated transfer
learning framework for wearable healthcare”, IEEE Intelligent Systems, vol. 35,
no. 4, pp. 83–93, Apr. 2020, issn: 1541-1672. doi: 10 . 1109 / MIS . 2020 .
2988604.

[130] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Tax-
onomy and survey of collaborative intrusion detection”, ACM Computing
Surveys, vol. 47, no. 4, May 2015, issn: 0360-0300. doi: 10.1145/2716260.

[131] P. A. Porras and P. G. Neumann, “Emerald: Event monitoring enabling re-
sponse to anomalous live disturbances”, in Proceedings of the 20th national
information systems security conference, vol. 3, 1997, pp. 353–365.

[132] P. Nespoli, D. Useche Pelaez, D. Díaz López, and F. Gómez Mármol, “Cosmos:
Collaborative, seamless and adaptive sentinel for the internet of things”,
Sensors, vol. 19, no. 7, 2019, issn: 1424-8220. doi: 10 . 3390 / s19071492.
[Online]. Available: https://www.mdpi.com/1424-8220/19/7/1492.

[133] P. R. Grammatikis, P. Sarigiannidis, E. Iturbe, et al., “Secure and private
smart grid: The spear architecture”, in 2020 6th IEEE Conference on Network
Softwarization (NetSoft), 2020, pp. 450–456. doi: 10.1109/NetSoft48620.
2020.9165420.

https://doi.org/10.1109/MNET.011.2000340
https://doi.org/10.1109/TII.2020.3023430
https://doi.org/10.1109/JIOT.2021.3077803
https://doi.org/10.3390/s21206743
https://doi.org/10.3390/s21206743
https://www.mdpi.com/1424-8220/21/20/6743
https://www.mdpi.com/1424-8220/21/20/6743
https://doi.org/10.1109/MIS.2020.2988604
https://doi.org/10.1109/MIS.2020.2988604
https://doi.org/10.1145/2716260
https://doi.org/10.3390/s19071492
https://www.mdpi.com/1424-8220/19/7/1492
https://doi.org/10.1109/NetSoft48620.2020.9165420
https://doi.org/10.1109/NetSoft48620.2020.9165420

BIBLIOGRAPHY 165

[134] O. Gupta and R. Raskar, “Distributed learning of deep neural network over
multiple agents”, Journal of Network and Computer Applications, vol. 116,
pp. 1–8, 2018, issn: 1084-8045. doi: 10.1016/j.jnca.2018.05.003. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1084804518301590.

[135] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed comparison of
communication efficiency of split learning and federated learning”, CoRR,
2019. arXiv: 1909.09145 [cs.LG].

[136] C. Thapa, P. C. Mahawaga Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning”, Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 8, pp. 8485–8493, Jun. 2022.
doi: 10.1609/aaai.v36i8.20825. [Online]. Available: https://ojs.aaai.
org/index.php/AAAI/article/view/20825.

[137] X. Gao and L. Zhang, “Pcat: Functionality and data stealing from split learning
by pseudo-client attack”, in 32nd USENIX Security Symposium, Aug. 9, 2023.

[138] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Explaining deep
learning based security applications”, in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, (Toronto, Canada),
ser. CCS ’18, New York, NY, USA: Association for Computing Machinery,
2018, pp. 364–379, isbn: 9781450356930. doi: 10.1145/3243734.3243792.

[139] A. Nadeem, D. Vos, C. Cao, et al., “Sok: Explainable machine learning for
computer security applications”, CoRR, 2022. arXiv: 2208.10605 [cs.CR].

[140] M. Wang, K. Zheng, Y. Yang, and X. Wang, “An explainable machine learning
framework for intrusion detection systems”, IEEE Access, vol. 8, pp. 73 127–
73 141, 2020. doi: 10.1109/ACCESS.2020.2988359.

[141] L. Antwarg, R. M. Miller, B. Shapira, and L. Rokach, “Explaining anoma-
lies detected by autoencoders using shapley additive explanations”, Ex-
pert Systems with Applications, vol. 186, p. 115 736, 2021, issn: 0957-4174.
doi: 10.1016/j.eswa.2021.115736. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0957417421011155.

[142] H. Liu, C. Zhong, A. Alnusair, and S. R. Islam, “Faixid: A framework for
enhancing ai explainability of intrusion detection results using data cleaning
techniques”, Journal of Network and Systems Management, vol. 29, no. 4, p. 40,
2021, issn: 1573-7705. doi: 10.1007/s10922-021-09606-8.

[143] D. Rao and S. Mane, “Zero-shot learning approach to adaptive cybersecurity
using explainable AI”, CoRR, 2021. arXiv: 2106.14647 [cs.CR].

[144] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C. Chan, “Gee:
A gradient-based explainable variational autoencoder for network anomaly
detection”, in 2019 IEEE Conference on Communications and Network Security
(CNS), 2019, pp. 91–99. doi: 10.1109/CNS.2019.8802833.

https://doi.org/10.1016/j.jnca.2018.05.003
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://arxiv.org/abs/1909.09145
https://doi.org/10.1609/aaai.v36i8.20825
https://ojs.aaai.org/index.php/AAAI/article/view/20825
https://ojs.aaai.org/index.php/AAAI/article/view/20825
https://doi.org/10.1145/3243734.3243792
https://arxiv.org/abs/2208.10605
https://doi.org/10.1109/ACCESS.2020.2988359
https://doi.org/10.1016/j.eswa.2021.115736
https://www.sciencedirect.com/science/article/pii/S0957417421011155
https://www.sciencedirect.com/science/article/pii/S0957417421011155
https://doi.org/10.1007/s10922-021-09606-8
https://arxiv.org/abs/2106.14647
https://doi.org/10.1109/CNS.2019.8802833

166 BIBLIOGRAPHY

[145] K. S. K. Liyanage, Z. Tian, D. M. Divakaran, M. C. Chan, and M. Gurusamy,
“Apex: Characterizing attack behaviors from network anomalies”, in 2022
IEEE International Performance, Computing, and Communications Conference
(IPCCC), 2022, pp. 207–216. doi: 10.1109/IPCCC55026.2022.9894328.

[146] P. Barnard, N. Marchetti, and L. A. DaSilva, “Robust network intrusion detec-
tion through explainable artificial intelligence (xai)”, IEEE Networking Letters,
vol. 4, no. 3, pp. 167–171, 2022. doi: 10.1109/LNET.2022.3186589.

[147] K. L. K. Sudheera, D. M. Divakaran, R. P. Singh, and M. Gurusamy, “Adept:
Detection and identification of correlated attack stages in iot networks”, IEEE
Internet of Things Journal, vol. 8, no. 8, pp. 6591–6607, 2021. doi: 10.1109/
JIOT.2021.3055937.

[148] R. Haffar, D. Sánchez, and J. Domingo-Ferrer, “Explaining predictions and
attacks in federated learning via random forests”, Applied Intelligence, vol. 53,
no. 1, pp. 169–185, 2022, issn: 1573-7497. doi: 10.1007/s10489-022-03435-
1.

[149] T. T. Huong, T. P. Bac, K. N. Ha, et al., “Federated learning-based explain-
able anomaly detection for industrial control systems”, IEEE Access, vol. 10,
pp. 53 854–53 872, 2022. doi: 10.1109/ACCESS.2022.3173288.

[150] C. Siaterlis, A. P. Garcia, and B. Genge, “On the use of emulab testbeds for
scientifically rigorous experiments”, IEEE Communications Surveys Tutorials,
vol. 15, no. 2, pp. 929–942, 2013. doi: 10.1109/SURV.2012.0601112.00185.

[151] M. H. ElSheikh, M. S. Gadelrab, M. A. Ghoneim, and M. Rashwan, “Botgen:
A new approach for in-lab generation of botnet datasets”, in 2014 9th In-
ternational Conference on Malicious and Unwanted Software: The Americas
(MALWARE), 2014, pp. 76–84. doi: 10.1109/MALWARE.2014.6999406.

[152] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things (iot):
Research, simulators, and testbeds”, IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 1637–1647, 2018. doi: 10.1109/JIOT.2017.2786639.

[153] K. Mehdi, M. Lounis, A. Bounceur, and T. Kechadi. “CupCarbon IoT 5.2”.
Accessed 2023/02/07. (2022), [Online]. Available: http://cupcarbon.com/.

[154] Y. Meidan, M. Bohadana, Y. Mathov, et al., “N-BaIoT—network-based detec-
tion of IoT botnet attacks using deep autoencoders”, IEEE Pervasive Comput-
ing, vol. 17, no. 3, pp. 12–22, 2018. doi: 10.1109/MPRV.2018.03367731.

[155] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the
development of realistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset”, Future Generation Computer Systems,
vol. 100, pp. 779–796, 2019, issn: 0167-739X. doi: 10.1016/j.future.2019.
05.041. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X18327687.

https://doi.org/10.1109/IPCCC55026.2022.9894328
https://doi.org/10.1109/LNET.2022.3186589
https://doi.org/10.1109/JIOT.2021.3055937
https://doi.org/10.1109/JIOT.2021.3055937
https://doi.org/10.1007/s10489-022-03435-1
https://doi.org/10.1007/s10489-022-03435-1
https://doi.org/10.1109/ACCESS.2022.3173288
https://doi.org/10.1109/SURV.2012.0601112.00185
https://doi.org/10.1109/MALWARE.2014.6999406
https://doi.org/10.1109/JIOT.2017.2786639
http://cupcarbon.com/
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1016/j.future.2019.05.041
https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://www.sciencedirect.com/science/article/pii/S0167739X18327687

BIBLIOGRAPHY 167

[156] N. Moustafa, “A new distributed architecture for evaluating ai-based secu-
rity systems at the edge: Network ton_iot datasets”, Sustainable Cities and
Society, vol. 72, p. 102 994, 2021, issn: 2210-6707. doi: 10.1016/j.scs.2021.
102994. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2210670721002808.

[157] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens,
“Machine learning based iot intrusion detection system: An mqtt case study
(mqtt-iot-ids2020 dataset)”, in Selected Papers from the 12th International
Networking Conference, B. Ghita and S. Shiaeles, Eds., Cham: Springer Inter-
national Publishing, 2021, pp. 73–84, isbn: 978-3-030-64758-2. doi: 10.1007/
978-3-030-64758-2_6.

[158] S. Ghazanfar, F. Hussain, A. U. Rehman, U. U. Fayyaz, F. Shahzad, and G. A.
Shah, “Iot-flock: An open-source framework for iot traffic generation”, in 2020
International Conference on Emerging Trends in Smart Technologies (ICETST),
2020, pp. 1–6. doi: 10.1109/ICETST49965.2020.9080732.

[159] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso, “Mqttset,
a new dataset for machine learning techniques on mqtt”, Sensors, vol. 20,
no. 22, 2020, issn: 1424-8220. doi: 10.3390/s20226578. [Online]. Available:
https://www.mdpi.com/1424-8220/20/22/6578.

[160] F. Hussain, S. G. Abbas, G. A. Shah, et al., “A framework for malicious traffic
detection in iot healthcare environment”, Sensors, vol. 21, no. 9, 2021, issn:
1424-8220. doi: 10.3390/s21093025. [Online]. Available: https://www.
mdpi.com/1424-8220/21/9/3025.

[161] A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Nõmm, “Medbiot:
Generation of an iot botnet dataset in a medium-sized iot network.”, in ICISSP,
2020, pp. 207–218.

[162] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-
iiotset: A new comprehensive realistic cyber security dataset of iot and iiot
applications for centralized and federated learning”, IEEE Access, vol. 10,
pp. 40 281–40 306, 2022. doi: 10.1109/ACCESS.2022.3165809.

[163] D. Antonioli and N. O. Tippenhauer, “Minicps: A toolkit for security research
on cps networks”, in Proceedings of the First ACMWorkshop on Cyber-Physical
Systems-Security and/or PrivaCy, (Denver, CO, USA), ser. CPS-SPC ’15, New
York, NY, USA: Association for Computing Machinery, 2015, pp. 91–100,
isbn: 9781450338271. doi: 10.1145/2808705.2808715.

[164] M. Eckhart and A. Ekelhart, “Towards security-aware virtual environments
for digital twins”, in Proceedings of the 4th ACM Workshop on Cyber-Physical
System Security, (Incheon, Republic of Korea), ser. CPSS ’18, New York,
NY, USA: Association for Computing Machinery, 2018, pp. 61–72, isbn:
9781450357555. doi: 10.1145/3198458.3198464.

https://doi.org/10.1016/j.scs.2021.102994
https://doi.org/10.1016/j.scs.2021.102994
https://www.sciencedirect.com/science/article/pii/S2210670721002808
https://www.sciencedirect.com/science/article/pii/S2210670721002808
https://doi.org/10.1007/978-3-030-64758-2_6
https://doi.org/10.1007/978-3-030-64758-2_6
https://doi.org/10.1109/ICETST49965.2020.9080732
https://doi.org/10.3390/s20226578
https://www.mdpi.com/1424-8220/20/22/6578
https://doi.org/10.3390/s21093025
https://www.mdpi.com/1424-8220/21/9/3025
https://www.mdpi.com/1424-8220/21/9/3025
https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/10.1145/2808705.2808715
https://doi.org/10.1145/3198458.3198464

168 BIBLIOGRAPHY

[165] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization.”, 4th
International Conference on Information Systems Security and Privacy (ICISSP),
vol. 1, pp. 108–116, 2018.

[166] M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano, “Transferability of
machine learning models learned from public intrusion detection datasets:
The cicids2017 case study”, Software Quality Journal, 2022, issn: 1573-1367.
doi: 10.1007/s11219-022-09587-0.

[167] A. Kenyon, L. Deka, and D. Elizondo, “Are public intrusion datasets fit for
purpose characterising the state of the art in intrusion event datasets”, Com-
puters & Security, vol. 99, p. 102 022, 2020, issn: 0167-4048. doi: 10.1016/
j.cose.2020.102022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167404820302959.

[168] H. Yuan, M. Liu, L. Kang, C. Miao, and Y.Wu, “An empirical study of the effect
of background data size on the stability of shapley additive explanations
(SHAP) for deep learning models”, CoRR, 2022. arXiv: 2204.11351 [cs.LG].

[169] E. Albini, J. Long, D. Dervovic, and D. Magazzeni, “Counterfactual shapley
additive explanations”, in 2022 ACM Conference on Fairness, Accountability,
and Transparency, (Seoul, Republic of Korea), ser. FAccT ’22, New York,
NY, USA: Association for Computing Machinery, 2022, pp. 1054–1070, isbn:
9781450393522. doi: 10.1145/3531146.3533168.

[170] C. Siaterlis, B. Genge, and M. Hohenadel, “Epic: A testbed for scientifically
rigorous cyber-physical security experimentation”, IEEE Transactions on
Emerging Topics in Computing, vol. 1, no. 2, pp. 319–330, 2013. doi: 10.1109/
TETC.2013.2287188.

[171] J. Lai, J. Tian, K. Zhang, Z. Yang, and D. Jiang, “Network emulation as a
service (neaas): Towards a cloud-based network emulation platform”, Mobile
Networks and Applications, vol. 26, no. 2, pp. 766–780, 2021, issn: 1572-8153.
doi: 10.1007/s11036-019-01426-0.

[172] Y.-L. Huang, B. Chen, M.-W. Shih, and C.-Y. Lai, “Security impacts of virtual-
ization on a network testbed”, in 2012 IEEE Sixth International Conference on
Software Security and Reliability, 2012, pp. 71–77. doi: 10.1109/SERE.2012.
17.

[173] J. Grossmann et al. “Graphical network simulator 3”. Accessed 2023/02/07.
(2008), [Online]. Available: https://www.gns3.com/.

[174] D. Merkel, “Docker: Lightweight linux containers for consistent development
and deployment”, Linux journal, vol. 2014, no. 239, Mar. 2014, issn: 1075-3583.

[175] F. Bellard, “QEMU, a fast and portable dynamic translator”, in Proceedings of
the Annual Conference on USENIX Annual Technical Conference, (Anaheim,
CA, USA), ser. ATEC ’05, USA: USENIX Association, 2005, p. 41.

https://doi.org/10.1007/s11219-022-09587-0
https://doi.org/10.1016/j.cose.2020.102022
https://doi.org/10.1016/j.cose.2020.102022
https://www.sciencedirect.com/science/article/pii/S0167404820302959
https://www.sciencedirect.com/science/article/pii/S0167404820302959
https://arxiv.org/abs/2204.11351
https://doi.org/10.1145/3531146.3533168
https://doi.org/10.1109/TETC.2013.2287188
https://doi.org/10.1109/TETC.2013.2287188
https://doi.org/10.1007/s11036-019-01426-0
https://doi.org/10.1109/SERE.2012.17
https://doi.org/10.1109/SERE.2012.17
https://www.gns3.com/

BIBLIOGRAPHY 169

[176] J. Grossmann et al. “GNS3 API documentation”. Accessed 2023/02/07, GNS3
Technologies Inc. (2015), [Online]. Available: https : / / gns3 - server .
readthedocs.io/en/latest/.

[177] F. Ludovici et al., Tc-netem(8) from iproute2, Accessed 2023/02/07, 2011. [On-
line]. Available: https://manpages.debian.org/bullseye/iproute2/
tc-netem.8.en.html.

[178] “Eclipse Paho MQTT library”. Accessed 2023/02/07, Eclipse Foundation.
(2014), [Online]. Available: https://www.eclipse.org/paho/.

[179] S. Vito. “Air quality”. Accessed 2023/05/12. (2016), [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/air+quality.

[180] L. Candanedo. “Appliances energy prediction data set”. Accessed 2023/05/12.
(2017), [Online]. Available: https://archive.ics.uci.edu/ml/datasets/
appliances+energy+prediction.

[181] G. S. Sampaio, A. R. de Aguiar Vallim Filho, L. S. da Silva, and L. A. da Silva.
“Accelerometer data set”. Accessed 2023/05/12. (2021), [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Accelerometer.

[182] F. Zamora-Martínez, P. Romeu, P. Botella-Rocamora, and J. Pardo. “SML2010
data set”. Accessed 2023/05/12. (2014), [Online]. Available: https://archive.
ics.uci.edu/ml/datasets/sml2010.

[183] N. Helwig, E. Pignanelli, and A. Schütze. “Condition monitoring of hydraulic
systems data set”. Accessed 2023/05/12. (2018), [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets/condition+monitoring+of+
hydraulic+systems.

[184] S. Matzka. “AI4I 2020 predictive maintenance dataset”. Accessed 2023/05/12.
(2020), [Online]. Available: https://archive.ics.uci.edu/ml/datasets/
AI4I+2020+Predictive+Maintenance+Dataset.

[185] O. Bergmann. “Libcoap. C-implementation of CoAP”. Accessed 2023/02/07.
(2015), [Online]. Available: https://libcoap.net/.

[186] A. Salam and A. E. Hibaoui. “Power consumption of Tetouan city data set”.
Accessed 2023/05/12. (2021), [Online]. Available: https://archive.ics.
uci.edu/ml/datasets/Power+consumption+of+Tetouan+city.

[187] P. Tüfekci and H. Kaya. “Combined cycle power plant data set”. Accessed
2023/05/12. (2014), [Online]. Available: https://archive.ics.uci.edu/
ml/datasets/combined+cycle+power+plant.

[188] F. Bellard. “FFmpeg. A complete, cross-platform solution to record, convert
and stream audio and video.” Accessed 2023/02/07, FFmpeg project. (2000),
[Online]. Available: https://www.ffmpeg.org/.

[189] G. Morina. “A street in London on a rainy night”. Accessed 2023/05/12.
(2019), [Online]. Available: https://www.pexels.com/video/a-street-
in-london-on-a-rainy-night-3037295/.

https://gns3-server.readthedocs.io/en/latest/
https://gns3-server.readthedocs.io/en/latest/
https://manpages.debian.org/bullseye/iproute2/tc-netem.8.en.html
https://manpages.debian.org/bullseye/iproute2/tc-netem.8.en.html
https://www.eclipse.org/paho/
https://archive.ics.uci.edu/ml/datasets/air+quality
https://archive.ics.uci.edu/ml/datasets/air+quality
https://archive.ics.uci.edu/ml/datasets/appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Accelerometer
https://archive.ics.uci.edu/ml/datasets/sml2010
https://archive.ics.uci.edu/ml/datasets/sml2010
https://archive.ics.uci.edu/ml/datasets/condition+monitoring+of+hydraulic+systems
https://archive.ics.uci.edu/ml/datasets/condition+monitoring+of+hydraulic+systems
https://archive.ics.uci.edu/ml/datasets/condition+monitoring+of+hydraulic+systems
https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
https://libcoap.net/
https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city
https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city
https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
https://www.ffmpeg.org/
https://www.pexels.com/video/a-street-in-london-on-a-rainy-night-3037295/
https://www.pexels.com/video/a-street-in-london-on-a-rainy-night-3037295/

170 BIBLIOGRAPHY

[190] H. Piglowski. “A museum in Lebanon exhibiting early human tools and
artifacts”. Accessed 2023/05/12. (2019), [Online]. Available: https://www.
pexels.com/video/a-museum-in-lebanon-exhibiting-early-human-
tools-and-artifacts-2943586/.

[191] R. V. Tuyl. “Merlin is a cross-platform post-exploitation http/2 command
& control server and agent written in golang”. Accessed 2023/02/07. (2017),
[Online]. Available: https://github.com/Ne0nd0g/merlin.

[192] G. Lyon. “Nmap ("network mapper")”. Accessed 2023/02/07. (1997), [Online].
Available: https://nmap.org/.

[193] R. Graham. “MASSCAN: Mass ip port scanner”. Accessed 2023/02/07. (2013),
[Online]. Available: https://github.com/robertdavidgraham/masscan.

[194] “SlowTT-Attack”. Accessed 2023/02/07. (2021), [Online]. Available: https:
//github.com/GenjiM1n4moto/SlowTT-Attack.

[195] “MQTTSA”. Accessed 2023/02/07. (2019), [Online]. Available: https://
github.com/stfbk/mqttsa.git.

[196] “AMP-Research. Research on exotic UDP/TCP amplification vectors, payloads
and mitigations”. Accessed 2023/02/07. (2019), [Online]. Available: https:
//github.com/Phenomite/AMP-Research.

[197] “Metasploit Framework”. Accessed 2023/02/07, Rapid7, Inc. (2009), [Online].
Available: https://metasploit.com/.

[198] “BusyBox: The swiss army knife of embedded linux”. Accessed 2023/02/07.
(1999), [Online]. Available: https://busybox.net/.

[199] “Open vSwitch is a production quality, multilayer virtual switch licensed
under the open source Apache 2.0 license.” Accessed 2023/02/07. (2009),
[Online]. Available: https://www.openvswitch.org/.

[200] “VyOS is an open source network operating system (router, firewall, VPN)
based on Debian GNU/Linux.” Accessed 2023/02/07. (2013), [Online]. Avail-
able: https://vyos.io/.

[201] R. A. Light, “Mosquitto: Server and client implementation of the MQTT
protocol”, Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017. doi:
10.21105/joss.00265.

[202] A. Ros. “Rtsp-simple-server”. Accessed 2023/02/07. (2019), [Online]. Available:
https://github.com/aler9/rtsp-simple-server.

[203] S. Kelley. “Dnsmasq”. Accessed 2023/02/07. (2001), [Online]. Available: https:
//thekelleys.org.uk/dnsmasq/doc.html.

[204] R. Curnow and M. Lichvar. “Chrony is a versatile implementation of the Net-
work Time Protocol (NTP)”. Accessed 2023/02/07. (2009), [Online]. Available:
https://chrony.tuxfamily.org/.

https://www.pexels.com/video/a-museum-in-lebanon-exhibiting-early-human-tools-and-artifacts-2943586/
https://www.pexels.com/video/a-museum-in-lebanon-exhibiting-early-human-tools-and-artifacts-2943586/
https://www.pexels.com/video/a-museum-in-lebanon-exhibiting-early-human-tools-and-artifacts-2943586/
https://github.com/Ne0nd0g/merlin
https://nmap.org/
https://github.com/robertdavidgraham/masscan
https://github.com/GenjiM1n4moto/SlowTT-Attack
https://github.com/GenjiM1n4moto/SlowTT-Attack
https://github.com/stfbk/mqttsa.git
https://github.com/stfbk/mqttsa.git
https://github.com/Phenomite/AMP-Research
https://github.com/Phenomite/AMP-Research
https://metasploit.com/
https://busybox.net/
https://www.openvswitch.org/
https://vyos.io/
https://doi.org/10.21105/joss.00265
https://github.com/aler9/rtsp-simple-server
https://thekelleys.org.uk/dnsmasq/doc.html
https://thekelleys.org.uk/dnsmasq/doc.html
https://chrony.tuxfamily.org/

BIBLIOGRAPHY 171

[205] S. Sanfilippo. “Hping network tool”. Accessed 2023/02/07. (1998), [Online].
Available: https://github.com/antirez/hping.

[206] F. Maggi, R. Vosseler, and D. Quarta, “The fragility of industrial iot’s data
backbone”, Trend Micro Inc, Tech. Rep., 2018, Accessed 2023/05/12. [Online].
Available: https://documents.trendmicro.com/assets/white_papers/
wp-the-fragility-of-industrial-IoTs-data-backbone.pdf.

[207] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, K. Prabhu, et al. “Iperf3: A TCP,
UDP, and SCTP network bandwidth measurement tool”. Accessed 2023/02/07.
(2014), [Online]. Available: https://iperf.fr/.

[208] C. I. King. “Stress-ng”. Accessed 2023/05/12. (2013), [Online]. Available:
https://github.com/ColinIanKing/stress-ng.

[209] G. Combs et al. “Wireshark”. Accessed 2023/02/07. (1998), [Online]. Available:
https://www.wireshark.org/.

[210] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seed-
ing”, Stanford InfoLab, Tech. Rep. 2006-13, Jun. 2006.

[211] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library”, in Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [On-
line]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[212] O. Tange, “GNU parallel: The command-line power tool”, login Usenix Mag.,
vol. 36, no. 1, 2011. [Online]. Available: https : / / www . usenix . org /
publications / login / february - 2011 - volume - 36 - number - 1 / gnu -
parallel-command-line-power-tool.

[213] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learn-
ing in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[214] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire, “Internet
assigned numbers authority (iana) procedures for the management of the
service name and transport protocol port number registry”, RFC Editor, BCP
165, Aug. 2011.

[215] U. Zurutuza, R. Uribeetxeberria, and D. Zamboni, “A data mining approach
for analysis of worm activity through automatic signature generation”, in
Proceedings of the 1st ACM Workshop on Workshop on AISec, (Alexandria,
VA, USA), ser. AISec ’08, New York, NY, USA: Association for Computing
Machinery, 2008, pp. 61–70, isbn: 9781605582917. doi: 10.1145/1456377.
1456394.

[216] J. Wang, Z. Charles, Z. Xu, et al., “A field guide to federated optimization”,
CoRR, 2021. arXiv: 2107.06917 [cs.LG].

https://github.com/antirez/hping
https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf
https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf
https://iperf.fr/
https://github.com/ColinIanKing/stress-ng
https://www.wireshark.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://doi.org/10.1145/1456377.1456394
https://doi.org/10.1145/1456377.1456394
https://arxiv.org/abs/2107.06917

172 BIBLIOGRAPHY

[217] Y. Mirsky. “Python implementation of kitsune”. Accessed 2023/02/07. (2018),
[Online]. Available: https://github.com/ymirsky/Kitsune-py.

[218] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot
federated clustering”, in Proceedings of the 38th International Conference on
Machine Learning, M. Meila and T. Zhang, Eds., ser. Proceedings of Machine
Learning Research, vol. 139, PMLR, 2021, pp. 2611–2620. [Online]. Available:
https://proceedings.mlr.press/v139/dennis21a.html.

[219] S. M. Lundberg et al. “Shap. a game theoretic approach to explain the out-
put of any machine learning model.” Accessed 2023/02/14. (2017), [Online].
Available: https://github.com/slundberg/shap.

https://github.com/ymirsky/Kitsune-py
https://proceedings.mlr.press/v139/dennis21a.html
https://github.com/slundberg/shap

APPENDIX A
Clustered federated learning

additional experiment:
clustering in compromised

settings

The clustered FL architecture proposed in Chapter 5 assumed that the clients or
devices operate in normal conditions during the device clustering and the FL model
training steps. While delving into adversarial settings is not in the scope of this
thesis, in this section, we present a small experiment to consider the possible effects
to the client clustering step when some clients are already compromised (simulating
some compromised devices due to a supply chain attack, for instance).

We are going to perform experiments similar to those presented in Section 5.4.2.
However, in this case, a different fraction of the devices will be under a compromised
state during the dataset (pcap files) capturing stage. The main hypothesis of this
experiment is that for the devices of the same type, when performing the local partial
training, the weights of the models trained on compromised devices will differ from
those trained on clean devices. This difference will be apparent in the FL aggregation
server when performing the client clustering step. If only a small fraction of devices
are compromised, the difference will be apparent. However, if most or all of the
devices are compromised, it will be harder to detect since, at this stage, the “normal”
behavior will be the compromised one.

A.1 Methodology

The methodology of the experiment is as follows. First, for each of the 78 devices in
the scenario (recall Table 5.1), we capture one pcap file of approximately 2 hours

173

174 APPENDIX A. CLUSTERED FL: CLUSTERING IN COMPROMISED SETTINGS

in normal (clean) conditions. Next, in a separate instance of the Gotham testbed
scenario, we compromise all 78 devices with theMerlin agent (see Section 2.2.2). Now,
the behavior of the compromised devices includes the corresponding normal activity
plus the periodic communication of each device to the Merlin C&C server (no attacks
are performed, only C&C heartbeat messages on top of the normal behavior). In this
stage, we capture again one pcap file of approximately 2 hours for each device. We
use the two described datasets (all clean and all compromised) to simulate different
scenarios with varying numbers of compromised devices.

Additionally, we need a baseline to compare the clustering effects in the compro-
mised state. This baseline will be the clustering results presented in Table 5.4 (using
the hierarchical port discretization, 𝜖 = 4 and 𝐾 = 8 number of clusters), which is
the result used for the following experiments in that chapter.

The scenarios with a different number of compromised devices are constructed as
follows. In the first scenario, we start with the all clean dataset. In the next scenario,
for each cluster of devices, we swap one clean device with the dataset of the same
device from the compromised set. Thus, this first compromised scenario consists of
8 compromised devices (one for each cluster) and 70 clean devices. For the second
compromised scenario, we swap another clean device with a compromised one for
each cluster. And so forth for the following scenarios. The last scenario corresponds
to all the devices in a compromised state. Note that not all clusters have the same
number of devices; the smallest ones consist of 5 devices, and the largest ones have
15. Hence, some clusters will be fully compromised before others.

We need a metric to compare the clustering results in each compromised scenario.
As previously stated, we use as a baseline the clustering results presented in Table 5.4,
where no device is compromised. Thus, we use that clustering results as ground
truth for all compromised scenarios. Then, our metric will be to measure the average
“diameter” distance for the devices in each cluster as shown in equation (A.1) (N is
the number of devices in a cluster and for 𝑑 , we use the Euclidean distance between
the model weights). From our hypothesis, we expect that the more compromised
devices are in a cluster, the larger the diameter will be (up to a point where most
devices in the cluster are compromised).

Cluster diameter =
1

𝑁 (𝑁−1)
2

1
2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑑𝑖, 𝑗 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑑𝑖, 𝑗

𝑁 (𝑁 − 1) (A.1)

We repeat this process 10 times for each compromised scenario to account for
random model initialization effects.

A.2 Results

The results are presented from Figure A.1 for Cluster 1 devices to Figure A.8 for
Cluster 8 devices. For each cluster, the figure shows boxplots for the average cluster
diameter (accounting for the 10 repetitions) for different numbers of compromised
devices in that cluster. The vertical red dashed line represents the total number

A.2. RESULTS 175

of devices in that cluster; therefore, results at the right of the dashed line can be
considered further repetitions of the all-compromised state.

Additionally, we show the 2D projections of the model fingerprints. Figure A.9
shows the result when no devices are compromised. This replicates the same results
obtained in Figure 5.4c from Chapter 5. Figure A.10 shows the projection when 3
devices per cluster are compromised, Figure A.11 when 6 devices per cluster are
compromised and Figure A.12 when all the devices are compromised.

The results show that the average cluster distance can be used to infer that some
devices belonging to a cluster behave in an anomalous manner, especially when the
number of compromised devices is approximately half or less than the total number
of devices in that cluster. In some cases, such as Cluster 0 and Cluster 2 or Cluster 7,
the difference is very apparent.

However, there is a main limitation in the approach used in this experiment:
the need for the baseline clustering results used to group the devices. For this
experiment, we used the clustering results obtained in the scenario where we know
that no devices are in a compromised state. Meanwhile, in real settings, this is not
known a priori, creating a chicken-and-egg situation because we lack a baseline
ground truth clustering.

Therefore, we think that this method could be interesting to explore in different
scenarios:

i We have alternative methods to profile and group our devices. If those profiling
tools use different methods to the model fingerprinting presented in this work,
we might use them as a clustering baseline.

ii We can perform this experiment at different time periods, using as a base-
line the clustering result of a previous run. Monitoring the average cluster
diameters could be a way to measure possible drifts in the behavior of the
devices.

iii By leveraging the IoT emulation testbed, we could create a replica of the real
setting of interest. Assuming that the testbed includes device behaviors in a
clean state, as it is a controlled environment, the experiments performed in
the testbed could be considered as ground truth. By repeating the experiments
in the real scenario, we can measure the difference in the average cluster
diameters compared to the testbed results. This might be used to indicate
device behavior differences.

176 APPENDIX A. CLUSTERED FL: CLUSTERING IN COMPROMISED SETTINGS

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11
Number of compromised devices in cluster

1

2

3

4

5

Av
er

ag
e

cl
us

te
r d

ia
m

et
er

Figure A.1: Average cluster diameter for different numbers of compromised devices

in Cluster 0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of compromised devices in cluster

2

3

4

5

Av
er

ag
e

cl
us

te
r d

ia
m

et
er

Figure A.2: Average cluster diameter for different numbers of compromised devices

in Cluster 1.

A.2. RESULTS 177

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11
Number of compromised devices in cluster

0

1

2

3

4

5
Av

er
ag

e
cl

us
te

r d
ia

m
et

er

Figure A.3: Average cluster diameter for different numbers of compromised devices

in Cluster 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of compromised devices in cluster

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Av
er

ag
e

cl
us

te
r d

ia
m

et
er

Figure A.4: Average cluster diameter for different numbers of compromised devices

in Cluster 3.

178 APPENDIX A. CLUSTERED FL: CLUSTERING IN COMPROMISED SETTINGS

0 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6
Number of compromised devices in cluster

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Av
er

ag
e

cl
us

te
r d

ia
m

et
er

Figure A.5: Average cluster diameter for different numbers of compromised devices

in Cluster 4.

0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10
Number of compromised devices in cluster

3

4

5

6

7

Av
er

ag
e

cl
us

te
r d

ia
m

et
er

Figure A.6: Average cluster diameter for different numbers of compromised devices

in Cluster 5.

A.2. RESULTS 179

0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5
Number of compromised devices in cluster

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
Av

er
ag

e
cl

us
te

r d
ia

m
et

er

Figure A.7: Average cluster diameter for different numbers of compromised devices

in Cluster 6.

0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5
Number of compromised devices in cluster

1

2

3

4

5

Av
er

ag
e

cl
us

te
r d

ia
m

et
er

Figure A.8: Average cluster diameter for different numbers of compromised devices

in Cluster 7.

180 APPENDIX A. CLUSTERED FL: CLUSTERING IN COMPROMISED SETTINGS

2 1 0 1 2 3
principal component 1

2

1

0

1

2

3

pr
in

ci
pa

l c
om

po
ne

nt
 2

Cluster 0

Cluster 1

Cluster 2Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Figure A.9: 2D projection of the model fingerprints clustered from the ground truth.

All devices are clean.

2 1 0 1 2 3
principal component 1

2

1

0

1

2

3

pr
in

ci
pa

l c
om

po
ne

nt
 2

Cluster 0

Cluster 1
Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Figure A.10: 2D projection of the model fingerprints clustered from the ground truth.

3 devices per cluster are compromised.

A.2. RESULTS 181

2 1 0 1 2 3
principal component 1

2

1

0

1

2
pr

in
ci

pa
l c

om
po

ne
nt

 2

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Figure A.11: 2D projection of the model fingerprints clustered from the ground truth.

6 devices per cluster are compromised.

2 1 0 1 2 3 4 5
principal component 1

2

1

0

1

2

3

pr
in

ci
pa

l c
om

po
ne

nt
 2

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Figure A.12: 2D projection of the model fingerprints clustered from the ground truth.

All devices are compromised.

APPENDIX B
Federated explainability for
anomaly characterization:

additional figures

183

184 APPENDIX B. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

pa
ck

et
 le

ng
th ia
t h

ip
 to

s
ip

 tt
l

w
in

do
w

ip
 p

ro
to

 T
C

P
ip

 p
ro

to
 U

D
P

ip
 p

ro
to

 IC
M

P
sp

or
t m

qt
tP

or
ts

sp
or

t c
oa

pP
or

ts
sp

or
t r

ts
pP

or
ts

sp
or

t h
ttp

Po
rts

sp
or

t m
ai

lP
or

ts
sp

or
t d

ns
Po

rts
sp

or
t f

tp
Po

rts
sp

or
t s

he
llP

or
ts

sp
or

t r
em

ot
eE

xe
cP

or
ts

sp
or

t a
ut

hP
or

ts
sp

or
t p

as
sw

or
dP

or
ts

sp
or

t n
ew

sP
or

ts
sp

or
t c

ha
tP

or
ts

sp
or

t p
rin

tP
or

ts
sp

or
t t

im
eP

or
ts

sp
or

t d
bm

sP
or

ts
sp

or
t d

hc
pP

or
ts

sp
or

t w
ho

is
Po

rts
sp

or
t n

et
bi

os
Po

rts
sp

or
t k

er
be

ro
sP

or
ts

sp
or

t R
PC

Po
rts

sp
or

t s
nm

pP
or

ts
sp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
sp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
dp

or
t m

qt
tP

or
ts

dp
or

t c
oa

pP
or

ts
dp

or
t r

ts
pP

or
ts

dp
or

t h
ttp

Po
rts

dp
or

t m
ai

lP
or

ts
dp

or
t d

ns
Po

rts
dp

or
t f

tp
Po

rts
dp

or
t s

he
llP

or
ts

dp
or

t r
em

ot
eE

xe
cP

or
ts

dp
or

t a
ut

hP
or

ts
dp

or
t p

as
sw

or
dP

or
ts

dp
or

t n
ew

sP
or

ts
dp

or
t c

ha
tP

or
ts

dp
or

t p
rin

tP
or

ts
dp

or
t t

im
eP

or
ts

dp
or

t d
bm

sP
or

ts
dp

or
t d

hc
pP

or
ts

dp
or

t w
ho

is
Po

rts
dp

or
t n

et
bi

os
Po

rts
dp

or
t k

er
be

ro
sP

or
ts

dp
or

t R
PC

Po
rts

dp
or

t s
nm

pP
or

ts
dp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
dp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
ip

 fl
ag

 M
F

ip
 fl

ag
 D

F
ip

 fl
ag

 e
vi

l
tc

p
fla

g
F

tc
p

fla
g

S
tc

p
fla

g
R

tc
p

fla
g

P
tc

p
fla

g
A

tc
p

fla
g

U
tc

p
fla

g
E

tc
p

fla
g

C
tc

p
fla

g
N

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9

C10
C11
C12
C13
C14
C20

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure B.1: Client 1 SHAP values for each cluster center in the packet-based dataset.

(Same as Figure 6.6)

pa
ck

et
 le

ng
th ia
t h

ip
 to

s
ip

 tt
l

w
in

do
w

ip
 p

ro
to

 T
C

P
ip

 p
ro

to
 U

D
P

ip
 p

ro
to

 IC
M

P
sp

or
t m

qt
tP

or
ts

sp
or

t c
oa

pP
or

ts
sp

or
t r

ts
pP

or
ts

sp
or

t h
ttp

Po
rts

sp
or

t m
ai

lP
or

ts
sp

or
t d

ns
Po

rts
sp

or
t f

tp
Po

rts
sp

or
t s

he
llP

or
ts

sp
or

t r
em

ot
eE

xe
cP

or
ts

sp
or

t a
ut

hP
or

ts
sp

or
t p

as
sw

or
dP

or
ts

sp
or

t n
ew

sP
or

ts
sp

or
t c

ha
tP

or
ts

sp
or

t p
rin

tP
or

ts
sp

or
t t

im
eP

or
ts

sp
or

t d
bm

sP
or

ts
sp

or
t d

hc
pP

or
ts

sp
or

t w
ho

is
Po

rts
sp

or
t n

et
bi

os
Po

rts
sp

or
t k

er
be

ro
sP

or
ts

sp
or

t R
PC

Po
rts

sp
or

t s
nm

pP
or

ts
sp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
sp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
dp

or
t m

qt
tP

or
ts

dp
or

t c
oa

pP
or

ts
dp

or
t r

ts
pP

or
ts

dp
or

t h
ttp

Po
rts

dp
or

t m
ai

lP
or

ts
dp

or
t d

ns
Po

rts
dp

or
t f

tp
Po

rts
dp

or
t s

he
llP

or
ts

dp
or

t r
em

ot
eE

xe
cP

or
ts

dp
or

t a
ut

hP
or

ts
dp

or
t p

as
sw

or
dP

or
ts

dp
or

t n
ew

sP
or

ts
dp

or
t c

ha
tP

or
ts

dp
or

t p
rin

tP
or

ts
dp

or
t t

im
eP

or
ts

dp
or

t d
bm

sP
or

ts
dp

or
t d

hc
pP

or
ts

dp
or

t w
ho

is
Po

rts
dp

or
t n

et
bi

os
Po

rts
dp

or
t k

er
be

ro
sP

or
ts

dp
or

t R
PC

Po
rts

dp
or

t s
nm

pP
or

ts
dp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
dp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
ip

 fl
ag

 M
F

ip
 fl

ag
 D

F
ip

 fl
ag

 e
vi

l
tc

p
fla

g
F

tc
p

fla
g

S
tc

p
fla

g
R

tc
p

fla
g

P
tc

p
fla

g
A

tc
p

fla
g

U
tc

p
fla

g
E

tc
p

fla
g

C
tc

p
fla

g
N

C8
C10
C14
C15
C16
C17
C18
C19
C20
C21

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure B.2: Client 2 SHAP values for each cluster center in the packet-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C1
C2
C3
C4
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.3: Client 1 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C1
C2
C3
C4
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.4: Client 2 SHAP values for each cluster center in the flow-based dataset.

185
M

I d
ir

L5
 w

ei
gh

t
M

I d
ir

L5
 m

ea
n

M
I d

ir
L5

 v
ar

ia
nc

e
M

I d
ir

L3
 w

ei
gh

t
M

I d
ir

L3
 m

ea
n

M
I d

ir
L3

 v
ar

ia
nc

e
M

I d
ir

L1
 w

ei
gh

t
M

I d
ir

L1
 m

ea
n

M
I d

ir
L1

 v
ar

ia
nc

e
M

I d
ir

L0
.1

 w
ei

gh
t

M
I d

ir
L0

.1
 m

ea
n

M
I d

ir
L0

.1
 v

ar
ia

nc
e

M
I d

ir
L0

.0
1

w
ei

gh
t

M
I d

ir
L0

.0
1

m
ea

n
M

I d
ir

L0
.0

1
va

ria
nc

e
H

 L
5

w
ei

gh
t

H
 L

5
m

ea
n

H
 L

5
va

ria
nc

e
H

 L
3

w
ei

gh
t

H
 L

3
m

ea
n

H
 L

3
va

ria
nc

e
H

 L
1

w
ei

gh
t

H
 L

1
m

ea
n

H
 L

1
va

ria
nc

e
H

 L
0.

1
w

ei
gh

t
H

 L
0.

1
m

ea
n

H
 L

0.
1

va
ria

nc
e

H
 L

0.
01

 w
ei

gh
t

H
 L

0.
01

 m
ea

n
H

 L
0.

01
 v

ar
ia

nc
e

H
H

 L
5

w
ei

gh
t

H
H

 L
5

m
ea

n
H

H
 L

5
st

d
H

H
 L

5
m

ag
ni

tu
de

H
H

 L
5

ra
di

us
H

H
 L

5
co

va
ria

nc
e

H
H

 L
5

pc
c

H
H

 L
3

w
ei

gh
t

H
H

 L
3

m
ea

n
H

H
 L

3
st

d
H

H
 L

3
m

ag
ni

tu
de

H
H

 L
3

ra
di

us
H

H
 L

3
co

va
ria

nc
e

H
H

 L
3

pc
c

H
H

 L
1

w
ei

gh
t

H
H

 L
1

m
ea

n
H

H
 L

1
st

d
H

H
 L

1
m

ag
ni

tu
de

H
H

 L
1

ra
di

us
H

H
 L

1
co

va
ria

nc
e

H
H

 L
1

pc
c

H
H

 L
0.

1
w

ei
gh

t
H

H
 L

0.
1

m
ea

n
H

H
 L

0.
1

st
d

H
H

 L
0.

1
m

ag
ni

tu
de

H
H

 L
0.

1
ra

di
us

H
H

 L
0.

1
co

va
ria

nc
e

H
H

 L
0.

1
pc

c
H

H
 L

0.
01

 w
ei

gh
t

H
H

 L
0.

01
 m

ea
n

H
H

 L
0.

01
 st

d
H

H
 L

0.
01

 m
ag

ni
tu

de
H

H
 L

0.
01

 ra
di

us
H

H
 L

0.
01

 c
ov

ar
ia

nc
e

H
H

 L
0.

01
 p

cc
H

H
 ji

t L
5

w
ei

gh
t

H
H

 ji
t L

5
m

ea
n

H
H

 ji
t L

5
va

ria
nc

e
H

H
 ji

t L
3

w
ei

gh
t

H
H

 ji
t L

3
m

ea
n

H
H

 ji
t L

3
va

ria
nc

e
H

H
 ji

t L
1

w
ei

gh
t

H
H

 ji
t L

1
m

ea
n

H
H

 ji
t L

1
va

ria
nc

e
H

H
 ji

t L
0.

1
w

ei
gh

t
H

H
 ji

t L
0.

1
m

ea
n

H
H

 ji
t L

0.
1

va
ria

nc
e

H
H

 ji
t L

0.
01

 w
ei

gh
t

H
H

 ji
t L

0.
01

 m
ea

n
H

H
 ji

t L
0.

01
 v

ar
ia

nc
e

H
pH

p
L5

 w
ei

gh
t

H
pH

p
L5

 m
ea

n
H

pH
p

L5
 st

d
H

pH
p

L5
 m

ag
ni

tu
de

H
pH

p
L5

 ra
di

us
H

pH
p

L5
 c

ov
ar

ia
nc

e
H

pH
p

L5
 p

cc
H

pH
p

L3
 w

ei
gh

t
H

pH
p

L3
 m

ea
n

H
pH

p
L3

 st
d

H
pH

p
L3

 m
ag

ni
tu

de
H

pH
p

L3
 ra

di
us

H
pH

p
L3

 c
ov

ar
ia

nc
e

H
pH

p
L3

 p
cc

H
pH

p
L1

 w
ei

gh
t

H
pH

p
L1

 m
ea

n
H

pH
p

L1
 st

d
H

pH
p

L1
 m

ag
ni

tu
de

H
pH

p
L1

 ra
di

us
H

pH
p

L1
 c

ov
ar

ia
nc

e
H

pH
p

L1
 p

cc
H

pH
p

L0
.1

 w
ei

gh
t

H
pH

p
L0

.1
 m

ea
n

H
pH

p
L0

.1
 st

d
H

pH
p

L0
.1

 m
ag

ni
tu

de
H

pH
p

L0
.1

 ra
di

us
H

pH
p

L0
.1

 c
ov

ar
ia

nc
e

H
pH

p
L0

.1
 p

cc
H

pH
p

L0
.0

1
w

ei
gh

t
H

pH
p

L0
.0

1
m

ea
n

H
pH

p
L0

.0
1

st
d

H
pH

p
L0

.0
1

m
ag

ni
tu

de
H

pH
p

L0
.0

1
ra

di
us

H
pH

p
L0

.0
1

co
va

ria
nc

e
H

pH
p

L0
.0

1
pc

c

C2
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.5: Client 3 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C2
C8
C9

0.0

0.1

0.2

0.3

0.4

Figure B.6: Client 4 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C1
C2
C8
C9

C10

0.0

0.2

0.4

0.6

0.8

Figure B.7: Client 5 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C0
C2
C5
C6
C7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.8: Client 6 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C6
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.9: Client 7 SHAP values for each cluster center in the flow-based dataset.

186 APPENDIX B. FL EXPLAINABILITY FOR ANOMALY CHARACTERIZATION

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C0
C2
C4
C5
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.10: Client 8 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C0
C5
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.11: Client 9 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C0
C2
C6
C7

C10

0.0

0.2

0.4

0.6

0.8

Figure B.12: Client 10 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C1
C2
C3
C4
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.13: Client 11 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C1
C2
C3
C4
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.14: Client 12 SHAP values for each cluster center in the flow-based dataset.

187
M

I d
ir

L5
 w

ei
gh

t
M

I d
ir

L5
 m

ea
n

M
I d

ir
L5

 v
ar

ia
nc

e
M

I d
ir

L3
 w

ei
gh

t
M

I d
ir

L3
 m

ea
n

M
I d

ir
L3

 v
ar

ia
nc

e
M

I d
ir

L1
 w

ei
gh

t
M

I d
ir

L1
 m

ea
n

M
I d

ir
L1

 v
ar

ia
nc

e
M

I d
ir

L0
.1

 w
ei

gh
t

M
I d

ir
L0

.1
 m

ea
n

M
I d

ir
L0

.1
 v

ar
ia

nc
e

M
I d

ir
L0

.0
1

w
ei

gh
t

M
I d

ir
L0

.0
1

m
ea

n
M

I d
ir

L0
.0

1
va

ria
nc

e
H

 L
5

w
ei

gh
t

H
 L

5
m

ea
n

H
 L

5
va

ria
nc

e
H

 L
3

w
ei

gh
t

H
 L

3
m

ea
n

H
 L

3
va

ria
nc

e
H

 L
1

w
ei

gh
t

H
 L

1
m

ea
n

H
 L

1
va

ria
nc

e
H

 L
0.

1
w

ei
gh

t
H

 L
0.

1
m

ea
n

H
 L

0.
1

va
ria

nc
e

H
 L

0.
01

 w
ei

gh
t

H
 L

0.
01

 m
ea

n
H

 L
0.

01
 v

ar
ia

nc
e

H
H

 L
5

w
ei

gh
t

H
H

 L
5

m
ea

n
H

H
 L

5
st

d
H

H
 L

5
m

ag
ni

tu
de

H
H

 L
5

ra
di

us
H

H
 L

5
co

va
ria

nc
e

H
H

 L
5

pc
c

H
H

 L
3

w
ei

gh
t

H
H

 L
3

m
ea

n
H

H
 L

3
st

d
H

H
 L

3
m

ag
ni

tu
de

H
H

 L
3

ra
di

us
H

H
 L

3
co

va
ria

nc
e

H
H

 L
3

pc
c

H
H

 L
1

w
ei

gh
t

H
H

 L
1

m
ea

n
H

H
 L

1
st

d
H

H
 L

1
m

ag
ni

tu
de

H
H

 L
1

ra
di

us
H

H
 L

1
co

va
ria

nc
e

H
H

 L
1

pc
c

H
H

 L
0.

1
w

ei
gh

t
H

H
 L

0.
1

m
ea

n
H

H
 L

0.
1

st
d

H
H

 L
0.

1
m

ag
ni

tu
de

H
H

 L
0.

1
ra

di
us

H
H

 L
0.

1
co

va
ria

nc
e

H
H

 L
0.

1
pc

c
H

H
 L

0.
01

 w
ei

gh
t

H
H

 L
0.

01
 m

ea
n

H
H

 L
0.

01
 st

d
H

H
 L

0.
01

 m
ag

ni
tu

de
H

H
 L

0.
01

 ra
di

us
H

H
 L

0.
01

 c
ov

ar
ia

nc
e

H
H

 L
0.

01
 p

cc
H

H
 ji

t L
5

w
ei

gh
t

H
H

 ji
t L

5
m

ea
n

H
H

 ji
t L

5
va

ria
nc

e
H

H
 ji

t L
3

w
ei

gh
t

H
H

 ji
t L

3
m

ea
n

H
H

 ji
t L

3
va

ria
nc

e
H

H
 ji

t L
1

w
ei

gh
t

H
H

 ji
t L

1
m

ea
n

H
H

 ji
t L

1
va

ria
nc

e
H

H
 ji

t L
0.

1
w

ei
gh

t
H

H
 ji

t L
0.

1
m

ea
n

H
H

 ji
t L

0.
1

va
ria

nc
e

H
H

 ji
t L

0.
01

 w
ei

gh
t

H
H

 ji
t L

0.
01

 m
ea

n
H

H
 ji

t L
0.

01
 v

ar
ia

nc
e

H
pH

p
L5

 w
ei

gh
t

H
pH

p
L5

 m
ea

n
H

pH
p

L5
 st

d
H

pH
p

L5
 m

ag
ni

tu
de

H
pH

p
L5

 ra
di

us
H

pH
p

L5
 c

ov
ar

ia
nc

e
H

pH
p

L5
 p

cc
H

pH
p

L3
 w

ei
gh

t
H

pH
p

L3
 m

ea
n

H
pH

p
L3

 st
d

H
pH

p
L3

 m
ag

ni
tu

de
H

pH
p

L3
 ra

di
us

H
pH

p
L3

 c
ov

ar
ia

nc
e

H
pH

p
L3

 p
cc

H
pH

p
L1

 w
ei

gh
t

H
pH

p
L1

 m
ea

n
H

pH
p

L1
 st

d
H

pH
p

L1
 m

ag
ni

tu
de

H
pH

p
L1

 ra
di

us
H

pH
p

L1
 c

ov
ar

ia
nc

e
H

pH
p

L1
 p

cc
H

pH
p

L0
.1

 w
ei

gh
t

H
pH

p
L0

.1
 m

ea
n

H
pH

p
L0

.1
 st

d
H

pH
p

L0
.1

 m
ag

ni
tu

de
H

pH
p

L0
.1

 ra
di

us
H

pH
p

L0
.1

 c
ov

ar
ia

nc
e

H
pH

p
L0

.1
 p

cc
H

pH
p

L0
.0

1
w

ei
gh

t
H

pH
p

L0
.0

1
m

ea
n

H
pH

p
L0

.0
1

st
d

H
pH

p
L0

.0
1

m
ag

ni
tu

de
H

pH
p

L0
.0

1
ra

di
us

H
pH

p
L0

.0
1

co
va

ria
nc

e
H

pH
p

L0
.0

1
pc

c

C2
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.15: Client 13 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C2
C8
C9

0.0

0.1

0.2

0.3

0.4

Figure B.16: Client 14 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir
L5

 w
ei

gh
t

M
I d

ir
L5

 m
ea

n
M

I d
ir

L5
 v

ar
ia

nc
e

M
I d

ir
L3

 w
ei

gh
t

M
I d

ir
L3

 m
ea

n
M

I d
ir

L3
 v

ar
ia

nc
e

M
I d

ir
L1

 w
ei

gh
t

M
I d

ir
L1

 m
ea

n
M

I d
ir

L1
 v

ar
ia

nc
e

M
I d

ir
L0

.1
 w

ei
gh

t
M

I d
ir

L0
.1

 m
ea

n
M

I d
ir

L0
.1

 v
ar

ia
nc

e
M

I d
ir

L0
.0

1
w

ei
gh

t
M

I d
ir

L0
.0

1
m

ea
n

M
I d

ir
L0

.0
1

va
ria

nc
e

H
 L

5
w

ei
gh

t
H

 L
5

m
ea

n
H

 L
5

va
ria

nc
e

H
 L

3
w

ei
gh

t
H

 L
3

m
ea

n
H

 L
3

va
ria

nc
e

H
 L

1
w

ei
gh

t
H

 L
1

m
ea

n
H

 L
1

va
ria

nc
e

H
 L

0.
1

w
ei

gh
t

H
 L

0.
1

m
ea

n
H

 L
0.

1
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5
w

ei
gh

t
H

H
 L

5
m

ea
n

H
H

 L
5

st
d

H
H

 L
5

m
ag

ni
tu

de
H

H
 L

5
ra

di
us

H
H

 L
5

co
va

ria
nc

e
H

H
 L

5
pc

c
H

H
 L

3
w

ei
gh

t
H

H
 L

3
m

ea
n

H
H

 L
3

st
d

H
H

 L
3

m
ag

ni
tu

de
H

H
 L

3
ra

di
us

H
H

 L
3

co
va

ria
nc

e
H

H
 L

3
pc

c
H

H
 L

1
w

ei
gh

t
H

H
 L

1
m

ea
n

H
H

 L
1

st
d

H
H

 L
1

m
ag

ni
tu

de
H

H
 L

1
ra

di
us

H
H

 L
1

co
va

ria
nc

e
H

H
 L

1
pc

c
H

H
 L

0.
1

w
ei

gh
t

H
H

 L
0.

1
m

ea
n

H
H

 L
0.

1
st

d
H

H
 L

0.
1

m
ag

ni
tu

de
H

H
 L

0.
1

ra
di

us
H

H
 L

0.
1

co
va

ria
nc

e
H

H
 L

0.
1

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5
w

ei
gh

t
H

H
 ji

t L
5

m
ea

n
H

H
 ji

t L
5

va
ria

nc
e

H
H

 ji
t L

3
w

ei
gh

t
H

H
 ji

t L
3

m
ea

n
H

H
 ji

t L
3

va
ria

nc
e

H
H

 ji
t L

1
w

ei
gh

t
H

H
 ji

t L
1

m
ea

n
H

H
 ji

t L
1

va
ria

nc
e

H
H

 ji
t L

0.
1

w
ei

gh
t

H
H

 ji
t L

0.
1

m
ea

n
H

H
 ji

t L
0.

1
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p

L5
 w

ei
gh

t
H

pH
p

L5
 m

ea
n

H
pH

p
L5

 st
d

H
pH

p
L5

 m
ag

ni
tu

de
H

pH
p

L5
 ra

di
us

H
pH

p
L5

 c
ov

ar
ia

nc
e

H
pH

p
L5

 p
cc

H
pH

p
L3

 w
ei

gh
t

H
pH

p
L3

 m
ea

n
H

pH
p

L3
 st

d
H

pH
p

L3
 m

ag
ni

tu
de

H
pH

p
L3

 ra
di

us
H

pH
p

L3
 c

ov
ar

ia
nc

e
H

pH
p

L3
 p

cc
H

pH
p

L1
 w

ei
gh

t
H

pH
p

L1
 m

ea
n

H
pH

p
L1

 st
d

H
pH

p
L1

 m
ag

ni
tu

de
H

pH
p

L1
 ra

di
us

H
pH

p
L1

 c
ov

ar
ia

nc
e

H
pH

p
L1

 p
cc

H
pH

p
L0

.1
 w

ei
gh

t
H

pH
p

L0
.1

 m
ea

n
H

pH
p

L0
.1

 st
d

H
pH

p
L0

.1
 m

ag
ni

tu
de

H
pH

p
L0

.1
 ra

di
us

H
pH

p
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p

L0
.1

 p
cc

H
pH

p
L0

.0
1

w
ei

gh
t

H
pH

p
L0

.0
1

m
ea

n
H

pH
p

L0
.0

1
st

d
H

pH
p

L0
.0

1
m

ag
ni

tu
de

H
pH

p
L0

.0
1

ra
di

us
H

pH
p

L0
.0

1
co

va
ria

nc
e

H
pH

p
L0

.0
1

pc
c

C2
C8
C9

C10

0.0

0.2

0.4

0.6

0.8

Figure B.17: Client 15 SHAP values for each cluster center in the flow-based dataset.

	Abstract
	Laburpena
	Resumen
	Acknowledgments
	Introduction
	Motivation
	Objective, hypotheses and operational objectives of the research
	General objective
	Hypotheses
	Operational objectives

	Scope and limitations
	Contributions and publications
	Outline of the thesis

	Background
	Internet of Things
	Internet of Things (IoT)
	Cyber-Physical Systems (CPS)
	Industrial Control Systems (ICS)
	Industrial Internet of Things (IIoT)

	Threat landscape in IoT devices
	Mirai lifecycle
	Merlin C&C agent and server

	Security measures
	Hardening operations
	Intrusion detection and prevention
	Security Information and Event Management
	Alert message exchange formats

	Machine learning concepts
	Data modeling
	Dimensionality reduction
	Clustering
	Evaluation metrics
	Explainable AI

	Federated learning
	Federated learning assumptions
	Federated learning settings

	Related work
	Machine learning applications in cybersecurity
	Limitations of machine learning training architectures in IoT settings
	Federated learning advances
	Heterogeneity problems in federated learning
	Clustered federated learning

	Federated learning for IoT intrusion and anomaly detection
	Alternative approaches to federated learning
	Collaborative intrusion detection systems
	Distributed computation
	Split learning

	Explainability for cybersecurity
	Explainability for cybersecurity anomaly or attack detection in non-FL settings
	Explainability for cybersecurity in federated learning settings

	IoT testbeds and datasets
	General IoT simulators and testbeds
	Testbeds and datasets for IoT security

	Discussion of the state-of-the-art and identified gaps
	Overreliance on labeled data
	Suitability of the datasets and testbeds
	Suitability of the proposals to FL settings
	Lack of heterogeneity considerations

	Gotham testbed
	Testbed requirements and platform features
	General testbed and dataset requirements
	Required testbed features
	Comparison with related work

	Testbed architecture
	Gotham middleware components

	IoT scenario use case
	Scenario diagram
	Emulated devices
	Threat model and attacks
	Full network topology

	Evaluation
	Reproducibility
	Communication link emulation
	Hardware resource emulation
	Testbed scalability
	Measurability
	Normal IoT behavior scenario
	Attack behavior scenario

	Discussion

	Clustered federated learning for anomaly detection in heterogeneous IoT networks
	Proposed system model
	Deployment setting and architecture
	Clustered federated learning process for heterogeneous devices
	Model fingerprinting for device clustering
	Anomaly detection model

	IoT testbed and experimental setup
	IoT testbed
	Data generation and collection method
	Machine learning and federated learning setup

	Implementation
	Network data processing
	Autoencoder model selection
	Device clustering
	Federated hyperparameter tuning
	Clustered federated learning
	Anomaly detection
	Baseline experimental comparisons

	Results
	Autoencoder model selection
	Device clustering
	Federated hyperparameter tuning
	Clustered federated learning
	Anomaly detection
	Baseline experimental comparisons

	Discussion

	Federated explainability for anomaly characterization
	Proposed system model
	Federated learning setting
	Threat model
	SHAP background
	Architecture of the proposed method

	Algorithm details
	Federated learning for explainer model training
	Federated learning for anomaly clustering
	Explaining clusters
	Anomaly message exchange

	Evaluation
	Datasets
	Federated learning model training
	Federated learning SHAP explainer and SHAP values
	Federated learning anomaly clustering
	Anomaly cluster alert explanation
	Anomaly message exchange
	Possible integration with other IDSs

	Discussion

	Conclusions
	Bibliography
	Clustered federated learning additional experiment: clustering in compromised settings
	Methodology
	Results

	Federated explainability for anomaly characterization: additional figures

