
DOCTORAL THESIS

AI-BASED PERFORMANCE ISSUE DETECTION IN CPS SOFTWARE UPDATES

AITOR GARTZIANDIA ALUSTIZA | Arrasate-Mondragón, 2023

A
IT

O
R

 G
A

R
TZ

IA
N

D
IA

 A
LU

S
TI

ZA
 |

 A
I-b

as
ed

 P
er

fo
rm

an
ce

 Is
su

e
D

et
ec

tio
n

in
 C

P
S

 S
of

tw
ar

e
U

pd
at

es

AI-BASED PERFORMANCE ISSUE
DETECTION FOR CYBER-PHYSICAL SYSTEM

SOFTWARE UPDATES

PHD THESIS IN APPLIED ENGINEERING

Author:

AITOR GARTZIANDIA ALUSTIZA

Supervised by:

DR. GOIURIA SAGARDUI
DR. AITOR AGIRRE

Computer and Electronics Department
Mondragon Goi Eskola Politeknikoa

Mondagon Unibertsitatea

Arrasate
September 2023

“Amari.

Acknowledgments

Now that this Ph.D. is reaching an end, I notice that a whole chapter of my life
is about to close, so it’s time for me to look back to the path that has brought me
here.

On this path, I see in the beginning a kid who started his studies at the
university with no idea what his place in the world was. Instead, in the end,
I see a man who finishes a Ph.D. thesis and is anxious to start new adventures
that will let him continue growing. This kind of personal evolution is of course
something to be proud of oneself, but when I analyze all the steps of this journey,
all peaks and valleys, I realize that I have not been walking alone.

Now that I see this journey with perspective, I understand that I have always
had people around me who have always kept me on track, without whom I
would never reached the point where I find myself now. I also feel ashamed for
not having appreciated these people enough until now, but although it comes
late, I would like to use this occasion to thank these people as they deserve. And
as I write these lines, the faces of these people are coming to my mind incessantly,
and I notice that the faces that appear the most, are the ones that sustain you
when the times are darkest.

The face that appears the most is the one of my mother. She is not the
one who most helped me during the thesis, but she is the one who suffered the
most during a time in my life when I was lost. She knew how to guide me and
trusted me to the point that I was encouraged to start a thesis. You are the major
responsible for the point where I find myself now, so thank you a lot, and this
thesis is for you!

Another person who deserves a special mention in these lines is my girlfriend,
Elene. We have been through hard times during these years where we have both
suffered, but you have always been by my side even in my worst days. I will
never be able to pay you back for the support and loyalty you show me, so all I

iii

iv

can do is thank you every time I get the chance.

And then there are the people that make you forget you are screwed, the
ones that make you laugh even when the day has gone downhill. These are my
brother Imanol and my friends from "La Tramont". The simple fact of having a
beer with these people makes you forget your problems and recover your energy.
The beer also plays its role, but the most important thing is the company!

Finally, I want to thank Goiuria Sagardui and Aitor Agirre, my directors
in this thesis, who have advised me and helped me to get to where I am now. I
would like to extend these thanks to Ikerlan, who gave me the opportunity to
start working as an intern and grow with them for 7 years. I hope this strong
commitment to young talent continues for a long time!

Everyone mentioned here has made me a better engineer and person so I will
be eternally grateful to all of you.

Eskerrik asko denoi bihotzez!

Declaration

Nik, Aitor Gartziandia Alustizak, aitortzen dut Doktore Tesi hau originala dela, nire
lan pertsonalaren emaitza, eta ez dela aurkeztu aurretik beste titulu edota kalifikazio
profesionalik lortzeko. Kanpoko iturrietatik hartutako ideiak, formulazioak, irudiak eta
ilustrazioak behar bezala aipatu eta erreferentziatu dira.

Hereby I, Aitor Gartziandia Alustiza declare, that this Doctoral Thesis is my orig-
inal authorial work, which I have worked out by my own. All sources, references and
literature used or excerpted during elaboration of this work are properly cited and listed
in complete reference to the due source.

Yo Aitor Gartziandia Alustiza declaro que esta Tesis Doctoral es original, fruto de
mi trabajo personal, y que no ha sido previamente presentado para obtener otro título
o calificación profesional. Las ideas, formulaciones, imágenes, ilustraciones tomadas de
fuentes ajenas han sido debidamente citadas y referenciadas.

Arrasate, September 2023

Aitor Gartziandia Alustiza

Abstract

Cyber-Physical Systems (CPSs) are systems that integrate computation and
communication with the physical world. Software systems that are embedded in
CPSs usually have a large life-cycle and are continuously evolving in order to
incorporate new requirements, bug fixes, and to deal with hardware obsolescence.
Despite the fact that the rise of new technologies provides an opportunity to
improve CPS life-cycle management methods, there are still many complex issues
that need to be addressed throughout its entire life cycle, from development
to maintenance. In this sense, the increasing expansion of IoT and CPSs has
highlighted the need for additional mechanisms related to the deployment and
monitoring of these systems in operation, due to the challenge that represents the
diversity of environments where these systems are deployed. The heterogeneity
of the environments, along with the high configurability of CPSs, make testing
the these systems under every possible condition impossible, increasing the
possibility of errors appearing once the software is deployed in operation. This
is especially concerning with performance errors, which are particularly difficult
to detect in the lab.

In this context, this Ph.D. study proposes a mechanism to detect performance
errors in Cyber-Physical Systems. The aim is to investigate different AI tech-
niques to build a performance oracle, which predicts the expected performance
of the system in operation and detects performance errors by comparing the
predicted value with the actual monitored performance metrics. This prediction
is obtained by training a performance model with data from the execution of
previous versions of the software. The performance oracle is then encapsulated as
a microservice, so that it can be seamlessly deployed along with other services to
detect performance errors in operation. In order to make the performance oracle
useful in multiple, heterogeneous environments, different training strategies have
been investigated.

The method was evaluated by applying it to an industrial use case provided

vii

viii

by Orona, using its dispatching traffic algorithm for elevator systems. Results
show that the used AI techniques can be used to predict CPS performance and
detect errors, even in installations where data for training was not available.

Laburpena

Sistema ziberfisikoak (CPSak) konputazioa eta komunikazioa mundu fisikoarekin
integratzen dituzten sistemak dira. CPSetan integratutako software sistemek bizi-
ziklo luzea izaten dute eta etengabe eboluzionatzen ari dira baldintza berriak in-
plementatzeko, akatsak zuzentzeko edota hardwarearen zaharkitzeari aurre egit-
eko. Teknologia berrien gorakadak CPSen bizi-zikloaren kudeaketa metodoak
hobetzeko aukera ematen duen arren, oraindik ere gai konplexu asko daude
aztertzeko bizi-ziklo osoan zehar, garapenetik hasi eta mantenketa lanetararte.
Ildo horretan, IoT eta CPSen hedapen gero eta handiagoak agerian utzi du
martxan dauden sistemen kudeaketarekin lotutako mekanismo gehigarrien be-
harra, sistema horiek ezarrita dauden inguruneen aniztasunak dakarren erronka
dela eta. Ingurune hauen heterogeneotasuna eta CPSen konfiguragarritasun han-
dia direla eta, ezinezkoa da sistemak jasango dituen baldintza guztiak probatzea,
softwarea martxan dagoenean akatsak agertzeko arriskua areagotuz. Horrek
bereziki eragiten die errendimendu akatsei, laborategian detektatzeko bereziki
zailak baitira.

Testuinguru horretan, doktorego tesi honek sistema ziberfisikoetan errendi-
mendu akatsak detektatzeko mekanismo bat proposatzen du. Helburua Adimen
Artifizialeko teknikak ikertuz errendimendu orakulu bat eraikitzea da, funtziona-
menduan dagoen sistemen errendimendua iragartzeko eta errendimendu akatsak
detektatzeko, aurreikusitako balioa monitorizatutako benetako errendimendu
metrikekin alderatuz. Iragarpen hori errendimendu eredu baten bidez lortzen
da, softwarearen aurreko bertsioen exekuziotik datozen datuekin entrenatu dena.
Ondoren, errendimendu orakulua mikroszerbitzu gisa kapsulatu da, eta beste
zerbitzu batzuekin batera zabaldu daiteke, gauzatzen ari diren errendimendu akat-
sak detektatzeko. Errendimendu orakulua ingurune anitz eta heterogeneoetan
erabilgarria izan dadin, hainbat entrenamendu estrategia ikertu dira.

Metodoa Oronak eskainitako erabilera industrialeko kasu batean aplikatuz

ix

x

ebaluatu da, igogailu sistemetarako duen trafiko algoritmoa erabilita. Emaitzek
erakusten dutenez frogatutako Adimen Artifizialeko teknikak CPSen errendi-
mendua aurreikusteko eta akatsak detektatzeko erabil daitezke, baita entrena-
mendurako daturik erabilgarri ez dagoen instalazioetan ere.

Resumen

Los sistemas ciber-físicos (CPSs) son sistemas que integran la computación y la
comunicación con el mundo físico. Los sistemas software integrados en los
CPSs suelen tener un ciclo de vida largo y están en continua evolución para
incorporar nuevos requisitos, corregir errores y hacer frente a la obsolescencia del
hardware. A pesar de que el auge de las nuevas tecnologías brinda la oportunidad
de mejorar los métodos de gestión del ciclo de vida de los CPSs, sigue habiendo
muchas cuestiones complejas que deben abordarse a lo largo de todo su ciclo de
vida, desde el desarrollo hasta el mantenimiento. En este sentido, la creciente
expansión del IoT y los CPSs ha puesto de manifiesto la necesidad de mecanismos
adicionales relacionados con el despliegue y monitorización de estos sistemas
en operación, debido al reto que representa la diversidad de entornos donde se
despliegan estos sistemas. La heterogeneidad de los entornos, junto con la alta
configurabilidad de los CPSs, hace que probar el sistema bajo todas las condiciones
posibles sea imposible, aumentando las posibilidades de que aparezcan errores una
vez desplegado el software en operación. Esto afecta especialmente a los errores
de rendimiento, que son particularmente difíciles de detectar en laboratorio.

En este contexto, este estudio de doctorado propone un mecanismo para de-
tectar errores de rendimiento en sistemas ciber-físicos. El objetivo es investigar en
el uso de diferentes técnicas de IA para construir un oráculo de rendimiento que
prediga el rendimiento esperado del sistema en ejecución y detectar errores de
rendimiento comparando el valor predicho con las métricas de rendimiento reales
monitorizadas. Esta predicción se obtiene mediante un modelo de rendimiento
entrenado con datos procedentes de la ejecución de versiones anteriores del
software. Después, el oráculo de rendimiento se ha encapsulado como un mi-
croservicio, que puede desplegarse de forma sencilla junto con otros servicios para
detectar errores de rendimiento en ejecución. Para que el oráculo de rendimiento
sea útil en entornos múltiples y heterogéneos, se han investigado diferentes
estrategias de entrenamiento.

xi

xii

El método se evaluó aplicándolo a un caso de uso industrial proporcionado
por Orona, utilizando su algoritmos de tráfico para sistemas de ascensores. Los
resultados muestran que las técnicas de IA probadas pueden utilizarse para predecir
el rendimiento de los CPSs y detectar errores, incluso en instalaciones en los que
no se dispone de datos para el entrenamiento.

Contents

1 INTRODUCTION 1
1.1 Motivation and Scope . 1
1.2 Research Methodology . 2
1.3 Technical Contribution . 4
1.4 Publications . 5

1.4.1 Journal Articles . 5
1.4.2 International Conferences 5

1.5 Document Structure . 6

2 TECHNICAL BACKGROUND 7
2.1 Cyber Physical Systems life-cycle management 7

2.1.1 Cyber-Physical Systems 7
2.1.2 DevOps . 9
2.1.3 Taxonomy for Eliciting Design-Operation Continuum

Requirements of CPSs 9
2.2 Adeptness . 16

2.2.1 Microservice Architectures 16
2.2.2 Adeptness architecture 17

2.3 Performance Bugs . 22
2.4 AI Techniques . 23

2.4.1 Machine Learning . 24
2.4.2 Neural Networks . 25
2.4.3 Genetic Programming 27

3 STATE OF THE ART 29
3.1 Literature Review Methodology 29

3.1.1 Definition of Research Questions 29
3.1.2 Search Process . 30
3.1.3 Inclusion Criteria . 31
3.1.4 Data Collection . 32

xiii

xiv

3.2 Software Deployment in CPSs 32
3.3 Performance Testing on CPSs 36
3.4 Performance Prediction . 37
3.5 Critical analysis of the State of the Art 38

4 THEORETICAL FRAMEWORK 41
4.1 Objectives . 41
4.2 Hypotheses . 42
4.3 Overview . 42
4.4 Case Study: Orona’s Dispatching Algorithm 44

5 THE PERFORMANCE ORACLE 49
5.1 The Oracle as a Microservice 50

5.1.1 Interfaces . 50
5.1.2 Sub-components . 52

5.2 The Oracle in the Adeptness Architecture 53
5.2.1 Deployment . 54
5.2.2 Configuration . 54
5.2.3 Execution . 55

5.3 Requirements . 55
5.3.1 Mandatory Requirements 56
5.3.2 Additional Requirements 57

5.4 Evaluation . 58
5.5 Conclusion . 60

6 PERFORMANCE MODEL 61
6.1 Training Data . 62

6.1.1 Monitoring . 62
6.1.2 Pre-processing . 64

6.2 AI Techniques . 65
6.2.1 Configuration . 65
6.2.2 Selection Criteria . 67

6.3 Evaluation . 68
6.3.1 Research Questions . 68
6.3.2 Experimental Setup . 68
6.3.3 Results . 81
6.3.4 Discussion . 85
6.3.5 Threats to Validity . 88

6.4 Conclusion and Future Work 89

7 ARBITER 91
7.1 General Logic . 91
7.2 Parameters . 94

7.2.1 Time-span . 94
7.2.2 Thresholds . 95

7.3 Evaluation . 95

xv

7.3.1 Research Questions . 95
7.3.2 Experimental Setup . 96
7.3.3 Results . 98
7.3.4 Discussion . 101
7.3.5 Threads to Validity . 102

7.4 Conclusion and Future Work 103

8 CONCLUSION 105
8.1 Summary of the Contributions 105

8.1.1 Hypotheses Validation 106
8.1.2 Limitations of the Proposed Solution 107

8.2 Lessons Learned . 108
8.3 Future Work . 109

BIBLIOGRAFY 118

A PUBLICATIONS 119
A.1 Towards a Taxonomy for Eliciting Design-Operation Continuum

Requirements of Cyber-Physical Systems 119
A.2 Using Regression Learners to Predict Performance Problems

on Software Updates: a Case Study on Elevators Dispatching
Algorithms . 131

A.3 Microservices for Continuous Deployment, Monitoring and Val-
idation in Cyber-Physical Systems: an Industrial Case Study for
Elevators Systems . 142

A.4 Machine Learning-based Test Oracles for Performance Testing
of Cyber-Physical Systems: An Industrial Case Study on Elevators
Dispatching Algorithms . 151

List of Figures

1.1 Overview of the research methodology followed during this Ph.D. 3

2.1 Overview of the components of CPSs 8
2.2 DevOps methodology . 9
2.3 Taxonomy of Design-Operation Continuum Requirements for

CPSs . 11
2.4 Difference between the monolith and microservices 17
2.5 Overview of the Adeptness architecture components 19
2.6 General overview of the main ML categories 24
2.7 Example of an architecture of a Neural Network 26

4.1 Overview of the method developed in the Ph.D. 43
4.2 Overview of the architecture of an elevator installation from

Orona . 45

5.1 Synchronous and asynchronous interfaces of the Performance
Oracle . 51

5.2 Overview of the sub-components of the Performance Oracle . 53
5.3 Overview of the deployment process of the Performance Oracle 54
5.4 Overall overview of the configuration of the Performance Oracle 55
5.5 Sequence diagram of the execution of the Performance Oracle . 56

6.1 Passengers activity of real installation and theoretical profiles
obtained with Elevate . 71

6.2 Execution time of the dispatching algorithm per active call in SiL 72
6.3 Execution time of the dispatching algorithm per active call in HiL 76
6.4 Execution time of the dispatching algorithm per active calls in

HiL without outliers . 78

xvii

xviii LIST OF FIGURES

7.1 The three reasons why a test can be catalogued as FAIL (blue
signal refers to the reference valur and orange signal refers to the
value obtained by the software version under test) 92

List of Tables

3.1 Overview of the characteristics of the available deployment tools 35

6.1 Summary of the experimental setup in SiL 69
6.2 Main characteristics of the used test cases during the experimental

scenarios . 71
6.3 Description of the designed testing scenarios 74
6.4 Summary of the experimental setup in HiL 75
6.5 Description of the features used to train the models 77
6.6 Summary of the experimental setup in multi-environment context 79
6.7 Characteristics of the installations used to train the multi-installation

model . 80
6.8 Description of the features used to train the models 80
6.9 Summary of the experimental setup 82
6.10 MAPE for the models trained with data from single installation

SiL context . 83
6.11 Footprint in KB for the models trained with data from single

installation SiL context . 83
6.12 Inference time in µs for the models trained with data from single

installation SiL context . 84
6.13 MAPE for the models trained with data from a single installation

HiL context . 84
6.14 Footprint in KB for the models trained with data from a ingle

installation HiL context . 85
6.15 Inference time in µs for the models trained with data from a

single installation HiL context 85
6.16 MAPE for the models trained with data from multiple installations

in HiL context . 86

xix

xx LIST OF TABLES

6.17 Footprint in KB for the models trained with data from multiple
installations in HiL context . 87

6.18 Inference time in µs for the models trained with data from multi-
ple installations in HiL context 88

7.1 Results summary of the arbiter when tested with theoretical data
from single installation SiL context 99

7.2 Results summary of the arbiter when tested with real data from
single installation SiL context 100

7.3 Results summary of the arbiter when tested with theoretical data
from single installation HiL context 101

7.4 Results summary of the arbiter when tested with real data from
single installation HiL context 102

7.5 Results summary of the arbiter when tested with theoretical data
from multiple installations in HiL context 103

Acronyms

AI Artificial Intelligence. 4, 23

AWT Average Waiting Time. 15, 45

CD Continuous Deployment. 12

CI Continuous Integration. 12

CM Continuous Monitoring. 13

CPS Cyber-Physical System. 1

DL Deep Learning. 63

FN False Negative. 97

FP False Positive. 97

GA Genetic Algorithms. 64

GP Genetic Programming. 24

HiL Hardware-in-the-Loop. 10

JT Journey Time. 45

kNN K-Nearest Neighbours. 25

MAPE Mean Absolute Percentage Error. 59, 86

MiL Model-in-the-Loop. 10

ML Machine Learning. 22, 24

xxi

xxii Acronyms

NN Neural Network. 24

OS Operating System. 12

PiL Processor-in-the-Loop. 75

QoS Quality-of-Service. 22

ReLU Rectified Linear Unit. 66

RGP Regression Gaussian Process. 74

RQ Research Question. 29, 68

SGC Stochastic Gradient Descent. 66

SiL Software-in-the-Loop. 10

SOA Service Oriented Architecture. 16

SUT System Under Test. 14

SVM Support Vector Machines. 25, 74

SVR Support Vector Regression. 25

TN True Negative. 97

TP True Positive. 97

1
Introduction

This chapter introduces the main motivation and scope of the research conducted
in this Ph.D. study in Section 1.1, as well as the used research methodology in
Section 1.2. The main technical contributions are also summarized in Section
1.3 highlighting the publications where these contributions were presented in
Section 1.4. Finally, the structure of the document is exposed in Section 1.5.

1.1 Motivation and Scope

Cyber-Physical Systems (CPSs) are gaining an increasing interest among compa-
nies and researchers driven by the growth of fields like Industry 4.0, autonomous
vehicles, and smart cities [60]. The propagation of new CPS applications involves
a growth in the complexity of these systems, while requirements become in-
creasingly stringent. Hence, new practices and technologies are necessary to deal
with the development and management of these systems in such scenarios.

CPS usually have a large life-cycle and its software is continuously evolving
due to the incorporation of new requirements, bug fixes or hardware obsolescence
[58]. Moreover, many factors such as high software-hardware coupling, real-
time requirements, or high configurability (i.e., the capability to work with a
wide range of different configurations) lead to a high complexity during the
whole life-cycle, from design to maintenance.

Given the complexity of these systems, the use of Design-Operation Contin-
uum Engineering methods such as DevOps [36] becomes relevant to guarantee
the correct execution of the application [7]l. In contrast with other domains, such
as web engineering, where the development and operation phases are tightly
connected, the current process of CPS development and maintenance is very
fragmented, which makes the life-cycle management tasks expensive [3]. Con-
necting the different development and operation methods among them can lead
to an improvement in the CPS capabilities, reducing efforts and costs, so more

1

2 1.2 Research Methodology

focus in this field is needed to take advantage of new technologies that make the
adoption of these practices easierexecution of the application [7].

Within the DevOps pipeline, the deployment step in CPSs might have criti-
cal impacts unlike other less critical systems (e.g., web pages, mobile apps, etc.)
[52]. Many of these systems may be located in environments where the resource
availability can fluctuate considerably [51] and the system may be exposed to
unforeseen situations. In addition, these systems interact closely with the physical
world, including humans, which forces taking special care of the reliability and
safety of the software deployments [12]. These software deployments may be
frequent due to software updates caused by the implementation of new func-
tionalities or bug detections. Hence, the continuous software updates require
the adoption of an automated deployment strategy which would speed up the
process and ensure its reliability.

As mentioned, environmental conditions can play a significant role in the
execution of the system [25]. The remote location of software in multiple
heterogeneous environments provokes these conditions to be very varied and
dynamic. Besides, CPSs are very configurable systems which brings with it a
limitation when testing the system in the lab, as it is unfeasible to recreate all the
conditions and configurations the system will work on [24].

In this context, performance problems are likely to appear, as performance
may be highly influenced by hardware, workload, connectivity, or other environ-
mental conditions that can degrade the behavior of the system [14]. Performance
error detection becomes difficult in such conditions, as establishing acceptance
values for performance metrics under untested conditions becomes impossible
and many causes that lead to the manifestation of these errors may appear due to
the interaction of the system with the real environment [67].

1.2 Research Methodology

The research methodology to be followed in this Ph.D. is an iterative model
named design and creation [64]. The methodology consists of five steps. Each
step has an output that can be understood as the result of the activity related to
the process step. Figure 1.1 shows an overview of the methodology.

The steps of the process are described below:

• Awareness of Problem: It is the first step, where a problem is detected
from new developments in industry or literature review, and provides a
proposal for solving the problem.

The main problem this study aims to solve is the following: the detection
of performance problems on software updates.

Introduction 3

Figure 1.1: Overview of the research methodology followed during this Ph.D.

• Suggestion: This is a creative step where new functionalities are envi-
sioned and a tentative design of an experiment to solve the problem is
suggested.

The suggested method to solve the problem is a performance error detection
method based on microservices capable of predicting the performance of
new releases, to compare the predicted and actual value and decide if an
error exists or not.

• Development: In this step, the tentative design is developed and imple-
mented, following different techniques depending on the artifact to be
created, providing a novel artifact.

The development of the Performance Oracle involves researching different
aspects, that have represented different cycles. In each cycle, the awareness
of a different problem is gained, and a solution is suggested and developed.
The developed artifacts were evaluated, and conclusions were drawn to
continue gaining knowledge.

When the obtained knowledge is sufficiently relevant, a journal or confer-
ence paper has been published.

• Evaluation: This step evaluates the developed artifact according to certain
evaluation criteria and the hypotheses are tested based on the measures.

In the evaluation step, the developed methodology is evaluated by measur-
ing its precision to detect performance errors and other features such as
resource usage.

4 1.3 Technical Contribution

• Conclusion: It is the last step of a research cycle or effort, where the
iterative model finishes and results are consolidated, detailing the obtained
knowledge.

In this step, the obtained results were observed to analyze the applicability
of the methodology to real scenarios, the limitations it may present and
the future work to be done in this field.

• Publication: When the knowledge contribution is considered relevant
enough, the results are published in a conference or journal article.

Specifically in this Ph.D. thesis, a number of papers and the present docu-
ment have been written to explain the developed method and contributions
made to the scientific community.

1.3 Technical Contribution

This section provides a summary of the main contributions of this thesis:

• A method to detect performance errors in operation for software updates
in CPSs. The Performance Oracle is built as a microservice to be easily
deployed in heterogeneous environments.

• A Performance Model, capable of predicting the performance of a software
based on its input data. The use of different Artificial Intelligence (AI)
techniques is investigated to build a model with high precision and low
resource consumption.

• An analysis of the effect of the use of different data types in the prediction
precision of the Performance Model. In this sense, The use of data moni-
tored from real installations and theoretical data obtained from simulation
tools has been investigated.

• Development of an Arbiter, which decides whether a performance error
exists or not based on the prediction of the model and the real performance
of the new software.

• Integration of the Performance Oracle microservice with the Adeptness
architecture [1] to leverage the deployment, monitoring, and validation
capabilities of this architecture.

• The evaluation was performed by using an industrial case study provided
by Orona¹, one of the leading elevator companies in Europe. In the
evaluation, the capabilities of the Performance Oracle to be used in practice
for performance bug detection were evaluated.

¹https://www.orona-group.com/

Introduction 5

1.4 Publications

Different peer-reviewed publications were published in a journal and at confer-
ences during the Ph.D. Notice that some of the conference publication papers
are ranked by a ranking system supported by the Spanish Informatics Scientific
Society (SCIE)². The journal publications are scored with their current Journal
Citation Report (JCR) quartile.

1.4.1 Journal Articles

During the Ph.D., a journal article was published.

• Gartziandia, A., Arrieta, A., Ayerdi, J., Illarramendi, M., Agirre, A., Sagar-
dui, G., & Arratibel, M. (2022). Machine learning-based test oracles for
performance testing of cyber-physical systems: An industrial case study
on elevators dispatching algorithms. Journal of Software: Evolution and
Process, 34(11), e2465. JCR Ranking: Q3

1.4.2 International Conferences

A total of three publications were achieved at international conferences, which
are listed below:

• Ayerdi, J., Garciandia, A., Arrieta, A., Afzal, W., Enoiu, E., Agirre, A.,
Sagardui, G., Arratibel, M. & Sellin, O. (2020, August). Towards a tax-
onomy for eliciting design-operation continuum requirements of cyber-
physical systems. In 2020 IEEE 28th International Requirements Engineer-
ing Conference (RE) (pp. 280-290). IEEE. SCIE Ranking: A

• Gartziandia, A., Ayerdi, J., Arrieta, A., Ali, S., Yue, T., Agirre, A., Sagardui,
G. & Arratibel, M. (2021, March). Microservices for continuous deploy-
ment, monitoring and validation in cyber-physical systems: an industrial
case study for elevators systems. In 2021 IEEE 18th International Confer-
ence on Software Architecture Companion (ICSA-C) (pp. 46-53). IEEE.
SCIE Ranking: A

• Gartziandia, A., Arrieta, A., Agirre, A., Sagardui, G. & Arratibel, M. (2021,
March). Using regression learners to predict performance problems on
software updates: a case study on elevators dispatching algorithms. In
Proceedings of the 36th Annual ACM Symposium on Applied Computing
(pp. 135-144). SCIE Ranking: A

²http://gii-grin-scie-rating.scie.es

6 1.5 Document Structure

1.5 Document Structure

The structure of the thesis is as follows. Chapter 1 provides an introduction to
the thesis, outlining the motivation, the research methodology used, the contri-
butions made, and the publications achieved. Chapter 2 exposes the necessary
terminology and background concepts used throughout the document. An
analysis of current studies and the most relevant research related to the topic is
presented in Chapter 3. Chapter 4 presents the theoretical framework, discussing
the research objectives, the hypotheses, a summary of the proposed solution, and
the case study used.

In Chapter 5 the Performance Oracle is introduced, detailing its components,
communication interfaces, the interaction with the Adeptness architecture, the
requirements it must fulfill, and the methodology used for its evaluation. Chapter
6 describes the training process to build the Performance Model, detailing the
data monitoring, the AI techniques used and its evaluation. Chapter 7 details the
development and evaluation of the Arbiter used to raise the verdicts of the oracle.

Finally, in Chapter 8, the contributions of the thesis are summarized, the
hypotheses are validated, the main limitations of the method are discussed and a
set of lessons learned are provided. Furthermore, future research directions are
proposed.

2
Technical Background

This chapter introduces some theoretical background about the main concepts
within the scope of this thesis. First, CPS life-cycle management considerations
are explained in Section 2.1, in Section 2.2 the H2020 Adeptness Project is
introduced, which is closely related to this Ph.D. thesis. Then, the nature of
performance bugs is explained in Section 2.3 and, finally, different AI techniques
used in this Ph.D. are described in Section 2.4.

2.1 Cyber Physical Systems life-cycle management

In this section, the life-cycle management of CPSs is discussed, which is the main
scope of this thesis. Firstly, the main characteristics of CPSs are describe, after-
ward, the DevOps concept is introduced, and, finally, a taxonomy for eliciting
Desing-Operation continuum requirements in CPSs is presented.

2.1.1 Cyber-Physical Systems

The term Cyber-Physical System refers to types of systems that integrate global
networking services and interaction with the physical world, by means of sensors
and actuators, to provide coherent and intelligent services [53]. In Figure 2.1,
the main components of a CPS can be seen, showing how CPSs make use of
embedded systems, along with the physical world and the interaction with other
systems or humans.

These systems currently include many different systems such as robotics,
autonomous vehicles, elevators or trains, but they share certain common charac-
teristics [59]:

• Resource-constrained embedded software: The software is located in
embedded systems with limited resources such as computing, network
bandwidth, etc., and stringent timing requirements.

7

8 2.1 Cyber Physical Systems life-cycle management

Figure 2.1: Overview of the components of CPSs

• Distributed and heterogeneous systems: CPSs are usually connected to
many systems, which can be diverse, leading to a large-scale network of
heterogeneous systems.

• High automation and re-configuration capabilities: The complexity of
these systems requires automation and adaptive capabilities by means of
human-machine interaction.

• Dependable operation: The system must guarantee high degrees of relia-
bility, safety, and security.

These systems are inherently complex, and their life-cycle can last up to 30
years in sectors such as railway or elevation [7]. In these systems, an increasing
trend is to implement most of the functionalities through software. During the
life-cycle of these systems, the software continuously evolves due to many factors,
such as hardware obsolescence, requirement changes, vulnerabilities, or bug
corrections [58]. Consequently, this evolution requires reliable and automatic
engineering methods for developing and operating CPSs.

In the last few years, there have been several improvements in terms of mod-
eling and simulation techniques [6], [61], [56] to develop and validate complex
CPSs from the early development stages. However, when the software is de-
ployed in the CPS, the methods used during operation and maintenance do not
have synergies with the methods used in development. In other contexts, such as
web engineering, there are Design-Operation Continuum Engineering methods

Technical Background 9

such as DevOps that permit software development methods to be streamlined
with methods for operation time.

2.1.2 DevOps

DevOps is an engineering paradigm that involves a set of practices to bring
together development and operation activities by means of collaboration between
the different actors (e.g., developers, testers, operation personnel, etc.). The
aim is to shorten the lead time between a change request and the deployment
in production using automation, agile software development, and continuous
delivery pipelines. DevOps practices provide solutions to have a more efficient
process which guarantees that (1) software updates are performed safely and
quickly, (2) most faults are detected in the design phase and (3) problems that
can emerge in operation can be reproduced in development in order to analyze
and propose potential solutions.

In Figure 2.2, the typical DevOps pipeline is depicted, which specifies the
tasks that must be undertaken to guarantee frequent and reliable software delivery
in a continuous manner. The DevOps pipeline proposes a cyclic feedback process,
where the operational data serves to development tasks as inputs to develop an
improved version of applications.

Figure 2.2: DevOps methodology

2.1.3 Taxonomy for Eliciting Design-Operation Continuum Require-
ments of CPSs

As stated, traditional Design-Operation Continuum Engineering methods re-
quire substantial changes in order to be dependable enough for CPSs. More
specifically, Design-Operation Continuum methods must provide solutions to
have a more efficient process that guarantees safety and security in software
releases, early error detection, and operation monitoring to reproduce errors in
the lab.

10 2.1 Cyber Physical Systems life-cycle management

In Figure 2.3, a taxonomy of relevant concepts is shown to ease the under-
standing of the rather complex development and maintenance process of CPSs
[7]. This taxonomy aims to assist requirements analysts with the identification
and categorization of the requirements related to different aspects of the CPS
Design-Operation Continuum Engineering. The main purpose of this classifica-
tion is to support the elicitation of new requirements and the easier identification
of problems such as omissions, ambiguity, vagueness, conflicts, or duplication in
the requirements. Furthermore, this classification is also helpful for determining
the organizational roles responsible for each requirement, as well as for the man-
agement and reuse of the elicited requirements in later stages of the development
life-cycle. The taxonomy was built in collaboration with the Ph.D. studies of Jon
Ayerdi, which focused more on the validation aspects, while this thesis focused
more on deployment aspects.

The main aspects identified by this taxonomy are introduced below:

• Life-cycle Stage: This facet represents the X-in-the-loop system execu-
tion level, which is an aspect specific to CPS development processes. This
taxonomy defines the four classes identified as relevant and more common
for CPSs, which are Model-in-the-Loop (MiL), Software-in-the-Loop
(SiL), Hardware-in-the-Loop (HiL), and Operation. At the MiL test level,
the software that controls the physical part of the CPS is a model. At the
SiL test level, this model is replaced by executable software. At the HiL
test level, the software is integrated with the real-time infrastructure (e.g.,
real target processor and operating system) and the physical part emulated
within a real-time test bench.

• Scope: The taxonomy distinguishes three different scope classes depending
on the applicability of the requirement. However, depending on the
strategy of the company, the categorization provided can be refined or
extended. The main classes identified are Organisation, Product, and
Release.

• Domain: This facet categorizes the requirement by the domain in which
it belongs, divided into two categories: Infrastructure and Application.

• Subsystem: This facet classifies a requirement by the Design-Operation
Continuum subsystem for which it is relevant. This taxonomy considers
the subsystems of Deployment, Monitoring, Validation, and Integration.

Below, the three main subsystems concerning this thesis are further explained,
which are the Deployment, Monitoring, and Validation subsystems.

Technical Background 11

D
e

si
gn

-O
p

e
ra

ti
o

n
C

o
n

ti
n

u
u

m
R

e
q

u
ir

e
m

e
n

ts

Sc
o

p
e

Li
fe

cy
cl

e
St

ag
e

D
o

m
ai

n

Su
b

sy
st

e
m

O
rg

an
iz

at
io

n

P
ro

d
u

ct

R
e

le
as

e

M
iL

Si
L

O
p

e
ra

ti
o

n

H
iL

A
p

p
lic

at
io

n

In
fr

as
tr

u
ct

u
re

D
e

p
lo

ym
e

n
t

M
o

n
it

o
ri

n
g

V
al

id
at

io
n

In
te

gr
at

io
n

Sp
e

ci
fi

ca
ti

o
n

A
u

to
m

at
io

n
M

o
n

it
o

ri
n

g
A

rt
if

ac
t

St
o

ra
ge

D
e

p
lo

ya
b

le
A

rt
if

ac
t

D
e

vi
ce

Si
m

u
la

ti
o

n
A

rt
if

ac
t

O
ra

cl
e

P
re

co
n

d
it

io
n

s

P
o

st
co

n
d

it
io

n
s

Fe
at

u
re

s

R
o

llb
ac

k

A
va

ila
b

ili
ty

R
e

so
u

rc
e

s

C
o

m
m

u
n

ic
at

io
n

N

e
tw

o
rk

P
ro

vi
d

e
d

V
ar

ia
b

le
s

C
o

n
fi

gu
ra

b
le

P
ar

am
e

te
rs

D
at

a
Fo

rm
at

Lo
ca

ti
o

n

Ty
p

e

C
o

n
fi

gu
ra

ti
o

n

R
e

so
u

rc
e

s

En
vi

ro
n

m
e

n
t

SU
T

To
o

l

V
al

id
at

e
d

P
ro

p
e

rt
y

A
ct

iv
at

io
n

C
ri

te
ri

a

R
e

q
u

ir
e

d
D

at
a

V
e

rd
ic

t
Fo

rm
at

R
e

le
as

e
P

la
n

D
e

p
lo

ym
e

n
t

P
la

n

V
al

id
at

io
n

P
la

n

R
e

p
o

si
to

ry

A
ct

io
n

s

To
o

ls

Te
st

 In
p

u
t

D
at

a

Fo
rm

at

Figure 2.3: Taxonomy of Design-Operation Continuum Requirements for CPSs

12 2.1 Cyber Physical Systems life-cycle management

2.1.3.1 Deployment

Automating deployment means providing the infrastructure that allows the auto-
mated Continuous Integration (CI) server to connect to the designated produc-
tion/validation machine and upload executable and configuration files [46]. The
Continuous Deployment (CD) subsystem allows the automatic deployment of a
new software release in the virtual infrastructure for validation purposes. After-
ward, the new release is deployed in the real CPS in Operation. In this subsystem,
requirements that are necessary to deploy artifacts at the MiL/SiL/HiL/Operation
of the system are specified. It is important to mention that in this category, the
requirements for the Operation stage are the most demanding ones since aspects
such as heterogeneous platforms or the status of the CPS before the deployment
need to be considered. Examples of requirements in this category include “The
deployment service shall provide support for ARMV7 boards”, “The deployment
service shall provide support for Linux and Windows Operating Systems (OSs)”,
“The downtime of the application during deployment shall be less than 15 sec” or
“The system shall allow the deployment of artifacts by defining the allocation or
by defining the memory requirements”. Nowadays, releasing and deploying new
software versions is a time-consuming and error-prone activity. Requirements
in this category facilitate the automation of the CD for new releases.

Two subcategories have been defined for this subsystem: Devices and De-
ployable Artifacts.

• Devices: Automation of the deployment process in CPSs is highly com-
plex due to the number of heterogeneous platforms, models, and interfaces
necessary to deploy software releases. The goal of this subcategory is to
collect requirements related to the variety and heterogeneity of hardware,
software, and communications for which the deployment subsystem must
provide support. These types of requirements have an influence on the
deployment architecture that must be designed to provide support for all
the devices in which an automatic deployment will be performed. This
category also has an impact on the techniques and methods used for the
deployment, e.g., container-based deployment mechanisms that are valid
for Linux-based devices are not for embedded bare metal devices. There
are different aspects to be specified: (1) Resources of the devices. Hardware,
software (e.g., installed OS), and communication networks (e.g., CAN,
Ethernet) that the deployment subsystem is going to deal with. (2) Avail-
ability of the device during deployment (e.g., maximum downtime of the
device to perform the deploy).

• Deployable Artifacts: CPSs are composed of different software compo-
nents distributed in heterogeneous devices. Deployable artifacts are “soft”
components that are part of the CPS, such as software of new releases and

Technical Background 13

configuration files. When using Design-Operation Continuum methods,
test oracles, monitors, etc. can also be considered deployable artifacts. This
subcategory includes the specification of the features of the artifacts to
be deployed. Requirements in this category define the deployment rules
and are useful to ensure the pre- and post-deployment conditions and to
design the rollback mechanisms. There are different aspects to be specified:
(1) Deployment conditions: Pre-conditions specify criteria to be met before
starting the deployment, e.g., “the CPS shall be out-of-service”. Postcon-
ditions are verified after the deployment is completed, e.g., “the device
reboots correctly” (2) Features of the artifacts: hardware requirements, e.g.,
minimum CPU or RAM requirements to execute the artifact, software
requirements, e.g., supported OS, communication interface requirements,
e.g., to be deployed in a device with access to CAN or/and the allocation
of the artifact, e.g., in which device shall be deployed, (3) Rollback policy
in case of deployment failure, e.g., “The system shall support the remote
rollback to a previous version”.

2.1.3.2 Monitoring

The goal of Continuous Monitoring (CM) is to extract data from a system so
that it can be analyzed [35]. Monitoring in the deployment ensures that certain
conditions are met before and after deploying. In the validation process, it
provides data to the oracles so that they can provide a verdict. Besides, it can
also be useful to observe and record the status of the infrastructure/application
and later reproduce real scenarios in simulation. Examples of requirements in
this category include “Monitoring data from MiL/SiL/HiL test executions shall be
available through logs”, “Monitors shall provide connectors for CAN and Ethernet”,
“Monitoring data for the last day shall be persisted for further analysis”.

This category facilitates gathering monitoring requirements at different
lifecycle stages and levels of a CPS. Two subcategories have been defined:

• Monitoring artifacts: CM can be done (1) at the infrastructure level, e.g.,
to control the CPU or memory usage, or (2) at the application level, to
monitor, for instance, the position and speed of an element. The goal of this
subcategory is to collect the monitoring needs of both the infrastructure
and the application. To gather requirements, an analysis of the application
data life-cycle and the infrastructure features (e.g., CPU usage) shall be
performed. Requirements in this subcategory have an impact on the design
of the monitoring infrastructure. There are different aspects to be specified:
(1) Communication Network, the source from which data must be collected,
e.g., “the monitor must gather the data from the CAN bus”, (2) Data fields that
are provided, e.g., “the monitor must provide the elevator positions”, (3) Format

14 2.1 Cyber Physical Systems life-cycle management

in which the data is provided by the monitor, e.g., “the monitor will provide
the current elevator position periodically via MQTT”, and (4) Configurable
parameters for the monitor,e.g., “the update period for the elevator positions
may be configured with a value between 50 and 500 milliseconds”.

• Storage: Storage of the monitored data is essential to analyze and re-
produce scenarios in simulation. The storage strategy may be different
depending on the data being monitored. Some data could be more crit-
ical and other may need more memory resources. These requirements
might include, for example, dumping data on a local file, storing it on the
edge of the network, or sending it to a cloud database. The goal of the
Storage subcategory is to describe how the data shall be stored in order
to be accessible from other services. To gather requirements, an analysis
of the application data usage shall be performed. Requirements in this
subcategory have an impact on the design of the storage strategy for the
data that is being monitored. There are different aspects to be specified:
(1) Location describes where the data is to be persisted, e.g., a shared folder
on a NAS or a database endpoint, (2) Type relates to the database format,
either a relational database, an object-oriented database or even text file
based, (3) Configuration includes attributes such as duration of the saved
data, backup replicas or even availability aspects), (4) Resources specifies the
type of device used for persistence, as well as the disk space size.

2.1.3.3 Validation

Testing, verification, and validation activities are important in any kind of domain
when developing software. In the case of CPSs, this is particularly important
because most of the functionality of these systems is driven by software. Fur-
thermore, this functionality is often safety or mission-critical, and a failure could
lead to severe consequences. Many CPSs rely on simulation-based testing for
the validation of software. This technique allows raising the level of abstraction
of complex CPSs in which testing is performed [13]. It allows (1) executing
larger test suites and (2) building test oracles that can automate verification and
validation tasks [13]. Furthermore, simulation-based testing allows modeling
the environment in which the CPS operates. Test, verification, and validation
in Design-Operation Continuum methods for CPSs need to be practiced from
MiL phases through the Operation. This is because failures that could not be
observed in previous stages can be identified in Operation. To this end, oracles
need to be re-used across all these test levels to allow full automation. Examples
of requirements obtained by focusing on the industrial needs of the case studies
in this category include “The System Under Test (SUT) shall be the relevant version
of the project-specific software”, “The input to the test cases at the functional level shall
be the stimuli triggering the execution of a defined functionality”, “The oracles shall be

Technical Background 15

activated by a test input or by identifying a precondition in operation”. Note that the
elicited requirements in this category shall provide the validation to be continuous
and as automated as possible. To this end, three sub-categories were identified:

• Simulation Artifact: This category concerns the artifacts that are neces-
sary in order to enable simulation-based testing, which are divided into
three main categories: (1) Environment refers to the conditions under which
the system runs, which are usually expressed in the form of simulator
parameters (e.g., the number of floors in the building); (2) the SUT is the
component of the system that is being tested, which must usually comply
with certain interfaces in order to be usable for simulation-based testing;
and (3) the Tool is the simulator used to execute the SUT. An example of
a simulation artifact requirement for one of the industrial case studies is
“Test cases shall be executed by using the Elevate simulator”.

• Test Input: In order to drive the execution of the selected test cases, test
inputs must be injected into the SUTs before or during their execution.
The requirements are divided for these test inputs into two main categories.
(1) The input data itself, which is determined by the test cases that need to
be executed (e.g., must test having multiple users at the same time), and (2)
The format that is used to define the test inputs (e.g., test inputs must be
provided in an XML file which follows a specific structure).

• Oracle: Test oracles are components in charge of emitting a verdict (e.g.,
PASS/FAIL) based on the conformance of the system towards a specified
property. Note that although monitoring the system is required for the
validation, monitoring is classified as a separate subsystem, since monitoring
is often performed beyond the context of system validation. The purpose of
the oracles is to determine whether the observed behavior of the system is
correct or incorrect, which is usually done by verifying properties specified
by a domain expert. An example of an elicited requirement for a test
oracle is “test oracles shall be re-used across all levels (i.e., MiL, SiL, HiL,
and Operation)”, or “test oracles shall be capable of validating 100% of
functional requirements”. Four sub-categories were identified based on the
industrial case studies. (1) Validated properties are requirements of the system
themselves (e.g., Average Waiting Time (AWT) < 30 sec.); (2) activation
criteria are pre-conditions that trigger a test oracle to validate a specific
property; (3) required data refers to the monitoring data needed by the
oracle in order this to be able to check certain property; (4) the verdict
format refers to the semantics provided by the verdict (e.g., a quantitative
value (e.g., from 0 to 1, with 1 meaning full compliance and the value
becoming closer to 0 as the degree of compliance decreases).

16 2.2 Adeptness

2.2 Adeptness

As stated, with existing engineering practices for CPS, releasing and deploying
new software versions is a time-consuming and error-prone activity. This is
mainly due to the impossibility of thoroughly testing the software in a real envi-
ronment. Furthermore, the deployment process itself is complex, as it is highly
important to ensure that the CPS will be in a safe state when the software is
updated. Besides, these systems often operate in dynamic and uncertain environ-
ments, which makes appropriate self-healing and recovery mechanisms necessary.
These problems can be partially solved by implementing Design-Operation Con-
tinuum methods for the software development life-cycle, instead of relying on
traditional software development methods (e.g., the V model). Nevertheless,
to achieve this in the CPS domain, radically new solutions to overcome the
limitations of today’s CPS development processes need to be adopted.

As an alternative, in the context of the Adeptness H2020 project [1] a reference
architecture based on microservices was proposed to enable Design-Operation
Continuum activities in CPSs. By using this architecture, significant enhance-
ments are expected in software development, reducing costs while increasing
its quality. In this section, the main characteristics and benefits of microservice-
based architectures are described, which the Adeptnes architecture leverages,
and then the architecture itself is presented, which was designed based on the
taxonomy presented in Section 2.1.3. The methodology developed in this thesis
has been designed to take advantage of this architecture.

2.2.1 Microservice Architectures

The microservice architecture is an application development approach evolved
from Service Oriented Architecture (SOA) which proposes structuring applica-
tions as a set of small independent services running in their own independent
process and communicating with lightweight communication mechanisms [45].
Each microservice is responsible for specific functionality and may be written in
different programming languages, can be deployed independently, and can be
managed centrally, as opposed to the monolithic architecture, which pretends to
build a big, united solution, as can be observed in Figure 2.4. These solutions are
difficult to maintain when their size increases as they may get difficult to under-
stand and modify, and do not easily scale, as making copies of the whole monolith
is the only way to scale. These characteristics make continuous development and
frequent software updates very difficult.

A microservice architecture offers a highly modular and decoupled archi-
tecture, which makes maintenance easier and leads to a higher flexibility and
scalability of the system. Besides, the microservices can be deployed quickly to a
production environment as they are independently testable and deployable [47].

Technical Background 17

Figure 2.4: Difference between the monolith and microservices

The main characteristics of a microservice architecture are:

• Service isolation: Each microservice runs in its own process and has its
own data store. This isolation ensures that failures in one microservice do
not affect the entire application.

• Agility: Microservices are autonomous, which means they can be developed
and deployed independently. This allows teams to work on different
microservices simultaneously and deploy them independently, without
interfering with each other.

• Scalability: Microservices can be scaled independently, which means that
if increasing the capabilities of certain functionality of the application is
necessary, more instances of the microservices involving this functionality
can be deployed, without affecting the rest of the application.

• Flexibility: Microservices are designed to be modular, so that the architec-
ture can adapt to specific use cases or the need for new functionalities by
adding, removing or updating certain microservices.

• Improved performance: Microservices can be optimized for specific tasks,
which can improve overall performance. For example, a microservice that
handles image processing can be optimized for that specific task, resulting
in faster processing times.

Microservice-based architectures have been mainly used in cloud/distributed
application development but most recently started to be applied in edge platforms,
mostly focused on the IoT domain providing services that connect CPSs to the
cloud and adding analytic capabilities.

2.2.2 Adeptness architecture

In Figure 2.5 the general architecture of the Adeptness framework is presented.
This architecture combines two paradigms: Cloud computing and Edge com-

18 2.2 Adeptness

puting. The architecture is divided into subsystems which can be composed
by one or more microservices to provide all the necessary functionality. The
microservices that compose a subsystem are distributed between both Cloud and
Edge, depending on the goal of the microservice.

The main subsystems and the microservices are the following:

• Automation server: The Automation Server is in charge of the orches-
tration of the tasks to be performed by the different subsystems. It interacts
with the source code repositories to monitor any changes in the deploy-
ment, monitoring, or validation plans. When a new plan is updated, the
Automation Server performs the actions to generate the required artifacts,
stores the generated Docker images in the Docker registry, and pushes the
configurations or plans to each subsystem.

• Deployment subsystem: it is composed of the Deployment Orchestrator
(Cloud) and the Deployment Agent (Edge). The orchestrator receives
the deployment plan from the Automation Server and is responsible for
deploying the necessary artifacts in each edge node.

• Monitoring subsystem: It is composed of the Monitoring Orchestrator
(Clous) and the Monitoring Agent (Edge). It receives the monitoring
plan from the Automation Server to configure the monitors so that the
required data is obtained. The Monitoring Agents publish via MQTT the
monitored data int the Logger so that the interaction with the subscribers
is decoupled.

• Validation subsystem: composed by the Validation Orchestrator (Cloud)
and the Validation Agent (Edge), the orchestrator receives the validation
plan from the Automation Server to configure the Validation Agents. The
oracles subscribe to the data they need to perform the validation, check the
required conditions, and publish the verdicts of the tests in the Logger.

• Logger subsystem: The Logger subsystem receives both operational data
coming from the Monitoring Agents and also validation results coming
from the Validation Agents. Then it persists this information and provides
services that are consumed by other microservices.

• Test generation subsystem: The test generation microservice generates
test cases that are persisted in the Logger.

• OSCL Bridge subsystem: Composed of OSCL Tools and OSCL Bridge
microservice. This subsystem oversees converting the test cases executing
results to OSCL standard.

• Recovery service: Recovery microservice is in charge of proposing actions
that can drive the recovery of the normal behavior of the system.

Technical Background 19

Figure 2.5: Overview of the Adeptness architecture components

20 2.2 Adeptness

As shown in the figure, the orchestrators, the microservices that coordinate
and manage actions that take place on the devices are located in the Cloud. This
is also the case of the Test Generator microservice, the Logger service, and the
OSLC Bridge. The agent microservices, which perform actions on the devices,
are located on the Edge, running on each device connected to the infrastructure.
This is also the case of the uncertainty and recovery services. Now further detail
on the core subsystems of the Adeptness architecture is given.

2.2.2.1 Deployment Subsystem

The Deployment Subsystem is responsible for downloading, and eventually
decompressing and executing, the different microservices and artifacts needed to
perform the validation in each of the targets or edge nodes. The Deployment
subsystem executes a deployment plan and must be aware of the status of the
deployment in each node. The plan contains the information regarding the
components to be deployed, the repository where they are located in, and the
node(s) where they should be deployed. The Deployment Subsystem is capable
of deploying two different types of components, containerized microservices
and generic files, and it is composed of two different microservices:

• Deployment Orchestrator: The Deployment Orchestrator receives the
deployment plan from the Automation Server and parses the plan in order
to execute it. There is only one instance of this microservice within the
architecture and it is usually located in the Cloud. The orchestrator sends
the deployment instructions to the Deployment Agents installed in each
node by MQTT.

• Deployment Agent: The Deployment Agents must be installed in each
edge node to perform the actual deployment of the necessary artifacts.
Since there are two different types of components that may be deployed,
two types of Deployment Agents have been designed: a docker-compose-
based deployer to deploy docker containers, and a generic deployer to
deploy any kind of file, e.g. an executable file, a library, or a .zip file. In
the latter case, the deployer can perform the actual deployment of the zip
file, decompress it, and execute the selected executable file.

2.2.2.2 Monitoring Subsystem

The monitoring subsystem supports the configuration of the monitors according
to a monitoring plan. This plan specifies the source (i.e., physical interfaces, file
system, ...) to obtain the data from as well as the value extraction mechanism.
This subsystem provides access to telemetry data retrieved from different sources

Technical Background 21

so that other subsystems can subscribe to these data and use it to take decisions.
This subsystem consists of two microservices:

• Monitoring Orchestrator: This microservice, deployed in the Cloud,
handles the parsing of the monitoring plan sent from the Automation Server
and configures all the Monitoring Agents indicated in the plan accordingly
through their HTTP API. The plan specifies the parameters that each
Monitoring Agent needs to specify the actual data source connection
parameters (e.g., the CAN baud rate) and the variables to monitor.

• Monitoring agents: The Monitoring Agents, deployed at the edge nodes,
are responsible for reading the operational variables from the different
sources and publishing them asynchronously. The Monitoring Agents can
be configured through a common HTTP API, which allows the specifica-
tion of the variables to be monitored (i.e., name and needed parameters to
obtain the data) and optionally, the configuration of subscriptions. The
concept of subscription refers to a group of variables that are notified asyn-
chronously as events, with the same publishing rate. In this sense, a service
(e.g., an oracle) that needs to be notified about the changes of a set of
variables can configure a subscription, specifying the publishing rate for
those variables.

There are specific Monitoring Agents for different data sources. Two
examples of monitor agents are explained below:

– CAN monitor: The CAN monitor allows the monitoring of the op-
erational variables shared through a CAN field bus, which may be
configured through an HTTP API. For each variable to be mon-
itored, three parameters must be configured: (1) the name of the
variable, (2) the identifier of the CAN frame where the variable is
published, and (3) the mask to be applied to the frame to actually read
the variable. When the monitor starts, it begins to publish the vari-
ables asynchronously through MQTT, following the standardized
senML¹ payload format.

– Instrumented code monitor: This is a special monitor type that supports
the monitoring of variables that are not exported in any field bus but
are needed by the oracles to raise a verdict. To do so, a library that
publishes code variables through MQTT has been developed. The
developer can use it to publish the internal code variables needed by
the oracles into the MQTT broker, in the same senML format used
by the rest of the monitors.

¹https://tools.ietf.org/html/rfc8428

22 2.3 Performance Bugs

2.2.2.3 Validation Subsystem

The Validation Subsystem supports verification and validation activities at MiL,
SiL, HiL, and Operation. The main microservices used for the validation subsys-
tem are the following:

• Validation Orchestrator Located in the Cloud, the Validation Orchestra-
tor manages the execution of a validation plan by communicating with
the Validation Agents. A validation plan can require validations at different
test levels.

• Validation Agents: These microservices launch validations at the SiL
and HiL test environments, as well as in operational installations. For
the execution of a validation, test oracles are activated and, in SiL and
HiL environments, it also manages the additional tools required for the
simulation. When an oracle provides a verdict, it notifies the Validation
Orchestrator microservice.

• Oracle microservice: This microservice encompasses a set of test oracles
that validate that the CPS behaves as expected. Many of these test oracles
are based on domain-specific Quality-of-Service (QoS) measures that are
collected from the monitoring microservices. Each of these test oracles
provides a verdict that indicates to which extent the CPS behaves as ex-
pected. Different test oracles have been developed, such as those based on
metamorphic relations for the SiL and HiL test levels [8], and some based
on Machine Learning (ML).

• Uncertainty detection microservice: This microservice supports the
automated detection of unforeseen situations in the different life-cycle
stages of CPSs using data from both Operation and design time (e.g.,
test logs) with passive and active ML techniques. This service supports
the validation microservice with uncertainty-related test oracles that are
learned from data.

• External tool: This microservice allows launching domain-specific tools
required to handle the execution of tests in SiL or HiL test phases.

2.3 Performance Bugs

Non-functional requirements refer to those which do not describe the func-
tionality of the system, but the properties that the system must meet due to the
environment where the system operates or other external constraints [16]. These
requirements can include security, portability, safety, reliability, or performance
of the system. In this thesis, the aim has been to detect performance bugs, which

Technical Background 23

consist of errors producing a behavior degradation of applications in terms of
execution time, response time, CPU usage, memory usage, or energy consump-
tion, without necessarily causing any fault on the expected results. With the
growth of software complexity and resource-constrained applications, ensuring
performance health is getting increasingly relevant. Identification of performance
problems in the testing phase brings some limitations, such as the elicitation of
proper performance requirements. In addition, many causes that lead to the
manifestation of these problems may appear due to the system’s interaction with
the real environment [67]. At run-time, identifying performance problems may
require a continuous monitoring of the execution, as problems may be revealed
only under certain circumstances, for example, activation of specific modes or
functionalities when the system has been running for a long period.

There exist a variety of root causes during implementation that can result in
real-world performance problems. According to the classification conducted by
Jin et al., [31], the authors identified (1) inefficient function calls, (2) skippable
functions doing unnecessary work and (3) synchronization issues as main root
causes for performance issues. Other less common causes are also mentioned,
including wrong data structure usage, hardware architecture issues or high-level
design errors. By analyzing how these bugs are introduced by developers, they
concluded that these errors are usually introduced due to an API or workload
misunderstanding.

From the testing perspective, testing performance requirements have been
extended to many sub-fields, including Cloud Computing [37], distributed
systems [18], or CPSs [62], among others. This practice is becoming paramount
and the importance of integrating performance analysis inside the software
life-cycle management process has proven to be relevant. In this sense, many
challenges have been identified such as (1) the definition of a method to establish
which performance tests to perform in each life-cycle stage, (2) enabling users to
declaratively define performance objectives and (3) providing fast performance
feedback to improve the system [20]. Regarding the test case design, some
important aspects to consider are (1) the design of test generation and selection
strategies and algorithms, (2) the definition of metrics to assess the effectiveness
of performance testing strategies, and (3) the comparison of different hardware
platforms for a given application [67].

2.4 AI Techniques

AI refers to the field that aims at providing intelligence to machines so that they
become capable of performing tasks that typically require human intelligence. It
involves the development of algorithms and systems that can process and analyze
large amounts of data to recognize patterns so that they can then make decisions

24 2.4 AI Techniques

in future problems. There exist many techniques to process the data to train
an AI model so that it can extract useful knowledge from it. In this thesis three
widespread techniques were investigated, such as ML, Neural Network (NN),
and Genetic Programming (GP).

2.4.1 Machine Learning

ML is a sub-field of AI (AI) that provides machines with the ability to learn to do
some job without being explicitly programmed to do so [41]. These techniques
rely on learning from past experience or data to improve future results on the
execution of a task in an automatic and autonomous manner. ML makes machines
intelligent, giving them the ability to gain domain knowledge and make fast,
data-driven decisions. There are several scenarios where ML can be particularly
beneficial:

• Domains with a lack of human expertise.

• Dynamic environment scenarios (e.g., infrastructural changes, connectivity
variations, etc.).

• Domains where rule-based programming gets extremely complex.

There exist many different learning algorithms that can be used in different
contexts depending on the objective of each application [26]. The categories
detailed below, which can be seen in Figure 2.6, are the main categories and
the ones most used in IoT applications, which are supervised and unsupervised
learning.

Figure 2.6: General overview of the main ML categories

Technical Background 25

2.4.1.1 Supervised Learning

In supervised learning, the training data consists of some input vectors with their
respective labels, which indicate the output expected for each input vector. The
objective of these algorithms is to learn to predict the corresponding output
for the given inputs by modifying their internal values. Within this category,
two subcategories can be distinguished: (1) classification algorithms, where the
aim is to map input values to a finite number of categories, and (2) regression
algorithms, where the output values consist of continuous variables. Some of the
most common classification algorithms are K-Nearest Neighbours (kNN), Naïve
Bayes, Random Forests, or Support Vector Machines (SVM), and regarding re-
gression algorithms some extended algorithms are Linear Regression, Regression
Trees or Support Vector Regression (SVR) [41].

2.4.1.2 Unsupervised learning

Unsupervised learning the objective consists of identifying similarities between
the input samples to divide the samples into clusters, so the training data does not
need any associated labels. Some common clustering algorithms are K-means or
Density-Based Clustering.

2.4.2 Neural Networks

Neural networks are a type of ML algorithm that is designed to mimic the way
the human brain works [2]. The basic building block of a neural network is
the neuron. A neuron receives input signals from other neurons or from the
environment and processes them to produce an output signal. In an artificial
neural network, neurons are modeled as mathematical functions that take input
values and produce an output value.

In Figure 2.7 an overall overview of the architecture of a neural network can
be observed. A neural network consists of layers of neurons that are intercon-
nected with each other. The first layer of the network is the input layer, which
receives the initial data. The output layer produces the final result of the network.
The layers in between the input and output layers are called hidden layers.

The process of training a neural network involves adjusting the parameters
of the neurons and the connections between them so that the network produces
accurate outputs for a given set of inputs. This process is called backpropagation,
and it involves minimizing a cost function that measures the difference between
the network’s output and the desired output.

Neural networks permit recognition of more complex patterns than tradi-
tional ML algorithms, which make them useful in applications such as image
recognition, speech recognition or natural language processing.

26 2.4 AI Techniques

Figure 2.7: Example of an architecture of a Neural Network

There are many types of neural networks, each with its own architecture
and purpose. These are some of the most commonly used types:

• Feedforward Neural Networks: These are the simplest and most common
type of neural networks. They consist of layers of neurons that pass infor-
mation forward from input to output, without any feedback loops. These
are used for a wide range of applications, including image and speech
recognition, classification tasks, and regression analysis.

• Convolutional Neural Networks (CNNs): These types of networks use a
special type of layer called a convolutional layer which can identify patterns
and features in images. They are primarily used for image recognition
tasks, such as object detection, facial recognition, and image segmentation.

• Recurrent Neural Networks (RNNs): These networks have a feedback
loop that allows them to use their own output as input for the next time
step. These are used for tasks that involve sequential data, such as speech
recognition, language translation, and time series analysis.

There are also many other types of neural networks, such as Long Short-
Term Memory Networks (LSTMs), Autoencoders, and Generative Adversarial
Networks (GANs), but the ones listed above are some of the most commonly
used and well-known.

Technical Background 27

2.4.3 Genetic Programming

Genetic programming (GP) is a subfield of artificial intelligence that uses princi-
ples of evolution and genetics to automatically generate computer programs that
can solve problems or perform tasks [4, 49]. GP works by generating an initial
population of programs that are randomly created and evaluated to measure
how well each program solves the problem or performs the task. Programs with
higher scores are more likely to survive and reproduce, passing on their genetic
material to the next generation of programs.

GP is useful in a wide range of applications, including data analysis, robotics,
image recognition, and optimization problems.

The process of Genetic Programming (GP) involves the following steps:

• Initialization: The GP algorithm starts with an initial population of pro-
grams that are randomly generated. Each program in the population
represents a potential solution to the problem or task at hand.

• Evaluation: The fitness of each program in the population is evaluated
using a fitness function that measures how well the program solves the
problem or performs the task. The fitness function can be based on a range
of criteria, such as accuracy, speed, or efficiency.

• Selection: Programs with higher fitness scores are selected to move on to the
next generation of programs. The selection process can be based on various
selection methods, such as tournament selection or fitness proportionate
selection.

• Genetic Operators: The selected programs are then subjected to genetic
operators, such as crossover and mutation. Crossover involves swapping
genetic material between two programs to create new programs, while
mutation involves making small changes to the genetic material of a single
program. The new programs created through these genetic operators form
the next generation of programs.

This process is iterative, meaning that it involves the repeated application of
these steps to generate and improve programs over multiple generations. The
goal is to evolve programs that are efficient, effective, and optimized for the
specific problem or task. The process continues for several generations until a
stopping criterion is met. The stopping criterion can be based on various factors,
such as a maximum number of generations or a target fitness score. Once the
stopping criterion is met, the best program in the final generation is selected as
the solution to the problem or task at hand.

3
State of the Art

In this chapter, the state-of-the-art on the topics related to this thesis are pre-
sented. As mentioned, the goal of this study is to solve current challenges in the
deployment process of software in CPSs, focusing on the analysis of the perfor-
mance of the system in the real operation environment. Thus, first the literature
review methodology is introduced in Section 3.1, then, the current literature on
software deployment in CPSs is analyzed in Section 3.2 and performance testing
methods in CPSs in Section 3.3. Finally, the performance prediction approaches
in the literature are analyzed in Section 3.4 and the state-of-the-art is critically
analyzed in Section 3.5.

3.1 Literature Review Methodology

In this section, the methodology followed to develop the literature review on the
aforementioned topics is explained.

3.1.1 Definition of Research Questions

To guide the search for relevant studies in the analyzed field it is necessary to
identify clear and specific research questions to answer through the review. The
Research Questions (RQs) established were the following:

3.1.1.1 Software Deployment

• Which tools permit modeling remote software deployment?

• Which aspects of the deployment process allow these tools to be modeled?

• Which are the current challenges of software deployment?

29

30 3.1 Literature Review Methodology

3.1.1.2 Performance Testing on CPSs

• Which performance metrics do the found works consider?

• Which techniques do they use to test system performance?

3.1.1.3 Performance Prediction

• Which metrics do the proposed approaches consider when predictiing
performance?

• Which techniques and training strategies do these works use?

3.1.2 Search Process

To conduct a comprehensive search it is necessary to use a range of relevant
databases, such as Scopus, Web of Science, and Google Scholar. The aim is to
identify studies that address the RQs by using a combination of keywords and
boolean operators to refine the search and identify relevant studies.

A set of search strings to be used on different scientific databases were defined
with the aim of identifying conference proceedings and journal papers since
2015. The search engines used to find the papers were Scopus and Google
Scholar. In the case of software deployment tools, besides published papers,
commercial tools commonly used in industry were also studied. In addition, once
the works considered relevant to this research were identified, some references
of the selected studies and other studies citing these studies were also identified
to find additional papers not emerged with the followed process.

The search string built to find the papers related to the topics of interest in
this Ph.D. were the following:

3.1.2.1 Software Deployment

• (“Software” AND “Deployment”) AND (“Tool” OR “Challenges”)

3.1.2.2 Performance Testing on CPSs

• “Performance” AND (“testing” OR “Validation” OR “Verification”) AND
“Cyber-Physical Systems”

3.1.2.3 Performance Prediction

• “Performance” AND “Prediction”

State of the Art 31

• “Environment” AND “Knowledge Extrapolation” AND “performance”
AND “software”

3.1.3 Inclusion Criteria

After identifying the studies, it is necessary to screen them to determine if they
meet the criteria established to include them. A first screen is done by reading
the titles, a second screen is done by reading the abstracts, and finally, the full
texts are read to determine their relevance.

3.1.3.1 General Criteria

• The publication should be written in English.

• The publication should be “journal”, “conference proceeding” or “technical
paper”.

• The reader should clearly deduce by reading the abstract and the conclu-
sions the topic of the paper.

3.1.3.2 Software Deployment

• The publication should present a novel tool to deploy software on IoT/Em-
bedded devices.

• The publication should clearly detail the characteristics of the proposed
tool.

3.1.3.3 Performance Testing on CPSs

• The approach is focused on CPS performance testing or evaluation.

3.1.3.4 Performance Prediction

• The work evaluates a method to develop a performance prediction model
for CPS/Embedded systems.

• The study presents a novel technique to extrapolate knowledge through
different environments.

32 3.2 Software Deployment in CPSs

3.1.4 Data Collection

Once a set of papers is included in the review, it is necessary to analyze the data
from the studies and extract the needed information to answer the aforementioned
RQs. Thus, it is possible to evaluate the quality of the studies by analyzing the
methodology, sample size, and bias of the work to identify patterns, trends, and
inconsistencies.

3.1.4.1 Software Deployment

• Full reference (authors, title, journal or conference and year).

• Institution or institutions belonged to the authors.

• Features provided of the proposed deployment tool.

3.1.4.2 Performance Testing on CPSs

• Full reference (authors, title, journal or conference and year).

• Institution or institutions belonged to the authors.

• Characteristics of the proposed performance testing technique.

• Case study (if proposed) or example (if available).

3.1.4.3 Performance Prediction

• Full reference (authors, title, journal or conference and year).

• Institution or institutions belonged to the authors.

• Techniques and training strategies used.

• Characteristics of the proposed knowledge extrapolation technique.

3.2 Software Deployment in CPSs

Software deployment is the moment in which a new software release is put into
operation by loading it to its execution environment and running it. Automated
deployment is beneficial for large distributed applications, such as multi-cloud
platforms and Edge systems. However, CPSs lack platform homogeneity, making
integration and automation of the development process complex. Furthermore,
using commercial tools designed for different systems may not be viable in CPSoS
due to safety and security standards.

State of the Art 33

On the one hand, there are a number of tools that permit automating the
deployment of software such as CI/CD automation servers, which allow the inte-
gration of various tools and techniques. Software repositories, frameworks, build
tools, testing environments, container-based virtualization, CI tools, domain-
specific languages, or executable registry services are some of the tools that these
automation servers allow to integrate. However, these capabilities are usually
enabled by plugins or the implementation of specific code to take some actions.
This requires developers to learn to use different tools or develop additional code,
making the process complex. Among these tools, some of the more used are
Jenkins¹, Circle CI², Travis CI³ or Bamboo⁴.

On the other hand, there are other tools that are more specifically meant
for the deployment process on Edge platforms, which permit additional features
for modeling deployment actions and offer greater usability for this purpose.
In this category, there are widely used commercial tools and tools that are
being newly developed by the research community. Table 3.1 shows a list of
software deployment tools and the different aspects of deployment that can be
modeled by each tool. Within the commercial tools, a set of widely used tools are
listed, including XL Deploy⁵, UrbanCode Deploy⁶, Octopus⁷, GoCD⁸, AWS
IoT Greengrass⁹, Microsoft Azure IoT Hub¹⁰, and Eclipse Hawkbit¹¹. Within
research tools, there are a variety of tools in scientific publications, but only the
ones that provide enough details about their capabilities were included. These
are GeneSIS [21], SMADA [50], URANO [57] and LE-DAnCE [51].

The aspects of interest to be modeled in software deployment have been
extracted based on the taxonomy of Design-Operation Continuum requirements
for CPSs presented in Section 2.1 and adding some other aspects of interest
identified during the review of the characteristics of the different tools:

• Pre-conditions: checking some conditions are met before starting the
deployment.

• Post-conditions: conditions to be verified after the deployment is completed
to ensure the process succeeded.

• Features: hardware, software, and communication interface requirements
or/and the allocation of the artifact.

¹https://www.jenkins.io
²https://www.travis-ci.com
³https://www.travis-ci.com
⁴https://www.atlassian.com/software/bamboo
⁵https://legacydocs.xebialabs.com/xl-deploy
⁶https://www.ibm.com/cloud/urbancode/deploy
⁷https://octopus.com
⁸https://www.gocd.org
⁹https://aws.amazon.com/es/greengrass
¹⁰https://azure.microsoft.com/es-es/products/iot-hub
¹¹https://www.eclipse.org/hawkbit

34 3.2 Software Deployment in CPSs

• Rollback: establishment of a rollback policy in case of deployment failure.

• Availability: Availability of the device during deployment (e.g., maximum
downtime of the device to perform the deployment).

• Resources: Hardware, software (e.g., installed OS) and communication
networks (e.g., CAN, Ethernet) that the deployment subsystem is going
to deal with.

• Repository: requirements for the artifact storage system.

• Orchestration: the ability to automate the process.

• Configuration: configuration files to determine the behavior of config-
urable artifacts.

• Dependencies: establishment of dependency relationships between arti-
facts.

• Monitoring: specifying the metrics to be monitored during and after
deployment.

Table 3.1 shows that the main gaps of the current deployment tools are the
verification of the state of the infrastructure before the beginning of the deploy-
ment process (i.e., PRE-CONDITIONS), the establishment of requirements
for the availability of the system during deployment (i.e., AVAILABILITY) and
the validation of the system after the deployment process finishes (i.e., POST-
CONDITIONS). In this sense, SMADA does have the capacity to establish
some requirements to trigger changes in the system but does not focus on error
detection but on adopting different deployment strategies to avoid bottlenecks.
Therefore, it can be observed that current deployment tools do not focus on
performance error detection after a software is deployed.

Other tools have addressed the challenge of detecting errors on the deploy-
ment process, mostly for Cloud environments.

Gandalf [38] is a service whose objective is to detect errors on cloud rollouts to
stop them before they cause major failures. To this end, it continuously monitors
a wide range of infrastructure data (performance data, failure signals, and update
events) to detect anomalies. It uses time-series analysis techniques to predict
expected performance and if a certain threshold is exceeded it is considered an
anomaly. When any anomaly is detected it determines if the anomaly is caused by
a rollout or not by means of correlations. Finally, it uses a Gaussian discriminant
classifier to decide whether the impact caused by the deployment is significant
enough to stop it.

FUNNEL [69] is a tool that collects performance metrics for each software
change (i.e. software update or configuration change) to detect behavior changes.

State of the Art 35

Table 3.1: Overview of the characteristics of the available deployment tools

PR
E-

C
O

N
D

IT
IO

N
S

PO
ST

-C
O

N
D

IT
IO

N
S

FE
AT

U
R

ES

RO
LL

B
AC

K

AV
A

IL
A

B
IL

IT
Y

R
ES

O
U

R
C

ES

R
EP

O
SI

T
O

RY

O
R

C
H

ES
T

R
AT

IO
N

C
O

N
FI

G
U

R
AT

IO
N

D
EP

EN
D

EN
C

IE
S

M
O

N
IT

O
R

IN
G

C
om

m
er

ci
al

XL Deploy X X X X

UrbanCode X X

Octopus X X

GoCD X X

Hawkbit X X

Microsoft Azure X X X X

AWS IoT Greengrass X X X X

R
es

ea
rc

h

LE-DAnCE X X X X X X

URANO X X X

GeneSIS X

SMADA X X X X X X X

It uses a Singular Spectrum Transform (SST) algorithm for the detection and a
Difference-in-Difference (DiD) method, where it compares the relative perfor-
mance of the treated group and a control group, to decide if the software change
is the cause of the behavior change.

Liao et al. [39] proposed a method to detect performance errors of a software
based on learning from its previous version. It uses different ML techniques
and Neural Networks to build a model able to predict the CPU usage of the
system based on its workload, and in case a certain threshold is exceeded, the
version is considered faulty. The authors conclude that the traditional ML models
outperform the deep neural networks (e.g., CNN and RNN) for modeling the
performance of the studied systems and that the model is able to accurately predict
the performance of the system under new unseen workloads.

SCWarn [71] is a system that focuses on using multi-modal anomaly de-
tection for heterogeneous multi-source data. First, heterogeneous data is trans-
formed into unified time series using log parsing. Then, anomalies are detected
using a multi-modal LSTM model, capturing temporal dependencies and inter-
correlations. When an anomaly score breaches the alerting rule, engineers are

36 3.3 Performance Testing on CPSs

notified with an analysis report. The action decision component identifies suspi-
cious changes, allowing engineers to take proactive actions, such as rollbacks, to
prevent service outages.

3.3 Performance Testing on CPSs

Performance testing consists of validating the behavior of the system in terms of
performance metrics, such as energy consumption, response time or resource
utilization. Performance testing has been more commonly used in cloud-based
applications as they usually gather a large number of services and users, which
contributes to the appearance of bottlenecks [40]. This field is already covered
by commercial tools, such as NewRelic ¹², AppDynamics ¹³ and Dynatrace ¹⁴.
However, as embedded applications increase in complexity resource-saving gets
more important, and the performance of these applications gains attention among
researchers.

A systematic literature review conducted by Muccini et al. on Self-Adaptive
CPSs in 2016 [44] showed that the efficiency/performance of CPSs was the
biggest concern to adapt a CPS. More recent reviews like the one performed
by Oudina et al. on Cyber-Physical Production Systems Testing [48] show that
lately the focus on CPS testing has shifted towards cyber-security [5, 54, 66],
but performance remains one of the main concerns.

Performance evaluation is considered across all the life-cycle stages in Cyber-
Physical Systems, from development to operation.

In the software development phase, early feedback and guidance on imple-
mentation decisions relevant to performance is valuable for developers to take
design actions or to avoid errors to propagate.

Balasubramaniyan et al. [11] proposed a methodology to design and verify
CPSs with the aim of optimizing their reliability and performance. They used
an evolutionary algorithm to search the optimal configuration of the controller
to enhance performance while maintaining the jitter within certain margin. The
aim is to design the CPS to guarantee compliance with performance requirements
in the presence of timing delays induced due to CPS components. The controller
parameters are afterward validated by simulating the CPS for a given scheduling
policy and network protocol. The conditions that fail can be then used to modify
the design. After applying the proposed methodology in an industrial mine pump
example, they conclude that the CPS design is a trade-off between jitter margin
and achievable performance, and the best trade-off was obtained by modeling
the design problem as a multi-objective optimization problem.

¹²https://newrelic.com
¹³https://www.appdynamics.com
¹⁴https://www.dynatrace.es

State of the Art 37

Song et al. [62] proposed a virtual testing environment to assess the perfor-
mance of CPSs, which can simulate several configurations in parallel and identify
the ones that lead to the best and worst performance. The authors make use
of model-order reduction and distributed simulations along with the Particle
Swarm Optimization method to find the optimal configurations to improve
domain-specific Key Performance Indicators (KPIs) in a large configuration
space in an efficient manner.

As stated in Section 2.3, performance bugs are difficult to detect in lab. Thus,
once a CPS is running in the production environment, it is necessary to continue
monitoring and validating its performance.

Reif et al. [55] proposed ∆elta, a tool to analyze and correlate the runtime
performance and energy demand of individual Cyber-Physical System com-
ponents and provide useful information for the design, implementation, and
evaluation of CPS networks. It can extract the impact of specific code or hard-
ware configurations in the end-to-end latency and analyze the relation between
energy demand and performance.

Markoska et al. [42] proposed a performance testing framework oriented
to smart buildings, which is offered as a service in the cloud and considers
performance metrics such as power consumption or timing constraints. The
aim is to test the performance of the system once it is deployed, as performance
may vary from expected due to environmental changes or software degradation.
Offering the service in the cloud allows many systems to have access to the
service so that they can subscribe to the services (tests) they may need and
sending their instrumented metrics as input data for those tests. In a more recent
work on the same topic, Jradi et al. presented ObepME [32], a method to detect
performance degradations in smart buildings, which leverages a commercial tool
called EnergyPlus¹⁵ which provides building modeling capabilities to predict
the expected energy consumption of the different elements in the building and
compare it with the actual consumption.

3.4 Performance Prediction

Performance prediction consists of predicting the performance of a system in
different environmental conditions to obtain a reference value of the expected per-
formance of the system. This is an issue in CPSs due to their high configurability
and the heterogeneity of their environments.

Zhang et al. [70] proposed a methodology to estimate the performance of
embedded software for RISC-V processors using NNs. The authors propose
generating and executing a set of softwares with different features to train a

¹⁵https://energyplus.net

38 3.5 Critical analysis of the State of the Art

performance model using ANN. The training data consists of the number of
each type of processor instructions as features and the number of processor cycles
as the label.

Ye et al. [68] used deep learning models to predict the energy consumption of
a building using occupancy data collected from sensors. They built a hardware-
based emulation platform to emulate the behavior of the building and extract
the occupancy and energy consumption data to train an enhanced LSTM neural
network.

As mentioned, CPSs operate in very heterogeneous systems, which prevents
testing the system under every possible situation. Thus, it is necessary to find
ways to predict the performance of the system in unseen environments. The
following works focus on predicting the performance of software extrapolating
knowledge from some environments to others.

Javidian et al. [30] performed different correlations between performance
measurements made in different environments to detect which environmental
values were linearly transferable. Jamshidi et al. [29] also proposed predicting
software performance based on the learning made from a sample of configurations,
but they include a method to learn which configuration options are most relevant
to performance so that the learning process is more efficient.

Duttagupta et al. [19] propose a method to predict the performance of an
application with high workloads based on the learning performed with small
workloads. The proposed approach is able to predict the response time, through-
put, and resource usage of applications as well as the bottlenecks or maximum
load level affordable by the system. The system can extrapolate the throughput of
applications until 6000 users from the throughput and resource usage for 50-400
users. The system uses linear regression and S-curve techniques and is evaluated
with different configurations and workload scenarios.

3.5 Critical analysis of the State of the Art

In this section, the current state of the art in the presented topics is critically
analyzed, with the aim of detecting potential research opportunities.

Regarding software deployment tools, in Table 3.1 was shown that current
commercial deployment tools lack post-deployment monitoring and validation
capabilities. Instead, newly developed research tools consider these features nec-
essary and include some monitoring capabilities. However, only one tool permits
taking some post-deployment actions based on these data, and the validation
techniques are limited.

Besides, some works that aim at detecting performance errors after software
deployments were mentioned, which are meant for cloud environments. The

State of the Art 39

mentioned Gandalf [38] and FUNNEL [69], are tools that need multiple com-
ponents to be deployed in multiple nodes to correlate their metrics and decide
whether the deployment is the cause of the anomalous behavior. This may not
be feasible for CPSs, as the environment (e.g., workload and configuration) in
which these CPSs are deployed are very heterogeneous, so performance metrics
of different CPSs may differ significantly, so it may not be possible to correlate
their data.

The work presented by Liao et al. [39] proposes building a performance
model from previous version data to establish a baseline on the expected CPU
consumption of the new version to decide whether the new version works cor-
rectly or not. This work infers the workload of the studied systems based on
the generated logs. This approach is not feasible in a CPS context where each
system may be running under different configurations or environmental condi-
tions, which are not extracted from log files, and are modifying the performance
behavior of the system. Furthermore, it does not make any considerations on the
resource utilization of the generated models, which is paramount in this domain.

The last work in this category, developed by Zhao et al. [71] uses an unsu-
pervised learning approach to model relations between multi-source data (e.g.,
performance, application logs, etc.). To relate different environmental condi-
tions to the performance metrics a supervised approach may be necessary in this
context.

Regarding performance testing in CPSs the works by Balasubramaniyan et
al. [11] and Song et al. [62] were more focused on optimizing the configuration
of the CPS in terms of performance in the design phase rather than detecting
performance bugs. The works which focused on performance bug detection
in operation, the works by Markoska et al. [42] and Jradi et al. [32] propose a
performance testing approach to test the energy consumption of smart build-
ings. However, in the former, the thresholds to consider the behavior of the
consumption of the building abnormal were established on a regulatory basis,
not in an analysis of the expected performance of the building. On the latter,
they used a tool to calculate the expected performance of the building but they
do not give insights of the accuracy of this prediction to known data, and they
use an arbitrarily selected threshold of 20% to consider an abnormal behavior.

Finally, in the field of performance prediction different works aimed at build-
ing performance models to obtain the expected performance of embedded/Cyber-
Physical systems. Zhang et al. proposed predicting software performance based
on the processor instructions generated for each software. This would imply
constantly monitoring the processor instructions executed by the CPS, which
implies a complex monitoring system for a remote device with limited resources.

The works by Jamshidi et al. [29] and Javidian et al. [30] focus on detecting
which configuration options may be relevant to extrapolate performance from

40 3.5 Critical analysis of the State of the Art

one environment to another, rather than investigating different techniques to
build the most accurate performance model. In this thesis, the collaboration of
an industrial partner is available, who can give us detailed information about the
configurations affecting the performance of the software. Thus, the focus can be
on the research of different techniques to build the model.

Duttagupta et al. [19] proposed predicting the performance of software by
extrapolating knowledge from low workload measurements to high workload
contexts. This may not be useful in highly configurable contexts, where con-
figuration changes or certain working modes may be activated when a high
workload is detected, changing the behavior of the software.

In summary, there is a need for integrating post-deployment validation
capabilities in deployment tools, specifically for performance validation, which is
more widely considered for cloud applications than for CPS/embedded domains.
When testing performance in CPSs, the main challenge is to precisely establish
the expected performance of the system in heterogeneous environments to detect
when a fault occurs. Many cited works do not consider the possibility of running
the software in heterogeneous environments, which would be a limitation in this
case. The works which consider extrapolating knowledge among environments,
investigate ways to detect configurations affecting performance, but do not
research on different techniques to build performance models and do not consider
resource utilization considerations, which is necessary for a resource-constrained
domain such as CPS.

4
Theoretical Framework

In this chapter, a general overview of the contribution of this thesis is provided.
First, the research objectives of the work are defined in Section 4.1 as well as
the hypotheses to be confirmed in Section 4.2. Then, an overall overview of
the theoretical framework proposed to fulfill these objectives and hypotheses
is given in Section 4.3, and finally, the case study that was used to validate the
effectiveness of the proposed solution is explained in Section 4.4.

4.1 Objectives

This study aims at detecting performance issues in CPSs after a software is
deployed. To do so, the aim is to obtain the expected performance of the system
and compare this reference value with the actual performance of the system, so
that it can decide if the system is working correctly or not. This deployment and
validation mechanism was developed following a microservice architecture to
ease the deployment of all the needed components and make the method flexible
and scalable.

Within this global objective, the following sub-objectives were considered:

• Objective 1: Development of a performance prediction model able to
predict software performance for multiple environments.

• Objective 2: Development of a performance prediction model with low
resource consumption, so that its use is suitable in embedded systems with
constrained resources.

• Objective 3: Development of an Arbiter able to detect performance bugs
based on predicted and actual performance capable of detecting different
types of errors.

41

42 4.2 Hypotheses

• Objective 4: Integration of the Performance Oracle in a microservice-based
CD mechanism to deploy the software and necessary tools to perform its
post-deployment validation.

4.2 Hypotheses

The hypotheses to be confirmed during this study are the following:

• Hypothesis 1: It is possible to accurately predict the performance of a CPS
in certain environment based on knowledge obtained from the execution
of the previous release in the same environment.

• Hypothesis 2: It is possible to accurately predict the performance of a CPS
on a certain environment based on knowledge obtained from the execution
of the software on other environments.

• Hypothesis 3: Data obtained from the monitoring of real environments is
more appropriate to train performance models than laboratory data.

• Hypothesis 4: It is possible to create a high-accuracy performance predic-
tion model with low resource consumption.

• Hypothesis 5: It is possible to detect different types of performance bugs
in a software based on different metrics.

4.3 Overview

Figure 4.1 shows a general overview of the methodology for detecting perfor-
mance bugs on software updates in CPSs. The following phases summarize the
whole process:

• Monitoring: The aim of the monitoring phase is to obtain the necessary
data to train the Performance Model. This phase consists of two steps:

– Input data: In this step the input data that is used to execute the
studied software is obtained. In this Ph.D. the use of two types
of data is considered: theoretical data and real data. To obtain the
former, a domain-specific simulation tool is used, which generates
simulated data to execute the software. For the latter, it is necessary
to monitor a real operation environment and extract the data from
its real execution.

– Performance metrics: Once the input data for the software is available,
in the performance metrics monitoring step the software is executed

Theoretical Framework 43

Figure 4.1: Overview of the method developed in the Ph.D.

44 4.4 Case Study: Orona’s Dispatching Algorithm

with these data in different platforms to obtain its performance metrics.
This study considers the execution time of the software as the perfor-
mance metric to study, and also considers executing the software on
two different platforms: SiL and HiL platform.

• Training: This phase aims at creating a Performance Model by means
of the data obtained at the monitoring phase. This phase includes the
following steps:

– Pre-processing: In this step, the input data is prepared to be used for
training the Performance Model. This includes transforming the data
to obtain a set of features to train the model, cleaning the data to
remove outliers, splitting the data into a training and testing set, or
selecting the most relevant features.

– AI techniques: In this step, the different AI techniques to build the
most suitable Performance Model are investigated. These techniques
include ML, NN, and GP. These techniques were used with different
training data obtained from the monitoring phase (i.e., theoreti-
cal/real, SiL/HiL) to analyze the impact of the different techniques
and data on the performance of the model.

• Oracle microservice: The Performance Oracle is built in the form of a
microservice, composed of two components:

– Performance Model: The Performance Model is built in the train-
ing phase and predicts the performance of the new software version
based on its input data. It is built so that it can predict the perfor-
mance of the software in different environments and considering its
resource utilization, as it will be executed in a resource-constrained
environment.

– Arbiter: The Arbiter is the component that compares the prediction
of the Performance Model to the actual performance of the new
software version to decide if there is a performance error or not. It
considers different metrics and applies different thresholds to detect
different error types.

The Performance Oracle is evaluated by executing faulty versions of the
software and measuring its correct and incorrect verdicts.

4.4 Case Study: Orona’s Dispatching Algorithm

The case study used to evaluate the proposed method has been the dispatching
algorithm of Orona. Orona is a company dedicated to the design, manufactur-
ing, installation, and maintenance of elevators, escalators, and moving ramps.

Theoretical Framework 45

Elevators are complex CPSs composed of different subsystems that collaborate to
transport passengers vertically in a building. In Figure 4.2 an elevator installation
in a building can be seen.

Figure 4.2: Overview of the architecture of an elevator installation from Orona

Controllers are in charge of managing both the vertical (from floor to floor)
and the horizontal movements (doors opening and closing) of a single elevator.
The traffic master is the software system in charge of the coordination of the
controllers to serve the floor calls requested by passengers. The main responsi-
bilities of the traffic master include the execution of the dispatching algorithm
(i.e., the allocation of passenger calls to any of the available cars) and the overall
system signaling (registration of the calls, information to the passenger), but it
can also carry out additional functionalities such as access control or management
of special operating modes.

The traffic dispatching algorithm is the software component that selects the
optimal elevator to serve a specific landing call. Thus, this component is critical
to ensure the QoS of the elevator installation because of many reasons. On the
one hand, the assignment of the landing calls has a direct impact on the AWT
and overall Journey Time (JT) of the passengers. On the other hand, it affects to
the energy consumption or transport capacity of the elevators.

The traffic algorithm constantly evolves to be adapted to particular installa-
tions, improving the assignment process by including new rules or using new
techniques such as artificial intelligence. Additionally, new criteria for the assign-
ment such as the number of stops, load balancing or energy consumption are
usually required for some installations.

46 4.4 Case Study: Orona’s Dispatching Algorithm

The traffic dispatching algorithm is executed periodically to allocate all the
active floor calls. Depending on the algorithm, already existing floor call alloca-
tions can be reallocated (to a different car) to optimize the overall cost function.
This means that the allocation process is highly dynamic as far as it depends on
the current system context. This fact, alongside other context situations such as
highly demanding traffic profile or a large number of floors, can result in a high
computing resource consumption on the allocation of landing calls in time. In this
sense, the traffic algorithm should allocate the complete set of active landing calls
in a limited time frame (execution time) to provide an acceptable QoS. Moreover,
the traffic algorithm is executed within a task that shares computing resources
with other tasks that provide the above-mentioned functionalities (signaling,
access control, etc.).

Thus, system performance monitoring is crucial to ensure a proper sys-
tem QoS. If such performance decreases, the overall system QoS degrades, and
additional hardware resources should be considered. A special type of traffic
algorithms in which performance is especially relevant is destination algorithms.
Unlike conventional algorithms, in which many passengers share the same up-
landing or down-landing call, in destination algorithms each passenger registers
his own call. This ”destination call” is composed of a landing call and a destination
floor, and more importantly, it remains active until the destination is reached.
Therefore, a destination algorithm requires managing each destination call indi-
vidually. Additionally, this type of dispatcher provides extra functionalities such
as access control, that could affect the execution time of the algorithm. Thus,
in high-population buildings, the amount of active calls can be huge and can
severely affect the system performance.

When a new version of the algorithm is released, performance under different
traffic conditions and installations must be checked to identify issues related to
poor implementation of new or improved functionalities. Usually, benchmark
installations with different numbers of floors and elevators, and some theoretical
passenger profiles are used to validate the new release. These profiles represent
some traffic demands for different types of buildings (offices, residential, hotels,
etc.) during different periods of the day. Most commonly used office profiles
include (1) Morning UpPeak, representing the entrance to the office in the
morning (2) LunchPeak, representing lunchtime, where there is a mix of pas-
sengers entering and exiting the building and (3) DownPeak, representing the
exit of the office in the afternoon. There are also full-day profiles that represent
the traffic in an office during a working day and therefore, include a morning
UpPeak, LunchPeak at midday and Afternoon DownPeak complemented with
some inter-floor traffic (passenger flow between different floors of the building)
during the morning and the afternoon.

However, detecting performance problems that could compromise execution

Theoretical Framework 47

time in a new release of the algorithm is a complex task due to the following
factors: (1) some functionalities of the algorithm are only activated under certain
traffic demands, keeping potential performance issues hidden. For example,
parking of empty elevators to heavy floors is only activated when a big demand
from that floor is given. (2) Performance is highly dependent on installation-
specific factors: number of controllers, number of floors in the building, etc. (3)
Performance is highly dependent on the passenger flow of each building. To
summarize, poor performance can be exhibited in some installations or traffic
conditions but not in others, which makes it difficult to validate the software
system. Reproducing all the real scenarios to analyze the potential performance
issues in the laboratory is unfeasible due to the effort it would mean. Moreover,
there is often a lack of actual traffic profile information and thus, it is not easy to
reproduce the operation conditions of the final installation in the laboratory.

Therefore, it is necessary to include monitoring and detection mechanisms
in operation to facilitate the detection of potential performance problems in a
particular installation. This way, when releasing a new version, potential perfor-
mance issues can be detected automatically before they compromise execution
time, and eventually, a rollback to a previous version could be performed.

5
The Performance Oracle

In this chapter, the Performance Oracle developed in this Ph.D. is introduced. A
test oracle is a mechanism to check whether a certain software results in correct
behavior or not by validating a set of conditions against certain inputs to raise
verdicts that determine if the defined conditions are being met.

The oracle developed in this thesis is a performance oracle, which is an
oracle focused on validating the behavior of a system in terms of performance,
which may include degradation in execution time, CPU usage, memory usage or
energy consumption. Specifically in this thesis, the Performance Oracle focuses
on detecting deviations in the execution time of a software.

With the growth of software complexity and resource-constrained applica-
tions, ensuring performance health is getting increasingly relevant. Beyond the
implications that performance errors may have in other less critical domains (e.g.
web pages), in CPSs these errors may lead to a miss of deadlines in critical tasks
that may be harmful to human lives. Besides, the identification of performance
errors brings some additional limitations when compared to functional error
detection. On the one hand, it is difficult to establish proper performance require-
ments, as determining the correct behavior of a software in terms of performance
for some given conditions is not obvious. On the other hand, performance issues
may be revealed only under very specific circumstances. This represents a big
problem in the domain of CPSs because of their high configurability and the het-
erogeneity of the environments where they operate, which makes it unfeasible
to test every possible situation in the lab.

As a response to these challenges, in this Ph.D., a Performance Oracle based
on AI techniques was developed focused on detecting performance errors in CPSs.
Different AI techniques have been studied to predict the expected execution time
of a software to use it as a baseline to be compared with the actual execution
time and look for deviations to give a verdict on the performance of the software.
This oracle is then constructed as a microservice to be easily deployed in any

49

50 5.1 The Oracle as a Microservice

environment.

In Section 5.1 its internal sub-components and communication interfaces
are detailed. In Section 5.2 its relationship with other components in the Adept-
ness architecture is described. The requirements it must fulfill to be usable in
CPSs are listed in Section 5.3, and in Section 5.4 how these requirements have
been validated is explained. Finally, in Section 5.5 the chapter is concluded by
summarizing its content.

5.1 The Oracle as a Microservice

The HORIZON2020 Adeptness project [1] has proposed a microservice-based
architecture that allows DevOps practices to be adopted in the context of CPSs.
Microservices permit building a flexible architecture where services can be reused
in different life-cycle stages and hardware, seamlessly deploying new services to
all the installations and scaling the system.

Each microservice within the proposed architecture shall be responsible for
a specific well-defined function in the life-cycle of a new software release and
shall provide different lightweight communication mechanisms.

Thus, in this section, the sub-components composing the Performance Oracle
are depicted as well as the interfaces it needs to interact with other microservices
on the Adeptness architecture.

5.1.1 Interfaces

Each microservice provides both synchronous (i.e., HTTP) and asynchronous
(i.e., MQTT) communication, offering a set of interfaces to interact with the rest
of the microservices. These interfaces include (1) General Interfaces, which are
common for every microservice within the system and permit configuring and
checking the status of the oracle as a generic component, and (2) Oracle Specific
Interfaces, which permit checking and configuring oracle-specific parameters. In
Figure 5.1 an overview of the interfaces of the oracle developed in the Adeptness
project is provided.

5.1.1.1 General Interfaces

All microservices within the architecture provide a set of basic asynchronous and
synchronous communication endpoints, regardless of the role of the microser-
vice. These endpoints offer basic information about the execution status, health,
and performance. The synchronous interfaces allow other services to request
microservices’ health status, while asynchronous interfaces allow microservices

The Performance Oracle 51

Figure 5.1: Synchronous and asynchronous interfaces of the Performance Oracle

to publish relevant data without knowing the receiver of the messages. The
following interfaces are provided by the template developed within the HORI-
ZON2020 Adeptness project [1].

5.1.1.1.1 Synchronous communication

• /adms/v2/ping [GET]: Ping service to check that the service is alive. Re-
turns an empty 200 response if the microservice is working correctly.

• /adms/v2/info [GET]: Provides basic information about the microservice.
It returns a JSON object containing the microservice ID and microservice
role within the architecture.

• /adms/v2/performance [GET]: Provides CPU and memory usage metrics.
It returns a JSON object containing the free and allocated memory and
the CPU usage.

• /adms/v2/status [GET, PUT]: Permits getting or changing the execution
status of the microservice. GET calls to this endpoint will return a JSON
object containing the status of the microservice. Changes to the microser-
vice status are performed by sending a JSON object with the desired state.
The possible states for the microservice are "Ready" and "Running".

5.1.1.1.2 Asynchronous communication

• /adms/v2/discovery [PUB]: On microservice launch, the microservice
publishes a hello message in this topic including the identifier, microservice
role, and its MQTT and REST endpoints, defined as a JSON object.

52 5.1 The Oracle as a Microservice

5.1.1.2 Oracle Specific Interfaces

Other interfaces are specific to the Oracle microservices, which permits them to
interact with the rest of the microservices to validate a software.

5.1.1.2.1 Synchronous communication

• /adms/v2/oracle/status [POST]: Get or change current oracle execution
status. As in previous status messages, a JSON object containing the current
or desired execution status is used.

• /adms/v2/oracle/inputs [POST]: Manage data inputs for the oracle. The
inputs contain the subscription topic, input index, data type and monitoring
rate, described as a JSON object.

• /adms/v2/oracle/urnbinding [POST]: Bind an evaluation function to the
Oracle URN at runtime

• /adms/v2/oracle/settings [POST]: Send custom settings to the oracle

5.1.1.2.2 Asynchronous communication

• adms/v2/oracle/OracleGroupURN/OracleURN [PUB]: Raise verdict from
the oracle conditions. A JSON object containing the verdict and its confi-
dence is published. Additionally, it includes the evaluation start and stop
times.

• /adms/v2/monitoring-agent/monitorId/subscriptionId: [SUB]: Get values
from monitor subscriptions.

5.1.2 Sub-components

This oracle consists of two main elements: (1) the Performance Model, which
yields the expected performance for the system, and (2) the Arbiter, which
compares the performance obtained by the model with the actual performance
to raise a verdict. In Figure 5.2 an overview of the components of the oracle and
their relation are depicted.

5.1.2.1 Performance Model

The Performance Model is the component in charge of receiving the input data
of the studied software and uses these data to make a prediction on the expected
performance of the software in those conditions. This model can be obtained by

The Performance Oracle 53

Figure 5.2: Overview of the sub-components of the Performance Oracle

means of different techniques to fit the use case in terms of prediction accuracy
or other criteria such as resource consumption.

To train this Performance Model is necessary to have access to data from
previous software version executions. This requires the data to be obtained from
an error-free version of the software and the need to include performance data
for several different conditions.

Once the model is trained, it can predict the performance of the new software
version. The data monitored from the execution of this new version provides
the input data for every cycle of the software to the trained performance model,
which predicts the performance of the system so that the Arbiter can use these
data to detect errors.

5.1.2.2 Arbiter

The Arbiter is the component that (1) receives the execution time predicted by
the Performance Model and (2) the actual execution time of the studied software
and computes different calculations to detect deviations in the performance of
the software and raise a verdict. These calculations consider different metrics
obtained from the performance data, as these errors may affect the system in
different ways: some errors may be punctual errors manifested when specific
situations arise, while other errors may degrade the performance of the system
more persistently.

5.2 The Oracle in the Adeptness Architecture

This section describes how the Performance Oracle interacts with the other
microservices in the Adeptness architecture (presented in Section 2.2) to perform
the validation of a new software version. In this sense, three different steps are
identified: the deployment of the oracle, its configuration, and its execution.

54 5.2 The Oracle in the Adeptness Architecture

5.2.1 Deployment

In Figure 5.3 an overview of the deployment process of the Performance Oracle
is shown. When the Automation Server detects that a new deployment plan
is available in the repository, this deployment plan is provided to the Deploy-
ment Orchestrator. This deployment plan must specify the location where the
new software and the oracle must be deployed. The Deployment Orchestrator
communicates the specific deployment tasks to the Deployment Agent in the
edge node where the oracle will be deployed so that it downloads the Oracle
microservice and starts its execution. The oracle can be deployed as an executable
or containerized, but containerization is recommended to gain in isolation of the
microservice. Once the oracle is deployed, the Deployment Agent makes a ’ping’
call to the Performance Oracle to check it is correctly deployed and running.

Figure 5.3: Overview of the deployment process of the Performance Oracle

5.2.2 Configuration

Once the oracle is deployed, it must be configured to perform the validation of
the software. This configuration is established in the validation plan. In Figure
5.4 the configuration process of the oracle is depicted. The Automation Server
provides the validation plan, where all the validation activities are specified, to
the Validation Orchestrator. The Validation Orchestrator communicates the
specific validation tasks to the Validation Agent in the edge node where the

The Performance Oracle 55

oracle is deployed so that it can configure it with the appropriate parameters.
The configuration needed by the oracle is the topic to which it must subscribe
to receive the input data with which it can give a verdict.

Figure 5.4: Overall overview of the configuration of the Performance Oracle

5.2.3 Execution

Once the Performance Oracle is deployed and configured, its execution starts
with the subscription to the topic provided by the Validation Agent and the
reception of its publications. For each publication received with input data of
the software, a verdict is provided. In Figure 5.5 the whole message exchange of
the oracle with the mentioned microservices is shown.

5.3 Requirements

In this section, the requirements that must be met by the Performance Oracle to
be useful in the CPS context are described.

It is necessary for software projects that the effectiveness of the process used to
test it is guaranteed, so the quality of the test oracle generated has to be measured
and should fulfill a series of requirements. In this sense, two sets of requirements
were identified: (1) mandatory requirements, which always need to be met in
order to be useful in the context of CPSs, and (2) additional requirements, that

56 5.3 Requirements

Figure 5.5: Sequence diagram of the execution of the Performance Oracle

even though they are not strictly mandatory, would make the oracle more usable
and easier to implement.

5.3.1 Mandatory Requirements

This is the set of requirements that must necessarily be met by the Performance
Oracle:

• Usable in operation: As previously mentioned, performance errors are
likely to appear in operation, so it is necessary to continue testing the system
once it is deployed in operation. Thus, the testing of new software should
go through different test phases from simulation to validation in the real
environment. Consequently, the Performance Oracle should be seamlessly
deployed, configured, and executed in all test phases, which include (1) the
SiL test phase, (2) the HiL test phase, and (3) Operation. The first one refers
to the execution of the test in an environment where all the components
of the plant are simulated. In the second, the software is deployed in the
real hardware, and real elements of the plant are also included. Finally,
the testing in operation occurs once the software is deployed in the real
environment.

• Prediction accuracy: As an AI-based oracle, a relevant factor when de-
tecting the performance error present in a software is the precision with

The Performance Oracle 57

which the Performance Model is able to predict the expected performance
of the software. Thus, the Performance Model is a crucial component in
the oracle and its accuracy should be high enough so that decisions are
taken with the most appropriate information, especially in the context of
CPSs.

• Lack of impact on the system: As stated, CPSs operate in an environ-
ment where computational resources are limited and timing requirements
can be highly stringent. If the tasks executed in this context are too
resource-consuming, the system may crash or degrade its execution. There-
fore, the oracle should be optimized in terms of resource consumption in
this context. In this sense, the biggest influence on the resource consump-
tion of the oracle is the Performance Model.

– Inference time: If the execution time of the Performance Model is too
long, the rest of the tasks executing on the system may miss their
deadlines. Therefore, the Performance Model should be executed in
a time span that allows the rest of the tasks of the system to continue
working properly.

– Footprint: The resource constraints also apply to the field of memory
capabilities. Thus, the Performance Model should have a reduced
footprint so that other tasks can perform correctly without a memory
overflow.

• Error detection rate: In the final step of its execution, the Arbiter shall
raise a verdict, declaring if the software gathers any performance error
within it, by using the performance predicted by the model as a baseline. If a
”FAIL” verdict is raised, the software is cataloged as faulty, and presumably,
a rollback mechanism may be initiated and the engineers shall start looking
for the bug causing this performance dysfunction. In case this verdict is
incorrect, which means the software is error-free, this would mean that
high efforts in human time and economic resources are being made for no
reason. On the other hand, if the verdict raised by the oracle is ”PASS”, but
the software is having an anomalous behavior that is not being detected,
the faulty software will continue executing with the risk of degrading the
behavior of the whole system.

5.3.2 Additional Requirements

Below the additional requirements that despite not being mandatory, make the
oracle more usable in practice are listed:

• Multi-environment: CPSs are highly configurable systems that operate
in many different environments. Each installation has its own characteris-

58 5.4 Evaluation

tics, with different setups of the system or different workloads. Therefore,
it is recommended for the Performance Oracle to be able to maintain its
capabilities across multiple environments, so that it is not necessary to build
a new oracle for every installation.

• Interpretability: One of the reasons why AI is not being applied in
industry as much as expected is that these AI models are commonly black
boxes, which do not give any insight into the reason why they are making
their decisions. This makes industrial actors cautious about giving these
techniques control over decisions that may affect the business results of the
company. As a consequence, the aim of making these models interpretable,
so that they give some traces of the rationale of their decisions, has grown
recently. Thus, the decisions of the Performance Model should be traceable
so that some insights into the reasons why a ”PASS” or ”FAIL” verdict is
raised can be obtained.

5.4 Evaluation

As previously mentioned, it is necessary to guarantee the quality of the test oracle
by ensuring it fulfills certain requirements. In this section, how the requirements
established in Section 5.3 must be evaluated is described.

In this evaluation, it is necessary to check the characteristics of the Perfor-
mance Oracle in the testing process of real software. To do so, it is necessary to
train the Performance Model with data from previous versions of this software
considered to be error-free and domain experts need to configure the Arbiter
with the proper parameters for the specific use case. Once, the oracle is built, a
set of faulty versions of the software must be created with performance errors
injected in them to measure the capacity of the oracle to detect them. These
faulty versions go through the SiL and HiL test phases along with the Perfor-
mance Oracle, and the effectiveness of the oracle throughout this process has
been measured.

To follow this evaluation process and prove that the Performance Oracle
is suitable for a real industrial case, the use case from Orona (Section 4.4) has
been used. Specifically, data from a complex building installation that Orona
typically uses to validate dispatching algorithms was used, which is related to a
real installation named the Communication City, in Madrid. The building has
a total of 10 floors and 6 elevators, each having a capacity of 1250 Kg weight
and 16 passengers. Orona has relevant data obtained from this installation in
operation, which can be used to build and evaluate the Performance Oracle.

The data to train the model was obtained by executing the dispatcher with
data from this installation in the SiL and HiL platforms of Orona, and the Arbiter
was developed by consulting the experts from the company.

The Performance Oracle 59

The requirements established in the section 5.3 were evaluated as follows:

• Usable in operation: Evaluating the oracle in a real installation to check
its suitability to this context would be too complex so the evaluation of the
oracle included SiL and HiL test levels. However, real data obtained from
the City of Communications has been used to test the system. Furthermore,
the HiL test level is considered to be sufficiently close to the Operation
stage to be representative of its behavior in this final step.

• Prediction accuracy: As stated, the Performance Oracle needs to obtain
accurate predictions of the expected performance to be able to detect perfor-
mance errors appropriately. Thus, it is necessary to monitor the predictions
of the Performance Model and compare them with real performance met-
rics from the version of the dispatcher used to obtain the training data. The
metric analyzed is the Mean Absolute Percentage Error (MAPE), which is
easy to interpret and abstracts the developer from the scale of the data.

• Lack of impact on the system: As mentioned, it is necessary to limit the
impact of the Performance Oracle in the system by minimizing its resource
consumption in two terms, mostly focusing on the Performance Model:

– Inference time: The Performance Model was monitored to check the
time it requires to make its predictions. If this time is larger than what
the system can handle, this model needs to be modified to reduce its
impact. In the case of the dispatching algorithm, it is executed every
500 ms. As the oracle should give a verdict for every cycle of the
dispatcher, the prediction time must be below this value.

– Footprint: The footprint of the model can be checked before execution,
and it is compared with the available memory in the testing platform
to verify if it meets the memory requirements of the system.

• Error detection rate: To validate the error detection rate of the oracle
the Performance Mutation Testing approach [17] was used, which was
followed to systematically build faulty versions of the dispatcher with
performance errors in it. These faulty versions are executed and the oracle
checks this data to decide wether an error exists or not.

• Multi-environment: This requirement implies the oracle not to be in-
stallation specific so it can adapt to different installations. To verify this
requirement, the Performance Model was trained with data from different
installations other than the City of Communications, and then data from
this installation was used to test the prediction accuracy of the model and
the overall performance of the oracle.

60 5.5 Conclusion

• Interpretability: Depending on the type of technique used to build the
Performance Model it gives more information on the causes of its predic-
tions. For example, GP techniques output a function relating the inputs to
the performance, which would help to understand the predictions of the
model.

5.5 Conclusion

In this chapter, the characteristics of the Performance Oracle were detailed. First,
the interfaces of the Performance Oracle and its internal sub-components were
described, Then, how it interacts in the field with the Adeptness architecture
was detailed. Afterward, the requirements it must meet to be usable in the CPS
context were listed and finally, an evaluation procedure to test the capabilities of
the oracle was established.

6
Performance Model

In this chapter, the process followed to build and evaluate the Performance
Model of the oracle is described. To build the Performance Model so that it
can accurately predict the performance of the system it is necessary to train it.
The training of the Performance Model involves providing it with a set of input-
output pairs, called the training data, which the model uses to learn patterns and
relationships in the data. The process of training the model involves adjusting
the parameters of the model so that it can accurately predict performance in
new conditions. This is done by using optimization algorithms that minimize
the difference between the predictions of the model and the true values in the
training set. Once the model is trained, it can be used for predicting performance
in new situations.

Building a prediction model is a complex process that requires the consid-
eration of various factors. The main factors to consider when building a good
prediction model include:

• Data quality: The data should be representative of the real-world situ-
ations the software may encounter and should be sufficient to train the
model effectively. In this sense, the effectiveness of two types of data is
explored: (1) data monitored in real environments and (2) theoretical data
generated synthetically in the lab.

• Features: The selected features should be relevant to the performance of
the system. Thus, it is necessary to explore the available data and combine
it with domain knowledge to choose the most adequate features.

• AI techniques: Different AI techniques have different strengths and weak-
nesses and are better suited to different types of problems. Thus, it is nec-
essary to explore different solutions for different use cases and choose the
one best fitting the established requirements.

• Evaluation criteria: It is important to use appropriate evaluation metrics

61

62 6.1 Training Data

that are relevant to the context and use them to compare different models
and select the most appropriate one.

In Section 6.1 the process of monitoring and pre-processing the data to train
the Performance Model is described, in Section 6.2 the different AI techniques
used to build the model are detailed, and in Section 6.3 the characteristics of
the model are evaluated. Finally, in Section 6.4 the chapter is concluded by
summarizing its content and exposing the extracted conclusions.

6.1 Training Data

As mentioned, the data used for training can have a significant impact on the
accuracy and robustness of the Performance Model, so the quality of the data
must be guaranteed. In this sense, two main actions are considered regarding
training data treatment, which are (1) the monitoring of the necessary data and
(2) its pre-processing to maximize its effectiveness.

6.1.1 Monitoring

In the monitoring stage, it is necessary to obtain the performance metrics of a
previous version of the software under different conditions so that the Perfor-
mance Model can learn the patterns of its behavior. To execute the software, it
is necessary to make a choice on what input data to use for the execution and the
platform where it is going to be executed.

6.1.1.1 Input data

To execute the studied software in order to obtain its performance metrics,
different input data can be used. In this sense, Two alternatives are considered:

• Real data: The first option is to use real data, which is actual data col-
lected from real operational environments. This type of data can be more
representative of the real-world scenarios in which the model will be used,
and can lead to more accurate and robust models. However, real data
may be more difficult to obtain and may require more pre-processing
to make it usable for training. For example, in some cases, the data may
be incomplete, noisy, or have missing values, which requires appropriate
techniques to handle these issues. Additionally, real data may also contain
bias and confounding variables, which should be handled carefully to avoid
any negative impact on the model.

Performance Model 63

• Theoretical data: The second option is to use theoretical data, which is
created artificially and not based on real-world observations. This type of
data can be generated manually or by using simulation tools and can be
useful for training and validating a model. Simulated data can be used to
generate a large number of data points with less effort, which can be useful
to train models requiring large amounts of data such as Deep Learning
(DL) models. Moreover, as theoretical data is easier to obtain than real data,
it allows training the model with very diverse data (i.e., data representing
a wide range of different situations), which would require a big effort to
obtain from real environments.

However, it may not accurately represent the real-world scenarios in which
the model will be used, and may not lead to a model that is robust and
generalizable to new data.

Ultimately, the choice between using theoretical data or real data monitored
from Operation depends on the specific use case and the availability of data.

6.1.1.2 Execution Platform

The performance of the software is obtained by monitoring its execution using
the input data. The execution of the previous version of the software can be
performed on different platforms, in order to have data to test the new versions
in different test phases. In this thesis, two alternatives were considered, Software-
in-the-Loop (SiL) and Hardware-in-the-Loop (HiL).

• Software-in-the-Loop: SiL testing involves simulating the behavior of
a control system or a software component within a virtual environment.
In this type of testing, the software component is run on a computer,
and its interaction with other components is simulated using software
models. SIL testing allows for early testing and validation of the software
component, which can be used to identify and fix issues before moving to
more expensive and time-consuming testing methods.

• Hardware-in-the-Loop: HiL testing, on the other hand, involves testing
the software component in conjunction with the physical hardware it is
intended to control. In HIL testing, the software component is connected
to a physical plant model, which simulates the behavior of the hardware.
The software component is then tested against this simulated hardware to
ensure that it behaves as expected. HIL testing can be used to identify issues
with the software component that may only arise when it is integrated
with the physical hardware.

64 6.1 Training Data

• Operation: The execution of the software in real operational installations is
necessary to obtain real data to train the model (Section 6.1.1.1). However,
it is not necessary to extract the performance of the software in operation
as long as the hardware used to execute the software is the same as the one
used in real installations.

6.1.2 Pre-processing

Data pre-processing refers to the techniques used to prepare and clean the data
before it is used to train a model. This step is important because the quality and
structure of the data can have a significant impact on the performance of the
model. Some common data pre-processing techniques include:

• Data transformation: This step involves converting data into a format
that can be easily understood and used by AI techniques. This can involve
changing the structure, format, or values of the data to make it more
suitable for training a model.

• Feature selection: Feature selection is the process of choosing a subset of
relevant features for use in the training of the model. The goal is to select
a small number of features that have the strongest relationship with the
performance of the system while excluding features that are less relevant or
that may introduce noise into the Performance Model. This can improve
the accuracy and interpretability of the model and can also decrease the
computational cost of training the model. In cases where the dataset has
a large number of features, or where the features are highly correlated,
feature selection can help to improve the performance of the model by
reducing overfitting and improving interpretability.

To select the most relevant features to train a ML model, many techniques
can be used:

– Correlation-based selection: This method is based on the idea that fea-
tures that are highly correlated with the target variable are likely to
be important for the model.

– Wrapper methods: These methods use a specific ML algorithm to
evaluate the importance of each feature.

– Genetic Algorithms (GA)-based selection: This method uses GAs to
search for the optimal subset of features that maximizes the perfor-
mance of a model.

Additionally, domain knowledge in feature selection is crucial for building
an accurate and reliable Performance Model. Domain knowledge can

Performance Model 65

help in identifying relevant features that are directly or indirectly related
to the performance of the system. Moreover, domain knowledge can
also help in identifying and excluding features that are unlikely to affect
performance. This can help to reduce the dimensionality of the feature
space and increase the effectiveness of the model by eliminating noise and
irrelevant data. Additionally, domain knowledge can also be used to design
appropriate data pre-processing and feature engineering steps that can help
in transforming raw data into more meaningful features.

• Data cleaning: In this step the aim is to identify and remove errors,
inconsistencies, and missing values in the data. This can involve techniques
such as data imputation, data validation, and data verification.

• Data splitting: The step of dividing the data into training and testing sets.
This is typically done to ensure that the model is tested on unseen data and
to prevent overfitting.

These steps are common steps in data pre-processing, but they are not always
necessary, neither the only steps involving pre-processing. The specific steps
used depend on the dataset and the specific use case.

6.2 AI Techniques

In this section, the different AI techniques used to build the Performance Model
are described.

6.2.1 Configuration

The accuracy of the models built with AI techniques can vary depending on
the specific settings or values used to determine the behavior of the learning
process. Each technique relies on different configuration parameters, also known
as hyperparameters. Some insights into the hyperparameters of traditional ML
algorithms, NNs, and GP are now given.

6.2.1.1 Machine Learning

In ML, the specific hyperparameters can vary from model to model, since the
algorithms differ substantially from one another. For example, in Decision Trees
the maximum depth of the tree or the minimum number of samples required to
split an internal node can be configured [10], and in SVMs the penalty parameter
of the error term (a.k.a., C) or the kernel type to be used in the algorithm (e.g.,
’linear’, ’poly’, ’rbf’, ’sigmoid’) are configurable.

66 6.2 AI Techniques

6.2.1.2 Neural Networks

NNs have a wide range of hyperparameters that can significantly impact their
performance [34]. The most relevant of these include:

• Number of Hidden Layers and Neurons Per Layer: This is one of
the most significant hyperparameters. It determines the complexity and
capacity of the network. However, more layers and neurons can lead to
overfitting. An approach to setting these parameters is to gradually increase
them until the network begins to overfit.

• Learning Rate: It determines how much the weights in the network
change with each update. If it is too large, the model could skip the
optimal solution, but If it is too small, the model could need too many
updates to converge.

• Batch Size: This is the number of training samples used in one iteration.
A smaller batch size uses less memory and can train the model faster, but
it also can have a regularizing effect and lead to a more general solution.
However, a too-small batch size can lead to an unstable training process.

• Epochs: This refers to the number of times the learning algorithm works
through the entire training dataset. Too many epochs can lead to over-
fitting of the training dataset, whereas too few may result in an underfit
model.

• Activation Function: Activation functions introduce non-linearity into
the network, allowing it to learn from more complex datasets. Common
activation functions include Rectified Linear Unit (ReLU), sigmoid, and tanh.

• Optimizer: The choice of optimization algorithms includes Stochastic
Gradient Descent (SGC) or Adam.

• Regularization: Techniques like L1, L2, and dropout can help prevent
overfitting in the network by adding a penalty to the loss function or
randomly disabling neurons.

6.2.1.3 Genetic Programming

In Genetic Programming there are several hyperparameters that need to be
considered [4, 49]:

• Population Size: The population size refers to the number of individuals
(programs) in each generation. Larger populations may provide more
diversity, increasing the chance of finding a good solution, but they also
require more computational resources.

Performance Model 67

• Generations: This is the number of times that new populations will be
created, which is equivalent to the total number of iterations of the genetic
programming run. More generations usually allow better solutions to be
found, at the cost of increased computation.

• Selection Method: The selection method, such as tournament selection
or roulette wheel selection, determines how individuals are chosen for
reproduction.

• Crossover Rate: This controls the frequency of crossover (recombina-
tion) events. Crossover is a primary source of exploration in the search
space, creating new, potentially better, combinations of existing program
structures.

• Mutation Rate: This parameter controls the frequency of mutation events,
which alter parts of the individuals in the population. Mutation provides
diversity and can help to avoid local optima by introducing new elements
into the current solutions.

• Max Depth of Programs: This hyperparameter sets a maximum limit on the
depth of the programs (trees) that are evolved. This can prevent programs
becoming excessively large and complex, but setting it too low can limit
the expressiveness of the solutions.

• Fitness Function: Although not strictly a hyperparameter, the design of the
fitness function is crucial. It must accurately reflect the problem’s objectives,
and the difference in fitness between solutions should reflect their relative
quality.

6.2.2 Selection Criteria

The choice of using each technique depends on the specific requirements of
each use case. Traditional ML has the advantage of being well understood, and
thus easier to implement, debug and interpret. These algorithms are simple and
computationally efficient. However, traditional ML is limited in its ability to
handle complex non-linear relationships between inputs and outputs.

NNs, on the other hand, are a more complex type of technique that can
handle complex patterns and representations in the data that traditional ML
algorithms cannot identify. However, this complexity makes NNs often more
computationally intensive and difficult to interpret. Furthermore, NNs require
more data to be trained effectively, which also can lead to overfitting.

Finally, GP has the advantage of creating simple and very interpretable
models, generating as output a function relating the input features with the

68 6.3 Evaluation

output values. However, it struggles to identify complex patterns and it can be
challenging to ensure that the solutions are not overfitted to the training data.

6.3 Evaluation

In this section, the empirical evaluation of the training process of the Performance
Model is reported.

As mentioned, the case study of the dispatcher algorithm of Orona has been
used to evaluate this approach. As mentioned, the use case is the dispatching
algorithm of Orona, and several AI techniques were used to train models with
data obtained from the execution of this software in different platforms (i.e., SiL
and HiL) and with different input data (i.e., theoretical and real) for a building
called the City of Communications.

6.3.1 Research Questions

The evaluation aims to answer the following RQs:

• RQ1: How do the different performance models perform in the different
test phases?

• RQ2: Are there differences in the prediction error when training the
model with real and theoretical data?

• RQ3: What is the resource consumption of the performance models?

• RQ4: Is this performance maintained when the Performance Model is
built for multiple installations?

6.3.2 Experimental Setup

A set of experiments were designed to answer the RQs. As stated, the aim is to
build an oracle that is usable in Operation as well as in the previous test phases of
CPSs. However, performing the evaluation in a real operational environment
would be too complex. Thus, the evaluation has been done considering SiL and
HiL contexts to answer RQ1. In these contexts, data from the mentioned City
of Communications building was used, which was useful to answer RQ2. To
answer RQ3, C code was generated for the models and their characteristics were
measured. Furthermore, to answer RQ4, a third context was included, where
data from different installations was used to train a multi-installation model in
the HiL phase.

The framework used to train the performance models was MATLAB. This
choice was made because of two main reasons: (1) it has multiple toolboxes

Performance Model 69

supporting a large corpus of ML algorithms, GP, and NNs, and (2) it allows
automatic generation of C code, which can later be used to embed the model
in the oracle and use it in the real target. However, an additional framework
was used to ease the creation of NN models, called Autokeras¹. AutoKeras is
an open-source library that provides an easy-to-use interface for building NN
models automating network architecture search and hyperparameter tuning to
select the model that best fits the training data.

The performance metric used to model and test the performance of the
dispatching algorithm in all the contexts was its execution time. However, each
context required specific treatment of the training data as well as the use of
different AI techniques.

6.3.2.1 SiL Context

The SiL platform consists of executing the algorithm in a simulation environment.
In the context of dispatching algorithms a widely used simulation framework is
Elevate². Elevate is an elevator simulation framework that provides a platform
to evaluate and test different elevator control strategies and to study the perfor-
mance of elevator systems under different scenarios and traffic patterns. This
tool simulates the operation of an elevator system by modeling the behavior of
elevators, as well as the traffic flow and passenger demand within a building.
Users can define the characteristics of the building, such as the number of floors,
the number of elevators, and the traffic pattern, and then simulate the operation
of the elevator system with different control systems, such as conventional or
destination dispatchers.

In Table 6.1 the main characteristics of the SiL setup are summarized, which
are afterward further extended.

Table 6.1: Summary of the experimental setup in SiL

Platform Installations Features Profiles AI Techniques

SiL 1 installation
Levels: 10
Cars: 6

1 feature
Active calls

Theoretical
& Real
Theoretical: 10
Real: 4

Traditional ML
Regression Tree
Ensemble
RGP
Stepwise
SVM

¹https://autokeras.com
²https://peters-research.com/index.php/elevate

70 6.3 Evaluation

6.3.2.1.1 Training Data

Now the process followed to monitor and pre-process the data to train the
Performance Model is described.

• Monitoring: The process of monitoring the execution time of the dis-
patching algorithm to obtain data to train the Performance Model is now
described.

– Input Data: Data obtained from the execution of the dispatcher with
theoretical and real profiles for the Communication City building
were used to train the models. Specifically, a total of 10 theoretical
profiles were used, while the number of real profiles was 4. This is due
to the lack of availability of more real profiles monitored from real
installations. A passenger profile (either real or theoretical) consists
of a .txt file including a list of all the passengers who made a call for
an elevator. For each passenger, this file includes (1) the arrival time
(i.e., when the passenger requests an elevator), (2) the arrival floor,
(3) the destination floor, (4) weight of the passenger, (5) the capacity
factor by mass, (6) the loading time, (7) the unloading time and (8)
information related to the behavior of the passenger when not all
elevators serve all floors. In Listing 6.1 an extract of a passenger traffic
profile is provided.

Listing 6.1: Snippet of a passenger traffic profile

. . .
25420 , 1 , 5 , 75 , 80 , 0 . 2 , 0 . 2 , 2
25426 , 1 , 4 , 75 , 80 , 0 . 2 , 0 . 2 , 2
25427 , 1 , 3 , 75 , 80 , 0 . 2 , 0 . 2 , 2
25430 , 1 , 6 , 75 , 80 , 0 . 2 , 0 . 2 , 2
25455 , 1 , 9 , 75 , 80 , 0 . 2 , 0 . 2 , 2
25481 , 1 , 6 , 75 , 80 , 0 . 2 , 0 . 2 , 2
. . .

In Figure 6.1 the number of calls of real and theoretical passenger
profiles can be observed. As can be seen, theoretical profiles present
an overall higher number of calls during the whole day with long
periods of high traffic, intended to stress the system. On the contrary,
real profiles show a lower number of calls, with a more irregular
distribution. One discrepancy that can be observed is that the inter-
floor calls are not that frequent in the real passenger profiles when
compared to the theoretical ones. In addition, at the lunch peak, a
high peak of outgoing passengers can be seen at around 14:00 in

Performance Model 71

(a) Full day profile collected from real instal-
lation by Orona (b) Siikonen Full day profile

Figure 6.1: Passengers activity of real installation and theoretical profiles obtained
with Elevate

the real passenger data, which is a pattern that is not present in the
theoretical data.

These differences may affect the effectiveness of the data to train
the Performance Model, especially if the aim is to use it in a real
installation. Table 6.2 summarizes the main characteristics of the
traffic profiles used in these experiments, including the number of up
calls, down calls, and the duration of the execution of the profile.

Table 6.2: Main characteristics of the used test cases during the experimental
scenarios

Traffic profile File Size
(KB)

Data
Points

Simulation
time (h:min)

of Up
Calls

of Down
Calls

Real1 8:30 2756 1711
Real2 9:10 3086 2366
Real3 11:45 3438 3117
Real4 13:35 3508 3050
Theoretical1 12:55 3994 3377
Theoretical2 12:55 3950 3379
Theoretical3 12:55 3983 3379
Theoretical4 12:55 3989 3402
Theoretical5 12:55 3989 3387
Theoretical6 12:55 3964 3384
Theoretical7 12:55 3977 3386
Theoretical8 12:55 3919 3433
Theoretical9 12:55 3976 3354
Theoretical10 12:55 3945 3407

– Performance metrics: In this context, the execution of the dispatching
algorithm is done in a PC running a Windows OS. This means that

72 6.3 Evaluation

the response time measurements may gather deviations caused by the
interference of other processes. Therefore, two actions were taken
to mitigate this limitation: (1) each passenger profile was executed 5
times to obtain more training data and (2) the data was aggregated
so that each data point accumulated the number of active calls and
execution times of all the cycles of the algorithm every minute, so
that the error is reduced. A passenger call is considered to be ”Active”
from the moment the call is made until the passenger arrives at his
destination. In Figure 6.2 the response time of the dispatching algo-
rithm per number of active calls monitored in the SiL environment
can be seen. These data include the measurements done by executing
the algorithm with both theoretical and real profiles.

Figure 6.2: Execution time of the dispatching algorithm per active call in SiL

• Pre-processing: The process of treating the data to be useful to train the
model is as follows:

– Data transformation: As mentioned, the passenger profiles consist of
a list of passengers calling for an elevator through time. But these
calls remain active from the moment the passenger makes the call to
the moment it leaves the elevator, passing through different phases.
Elevate gathers the status of the building, including elevators and
passenger call status, creating a set of parameters to pass as inputs to

Performance Model 73

the dispatching algorithm in every iteration. Some of these input
arrays are listed in Listing 6.2:

Listing 6.2: Input arrays to the dispatching algorithm

. . .
c a l l s t a t e = [1 , 2 , 0 , . . .]
o r i g i n _ f l o o r = [0 , 1 , 0 , . . .]
d e s t i n a t i o n _ f l o o r = [4 , 0 , 7 , . . .]
c a r _ s t a t e = [1 , 0 , 1 , . . .]
a s s i g n e d _ c a r = [3 , 6 , 1 , . . .]
. . .

From these input arrays, the number of active calls for every execution
of the dispatching algorithm can be extracted, as well as the state of
each call and its trajectory.

– Feature extraction: After analyzing the relation of the extracted features
with the execution time of the algorithm and receiving feedback from
domain experts, a set of features that could affect the execution time
of the algorithm was defined. In this context, the most significant
feature for the response time of the dispatching algorithm was selected
to train the Performance Model, which is the number of active calls.

– Data cleaning: In this step a first overview of the data was taken to
identify outliers that may distort the training of the model, affecting its
accuracy. The data obtained in the SiL context, shown in Figure 6.2,
presents a uniform pattern, without any data point that considerably
differs from the general trend. This may be because of the fact that in
the SiL environment, the data of all the cycles of the algorithm every
minute was aggregated in each data point, to reduce the interference
of other processes. Thus, it is not necessary to delete data points for
SiL data.

– Data splitting: Two experimental scenarios were designed, where the
aim is to analyze the effect of different training data on the results.
The scenarios are described in Table 6.3 and the names of the proposed
scenarios follow the pattern [Training data type-Testing data type].

6.3.2.1.2 AI Techniques

A number of AI techniques were evaluated to select the one best fitting the
established requirements in this use case. In the SiL context traditional regression
learning algorithms were used, discarding other techniques such as NNs or
GP. This is due to the fact that in this context the model is fed only with one
feature. This makes NNs too complex to be applied in this context, facilitating the

74 6.3 Evaluation

Table 6.3: Description of the designed testing scenarios

Scenarios Description

Theoretical-Real

In this scenario, a different type of data was used for training
and testing the model. Data obtained from the real installation
was used for testing but theoretical data was used for training,
10 profiles specifically. This scenario would emulate how the
theoretical passenger data performs when training the models to
use the oracle in the real installations.

Real-Real

In this scenario, data obtained with data extracted from the real
installation in Operation were used for training. In total, four
passenger profiles were available for the building used in the
evaluation. The 4-fold cross-validation was thus used to validate
the models along with all the selected AI techniques.

appearance of overfitting. In the case of GP, it makes the search space too small.
Thus, the training algorithms used for the SiL platform were: (1) Regression
Tree, (2) Ensemble, (3) Regression Gaussian Process (RGP), (4) Stepwise, and
(5) SVM Regression. The reasons why these algorithms were chosen were (1)
availability within the MATLAB framework and (2) the selected algorithms are
expected to have a fast prediction and training speed, as well as small memory
usage, and require minimal tuning.

The C code for the models was generated by the Matlab Coder Toolkit³.

6.3.2.2 HiL Context

In this context, the simulation environment is substituted by a hybrid environ-
ment where some hardware components are included so that the software can
interact with them. This results in a more complex scenario where the software
is integrated with the real-time infrastructure, including a Real-Time Operating
System (RTOS) and the real target microprocessor and communications. Unlike
at the SiL phase, the physical part of the system of elevators is emulated in real-
time with appropriate HiL test benches. In practice, the dispatching algorithm
would be executed within the real HiL test bench of Orona, but different adjust-
ments had to be made to adapt the platform to the limitations found to evaluate
the proposed approach.

• 1st approach: Executing the algorithm in the real HiL test bench involves

³https://www.mathworks.com/products/matlab-coder.html

Performance Model 75

executing the algorithm in real-time, which made this solution unfeasible,
as the experiments would take too long. As an alternative, a Processor-
in-the-Loop (PiL) test bench was developed, in which the software is
compiled and deployed on the ARM board, and the simulation of the
installation and the passenger profiles are performed on the PC. Elevate
communicates with the ARM board through HTTP requests to execute
the dispatching algorithm, which returns the results to Elevate, which
performs the simulation of the status of the building.

• 2nd approach: After the first adjustment, the execution of the experiments
is no longer in real time, but the communication between Elevate and the
ARM board still kept the experimentation time too high. Therefore, the
second adjustment was to execute the experiments in Elevate to record the
inputs to the traffic dispatching algorithm for each cycle and then execute
the dispatching algorithm in the ARM board with the recorded inputs.
Note that the version of the dispatching algorithm used is deterministic.

In Table 6.4 the main characteristics of the HiL setup are summarized, which
are afterward further extended.

Table 6.4: Summary of the experimental setup in HiL

Platform Installations Features Profiles AI Techniques

HiL 1 installation
Levels: 10
Cars: 6

6 features
Registered calls
Assigned Calls
Calls in travel
Car calls
Up calls
Down Calls

Theoretical
& Real
Theoretical: 10
Real: 4

Traditional ML
Regression Tree
Ensemble
RGP
Stepwise
SVM

6.3.2.2.1 Training Data

Now the process followed to monitor and pre-process the data to train the
Performance Model is described.

• Monitoring: The process of monitoring the execution time of the dis-
patching algorithm to obtain data to train the Performance Model is now
described.

– Input Data: The input data used to execute the dispatching algorithm
remained the same as in the SiL context, which was described in

76 6.3 Evaluation

Section 6.3.2.1.1. As mentioned, 10 theoretical and 4 real passenger
profiles were used.

Figure 6.3: Execution time of the dispatching algorithm per active call in HiL

– Performance metrics: In this context, the traffic dispatching algorithm
runs on top of a Linux OS with a real-time patch, which allows mea-
suring the execution time of each task regardless of interference from
other processes. Thus, a task running the dispatching algorithm was
created to be executed in the ARM board and measure its execution
time. In Figure 6.3 the execution time of the dispatching algorithm
per number of active calls is shown. The data shows the measure-
ments done from the execution of the dispatching algorithm in the
HiL context with both real and theoretical profiles.

• Pre-processing: The pre-processing of the data had some similitudes and
differences when compared to the SiL context. The data transformation
and the design of the scenarios remained the same, but the data cleaning
and feature selection changed.

Performance Model 77

– Feature extraction: In the HiL context, the measurements are much
more precise, as the OS is a Linux distribution with a real-time patch,
so accumulating minute aggregations can be avoided and establishing
a data point for each execution of the algorithm is possible. Further-
more, by having more precise data the number of active calls can be
expanded into more detailed features, which are shown in Table 6.5.

Table 6.5: Description of the features used to train the models

Features Description

Registered calls It refers to the number of calls made by passengers but
not yet assigned to an elevator

Assigned calls It refers to the number of calls made by passengers and
assigned to an elevator but still unattended

Calls in travel It refers to the number of calls made by passengers and
being attended by the assigned elevators

Car calls It refers to the number of calls made by passengers from
inside the elevators

Up calls It is the number of landing calls with an ascending tra-
jectory

Down calls It is the number of landing calls with a descending tra-
jectory

– Data cleaning: In the HiL context, as can be seen in Figure 6.3, most
execution times follow a certain pattern and remain between some
limits. However, some data points are far from the general trend,
caused presumably by an error in the measurements. Thus, these data
points were deleted from the dataset, leading to a dataset represented
in Figure 6.4.

6.3.2.2.2 AI Techniques

In the HiL context, the chosen algorithms continue to be the traditional ML
algorithms mentioned for the SiL context. This was decided because the NN
and GP approaches were expected not to give additional benefits in this context.

78 6.3 Evaluation

Figure 6.4: Execution time of the dispatching algorithm per active calls in HiL
without outliers

6.3.2.3 Multi-environment Context

In this context, the evaluation platforms continue to be the HiL platform but
some changes were made to build a model capable of predicting the execution
time of the dispatching algorithm in installations with different characteristics.
In Table 6.6 the main characteristics of the setup for this context are summarized,
which are afterward further extended.

6.3.2.3.1 Training Data

Now the process followed to monitor and pre-process the data to train the
Performance Model is described.

• Monitoring: The process of monitoring the execution time of the dis-
patching algorithm to obtain data to train the Performance Model is now
described.

Performance Model 79

Table 6.6: Summary of the experimental setup in multi-environment context

Platform Installations Features Profiles AI Techniques

HiL
multi-

env

8 installations
Levels: 6-20
Cars: 3-8

8 features
Registered calls
Assigned Calls
Calls in travel
Car calls
Up calls
Down Calls
Levels
Cars

Theoretical
1 per installation

Traditional ML
Regression Tree
Ensemble
RGP
Stepwise
SVM
Neural Networks
Genetic Programming

– Input Data: The Performance Model was trained with data moni-
tored from the execution of the dispatcher with theoretical profiles of
multiple installations. The lack of real data from multiple installations
prevents us from training this model with real data. The installations
executed to obtain the multi-installation data were:

– Performance metrics: The platform where the dispatcher is executed
is the same as described in Section 6.3.2.2 for the HiL context. The
difference resides in the fact that the algorithm must be configured
with the characteristics of each building to execute each passenger
profile.

• Pre-processing: The treatment of the data in this context cchanges mostly
on the selection of the features and the scenario setting.

– Feature extraction: To prove the validity of the model for different
installations, it is necessary to include features that model the char-
acteristics of each installation. The features chosen to model the
performance of the dispatching algorithms are show in Table 6.8.

– Data splitting: In this context, there is no real data available for the
proposed training installations, so only the Theoretical-Real scenario
could be considered.

6.3.2.3.2 AI Techniques

This context becomes more complex allowing other techniques such as GP and
NNs to contribute additional benefits.

80 6.3 Evaluation

Table 6.7: Characteristics of the installations used to train the multi-installation
model

Installations Levels Cars

1 6 3

2 6 5

3 8 3

4 12 5

5 12 7

6 15 7

7 15 8

8 20 8

Table 6.8: Description of the features used to train the models

Features Description

Levels The number of levels of the building

Cars The number of elevators of the building

• Genetic Programming: A GP approach was used to obtain a function
that models the execution time of the dispatching algorithm by means of
the MATLAB Genetic Programming Toolbox. According to the default
values on the example provided by the toolbox and the recommendations
done by Poli et al. [49], the GP algorithm was configured to run with the
configuration listed in Listing 6.3:

Listing 6.3: Genetic Programming Toolbox configuration

Popu l a t ion : 500
Genera t ions : 50
Cros sover p r o b a b i l i t y : 0 . 9
Mutation p r o b a b i l i t y : 0 . 4
S e l e c t i o n type : R o u l e t t e wheel

• Neural Networks: The Autokeras library was used to perform a search
among different NN architectures and hyperparameters to find the most
optimal solution for this use case. The configuration of the library was left

Performance Model 81

as default in most of its parameters but the search space was limited to a
maximum of 5 layers and 15 nodes per layer, as preliminary trials showed
better results for small network architectures.

For the case, of the GP approach its output is a function relating the input
features with the execution time of the algorithm, which can be manually in-
cluded in the C code of the oracle, and for the NN technique, the generated
model was converted to C code using the keras2c⁴ library.

6.3.2.4 Summary

In Table 6.9 the experimental setup is summarized.

6.3.3 Results

The results obtained for the three contexts designed to answer the RQs are now
presented. To measure the resource utilization of the models their C code had to
be generated, but the used MATLAB Coder Toolkit only supports generating
code for the Regression Tree and SVM models. Thus, the resource consumption
of these models could only be measured. For the NN approach, the Autokeras
library performed a search among different hyperparameters and architectures.
In Listing 6.4, the layers of the network obtained as a result and their number of
nodes is shown.

Listing 6.4: Input arrays to the dispatching algorithm

Input l a y e r : 8
Hidden l a y e r 1 : 7
Hidden l a y e r 2 : 5
Hidden l a y e r 3 : 3
Output l a y e r : 1

6.3.3.1 SiL Results

In Table 6.10 the MAPE metric for the performance models is shown. The results
show how the lower errors are obtained for Regression Tree, Ensemble and RGP
on the Real-Real scenario, around the 5% mean error, while Stepwise and SVM
mean errors decay to 13.69% and 15.46% respectively. For the Theoretical-Real
scenario, the results worsen for all the algorithms, rounding the 8% of mean error
for Regression Tree, Ensemble, and RGP, while Stepwise and SVM techniques
worsen their results to 32.44% and 362.12% respectively.

⁴https://github.com/f0uriest/keras2c

82 6.3 Evaluation

Table 6.9: Summary of the experimental setup

Platform Installations Features Profiles AI Techniques

SiL 1 installation
Levels: 10
Cars: 6

1 feature
Active calls

Theoretical
& Real
Theoretical: 10
Real: 4

Traditional ML
Regression Tree
Ensemble
RGP
Stepwise
SVM

HiL 1 installation
Levels: 10
Cars: 6

6 features
Registered calls
Assigned Calls
Calls in travel
Car calls
Up calls
Down Calls

Theoretical
& Real
Theoretical: 10
Real: 4

Traditional ML
Regression Tree
Ensemble
RGP
Stepwise
SVM

HiL
multi-
env

8 installations
Levels: 6-20
Cars: 3-8

8 features
Registered calls
Assigned Calls
Calls in travel
Car calls
Up calls
Down Calls
Levels
Cars

Theoretical
1 per installation

Traditional ML
Regression Tree
Ensemble
RGP
Stepwise
SVM
Neural Networks
Genetic Programming

In Table 6.11 the size in KB of the performance models is shown. The results
show that the Regression Tree models have a size of around 32KB, independent
of the data used to train them, Regarding the SVM models, the size of the models
is bigger and the data used to train it has an effect on the size of the model.
Specifically, the model trained with real data has a size of 54,2 KB and the model
trained with theoretical data has a size of 71,1 KB.

In Table 6.12 the mean inference time in µs of the performance models is
shown. The results show that, as for the size, the SVM models have a larger
inference time than the Regression Tree. However, the type of data used to train
the models did not seem to have a deep impact on the inference time. Specifically,
the mean inference time of Regression Tree models is 1.5 µs and 1.4 µs for
theoretical and real training data respectively, and for SVM models the mean
inference time is 7.7 µs and 7.9 µs. Note that these measurements were made in

Performance Model 83

Table 6.10: MAPE for the models trained with data from single installation SiL
context

Theoretical-Real Real-Real

Regression
Tree

8.63 5.06

Ensemble 8.66 5.57

RGP 8.27 4,76

Stepwise 32.44 13.69

SVM 362.12 15.46

Table 6.11: Footprint in KB for the models trained with data from single instal-
lation SiL context

Theoretical-Real Real-Real

Regression
Tree

32.9 32.6

SVM 71.1 54.2

a Windows environment, where timing measurements have some interference.

6.3.3.2 HiL Results

In Table 6.13 the MAPE metric for the performance models is shown. The results
show how all the algorithms remain around 0.50% of mean error when trained
with theoretical data and that they all slightly improve when trained with real
data to around 0.40%.

In Table 6.14 the the size in KB of the performance models is shown. The
results show that the size of the Regression Tree models remain around 32 KB for
both scenarios, 32,3 KB, exactly. However, the SVM models in the HiL context
grow to 18 and 6 MB for the theoretical and real data, respectively.

84 6.3 Evaluation

Table 6.12: Inference time in µs for the models trained with data from single
installation SiL context

Theoretical-Real Real-Real

Regression
Tree

1.5 1.4

SVM 7.7 7.9

Table 6.13: MAPE for the models trained with data from a single installation
HiL context

Theoretical-Real Real-Real

Regression
Tree

0.51 0.42

Ensemble 0.45 0.40

RGP 0.51 0.40

Stepwise 0.47 0.38

SVM 0.50 0.38

In Table 6.15 the mean inference time in µs for the performance models is
shown. The results show that, as for the SiL context, the inference time grows for
bigger models, but in this case, a significant difference between models trained
with theoretical and real data can be seen. The inference time of Regression Tree
models is 10.7 µs and 9.8 µs for theoretical and real training data respectively,
and for SVM models the inference time is 140,533.8 µs and 46,587.9 µs.

6.3.3.3 Multi-environment Results

In Table 6.16 the MAPE metric for the performance models is shown. The
results show how the traditional ML techniques worsen from a mean error of
around 0.50% to around 1%. Furthermore, it can be observed that the Genetic

Performance Model 85

Table 6.14: Footprint in KB for the models trained with data from a ingle
installation HiL context

Theoretical-Real Real-Real

Regression
Tree

32.3 32.3

SVM 18,090.8 6,763.75

Table 6.15: Inference time in µs for the models trained with data from a single
installation HiL context

Theoretical-Real Real-Real

Regression
Tree

10.7 9.8

SVM 140,533.8 46,587.9

Programming approach is not as precise as the ML techniques, with an error of
2.5%. Finally, the NN shows the best result with a 0.79% of mean error.

In Table 6.17 the size in KB of the performance models is shown. The results
show that the Regression Tree model continues to have a size of 32 KB while
the SVM model has a size of 39 MB. The GP results in a function relating the
features with the execution time, so its size is of a few bytes. Finally, the NN
model has a size of 81,5 KB.

In Table 6.18 the MAPE metric for the performance models is shown. The
results show that THe Regression Tree, GP and NN models keep a low inference
time 12.3 µs, 8.2 µs and 16.2 µs respectively, and the SVM model shows a much
greater inference time with 276,012.9 µs.

6.3.4 Discussion

The evaluation aimed to assess the use of different data and AI techniques to build
the most appropriate Performance Model for the oracle. To this end, the MAPE
was evaluated as well as the resource consumption of each model. Overall, the
obtained results are positive as the models obtained are able to predict execution
time accurately and with low resource consumption.

86 6.3 Evaluation

Table 6.16: MAPE for the models trained with data from multiple installations
in HiL context

Theoretical-Real

Regression
Tree

1.83

Ensemble 1.13

RGP 0.84

Stepwise 0.91

SVM 0.98

GP 2.55

NN 0.79

To measure the prediction accuracy, the MAPE metric was used. This
decision was made because it is easy to interpret and use-case independent. An
error metric that is not dependent on the baseline level may differ between
use cases and may be more difficult to manage. In the SiL context, the MAPE
metric is higher than in the HiL context for all the models. This is because the
measurement of the execution time in the SiL context (i.e., Windows OS) can
not be done with the same precision as in the HiL context (i.e., Real-Time Linux).
As a consequence, the SiL models are not as precise as HiL models, but still, some
algorithms maintain a low MAPE value. Thus, models trained with HiL data
seem to be more appropriate to predict the performance accurately.

Furthermore, the source of the training data also has been shown to be
relevant to the capabilities of the model. In both SiL and HiL contexts, the
models trained with real data showed better results. This might be because the
input values (i.e., the number of active calls) move in a similar range to the test
data, contrary to theoretical data, which includes a higher number of calls to
stress the system.

For the multi-installation models, the complexity of the models grows as
installation-specific features must be added, so as expected, the MAPE value grows

Performance Model 87

Table 6.17: Footprint in KB for the models trained with data from multiple
installations in HiL context

Theoretical-Real

Regression
Tree

32.3

SVM 39,759.2

GP 0

NN 81.5

for the traditional ML algorithms. However, in this context, the GP and the
NN techniques were included to see if they could outperform the traditional ML
algorithms. This did not occur with the GP technique, which did not perform as
well as ML algorithms. This technique offers the advantage of creating models
easy to interpret but did not show good results in this case. Instead, the NN
approach did show a lower MAPE than the rest of the algorithms what indicates
that a multi-installation model is to complex for the conventional ML techniques
to capture its patterns.

Regarding resource consumption, only the models for which C code creation
was possible were evaluated, which were Regression Tree, SVM, GP, and NN.
The results show that overall, SVM has a bigger resource consumption than the
rest of the approaches. Besides, it can be seen that as the complexity of the context
grows from SiL to HiL and Multi-installation contexts, the resource utilization
grows, except for the Regression Tree models, which continue around 32 KB. In
these metrics, the training data also modified the results. The theoretical models
are more resource-consuming, as more data were used to train them. This can
not be correctly observed in the SiL model inference times, probably because of
the measurement errors in the Windows OS.

Overall, the Regression Tree seems to be a good choice, as its MAPE value is
relatively low in all the contexts and its resource utilization is very low. However,
when using a more general model, usable for multiple installations, its results decay
and the NN model seems to be the most accurate one, despite its resource usage
is not as low as the Regression Tree. Thus, the choice of the most appropriate
model may vary depending on the available training data or resource availability
for each environment.

88 6.3 Evaluation

Table 6.18: Inference time in µs for the models trained with data from multiple
installations in HiL context

Theoretical-Real

Regression
Tree

12.3

SVM 276,012.2

GP 8.2

NN 16.2

6.3.5 Threats to Validity

Now, the internal and external validity threats of the performed evaluation are
discussed:

6.3.5.1 Internal Validity

A potential internal validity threat in this study might be related to the hy-
perparameters of the selected AI techniques. To reduce this threat the default
parameters from the MATLAB framework were used for training the ML and
GP algorithms. Instead, for the NN approach, the Autokeras framework was
used, which enables the search of the best hyperparameters by trying different
architectures and hyperparameters. Another internal validity threat relates to the
usage of 4-fold cross-validation in the Real-Real scenario. This was due to the
fact that those cases use data obtained from real buildings (i.e., operational data),
and Orona did not have more operational data. However, it is important to note
that each profile has several data points of full-day traffic profiles, meaning that
there is sufficient data to train the algorithms. Finally, another threat is related
to the measurements of the response time in the SiL context. As mentioned, this
is a Windows environment, where these measurements suffer interferences from
other processes, so are not completely precise. This limitation has been mitigated
by repeating the measurements several times to obatin more data points.

Performance Model 89

6.3.5.2 External Validity

An external validity threat in this evaluation is related to using a single benchmark
dataset based on test cases for testing dispatching algorithms. To reduce this threat,
the dataset was obtained from actual test cases in Orona for testing dispatching
algorithms. Furthermore, to avoid bias in the results, the same dataset was not
used for training an algorithm and for testing it, using the appropriate k-fold
cross-validation techniques in the Real-Real scenario. Another external validity
threat relates to the used case study. Although only a single case study was used,
it is important to note that it is a real industrial case study, which provides a
high degree of complexity to the evaluation. Furthermore, the used dispatching
algorithm is the most used one in the installations of Orona.

6.4 Conclusion and Future Work

In this chapter, the use of different data and AI techniques to train the Performance
Model for the oracle were analyzed. On the one hand, the performance data
to build the model was obtained from SiL and HiL context with the use of
theoretical and real input data, On the other hand, the AI techniques used were
traditional ML techniques, Genetic Programming, and Neural Networks. This
model needs to be accurate in its predictions and needs to have a low resource
usage, so the different techniques were evaluated to meet these requirements.

In the evaluation, where a dispatching algorithm from Orona was used,
several performance models were built combining the mentioned approaches
and evaluated their characteristics. This evaluation showed that the input data
(i.e., real/theoretical data) can affect the precision of the models in both contexts
(i.e., SiL/HiL), real data being the most appropriate choice. The use of HiL
data has also been shown to improve the results over the SiL context due to the
higher precision of the measurements and the higher complexity in terms of
input features. Furthermore, the use of data from multiple installations led to
models that worsened their results compared to the single installation context,
but the use of a more advanced technique such as NNs proved to be able to
outperform traditional ML techniques and build a high-precision model.

In terms of resource utilization, there was a great disparity among the different
models. SVM proved to be much more resource-demanding than Regression
Trees and NNs, being the former the most efficient. In this sense, the theoretical
data led to bigger models, but this might be caused by the amount of data used,
which is more abundant for theoretical data.

Overall, Regression Tree showed a good trade-off between prediction error
and resource consumption, but NN demonstrated to be more precise in the most
complex context (i.e., multi-environment).

90 6.4 Conclusion and Future Work

As future work in this field, several aspects to continue working on are
considered:

• The models were trained using data obtained from specific hardware, thus,
these models are not capable of predicting the execution time in other
hardware, as the execution time depends on hardware-specific conditions.
In the future, it would be interesting to execute the software in different
hardware to train the models with these data.

• The training has been done using real and theoretical input data, but the
lack of availability of several input data profiles has limited the training
with these data. This fact limits the conclusions that may be drawn from
the comparison between the use of the different data types. Thus, in the
future, obtaining more real data is expected to compare its use to theoretical
data and extract more conclusions. Besides, the use of different theoretical
traffic profiles will be further analyzed. In addition to the full-day profiles
used in this work to evaluate the approach, the use of UpPeak, LunchPeak,
DownPeak, and Inter-floor theoretical profiles will be further investigated
to analyze whether they can be used to train a valid model with less effort.

• Different training strategies shall be also investigated to avoid the degra-
dation of the model due to changes in the environment. This is known
as Concept Drift [72] and, in this sense, two aspects must be taken into
account: (1) the configuration of the installation may change over time
due to regulatory aspects, maintenance or infrastructure changes, and (2)
passenger flow may change depending on the day or season of the year,
due to teleworking, vacation periods, etc.

• The tools used during the development have eased the process of building
the models but had limited capabilities to build the code to execute the
models in real environments. Thus, some models could not be evaluated
in terms of resource usage, which is a relevant factor in the CPS context.
Therefore, in the future, a different toolkit should be used to generate
code for all the models and evaluate its capabilities for their usage in real
environments.

• When building the multi-installation models NNs were included to evalu-
ate if they improved the ML algorithms, as they are capable of capturing
more complex patterns from data. However, this complexity can come
along with higher resource consumption. In this sense, there are tech-
niques that aim at reducing the size of the NN models so that they can fit
in resource-constrained environments, such as Quantization [27].

7
Arbiter

In this chapter, the process of building and evaluating the Arbiter of the Per-
formance Oracle is discussed. As stated in Section 5.1.2.2 the arbiter is the
component within the Performance Oracle that decides if the studied software
shows a proper performance, or not based on the expected performance predicted
by the Performance Model and the monitored actual performance. In Section
7.1, the general logic of the Arbiter is explained, and in Section 7.2 its specific
parameters are established. In Section 7.3 the Arbiter is evaluated with a case
study and in Section 7.4 the chapter is concluded summarizing its content and
extracting conclusions.

7.1 General Logic

As stated in Section 5.1.2.2, the Arbiter must be able to detect errors that may
affect the performance of the software at a specific point or in a more persistent
way. Thus, three metrics were established to detect performance errors, which
are illustrated in Figure 7.1.

The first metric aims to detect the software showing a high peak in the
performance metric at a single execution, (Figure 7.1a). The second metric
aims to detect the performance of the software exhibiting a value higher than
expected for a specified time span (Figure 7.1b). The last metric detects a constant
degradation of the performance throughout the execution of the software (Figure
7.1c). High peaks in the performance metrics in a single step or a short period of
time may be due to a bug affecting functionalities activated in specific situations,
while a more constant degradation may suggest a more global error.

The developed arbitration algorithm aims at detecting these three types of
errors. To this end, firstly, the algorithm obtains the quantitative verdict for
each execution of the software. This value is obatined by computing Equation
1. A negative value means that the studied software is performing worse than

91

92 7.1 General Logic

(a) Failure due to a high peak
out of threshold bounds

(b) Failure due to a long time
out of threshold bounds

(c) Failure due to a constant
degradation

Figure 7.1: The three reasons why a test can be catalogued as FAIL (blue signal
refers to the reference valur and orange signal refers to the value obtained by the
software version under test)

expected, whereas a positive value means that it is showing a better performance.

verdict(t) =
referenceV alue(t) − realV alue(t)

referenceSignal(t)
(1)

To detect failures of the first case, a threshold is specified and the Arbiter
checks whether this numerical verdict exceeds this threshold in every step of the
execution of the software. A code example of this check is shown in Listing 7.1.
This will be called as the Single-step Arbiter.

Listing 7.1: Single-step Arbiter
1 i n t g e t _ s i n g l e _ s t e p _ v e r d i c t (i n t r e f e r enceVa lue , i n t r e a lVa lue , i n t

t h r e s h o l d 1)
2 {
3 i n t q u a n t i t a t i v e V e r d i c t = (r e f e r e n c e V a l u e − r e a l V a l u e) /

r e f e r e n c e V a l u e ;
4 i f (q u a n t i t a t i v e V e r d i c t < t h r e s h o l d 1)
5 v e r d i c t = 0 ; / / FAIL
6 e l s e
7 v e r d i c t = 1 ; / / PASS
8

9 r e tu rn v e r d i c t ;
10 }

This verification is performed for each execution of the studied software and
threshold1 is the threshold specified for the Single-step Arbiter.

To detect failures with the second metric, the Arbiter observes the execution
steps for a specified time span and checks whether the mean deviation of the
performance metric in this time span exceeds the specified threshold. Listing
7.2 exposes a code example for this verification, which will be called as the
Multiple-step Arbiter.

Listing 7.2: Multiple-step Arbiter

Arbiter 93

1 i n t g e t _ t i m e _ s p a n _ v e r d i c t (i n t r e f e r e n c e V a l u e [] , i n t r e a l V a l u e [] ,
i n t th re sho ld2 , i n t numSamples)

2 {
3 i n t q u a n t i t a t i v e V e r d i c t = 0 ;
4 i n t i = 0 ;
5 while (i < numSamples)
6 {
7 q u a n t i t a t i v e V e r d i c t += (r e f e r e n c e V a l u e (i) − r e a l V a l u e (i)) /

r e f e r e n c e V a l u e (i) ;
8 i ++ ;
9 }

10 i f (q u a n t i t a t i v e V e r d i c t / numSamples < t h r e s h o l d 2)
11 v e r d i c t = 0 ; / / FAIL
12 e l s e
13 v e r d i c t = 1 ; / / PASS
14

15 r e tu rn v e r d i c t ;
16 }

where numSamples is the number of samples towards the past to be considered,
and threshold2 is the maximum deviation allowed defined for the Multiple-step
Arbiter.

For the last case, the average value of the deviation over a whole day is
obtained and compared against another threshold. Listing 7.3 shows a code
example for the last metric, which will be called as the Full-day-Arbiter.

Listing 7.3: Full-day-arbiter
1 i n t g e t _ d a y _ v e r d i c t (i n t r e f e r e n c e V a l u e [] , i n t r e a l V a l u e [] , i n t

t h r e s h o l d)
2 {
3 i n t q u a n t i t a t i v e V e r d i c t = 0 ;
4 i n t i = 0 ;
5 i n t l eng th = s i z e o f (r e a l V a l u e) / s i z e o f (i n t) ;
6 while (i < l eng th)
7 {
8 q u a n t i t a t i v e V e r d i c t += (r e f e r e n c e V a l u e (i) − r e a l V a l u e (i)) /

r e f e r e n c e V a l u e (i) ;
9 i ++ ;

10 }
11 i f (q u a n t i t a t i v e V e r d i c t / l eng th < t h r e s h o l d)
12 v e r d i c t = 0 ; / / FAIL
13 e l s e
14 v e r d i c t = 1 ; / / PASS
15

16 r e tu rn v e r d i c t ;
17 }

where Threshold3 is the threshold specified for the Full-day-Arbiter.

Generally, the failure threshold for the arbiters is more tolerant for anomalies
of shorter duration, since shorter-duration samples may be less representative of

94 7.2 Parameters

the system. Therefore, the following will usually hold (note that threshold values
are negative, and smaller values imply more tolerance):

thresholdsingle_step < thresholdmultiple_step < thresholdfullday (2)

7.2 Parameters

When building the Arbiter, it is necessary to establish the proper parameters
for the Arbiter to be accurate. Expertise from domain engineers is necessary to
establish the thresholds for the different metrics for each sub-arbiter (i.e., Single-
step, Multiple-step, and Full-day arbiters) considering the characteristics of the
evaluated software and the environment where it is executed. Furthermore, the
time span considered when executing the Multiple-step Arbiter is also a relevant
factor to consider in order to adapt the configuration of the oracle for different
domains. Thus, domain engineers might consider establishing this parameter
considering the expected duration of a performance error introduced on specific
functionalities of the software.

7.2.1 Time-span

Specifying an appropriate time span for the multiple-step arbiter can depend on
many factors that can be taken into account when setting this window.

• Input data: The behavior of the input data may affect the duration of a
performance error. Certain conditions may activate certain functionalities
of software that may expose performance errors. The duration of these
conditions in the input data may establish the duration of the manifestation
of the error.

• Software: Knowledge about the architecture of the software might give
some insight into how much time an error may persist depending on what
part of the code is introduced.

• Actual data: If data from real faulty software versions is available, its
performance behavior can be analyzed to identify recurring patterns or
cycles that can help to establish a time span.

Experience and domain knowledge are necessary to study these factors in
order to take the most appropriate solution for each use case.

Arbiter 95

7.2.2 Thresholds

To establish these thresholds, there are some factors that may be considered:

• Software complexity The expected performance depends on the com-
plexity of the software, and the effect of bugs in this performance might
also do so. Thus, it is important to understand its complexity to determine
how bugs may affect its behavior.

• Input data The expected performance depends on the specific input data
used and varies depending on different input scenarios. Thus, the thresholds
should be dependent on the expected value, not an absolute value.

• Environment: The actual performance also depends on the hardware and
software environment in which the software is running, so the thresholds
should change depending on these conditions.

• Resource constraints: Specific use cases may present different constraints
that may establish hard limits that must be fulfilled in order to guarantee
the correct behavior of the application.

• Domain requirements: Some domains may have regulatory standards
that establish certain requirements that software running in those applica-
tions must fulfill.

7.3 Evaluation

As mentioned, the case study of the evaluation in this thesis is the dispatcher
algorithm of Orona was used. In Chapter 6, the building process of the per-
formance models was explained, using data from a real building that Orona
uses to validate dispatching algorithms, named the Communication City, in
Madrid. In this evaluation, the capabilities of the Arbiter to detect performance
errors was evaluated by comparing the actual performance of new versions of the
dispatching algorithms with the predictions made by the performance models.

7.3.1 Research Questions

The evaluation aims to answer the following RQs:

• RQ1: How does the Arbiter perform when detecting performance errors
for new software versions?

• RQ2: How do the different performance models affect error detection?

96 7.3 Evaluation

7.3.2 Experimental Setup

The Arbiter was tested with the predictions of the performance models built as
described in Section 6.3.2. Thus, the proposed scenarios remain the same.

7.3.2.1 Testing Method

To evaluate the effectiveness of the Arbiter to detect faulty versions of the dis-
patching algorithm Performance Mutation Testing [17] was used. Mutation
testing aims to generate a set of versions from the original program adding a
synthetic variation to its code. Then, these "mutants" are executed and when
the outcomes of a mutant differ from the outcomes of the original version, it is
considered that the mutant is killed. This technique has been found to be a good
substitute for real faults [33]. The difference between traditional mutation testing
and Performance Mutation Testing is that the mutation operators for the latter
are focused on injecting performance errors while keeping the original func-
tionality of the program, whereas the former focuses on changing the program
functionality. In Listings 7.4 and 7.5 an example of a code snippet representing
how a potential performance mutant affects the system is shown. The function in
this example looks for a given number within an array until the number is found
or the end of the array is reached. Instead, the performance mutant removes the
second condition from the while loop, so forces the function to go through the
whole array even if the number is already found. This keeps the functionality of
the code but makes it inefficient and more time-consuming.

Listing 7.4: Code snippet of the origi-
nal function

1 i n t a r r a y _ c o n t a i n s (i n t num, i n t
a r r a y [] , i n t s i z e)

2 {
3 r e t = 0 ;
4 i n t i = 0 ;
5 while (i < s i z e && r e t == 0)
6 {
7 i f (a r r a y [i] == num{
8 r e t = 1 ;
9 }

10 }
11 r e tu rn r e t ;
12 }

Listing 7.5: Code snippet of a perfor-
mance mutant

1 i n t a r r a y _ c o n t a i n s (i n t num, i n t
a r r a y [] , i n t s i z e)

2 {
3 r e t = 0 ;
4 i n t i = 0 ;
5 while (i < s i z e)
6 {
7 i f (a r r a y [i] == num{
8 r e t = 1 ;
9 }

10 }
11 r e tu rn r e t ;
12 }

A set of mutants have been systematically created that could affect perfor-
mance based on the performance mutation operators proposed by Delgado-Perez
et al. [17], which include: simulation of heavy operation in different parts of
the algorithm, Move/Copy Statement into Loop, Removal of Stop Condition

Arbiter 97

in Loop and Unnecessary Calculation of values. These faults were introduced
in a uniform manner throughout different sections of the source code that are
relevant for passenger handling. A total of 30 performance mutants were gen-
erated that could affect the execution time of the dispatching algorithm. Seven
of these performance mutants were finally discarded from the test executions
for different reasons: two of them did not compile correctly, other two led to
crashes at execution time, another one got caught in an infinite loop, and two
took a too long time to execute, making its execution unfeasible. In all these
cases, the manual detection of the performance bug was trivial, not requiring
the use of a sophisticated oracle. Therefore, a total of 23 performance mutants
were finally used in the evaluation.

7.3.2.2 Evaluation Metrics

The Arbiter compares the execution time of the mutants with the predicted
execution times, cataloging the verdict either as “PASS” or “FAIL”. This is the
Performance Oracle. Additionally, the original previous version was executed
with the same passenger list and compared its execution time with the mutants
by the Arbiter. This element is called the regression test oracle and also raises a
”PASS” or ”FAIL”, setting ground truth on the mutant functioning. Thus, similar
to other works tackling the test oracle problem [15, 23], the verdict provided by
the Performance Oracle was considered a True Negative (TN), a True Positive
(TP), a False Negative (FN) or a False Positive (FP) as defined below:

• TN: Both the Performance Oracle and the regression test oracle returned
a ”PASS” verdict.

• TP: Both the Performance Oracle and the regression test oracle returned a
“FAIL” verdict.

• FN: The Performance Oracle returned a “PASS” and the regression test
oracle returned a “FAIL”.

• FP: The Performance Oracle returned a “FAIL” and the regression test
oracle returned a “PASS”.

Based on a similar work [23], four measures were selected to evaluate the
quality of test oracles: Precision (Equation 3), Recall (Equation 4), Accuracy
(Equation 5) and F1 (Equation 6). The Specificity measure was also included
(Equation 7). In this context, classifying faults well is as important as classify-
ing correct behavior as correct. Therefore, it is necessary to consider metrics
involving both TP rates (Precision and Recall) and TN rates (Accuracy and

98 7.3 Evaluation

Specificity).

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1 =
2 × (Precision×Recall)

Precision+Recall
(6)

Specificity =
TN

TN + FP
(7)

7.3.2.3 Parameters

To establish the most appropriate parameters of the Arbiter, they were discussed
with domain experts from Orona. The time span of the Multi-step Arbiter was
set to 5 minutes, based on typical passenger flow patterns. Regarding, threshold
values, they were set to values that minimized the appearance of FPs. FPs were
considered more problematic than FNs, as the apparition of FPs would make
engineers start debugging and testing the software looking for an error that
does not exist. Instead, FNs can make faulty versions of the software continue
executing in the installation, but these faulty versions are not expected to be
dangerous, as the most damaging versions are expected to be easily detected.

For the SiL use case a reduced version of the Arbiter had to be implemented,
as the limitations on the execution time measurement in this context forced the
data to be compiled for every minute, not for every execution. Thus, the SiL
Arbiter only gives verdicts for every minute.

7.3.3 Results

Now the results obtained from the scenarios designed to answer the proposed
RQs are presented.

Arbiter 99

7.3.3.1 SiL Results

Table 7.1 shows the metrics obtained for the Arbiter with the Theoretical-Real
scenario models. The results show that Regression Tree, Ensemble, and RGP are
the algorithms showing the best results, with a Precision of around 1, indicating
nearly 0 FPs. SVM and Stepwise showed better Recall measures (i.e., 1) but lower
Precision, Accuracy, and F1 measures, which means that there are no FNs but
FPs appear in this case.

Table 7.1: Results summary of the arbiter when tested with theoretical data from
single installation SiL context

Precision Recall Accuracy F-1

Regression
Tree

0.99 0.70 0.83 0.82

Ensemble 1.00 0.65 0.81 0.79

RGP 1.00 0.67 0.82 0.81

Stepwise 0.60 1.00 0.60 0.75

SVM 0.61 1.00 0.61 0.76

Table 7.2 summarizes the obtained results for the ML algorithms for the
Real-Real scenario. Regression Tree, Ensemble, and RGP showed the strongest
results since they showed a Precision of around 0.95, a Recall of around 0.93, an
Accuracy of around 0.93, and an F1 measure of around 0.94. Conversely, SVM
and Stepwise algorithms showed overall worse results. Despite having a high
Recall, their Precision, Accuracy, and F1 were significantly lower than the rest
of the algorithms. This means that there was a high number of FPs.

It is noteworthy, however, that for the best algorithms (i.e., Regression Tree,
RGP and Ensemble), the Recall, Accuracy and F1 measures improved with respect
to the previous scenario, although the Precision decreased. This means that when
training with theoretical data, the number of FNs decreased, whereas the number
of FPs slightly increased.

100 7.3 Evaluation

Table 7.2: Results summary of the arbiter when tested with real data from single
installation SiL context

Precision Recall Accuracy F-1

Regression
Tree

0.95 0.94 0.94 0.95

Ensemble 0.96 0.92 0.94 0.94

RGP 0.95 0.94 0.94 0.95

Stepwise 0.62 1.00 0.65 0.77

SVM 0.58 1.00 0.58 0.74

7.3.3.2 HiL Results

Table 7.3 shows the metrics obtained for the Arbiter with the Theoretical-Real
scenario models. The results for Regression Tree, RGP, SVM, and Stepwise
showed good performance in terms of Precision and Specificity (between 0.93
and 0.94 for the former and 0.95 for the latter), but their Recall measure was
low (0.57 for SVM, Regression Tree and Stepwise, and 0.67 for RGP) indicating
the appearance of FNs. Their Accuracy and F1 measure remained relatively
high (i.e., between 0.75 and 0.79 for the Accuracy metric and between 0.71 and
0.79 for the F1). Conversely, the Ensemble algorithm obtained different results.
While its Precision and Specificity were lower, but still competitive (0.90 for
both), the rest of the metrics were higher: a Recall of 0.80, an Accuracy of 0.85,
and an F1 measure of 0.85.

Table 7.4 show the metrics obtained for the Arbiter with the Real-Real
scenario models. Within this scenario, all the algorithms showed similar results.
In fact, all of them showed the same Precision and Specificity of 0.95, which is
highly competitive. In terms of Recall, Accuracy, and F1 measure, the Ensemble
showed slightly better performance than the rest, although the differences were
minimal. All these values were over 0.80 for the Recall, and over 0.87 for Accuracy
and F1. This means that all the algorithms are highly effective within this scenario.

Arbiter 101

Table 7.3: Results summary of the arbiter when tested with theoretical data from
single installation HiL context

Precision Recall Accuracy F-1 Specificity

Regression
Tree

0.93 0.57 0.75 0.71 0.95

Ensemble 0.90 0.80 0.85 0.85 0.90

RGP 0.94 0.67 0.79 0.79 0.95

Stepwise 0.93 0.57 0.75 0.71 0.95

SVM 0.93 0.57 0.75 0.71 0.95

7.3.3.3 Multi-environment Results

The results in Table 7.5 show that traditional ML algorithms keep performing
well, with Precision and Specificity values above 0.90, Recall values above 0.80,
and an Accuracy of around 0.90. On the contrary, SVM drops the Precision and
Specificity metrics to 0.65 and 0.18 respectively, which indicates the appearance
of FPs and the Recall value rises to 0.97 which indicates few FNs. Regarding
GP, it shows similar results to SVM with very high Recall (0.99), low Precision
and Accuracy values (0.62 and 0.65, respectively), and very low Specificity values
(0.17). Finally, the NN approach shows a value of 1 in Precision and Specificity,
indicating no FPs, a Recall of 0.85, an F1 measure of 0.92, and an Accuracy of
0.90.

7.3.4 Discussion

The evaluation aimed to assess whether the Performance Oracle can be appli-
cable in the context of performance testing of CPSs. To this end, an empirical
evaluation was carried out using the study by Delgado-Perez et al., [17] for the
creation of performance mutants.

Overall, the results are considered positive, indicating that this approach
can be applicable in the CPS context. In the SiL context, some ML techniques
showed good results, but this context was less exigent, and fewer mutants were
detected. In the HiL context, the results remain similar, with an improvement of
SVM and Stepwise, but the scenario is more realistic and similar to the Operation
environment, and more mutants are detected. Besides, the relevance of training

102 7.3 Evaluation

Table 7.4: Results summary of the arbiter when tested with real data from single
installation HiL context

Precision Recall Accuracy F-1 Specificity

Regression
Tree

0.95 0.80 0.87 0.87 0.95

Ensemble 0.95 0.82 0.88 0.88 0.95

RGP 0.95 0.80 0.87 0.87 0.95

Stepwise 0.95 0.80 0.87 0.87 0.95

SVM 0.95 0.80 0.87 0.87 0.95

the algorithms with real data instead of theoretical data was identified to improve
the results.

Based on the performed evaluation, the results of this approach are believed
to be good enough to be applicable by Orona engineers when performing long
full-day tests.

Similarly to other works in the field of the test oracle problem [23], the
Precision, Recall, Accuracy, and F1 metrics were employed, alongside Specificity,
which are commonly used by the ML community. Nevertheless, a recently
performed systematic literature review [22] revealed that many studies used the
mutation score metric, which aims at assessing the percentage of mutants killed.
In this case, the mutation score mostly depends on the type of test inputs used,
rather than the test oracle itself. In fact, the same criterion as the regression test
oracle was used, currently used in the context of Orona for determining whether
a mutant is killed or not by a test case. It is important to note that test oracles are
prone to false verdicts [9, 63], and therefore, the right classification done by the
Arbiter has been prioritized rather than the number of mutants detected.

7.3.5 Threads to Validity

The internal and external validity threats of the performed evaluation are now
discussed:

Arbiter 103

Table 7.5: Results summary of the arbiter when tested with theoretical data from
multiple installations in HiL context

Precision Recall Accuracy F-1 Specificity

Regression
Tree

0.96 0.81 0.86 0.88 0.94

Ensemble 0.95 0.86 0.90 0.92 0.97

RGP 0.95 0.86 0.90 0.92 0.97

Stepwise 1 0.83 0.89 0.91 1

SVM 0.65 0.97 0.65 0.78 0.18

GP 0.62 0.99 0.65 0.76 0.17

NN 1 0.85 0.90 0.92 1

7.3.5.1 Internal Validity

A potential internal validity threat in this study might be related to the parameters
of the Arbiter, which are configurable. To reduce this threat, the parameters were
with domain experts to see which thresholds could be appropriate to consider a
test as ”PASS” or ”FAIL”.

7.3.5.2 External Validity

As in the Performance Model evaluation cases, the external validity threats for
the evaluation of the Arbiter are related to using a single benchmark dataset and
the use of a single use case, which have already been addressed in Section 6.3.5.2

7.4 Conclusion and Future Work

In this chapter, an Arbiter has been proposed, which relies on the predictions of a
Performance Model (forming the Performance Oracle) to automatically test new
versions of software for CPSs, . This arbiter is composed of three sub-arbiters,
which aim at detecting different types of performance errors.

104 7.4 Conclusion and Future Work

In the evaluation, where an industrial dispatching algorithm from Orona
was used, the type of training data used impacted these results, as well as the
different AI techniques used. These results are believed to be competent enough
to transfer the tool to practitioners, although further investigation is required to
enhance these results.

8
Conclusion

This chapter concludes the thesis. A summary of the contributions is presented
in Section 8.1, where the validation of the hypotheses is discussed and the main
limitations of the proposed solutions are highlighted. 8.2 discusses a set of lessons
learned extracted from the experiments conducted during the thesis. Finally,
future work is exposed in Section 8.3.

8.1 Summary of the Contributions

In this thesis, the aim was to build a method to detect performance errors in CPS
software updates based on AI techniques. This method consists of a Performance
Model that predicts the expected performance of the system and an Arbiter that
compares this prediction to the monitored actual performance to decide whether
an error exists or not.

To build the Performance Model the use of different training data and AI
techniques have been investigated. On the one hand, the execution of the
software on different platforms (i.e., SiL and HiL) with the use of different input
data types (i.e., theoretical and real) was performed to obtain the training data,
On the other hand, the AI techniques used were traditional ML techniques,
Genetic Programming, and Neural Networks. The aim was to build the most
accurate and resource-efficient model to be applicable in the CPS domain. These
models were then used to feed the Arbiter with their predictions to verify its
ability to detect performance errors. This Arbiter aimed at detecting different
types of errors and was evaluated by using the Performance Mutation Testing
method. Finally, the mechanism is encapsulated as a microservice, forming the
Performance Oracle.

The method developed in this thesis was evaluated using an industrial use
case provided by Orona, a company from the elevation domain, which offered
its traffic dispatching algorithm.

105

106 8.1 Summary of the Contributions

8.1.1 Hypotheses Validation

In this Ph.D., five research hypotheses were stated in Section 4.2. This section
analyses each of the contributions and argues whether the stated hypotheses can
be validated.

Hypothesis 1: "It is possible to accurately predict the performance of a CPS in
certain environment based on knowledge obtained from the execution of the previous
release in the same environment."

To validate this hypothesis, executing an old error-free version of the software
was proposed in order to monitor its performance and obtain the training data
for the Performance Model. The execution of the old version of the software
was done considering specific environmental values and the model was tested
under that same environment. The evaluation of the performance models was
done using the case study of the dispatching algorithm of Orona, where a real
installation of the company was taken as a reference to train and test the model.
Different models were built by means of different ML algorithms and the results
show that most models show low prediction errors.

Hypothesis 2: "It is possible to accurately predict the performance of a CPS
in a certain environment based on knowledge obtained from the execution of the
software on other environments.

To validate this hypothesis, a similar approach as for validating the first one
was used, but to train the Performance model data from different environments
was used and it was tested in another environment. The evaluation of the
performance models was also done using the case study of Orona, where a number
of simulated installations were used to train the models, and a real installation
of the company was used to test them. In this case, Genetic Programming and
Neural Networks were used besides traditional ML techniques and the results
showed that the models worsened their results compared to the single installation
training but the NN model outperformed traditional ML techniques.

Hypothesis 3: "Data obtained from the monitoring of real environments is
more appropriate to train performance models than laboratory data."

To validate this hypothesis, the mentioned performance models were trained
with data monitored from real operational environments and theoretical data
obtained from simulation environments. To evaluate the hypothesis with the
use case of Orona, data monitored from a real installation of the company and
data extracted from a simulation tool for elevation systems called Elevate were
used. The prediction accuracy of the models trained with both types of data
were compared and the results revealed that real data training shows better results
compared to theoretical data.

Hypothesis 4: "It is possible to create a high-accuracy performance prediction

Conclusion 107

model with low resource consumption."

To validate this hypothesis, the resource consumption of the performance
models (i.e., inference time and footprint) was measured. This was only possible
for the models that were supported by the used C code generation tools. The
results showed that Regression Tree models are very resource-efficient maintain-
ing high prediction accuracy, while SVM is much more resource consuming
and its prediction accuracy falls in some contexts. Furthermore, the more GP
was the most lightweight technique but its prediction capabilites were not that
good.

Hypothesis 5: "It is possible to detect di�erent types of performance bugs in a
software based on di�erent metrics."

To validate this hypothesis, an Arbiter that compares the predictions of the
performance models with the actual performance of the system was developed,
which based on different metrics decides if an error exists or not. The Arbiter was
evaluated by generating a set of faulty versions of the software called Performance
Mutants evaluating the capabilities of the Arbiter when detecting these mutants.
The results showed that the Arbiter is able to detect mutants precisely, minimizing
the appearance of False Positives, and it maintained its capabilities across different
environments.

8.1.2 Limitations of the Proposed Solution

This section discusses the limitations of the proposed solutions to be applied in
practice.

• The tool used to train the models was MATLAB, which was chosen because
it supported a large corpus of ML algorithms and it allowed the automatic
generation of C code. However, C code generation was not supported for
all the algorithms, so these models could not be tested in the evaluation.

• As stated, the performance models were trained using theoretical and real
data. The latter was obtained from real installations of the use case provider,
which is Orona. This behavior was reproduced in SiL and HiL platforms
for a single installation, but it could not be tested in the multi-installation
context because of a lack of real data. Furthermore, the amount of real
data available for the used installations was small, so more data should be
extracted to obtain more complete conclusions.

• The performance data was obtained from specific hardware for the SiL
and HiL environments. This means that if the hardware of the system is
different in any installation, the models must be re-trained, as execution
time is hardware-dependent.

108 8.2 Lessons Learned

• The measurements of the execution time of the studied software were made
in a context where only one core of the CPU was enabled, as multi-core
functioning distorted the measurements. Thus, the proposed approach is
currently valid for single-core mode.

• At the moment, the Performance Oracle gives a verdict on the performance
of the system but does not give any information about the reason why this
error appeared or the conditions that led to that error, so engineers need
to debug the software without any insight on the cause of the error.

8.2 Lessons Learned

Based on the results obtained from the evaluation section and the discussion with
domain experts about the applicability of the approach, the following lessons
were extracted:

Lesson 1 – Training data: The use of the right data for training the AI
models plays a critical role in the accuracy of the Performance Oracle. The
results obtained in scenario Real-Real are much better than the ones obtained
in scenario Theoretical-Real. According to the precision of the performance
models, there was not a huge difference between the two scenarios, but there
was when detecting the errors, This might be because despite both having a
similar average error, the models trained with real data learn more precisely the
patterns of the performance of the software. Therefore, in order for the oracle
to be accurate enough in real operational environments, the training data should
be also obtained from these environments.

In other contexts, such as web engineering, technologies like DevOps permit
the use of data from operation at design time to enhance software engineering
processes (e.g., testing). The good performance of the proposed approach with
field test data shows the importance of researching on adapting design-operation
continuum techniques (e.g., DevOps) in the context of CPSs and in domains
like elevation. The simulation at design-time of situations seen only in operation
is of great advantage for engineers. For instance, this permits the detection of
unforeseen situations that can only be seen when the system is in operation.

Lesson 2 – AI techniques: The empirical evaluation suggested that some AI
techniques performed better than others depending on the context to detect
performance errors. In the SiL context Regression Tree, Ensemble and RGP
showed good results, contrary to SVM and Stepwise, In the HiL context, all the
algorithms performed similarly, with good results for real data training and worse
for theoretical data training, except Ensemble, which showed good results also
for the latter case. Finally, in the multi-environment context, NN outperformed
traditional ML techniques and GP did not show good results.

Conclusion 109

Regarding resource consumption, Regression Tree was shown to be the most
efficient algorithm. For the application of the tool in industry, further investi-
gation is required before recommending one of the algorithms for detecting
performance bugs.

Lesson 3 – Consequences of mistaken oracle: An oracle may be mistaken when
providing a test verdict. That is, the test oracle is subject to False Positives and
False negatives. On the one hand, a False Positive means that a test was cataloged
as ’‘FAIL” when it should have been provided a “PASS”. This results in, probably,
the need for the developer to debug where the potential fault is located. Since
there is no fault behind it, this may result in time spent by an engineer debugging
a fault that does not exist. This issue could be mitigated by confirming the test
verdict by using a regression test oracle.

On the other hand, a False Negative means that a test was cataloged as a
“PASS” when it should have it done as a “FAIL”. If this happens at design time
(i.e., at the SiL or at the HiL phases), the bug might be missed and shipped to
production. These faults are very minor errors that do not degrade the system,
but this consideration is use-case-specific.

8.3 Future Work

In this section, the further research needed to complement this work is summa-
rized. On the one hand, some of these considerations are related to the training
of the performance models, already addressed in Section 6.4. On the other hand,
there are considerations related to the development of the Arbiter, which were
addressed in Section 7.4. Finally, some future work is required related to the
structural limitations mentioned in Section 8.1.2 and general considerations.

• Regarding the training data, the options used were theoretical and real
data monitored from real operational installation. The latter was limited by
the amount of data available from the use case provider. Thus, more data
should be obtained in the future to improve the training with this type
of data. The training with theoretical data was proven to be less effective
than the real data, but only one type of theoretical data was tried. The
use of different types of theoretical data can be investigated to test their
effectiveness against real data.

• The usage patterns or the configuration of the CPS may vary over time and
this can degrade the precision of the Performance Model. This is known
as Concept Drift [72] and different strategies should be investigated to
detect it and activate a re-training process to adapt the model to the new
conditions.

110 8.3 Future Work

• The performance data was obtained from specific hardware so the model
is hardware-dependent. This makes it necessary to build a new model for
each hardware platform. Thus, in the future the data monitoring should
be extended to multiple hardware and the models should be trained to be
able to predict the performance for each hardware platform.

• As mentioned, resource consumption is a relevant consideration when
using the Performance Oracle in the CPS context. Thus, additional may
be considered to optimize the resource consumption of the models. For
instance, Quantization [27] is a method to reduce the size of NNs that
could be applied.

• The oracle relies on the predictions of the Performance Model and the
monitored performance to give a verdict on the functioning of the system.
However, these measurements may suffer distortions caused by the hostile
nature of the operational environment, provoking bad verdicts. Therefore,
additional mechanisms are needed to detect whether the deviations are
caused by software bugs or environmental causes.

• The Performance Oracle gives a verdict on the performance of the system
without giving any additional information to help solve the bugs. In the
future, it would be interesting for the oracle to give some information
about the conditions that led to that verdict so that engineers have some
insight into the cause of the error before debugging the software. For
instance, different thresholds can be established to differentiate severe and
minor errors.

• At the moment, the Performance Oracle only detects performance errors
considering the execution time, but the performance of the system may
suffer degradation as well in terms of memory usage, energy consumption,
or other performance metrics. Thus, new performance metrics may be
considered in the future.

• As mentioned, the tool used to train the models was MATLAB due to
its large support of ML algorithms and its automatic code generation
toolkit. However, some algorithms were not supported and this limited
the evaluation. Thus, in the future, new tools for building the models shall
be used that permit the C code generation of a wider range of ML models.

• The proposed method was evaluated with the use case of Orona. However,
performance metrics can be found in many other CPS applications, includ-
ing those from the automotive [28, 65] or aerospace domains [43]. Another
line of research could be the application of the Performance Oracle in other
CPS domains.

Bibliography

[1] Adeptness project webpage: https://www.adeptness.eu/.

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-
toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-
the-art in artificial neural network applications: A survey. Heliyon, 4(11),
2018.

[3] Pekka Abrahamsson, Goetz Botterweck, Hadi Ghanbari, Martin Gilje
Jaatun, Petri Kettunen, Tommi J. Mikkonen, Anila Mjeda, Jürgen Münch,
Anh Nguyen Duc, Barbara Russo, and Xiaofeng Wang. Towards a Secure
DevOps Approach for Cyber-Physical Systems. International Journal of
Systems and Software Security and Protection, 11(2):38–57, 2020.

[4] Milad Taleby Ahvanooey, Qianmu Li, Ming Wu, and Shuo Wang. A
survey of genetic programming and its applications. KSII Trans. Internet Inf.
Syst., 13(4):1765–1794, 2019.

[5] Liwei An and Guang-Hong Yang. Attack detectability and stealthiness in
distributed optimal coordination of cyber-physical systems. 66(9), 2023.

[6] Sara Abbaspour Asadollah, Rafia Inam, and Hans Hansson. A surveyon
testing for cyber physical system. In IFIP International Conferenceon Testing
Software and Systems, 2015.

[7] Jon Ayerdi, Aitor Garciandia, Aitor Arrieta, Wasif Afzal, Eduard Enoiu,
Aitor Agirre, Goiuria Sagardui, Maite Arratibel, and Ola Sellin. Towards a
taxonomy for eliciting design-operation continuum requirements of cyber-
physical systems. In 2020 IEEE 28th International Requirements Engineering
Conference (RE), pages 280–290. IEEE, 2020.

[8] Jon Ayerdi, Sergio Segura, Aitor Arrieta, Goiuria SagarduiMaite Arratibel,
and Maite Arratibel. Qos-aware metamorphic testing: An elevation case

111

112 8.3 Future Work

study. In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), pages 104–114. IEEE, 2020.

[9] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui,
and Maite Arratibel. Generating metamorphic relations for cyber-physical
systems with genetic programming: an industrial case study. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1264–1274,
2021.

[10] Mohammad Azad, Igor Chikalov, Shahid Hussain, and Mikhail Moshkov.
Minimizing depth of decision trees with hypotheses. In Rough Sets: Inter-
national Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19–24,
2021, Proceedings, pages 123–133. Springer, 2021.

[11] Sreram Balasubramaniyan, Seshadhri Srinivasan, Furio Buonopane,
B. Subathra, Jüri Vain, and Srini Ramaswamy. Design and verification of
Cyber-Physical Systems using TrueTime, evolutionary optimization and
UPPAAL. Microprocessors and Microsystems, 42(2016):37–48, 2016.

[12] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S.
Gupta. Ensuring safety, security, and sustainability of mission-critical
cyber–physical systems. Proceedings of the IEEE, 100(1):283–299, 2012.

[13] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli.
Testing the untestable: model testing of complex software-intensive sys-
tems. In Proceedings of the 38th international conference on software engineering
companion, pages 789–792, 2016.

[14] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Dan-
ciu, Wilhelm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan
Jamshidi, Reiner Jung, Joakim von Kistowski, Anne Koziolek, Johannes
Kroß, Simon Spinner, Christian Vögele, Jürgen Walter, and Alexander
Wert. Performance-oriented DevOps: A Research Agenda. 2015.

[15] Wing Kwong Chan, Jeffrey CF Ho, and TH Tse. Finding failures from
passed test cases: Improving the pattern classification approach to the testing
of mesh simplification programs. Software Testing, Verification and Reliability,
20(2):89–120, 2010.

[16] Lawrence Chung and Julio Cesar Sampaio Do Prado Leite. On non-
functional requirements in software engineering. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 5600 LNCS:363–379, 2009.

Conclusion 113

[17] Pedro Delgado-Pérez, Ana Belén Sánchez, Sergio Segura, and Inmaculada
Medina-Bulo. Performance mutation testing. Software Testing Verification
and Reliability, 2020.

[18] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early perfor-
mance testing of distributed software applications. Proceedings of the Fourth
International Workshop on Software and Performance, WOSP’04, pages 94–103,
2004.

[19] Subhasri Duttagupta and Manoj Nambiar. Performance extrapolation using
load testing results. Proceeding of International Journal of Simulation Systems,
Science & Technology, pages 66–74, 2008.

[20] Vincenzo Ferme and Cesare Pautasso. Towards holistic continuous software
performance assessment. ICPE 2017 - Companion of the 2017 ACM/SPEC
International Conference on Performance Engineering, pages 159–164, 2017.

[21] Nicolas Ferry and Phu H. Nguyen. Towards model-based continuous
deployment of secure IoT systems. In Proceedings - 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion, MODELS-C 2019, pages 613–618. Institute of Electrical and
Electronics Engineers Inc., sep 2019.

[22] Afonso Fontes and Gregory Gay. Using machine learning to generate test
oracles: a systematic literature review. In Proceedings of the 1st International
Workshop on Test Oracles, pages 1–10, 2021.

[23] Ahmet Esat Genç, Hasan Sözer, M Furkan Kıraç, and Barış Aktemur.
Advisor: An adjustable framework for test oracle automation of visual
output systems. IEEE Transactions on Reliability, 2019.

[24] Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand,
and Yago Isasi. Enabling model testing of cyber-physical systems. In
Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS ’18, page 176–186, New York,
NY, USA, 2018. Association for Computing Machinery.

[25] Charles Hartsell, Abhishek Dubey, Nagabhushan Mahadevan, Theodore
Bapty, Shreyas Ramakrishna, and Gabor Karsai. Demo abstract: A CPS
toolchain for learning-based systems. ICCPS 2019 - Proceedings of the
2019 ACM/IEEE International Conference on Cyber-Physical Systems, pages
342–343, 2019.

[26] Priyanka S Helode, Dr. K. H. Walse, and Karande M.U. An Online Secure
Social Networking with Friend Discovery System. International Journal of
Innovative Research in Computer and Communication Engineering, 5(4):8198–
8205, 2017.

114 8.3 Future Work

[27] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks
with low precision weights and activations. The Journal of Machine Learning
Research, 18(1):6869–6898, 2017.

[28] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. Quality metrics
and oracles for autonomous vehicles testing. In 2021 14th IEEE Conference
on Software Testing, Verification and Validation (ICST), pages 194–204. IEEE,
2021.

[29] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund.
Learning to sample: Exploiting similarities across environments to learn
performance models for configurable systems. ESEC/FSE 2018 - Proceed-
ings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
71–82, 2018.

[30] Mohammad Ali Javidian, Pooyan Jamshidi, and Marco Valtorta. Transfer
Learning for Performance Modeling of Configurable Systems: A Causal
Analysis. pages 497–508, 2019.

[31] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Un-
derstanding and detecting real-world performance bugs. ACM SIGPLAN
Notices, 47(6):77–87, 2012.

[32] Muhyiddine Jradi, Krzysztof Arendt, Fisayo Caleb Sangogboye, Clau-
dio Giovanni Mattera, Elena Markoska, Mikkel Baun Kjærgaard, Chris-
tian T Veje, and Bo Nørregaard Jørgensen. Obepme: An online building
energy performance monitoring and evaluation tool to reduce energy per-
formance gaps. Energy and Buildings, 166:196–209, 2018.

[33] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real faults
in software testing? In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 654–665. ACM,
2014.

[34] Alexios Koutsoukas, Keith J Monaghan, Xiaoli Li, and Jun Huan. Deep-
learning: investigating deep neural networks hyper-parameters and com-
parison of performance to shallow methods for modeling bioactivity data.
Journal of cheminformatics, 9(1):1–13, 2017.

[35] Richard Lai, S Mahmood, R Lai, and Y S Kim. Survey of component-based
software development. The Institution of Engineering and Technology, 3(May
2007):58–64, 2014.

Conclusion 115

[36] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo
Meirelles. A survey of devops concepts and challenges. ACM Computing
Surveys (CSUR), 52(6):1–35, 2019.

[37] Rakesh Kumar Lenka, Pranali Bhanse, and Utkalika Satapathy. Load Per-
formance Testing on Cloud Platform. Proceedings - IEEE 2018 International
Conference on Advances in Computing, Communication Control and Networking,
ICACCCN 2018, pages 414–419, 2018.

[38] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Microsoft Azure, Peng
Huang, Johns Hopkins University, Pankaj Singh, Xinsheng Yang, Qingwei
Lin, Microsoft Research, Youjiang Wu, Sebastien Levy, and Murali Chin-
talapati. Gandalf: An Intelligent, End-To-End Analytics Service for Safe
Deployment in Large-Scale Cloud Infrastructure. 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), 2020.

[39] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo,
Catalin Sporea, Andrei Toma, and Sarah Sajedi. Using black-box perfor-
mance models to detect performance regressions under varying workloads:
an empirical study. Empirical Software Engineering, 25:4130–4160, 2020.

[40] Qi Luo, Aswathy Nair, Mark Grechanik, and Denys Poshyvanyk. FORE-
POST: finding performance problems automatically with feedback-directed learning
software testing, volume 22. 2017.

[41] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Moham-
madamin Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P. Sheth.
Machine learning for internet of things data analysis: a survey. Digital
Communications and Networks, 4(3):161–175, 2018.

[42] Elena Markoska and Sanja Lazarova-Molnar. Towards smart buildings
performance testing as a service. In 2018 Third International Conference on
Fog and Mobile Edge Computing (FMEC), pages 277–282. IEEE, 2018.

[43] Claudio Menghi, Enrico Viganò, Domenico Bianculli, and Lionel C Briand.
Trace-checking cps properties: Bridging the cyber-physical gap. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 847–859. IEEE, 2021.

[44] Henry Muccini, Mohammad Sharaf, and Danny Weyns. Self-adaptation
for cyber-physical systems: a systematic literature review. In Proceedings
of the 11th international symposium on software engineering for adaptive and
self-managing systems, pages 75–81, 2016.

[45] Dmitry Namiot and Manfred Sneps-Sneppe.

116 8.3 Future Work

[46] Phu H. Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane
Lavirotte, Jean Yves Tigli, and Arnor Solberg. A systematic mapping study
of deployment and orchestration approaches for IoT. In IoTBDS 2019 -
Proceedings of the 4th International Conference on Internet of Things, Big Data
and Security, pages 69–82. SciTePress, 2019.

[47] Rory V. O’Connor, Peter Elger, and Paul M. Clarke. Continuous software
engineering—A microservices architecture perspective. Journal of Software:
Evolution and Process, 29(11), 2017.

[48] Zina Oudina, Makhlouf Derdour, and Mohammed Mounir Bouhamed.
Testing cyber-physical production system: Test methods categorization and
dataset. In 2022 4th International Conference on Pattern Analysis and Intelligent
Systems (PAIS), pages 1–8. IEEE, 2022.

[49] Michael O’Neill. Riccardo poli, william b. langdon, nicholas f. mcphee:
A field guide to genetic programming: Lulu. com, 2008, 250 pp, isbn
978-1-4092-0073-4, 2009.

[50] Nenad Petrovic and Milorad Tosic. SMADA-Fog: Semantic model driven
approach to deployment and adaptivity in fog computing. Simulation
Modelling Practice and Theory, 2019.

[51] Subhav Pradhan, William R. Otte, Abhishek Dubey, Aniruddha Gokhale,
and Gabor Karsai. Towards a resilient deployment and configuration
infrastructure for fractionated spacecraft. ACM SIGBED Review, 10(4):29–
32, 2013.

[52] Antoine Proulx, Francis Raymond, Bruno Roy, and Fabio Petrillo. Problems
and Solutions of Continuous Deployment: A Systematic Review. 2018.

[53] Sampath Kumar Veera Ragavan and Madhavan Shanmugavel. Engineering
cyber-physical systems-Mechatronics wine in new bottles? 2016 IEEE
International Conference on Computational Intelligence and Computing Research,
ICCIC 2016, (1), 2017.

[54] A. Ramachandran, K. Gayathri, Ahmed Alkhayyat, and Rami Q. Malik.
Aquila optimization with machine learning-based anomaly detection tech-
nique in cyber-physical systems. Computer Systems Science and Engineering,
46(2):2177 – 2194, 2023.

[55] Stefan Reif, Andreas Schmidt, Timo Hönig, Thorsten Herfet, and Wolfgang
Schröder-Preikschat. δelta: differential energy-efficiency, latency, and
timing analysis for real-time networks. ACM SIGBED Review, 16(1):33–
38, 2019.

Conclusion 117

[56] Reza Matinnejad, Shiva Nejati, Lionel C Briand and Thomas Bruck-mann.
Test generation and test prioritization for simulink modelswith dynamic
behavior. IEEE Transactions on Software Engineering, pages 919–944, 2018.

[57] Luis F Rivera, Norha M Villegas, Gabriel Tamura, Miguel Jiménez, and
Hausi A Müller. UML-driven Automated Software Deployment. Proceedings
of the 28th Annual International Conference on Computer Science and Software
Engineering, pages 257–268, 2018.

[58] K. Sampigethaya and R. Poovendran. Aviation cyber–physical systems:
Foundations for future aircraft and air transport. Proceedings of the IEEE,
101(8):1834–1855, 2013.

[59] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of Cyber-
Physical Systems. 2011 International Conference on Wireless Communications
and Signal Processing, WCSP 2011, (November 2011), 2011.

[60] Chi-Sheng Shih, Jyun-Jhe Chou, Niels Reijers, and Tei-Wei Kuo. Design-
ing CPS/IoT applications for smart buildings and cities. IET Cyber-Physical
Systems: Theory & Applications, 1(1):3–12, 2016.

[61] Siddhartha Kumar Khaitan and James D McCalley. Design techniquesand
applications of cyberphysical systems: A survey. IEEE SystemsJournal, pages
350–365, 2014.

[62] Zhen Song, Philippe Labalette, Robin Burger, Wolfram Klein, Sudev Nair,
Suhas Suresh, Ling Shen, and Arquimedes Canedo. Model-based cyber-
physical system integration in the process industry. IEEE International
Conference on Automation Science and Engineering, 2015-Octob(September
2016):1012–1017, 2015.

[63] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. Evo-
lutionary improvement of assertion oracles. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 1178–1189, 2020.

[64] Vijay Vaishnavi, Bill Kuechler, and Stacie Petter. Design Science Research
in Information Systems. 2004.

[65] Pablo Valle. Metamorphic testing of autonomous vehicles: a case study on
simulink. In 2021 IEEE/ACM 43rd International Conference on Software En-
gineering: Companion Proceedings (ICSE-Companion), pages 105–107. IEEE,
2021.

[66] Zhuping Wang, Haoyu Shen, Hao Zhang, Sheng Gao, and Huaicheng
Yan. Optimal dos attack strategy for cyber-physical systems: A stackelberg
game-theoretical approach. Information Sciences, 642, 2023.

118 Conclusion

[67] Elaine J. Weyuker. Experience with performance testing of software systems:
issues, an approach, and case study. IEEE Transactions on Software Engineering,
26:1147–1156, 2000.

[68] Zhijing Ye, Zheng O’neill, and Fei Hu. Hardware-based emulator with
deep learning model for building energy control and prediction based on
occupancy sensors’ data. Information (Switzerland), 12(12), 2021.

[69] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin Tao,
Zhi Zang, Xiaowei Jing, and Mei Feng. FUNNEL: Assessing Software
Changes in Web-Based Services. IEEE Transactions on Services Computing,
11(1):34–48, 2018.

[70] Weiyan Zhang, Mehran Goli, Alireza Mahzoon, and Rolf Drechsler. Ann-
based performance estimation of embedded software for risc-v processors.
volume 2022-October, page 22 – 28, 2022.

[71] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li,
Bin Qiu, Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei. Identi-
fying bad software changes via multimodal anomaly detection for online
service systems. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 527–539, 2021.

[72] Indrė Žliobaitė, Mykola Pechenizkiy, and Joao Gama. An overview of
concept drift applications. Big data analysis: new algorithms for a new society,
pages 91–114, 2016.

A
Publications

A.1 Towards a Taxonomy for Eliciting Design-Operation Con-
tinuum Requirements of Cyber-Physical Systems

This paper was presented at the IEEE International Requirements Engineering
Conference (RE) in 2020 and then published in the conference proceedings. The
full citation:

Ayerdi, J., Garciandia, A., Arrieta, A., Afzal, W., Enoiu, E., Agirre, A.,
Sagardui, G., Arratibel, M. & Sellin, O. (2020, August). Towards a taxonomy for
eliciting design-operation continuum requirements of cyber-physical systems.
In 2020 IEEE 28th International Requirements Engineering Conference (RE)
(pp. 280-290). IEEE.

119

Towards a Taxonomy for Eliciting
Design-Operation Continuum Requirements of

Cyber-Physical Systems
Jon Ayerdi∗, Aitor Garciandia†, Aitor Arrieta∗, Wasif Afzal‡, Eduard Enoiu‡, Aitor Agirre†,

Goiuria Sagardui∗, Maite Arratibel§ and Ola Sellin¶
University of Mondragon∗, Ikerlan †, Mälardalen University‡, Orona§, Bombardier Transportation¶,
∗{jayerdi,aarrieta,gsagardui}@mondragon.edu, †{agarciandia, aagirre}ikerlan.es, ‡{wasif.afzal,
eduard.paul.enoiu}@mdh.se, §marratibel@orona-group.com, ¶ola.sellin@rail.bombardier.com

Abstract—Software systems that are embedded in autonomous
Cyber-Physical Systems (CPSs) usually have a large life-cycle,
both during its development and in maintenance. This software
evolves during its life-cycle in order to incorporate new require-
ments, bug fixes, and to deal with hardware obsolescence. The
current process for developing and maintaining this software is
very fragmented, which makes developing new software versions
and deploying them in the CPSs extremely expensive. In other
domains, such as web engineering, the phases of development
and operation are tightly connected, making it possible to easily
perform software updates of the system, and to obtain operational
data that can be analyzed by engineers at development time.
However, in spite of the rise of new communication technologies
(e.g., 5G) providing an opportunity to acquire Design-Operation
Continuum Engineering methods in the context of CPSs, there
are still many complex issues that need to be addressed, such as
the ones related with hardware-software co-design. Therefore,
the process of Design-Operation Continuum Engineering for
CPSs requires substantial changes with respect to the current
fragmented software development process. In this paper, we build
a taxonomy for Design-Operation Continuum Engineering of
CPSs based on case studies from two different industrial domains
involving CPSs (elevation and railway). This taxonomy is later
used to elicit requirements from these two case studies in order
to present a blueprint on adopting Design-Operation Continuum
Engineering in any organization developing CPSs.

Index Terms—DevOps, Design-Operation, Requirements Elic-
itation, Cyber-Physical Systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) integrate computation with
physical processes whose behavior is defined by both physical
and software parts of the system [1]. While the cyber-physical
controller consists of discrete software, the physical layer is
composed of parallel physical processes running in continuous
time. The cyber layer is composed of computational platforms
and networks that are in charge of monitoring and controlling
physical processes [31]. These systems are part of many
products we use in our daily life, such as vehicles, airplanes,
elevators and trains. As the lifecycle of these systems is rather
long, all their components require maintenance, including their
software components. Given that the software of these systems
is usually extremely complex, the software constantly evolves
during the CPS lifecycle based on several aspects [18], such
as (1) new functional and non-functional requirements, (2)

hardware obsolescence and/or system degradation, and (3)
correction of bugs detected while the system is operating.

In the last few years, there have been several improvements
in terms of modeling and simulation techniques [2], [15], [20]
to develop and validate complex CPSs from the early devel-
opment stages. However, when the software is deployed in
the CPS, the methods used during operation and maintenance
do not have synergies with the methods used in development.
In other contexts, such as web-engineering, there are design-
operation continuum engineering methods such as DevOps
that permit software development methods to be streamlined
with methods for operation time. DevOps practices efficiently
integrate development and operations, aiming at shortening the
lead time between a change request and the deployment in
production using automation, agile software development and
continuous delivery (CD) pipelines. Yet, for CPSs, traditional
design-operation continuum engineering methods require sub-
stantial changes in order to be dependable enough. More
specifically, design-operation continuum methods must pro-
vide solutions in order to have a more efficient process which
guarantees that (1) software updates are performed safely and
securely, (2) most of the faults are detected in the design phase
before the software is deployed in the CPS and (3) problems
that can emerge in operation can be reproduced in development
in order to analyse and propose potential solutions.

In order to start developing design-operation continuum
engineering methods supported by the appropriate tools for
CPSs, a taxonomy of relevant concepts is expected to ease the
understanding of their rather complex development and main-
tenance process. In this paper, we build and instantiate such
a taxonomy in order to assist requirements analysts with the
identification and categorization of the requirements related to
different aspects of the CPS Design-Operation Continuum En-
gineering. The main purpose of this classification is supporting
the elicitation of new requirements and the easier identification
of problems such as omissions, ambiguity, vagueness, conflicts
or duplication in the requirements. Furthermore, this classifi-
cation is also helpful for determining the organisational roles
responsible for each requirement, as well as for the manage-
ment and reuse of the elicited requirements in later stages of
the development lifecycle. This taxonomy is inspired by case

studies from two different industrial domains: the elevation
domain and the railway domain. Both case studies are provided
by companies that are leaders in their sectors. By analyzing the
data provided by these companies through their documentation
(e.g., internal technical documents, repositories, code, etc), as
well as through interviews of their engineers, we were able
to develop a general purpose taxonomy for design-operation
continuum engineering methods for CPSs. With our taxonomy,
organizations can instantiate their domain-specific categoriza-
tion and classification of requirements in order to adopt design-
operation continuum methods for the development of CPSs.

The remainder of this paper is structured as follows: Sec-
tion II describes the taxonomy development process. Sec-
tion III presents the two industrial case studies that inspired
this work, and are also the first systems where this taxonomy
is used to elicit requirements for their design-operation contin-
uum. Section IV describes the developed taxonomy in detail.
Section V describes the process of requirements elicitation
using the taxonomy. Section VI reviews related work and
Section VII concludes the paper.

II. TAXONOMY DEFINITION METHOD

To develop the taxonomy, we followed the guidelines pro-
posed by Ralph [24], which provide a set of steps and certain
options for each of the steps. The first step refers to choosing
the strategy. We opted for using the “grounded theory and
interpretative case study” approach as our main strategy, in
addition to personal experiences acquired by the long-term
collaboration between the industrial and academic partners
involved in this paper. In this case, we analyzed two case
studies from different domains, which permitted us to identify
both commonalities and differences between them. We do not
expect that our taxonomy can be generalized to all CPSs
by using only two industrial case studies as a basis, but at
least, we believe that it provides fundamental evidence that
it could be adopted for many complex and industry-relevant
cases. On the other hand, we unavoidably made use of personal
experience to an extent in order to develop this taxonomy, so
a certain degree of bias can be expected.

The second step is the site selection. Two sites were selected
for developing the taxonomy, which are two organizations of
CPS developers: Orona (from elevation domain) and Bom-
bardier (from railway transportation domain). We chose these
sites due to several reasons. Firstly, there is a long-standing
collaboration between the researchers and practitioners that
work for these organizations. Secondly, both sites are devel-
opers of complex CPSs. Thirdly, the domains are sufficiently
different (i.e., elevation and railway) to ensure a minimum
degree of heterogeneity for the development of a general
taxonomy. Lastly, and most importantly, both sites are relevant
target users for the taxonomy, they produce rich data and
detailed explanations for their requirements, and are accessible
to the authors of this paper.

As for the data collection, which is the third step proposed
in the guidelines [24], two processes were followed. On the

one hand, the direct observation methodology [24] was em-
ployed. To this end, we had access to internal documentation
provided by both Orona and Bombardier. On the other hand,
we interviewed participants from the companies involved. To
this end, we prepared a set of relevant questions carefully
selected by the researchers. We later interviewed practitioners
from Orona that would directly benefit from adopting design-
operation continuum methods into their development pro-
cesses. These developers had various positions and experience
levels. As we were creating a taxonomy from scratch, similar
to [13], the interview questions had to be as generic and open-
ended as possible. Therefore, we opted for semi-structured
interviews [28], which combine open-ended questions with
specific questions. Thus, the interviewer had to improvise new
questions based on the interviewee’s response. Additionally,
we used internal documentation from both industrial compa-
nies, including test plans, comments from the code repository,
standards, etc. More information related to the data collection
from each of the case studies is given in Section III.

The fourth step is related to the data analysis [24]. We
took notes based on (1) the interviews to engineers working in
Orona, and (2) by accessing internal documentation at Orona
and Bombardier. We then used an iterative approach to code
our notes and build the taxonomy. We initially developed a
first structure of the taxonomy by having reviewed the state-
of-the-art on design-operation continuum methods. We later
evolved this initial taxonomy with the information extracted
from the interviews as well as the internal documentation of
the case companies.

The last step refers to the conceptual evaluation. Similar
to [13], in order to ensure that the final taxonomy was
comprehensive and representative, we validated the taxonomy
by involving both researchers and industrial participants. These
were different from those involved in the interviews. The
participants were asked to (1) identify potential weaknesses
of the theory, as suggested by Ralph [24], and (2) provide
evaluation criteria based on the credibility and transferability
of the taxonomy.

III. CASE STUDIES

In this section, we describe the two industrial case studies
used to extract the taxonomy. One of the case studies is from
the vertical transport (elevation) domain, whereas the other
one is from the railway domain. Both companies that provide
the case studies are leaders in their domain, and therefore, the
technology that they use is cutting-edge. In this section, we
explain the subsystems considered to build the taxonomy of
the paper and its current software development process, the
specific methodology followed in each of the case studies for
developing it, and how both companies expect to improve their
software development process by adopting design-operation
continuum methods.

A. Case study from the elevation domain

Orona’s activities are focused on the design, manufactur-
ing, installation, maintenance, and modernisation of elevators,

escalators, and moving ramps and walkways. An elevator
installation is a complex CPS composed by a set of elevators
that interact to provide service to passengers with the goal
of minimising the Average Waiting Time (AWT) and, more
recently, also taking into account other criteria such as en-
ergy consumption, transport capacity, or overall transit time.
Nowadays, over 250.000 elevators worldwide use Orona’s
technology. As most of the new functionality in elevators’
installations is provided by software, Orona has a systematic
and well established process for the development and release
of new software versions.

The traffic master manages the passenger flow. It is com-
posed by several software modules such as the dispatcher,
which executes the traffic algorithm to allocate calls to ele-
vators, the signalling to guide passengers (e.g., by commu-
nicating the assigned elevator), or the access control which
disables specific floors for unauthorized passengers. The traffic
master is constantly evolving in order to improve the service
by including new functionalities or adapting to the building
requirements. In conclusion, this system is a good candidate
for the adoption of design-operation continuum methods.

Interviews to the dispatcher manager, two software engi-
neers and a system validation engineer were carried out by
the researchers. The dispatcher manager defines new func-
tionalities and analyzes poor performance in installations. The
software engineers develop and validate the software. Lastly,
the validation engineer tests the dispatcher in the Elevator.

Figure 1 illustrates the process (current tasks, roles and
tools) extracted from the analysis of the data collected during
the interviews. Within the requirement elicitation of a new
release (1), a rigorous validation plan is defined comprising
three main validation phases. The Software-in-the-Loop (SiL)
phase usually encompasses most of the development work for
a new functionality. The software produced in this step (2)
(depicted as system under test (SUT)) is validated (3) in a
purely virtual environment using a domain specific simulator
(i.e., Elevate™).1 At the SiL phase, tests ensure the quality of
service requirements (e.g., AWT over time). The Hardware-in-
the-Loop (HiL) phase (4-5-6) follows the previous SiL phase.
In this phase, both virtual and real components are mixed
together to compose an integrated scenario that is very close
to the real one. Simulators that are used at the SiL phase
are substituted by real hardware (e.g., elevator controllers)
and communication networks, enabling integration tests of the
entire system. Nevertheless, some parts may still be simulated
(e.g., elevator shaft simulator, passenger demand, etc.). At
the HiL phase, test cases check the functional correctness of
the release. Finally, the software is deployed into the real
system, operational phase (7-8), and eventually monitored
by maintenance staff (9). Some installations require a deep
analysis in order to understand the perception of the customers
(10). This analysis is performed by trying to reproduce the
situations observed in reality in simulations at the SiL phase.

1https://www.peters-research.com/index.php/elevate

Executing the validation plan both at SiL and HiL phases
follows a similar sequence: (a) deploy to validation infras-
tructure; (b) configure the context (i.e., the type of building,
number of floors, etc.); (c) define and configure data to moni-
tor; (d) execute the test cases; (e) analyze the data; (f) decide
whether the version is ready for the next phase. Configuration,
deployment, analysis and decision are mainly manual steps and
the execution of test cases at HiL is semi-manual. Therefore,
these tasks are error-prone, require significant effort and are
dependent on specific knowledge and skills. This is especially
exacerbated at the HiL phase, where a configuration of the
validation infrastructure requires especial knowledge and can
take hours to ensure a proper configuration and deployment.
Besides, test cases are executed in real-time, and thus, on
top of the test execution times being potentially long, the
availability of an engineer is required during this process.

Once in operation, feedback for new requirements or bug
fixes is received from (a) customers, (b) monitors of the
CPS and (c) regulation changes. Checking customers’ feeling
of poor performance about the installation (i.e., the feeling
that some passengers are waiting too long) by reproducing
the scenario in the domain-specific simulator is always a
time consuming and cumbersome task. Sometimes, an in-situ
monitoring process of the installation is required for a limited
period of time, which is extremely costly. Besides, it is not
always possible to reproduce the situation, and therefore, a
deep analysis to identify differences has to be performed.

Design-operation continuum methods could automate sev-
eral tasks of a software release, from SiL to operation and
from operation to SiL. The ultimate goal of Orona can be sum-
marized in the following points: (1) Automatically configure
validation test benches at the SiL and HiL phases, reducing
the number of errors and the time to configure a validation
context; (2) Automate the deployment of new software releases
to the SiL, HiL and real elevators worldwide, considerably
reducing the costs; (3) Automate the execution and evaluation
of test cases at the HiL phase; (4) Automate the validation
of software releases by using streamlined test oracles that can
be re-used across all levels (i.e., SiL, HiL and Operation);
(5) Automatically collect data during operation, which will
enable reproducing real-life scenarios at design-time (i.e., SiL
and HiL).

Achieving these objectives would result in an improvement
of the software development practice and a reduction of the
overall cost of releasing a new software version. The software
quality would be improved by using real data from operation
to identify realistic situations at design-time and to detect po-
tential bottlenecks by monitoring the quality of service across
the different software releases. In addition, the quality would
also benefit from increasing the likelihood and frequency of
detecting bugs both at design-time and at operation-time by
using streamlined test oracles at all the levels.

B. Case study from the railway domain

Bombardier Transportation (BT) is one of the leading
companies in the rail industry, providing rolling stock and

Fig. 1. Current software development process at Orona

associated services of system maintenance, signalling, fleet
management and asset life management. It has a broad and
innovative product portfolio in rolling stock, consisting of e.g.,
light rail vehicles, metros, commuter and regional trains. For
the definition of design-operation continuum requirements, we
have selected BT’s Train Control and Management System
(TCMS). This system is the centre of the distributed system
that controls the train. It is involved in almost all train
functions, either in a controlling or a supervisory capacity.
Examples of train functions controlled and managed by the
TCMS are collecting line voltage, controlling the train engines,
opening and closing the train doors and upload of diagnostic
data. For collecting data on BT’s current status of the develop-
ment of TCMS as well as finding out opportunities of design-
operation continuum methods for testing and deployment, we
made use of archival data as one of our first steps. We had
access to internal documentation of a relevant BT project.
Documentation such as test plans were read and analyzed.
We used document analysis [4] as a systematic procedure for
reviewing or evaluating these documents. Two experienced
researchers, with extensive experience in research projects
with BT, were involved in the analysis.

At BT, a test plan documents the scope, approach, resources
and schedule of the testing activities per project. The deploy-
ment plan is also partly reflected in the test plan. The test
plan covers the detailed planning regarding the three levels
of tests for TCMS: software component test, function test
and system test. The test plan also mentions the PASS/FAIL
criteria for the three levels of tests. The plan touches upon
the deployment in terms of environmental/infrastructure needs.
The three levels of tests are performed in MiL, SiL and
HiL simulators. Component tests, functional tests are typically
performed in the domain-specific MiL/SiL simulator while
system tests are typically performed in the HiL simulator.
Fig. 2 shows the development process at TCMS with cor-
responding simulation levels. The execution of test plan at
MiL, SiL and HiL follows a somewhat similar sequence:
1) prepare software component test/function test/system test
infrastructure; 2) develop software components/features; 3)
develop component/function/system test cases; 4) build and

deploy on test bench; 5) execute tests; 6) record defects (if
any); 7) generate test report; 8) release software when no
critical defects remaining. This is shown in Fig. 3. Many
activities in this process require manual interventions such as
setting up of test environment and activities around testing at
different simulation levels.

In testing TCMS, the engineering processes of software de-
velopment (including requirement engineering and testing) are
performed according to safety standards and regulations [6].
Specification-based testing is mandated by the EN 50128
standard to be used to design test cases. Each test case should
contribute to the demonstration that a specified requirement
has indeed been covered and satisfied. Executing test cases on
TCMS is supported by a test framework that includes the com-
parison between the expected output with the actual outcome.
Testing at the functional level is done against TCMS design
requirements. The created test suites are based on functional
specifications expressed in a natural language. Stimulation and
responses are checked at the interfaces at the functional level.
The test cases are composed by test steps, which define a
stimulation and the expected output. Test case design is done in
a scripting language and in a test management tool. As long as
the test management tool is not fully operational, alternatively
the test case design can be done in word documents or by
comments in the test scripts.

A streamlined process following the design-operation con-
tinuum methods is expected to bring optimizations in the
TCMS development process at BT from vehicle validation and
operation to MiL testing. This work shall focus on (1) efficient
management of product variants throughout the testing pro-
cess, (2) use of requirements at different levels of abstractions
for validating the obtained designs. For example, the software
architecture specification can provide a solid foundation for
developing a plan for testing at this level and testers can use
architecture-based test models, criteria, and techniques tailored
to the railway domain. Architectural (integration)-based tests,
developed using these functional models, can be used to
assess the architecture itself or to test the software component
design conformance with the architecture. This methodology
aims at detecting defects earlier in the development lifecycle

Fig. 2. Development process for TCMS at BT.

Fig. 3. Execution of test plan at MiL/SiL/HiL levels at BT.

and reducing testing costs at vehicle, system, functional and
component levels. Each of the abstraction levels has a specific
role in the testing process. By modelling these requirements,
we can provide means to generate test cases using the whole
lifecycle information.

IV. TAXONOMY FOR DESIGN-OPERATION CONTINUUM
METHODS OF CPSS

Taxonomies can be organized following one of the two
main classification approaches: enumerative or faceted [27].
Enumerative approaches utilize a fixed set of predefined
classes, which results in simple and easy to apply classification
schemes, but may not be appropriate for unexplored domains
where the knowledge base is still unstable or incomplete.
Faceted approaches, on the other hand, allow the classification
of entities based on multiple perspectives, which provides
a flexibility that is useful when developing taxonomies for
immature domains [32]. In this work, we followed a faceted
classification structure, since the design-operation continuum,
particularly when applied to CPSs, is an emerging domain that

has not been fully defined yet. The final taxonomy contains
four facets which are orthogonal to each other, three of which
contain a single level of categories and the last of which
contains several levels of sub-categories. The full taxonomy
is shown in Figure 4.

A. Lifecycle stage

This facet represents the X-in-the-loop system execution
level, which is an aspect specific to CPSs development pro-
cesses. Requirements may be applicable to one or more of
these classes. In this work, we define only the four classes
which we identified as relevant for both of the analyzed case
studies. For CPSs, although we believe that this classification
is general, there could be cases where other levels might need
to be defined. For instance, to the knowledge of the authors,
there are companies where the MiL phase is split into several
sub-phases with different fidelity levels. A few years ago,
there was a common step between SiL and HiL, named as
Processor-in-the-Loop phase, which had as a main goal to de-
tect potential inconsistencies that the compiler could introduce
[29]. However, to the best of our knowledge, this step is not
commonly used any longer and could be challenging to apply
in the context of CPSs, as several processors are involved.
Furthermore, as this phase was not used in the industrial case
studies used to build our taxonomy, we did not include it.

At the MiL stage, the CPS, including the software, hardware
and environment, is executed as a model by a model execution
software. This setup allows the early and easy detection of
failures in a controlled environment, but there are several
types of errors that cannot be observed at this level, e.g.,
communication errors.

At the SiL stage, the CPS software is run on a simulated
environment. The use of the real software allows the detection
of several errors that could not be detected in MiL, such as
those related with arithmetic precision. Nevertheless, not all
the software errors can be observed yet, since the processor
where the SiL runs is often different from the processor in the
real hardware.

At the HiL stage, the CPS software is deployed on the real
hardware, but within a controlled environment, such as a test
bench. Since physical hardware is involved, the CPS execution
must be real-time, which makes it much more costly than
the previous stages. This execution level allows the detection
of many new classes of errors, such as timing or hardware
interaction issues, which were not observable in previous
stages.

The Operation is the stage where systems are deployed in
real environments, possibly in production. We distinguish this
stage from HiL because usually intrusive testing can no longer
be performed at this level, since the CPS is already running
in real scenarios. Nevertheless, some non-intrusive validation
techniques such as Runtime Verification can still be performed.

B. Scope

We distinguish three different scope classes depending on
the applicability of the requirement. The significance of this

Design-Operation
Continuum

Requirements

Scope
Lifecycle

Stage
Domain

Subsystem

Organization

Product

Release

MiL

SiL

Operation

HiL

Application

Infrastructure

Deployment Monitoring Validation Integration

Specification Automation
Monitoring

Artifact
Storage

Deployable
Artifact

Device
Simulation

Artifact
Oracle

Preconditions

Postconditions

Features

Rollback

Availability

Resources

Communication
Network

Provided
Variables

Configurable
Parameters

Data Format

Location

Type

Configuration

Resources

Environment

SUT

Tool

Validated
Property

Activation
Criteria

Required
Data

Verdict
Format

Release
Plan

Deployment
Plan

Validation
Plan

Repository

Actions

Tools

Test Input

Data

Format

Fig. 4. Taxonomy of Design-Operation Continuum Requirements for CPSs

facet is that it enables the reuse of the requirements throughout
their applicable scope. Depending on the product strategy of
a company, the categorization we provide can be refined or
extended beyond the three classes we define. For example,
we could have a family of products that share some common
requirements, in which case a more fine-grained classification,
such as a feature-level scope, would be useful.

Organization refers to the requirements that will be reused
for the Design-Operation Continuum of all the products of
the organization. For example, this category may include
requirements such as the deployment subsystem being able
to copy files to a target device running an SSH server.

Product refers to the requirements that are specific of a
particular product, which can therefore be reused across all
of its releases. For instance, this would include being able to
automatically launch the simulators used for the test execution
of an elevator dispatcher.

Release refers to the requirements specific to a particular
software release of a product, which we differentiate from
requirements applicable to all its releases. For instance, the
verification of an optional feature of a product belongs to this
category, as it is only applicable to some specific releases.

C. Domain

This facet categorizes the requirement by the domain in
which it belongs, which we divide into two sub-categories.
This categorization facilitates the assignment of the require-
ments within the organization between two different roles,
usually IT department and development team.

• Infrastructure. On the one hand, we identify the re-
quirements related with the Design-Operation Contin-
uum infrastructure itself, which address concerns such
as the monitoring of the infrastructure elements (e.g.,
deployment progress, status of the deployed components,
etc.). Within the organization, the roles responsible for
these requirements may not be directly related with the
development of CPS products, since they only concern
the development infrastructure.

• Application. On the other hand, we consider the re-
quirements related with the particular applications being
developed (i.e., the CPS), such as the monitoring of the
application itself (e.g., tracking the status of the elevators
based on CAN messages, etc.). These requirements must
be managed by the organizational roles working directly
on the CPS products.

D. Subsystem

This facet classifies a requirement by the Design-Operation
Continuum subsystem for which it is relevant. Our taxonomy
considers the subsystems of Deployment, Monitoring, Valida-
tion and Integration.

1) Deployment: Automating deployment means providing
the infrastructure that allows automated CI server to connect
to the designated production/validation machine and upload
executable and configuration files [21]. The continuous de-
ployment subsystem allows the automatic deployment of a
new software release in the virtual infrastructure for validation
purposes. Afterwards, the new release is deployed in the real

CPS in operation. In this subsystem, requirements that are
necessary to deploy artifacts at the MiL-SiL-HiL-Operation of
the system are specified. It is important to mention that in this
category, requirements for the Operation stage are the most
demanding ones, since other aspects such as heterogeneous
platforms or the status of the CPS before the deployment
need to be considered. Examples of requirements obtained
by our industrial case studies in this category include “The
deployment service shall provide support for ARMV7 boards”,
“The deployment service shall provide support for Linux and
Windows”, “The dispatcher down time during deployment
shall be less than 15 sec” or “The system shall allow
the deployment of artifacts by defining the allocation or by
defining the memory requirements”. Nowadays, releasing and
deploying new software versions is a time-consuming and
error-prone activity. Requirements in this category facilitate
the automation of the continuous deployment for new releases.
Two subcategories have been defined: Devices and Deployable
Artifacts. Note that this category is closely related to the
Continuous Integration category.

• Devices. Description. A CPS is composed by heteroge-
neous platforms. Automation of the deployment process
in CPSs is highly complex due to the number of hetero-
geneous platforms, models and interfaces necessary to
deploy software releases. The goal of this subcategory is
to collect requirements related to the variety and hetero-
geneity of hardware, software and communications for
which the deployment subsystem must provide support.
To gather requirements, an analysis of the platforms of
the CPSs shall be performed. These type of requirements
will have influence on the deployment architecture that
must be designed to provide support for all the devices
in which an automatic deploy will be performed. This
category also has impact on the techniques and methods
used for the deployment, e.g., container based deploy-
ment mechanisms that are valid for Linux based devices
are not for embedded bare metal devices. Subcategories.
There are different aspects to be specified: (1) Resources
of the devices. Hardware, software (e.g., installed OS)
and communication networks (e.g., CAN, Ethernet) that
the deployment subsystem is going to deal with. (2) Avail-
ability of the device during deployment (e.g., maximum
downtime of the device to perform the deploy).

• Deployable Artifacts. Description. A CPS is composed
of different software components distributed in heteroge-
neous devices. Deployable artifacts are “soft” components
which are part of the CPS, such as software of new
releases and configuration files. When using design-
operation continuum methods, test oracles, monitors,
etc. can also be considered deployable artifacts. This
subcategory includes the specification of the features of
the artifacts to be deployed. To gather requirements, an
analysis of the software elements of the CPS shall be
performed. Requirements in this category define the de-
ployment rules, and are useful to ensure the pre and post

deployment conditions and to design the rollback mech-
anisms. Subcategories. There are different aspects to
be specified: (1) Deployment conditions: Pre-conditions
specify criteria to be met before starting the deploy-
ment, e.g., “the Elevator shall be out-of-service”. Post-
conditions are verified after the deployment is completed,
e.g., “the device reboots correctly” (2) Features of the
artifacts: hardware requirements, e.g., minimum CPU or
RAM requirements to execute the artefact, software re-
quirements, e.g., supported OS, communication interface
requirements, e.g., to be deployed in a device with access
to CAN or/and the allocation of the artifact, e.g., in which
device shall be deployed, (3) Rollback policy in case of
deployment failure, e.g., “The system shall support the
remote rollback to a previous version”.

2) Monitoring: Continuous monitoring is a key process in
design-operation continuum. The goal of this process is to
extract data from a system so that it can be analyzed [17].
Monitoring in the deployment ensures that certain conditions
are met before and after deploying. In the validation process,
it provides data to the oracles so that they can provide a
verdict. Besides, it can also be useful to observe and record
the status of the infrastructure/application and later reproduce
real scenarios in simulation. Examples of requirements in
this category include “Monitoring data from MiL/SiL/HiL test
executions shall be available through logs”, “Monitors shall
provide connectors for CAN and Ethernet”, “Monitoring data
for the last day shall be persisted for further analysis”.

This category facilitates gathering monitoring requirements
at different lifecycle stages and levels of a CPS. Two subcat-
egories have been defined:

• Monitoring artifacts. Description. Continuous monitor-
ing can be done (1) at the infrastructure level, e.g.,
to control the CPU or memory usage or (2) at the
application level, to monitor, for instance, the position
and speed of an elevator. The goal of this subcategory is
to collect monitoring needs of both the infrastructure and
the application. To gather requirements, an analysis of the
application data lifecycle and the infrastructure features
(e.g., CPU usage) shall be performed. Requirements in
this subcategory have impact on the design of the mon-
itoring infrastructure. Subcategories. There are different
aspects to be specified: (1) Communication Network, the
source from which data must be collected, e.g., “the
monitor must gather the data from the CAN bus”, (2)
Data fields that will be provided, e.g., “the monitor must
provide the elevator positions”, (3) Format in which the
data will be provided by the monitor, e.g., “the monitor
will provide the current elevator position periodically
via MQTT”, and (4) Configurable parameters for the
monitor,e.g., “the update period for the elevator positions
may be configured with a value between 50 and 500
milliseconds”.

• Storage. Description. Storage of the monitored data is
essential to analyze and reproduce scenarios in simula-

tion. The storage strategy may be different depending
on the data being monitored. Some data could be more
critical and other may need more memory resources.
These requirements might include, for example, dumping
data on a local file, storing it on the edge of the network,
or sending it to a cloud database. The goal of Storage
subcategory is to describe how the data shall be stored in
order to be accessible from other services. To gather re-
quirements, an analysis of the application data usage shall
be performed. Requirements in this subcategory have im-
pact on the design of the storage strategy for the data that
is being monitored. Subcategories. There are different
aspects to be specified: (1) Location describes where the
data is to be persisted, e.g., a shared folder on a NAS or a
database endpoint, (2) Type relates to the database format,
either a relational database, an object oriented database or
even text file based, (3) Configuration includes attributes
such as duration of the saved data, backup replicas or
even availability aspects), (4) Resources specifies the type
of device used for persistence, as well as the disk space
size.

3) Validation: Testing, verification and validation activi-
ties are important in any kind of domain when developing
software. In the case of CPSs, this is particularly impor-
tant because most of the functionality of these systems is
driven by software. Furthermore, this functionality is often
safety or mission-critical, and a failure could lead to severe
consequences. Both industrial case studies used to build the
taxonomy rely on simulation-based testing for the validation
of software. This technique allows raising the level of ab-
straction of complex CPSs in which testing is performed [5].
It allows (1) executing larger test suites and (2) building test
oracles that can automate verification and validation tasks [5].
Furthermore, simulation-based testing allows modelling the
environment in which the CPS operates (e.g., in the case of
the elevators, the interaction of the elevators with passengers).
Test, verification and validation in design-operation continuum
methods for CPSs needs to be practised from MiL phases
through the Operation. This is because failures that could not
be observed in previous stages can be identified in Operation.
To this end, oracles need to be re-used across all these test
levels to allow full automation. Examples of requirements
obtained by focusing on the industrial needs of the case studies
in this category include “The SUT shall be the relevant version
of the project-specific TCMS software”, “The input to the test
cases at the functional level shall be the stimuli triggering the
execution of a defined functionality”, “The oracles shall be
activated by a test input or by identifying a precondition in
operation”. Note that the elicited requirements in this category
shall provide the validation to be continuous and as automated
as possible. To this end, three sub-categories were identified:

• Simulation Artifact. Description. This category con-
cerns the artifacts that are necessary in order to enable
simulation-based testing, which we divide in three main
categories: Subcategories. (1) Environment refers to the

conditions under which the system runs, which are usu-
ally expressed in the form of simulator parameters (e.g.,
the number of floors in the building); (2) the SUT is
the component of the system that is being tested, which
must usually comply with certain interfaces in order to be
usable for simulation-based testing; and (3) the Tool is the
simulator used to execute the SUT (e.g., Simulink). An
example of a simulation artifact requirement for one of
the industrial case studies is “Test cases shall be executed
by using the Elevate simulator”.

• Test Input. Description. In order to drive the execution
of the selected test cases, test inputs must be injected
into the SUTs before or during their execution. We
divide the requirements for these test inputs into two
main categories. Subcategories. (1) The input data itself,
which is determined by the test cases that need to be
executed (e.g., must test having multiple passenger calls
at the same time), and (2) The format that is used to
define the test inputs (e.g., test inputs must be provided
in a XML file which follows a specific structure).

• Oracle. Description. Test oracles are components in
charge of emmitting a verdict (e.g., PASS/FAIL) based
on the conformance of the system towards a specified
property (e.g., for the Orona’s dispatching system, the
daily average waiting time per passenger shall be less than
30 seconds). Note that although monitoring the system is
required for the validation, we classify monitoring as a
separate subsystem, since monitoring is often performed
beyond the context of system validation. The purpose
of the oracles is to determine whether the observed
behaviour of the system is correct or incorrect, which
is usually done by verifying properties specified by a
domain expert. An example of an elicited requirement
for a test oracle is “test oracles shall be re-used across
all levels (i.e., MiL, SiL, HiL and Operation)”, or “test
oracles shall be capable of validating 100% of functional
requirements”. Subcategories. Four sub-categories were
identified based on the industrial case studies. (1) Val-
idated properties are system’s requirements themselves
(e.g., AWT < 30sec.); (2) activation criteria are pre-
conditions that trigger a test oracle to validate a specific
property; (3) required data refers to the monitoring data
needed by the oracle in order this to be able to check
certain property; (4) the verdict format refers to the
semantics provided by the verdict (e.g.,a quantitative
value (e.g., a quantitative value from 0 to 1, with 1
meaning full compliance and the value becoming closer
to 0 as the degree of compliance decreases).

4) Integration: Continuous Integration encompasses the
subsystems to automate the pipeline from the development
environment to the continuous deployment, monitoring, and
validation subsystems. Automation is achieved by chaining
different tasks together. The process involves software repos-
itories, usage of adequate build tools, automated testing en-
vironments and testing tools, and deployment to operation.

Examples of requirements in this category include “The de-
ployment specification shall provide support to link an artifact
to a device”, “A validation specification shall allow to specify
test cases at SiL and HiL level”, “The source code shall be
available from outside the company”. This category facilitates
gathering requirements related with the integration of all of
the subsystems (deployment, validation and monitoring) into
an automated pipeline. Two sub-categories have been defined:

• Specification. Description. A pipeline is a sequence of
actions that have to be performed from the initial build of
the project to the deployment of the real system. For this,
different aspects must be specified, such a as the valida-
tions to be performed. In this category, requirements re-
lated to the specification of the sequence to be automated
for the CI/CD scenario are provided. These requirements
will be used to select or develop the CI/CD tool and the
languages to specify the pipeline. Subcategories. There
are different aspects to be specified: (1) Release plan:
requirements for the language to specify the configuration
and build process of the software. (2) Deployment plan:
requirements for a language to specify all the steps related
to the deployment. (3) Validation plan. Requirements for
the language to specify the validation of the CPS, which
is a critical step in the continuous integration process.
This plan will describe the configuration, coordination
and management of all the verification artifacts. For
our case studies, for instance, we identified validation
plan requirements such as being able to execute multiple
instances of a system concurrently in order to compare
their behaviour. All of these plans could be integrated
into a single CI/CD plan. However, we have decided to
classify these specification languages separately because
different roles might be involved in the requirements
elicitation for each of them.

• Automation. Description. Implementation of continu-
ous integration or continuous deployment mechanisms
depends on a series of tools that facilitate functions
necessary to achieve fully automated operation. In this
category, requirements that should be considered for
automating the pipeline are defined.These requirements
will be used to select the CI/CD tool and define the
pipeline. Subcategories. There are different aspects to be
specified: (1) Repositories: requirements for the artifact
storage, which may be, for instance, a Git repository
hosted on the cloud. The deployment subsystem will pull
the artifacts from this repository when a deployment is
executed. Availability, security, storage capacity, etc are
defined in this category. (2) Actions: Actions that must
be executed in the CI/CD pipeline, such as automatically
initiating a deployment plan when a new commit is
pushed to the master branch of the repository. (3) Tools:
there might be requirements for using specific tools for
some tasks of the pipeline. For instance, and organization
might decide that the continuous integration process will
be automated with Jenkins.

V. REQUIREMENTS ELICITATION PROCESS

The requirements elicitation process we propose is iterative
and and is summarized in Figure 5. In a first phase, require-
ments are elicited by considering the four categories. Each of
the sub-levels of each category needed to have at least one
requirement. These elicited requirements are general to any
kind of CPS (or at least, any CPS that includes the categories
that we identified in the taxonomy). Each of the requirement
belongs to at least one of the sub-categories of each of the
four facets we extracted in the taxonomy (i.e., Subsystem,
Scope, Domain and Lifecycle). It is important to note that
one requirement might affect more than one of the sub-levels
of each category (e.g., both MiL and SiL).

Fig. 5. Requirements elicitation process overview

In a second phase, for each of the elicited requirements, the
industrial companies (i.e., Orona and Bombardier) instantiated
the proposed requirement to their domain and application (e.g.,
in the Orona’s use-case, there are some specific requirements
for adapting the design-operation continuum methods for the
dispatcher, for instance, the simulator used for SiL). The tool
used to document requirements was ReqIf studio, because it
is was freely available and both companies, as well as the
researchers involved, have access to it.2 A template with the
facets of the taxonomy has been developed in order to classify
each of the requirements, which includes (1) the general
requirement, (2) how the requirement is instantiated for the
case of the Dispatching algorithm in Orona, and (3) how the
requirement is instantiated for the TCMS of BT. A screenshot
of the developed template along with five elicited requirements
is shown in Figure 6.

VI. RELATED WORK

White and Edwards [33] proposed a taxonomy (RE-
Views) to classify system views, subviews and their inter-
dependencies. The requirements are classified into operational
environment, system capabilities, system constraints, devel-
opment requirements, verification & validation requirements
and specification of system growth and change. The authors
also mention a classification of requirements specification
approaches, ranging from informal (natural language) to for-
mal (mathematical) approaches. A more thorough classifica-
tion of requirements specification techniques was given by

2https://reqif.academy/software/reqif-studio/

Fig. 6. Screenshot of a set of elicited requirements using our taxonomy

Roman [26] in terms of formal foundation, scope, level of
formality, degree of specialization, specialization area and
development method. More recently, Hasan et al. [11] provide
a classification of specification approaches for non-functional
requirements. Hughes et al. [12] provide a two dimensional
taxonomy for requirements analysis; one dimension corre-
sponds to the set of viewpoints of different stakeholders
(concerns) and the second dimension (frames) represents the
views of technical specialists. Examples of a concern and
a frame are functional requirements and behavioral model
respectively. Jarke et al. [14] describe an ontology of re-
quirements engineering of an information system by dividing
it into three ‘worlds’: subject world to represent properties
such as timeliness, accuracy; usage world to represent user
interface and functions; development world to represent de-
velopment time, cost and consistency with standardized pro-
cedures. Nuseibeh et al. [22] describe a viewpoint interaction
model to represent heterogeneity in requirements of software
systems. A viewpoint is composed of five slots: style (to show
representation knowledge), work plan (to show development
process knowledge), domain (to show area of system under
development), specification (to show system description) and
work record (to show development history).

Several different domain-specific requirement taxonomies
are also found in literature, e.g., for: safety requirements [7],
security requirements [8], trust-related requirements [30],
mobility-related requirements [10], usability requirements [3]
and web-based enterprise systems [9]. Recently, automatic re-
quirements categorization techniques have also been proposed.
Knauss et al. [16] present a tool-supported approach based on
Bayesian classifiers to identify security-relevant requirements.
Ott [23] uses a similar approach to automatically classify
and extract requirements with related information using text
classification algorithms.

We were also able to find some fragmented evidence on
requirements elicitation approaches for cyber-physical sys-
tems. Reza et al. [25] generated a set of quality attribute
scenarios using pre-defined templates to document key non-
functional requirements of a small spacecraft (CubeSat). The
templates had the following fields: source, stimulus, envi-
ronment, artifact, response, and response measure. Wiesner
et al. [34] present a gamified approach for eliciting stake-
holder requirements for a cabin video surveillance system of
an aircraft. Though lacking in details, the approach works
with storytelling and mutual agreement on requirements from

different stakeholders. Loucopoulus et al. [19] report on the e-
CORE (early Capability Oriented Requirements Engineering)
approach that utilizes modeling for enterprise capabilities,
goals, actors and information objects. This model-driven ap-
proach suggests different models such as capability model,
goal model, actor-dependency model and information model.

Differently to all these studies, the taxonomy that we
propose is related to design-operation continuum engineering
methods in the context of CPSs. CPS is an emerging domain,
and there is no clear path for adapting design-operation
continuum practices to it, because the challenges are inherently
different from the domains discussed in the existing literature,
such as web development. This taxonomy is used to elicit
the requirements for design-operation continuum engineering
methods from two different industrial domains developing
CPSs. This sets an example for instantiating a taxonomy for
any other organization developing CPSs.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

This paper proposes a taxonomy for Design-Operation
Continuum methods applied to the context of CPSs, which
has been systematically developed by following the guidelines
proposed by Ralph [24]. To this end, two industrial case
studies have been used, interviews have been performed with
industrial experts, and we have been provided access to
internal documents from both companies. The last phase of
the taxonomy has been the validation with CPSs engineering
experts that were not involved in the development of the taxon-
omy. By using this taxonomy, requirements can be elicited in
two steps: Firstly, generic requirements are derived, which can
be applied to any CPSs. Secondly, these generic requirements
are instantiated for specific systems.

While the proposed taxonomy is applied to two different
case studies, the applicability of it needs further examina-
tion, both for similar and different contexts. The taxonomy
is based on fairly general categories, but we nevertheless
foresee revisions, particularly to cater for the domain-specific
requirements of other types of CPSs. In the future, we would
like to perform a more comprehensive taxonomy considering
(1) other sources from a systematic literature review and (2)
other industrial CPSs. On the other hand, the taxonomy could
also be extended to cover Design-Operation Continuum tasks
beyond the ones identified for our two case studies, such as
fault recovery automation and unforeseen situations detection.

REFERENCES

[1] Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.
[2] Sara Abbaspour Asadollah, Rafia Inam, and Hans Hansson. A survey

on testing for cyber physical system. In IFIP International Conference
on Testing Software and Systems, pages 194–207. Springer, 2015.

[3] H. Belani. Towards a usability requirements taxonomy for mobile aac
services. In Proceedings of the First International Workshop on Usability
and Accessibility Focused Requirements Engineering. IEEE Press, 2012.

[4] G. A. Bowen. Document analysis as a qualitative research method.
Qualitative research journal, 9(2):27, 2009.

[5] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bian-
culli. Testing the untestable: model testing of complex software-intensive
systems. In Proceedings of the 38th international conference on software
engineering companion, pages 789–792, 2016.

[6] CENELEC. 50128: Railway Application: Communications, Signaling
and Processing Systems, Software For Railway Control and Protection
Systems. In Standard Official Document. European Committee for
Electrotechnical Standardization, 2001.

[7] D. Firesmith. A taxonomy of safety-related requirements.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=29419,
2004. Online; accessed 27 Feb 2020.

[8] D. Firesmith. A taxonomy of security-related requirements.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30108,
2005. Online; accessed 27 Feb 2020.

[9] A. Ghazarian. Characterization of functional software requirements
space: The law of requirements taxonomic growth. In 2012 20th IEEE
International Requirements Engineering Conference (RE), 2012.

[10] S. Gopalakrishnan and G. Sindre. A revised taxonomy of mobility-
related requirements. In 2009 International Conference on Ultra Modern
Telecommunications Workshops, 2009.

[11] M. M. Hasan, P. Loucopoulos, and M. Nikolaidou. Classification
and qualitative analysis of non-functional requirements approaches. In
I. Bider, K. Gaaloul, J. Krogstie, S. Nurcan, H. A. Proper, R. Schmidt,
and P. Soffer, editors, Enterprise, Business-Process and Information
Systems Modeling, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[12] K. J. Hughes, R. M. Rankin, and C. T. Sennett. Taxonomy for
requirements analysis. In Proceedings of IEEE International Conference
on Requirements Engineering, 1994.

[13] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella. Taxonomy of real faults in deep learning systems.
International Conference on Software Engineering (ICSE), 2020.

[14] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassilou.
Theories underlying requirements engineering: an overview of nature
at genesis. In [1993] Proceedings of the IEEE International Symposium
on Requirements Engineering, 1993.

[15] Siddhartha Kumar Khaitan and James D McCalley. Design techniques
and applications of cyberphysical systems: A survey. IEEE Systems
Journal, 9(2):350–365, 2014.

[16] E. Knauss, S. Houmb, K. Schneider, S. Islam, and J. Jürjens. Supporting
requirements engineers in recognising security issues. In D. Berry and
X. Franch, editors, Requirements Engineering: Foundation for Software
Quality, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[17] Richard Lai, S Mahmood, R Lai, and Y S Kim. Survey of component-
based software development. The Institution of Engineering and Tech-
nology, 3(May 2007):58–64, 2014.

[18] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[19] P. Loucopoulos, E. Kavakli, and N. Chechina. Requirements engineering
for cyber physical production systems. In P. Giorgini and B. Weber,
editors, Advanced Information Systems Engineering, pages 276–291,
Cham, 2019. Springer International Publishing.

[20] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruck-
mann. Test generation and test prioritization for simulink models
with dynamic behavior. IEEE Transactions on Software Engineering,
45(9):919–944, 2018.

[21] Phu H. Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane
Lavirotte, Jean Yves Tigli, and Arnor Solberg. A systematic mapping
study of deployment and orchestration approaches for iot. In IoTBDS
2019 - Proceedings of the 4th International Conference on Internet of
Things, Big Data and Security, pages 69–82. SciTePress, 2019.

[22] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification.
IEEE Transactions on Software Engineering, 20(10):760–773, 1994.

[23] D. Ott. Automatic requirement categorization of large natural language
specifications at mercedes-benz for review improvements. In Proceed-
ings of the 19th International Conference on Requirements Engineering:
Foundation for Software Quality, Berlin, Heidelberg, 2013. Springer-
Verlag.

[24] P. Ralph. Toward methodological guidelines for process theories and
taxonomies in software engineering. IEEE Transactions on Software
Engineering, 45(7):712–735, 2018.

[25] H. Reza, C. Korvald, J. Straub, J. Hubber, N. Alexander, and A. Chawla.
Toward requirements engineering of cyber-physical systems: Modeling
cubesat. In 2016 IEEE Aerospace Conference, 2016.

[26] G. C. Roman. A taxonomy of current issues in requirements engineering.
Computer, 18(4):14–23, 1985.

[27] J. Rowley and R. Hartley. Organizing knowledge: an introduction to
managing access to information. Routledge, 2017.

[28] C. B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering, 25(4):557–
572, 1999.

[29] Hesham Shokry and Mike Hinchey. Model-based verification of embed-
ded software. 2009.

[30] G. Sindre. Trust-related requirements: A taxonomy. In W. Wojtkowski,
W. G. Wojtkowski, J. Zupancic, G. Magyar, and G. Knapp, editors,
Advances in Information Systems Development, Boston, MA, 2007.
Springer US.

[31] Martin Törngren and Paul T Grogan. How to deal with the complexity
of future cyber-physical systems? Designs, 2(4):40, 2018.

[32] M. Usman, R. Britto, J. Börstler, and E. Mendes. Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy
development method. Information and Software Technology, 85:43–59,
2017.

[33] S. White and M. Edwards. A requirements taxonomy for specifying
complex systems. In Proceedings of First IEEE International Conference
on Engineering of Complex Computer Systems, 1995.

[34] S. Wiesner, J. B. Hauge, F. Haase, and K-D. Thoben. Supporting
the requirements elicitation process for cyber-physical product-service
systems through a gamified approach. In I. Nääs, O. Vendrametto,
J. Mendes R., R. F. Gonçalves, M. T. Silva, G. von Cieminski, and
D. Kiritsis, editors, Advances in Production Management Systems.
Initiatives for a Sustainable World, Cham, 2016. Springer International
Publishing.

Publications 131

A.2 Using Regression Learners to Predict Performance Problems
on Software Updates: a Case Study on Elevators Dispatching
Algorithms

This paper was presented at the ACM/SIGAPP Symposium On Applied Com-
puting (SAC) in 2021 and then published in the conference proceedings. The
full citation:

Gartziandia, A., Arrieta, A., Agirre, A., Sagardui, G. & Arratibel, M. (2021,
March). Using regression learners to predict performance problems on software
updates: a case study on elevators dispatching algorithms. In Proceedings of the
36th Annual ACM Symposium on Applied Computing (pp. 135-144).

Using Regression Learners to Predict Performance Problems on
Software Updates: a Case Study on Elevators Dispatching

Algorithms
Aitor Gartziandia

Ikerlan
agarciandia@ikerlan.es

Aitor Arrieta
Mondragon University

aarrieta@mondragon.edu

Aitor Agirre
Ikerlan

aagirre@ikerlan.es

Goiuria Sagardui
Mondragon University

gsagardui@mondragon.edu

Maite Arratibel
Orona

marratibel@orona-group.com

ABSTRACT
Remote software deployment and updating has long been common-
place in many different fields, but now, the increasing expansion
of IoT and CPSoS (Cyber-Physcal System of Systems) has high-
lighted the need for additional mechanisms in these systems, to
ensure the correct behaviour of the deployed software version af-
ter deployment. In this sense, this paper investigates the use of
Machine Learning algorithms to predict acceptable behaviour in
system performance of a new software release. By monitoring the
real performance, eventual unexpected problems can be identified.
Based on previous knowledge and actual run-time information, the
proposed approach predicts the response time that can be consid-
ered acceptable for the new software release, and this information
is used to identify problematic releases. The mechanism has been
applied to the post-deployment monitoring of traffic algorithms in
elevator systems. To evaluate the approach, we have used perfor-
mance mutation testing, obtaining good results. This paper makes
two contributions. First, it proposes several regression learners that
have been trained with different types of traffic profiles to efficiently
predict response time of the traffic dispatching algorithm. This pre-
diction is then compared with the actual response time of the new
algorithm release, and provides a verdict about its performance.
Secondly, a comparison of the different learners is performed.

KEYWORDS
Machine learning, Performance bugs, Cyber-physical systems
ACM Reference Format:
Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and Maite
Arratibel. 2021. Using Regression Learners to Predict Performance Problems
on Software Updates: a Case Study on Elevators Dispatching Algorithms. In
The 36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21), March
22–26, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3412841.3441894

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441894

1 INTRODUCTION
Elevators systems are among the most widely used transportation
systems. An elevator system is composed of several subsystems
that, interacting among them, have as a goal to transport passen-
gers safely and by considering certain Quality-of-Service (QoS)
measures [2]. To this end, new functionalities of elevators are in-
creasingly implemented through software [1]. A key component
to maintain QoS measures within acceptable values in a system
of elevators refers to the dispatching algorithm. These algorithms
are in charge of assigning an elevator to each passenger. Being
a critical component to ensure the correct operation of a system
of elevators, they must be continuously maintained and evolved,
addressing issues like bug-fixes, new functionalities, adaptation to
legislation changes, etc.

New communication technologies (e.g., 5G) allow for updating
new software versions remotely. This facilitates and shortens the re-
lease time of new versions. Subsequently, updates can be performed
frequently, every time a new functionality is included or a bug is
fixed, as manual intervention is minimized. As any other type of
software, the dispatching algorithms are not exempt of bugs, either
functional or non-functional. Specifically, non-functional bugs are
hard to detect [22], and often infeasible until they are deployed
on the final target (i.e., the embedded processor). Thus, run-time
monitoring techniques are paramount to enable the detection of
such faults in operation.

In this context, we propose a performance problem detection
approach for software updates, leveraged by Machine Learning
(ML). Our approach predicts the performance of a new software
version, based on what it learns about the behaviour of the old
version. Then, it compares its prediction to the actual behaviour of
the system and gives a verdict, indicating whether the behaviour
of the new release is correct or a performance problem exists. To
evaluate our approach, we have followed a performance mutation
testing strategy, where different mutants with performance bugs
are analyzed. Different Machine Learning algorithms were tested
to identify which ones best fit our purpose.

This paper reports on the experience of applying our machine
learning-based performance problem detection in an industrial use-
case provided by Orona. The main contributions of this paper can
be summarized as follows:

• We propose an approach based on regression learning al-
gorithms that are trained with different types of passenger

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel

traffic profiles to predict the response time of the traffic
dispatching algorithm of elevators. This prediction is later
compared with the actual response time given by traffic dis-
patching algorithm in order to detect any possible inconsis-
tency related to a performance bug. A trustworthy approach
is employed to provide a verdict (i.e., PASS or FAIL) at run-
time, which indicates whether a bug has been detected or
not.

• The proposed approach is evaluated with an industrial case
study provided by Orona. Specifically, performance mutation
testing [8] is employed to seed performance bugs through
the software program. We compare a total of five state-of-
the-art Machine Learning algorithms to predict performance
problems on elevators dispatching algorithms. We showed
that three of them are competent enough in order to be
employed in practice.

The rest of the paper is organized as follows. Section 2 provides
background and related work, where we position our approach with
the current state-of-the-art. Section 3 provides an overview of the
performance requirements in the context of elevator dispatching
algorithms. In Section 4 we present our method to predict perfor-
mance problems in traffic dispatching algorithms. The evaluation
of the approach is carried out in Section 5, where we used perfor-
mance mutation testing to assess how different Machine Learning
algorithm perform to detect potential non-functional inconsisten-
cies. We conclude our paper in Section 6, summarizing the future
work we envision.

2 BACKGROUND AND RELATED WORK
Performance issues consist on errors producing a behaviour degra-
dation of applications in terms of execution time, response time,
CPU usage, memory usage or energy consumption, without neces-
sarily causing any fault on the expected results [8]. With the growth
of the software complexity, ensuring the performance health in re-
source constrained applications is getting increasingly relevant.
Identification of performance problems in the testing phase brings
some limitations, such as the elicitation of proper performance re-
quirements. In addition, many causes that lead to the manifestation
of these problems may appear due to the system’s interaction with
the real environment [25]. At run-time, identifying performance
problems may require a continuous monitoring of the execution,
as problems may only be revealed under certain circumstances, for
example, activation of specific modes or functionalities, when the
system has been running for a long period, etc.

There exist a variety of root causes during implementation that
can result in real-world performance problems. Jin et al. [14] iden-
tified (1) inefficient function calls, (2) skippable functions doing
unnecessary work and (3) synchronization issues as main root
causes for performance problems. Other less common causes are
also mentioned, including wrong data structure usage, hardware
architecture issues or high-level design errors [14]. By analyzing
how these bugs are introduced by developers, they concluded that
these errors are usually introduced due to an API or workload mis-
understanding [14]. Zhang et al. [27] studied the different synchro-
nization errors that can appear in distributed systems. According
to their study, the main factors causing synchronization issues are

time-consuming operation, nested loops, recursive calls and high
frequency locks. A recent study by Delgado et al. [8] identified some
common causes of performance problems and generated mutants
based on them in order to conduct performance mutant testing.

From the testing perspective, testing non-functional properties
is becoming paramount. Ferme et al. [10] emphasize the importance
of integrating performance analysis inside the software life-cycle
management process. Their main identified challenges encompass
(1) definition of a method to establish which performance tests
to perform in each life-cycle stage, (2) enabling users to declara-
tively define performance objectives and (3) providing fast perfor-
mance feedback to improve the system. In order to design test cases,
Weyuker et al. [25] summarize important aspect to be considered
by practitioners. This includes (1) the design of test generation
and selection strategies and algorithms, (2) definition of metrics
to assess the effectiveness of performance testing strategies and
(3) comparison of different hardware platforms for a given appli-
cation. Besides testing, other approaches have focused on static
analysis approaches to detect performance issues [18, 20]. Testing
performance of software systems have been extended to many sub-
fields, including cloud computing [16], distributed systems [9] or
CPSs [24]. Unlike all these approaches, which focus on testing ap-
proaches before the software version is deployed in production,
our contribution aims at detecting performance issues at run-time,
once the software system has been deployed. We opted by this
approach because according to domain experts, most of the perfor-
mance problems are exhibited in operation because the software
is highly configurable. In the case of Orona’s software, it needs to
be configured for each building by considering several parameters,
such as the number of floors, the number of elevators and other
building specific parameters.

In this sense, we have identified some tools that address the
challenge of detecting errors on the deployment process. Gandalf
is a service whose objective is to detect errors on cloud rollouts
to stop them before they cause major failures [17]. To this end, it
continuously monitors a wide range of infrastructure data to detect
anomalies and when any is detected it determines if the anomaly is
caused by a rollout or not by means of correlations. Finally, it uses
a Gaussian discriminant classifier to decide whether the impact
caused by the deployment is significant enough to stop it. FUN-
NEL is a tool that collects performance metrics for each software
change (i.e., software update or configuration change) to detect
behaviour changes [28]. It uses a Singular Spectrum Transform
(SST) algorithm for the detection and a Difference-in-Difference
(DiD) method, where it compares the relative performance of the
treated group and a control group to decide if the software change
is the cause of the behaviour change.

Our approach aims at detecting performance issues in CPSs,
which might have critical impacts as compared to other less crit-
ical systems (e.g., web applications, mobile apps, etc.). Balasubra-
maniyan et al. proposed a methodology to design and verify CPSs
with the aim of optimizing their reliability and performance mostly
focused on timing issues [3]. Song et al. proposed a virtual testing
environment to assess performance of CPSs [24]. The tool can sim-
ulate several configurations in parallel and identify the ones that
lead to best and worst performance based on user-defined perfor-
mance indicators. Markoska et al. proposed a performance testing

Using Regression Learners to Predict Performance Problems on Software Updates SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

framework oriented to smart buildings, which is offered as a service
in the cloud [19]. Among the performance metrics they consider,
it includes power consumption or timing constraints. Unlike all
these approaches, our approach is based on Machine Learning to
identify bugs at operation-time when the software version has been
deployed on the real target.

Machine learning has already been used to detect performance
bugs in other contexts. Gulenko et al. evaluated a total of 13 clas-
sification algorithms used for anomaly detection on a cloud envi-
ronment running Virtualized Network Function services [12]. The
performance metrics monitored are processing related (e.g., CPU
usage), memory related (Disk I/O) and network related (Network
IO). This work concludes that Machine Learning algorithms were
able to predict anomalies with high precision and recall values,
with an average F1 score of 92%. Sauvanaud et al. proposed an
anomaly detection system for virtualized cloud services [21] by
monitoring both system metrics as well as virtual machine specific
performance metrics. Unlike these approaches, which used classifi-
cation Machine Learning algorithms, we propose using regression
learning algorithms.

Hu et al. proposed a Machine Learning based resource usage
prediction for grid computing environments [13]. Specifically, mul-
tiple Machine Learning techniques are evaluated and compared
to predict metrics related to CPU, memory, disk, and network for
resource allocation and load balancing. Wieder et al. proposed a
QoS prediction approach where run-time monitoring and Machine
Learning techniques are used to predict performance problems in
the cloud [26]. In addition to infrastructure metrics as memory or
CPU usage, the system proposed also monitors application-level
metrics such as response time or number of logins. This work pro-
poses combiningMachine Learning classificationmethods (Random
forest, decision tree and SVM) with time series analysis methods
(AR, ARIMA and ETS) to improve the prediction capacity of the
system. The main difference between these studies and ours is that
their approach aims to predict future inconsistencies and adapt the
system to withstand those conditions. Conversely, in our case, the
approach is solely focused on identifying the performance issue
and notifying to engineers in order them to take the appropriate
correct action. Furthermore, we assess our approach by using an
industrial case study along with performance mutation testing [8].

3 CASE STUDY: PERFORMANCE
REQUIREMENTS IN ELEVATOR
DISPATCHING ALGORITHMS

Elevators are complex CPSs composed of different subsystems that
collaborate to transport passengers vertically in a building. Con-
trollers are in charge of managing both the vertical (from floor to
floor) and the horizontal movements (doors opening and closing)
of a single elevator. The traffic master is the software system in
charge of the coordination of the controllers to serve the floor calls
requested by passengers. The main responsibilities of the traffic
master include the execution of the dispatching algorithm (i.e., the
allocation of passenger calls to any of the available cars) and the
overall system signalling (registration of the calls, information to
the passenger), but it can also carry out additional functionalities

such as access control (i.e. permission for the passengers to access
certain floors) or management of special operating modes.

The traffic dispatching algorithm is the software component that
selects the optimal elevator to serve a specific landing call. Thus,
this component is critical to ensure the Quality of Service (QoS)
of the elevator installation because of many reasons. Firstly, the
assignment of the landing calls has a direct impact on the average
waiting time and overall journey time of the passengers. Secondly,
it affects to the energy consumption or transport capacity of the
elevators. The traffic algorithm constantly evolves to be adapted
to particular installations, improving the assignment process by
including new rules or using new techniques such as artificial
intelligence. Additionally, new criteria for the assignment such as
the number of stops, load balancing or energy consumption are
usually required for some installations.

The traffic dispatching algorithm is executed periodically to allo-
cate all the active floor calls. Depending on the algorithm, already
existing floor call allocations can be reallocated (to a different car)
to optimize the overall cost function. This means that the alloca-
tion process is highly dynamic as it depends on the current system
context. This fact, alongside with other context situations such as
highly demanding traffic profile or a big number of floors can derive
in a high consumption for the limited resources available on the
allocation of landing calls in time. In this sense, the traffic algorithm
should allocate the complete set of active landing calls in a limited
time frame (response time) to provide an acceptable QoS. Moreover,
the traffic algorithm is executed within a task that shares com-
puting resources with other tasks that provide above mentioned
functionalities (signalling, access control, etc.). Thus, system per-
formance monitoring is crucial to ensure a proper system QoS. If
such performance decreases, the overall system QoS degrades, and
additional hardware resources should be considered [4].

A special type of traffic algorithms in which performance is
specially relevant is destination algorithms. Unlike conventional
algorithms, in which many passengers share the same uplanding
or downlanding call, in destination algorithms each passenger reg-
isters his own call. This "destination call" is composed by a landing
call and a destination floor, and more importantly, it remains active
until the destination is reached. Therefore, a destination algorithm
requires managing each destination call individually. Additionally,
this type of dispatchers provides extra functionalities such as access
control, that could affect the response time of the algorithm. Thus,
in high-population buildings, the amount of active calls can be huge
and can severely affect the system performance.

When a new version of the algorithm is released, performance un-
der different traffic conditions and installations must be checked to
identify issues related to a poor implementation of new or improved
functionalities. Usually, benchmark installations with different num-
ber of floors and elevators, and some theoretical passenger profiles
are used to validate the new release. These profiles represent some
traffic demands for different types of buildings (offices, residential,
hotels, etc.) during different periods of the day. Most commonly
used office profiles include, (1) Morning UpPeak, representing the
entrance to office in the morning (2) LunchPeak, representing the
lunchtime, where there is a mix of passengers entering and exiting
the building and (3) DownPeak, representing the exit of the office
in the afternoon. There are also full day profiles that represent

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel

the traffic in an office during a working day and therefore, include
a morning UpPeak, LunchPeak at midday and Afternoon Down-
Peak complemented with some inter-floor traffic (passenger flow
between different floors of the building) during the morning and
the afternoon [4].

However, detecting performance problems that could compro-
mise response time in a new release of the algorithm is a complex
task due to the following factors. Firstly, some functionalities of the
algorithm are only activated under certain traffic demands, keeping
potential performance issues hidden. For example, parking of empty
elevators to heavy floors is only activated when a big demand from
that floor is given. Secondly, performance is highly dependent on
installation specific factors: number of controllers, number of floors
in the building, etc. Lastly, performance is highly dependent on the
passenger flow of each building. In summary, poor performance
can be exhibited in some installations or traffic conditions but not
in others, which makes it difficult to validate the software system.

Reproducing all the real scenarios to analyse the potential per-
formance issues in the laboratory is unfeasible due to the effort it
would mean. Moreover, there is often a lack of actual traffic profile
information and thus, it is not easy to reproduce the operation
conditions of the final installation in the laboratory. Therefore, it
is necessary to include monitoring and detection mechanisms in
operation to facilitate the detection of potential performance prob-
lems in a particular installation. This way, when releasing a new
version, potential performance issues can be detected automatically
before they compromise response time, and eventually, a rollback
to a previous version could be performed.

4 PERFORMANCE PROBLEMS PREDICTION
METHOD

Figure 1 shows the overall architecture of the proposed approach.
The proposed solution is divided into two main phases: (1) the
training phase and (2) the performance bugs identification phase.

The idea of the training phase is to train a regression learning
algorithm by using performance data collected from operation. Dur-
ing the training phase (a) the current software version remains in
operation and (b) the data generated is used to adapt the Machine
Learning algorithm’s internal parameters, so that its performance
improves on future unseen input data. To train the Machine Learn-
ing algorithm, the data is categorized in two groups: the features,
including the inputs of the studied piece of software and the label,
with the measures of the performance metric we want to predict.

When the regression learning algorithm is trained, it yields a
trained regression model, which is used in the performance prob-
lems identification phase to identify performance issues after a new
release has been deployed remotely. This phase has three steps: (a)
execution of the new release to collect the input data and perfor-
mance metrics, (b) prediction by the regression model, which yields
the expected performance bases on the input values, and (c) the
arbitration process, which compares the expected performance ob-
tained by the regression algorithm with the actual metrics collected
during execution.

With this method, we aim at detecting performance issues that
depend on the inputs of a software. We now explain the methodol-
ogy and the developed implementation more in detail.

4.1 Performance metrics
The response time is the time required by the algorithm to assign
a set of landing calls and communicate them to the elevators. The
algorithm is invoked periodically and must provide a valid assign-
ment every cycle. In every cycle, the algorithm receives all the
information about the status of the elevators (e.g., position, velocity,
doors status, etc.) and a set of car and landing calls. Car calls are
assigned to a particular car and represent the destination of the
passengers. In Orona’s algorithm, car calls are not assigned by the
algorithm, they are input information to decide the assignment of
landing calls. Landing calls represent the origin of the passengers,
and therefore, it is the algorithm’s responsibility to decide which
car is the most suitable to attend the landing calls.

There are two types of landing calls: conventional calls and des-
tination calls. In destination algorithms, a call is registered by each
passenger. Within an installation, the number of active calls impacts
the response time of the algorithm. The lunch time, for example,
is one of the most demanding periods for the algorithm in office
buildings. During this period, there is a mix of passengers entering
and exiting the building. During LunchPeak and, for example, dur-
ing the morning UpPeak, the processing load of the algorithm is
high. In addition to the processing of a high amount of calls, some
other mechanisms such as parking or control of long waiting times
are activated, which also increases the processing time.

Specially in destination algorithms, where the attendance to the
passengers is individualized, the number of active calls influences
the response time. Active calls can be in different states: (1) Reg-
istered: first cycle in which the algorithm receives a call and the
assignment remains pending. (2) Assigned: the algorithm has al-
ready selected an elevator to attend the call but the elevator has
not still arrived to answer the call. (3) Answered: the elevator has
arrived at the origin of the passenger and the passenger is travel-
ling to his destination. Finally, once the passenger arrives to his
destination, the call is cancelled.

In this context, the performance metric that has been monitored
is the response time of the periodic task that executes the dis-
patching algorithm. That is, the time frame in which the algorithm
dispatches (allocates) the active calls to the available cars. This re-
sponse time is directly related to the existing traffic: an increase in
passenger traffic causes a rise in the number of active calls and this
results in a higher demand of computing resources to allocate these
calls. As a consequence, the response time of the task executing the
algorithm increases and, eventually, a deadline loss can occur. Thus,
we have chosen the number of active calls as the value to predict
the response time of the algorithm. To measure the response time
of the task, the algorithm code has been instrumented with high
precision clocks provided by the operating system.

4.2 Regression learning algorithms
Machine Learning (ML) algorithms are a subset of Artificial Intelli-
gence algorithms. They provide systems the ability to automatically
learn and improve from past experiences without being explicitly
programmed to. ML algorithms can be catalogued into two cate-
gories: supervised and unsupervised learning. While supervised
learning algorithms aim to map input objects and output variables
from labelled training data, unsupervised learning algorithms are

Using Regression Learners to Predict Performance Problems on Software Updates SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Figure 1: Architecture of the performance problem prediction method

trained based on input data only, acting as a clustering technique [7].
Supervised learning techniques can be categorized both in regres-
sion and classification techniques. Regression algorithms aim to
map inputs to real-valued outputs (i.e., a number), whereas clas-
sification aims to map inputs into categorical outcomes [7]. Our
approach uses regression learning algorithms because it is neces-
sary to predict a quantitative value to detect a performance issue.
The regression algorithms evaluated in this paper have been TRGP,
Regression Tree, Ensemble, Stepwiselm and SVM. The latter is com-
monly used as a classifier but has also proven to be useful as a
regression algorithm [6].

4.3 Training phase
In this phase, the input feature will be the number of active calls,
labelled with the response time for each cycle of the algorithm
every minute. To do so, we developed a script that automatically
extracts this data from a database. Once, the data is extracted, the
script launches the training phase by using the MATLAB Machine
Learning toolbox. The regression learning algorithm yields a trained
regression model, which can later be used in the testing phase to
predict the response time of the algorithm based on the number of
active calls.

4.4 Prediction phase
When a new version of the algorithm is released to operation, data
of active calls and response time of the algorithm are collected
every minute. Response time has to be less than the deadline of the
task that executes the traffic algorithm. This is checked with a rule.
However, other performance problems that can be indicators of bad
implementations are more difficult to detect due to the dependence
of the response time to the characteristics of the installation, the
functionalities activated in the algorithm and the traffic flow. There-
fore, active calls and response time measurements are collected to
compare them with predicted data.

The execution of the new release provides the number of active
calls every minute to the trained regression model. This model, es-
timates the response time over time based on the training produced
during the training phase.

The arbitration process is in charge of detecting performance
problems in a new release of the software. By comparing the data
that is being collected from the execution of the new release and
the prediction of the regression model, this module provides a
verdict. The arbitration process has been designed considering
three criteria: (1) average response time (2) maximum response
time and (3) variance in response time. These criteria have been
analyzed in two time-frames: (1) daily, with the response times
of the algorithm in a whole day traffic flow and (2) every minute,
with the traffic of the previous 5 minutes. Experts from Orona have
set the tolerable variations in the variance, average and maximum
response times that could be considered normal in the execution
of the algorithm. In addition the variation percentages that should
be classified as performance problems within the two time-frames
were specified by the same domain experts. The arbitration process
inputs the real response time of the new release and compares
it to the prediction of the regression model. When an abnormal
variation is detected in any of the criteria, it must be analyzed, and
having the minute by minute verdict facilitates the detection of the
performance problem, as it allows analyzing under which traffic
conditions is the problem shown.

5 EMPIRICAL EVALUATION
This section evaluates the proposed approach by using an indus-
trial case study. To this end, we aimed at answering the following
Research Questions (RQs):

• RQ1: How does each of the selected regression learning
algorithms perform for predicting performance problems on
software updates?

• RQ2: Are there any differences when training the machine-
learning algorithms with real field data or theoretical data?

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel

5.1 Experimental setup
This subsection explains the proposed experimental design to an-
swer the aforementioned RQs.

5.1.1 Case study. As a case study, we used the dispatching algo-
rithm of Orona developed in C/C++. This algorithm is the compo-
nent inside an elevator in charge of assigning a specific elevator
to each call. Performance on this algorithm is critical, as it must
provide a response in a limited time frame. Therefore, it is impor-
tant that when software updates are performed in the dispatching
algorithm of Orona, these are free of performance issues. The type
of algorithm used for the evaluation is a destination algorithm and,
therefore, there is one call per each passenger. For the evaluation,
two types of passenger profiles have been used: full day theoretical
profile, an actual traffic profile from an office building in Paris ob-
tained from literature [23], and full day profile collected from a real
building of Orona. The real building is a 10-floor office building
with six elevators in it and the entrance in the ground floor.

5.1.2 Evaluation metrics. We used performance mutation testing
to evaluate the approach [8]. To this end, a total of 45 performance
mutants were generated by following the performance mutation
operators proposed by Delgado et al. [8]. Mutation testing aims to
generate a set of versions from the original program and adding a
synthetic variation on it. When the outcomes of a test differ from
the mutant to those of the original version, it is considered that
the mutant is killed. This technique has been found to be a good
substitute of real faults [15]. The difference between traditional
mutation testing and performance mutation testing is that the mu-
tation operators for the latter are focused on injecting performance
problems and keeping the original functionality of the program [8],
whereas the former focuses on changing the program functionality.
To consider a mutant killed in performance mutation testing, per-
formance service metrics are considered, such as execution time or
memory usage [8]. We have systematically created mutants that
could affect performance based on the performance mutation oper-
ators proposed in [8], which include: method call, loop perturbation
and conditional execution. Specifically, we have created mutants
by: simulating heavy operation in different parts of the algorithm,
Move/Copy Statement into Loop, Removal of Stop Condition in
Loop and Unnecessary Calculation of values. In this paper, we fo-
cused on the response time of the dispatching system as a measure
for detecting performance problems.

Similar to related studies [5, 11], we used the precision, recall,
accuracy and F-measure metrics to measure the performance of
the proposed regression learning algorithms. We also developed
a regression test oracle, which involves the original dispatching
algorithm.When executing the tests, we obtained the running times
over time of both the original dispatching algorithm as well as the
one from the mutants. The running time from the dispatching was
provided as input to the arbiter, forming this way the regression test
oracle to classify the test as pass or fail without the prediction part,
which is the core of this study.1 This classification was catalogued
as a True Positive (TP), True Negative (TN), False Negative (FN) or
False Positive (FP) as defined below:

1Notice that in practice, in operation, we lack this regression test oracle, and subse-
quently, it is only used for our evaluation

• TN: Both our approach and the regression test oracle re-
turned a “PASS” verdict.

• TP: Both our approach and the regression test oracle returned
a “FAIL” verdict.

• FN: Our approach returned a “PASS” and the regression test
oracle returned a “FAIL”.

• FP: Our approach returned a “FAIL” and the regression test
oracle returned a “PASS”.

When mutants were catalogued as TN, TP, FN or FP, the preci-
sion, recall, F1 and accuracy were obtained following Equations 1,
2, 3 and 4.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹1 = 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)

5.1.3 Training strategy. To perform the training of the model we
have established three different scenarios. In the first scenario, the
training was performed with four test cases, which were obtained
from field data in a real office installation maintained by Orona (the
same real office installation used in our evaluation). We had access
to real passenger flows for 4 different days in an office building
with 6 elevators and 10 floors. Therefore, we have been able to use
this data to execute the algorithm and obtain the response time of
these days. We have executed the passenger profiles 5 times as the
execution time varies slightly depending on the other tasks of the
dispatcher. We have used a destination dispatcher that requires an
individualized treatment of each active call. Figure 2a illustrates the
traffic collected in a working day in the office building. During the
morning, most passengers go from the ground floor to the upper
floors of the building, from 13:00 to 15:00 there is a mix of traffic
going from and to the ground floor, and at the end of the working
day, most passengers’ destination is the ground floor.

In the second scenario, the training was performed with four
test cases, which were obtained from Elevate™2, a passenger traffic
simulation tool. The used profile was Siikonen full day traffic profile
that is based on a sample multi-tenant office building in Paris [23].
Each test case was executed 5 times as response time can differ
slightly in different executions. Figure 2b illustrates the traffic flow
of the siikonen profile.

In the third scenario, both of the training sets from the previous
scenarios have been used. Therefore, four profiles collected from
the field and four profiles collected from the theoretical profiles
where used to train the model. Each of them was executed 5 times.
The analysis of these three scenarios provided us information about
how important is to obtain real field data to predict performance.

2https://www.peters-research.com/index.php/elevate

Using Regression Learners to Predict Performance Problems on Software Updates SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

(a) Full day profile collected from real installation by Orona (b) Siikonen Full day profile

Figure 2: Total passenger activity of real installation and theoretical profiles obtained with Elevate

5.1.4 Performance problems identification. As the goal is to identify
performance problems in operation, we have used the field profiles
as input for the prediction model. In the cases were field data was
used to train the algorithms, to avoid bias, we used the k-fold cross
validation. This means that we did not use the same dataset for
training as well as for testing.

5.2 Analysis of the Results
Table 1 summarizes the obtained results of the selected regression
algorithms for the three considered scenarios. The first scenario
aimed at comparing the performance of the selected algorithms
when trained with field data. For the five regression learning tech-
niques, TRGP, Regression Tree and Ensemble showed the strongest
results. These techniques had a precision of around 0.95, a recall
of around 0.93, an accuracy of around 0.93 and an F1 measure of
around 0.94. Conversely, SVM and Stepwiselm algorithms showed
overall worse results. Despite having a high recall, their precision,
accuracy and F1 were significantly lower than the rest of the algo-
rithms.

Since field data is not always available, the second scenario aimed
at investigating how the different algorithms performed with theo-
retical test data. Similar to the previous scenario, TRGP, Regression
Tree and Ensemble were the algorithms showing the best results.
SVM and Stepwiselm showed better recall measures but lower pre-
cision, accuracy and F1 measure, similar to the first scenario. It is
noteworthy, however, that for the best algorithms (i.e., TRGP, Re-
gression Tree and Ensemble), the recall, accuracy and F1 measures
were dropped with respect to the previous scenario, although the
precision increased. This means that when training with theoretical
data, the number of false negatives slightly increased, whereas the
number of false positives decreased.

The third scenario aimed at investigating how the different al-
gorithms performed with a mixture field and theoretical test data.
Similar to the previous scenarios, TRGP, Regression Tree and En-
semble were the algorithms showing best results. However, as in
the second scenario, they showed lower recall, accuracy and F1
measures when compared to those results from the first scenario

(i.e., when the algorithms were trained with field data). Neverthe-
less, their values were slightly higher than those obtained when
trained solely with theoretical data (i.e., second scenario). Again, for
this scenario, SVM and Stepwiselm showed low precision, accuracy
and F1 values.

5.3 Discussion
From the results, it can be seen that Regression Tree, Ensemble and
TRGP are overall algorithms showing best results. On the downside,
SVM and Stepwiselm showed the worst precision, accuracy and F1
values for the three scenarios, despite having a higher recall value.
This means that there were a high number of false positives, which
results in a high number of mutants catalogued as failing when
they should have been catalogued as non-failing. An insight behind
the obtained results is that the problem to solve is non-trivial, as
the SVM, which is commonly taken as a baseline algorithm to
determine the difficulty of the problem, yields bad results. We can
thus answer the first RQ as follows:

Overall, Regression Tree, Ensemble and TRGP are the best
algorithms for predicting performance problems in soft-
ware updates in elevator dispatching algorithms, while
SVM and Stepwiselm are not valid.

Results for TRGP, Regression Tree and Ensemble seem promis-
ing when trained with field data, although the use of theoretical
test data for training them seems to distort the recall, accuracy and
F1 measures of the algorithms. When having a close view on the
training sets, we figured out that the training data in theoretical
profiles are significantly different to the data used in the real instal-
lation. Specifically, this led not to train certain areas that covered
scenarios appearing in all real installations. Instead, the theoretical
profiles focused on stressing the system, increasing significantly
the number of active calls at certain times during the full day. Con-
versely, the real traffic profiles had a more constant passenger flow
signals, without strong peaks, having an average lower number of
active calls per minute, as can be seen in Figure 2. This is specially
remarkable during morning UpPeak and midday LunchPeak.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel

Table 1: Results summary for the different scenarios of our approach [Scenario 1, Scenario 2, Scenario 3]

TRGP REGRESSION TREE ENSEMBLE SVM STEPWISELM
PRECISION [0.95, 1.00, 1.00] [0.95, 0.99, 0.97] [0.96, 1.00, 1.00] [0.58, 0.61, 0.58] [0.62, 0.60, 0.59]
RECALL [0.94, 0.67, 0.75] [0.94, 0.70, 0.73] [0.92, 0.65, 0.73] [1.00, 1.00, 1.00] [1.00, 1.00, 1.00]
ACCURACY [0.94, 0.82, 0.87] [0.94, 0.83, 0.84] [0.94, 0.81, 0.85] [0.58, 0.61, 0.58] [0.65, 0.60, 0.59]
F1 [0.95, 0.81, 0.86] [0.95, 0.82, 0.84] [0.94, 0.79, 0.85] [0.74, 0.76, 0.74] [0.77, 0.75, 0.74]

In our evaluation we show again the differences between theory
and practice, instantiated in a real-life example in a widely used
domain, i.e., the vertical transport domain. Many assumptions are
made in theory to explain the phenomenon and concepts, yet, in
real-life, assumptions and conditions do not always hold and are not
unique. In areas like web or mobile engineering, Design-Operation
Continuum methods (e.g., DevOps) are widely used, bringing ad-
vantages like testing “on-the-fly” or taking data from operation to
development-time for a more extensive analysis. In our study, we
show that this concept is required to be extended to wider engineer-
ing areas, such as the ones related to embedded and Cyber-Physical
Systems (CPS).

Having discussed this, we can answer the RQ2 as follows:

Results significantly differ depending on the training type
used. Training them with field data is the best option,
whereas the use of theoretical test data shall be further
analyzed.

5.4 Lessons learned
The results show that collecting information from the operation of
the traffic algorithm can be used to detect performance problems
when a new version is released. Usually, changes in the software of
the algorithm consists on (1) including new strategies to improve the
QoS of the algorithm, (2) adapting existing functionalities to special
installations (e.g., multi entrance floors building), (3) extending
the algorithm to consider new assignment rules or (4) adapting
new legislative changes. Engineers in charge of the updates and
extensions are not always original developers of the algorithm,
therefore, misunderstanding about the usage of data structures and
control structures is not uncommon. In addition, some changes
must be performed quickly to support operational installations.

The algorithm includes complex control structures to manage
the floors, controllers and calls and an inefficient implementation
of these structures can result in performance problems in some
installations or under some kind of traffic flow. To check the func-
tional behaviour of a new version, a simulator named Elevate is
used. In simulation, several validations can be performed semi-
automatically. This provides a good confidence level that the up-
dates will behave as expected. However, an exhaustive checking
of the performance of the new release is usually not feasible. The
performance is dependent on the features of the installations and
the traffic profile, and requires real time validation, therefore, the
number of executions that can be run in the laboratory are re-
duced. Consequently, usually static performance analysis is used
to guarantee the response time under the worst scenario.

The method presented in this paper uses previous information
collected in the installations to detect performance problems that
can be exhibited during operation. The results show that regression
learning algorithms can be used to train a model to predict the
response time of an installation. This information can be used to
identify performance problems on the release of a new version by
using rules provided by the domain experts. The number of active
calls has proven to be a good input factor for the model. By using
this method in installations of Orona, an overview of the perfor-
mance problems detected in different installations can be obtained.
By analyzing this information, implementation inefficiencies that
have a negative impact in performance can be detected. From the
experiment carried out on the first scenario we obtain that Regres-
sion Tree results in 5 false positive out of 180. The type of mutants
that result in false positives are two mutants simulating heavy op-
eration in parts of the algorithm that are activated conditionally,
two related to the Removal of Stop Condition in Loop and one of
Unnecessary Calculation of values. Regarding false negatives, 6
out of 180 were detected. Overall, 94% of the tests provided a good
results.

We highly recommend using this method systematically espe-
cially in office buildings and hospitals where the traffic is more
demanding than in the residential sector and performance prob-
lems have a higher probability of being exhibited. It is important to
remark that the analysis shows that the training should be specific
for a particular installation.

This would imply: (1) continuously collecting the number of
active calls and response time during the normal operation of the
dispatcher in the installations, (2) training the model with this
information and (3) integrating in the dispatcher the model and the
rules to identify performance problems. To continuously monitor
the active calls and response time, a persistence mechanism shall be
provided. Due to performance reasons, we think that the training
phase shall be performed at the laboratory, not in the installations.
Therefore, data collected in the installation shall be sent to the
laboratory for analysis.

Figure 3 depicts the physical infrastructure needed to accomplish
the proposed approach, i.e., the deployment of the architecture
proposed in Fig.1. Oronas cloud could be used as a bridge both for
deployment and telemetry purposes. The software developed in
the lab would be remotely deployed to the real installation using
a microservice based approach. Due to security issues, the real
installation equipment should not have open ports and thus, a
notification-based schema based on MQTT is proposed to alert
the edge gateway that a new version is available in Oronas docker
registry. This way, the edge gateway downloads and installs the
new software in the traffic master. Besides that, in operation, the

Using Regression Learners to Predict Performance Problems on Software Updates SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Figure 3: Physical infrastructure to carry out the proposed approach

edge gateway collects the required operational data coming from
the real installation and feeds it back to the laboratory for training
purposes, closing the loop and enabling a continuous validation
schema in operation.

We believe that in office buildings sending the informationweekly
could be sufficient. In order to select the input data to train the algo-
rithm, the type of building shall be taken into account. Traffic flow
in office buildings can be dependent on the season (for example, va-
cation periods, etc.). Besides, in multi-tenant buildings, traffic flow
can be more variable over the time than in single tenant buildings.
Therefore, the option of having a different training according to
the season or features shall be further analyzed.

Lastly, we envision two alternatives for the identification of
performance problems: (1) execute in the laboratory and (2) execute
with the dispatcher in the installation. The verdict to identify a
performance problem in this version uses the information of the
response time of a full day and every 5 minutes. This could be done
either in the laboratory or in the execution in the installation. In
this case, we think that the best option is to perform this process
in the installation as it allows to detect performance problems at
operation time and take contingency actions if needed.

5.5 Threats to validity
Internal validity:Our evaluation is subject to some internal threats.
One such threat relates to the configurations of the used Machine
Learning algorithms. To reduce this threat, we used the default

parameters provided by the MATLAB framework to train the algo-
rithms. In addition, the arbiter uses certain thresholds that require
configurations. The value of these parameters could significantly
change the results of our evaluation. To reduce this threat, these
values were discussed with domain experts.

External validity: A potential external validity threat in our
evaluation relates to the used benchmark dataset and to only using
a single case study. However, this case study is a real industrial case
study of high complexity. Furthermore, the dataset is the one used
by Orona to test their dispatching algorithms. We are thus using a
benchmark with real industrial data and within a real-world setting.
Another external validity threat in our approach could relate to how
the training was performed. To avoid bias in the results, we did not
use the same dataset for training and for testing an algorithm. In
those cases were necessary, the k-fold cross validation techniques
were used.

6 CONCLUSIONS AND FUTUREWORK
This paper has investigated the use of Machine Learning techniques
to detect performance problems after new software release deploy-
ments. Then, proposed approach has been tested in an industrial
use case, specifically in elevator traffic dispatching algorithms, in
collaboration with Orona. The conclusions obtained from the ex-
periments conducted, are the following:

• We have proven that applying regression learners to data col-
lected on elevators installation in order to predict response
time is a valid mechanism to detect performance problems.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and Maite Arratibel

• The method does not consider time-critical concerns, so may
be only applicable to non time-critical CPSs. The use of the
method in a time-critical context requires further analysis.

• The regression algorithms which showed the best results for
all the experimental setups where TRGP, Regression Tree
and Ensemble, while SVM and Stepwiselm have proved to
be the least appropriate.

• The best way to train a regression algorithm to predict per-
formance problems in dispatching algorithms is to train them
with real field data from the installation, rather than theo-
retical profiles.

In future, we plan to continue this research by evaluating the ef-
fectiveness of this method in its application on different types of
installations. In addition, we shall investigate the different training
strategies. In this sense, two aspects must be taken into account are
(1) the frequency of the training, as people flow is dynamic over the
time and (2) the need of training the model with different training
sets depending on the season of the year, as traffic may change
depending on vacation periods, etc. Lastly, the use of different the-
oretical traffic profiles will be further analyzed. In addition to the
full day profiles used in this work to evaluate the approach, the
use of UpPeak, LunchPeak, DownPeak and Interfloor theoretical
profiles will be further investigated to analyze whether they can be
used to predict the performance.

ACKNOWLEDGMENT
This publication is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 871319. This work has been
partially supported by the Basque Government through the Elka-
rtek program under the DIGITAL project (Grant agreement no.
KK/2019-00095). Aitor Arrieta and Goiuria Sagardui are part of the
Software and Systems Engineering research group of Mondragon
Unibertsitatea (IT1326-19), supported by the Department of Educa-
tion, Universities and Research of the Basque Country.

REFERENCES
[1] Jon Ayerdi, Aitor Garciandia, Aitor Arrieta, Wasif Afzal, Eduard Enoiu, and

Aitor Agirre. Towards a Taxonomy for Eliciting Design-Operation Continuum
Requirements of Cyber-Physical Systems. In IEEE 28th International Requirements
Engineering Conference. IEEE, 2020.

[2] Jon Ayerdi, Sergio Segura, Aitor Arrieta, Goiuria Sagardui, and Maite Arrati-
bel. Qos-aware metamorphic testing: An elevation case study. In International
Symposium on Software Reliability Engineering (ISSRE 2020). IEEE, 2020.

[3] Sreram Balasubramaniyan, Seshadhri Srinivasan, Furio Buonopane, B. Subathra,
Jüri Vain, and Srini Ramaswamy. Design and verification of Cyber-Physical
Systems using TrueTime, evolutionary optimization and UPPAAL.Microprocessors
and Microsystems, 42(2016):37–48, 2016.

[4] G. C. Barney. 2003.
[5] Wing Kwong Chan, Jeffrey CF Ho, and TH Tse. Finding failures from passed

test cases: Improving the pattern classification approach to the testing of mesh
simplification programs. Software Testing, Verification and Reliability, 20(2):89–
120, 2010.

[6] Vladimir Cherkassky and Yunqian Ma. Practical selection of SVM parameters
and noise estimation for SVM regression. Neural Networks, 17(1):113–126, 2004.

[7] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for
machine learning. Cambridge University Press, 2020.

[8] Pedro Delgado-Pérez, Ana Belén Sánchez, Sergio Segura, and Inmaculada Medina-
Bulo. Performance mutation testing. Software Testing Verification and Reliability,
2020.

[9] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early performance
testing of distributed software applications. Proceedings of the Fourth International
Workshop on Software and Performance, WOSP’04, pages 94–103, 2004.

[10] Vincenzo Ferme and Cesare Pautasso. Towards holistic continuous software per-
formance assessment. ICPE 2017 - Companion of the 2017 ACM/SPEC International
Conference on Performance Engineering, pages 159–164, 2017.

[11] Ahmet Esat Genç, Hasan Sözer, M Furkan Kıraç, and Barış Aktemur. Advisor: An
adjustable framework for test oracle automation of visual output systems. IEEE
Transactions on Reliability, 2019.

[12] Anton Gulenko, Marcel Wallschlager, Florian Schmidt, Odej Kao, and Feng Liu.
Evaluating machine learning algorithms for anomaly detection in clouds. Pro-
ceedings - 2016 IEEE International Conference on Big Data, Big Data 2016, pages
2716–2721, 2016.

[13] Liang Hu, Xi Long Che, and Si Qing Zheng. Online system for grid resource
monitoring and machine learning-based prediction. IEEE Transactions on Parallel
and Distributed Systems, 23:134–145, 2012.

[14] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Under-
standing and detecting real-world performance bugs. ACM SIGPLAN Notices,
47:77–87, 2012.

[15] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing?
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 654–665. ACM, 2014.

[16] Rakesh Kumar Lenka, Pranali Bhanse, and Utkalika Satapathy. Load performance
testing on cloud platform. Proceedings - IEEE 2018 International Conference on
Advances in Computing, Communication Control and Networking, ICACCCN 2018,
pages 414–419, 2018.

[17] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Microsoft Azure, Peng Huang,
Johns Hopkins University, Pankaj Singh, Xinsheng Yang, Qingwei Lin, Microsoft
Research, Youjiang Wu, Sebastien Levy, and Murali Chintalapati. Gandalf: An
Intelligent, End-To-End Analytics Service for Safe Deployment in Large-Scale
Cloud Infrastructure. 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), 2020.

[18] Yepang Liu, Chang Xu, and Shing Chi Cheung. Characterizing and detecting per-
formance bugs for smartphone applications. Proceedings - International Conference
on Software Engineering, (1):1013–1024, 2014.

[19] Elena Markoska and Sanja Lazarova-Molnar. Towards smart buildings perfor-
mance testing as a service. 2018 3rd International Conference on Fog and Mobile
Edge Computing, FMEC 2018, pages 277–282, 2018.

[20] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic perfor-
mance bugs in collection traversals. Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2015-June:369–378,
2015.

[21] Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun, Kahina Lazri, and
Guthemberg Da Silva Silvestre. Anomaly detection and diagnosis for cloud ser-
vices: Practical experiments and lessons learned. Journal of Systems and Software,
139:84–106, 2018.

[22] Sergio Segura, Javier Troya, Amador Durán, and Antonio Ruiz-Cortés. Perfor-
mance metamorphic testing: motivation and challenges. In Proceedings of the 39th
International Conference on Software Engineering: New Ideas and Emerging Results
Track, pages 7–10. IEEE Press, 2017.

[23] ML Siikonen. On traffic planning methodology. Lift Report, (March), 2001.
[24] Zhen Song, Philippe Labalette, Robin Burger, Wolfram Klein, Sudev Nair, Suhas

Suresh, Ling Shen, and Arquimedes Canedo. Model-based cyber-physical system
integration in the process industry. IEEE International Conference on Automation
Science and Engineering, 2015-October(September 2016):1012–1017, 2015.

[25] Elaine J. Weyuker. Experience with performance testing of software systems:
issues, an approach, and case study. IEEE Transactions on Software Engineering,
26:1147–1156, 2000.

[26] Philipp Wieder, Edwin Yaqub, Ramin Yahyapour, and Ali Imran Jehangiri. Dis-
tributed predictive performance anomaly detection for virtualised platforms.
International Journal of High Performance Computing and Networking, 11:279,
2018.

[27] Chen Zhang, Jiaxin Li, Dongsheng Li, and Xicheng Lu. Understanding and Stati-
cally Detecting Synchronization Performance Bugs in Distributed Cloud Systems.
IEEE Access, 7:99123–99135, 2019.

[28] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin Tao, Zhi Zang,
Xiaowei Jing, and Mei Feng. FUNNEL: Assessing Software Changes in Web-Based
Services. IEEE Transactions on Services Computing, 11(1):34–48, 2018.

142 Publications

A.3 Microservices for Continuous Deployment, Monitoring and
Validation in Cyber-Physical Systems: an Industrial Case Study
for Elevators Systems

This paper was presented at the IEEE International Conference on Software
Architecture (ICSA) in 2021 and then published in the conference proceedings.
The full citation:

Gartziandia, A., Ayerdi, J., Arrieta, A., Ali, S., Yue, T., Agirre, A., Sagardui,
G. & Arratibel, M. (2021, March). Microservices for continuous deployment,
monitoring and validation in cyber-physical systems: an industrial case study
for elevators systems. In 2021 IEEE 18th International Conference on Software
Architecture Companion (ICSA-C) (pp. 46-53). IEEE.

Microservices for Continuous Deployment,
Monitoring and Validation in Cyber-Physical

Systems: an Industrial Case Study for Elevators
Systems

Aitor Gartziandia∗, Jon Ayerdi†, Aitor Arrieta†, Shaukat Ali‡, Tao Yue‡, Aitor Agirre∗,
Goiuria Sagardui† and Maite Arratibel §

Ikerlan∗, Mondragon University †, Simula Research Laboratory ‡, Orona§
∗{agarciandia, aagirre}@ikerlan.es, †{jayerdi,aarrieta,gsagardui}@mondragon.edu,

‡{shaukat, tao}@simula.no, §marratibel@orona-group.com

Abstract—Cyber-Physical Systems (CPSs) are systems that
integrate digital cyber computations with physical processes. The
software embedded in CPSs has a long life-cycle, requiring con-
stant evolution to support new requirements, bug fixes, and deal
with hardware obsolescence. To date, the development of software
for CPSs is fragmented, which makes it extremely expensive.
This could be substantially enhanced by tightly connecting the
development and operation phases, as is done in other software
engineering domains (e.g., web engineering through DevOps).
Nevertheless, there are still complex issues that make it difficult to
use DevOps techniques in the CPS domain, such as those related
to hardware-software co-design. To pave the way towards DevOps
in the CPS domain, in this paper we instantiate part of the
reference architecture presented in the H2020 Adeptness project,
which is based on microservices that allow for the continuous
deployment, monitoring and validation of CPSs. To this end, we
elaborate a systematic methodology that considers as input both
domain expertise and a previously defined taxonomy for DevOps
in the CPS domain. We obtain a generic microservice template
that can be used in any kind of CPS. In addition, we instantiate
this architecture in the context of an industrial case study from
the elevation domain.

Index Terms—Microservices, DevOps, Cyber-Physical Systems

I. INTRODUCTION

Cyber-Physical Systems integrate digital cyber computa-
tions with physical processes [14]. These systems are inher-
ently complex, and their lifecycle can last up to 30 years in
sectors such as railway or elevation [6]. In these systems, an
increasing trend is to implement most of the functionalities
through software. During the life-cycle of these systems, the
software continuously evolves due to hardware obsolescence,
requirement changes, vulnerabilities, bug corrections, etc.
Consequently, this evolution requires reliable and automatic
engineering methods for developing and operating CPSs.

With existing engineering practices for CPS, releasing and
deploying new software versions is a time-consuming and
error-prone activity. This is mainly due to the impossibility of
thoroughly testing the software in a real environment. Further-
more, the deployment process itself is complex, as it is highly

important to ensure that the CPS will be in a safe state when
the software is updated. Besides, these systems often operate in
dynamic and uncertain environment, what makes appropriate
self-healing and recovery mechanisms necessary. These prob-
lems can be partially solved by implementing design-operation
continuum methods for the software development life-cycle,
instead of relying on traditional software development methods
(e.g., the V model). Nevertheless, to achieve this in the CPS
domain, radically new solutions to overcome the limitations
of today’s CPS development processes need to be adopted.

As an alternative, in the context of the Adeptness H2020
project [1] a reference architecture was proposed to enable
Design-Operation Continuum activities in CPSs. The contri-
bution of this paper is instantiating this architecture in an
industrial case study from the elevation domain. A system
of elevators is a complex CPS where all the aforementioned
problems frequently arise. By using this architecture, we
foresee significant enhancements in the software development,
significantly reducing the software development cost while
increasing its quality.

The rest of the paper is structured as follows. Section II
presents the industrial case study in which we applied the
architecture and the problems that they face. We explain the
methodology for developing the architecture in Section III.
Section IV presents the architecture based on microservice.
Section V presents the prototypical implementation and a
qualitative evaluation. We position our paper with the state-
of-the-art in Section VI. Lastly, we conclude the paper and
discuss the future avenues in Section VII.

II. CASE STUDY AND PROBLEM REPRESENTATION

Orona is a company dedicated to the designing, manufac-
turing, installing, and maintaining elevators, escalators and
moving ramps. Elevator installations are complex CPSs that
provide service to the passengers, considering the passengers’
active passenger calls and the elevators’ status. An overview
the different elements of the CPS are depicted in Figure 1.

Fig. 1: Overview of the architecture of the Elevators installation

User interfaces allow passengers to introduce calls to the
system in different ways. Conventional user interfaces consist
solely on Up and Down call buttons, where only the floor
on which the passenger is located and the direction of the
journey are provided. Inside the elevator, the call panel allows
introducing the destination floor of the passenger. On the other
hand, destination input devices allow passengers to introduce
the destination floor when making a call and then, passengers
receive information about which elevator is going to attend
them. The elevator call panel inside the elevator is not required
in this case. There are also signalling panels indicating the
current floor of the elevator and the expected journey. The
interaction with the passenger can be extended with access
control systems as well.

Each elevator is managed by a controller, which is responsi-
ble for the vertical and horizontal (doors control) movements
of the elevator. When an elevator receives a landing or a car
call (i.e., a call from inside the cabin), the controller decides
the order of the stops and the opening and closing of the doors
in each floor to attend all the calls by considering different in-
formation, including traveling direction, floor position, already
assigned calls, etc. This information flows from one device to
another through a (vertical) CAN bus.

The traffic master is the component that coordinates the user
interfaces with the lift controller. It receives the information
from access control devices through Ethernet and checks
whether a passenger has the right to issue a particular call. It
receives the passenger call from the landing call panels through
the (horizontal) CAN bus, and the information of the status,
position, etc, from each lift controller. With this information,
the traffic master decides which is the best elevator to attend

every call, considering different criteria, such as minimising
the Average Waiting Time (AWT), the Journey Time (JT) or
energy consumption1. Finally, the traffic master notifies the lift
controller about the assigned call and indicates the assigned
lift to the passengers.

This architecture does not provide support for design-
operation continuum methods. When the traffic study is per-
formed, there is usually a lack of real and precise data
to adequately configure the system. In operation, automatic
feedback mechanisms to improve the configuration and detect
problems or unknown conditions are lacking. Consequently,
when problems or unknown conditions arise in an installation
(e.g., degradation in the AWT), the building owner is responsi-
ble for communicating the problem to Orona. Validation and
deployment of the system are also semi-manual. Regarding
validation, information from the operation is not accessible, so
it is not possible to reproduce real situations in the laboratory,
and the decision of whether a test case has succeeded or not is
manual. Regarding deployment, the maintainer is responsible
for configuring and updating new versions in the installation,
which is also a manual process. In this paper, we present the
extension of the architecture to support automatic deployment,
continuous monitoring, and validation.

III. ARCHITECTURE DEVELOPMENT METHODOLOGY

Before designing the architecture, we defined a methodol-
ogy that would enable defining the architecture systematically,
considering the benefits of microservice architectures over

1The AWT is the average time that passengers wait until they enter in the
lift. The JT is the average time that passengers wait to reach their destination.
Both metrics are used to measure the performance of elevators systems.

Fig. 2: Methodology for developing the microservices-based architecture and its instantiation to the Elevation domain

monolithic applications [18] and the need for domain aware-
ness when developing an architecture [12]. The architecture
development methodology is shown in Figure 2, and it consists
of a total of six main steps:

• Use-case definition: First, there was a need to define the
use-case scenarios that Orona wanted to handle. To this
end, a domain expert defined a set of use-case scenarios,
which can be found in [3].

• Stakeholder requirements: With these use-case scenarios,
the stakeholder’s requirements were elicited. A total of 56
requirements were elicited by an elevation domain expert,
which are accessible in [2].

• DevOps toolchain requirements elicitation: By having as
input a set of stakeholder requirements and a DevOps
taxonomy for CPSs, developed in our previous work
[6], two types of requirements were elicited: system
requirements, which are those specific requirements from
the overall architecture needed to satisfy the stakeholder
requirements and subsystem requirements, which are
those requirements specific to the subsystems (explained
in the following section of the paper) necessary to satisfy
system requirements. All these requirements along with
the test cases that will be executed to validate them can
be found in [2].

• Requirements analysis and microservice identification:
With the elicited requirements, a first analysis was per-
formed by a system architect, and a series of microser-
vices were identified.

• Interface identification: For each microservice, the dif-
ferent interfaces were defined and integrated with the
Adepteness microservice template, which is available for
both C and Python.

• Instantiation: The last step referred to the instantiation
and integration of all these templates.

IV. ARCHITECTURE BASED ON MICROSERVICES

The HORIZON2020 Adeptness project [1] has proposed
a microservice based architecture that will allow DevOps
practices to be adopted in the context of CPSs. Microservices

permit building a flexible architecture where services can be
reused in different life-cycle stages and hardware, seamlessly
deploying new services to all the installations and scaling the
system. Each microservice within the proposed architecture
shall be responsible for a specific well-defined function in the
life-cycle of a new software release, and shall provide different
lightweight communication mechanisms. Each microservice
will provide both synchronous (i.e., HTTP) and asynchronous
(i.e., MQTT) communication, offering common interfaces for
every microservice within the system and custom interfaces
for microservices with specific roles.

A. Common interfaces

All microservices within the architecture provide a set of ba-
sic asynchronous and synchronous communication endpoints,
regardless to the role of the microservice. These endpoints
offer basic information about the execution status, health and
performance. The synchronous interfaces allow other services
to request microservices’ health status, while asynchronous
interfaces allow microservices to publish relevant data without
knowing the receiver of the messages. The following interfaces
are provided by the template developed within the HORI-
ZON2020 Adeptness project [1].

1) Synchronous communication:

• /adms/v1/ping [GET]: Ping service to check that the
service is alive. Returns an empty 200 response if the
microservice is working correctly.

• /adms/v1/info [GET]: Provides basic information about
the microservice. It returns a JSON object containing
the microservice ID and microservice role within the
architecture.

• /adms/v1/performance [GET]: Provides CPU and mem-
ory usage metrics. It returns a JSON object containing
the free and allocated memory and the CPU usage.

• /adms/v1/status [GET, PUT]: Permits getting or changing
the execution status of the microservice. GET calls to this
endpoint will return a JSON object containing the status
of the microservice. Changes to the microservice status
will be performed by sending a JSON object with the

Fig. 3: Overall overview of the microservice-based architecture

desired state. The possible states for the microservice are
”Ready” and ”Running”.

2) Asynchronous communication:

• /adms/v1/discovery [PUB]: On microservice launch, the
microservice publishes a hello message in this topic
including the identifier, microservice role and its MQTT
and REST endpoints, defined as a JSON object.

B. Architecture – Instantiation in the use-case

In Figure 3 we present the instantiation of the Adeptness
microservice architecture for ORONA. In particular, we pro-
vide microservices for continuous deployment, monitoring and
validation, recovery and uncertainty detection.

The main subsystems composing the architecture for
ORONA are the following:

1) Automation server: The automation server is in charge
of the orchestration of the tasks to be performed by the differ-
ent subsystems. It interacts with the source code repositories
to monitor any changes on the deployment, monitoring or
validation plans. When a new plan is updated, the automation
server performs the actions to generate the required artifacts,
stores the generated Docker images in the Docker registry and
pushes the configurations or plans to each subsystem.

2) Deployment subsystem: The deployment subsystem is
responsible for downloading, and eventually decompressing
and executing, the different microservices and artifacts needed
to perform the validation in each of the targets or edge nodes.
The deployment subsystem executes a deployment plan and
must be aware of the status of the deployment in each node.
The plan contains the information regarding the components
to be deployed, the repository where they are located in, and
the node(s) where they should be deployed. The deployment
subsystem is capable of deploying two different types of
components, containerized microservices and generic files, and
it is composed of two different microservices:

• Deployment orchestrator: The deployment orchestrator
receives the deployment plan from the automation server
and parses the plan in order to execute it. There is only
one instance of this microservice within the architecture
and it is usually located in the cloud. The orchestrator
sends the deployment instructions to the deployment
agents installed in each node by MQTT.

• Deployment agent: The deployment agents must be in-
stalled in each edge node to perform the actual de-
ployment of the necessary artifacts. Since there are two
different types of components that may be deployed, two
types of deployment agents have been designed: a docker-

compose based deployer to deploy docker containers, and
a generic deployer to deploy any kind of file, e.g. an
executable file, a library, or a zip file. In the latter case,
the deployer can perform the actual deployment of the zip
file, decompress it, and execute the selected executable
file.

3) Monitoring subsystem: The monitoring subsystem sup-
ports the configuration of the monitors according to a moni-
toring plan. This plan specifies the source (physical interfaces,
file system, ...) to obtain the data from as well as the value
extraction mechanism. This subsystem provides access to
telemetry data retrieved from different sources so that other
subsystems can subscribe to this data and use it to take
decisions. This subsystem consists of two microservices:

• Monitoring orchestrator: This microservice, deployed in
the cloud, handles the parsing of the monitoring plan sent
from the automation server, and configures all the mon-
itoring agents indicated in the plan accordingly through
their HTTP API. The plan specifies the parameters that
each monitoring agent needs to specify the actual data
source connection parameters (e.g., the CAN baud rate)
and the variables to monitor.

• Monitoring agents: The monitoring agents, deployed at
the edge nodes, are responsible for reading the opera-
tional variables from the different sources and publishing
them asynchronously. The monitoring agents can be
configured through a common HTTP API, which allows
the specification of the variables to be monitored (name
and needed parameters to obtain the data) and optionally,
the configuration of subscriptions. The concept of sub-
scription is similar to OPC-UA, i.e., a group of variables
that are notified asynchronously as events, with the same
publishing rate. In this sense, a service (e.g., an oracle)
that needs to be notified about the changes of a set
of variables can configure a subscription, specifying the
publishing rate for those variables.
There are specific monitoring agents for different data
sources. In the case of Orona, two different monitoring
agents are used:

– CAN monitor: The CAN monitor allows the mon-
itoring of the operational variables shared through
a CAN field-bus, which may be configured through
an HTTP API. For each variable to be monitored,
three parameters must be configured: (1) the name
of the variable, (2) the identifier of the CAN frame
where the variable is published, and (3) the mask
to be applied to the frame to actually read the
variable. Then, when the monitor starts, it begins to
publish the variables asynchronously through MQTT,
following the standardized senML2 payload format.

– Instrumented code monitor: This is a special monitor
type that supports the monitoring of variables that are
not exported in any field bus but are needed by the
oracles to raise a verdict, for instance, the internal

2https://tools.ietf.org/html/rfc8428

variables of the traffic algorithm that are usually
inspected in debugging mode. To do so, a library
which publishes code variables through MQTT has
been developed. The developer can use it to publish
the internal code variables needed by the oracles into
the MQTT broker, in the same senML format used
by the rest of the monitors.

4) Continuous Validation subsystem: The continuous val-
idation subsystem supports verification and validation activi-
ties at Model-in-the-Loop (MiL), Software-in-the-Loop (SiL),
Hardware-in-the-Loop (HiL), and Operation. At the MiL test
level, the software that controls the physical part of the CPS
is a model. At the SiL test leve, this model is replaced by
executable software. At the HiL test level, the software is
integrated with the real-time infrastructure (e.g., real target
processor and operating system) and the physical part emu-
lated within a real-time test bench. For the SiL level, Orona
uses Elevate, a domain specific simulator for validation. At
the HiL level, a hybrid infrastructure where some components
are real and others virtual is used. At this test level, the tests
are performed in real-time, using all the real infrastructure,
including real communication buses and a real-time operating
system. The main microservices used for the continuous
validation subsystem for Orona’s case are the following:

• Validation orchestrator microservice: Located in the
cloud, the validation orchestrator manages the execution
of a validation plan by communicating with the valida-
tion agents. A validation plan can require validations at
different test levels.

• Validation agents for SiL, HiL and Operation: these
microservices launch validations at the SiL and HiL
test environments, as well as in production installations.
For the execution of a validation, child test oracles that
provide the verdict are activated. Validation agents in SiL
and HiL also manage the tools required for simulating test
inputs. When an oracle provides a verdict, it notifies the
validation orchestrator microservice.

• Oracle microservice: This microservice encompasses a
set of test oracles that validate that the CPS behaves
as expected. Many of these test oracles are based on
domain-specific Quality-of-Service (QoS) measures that
are collected from the monitoring microservices. Among
these QoS measures, for the elevation domain, the most
important ones are the Average Waiting Time (AWT), the
Journey Time (JT) and the energy consumption. Each
of these test oracles provide a verdict that indicates to
which extent the CPS behaves as expected. Different test
oracles have been developed, such as those based on
metamorphic relations for the SiL and HiL test levels
[7], and some based on machine-learning that predict the
maximum AWT and JT a system of elevators should have
at each moment.

• Uncertainty detection microservice: This microservice
supports the automated detection of unforeseen situations
in the different life-cycle stages of CPSoS using data

Fig. 4: Overview of the validation process at SiL level of the prototype

from both operation (e.g., live data) and design time (e.g.,
test logs) with passive and active machine learning tech-
niques. This service supports the validation microservice
with uncertainty related test oracles that will be learned
from data. Various uncertainties exist in the elevator
use case, such as (1) Passenger data: Examples include
when a passenger arrives at which floor? How much a
passenger weighs? (2) Environment: Examples include
delays in hardware such as motor delay and levelling
delay; (3) Outputs/Quality of Lift Services: Examples
include uncertainties in waiting and transit times.

• External tool microservices for SiL and HiL test levels:
This microservice allows launching domain-specific tools
required to handle the execution of tests. Two external
tool microservices have been instantiated for testing
Orona’s dispatching algorithm: (1) Elevate (a domain
specific simulation tool) that is used for SiL validations
and (2) a CAN Bus frames injector for HiL validations.

V. PROTOTYPE IMPLEMENTATION AND PRELIMINARY
EVALUATION

To analyse the benefits of the architecture, a preliminary
prototype of the architecture for SiL validation in Orona has
been developed3, by setting a pipeline structure in Jenkins.
This pipeline starts with the deployment of the components
from a deployment plan. If the deployment is successful, the
pipeline continues by configuring and starting the monitors,
and finally the validation microservices are configured and
executed to obtain a verdict. A Docker image for each mi-
croservice has been built and pushed to a Docker registry,
particularly to the Gitlab container registry.

The deployment pipeline is continuously querying the
repositories for changes in the deployment plan, and whenever
a change is detected, the deployment pipeline is launched.
The deployment pipeline launches a slave agent that logins to

3A video of the prototype is available at https://youtu.be/uoq9n9k4kgc

the Gitlab container registry and fetches the latest versions
of the docker images for the specified components. These
images are then started and configured to forward different
ports on the slave agent node. The deployment pipeline waits
for readiness of every launched microservice by calling to their
/adms/v1/ping REST endpoint. The deployment plan consists
of a JSON formatted file where each node, identified by its
IP address, is assigned one or several components. When the
microservices are ready, the monitoring pipeline is called as a
build step, or in case of failure, docker containers are stopped
and cleaned.

The monitoring pipeline configures the monitoring mi-
croservice, by setting the output topic where different values
will be published through the HTTP API. When the mi-
croservice is ready, the publication of values starts through
another call to the HTTP API. If every call succeeds, the
validation pipeline is launched as a build step. As in the
previous pipeline, on failure, the environment is cleaned and
docker containers stopped.

Similar to the monitoring pipeline, the validation pipeline
sets up the validation microservice by setting up the input topic
where the monitoring microservice is leaving its values, and
the conditions that will be evaluated to raise a verdict for the
evaluation. After the microservice is configured and started,
the validation takes place and the pipeline continuously polls
the microservice for a verdict. If the verdict has been marked
as passed, the pipeline will succeed, and will fail otherwise.
Figure 4 shows an overview of the process.

Table I shows a qualitative overview of the benefits that the
proposed architecture can bring during the DevOps activities
in Orona. At the deployment level, the automation of the tasks
that Jenkins brings reduces effort and saves time for developers
by reducing the manual tasks, such as executable generation
and deployment for different stages. At the monitoring level,
the architecture allows continuously monitoring data from the
different sources at all stages, gaining more understanding of
the system while reducing the effort. Finally, at the validation

TABLE I: Expected benefits of the architecture in the Deployment, Monitoring and Validation activities for different life-cycle
stages in Orona

DEVOPS ACTIVITIES CURRENT PROCESS WITH MICROSERVICE
ARCHITECTURE EXPECTED BENEFITS

Deployment
(SiL) Generate the dll for the domain spe-
cific simulator

(SiL) Copy files for the simulator

(HiL) Compile for the target

(HiL) Deploy in the target

Manual compilation &
copy Jenkins pipeline

Not dependence on devel-
oper

Automatic trigger of the
compilation and deploy

(Operation) Deploy in the real installation Manual deployment by
the maintainers

Remotely and automati-
cally deploy a new soft-
ware release

Effort saving by automat-
ically deploy a new soft-
ware version. Control over
the configuration of the re-
lease

Monitoring

(SiL) Traces of the simulation tools

(SiL, HiL, Operation) Traces in the code

(HiL, Operation) Monitor the communica-
tion buses

Traces are recorded in a
txt file

Data provided by the sim-
ulator in excel and word

CAN frames recorded on
demand

Data from the code, the
simulators and the com-
munication buses will be
published by MQTT

Effort saving in analysis
of problems in installa-
tions

Continuous remote moni-
toring

Validation

(SiL, HiL) Define test cases: Unitary and
QOS (i.e. AWT)

Unitary test cases manu-
ally defined

QoS test cases from theo-
retical profiles

Unitary test cases manu-
ally defined

Automatic profiles from
real data of installations.

Test cases defined from
real profiles more likely to
reproduce real problems

(SiL/HiL/Operation) Execute the validations
Manual configuration of
installations

Manual trigger in SiL/HiL

Manual validation in oper-
ation by the maintainer

Set of available configura-
tions for SiL/HiL

Automatic

Jenkins pipeline for
SiL/HiL

Continuous validation in
operation

Effort saving by automati-
cally validate software re-
lease

Increase the number of
bug detected by continu-
ously validate the software
even in operation

(SiL/HiL/Operation) Decide the verdict for
the validation Manual Reusable oracles

Increase the number of
bugs detected

Minimise dependency on
individuals

(SiL/HiL/Operation) Locate a bug Visual inspection of logs

Manual Debugging

Automatically reproduce a
scenario in the laboratory
using the information of
the monitoring subsystem

Increase the number of
bugs detected

Effort saving in analysing
problems in installations

level, continuously validating the system in an automated
manner for all stages increases the number of bugs detected
while reducing the time to prepare the validation infrastructure.

VI. RELATED WORK

Microservice-based architectures are spreading in the In-
ternet of Things (IoT) and CPS domains due to the high
suitability of this paradigm for these fields, as they share
some goals (e.g., lightweight communication, independent
deployable software, etc.) [9].

Thramboulidis et al. [21] and Alam et al., applied
microservice-based architectures to exploit its benefits in CPSs
involved in industrial use cases. Specifically, Thramboulidis
et al., [21] proposed a framework which uses model-driven

engineering to semi automate the use of microservices on
manufacturing systems, remarking the flexibility of such an
architecture for plant processes. In [5], the authors combined
Docker and microservices using a distributed and modular
architecture to execute Industrial IoT (IIoT) applications,
showing its validity for deployments on time-sensitive sce-
narios. These works propose developing microservice-based
applications for CPSs, but do not use microservice-based
solutions in the development process tasks.

As mentioned, the development of CPSs has typically suf-
fered from long development life-cycles [4]. DevOps practices
are now gaining attention in the CPS domain, and many works
are focusing on applying different techniques such as Model-
Driven Engineering [10] or Digital Twins [22] to ease and

enhance DevOps activities on CPSs. Many tools focus on
specific life-cycle stages of CPSs, such as deployment [19]
[11] [20], monitoring [17] [23] or validation [8] [15], but do
not have whole life-cycle management capabilities, requiring
the use of multiple tools to handle all life-cycle phases.

There are also some works which exploit the benefits of
microservices to perform DevOps activities. [13] proposed
applying the microservice design principles for software de-
ployment and [16] presented a monitoring tool based on
microservices, but these works focus on cloud infrastructures
management, rather than CPSs.

VII. CONCLUSION AND FUTURE WORK

In this work, we have instantiated part of the reference
architecture presented in the H2020 Adeptness project for the
Orona use case, and a prototype of the architecture for SiL
validation has been developed.

Automation of DevOps activities has paramount relevance
specially in CPSs, where the life-cycles are so long and the
development tasks so fragmented, that easing and speeding
these tasks may have a huge impact. For instance, automating
software deployment can reduce maintenance effort in de-
ploying the software in each device manually and continuous
monitoring and validation may be helpful for understanding
the system behaviour at run-time. esides, a microservice-based
architecture offers high flexibility, simplifying the architec-
ture’s adaptation to different life-cycle stages, and allows
scaling the solution to large-scale systems.

In the future, we plan to continue extending the architecture
to support Orona’s development activities in all life-cycle
stages. We also plan on including additional mechanisms to
ensure correct software deployment, such as applying Machine
Learning techniques to detect performance problems in new
software releases.

ACKNOWLEDGMENT

This publication is part of a project that has received
funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871319.
This work has been partially supported by the Basque Gov-
ernment through the Elkartek program under the DIGITAL
project (Grant agreement no.KK/2019-00095). Aitor Arrieta
and Goiuria Sagardui are part of the Software and Sys-
tems Engineering research group of Mondragon Unibertsitatea
(IT1326-19), supported by the Department of Education, Uni-
versities and Research of the Basque Country.

REFERENCES

[1] Adeptness project webpage: https://www.adeptness.eu/.
[2] Requirements-and-validation-tests – https://adeptness.eu/wp-

content/uploads/2020/09/D1.1-ANNEX-A-Requirements-and-
validation-tests.pdf.

[3] Requirements-and-validation-tests – https://adeptness.eu/wp-
content/uploads/2020/11/D1.1-REQUIREMENTSv1.1.pdf.

[4] Pekka Abrahamsson, Goetz Botterweck, Hadi Ghanbari, Martin Gilje
Jaatun, Petri Kettunen, Tommi J. Mikkonen, Anila Mjeda, Jürgen
Münch, Anh Nguyen Duc, Barbara Russo, and Xiaofeng Wang. Towards
a Secure DevOps Approach for Cyber-Physical Systems. International
Journal of Systems and Software Security and Protection, 11(2):38–57,
2020.

[5] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen.
Orchestration of microservices for iot using docker and edge computing.
IEEE Communications Magazine, 56(9):118–123, 2018.

[6] Jon Ayerdi, Aitor Garciandia, Aitor Arrieta, Wasif Afzal, Eduard Enoiu,
Aitor Agirre, Goiuria Sagardui, Maite Arratibel, and Ola Sellin. Towards
a taxonomy for eliciting design-operation continuum requirements of
cyber-physical systems. In 2020 IEEE 28th International Requirements
Engineering Conference (RE), pages 280–290. IEEE, 2020.

[7] Jon Ayerdi, Sergio Segura, Aitor Arrieta, Goiuria SagarduiMaite Arrati-
bel, and Maite Arratibel. Qos-aware metamorphic testing: An elevation
case study. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), pages 104–114. IEEE, 2020.

[8] Sreram Balasubramaniyan, Seshadhri Srinivasan, Furio Buonopane,
B. Subathra, Jüri Vain, and Srini Ramaswamy. Design and verification of
Cyber-Physical Systems using TrueTime, evolutionary optimization and
UPPAAL. Microprocessors and Microsystems, 42(2016):37–48, 2016.

[9] Bjorn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices
approach for the internet of things. IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, 2016-
November, 2016.

[10] Benoı̂t Combemale and M. Wimmer. Towards a model-based devops
for cyber-physical systems. In DEVOPS, 2019.

[11] Nicolas Ferry, Phu Nguyen, Hui Song, Pierre Emmanuel Novac,
Stephane Lavirotte, Jean Yves Tigli, and Arnor Solberg. GeneSIS:
Continuous orchestration and deployment of smart IoT systems. In
Proceedings - International Computer Software and Applications Con-
ference, volume 1, pages 870–875. IEEE Computer Society, jul 2019.

[12] Javad Ghofrani and D. Lübke. Challenges of microservices architecture:
A survey on the state of the practice. In ZEUS, 2018.

[13] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven
design for cloud infrastructure DevOps. Proceedings - 2016 IEEE
International Conference on Cloud Engineering, IC2E 2016: Co-located
with the 1st IEEE International Conference on Internet-of-Things Design
and Implementation, IoTDI 2016, pages 202–211, 2016.

[14] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[15] Elena Markoska and Sanja Lazarova-Molnar. Towards smart buildings
performance testing as a service. 2018 3rd International Conference on
Fog and Mobile Edge Computing, FMEC 2018, pages 277–282, 2018.

[16] Marco Miglierina and Damian A. Tamburri. Towards omnia: A mon-
itoring factory for quality-aware devops. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
Companion, ICPE ’17 Companion, page 145–150, New York, NY, USA,
2017. Association for Computing Machinery.

[17] K. Monisha and M. Rajasekhara Babu. A novel framework for healthcare
monitoring system through cyber-physical system. Springer Singapore,
2019.

[18] R. O’Connor, Peter Elger, and Paul M. Clarke. Continuous software
engineering—a microservices architecture perspective. Journal of Soft-
ware: Evolution and Process, 29, 2017.

[19] Nenad Petrovic and Milorad Tosic. SMADA-Fog: Semantic model
driven approach to deployment and adaptivity in fog computing. Simu-
lation Modelling Practice and Theory, 2019.

[20] Luis F Rivera, Norha M Villegas, Gabriel Tamura, Miguel Jiménez,
and Hausi A Müller. UML-driven Automated Software Deployment.
Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, pages 257–268, 2018.

[21] K. Thramboulidis, D. C. Vachtsevanou, and A. Solanos. Cyber-physical
microservices: An iot-based framework for manufacturing systems. In
2018 IEEE Industrial Cyber-Physical Systems (ICPS), pages 232–239,
2018.

[22] Miriam Ugarte Querejeta, Leire Etxeberria, and Goiuria Sagardui. To-
wards a devops approach in cyber physical production systems using
digital twins. In Computer Safety, Reliability, and Security. SAFECOMP
2020 Workshops, pages 205–216. Springer International Publishing,
2020.

[23] Michael Vierhauser, Jane Cleland-Huang, Sean Bayley, Thomas Kris-
mayer, Rick Rabiser, and Pau Grünbacher. Monitoring CPS at runtime
- A case study in the UAV domain. Proceedings - 44th Euromicro
Conference on Software Engineering and Advanced Applications, SEAA
2018, pages 73–80, 2018.

Publications 151

A.4 Machine Learning-based Test Oracles for Performance Test-
ing of Cyber-Physical Systems: An Industrial Case Study on
Elevators Dispatching Algorithms

This paper was published at the Journal of Software: Evolution and Process
journal in 2022. The full citation:

Gartziandia, A., Arrieta, A., Ayerdi, J., Illarramendi, M., Agirre, A., Sagardui,
G., Arratibel, M. (2022). Machine learning-based test oracles for performance
testing of cyber-physical systems: An industrial case study on elevators dispatch-
ing algorithms. Journal of Software: Evolution and Process, 34(11), e2465.

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Machine Learning-based Test Oracles for Performance Testing of
Cyber-Physical Systems: an Industrial Case Study on Elevators
Dispatching Algorithms†

Aitor Gartziandia1 | Aitor Arrieta*2 | Jon Ayerdi2 | Miren Illarramendi2 | Aitor
Agirre1 | Goiuria Sagardui2 | Maite Arratibel3

1Information and Communication
Technologies, Ikerlan, Mondragon,
Spain

2Software and Systemcs Engineering,
Mondragon University, Mondragon,
Spain

3Control Systems, Orona, Hernani, Spain

Correspondence
*Aitor Arrieta, Email:
aarrieta@mondragon.edu

Present Address
This is sample for present address text
this is sample for present address text

Summary

The software of systems of elevators needs constant maintenance to deal with new func-

tionality, bug fixes or legislation changes. To automatically validate the software of these

systems, a typical approach in industry is to use regression oracles, which execute test

inputs both in the software version under test and in a previous software version. However,

these practices require a long test execution time and cannot be re-used at different test

phases. To deal with these issues, we propose DARIO, a test oracle that relies on regres-

sion machine-learning algorithms to detect both functional and non-functional problems of

the system. The machine-learning algorithms of this oracle are trained by using data from

previously tested versions to predict reference functional and non-functional performance

values of the new versions. An empirical evaluation with an industrial case study demon-

strates the feasibility of using our approach. A total of five regression learning algorithms

were validated by using mutation testing techniques. For the context of functional bugs,

the accuracy when predicting verdicts by DARIO ranged between 95% to 98%, across the

different scenarios proposed. For the context of non-functional bugs, were competitive too,

having an accuracy when predicting verdicts by DARIO ranging between 83% to 87%.

KEYWORDS:

Test Oracle, Regression Testing, Machine- Learning, Performance Testing

1 INTRODUCTION

Cyber-Physical Systems (CPSs) combine digital cyber technologies with physical processes [21]. The software of such systems has an increasingly
long life-cycle, requiring maintenance over several years. This is the case of Orona, one of the largest elevator companies worldwide, whose
software needs to be constantly maintained and updated to deal with (1) new functional and non-functional requirements, (2) the correction of
bugs, (3) legislative changes and (4) hardware obsolescence and system degradation [7]. In a system of elevators, one critical subsystem is its
traffic master, which is in charge of managing the passenger flow in a building. It is composed of several software modules, such as the dispatching
algorithm, which is the component in charge of deciding which elevator must attend each passenger by considering several aspects (e.g., estimation
of the waiting time of each passenger or estimated time required to arrive to destination). New generations of these algorithms are also starting
to consider additional aspects, such as energy consumption. The algorithms also include certain functionalities based on the building, such as

†This publication is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grantagreement No 871319. Jon Ayerdi, Aitor Arrieta, Miren Illarramendi and Goiuria Sagardui are part of the Software and Systems Engineering research groupof Mondragon Unibertsitatea (IT1326-19), supported by the Department of Education, Universities and Research of the Basque Country.

2 Gartziandia et al

controlling access to disable specific floors to unauthorized passengers or special calls for handicapped persons (e.g., by assigning additional space
in the elevator or assigning them the closest elevator). Orona, one of the leading elevator companies in Europe, has a large suite of dispatching
algorithms that are in constant maintenance and evolution to solve different customers’ demands.

When changes are performed in these algorithms, Orona has a well established systematic verification and validation process at different test
phases (Software-in-the-Loop (SiL), Hardware-in-the-Loop (HiL) and Operation). At SiL and HiL, two kinds of tests are executed. On the one hand,
unitary tests aim to test specific scenarios and verify that the functional requirements of the system are met.1 Such tests are relatively short, lasting
from 30 seconds to 5 minutes. On the other hand, Orona executes what is internally known as full-day passenger tests, which have the objective of
verifying the functional performance of a systems of elevators (what in the elevation industry is known as the Quality of Service (QoS) of a system
of elevators [11]). In such case, the objective is to detect functional performance failures (i.e., the failures that cause a degradation in the QoS of
the system). An example of a typical functional performance metric in this domain is the AverageWaiting Time (AWT), which measures the average
time that passengers need to wait until an elevator attends their call. To determine whether the quality of an algorithm is satisfactory or not, a
regression test oracle is used. Specifically, the same traffic profile (i.e., test input) is executed in a previous version of the dispatching algorithm,
and compared with the dispatching algorithm version under test. If the performance metric under study is better or similar, the test is classified as
PASS. Conversely, if the performance metric under study is not good enough, the test is classified as FAIL.

This regression test oracle has two main problems. Firstly, the test needs to be executed both in the algorithm under test as well as in a previous
version of the algorithm. This can be time-consuming as the execution is performed using simulation-based testing at system level and the test
inputs usually simulate full-day passenger traffic profiles. This problem is exacerbated at the HiL test phase, where the simulation is performed in
real-time, and thus, in order to simulate a full-day traffic profile, two full-days are required (i.e., one full-day for the new software version under
test and another one for the previous software version). The second problem involves that the test oracle cannot be re-used for testing the new
version “on-the-fly” in operation. This is a problem because the faults not detected in the validation phases can manifest in the real installation.
The last problem relates to the difficulty of detecting non-functional bugs, which pose significant challenges as compared to functional bugs; these
type of bugs typically result in an overuse of computational resources [20], which are scarce in CPSs, and detecting them is starting to become a
priority inside Orona, our industrial partner.

The barrier between functional and non-functional bugs in CPSs is blurry, and therefore, we make a distinction between functional and non-
functional performance bugs. On the one hand, the purpose of the elevator dispatching algorithm is outputting optimal assignments. Consequently,
a sub-optimal assignment (as opposed to being slow at issuing the assignment) is considered an incorrect output for the dispatcher, and is therefore
classified as a functional performance failure. This is analogous to a GPS providing a valid but not optimal route between two points. On the
other hand, non-functional performance bugs are those that do not cause a functional failure, but result in an overuse of computational resources
[20]. Unfortunately, CPSs are not exempt of non-functional performance bugs, which can occasionally lead to more severe consequences, such
as functional failures. In our conference-version paper published on Automation of Software Test (AST) conference [3], we explored the use of
machine-learning to tackle the test oracle problem. Specifically, we proposed DARIO (Dispatching AlgoRIthm Oracle), a test oracle that relies
on regression learning algorithms to automatically validate elevators dispatching algorithms. Instead of using regression oracles, DARIO trains a
machine learning algorithm by using data from a previously tested dispatching algorithm version to detect functional performance bugs. In this
paper, besides functional bugs, we explore whether DARIO is capable of detecting non-functional performance bugs.

Our approach provides several advantages. Firstly, the training process of the employed regression learning algorithms is much faster than
employing a regression test oracle. While the regression learning algorithms used in DARIO take a few seconds to train, the regression test oracles
used in practice may take from minutes to hours at the SiL test phase and days at the HiL test phase. Secondly, DARIO can be used as streamlined
oracle at SiL, HiL and in operation, permitting the detection of potential inconsistencies within the real system. Thirdly, DARIO returns a quantitative
verdict value over the simulation time, which provides information of how close the system was from failing at each simulation step or how severe
a fault was. This opens the possibility to include new verification and validation paradigms in the context of dispatching algorithms, including
falsification-based test generation [51, 56]. It can also be used for on-line testing, which could save a significant amount of testing time by stopping
the simulation if a severe fault is detected, as proposed by Menghi et al. in a recent study [52].

This paper is an extension of our AST 2021 paper[3]. Specifically, we build upon the conference-version paper [3] from the the following
perspectives:

• We adapt DARIO, our test oracle that works on top of machine-learning algorithms to detect both, functional and non-functional per-
formance bugs. We show that our approach is effective in both cases by carrying out a new empirical evaluation based on performance
mutation testing.

1Notice that unitary tests are different to those unit tests, which aim at testing individual software modules

Gartziandia et al 3

• We significantly extend the background and related work sections. Specifically, in the background section we provide a distinction between
two types of performance metrics for CPSs (i.e., non-functional performance and functional performance). In addition, we include a new
section to explain background theory related to machine-learning algorithms.

• We extract new lessons learned and open challenges, which can be used by future researchers as starting point for devising novel
approaches.

We can summarize our contributions as follows:
• We propose DARIO, a novel approach for building test oracles for performance tesing of dispatching algorithms. DARIO works on top of

regression machine-learning algorithms. These algorithms aim at predicting the reference performance metric (either, functional (e.g., AWT)
or non functional (e.g., execution time) values of a system of elevators based on the passenger traffic data.

• We perform an empirical evaluation by using an industrial case study provided by Orona, one of the leading elevator companies in Europe.
In this evaluation, we used mutation testing to determine how accurate DARIO was when compared to traditionally employed regression
test oracles. We compared five regression learning algorithms. For functional performance bugs, the Regression Tree algorithms performed
the best overall. For non-functional performance bugs, there was no a clear winner, but all the algorithms performed well.

• We provide a set of lessons learned and open challenges from applying DARIO in practice.
The rest of the paper is structured as follows: Section 2 summarizes the relevant background on performance testing and machine learning.

Section 3 provides a description of the case study and the current software testing process at Orona. Section 4 presents our approach to automat-
ically test elevators dispatching algorithms. Section 5 evaluates our approach by means of an empirical evaluation with an industrial case study.
Section 6 discusses the results, the lessons learned and the open challenges based on the performed evaluation and the discussions we had with
domain experts. We position our work with the current state of the art in Section 7. Lastly, Section 8 concludes our paper.

2 BACKGROUND

2.1 Performance metrics for cyber-physical systems

The analysis of the system performance has not been as widespread as the analysis of functional requirements, as deviations in performance may
not be as harmful as functional failures in most cases. Furthermore, the performance of a system is often harder to verify due to the difficulty to
evaluate this type of properties, combined with a lack of specific requirements in many cases [77]. This makes it necessary to integrate performance
analysis activities in all of the system’s life-cycle stages, from the system design to operation [17], by employing mechanisms such as static code
analysis, performance testing, and run-time monitoring [58, 43].

Ideally, performance requirements should be defined in a requirements document in a concrete, verifiable manner, such that the compliance
of the system can be evaluated accurately. Nevertheless, in practice, these requirements are often not defined or ambiguous. Some challenges of
performance requirements specification are establishing requirements that can actually be checked in a concrete and precise manner and selecting
the appropriate inputs to use when verifying each requirement [77]. The lack of verifiable specifications makes it difficult to assess whether the
performance of the system is acceptable or not. This difficulty in verifying the validity of the observed system behavior is known as the test oracle
problem, and it is recognized as one of the fundamental problems of software testing [12].

We make a distinction between two types of system performance: Non-functional performance and functional performance. While non-
functional performance metrics only measure the efficiency of a system’s implementation, functional performance metrics are derived (indirectly)
from the system output. We argue that both types of properties share many aspects in common in the context of testing and verification, and
that performance testing techniques can be applied to either of them in most cases. In this case, this can be considered either functional or non-
functional testing based on whether we use functional or non-functional performance metrics. Although performance testing is usually considered
non-functional testing, we must consider that the functional performance properties of the system are derived from its output.

2.1.1 Non-functional performance

Non-functional performance refers to the usage of computational resources of the system, such as response time, CPU usage, memory usage
or energy consumption [20]. The non-functional performance of the software in domains such as web pages or mobile apps is very relevant, as
performance issues can affect the usability of the system, causing a loss of users and/or money. For CPSs, this type of properties are an even larger
concern, since some non-functional performance issues can escalate to major functional failures, and even safety implications; For instance, an

4 Gartziandia et al

Unmanned Aerial Vehicle (UAV) may run out of batteries during its flight due to an excessive energy consumption, resulting in a loss of functionality,
and potentially some additional damage from a crash if there are no additional safety measures.

2.1.2 Functional performance

Functional performance refers to the properties derived indirectly from the output of the system, rather than the system’s efficient usage of the
computational resources. This type of properties are typically used for evaluating the adequateness or quality of a system’s output due to the
lack of a more direct way to evaluate its behavior. As an example, an optimizing compiler’s output can be evaluated based on the non-functional
performance of the generated program (e.g. execution time), but such properties are actually derived from the functional behavior of the compiler
(the code it outputs), and not its non-functional performance (e.g. the time it takes for the compiler to execute). Similarly, CPSs such as multi-
elevator systems are typically evaluated based on Quality of Service (QoS) metrics such as the waiting times for the passengers, which are mostly
derived from the functional behavior of the system (call assignments to elevators) rather than its non-functional performance.

2.2 Machine-learning algorithms

Machine-learning is a sub-field of Artificial Intelligence (AI) that provides the software with the ability to “learn” from observed data with the goal
of making decisions without being explicitly programmed to do so [44]. These approaches construct models by observing data using statistical
analyses, where learning begins with the search for patterns inside the data used for training the algorithm [25].

Machine-learning can be categorized in the categories of supervised, unsupervised and reinforcement learning [2]. In supervised learning, the
training data consists of some input vectors with their respective labels, which indicate the output expected for each input vector [2]. The objective
of these algorithms is to learn to predict the corresponding output for the given inputs, which could have been unforeseen to the algorithm before,
by modifying their internal values [44]. Within this category we can distinguish two subcategories: (1) classification algorithms, where the aim
is to map input values to a finite number of categories and (2) regression algorithms, where the output values consist of continuous variables.
Unlike supervised learning algorithms, unsupervised learning algorithms do not have labeled data. Their goal is to cluster the data by identifying
patterns on the similarities and dissimilarities [25]. Lastly, reinforcement learning approaches aim at selecting actions with certain goals [25]. They
use feedback on the effect of the action taken (i.e., rewards), which is later used to improve the estimation and iteratively perform more effective
actions [25]. In our study, we use supervised learning algorithms aimed at solving a regression problem.

3 CASE STUDY

3.1 The System Under Test

Elevators are CPSs composed of different subsystems that collaborate to transport passengers vertically within a building. Figure 1 shows the
architecture of a system of elevators from Orona. Each elevator is managed by a controller, which is responsible for managing both vertical (floor
to floor) and horizontal (doors opening and closing) movements of each elevator. The traffic master is the software system that coordinates the
controllers to handle the calls made by the passengers. This system is responsible for (1) the execution of the dispatching algorithm (i.e., the
allocation of passenger calls to the available cars), (2) the overall system signaling (i.e., registration of the calls, information to the passengers,
etc.), and (3) additional functionalities such as access control (i.e. permission for the passengers to access certain floors) or management of special
operating modes. Locally, the communication among the different controllers is done through a Controller Area Network (CAN) bus. The CAN bus
is an industrial field bus, originally developed by Bosch for the automotive domain, which allows for a real-time communication for distributed
embedded systems. In addition, the traffic master can be connected through Ethernet to external computers in order to enable some advanced
features (e.g., passenger access control, remote system configuration, etc.).

The System Under Test (SUT) of this paper is the traffic dispatching algorithm. This algorithm is executed periodically to select the optimal
elevators to serve the active floor calls. It receives the passenger calls, access control information, and the status (position, direction, etc.) of each
elevator as inputs, and then determines which the best elevator to attend every call is. This is done by considering different criteria, such as the
reduction of the Average Waiting Time (AWT), the Journey Time (JT) or energy consumption. The AWT refers to the average time that passengers
wait until they enter in the elevator, and the JT is the average time that passengers wait inside the elevators until they reach their destination.
Both are functional performance metrics used to measure (and test) new versions of the traffic dispatching algorithm. Depending on the algorithm,
already allocated floor calls can be reallocated (assigned to another car) to optimize the overall cost function. Due to its effect on the aforementioned
fitness criteria, this component is critical to ensure that an elevator installation performs correctly.

Gartziandia et al 5

FIGURE 1 Overview of the architecture of an elevator installation from Orona [27]

The traffic algorithm should allocate the complete set of active landing calls within a limited time frame (response time), but it has limited
computational resources and is executed within a task that shares these resources with other tasks that provide the functionalities mentioned
above (signaling, access control, etc.). This fact, alongside with situations such as a highly demanding traffic profile or a big building with many floors
and elevators, can result in the consumption of the computational resources available for the allocation of landing calls. This means that, when
developing new dispatching algorithm versions, it is relatively easy to introduce non-functional bugs. Consequently, new approaches to detect
these kind of bugs are necessary, and is increasingly becoming an internal priority for Orona.

3.2 Software Testing Process at Orona

Figure 2 shows an overview of the software development process thatOrona has established for dispatching algorithms [7]. The entire development
process consists of a total of ten steps divided in different phases:

Phase 0: In the initial phase, the process of developing a new dispatching algorithm starts by taking the necessary pre-development actions to
define the characteristics of the new algorithm. The main step during this step is the requirement elicitation.

• Step 1 – Requirements elicitation: The first step in the software development and maintenance process refers to elicitation of the require-
ments for the new dispatching algorithm version. This is carried out by the dispatcher manager and her team. Usually, requirements are
defined based on (1) new legislative standards from the elevation domain that require changes and (2) new customer needs. Customer
needs might be different depending on the type of building where the elevator needs to be installed. For instance, a hospital might require
a special emergency button that will enable transporting critical patients through the building. After this requirement elicitation process,
a validation plan is obtained as an output. This plan is later used throughout the testing process, ensuring the compliance of the newly
developed system.

Phase 1 – Software-in-the-loop phase: In this phase the new algorithm is developed according to the established requirements and when it is
ready for execution it is tested in SiL environment, where all the components of the plant are simulated, permitting a fast execution to find errors
in an early stage.

• Step 2 – Development: The second step refers to the development of the dispatching algorithm. The dispatcher manager assigns a specific
task to one or more developers, which usually consists in implementing some change in one of their existing dispatching algorithms. This
development could be either due to (1) a change in the requirements (taken from a previous step) or (2) due to a required change that
has been identified (e.g., a bug or a potential improvement). Usually, while the engineer develops the new software version, small (manual)

6 Gartziandia et al

validations are carried out with a tool named Elevate [59]. This tool allows simulating executions of the software dispatching algorithms at
the system level.

• Step 3 – Testing (SiL): When the engineer considers that the new software version implements the change correctly, the change needs
to be checked for issued (e.g., bugs, performance regressions, etc.). At this stage, the tests are executed at the Software-in-the-Loop test
phase. In this case, the SUT is the real dispatching algorithm, but the rest of the system (i.e., cabins, engines, communication buses, etc.), are
simulated in a local Personal Computer (PC). Two kinds of tests are performed in this step: (1) short scenario tests and (2) full-day tests. In
the short scenario tests, specific functional properties are tested in the most isolated way possible; the expected outcome of a test in this
case is obtained by either implementing simple assertions or manually. In the full-day tests, scenarios that mimic a normal full-day (or sub-
scenarios of it) in the life-cycle of the system of elevators are executed. The expected outcome of these tests is related to certain functional
performance metric values over time windows obtained by re-executing the test with a different algorithm or with an older version (i.e., a
regression oracle). The objective at this stage is to detect functional performance bugs in the code.

Phase 2 –Hardware-in-the-loop phase: In this phase the simulation environment is substituted by an hybrid environment where some hardware
components are included so that the SUT can interact with them. This results in a more complex scenario which should be thoroughly configured
and the execution of the SUT is in real-time.

• Step 4 – HiL Infrastructure Configuration: After testing the software at the SiL level, the next phase refers to the HiL testing. At the
HiL level, the software is integrated with the real-time infrastructure, including a Real-Time Operating System (RTOS) and the real target
microprocessor and communications. Unlike at the SiL phase, the physical part of the system of elevators is emulated in real-time with
appropriate HiL test benches. The fourth step is the first step at this phase, and encompasses the configuration of the HiL infrastructure.
For instance, the necessary controllers need to be configured depending on the type of building that the test needs to be executed in.

• Step 5 – SUT & Test Artifacts Deployment: After the HiL infrastructure has been configured, the SUT and the test artifacts need to be
deployed. On the one hand, the SUT is deployed and integrated with the remaining hardware infrastructure. On the other hand, the test
artifacts (e.g., test oracles, test inputs, etc.) are deployed.

• Step 6 – Testing (HiL): The sixth step refers to the execution of the test at the HiL test bench. The tests at this step are performed in real-
time, and their goals are, on the one hand, to detect non-functional bugs and, on the other hand, to detect functional bugs that are related
with features that were unverifiable at the SiL level due to them not being present in that environment (e.g., VIP calls). As in the third step,
both short-scenario tests and full-day tests are being carried out at this stage. When all the tests have been carried out at the HiL phase,
the next steps consist in the deployment and testing of the new software version in operation.

Phase 3 – Operation phase: In the last phase, the dispatching algorithm is deployed and executed in the real installation, and its performance is
monitored and analyzed.

• Step 7 – System deployment over real scenario:Within the seventh step, the new software version is deployed in the real system. To that
end, a maintainer travels to the installation and deploys the new software version. After that, a set of manual tests are carried out by the
maintainer in order to ensure that everything is functioning properly.

• Step 8 – System Operation: After that, the system operates normally. Within this phase, there are no specific actions taken by Orona’s
personnel.

• Step 9 –Monitoring and feedback: The ninth phase relates to monitoring the behavior of the system at run-time. In addition, the maintainer
might travel to the installation to check how the system behaves at specific high-traffic hours, noting issues such as queues being formed
in the lobbies, etc.

• Step 10 –Analysis of feedback data: Feedback is sent back to production, and the dispatcher manager analyzes it to decide whether specific
corrective actions need to be taken.

The test oracles play an integral role in three main stages. First, in the stage 3, where different test cases are executed at the SiL test phase.
Second, in stage 6, where the tests are carried out at the HiL test phase. Lastly at stage 8, where the system is in operation, but some simple rules
can be checked. A test case in the context of Orona for testing a dispatching algorithm version refers to the following fields:

• Building installation: It is the context configuration at which the SUT is being executed. It has different fields, such as the number of floors
the building has, the number of elevators, which floor is served by each elevator, etc. For each elevator, there are also different fields, such
as the maximum load, the energy it consumes, dynamic information (e.g., speed, acceleration and jerk), etc.

Gartziandia et al 7

FIGURE 2 Software development process of Orona’s dispatching algorithms [7]

• Test input (call list profile): a test input in this context refers to a *.txt file that includes a list of passengers. For each passenger, this file
includes (1) the arrival time (i.e., when the passenger requests an elevator), (2) arrival floor, (3) destination floor, (4) weight of the passenger,
(5) capacity factor by mass, (6) the loading time, (7) the unloading time and (8) information related to the behavior of the passenger when
not all elevators serve all floors.

• Expected output: Based on the input, what should the behaviour of the system be. This differs depending on the type of testing done. At
unitary functional level, the expected output is typically related to a functional behavior of the elevator (e.g., elevator number 1 attends
calls from passengers 1 and 2, elevator number 2 attends a call from passenger 3). It is important to reiterate that unitary functional level
tests are not unit tests. Unit tests are carried out to test specific function, whereas unitary functional level tests are short tests done with
the integration of the entire dispatching algorithm. The goal of these unitary tests is to ensure that functional requirements are met. For
long full-day tests, functional behaviour is related to certain QoS metrics, which is addressed in this paper. Furthermore, at the HiL and at
Operation, the non-functional metrics are also considered. Specifically, in our study, we considered the execution time of the dispatching
algorithm.
At unitary level tests, the aim is to test specific scenarios and verify that the functional requirements of the system are met. As mentioned,
these unitary tests are different to unit tests, which aim at testing individual software modules. The expected output is typically related
to a functional behaviour of the elevator (e.g., elevator number 1 attends calls from passengers 1 and 2, elevator number 2 attends a call
from passenger 3). For long full-day tests, functional behaviour is related to certain QoS metrics, which is addressed in this paper and
non-functional metrics are also considered.

This paper focuses on the oracles applied for, what is known in Orona internally as “long full-day tests”. In these kinds of tests, the test inputs
encompass long full-day passenger data that simulate the passenger flow in an installation. During the execution of these tests, the expected
output refers to a time series of functional and non-functional performance metric values over the time. Typical functional performance metrics
include the Average Waiting Time (AWT), Average Time to Destination (ATTD) or the consumed energy. Traditionally, the most used performance
metric in Orona has been the AWT, because, according to certain studies, it is the most sensitive measure for a passenger to determine whether a
system of elevators performs well or not [11]. Regarding non-functional performance, the most critical metric to check in dispatching algorithms is
the response time, as these algorithms have a limited time frame to give a response. These test cases can be differentiated into two groups: based
on theoretical passenger data and (2) based on real passenger data.

On the one hand, theoretical passenger data based test cases provide test inputs based on theoretical studies of passenger flows in buildings. For
instance, Figure 3 depicts a graph showing the number of up calls, down calls and inter-floor calls in a time window of five minutes for a simulation
of 13 hours based on the Siikonen theory for a building of offices. As can be seen, in the first couple of hours, the number of up calls increases
as passengers are arriving at the office. After 5 hours, a pattern is seen with an increase in the number of down calls followed by an increase in
the number of up-calls, which represents the lunch time break. At the end of the day, there is another down peak, representing the end of the
working day. The advantage of theoretical traffic profiles is that they can be easily obtained by using tools like Elevate [59] just by providing data
of the building population (e.g., how many people work at each floor). However, a negative aspect of the theoretical profiles is that they might not
accurately represent the results obtained during real operation, where unforeseen situations arise frequently.

8 Gartziandia et al

(a) Full day profile collected from real installation by Orona (b) Siikonen Full day profile

FIGURE 3 Passengers activity of real installation and theoretical profiles obtained with Elevate

On the other hand, Orona uses data obtained from real installations. This helps with the validation of dispatching algorithms from several
perspectives, such as the identification of certain traffic patterns not considered in theoretical traffic profiles or a higher customized validation. For
instance, this could happen in a building where the canteen is on the top floor. Then, the traffic profile would significantly change as there would
be a second peak in the number of up-calls followed then by an increase in the number of down-calls. An algorithm could also perform better than
another depending on the traffic profile, and subsequently, the use of test inputs obtained from the field is a powerful method to validate these
algorithms. The advantage of using real traffic profiles is that developers can use actual data from what it is happening in operation. This can help
identify specific traffic patterns that can be found in a building. On the downside, obtaining real traffic profiles can be a non-trivial task, it requires
the system to be in operation, and it is usually not possible to use this data for new installations.

In Figure 3, the differences between a real and a theoretical traffic profile for a building in Madrid can be seen. One discrepancy that can be
observed is that the interfloor calls are not as frequent in the real passenger profiles when compared to the theoretical ones. In addition, at the
lunch-peak, a high peak of outgoing passengers can be seen at around 14:00 in the real passenger data, which is a pattern that is not present in
the theoretical data.

4 REGRESSION LEARNING-BASED TEST ORACLE FOR ELEVATORS DISPATCHING ALGORITHMS

Figure 4 shows the overall architecture of the proposed approach. The proposed solution is divided into two main phases: (1) the training phase
and (2) the testing phase.

During the training phase, a regression machine-learning algorithm is trained by using data from previous software versions. This data is the
one cataloged by Orona as reference to validate other versions of the software. Subsequently, it is considered that the data used for training is
from an error free version of a dispatching algorithm. The machine-learning algorithm yields a model, which is used by DARIO in the testing phase.
During the testing phase, a test is executed at certain test phase (e.g., SiL or HiL). For instance, if it is at the SiL test phase, Elevate executes a
test case by using test input data, information of the building installation (i.e., speed of elevators, structure of the building, etc.) and the SUT itself.
When the test has finished, files containing (1) the passenger traffic data and (2) the performance measures over the simulation time (i.e., the test
outcomes, which are either, those related to functional performance (e.g., AWT) or non-functional performance (e.g., execution time)) are collected.
It is noteworthy that DARIO is applicable at the SiL test phase for detecting functional performance bugs, whereas at the HiL test phase it can be
used for both functional and non-functional bugs. This is because, for the case of non-functional bugs, the SUT needs to be executed in the real
target processor, which is not available at the SiL test phase.

The performancemeasures (i.e., test outcomes) may be be affected by a poor implementation of the dispatching algorithm from both a functional
or non-functional perspective. From the functional point of view, when testing dispatching algorithms at system level, the main performance
measure considered to label a test as PASS or FAIL by test engineers is the Average Waiting Time (AWT). This metric measures the average time
each passenger needs to wait until their elevator arrives. The AWT can be a global value that measures the overall AWT for all passengers in the
test input or a signal over the simulation time, indicating the AWT of the passengers in the test input for a specific time period. Elevate provides
information on both. Regarding non-functional attributes, it is important for the dispatching algorithm to provide a response in a limited time frame,

Gartziandia et al 9

DARIO

Test input

Installation

SUT

Machine
Learning
Model

Arbiter

Overall verdict

Quantitative
verdict over

time

Performance metric
over time prediction

Passenger
traffic data

Performance
metric

Training phase

Testing phase

Te
st

 d
at

a
fr

o
m

p
re

vi
o

u
s

ve
rs

io
n

s

Performance
metric over

time

Passenger
traffic data

Test data
extraction

SiL test
bench

HiL test
bench

Machine Learning
Algorithm

(Regression)

Test execution

Operation

FIGURE 4 Overview of the approach at the SiL test phase

as it is executed every 500 ms, a deadline which it must comply with. Moreover, the algorithm is executed in a resource constrained environment,
sharing computational resources with other tasks, so a high execution time may affect other functionalities of the system as well.

4.1 Training phase

The first phase in our approach aims at feeding a machine-learning algorithm with labeled data to correctly train it. During the training phase, a
machine-learning algorithm adapts some internal parameters based on training data so that it performs well on future unseen input data [19]. The
traffic dispatching algorithm considers different information, including traveling direction, floor position, already assigned calls, etc. to assign the
passengers calls, so these features are used to train the machine-learning algorithm. This data can be extracted from the passenger profiles used
to execute the simulation. As stated in section 3.2, these passenger profiles consist of a .txt file with a list of the passengers calling the elevators,
including the time of the call, weight of the passenger, origin and destination floor, etc.

In Orona, the Verification and Validation activities are well documented, which gives availability of data from previously tested versions of the
dispatching algorithms.

Functional performance training: For training the ML algorithms, the data is categorized into different domain-specific features related to
passengers traffic data (e.g., the number of uplanding and downlanding calls, time spent between two different calls in the same floor, number
of calls from specific floors, etc). As for the label, the AWT metric is considered as the functional performance measure, as it is the metric that
the dispatching algorithm under test used in this paper targets. All of them, for a time window of five minutes. A five minute time window was
chosen based on the information provided by Elevate (the SiL infrastructure) as well as the HiL test bench. We developed a script that is able to
automatically extract all the required data from a database where Orona saves all the test history. When the data was extracted, the automation
script initiates the training phase by using the MATLAB machine-learning toolbox. The regression learning algorithm yields a trained regression
model, which can later be used in the testing phase to predict the AWT.

It is noteworthy that typically the passenger traffic data in the historical test database is not the same as the test input in the testing phase
because when changes are made in the dispatching algorithm, these changes typically include new functionalities or bug corrections. Subsequently,
in the test inputs used during the testing phase the scenario testing the new functionality or a scenario that aims to trigger the fault is usually
implemented. In addition, at theHiL test phase, tests alsomight include scenarios where the test engineer tests theHumanMachine Interface (HMI)
of the system. In those cases, as the testing is manual, where by the system interacts with the tester, having the exact same test case is impossible.

To train the machine-learning algorithms, we defined different features that could be of interest together with domain experts. Specifically, the
data is encoded with the following input features, which are obtained every five minutes from the test outcomes:

• Number of upward calls from low level floors: It refers to the number of calls that were going up from floors 1 to 3.

10 Gartziandia et al

• Number of upward calls from medium level floors: It refers to the number of calls that were going up from floors 4 to 6.
• Number of upward calls from up level floors: It refers to the number of calls that were going up from floors 7 to 9.
• Number of downward calls from low level floors: It refers to the number of calls that were going down from floors 2 to 4.
• Number of downward calls from medium level floors: It refers to the number of calls that were going down from floors 5 to 7.
• Number of downward calls from high level floors: It refers to the number of calls that were going down from floors 8 to 10.
• Average distance of the travel from the upwards calls: It is the average travel distance, in terms of number of floors traveled, from those

calls going up. This feature could be used in meters for those cases where the distance between a floor and another is different, which is
not our case.

• Average distance of the travel from the downwards calls: It is the average travel distance, in terms of number of floors traveled, from those
calls going down. This feature could be used in meters for those cases where the distance between a floor and another is different, which
is not our case.

• Number of upward calls (past 5 minutes): It refers to the number of calls going in up in the previous 5 minutes. We took the decision of
including this because we figured out that the previous time step considered had also an impact on the current AWT.

• Number of downward calls (past 5 minutes): It refers to the number of calls going in up in the previous 5 minutes. Similar to the previous
feature, we figured out that the previous time step considered had also an impact on the current AWT.

Non-functional performance training: For training the execution time models, different features are extracted from the passengers traffic data.
The execution time of the dispatching algorithm is obtained by executing the algorithm in an ARM board and is set as the label. Similar to the
functional performance training, together with domain experts, we defined a set of features that could affect the non-functional properties of
the algorithm. Specifically, the data is encoded with the following input features, which are obtained every 500 milliseconds from the dispatching
algorithm:

• Registered calls: It refers to the number of calls made by passengers but not yet assigned to an elevator.
• Assigned calls: It refers to the number of calls made by passengers and assigned to an elevator but still unattended.
• Calls in travel: It refers to the number of calls made by passengers and being attended by the assigned elevators.
• Car calls: It refers to the number of calls made by passengers from inside the elevators.
• Up calls: It is the number of calls with an ascending trajectory.
• Down calls: It is the number of calls with a descending trajectory.

4.2 Testing phase

When the machine-learning algorithm is trained, it yields a trained regression model, which is used in the testing phase. For the current imple-
mentation, this phase has four steps: (1) test execution, where the dispatching algorithm is tested by using simulation-based testing, (2) test data
extraction, where the test results and other necessary data is extracted, (3) predictions based on the regression models, which yield the expected
AWT and execution time results, and (4) the arbitration process, which compares the AWT and execution time values obtained by the regression
oracle with the ones estimated by the regression model. We now explain all these steps in further detail.

Test execution: To execute a test, simulation-based testing is used. As previously mentioned, the test can be executed at two distinct levels: (1)
at the Software-in-the-Loop test phase and (2) at the Hardware-in-the-Loop test phase.

The former refers to executing the test by using Elevate. An executable file of the dispatching algorithm is generated, which is considered
the System Under Test (SUT). The SUT is called by Elevate at each iteration, which simulates the rest of the parts of the elevators (i.e., speed,
accelerations, opening and closing of the doors, etc.). The tool also gets as input data from the installation (e.g., building type, number of elevators,
characteristics of each elevator), and the test input, which involves the passenger data.

The latter refers to executing the tests by using the real hardware and other real-time infrastructure. At this test phase, the dispatching algorithm
is integrated with other real-time infrastructure, such as the Linux real-time operating system, communication buses, drivers, etc. The real hardware

Gartziandia et al 11

(a) Failure due to a high peak out of threshold bounds (b) Failure due to a long time out of threshold bounds (c) Failure due to a constant degradation

FIGURE 5 The three reasons why a test can be catalogued as FAIL (blue signal refers to the reference valur and orange signal refers to the value
obtained by the software version under test)
that will later be used in the real elevator is used, including human-machine interface, target processors and CPUs, communication infrastructure,
etc. Themechanical and electrical part of the elevators, though, are simulatedwithin a real-time test bench. It is important to note that the execution
of tests in this case is real-time. This test phase also requires substantial manual effort for setting up the test bench, with activities including the
deployment of the dispatching algorithm in the target, setting up hardware infrastructure, etc. Both test phases yield several files that include results
from the simulation. These files include both, overall performance metrics (e.g., the overall AWT of the simulation, total energy consumed), as well
as the performance metrics over the time. This information is provided to DARIO to carry out the validation process and provide the verdicts.

In addition to both test phases, our approach could be used at operation-time. While this remains a future work, where we will need to consider
aspects like the uncertainty of the environment (e.g., weight of the passengers, unexpected passenger behaviors), we believe that an advantage of
DARIO is that it has the capability to be used at different test phases.

Test data extraction: After the test has been executed, DARIO extracts the necessary data from the testing files yielded by the test execution
tools. At both test phases, i.e., SiL and HiL, both files are the same, which allows better re-usability of the implemented test data extraction
functionality. In the current version, DARIO needs to extract (1) the passenger traffic data over the time, (2) the AWT over time and (3) the
execution time of each execution of the algorithm for the tested SUT version (only at the HiL test phase). In the SiL phase, the traffic passenger
data is obtained from the traffic profiles used to run the test, while in HiL and Operation phases, this data can be obtained from the CAN bus,
where Controllers and Control Panels publish this information. This data is sent to the predictor, which provides an estimation of the functional or
non-functional performance metric for each time step based on the trained regression models.

Prediction: The test data extraction provides the input features of every cycle of the algorithm to the trained regression model. This model,
estimates the execution time for each cycle based on the training produced during the training phase. This mimics the execution of the test case
in the regression oracle. The AWT and execution time of each cycle are provided to the arbiter, which is the last component in charge of providing
a test verdict.

Arbiter: For developing the test arbiter, we discussed the reasons why a test can be catalogued as “FAIL” with test engineers that had the
domain knowledge on testing dispatching algorithms. Thus, for the AWT arbitration, three reasons were identified, while for the the execution
time arbitration, a fourth criteria has been included. All three cases are illustrated in Figure 5 Experts from Orona have set the tolerable variations
in these metrics that could be considered normal in the AWT and execution of the algorithm. The arbitration process inputs the real values new
release and compares it to the prediction of the regression model. When an abnormal variation is detected in any of the criteria, a ”FAIL” verdict is
given.

The first reason might be that at certain point, the software version under test shows a high peak on the AWT measure (Figure 5a). This is
because at a certain point, probably due to a bug, at least one passenger was unattended for a long period of time. The second reason is because
the AWTmeasure for the software version under test exhibits a value higher than the specified threshold for a long period of time (Figure 5b). The
last scenario is related to a constant degradation of the AWT value throughout all the steps of the execution (Figure 5c). For detecting execution
time errors, the previous criteria are applied. High peaks on the execution time in a single step or a short period of time may be due to a bug
affecting functionalities activated in specific situations (e.g., access control).

The developed arbitration algorithm aims at detecting these three scenarios. To this end, in a first step, the algorithm obtains the quantitative
verdict for each simulation time step. We obtained this value by computing Equation 1.

12 Gartziandia et al

A negative value means that the SUT version is performing worse than expected, whereas a positive value means that it is showing a better
performance.

verdict(t) =
referenceSignal(t)− SUTSignal(t)

referenceSignal(t)
(1)

To detect failures of the first case, a threshold is specified and the arbiter checks whether the verdict exceeds this threshold in any step of the
execution, which is the invariant expressed in Equation 2. We refer to this as the single-step arbiter.

∀ t ∈ [t0, tf] : verdict(t) ≥ thresholdsingle_step (2)
where t0 and tf are the first and last steps of the execution, and thresholdsingle_step is the failure threshold for the verdict value defined for the
single-step arbiter.

To detect failures of the second case, a different threshold is specified.When this threshold is exceeded, the arbiter checks the following steps in
order to determine the duration of the anomaly. If this duration is longer than a specified maximum duration, the test is classified as FAIL. Equation
3 defines this invariant, which we refer to as the multiple-step arbiter.

∀ tstart ∈ [t0, tf−D] : ∃ t ∈ [tstart, tstart+D] : verdict(t) ≥ thresholdmultiple_step (3)
where D + 1 is the maximum number of steps for multiple-step failures, and thresholdmultiple_step is the failure threshold for the verdict value
defined for the multiple-step arbiter.

For the last case, the average value of the verdict over time signal is obtained and compared against another threshold. Equation 4 defines this
invariant, which we refer to as the average arbiter.

∑t∈[t0,tf] verdict(t)

T
≥ thresholdaverage (4)

where T is the number of steps in the execution.
Generally, the failure threshold for the arbiters is more tolerant for anomalies of shorter duration, since shorter duration samples may be less

representative of the system. Therefore, the following will usually hold (note that threshold values are negative, and smaller values imply more
tolerance):

thresholdsingle_step < thresholdmultiple_step < thresholdaverage (5)

4.3 Implementation

The tool was implemented in MATLAB. There are a few reasons behind this decision. The main reasons are that it provides support for a wide
variety of algorithms. Furthermore, for all these algorithms, it provides a powerful C/C++ test generator, which would allow us to generate the
code to execute DARIO within the real target processor in operation. The last major reason was that Elevate was integrated with BCVTB for co-
simulation of the dispatching algorithm with other components of the system (e.g., the control of the elevators doors), for a higher fidelity level
testing purposes [60]. BCVTB allows for the execution of MATLAB code, which permits us the execution of DARIO in this test bench with the goal
of performing higher fidelity level simulation-based testing.

Additionally, although the approach is generalisable to any regression machine-learning algorithm, DARIO was implemented on top of the
following ones: (1) Support Vector Machines (SVM), (2) Regression Decision Trees, (3) Ensemble, (4) Regression Gaussian Process (RGP) and (5)
Stepwise Regression. The reason why these algorithms were chosen was (1) availability within the MATLAB framework and (2) appropriateness
for our context in terms of prediction speed, training speed, memory usage and required tuning.

The selected algorithms have a fast prediction and training speed (unlike other algorithms such as neural networks); this is important in order to
speed up the verification and validation activities. In addition, these algorithms have a small memory usage, something important when deploying
the oracles in operation, where embedded processors with limited resources are used. Lastly, the selected algorithms require minimal tuning,
something that is paramount to ease the transfer of the approach to practitioners.

5 EMPIRICAL EVALUATION

In this section we empirically evaluate our approach. Our evaluation aims to answer the following Research Questions (RQs):
• RQ1 – Functional performance: How do machine learning algorithms perform when detecting functional performance faults?
• RQ2 – Non-functional performance: How do machine learning algorithms perform when detecting non-functional performance faults?

Gartziandia et al 13

5.1 Experimental setup

5.1.1 Case study

We used the Orona’s Conventional Group Control (CGC) algorithm. This algorithm was selected as a case study because it is the most widely used
algorithm. Furthermore, there are several versions of this algorithm available in Orona, which allowed us to have access to several sets of relevant
test data for performing the experiments. Lastly, its complexity is high as it is continuously evolving. It is important to note that the algorithm is
deterministic, and thus, it does not involve random variations, unlike other dispatching algorithms (e.g., genetic algorithms).

In the evaluation, we used a complex building installation that Orona typically uses to validate dispatching algorithms, which is related to a real
installation named the communication city, in Madrid. The building has a total of 10 floors and six elevators, each having a capacity of 1250 Kg
weight and 16 passengers. Another reason for choosing this building is that Orona has relevant data obtained from the real installation while in
operation. To train the machine learning algorithms of our oracles, we used available test data for testing a previous version of the CGC algorithm
within the specific building. This data included ten theoretical passenger list test inputs and four real passenger list test input data.

5.1.2 Evaluation platforms

The evaluation of our approach has been conducted in two different platforms using simulation-based testing. On the one hand, for testing the
functional performance-based test oracles, the Elevate simulation environment has been used for the execution of tests with the mutants. This
was carried out at the SiL test phase. On the other hand, for testing the non-functional performance-based test oracles, we used an ARM board
for the execution of the tests. In practice, those test oracles would be used within the real HiL test bench, but we could not use this test bench
for our evaluation because the experiments would take too long. As an alternative, we developed a Processor-in-the-Loop test bench, in which
Elevate communicated with the ARM board. However, this communication was too slow, which would have not permitted us to execute all the
tests with all the mutants within a reasonable time period. Therefore, the final solution was to first record the inputs to the traffic dispatching
algorithm through elevate, and then launch all the tests directly in the ARM board. The traffic dispatching algorithm (i.e., SUT) runs on top of a
Linux OS with a real-time patch, which allows measuring the execution time of each task regardless of the interference from other tasks during
their execution. Thus, we created a task running the dispatching algorithm and measured its execution time. In order to make these measurements
precise, multi-core capabilities of the board had to be disabled, as the multi-core execution was distorting them.

5.1.3 Evaluation metrics

Mutation testing was used to seed faults through the dispatching algorithm under test. This technique has been found to be a good substitute of
real faults [37]. These faults were introduced in a uniform manner throughout the sections of the source code that are relevant in the simulation
environment. Two types of mutants were generated: (1) functional mutants and (2) non-functional mutants:

• Functional mutants: The dispatching algorithms are programmed in C. Therefore, traditional mutation operators for the C programming
languagewere used, such as relational operator changes, arithmetic. Listing 1 and Listing 2 show an example of a code snippet and a possible
functional mutant. We generated a total of 99 mutants. Although this is not a large number, it is important to note that as simulation-based
testing was used, executing each mutant took a long time. This number is similar or larger to other studies where simulation-based testing
was used to evaluate testing approaches [50, 6, 5]. From these 99 mutants, 18 were removed from the evaluation. The reason was that the
inclusion of these mutants led the system to crashing or the simulation not lasting because passengers were not attended. In practice, both
types of failures are easily detected by test engineers in Orona, test oracles not being necessary. These 18 invalid mutants were removed
from the initial set, using a total of 81 mutants in our evaluation. The 81 mutants were reviewed by a domain expert to check that they
were not semantically equivalent to the original program.

1 i n t max (i n t m, i n t n)
2 {
3 i n t max = m;
4 i f (n>m)
5 max = n ;
6 re turn max ;
7 }

Listing 1: Code snippet of the original program

1 i n t max (i n t m, i n t n)
2 {
3 i n t max = m;
4 i f (n<m)
5 max = n ;
6 re turn max ;
7 }

Listing 2: Code snippet of the functional mutant

• Non-functional mutants: To evaluate the adaption of DARIO to the context of non-functional performance, we used performance mutation
testing [20]. In contrast to traditional mutation testing, performance mutation testing focuses on injecting performance problems, such as

14 Gartziandia et al

an increase on the execution time or memory usage [20]. However, the functionality of the program remains the same [20], meaning that,
in the context of our case study, the functional performance metric used (i.e., AWT) remains the same.2 We systematically generated 30
performance mutants that affected the execution time based on the performance mutation operators proposed in [20]. In Listing 3 and
4 show an example of a code snippet and how a potential non-functional mutant. The function in this example looks for a given number
within an array until the number is found or the end of the array is reached, but the mutant removes the second condition from the while
loop, so forces the function to go through all the array even the number is already found. Seven of these performance mutants were finally
discarded from the test executions for different reasons: two of them did not compile correctly, other two led to crashes at execution time,
another one got caught in an infinite loop, and two took a too long time to execute, making its execution unfeasible. In all these cases, the
manual detection of the performance bug was trivial, not requiring the use of a sophisticated oracle. Therefore, we ended up with a total
of 23 performance mutants.

1 i n t a r r ay_con ta in s (i n t num, i n t a r ray [] , i n t s i z e)
2 {
3 r e t = 0;
4 i n t i = 0 ;
5 whi le (i < s i z e && re t == 0)
6 {
7 i f (a r ray [i] == num{
8 r e t = 1;
9 }

10 }
11 re turn re t ;
12 }

Listing 3: Code snippet of the original function

1 i n t a r r ay_con ta in s (i n t num, i n t a r ray [] , i n t s i z e)
2 {
3 r e t = 0;
4 i n t i = 0 ;
5 whi le (i < s i z e)
6 {
7 i f (a r ray [i] == num{
8 r e t = 1;
9 }

10 }
11 re turn re t ;
12 }

Listing 4: Code snippet of a non-functional mutant

Based on a similar work [30], we selected four measures to evaluate the quality of the test oracles: precision (Equation 6), recall (Equation 7), f1
(Equation 8) and accuracy (Equation 9). In addition, the specificity measure has been included (Equation 10). In our context, classifying faults well is
as important as classifying correct behaviour as correct. Therefore, it is necessary to consider metrics involving both true positive rates (precision
and recall) and true negative rates (accuracy and specificity).

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2× (precision× recall)

precision+ recall
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Specificity =
TN

TN + FP
(10)

BalancedAccuracy =
Specificity +Recall

2
(11)

For eachmutant and each passenger list, we considered the overall verdict returned byDARIO, catalogued either as “PASS” or “FAIL”. Additionally,
we used the same passenger list with a regression test oracle (i.e., an original previous version under test), which is the current practice to determine
if a test passes or fails by Orona. Similar to other works tackling the test oracle problem [30, 18], the verdict provided by DARIO was considered
a true negative (TN), a true positive (TP), a false negative (FN) or a false positive (FP) as defined below:

• TN: Both the test oracle (i.e., DARIO) and the regression test oracle returned a ”PASS” verdict.
• TP: Both the test oracle (i.e., DARIO) and the regression test oracle returned a “FAIL” verdict.
• FN: The test oracle (i.e., DARIO) returned a “PASS” and the regression test oracle returned a “FAIL”.

2Notice that the algorithm used as SUT is deterministic

Gartziandia et al 15

• FP: The test oracle (i.e., DARIO) returned a “FAIL” and the regression test oracle returned a “PASS”.
The tests were executed in Elevate instead of in the HiL due to practicality (i.e., if the tests were executed using the HiL test bench, the

experiments would take around 2 years).

5.1.4 Experimental Scenarios

To answer the proposed RQs, a total of four experimental scenarios were designed, where we aimed to analyse the effect of different training and
testing data on the results. Note that the names of the proposed scenarios follow the pattern [Training data type-Testing data type]:

• Scenario Theoretical-Theoretical:We first used test cases that involve theoretical test inputs. These test inputs were automatically generated
by Elevate, and are based on a study performed by Siikonen [67]. In total, 10 of these test cases were used. We employed the 10-fold cross
validation to validate DARIO along with all the selected machine-learning algorithms.

• Scenario Theoretical-Real: In the scenario Theoretical-Real, the same type of test cases were used for training, but for testing, test cases
obtained from the real installation were used. This scenario would emulate (1) how the theoretical passenger data performed in order to
train the algorithms during validation when using data extracted from operation and (2) how the theoretical passenger data perform for
training the algorithms when the oracle is used in the real installation.

• Scenario Real-Real: In this scenario, we used test cases obtained with data extracted from the real installation in operation for training. In
total, four test cases were available for the building used in the evaluation. We thus employed the 4-fold cross validation to validate DARIO
along with all the selected machine-learning algorithms.

• Scenario Real-Theoretical: In this case, we used the same test cases as in scenario Real-Real to train the algorithms, but for testing we used
the ten theoretical passenger-based test cases.

Table 1 summarizes the main characteristics of the test cases used in these four scenarios, including, the number of up calls, down calls, number
of detected mutants by the test case, and the test case duration.

TABLE 1Main characteristics of the used test cases during the experimental scenarios

Test case # of Up
Calls

of Down
Calls

of Detected
AWTMutants

of Detected
Performance
Mutants

Simulation
time (h:min)

real1 2756 1711 18 13 8:30
real2 3086 2366 18 14 9:10
real3 3438 3117 18 10 11:45
real4 3508 3050 21 12 13:35
theoretical1 3994 3377 20 11 12:55
theoretical2 3950 3379 18 13 12:55
theoretical3 3983 3379 26 14 12:55
theoretical4 3989 3402 18 20 12:55
theoretical5 3989 3387 18 12 12:55
theoretical6 3964 3384 19 11 12:55
theoretical7 3977 3386 21 14 12:55
theoretical8 3919 3433 21 12 12:55
theoretical9 3976 3354 18 15 12:55
theoretical10 3945 3407 20 14 12:55

5.2 Results

We now present the results obtained for the four scenarios designed to answer the RQs.

16 Gartziandia et al

5.2.1 RQ1 – Functional performance

Table 2 summarizes the obtained results for the four scenarios designed to answer the RQs. In the scenario Theoretical-Theoretical a 10-fold cross
validation was performed to measure how DARIO performed when trained ad tested with theoretical traffic profiles. In terms of precision, SVM
and regression tree were the techniques showing best results (0.98) followed by stepwiselm, RGP and ensemble. When considering the recall
measure, ensemble performed best (0.89), followed by the rest with values around 0.80. In terms of accuracy and F-measure, SVM and regression
tree performedwell, unlike the remaining three machine learning algorithms, which all dropped below 0.8 in terms of both accuracy and F-measure.
Both SVM and regression tree performed best in terms of the Specificity metric, both having a value of 0.99. In contrast, the rest of the algorithms
showed a value of less than 0.8. With regards to balanced accuracy, regression tree showed a value of 0.91, followed by SVM, which had a value
of 0.88. The remaining algorithms showed a value lower than 0.8.

TABLE 2 Summary of results for the four experimental scenarios for functional mutant detection

Scenario Metrics SVM Regression
Tree Ensemble RGP STEPWISELM

Theoretical-Theoretical

Precision 0.98 0.98 0.68 0.76 0.83
Recall 0.77 0.82 0.89 0.78 0.79
Accuracy 0.94 0.95 0.69 0.71 0.79
F-1 0.86 0.89 0.70 0.68 0.76
Specificity 0.99 0.99 0.62 0.70 0.79
Balanced Accuracy 0.88 0.91 0.75 0.74 0.79

Theoretical-Real

Precision 0.95 0.81 0.41 0.61 0.41
Recall 0.66 0.81 0.86 0.86 0.88
Accuracy 0.96 0.76 0.40 0.58 0.39
F-1 0.76 0.73 0.46 0.60 0.45
Specificity 0.98 0.75 0.27 0.50 0.25
Balanced Accuracy 0.82 0.78 0.56 0.68 0.56

Real-Real

Precision 0.82 0.97 0.30 0.59 0.59
Recall 0.88 0.94 1 0.88 0.83
Accuracy 0.93 0.98 0.37 0.58 0.57
F-1 0.85 0.95 0.45 0.62 0.59
Specificity 0.94 0.99 0.17 0.50 0.50
Balanced Accuracy 0.91 0.97 0.59 0.69 0.67

Real-Theoretical

Precision 0.25 0.25 0.25 0.30 0.25
Recall 1.0 1.0 1.0 0.99 1.0
Accuracy 0.25 0.25 0.25 0.37 0.28
F-1 0.39 0.39 0.39 0.45 0.40
Specificity 0.0 0.0 0.0 0.17 0.04
Balanced Accuracy 0.50 0.50 0.50 0.58 0.52

As for the scenario Theoretical-Real, where the ten theoretical passenger data based test cases were used for training the machine learning
algorithms but real-world data for testing, in terms of the average precision, in this case SVMperformed best, followed by regression tree. Results for
the ensemble, RGP and stepwiselm algorithms in terms of precision were overall quite low. These three algorithms, however, slightly outperformed
SVM and regression tree for the recall metric. Nevertheless, in terms of accuracy and F-measure, SVM showed the best results followed by
regression tree, outperforming the remaining three algorithms with significant difference. The specificity and balanced accuracy measures had a
similar distribution, with the superiority of SVM followed by regression tree and far from them the rest of the algorithms.

Scenario Real-Real in Table 2 shows the results for the 4-fold cross validation when using the real passenger data based test cases both, for
training and for testing. As can be seen, in this case, regression tree performed best in terms of precision, accuracy and F-measure. Furthermore,
with a recall of 0.94, the regression tree algorithmwas the second best, after ensemble. Nevertheless, the precision, accuracy and F-measure values
for ensemble were all below 0.5, meaning that this algorithm had a high number of false positives. In terms of specificity and balanced accuracy,
the algorithm which performed best is regression tree, with the values 0.99 and 0.97 respectively, followed by SVM, with an specificity of 0.94 and

Gartziandia et al 17

a balanced accuracy of 0.91. Far from there, we could found the remaining three algorithms, which showed values below 0.7 for both specificity
and balanced accuracy.

Scenario Real-Theoretical also used real passenger data based test cases to train the machine learning algorithms. Although all algorithms per-
formed well in terms of recall, meaning that they produced none or a low number of false negatives, their results in terms of precision, accuracy
and F-measure were below 0.5. The values were also quite low for both the specificity and balanced accuracy for all the algorithm. All this means
that a high number of false positives were produced when following this strategy for training the algorithms but testing the dispatching algorithms
with theoretical data.

When training with theoretical traffic profiles, the results for all the four measures in scenario Theoretical-Real were lower than those shown in
scenario Theoretical-Theoretical. Our hypothesis behind this is related to the difference between the types of passenger traffic flow in the test cases
that are based on theoretical traffic profiles and the ones obtained from the real installation. It might be possible that the theoretical passenger
profiles do not explore areas which the real passenger profiles actually do. This could be the case, for instance, when the canteen or the bar is on a
specific floor. The theoretical traffic profiles also make assumptions that might not hold for all offices building. For instance, the theoretical traffic
profiles assume that there are lunch peaks from 12:00 to 15:00, where workers from an office building go to have lunch. Nevertheless, there might
be companies and buildings where most of the workers have a continuous work day from 7:00 to 15:00.

The hypothesis is similar when training with real traffic profiles. The traffic profiles obtained from the real building installation might not exercise
areas or produce situations that are considered in the theoretical traffic profiles. This makes it difficult for the regression algorithms to accurately
predict the reference AWT value when trained with real traffic profiles, but tested with theoretical traffic data.

Based on the obtained results, we can answer the first RQ as follows:
SVM and regression tree algorithms were the algorithms performing best when trained with theoretical passenger profiles based test inputs.When
training with real traffic profiles, the regression tree algorithm stood out over the rest. Their results were acceptable when training and testing with
the same kind of traffic profile. However, the performance of the algorithms decreased when trained with theoretical traffic profiles and tested
with real traffic profiles and vice-versa.

5.2.2 RQ2 – Non-Functional performance

Table 3 summarizes the results for the non-functional performance mutant detection. In the scenario Theoretical-Theoretical, where a 10-fold cross
validation was performed to measure the performance of DARIO when trained and tested with theoretical profiles, we saw that overall, the five
algorithms showed competitive results. In terms of precision, recall, accuracy, and specificity, SVM, Regression Tree, RGP and Stepwiselm showed
the most competitive results, with values ranging between 0.81 and 0.87. On the other hand, Ensemble showed the most competitive results
when considering the recall metric (0.96). Nevertheless, its precision and specificity were worse than the rest of the algorithms (0.71 and 0.45
respectively), which also penalized theAccuracy and the F-1measures (i.e., 0.75 and 0.82 respectively), although these results can still be considered
acceptable. In terms of Accuracy and F-1, RGP obtained slightly better results than the rest of the algorithms, although the differences are minimal.

In the scenario Theoretical-Real, the machine-learning algorithms were trained with theoretical passenger profiles, but tested with real passenger
profiles. Similar to what happened in scenario Theoretical-Theoretical, the results for SVM, Regression Tree, RGP and Stepwiselm were similar. All
of them showed good performance in terms of precision and specificity (between 0.93 and 0.94 for the former and 0.95 for the latter), but their
recall measure decreased (0.57 for SVM, Regression Tree and StepwiseLM, and 0.67 for RGP). Their accuracy and F-1 measure remained relatively
high (i.e., between 0.75 and 0.79 for the accuracy metric and between 0.71 and 0.79 for the F-1), although the results were worse than those from
scenario Theoretical-Theoretical. Conversely, the Ensemble algorithm obtained different results. While its precision and specificity were lower, but
still competitive (0.9 for both), the rest of the metrics were higher: a recall of 0.8, an accuracy of 0.85, and an F-1 measure of 0.85.

Within the scenario Real-Real, where real passenger data profiles are used for both training and testing, and therefore a 4-fold cross validation
used, all the algorithms showed a similar performance. In fact, all of them showed the same precision and specificity of 0.95, which is highly
competitive. In terms of recall, accuracy and F-1 measure, the Ensemble showed slightly better performance than the rest, although the differences
wereminimal. All these values were over 0.8 for the recall, and over 0.87 for accuracy and F-1. This means that all the algorithms are highly effective
within the scenario Real-Real.

The last scenario trained the machine-learning algorithms with real passenger data and used theoretical passenger data for testing. All the five
machine-learning algorithms showed similar results. As compared to scenario Real-Real, the precision, accuracy, F-1 and specificity metrics dropped,
while the recall measure was increased to 0.98. The differences among the algorithms were small, although RGP and Stepwiselm obtained slightly
better precision, accuracy and F-1 values when compared with the other algorithms. In general, despite having worse results than in scenario
Real-Real, the results of the algorithms were still competitive.

18 Gartziandia et al

TABLE 3 Summary of results for the four experimental scenarios for performance mutant detection

Scenario Metrics SVM Regression
Tree Ensemble RGP STEPWISELM

Theoretical-Theoretical

Precision 0.87 0.86 0.71 0.87 0.86
Recall 0.84 0.84 0.96 0.87 0.84
Accuracy 0.83 0.83 0.75 0.84 0.83
F-1 0.85 0.85 0.82 0.87 0.85
Specificity 0.82 0.81 0.45 0.81 0.81
Balanced Accuracy 0.83 0.83 0.71 0.84 0.83

Theoretical-Real

Precision 0.93 0.93 0.90 0.94 0.93
Recall 0.57 0.57 0.80 0.67 0.57
Accuracy 0.75 0.75 0.85 0.79 0.75
F-1 0.71 0.71 0.85 0.79 0.71
Specificity 0.95 0.95 0.90 0.95 0.95
Balanced Accuracy 0.76 0.76 0.85 0.81 0.76

Real-Real

Precision 0.95 0.95 0.95 0.95 0.95
Recall 0.80 0.80 0.82 0.80 0.80
Accuracy 0.87 0.87 0.88 0.87 0.87
F-1 0.87 0.87 0.88 0.87 0.87
Specificity 0.95 0.95 0.95 0.95 0.95
Balanced Accuracy 0.88 0.88 0.89 0.88 0.88

Real-Theoretical

Precision 0.75 0.73 0.73 0.75 0.75
Recall 0.98 0.98 0.98 0.98 0.98
Accuracy 0.79 0.77 0.77 0.80 0.80
F-1 0.85 0.84 0.84 0.85 0.85
Specificity 0.52 0.48 0.48 0.53 0.53
Balanced Accuracy 0.75 0.73 0.73 0.76 0.76

In the scenarios where theoretical data was used for training, similar to what happened in RQ1, the overall results of scenario such scenario (i.e.,
Theoretical-Real) were worse than those from scenario Theoretical-Theoretical. The same happened with scenarios where real data was used for
training, where results from scenario Real-Theoreticalwere lower than those from scenario Real-Real. This means that the training of the algorithms
should be done with the same type of passengers profiles that will later be used for testing. Nevertheless, the overall results were not as low
as those from the previous RQ. For instance, in scenario Theoretical-Real, the Ensemble algorithm was competitive enough regarding all the five
metrics to be usable in practice. In addition, the results for all the algorithms in scenario Real-Theoretical were quite competitive. Furthermore, in
this case, there was not one specific algorithm that stood out over the rest, which means that any of them could be used in practice. Therefore,
we can answer the second RQ as follows:

Overall, all the algorithms performed well when dealing with the problem of non-functional bug detection. Their results were better when training
and testing with the same kind of traffic profile. Nevertheless, when training with one traffic profile and testing with the other, the results were
still quite competitive.

5.3 Threats to Validity

We now discuss internal and external validity threats of the performed evaluation:
Internal validity: A potential internal validity threat in our study might be related to the thresholds of the arbiter we designed, which are

configurable. To reduce this threat, we discussed the parameters with domain experts to see which thresholds could be appropriate to consider
a test as pass or fail. The same concern applies to the parameters of the selected machine-learning algorithms. To reduce this threat we used the
default parameters from the MATLAB framework for training the algorithms. Another internal validity threats relate to the usage of a 4-fold cross
validation when using the “real-real” scenarios. This was due to the fact that those cases use data obtained from the real buildings (i.e., operational

Gartziandia et al 19

data). Unfortunately, our industrial partner did not have more operational data. However, we believe that this scenario is realistic given that the it
is the number of test cases that the company has. Moreover, it is important to note that each test input has several data points of full-day traffic
profiles, meaning that we have sufficient data to train the algorithms.

External validity: An external validity threat in our evaluation is related to using a single benchmark dataset based on test cases for testing
dispatching algorithms. To reduce this threat, the dataset was obtained from actual test cases in Orona for testing dispatching algorithms. Further-
more, to avoid bias in the results, we did not use the same dataset for training an algorithm and for testing it, using the appropriate k-fold cross
validation techniques in those scenarios where this was necessary (i.e., Exp. 1 and Exp. 3). Another external validity threat relates to the used case
study. Although only a single case study was used, it is important to note that it is a real industrial case study, which provides a high degree of
complexity to our evaluation. Furthermore, the used dispatching algorithm is the one which is most used in Orona’s elevators.

6 DISCUSSION

We now discuss the results obtained from the evaluation, which was carried out in an industrial context, the lessons learned from it and the
open-challenges.

6.1 Analysis of the Results

The evaluation aimed to assess whether DARIO can be an appropriate technique to be applicable in the context of functional and non-functional
performance testing of CPSs. To this end, we carried out an empirical evaluation using both functional and non-functional bugs. Traditional mutation
operators were used for the former, whereas we used the study by Delgado-Perez et al., [20] for the creation of non-functional performance
mutants. Overall, we believe that the results are positive, indicating that our approach can be applicable in our context. For the case of functional
faults, we found that the regression tree machine-learning algorithm performed better than the remaining algorithms. On the contrary, for the
case of non-functional faults, there was no clear winner among the five machine-learning algorithms we assessed. In addition, we identified the
importance of training the algorithms based on the same type of passenger data that was going to be evaluated by the resulting test oracles; when
theoretical passenger data is going to be used, the training should be performed with theoretical passenger data too. On the other hand, if real
passenger data is going to be verified, we recommend this kind of data to be used for training the algorithms instead. Based on the performed
evaluation, we believe that the results of our approach are good enough to be applicable by Orona engineers when performing long full-day tests.

Similarly to other works in the field of the test oracle problem [30], we employed the precision, recall, accuracy, F-1 metrics, alongside specificity
and balanced accuracy, that are commonly used by the machine-learning community. Nevertheless, a recently performed systematic literature
review [25] revealed that many studies used the mutation score metric, which aims at assessing the percentage of mutants killed. In our case,
the mutation score mostly depends on the type of test inputs used, rather than the test oracle itself. In fact, we used the same criterion as the
regression test oracle, currently used in the context of Orona, for determining whether a mutant is killed or not by a test case. It is important to
note that test oracles are prone to false positives and negatives [9, 72], and therefore, we have given priority to the right classification done by
DARIO, our test oracle, rather than the amount of mutants detected by it.

6.2 Lessons learned

Based on the results obtained from the evaluation section and the discussion with domain experts about the applicability of the approach, we
extracted the following lessons:

Lesson 1 – Training data: The use of the right data for training the machine-learning algorithms play a critical role in the accuracy of DARIO.
Exceptions aside, the results obtained in scenarios Theoretical-Theoretical and Real-Real are much better than the ones of obtained in scenarios
Theoretical-Real and Real-Theoretical, as it is shown in the Section 5.2. Therefore, in order for the oracle to be accurate enough, the training data
should be of the same type as used when testing the system. This means that when Orona uses theoretical data for testing their algorithms, they
should also use theoretical test data for training DARIO. Conversely, if real data is used for testing their algorithms, they should use real passenger
data for training DARIO. However, we saw that the impact of this was larger in the case of functional bugs as compared to the non-functional bugs.
A potential reason for this could be that the problem of functional-performance is harder to solve due to a higher variability of the AWT metric to
test inputs. Another reason could be the experimental set-up, where we used a larger amount of mutants for the case of functional performance
testing than the non-functional performance testing.

20 Gartziandia et al

Lesson 2 – Machine-learning algorithms: Our empirical evaluation suggested that in the case of functional-performance, there might be large
differences among the selected algorithms. In general, the regression tree performed overall best in the first case. Conversely, for the case of non-
functional performance bugs, most algorithms performed similarly, with some exceptions in some of the cases; for instance, ensemble was the
worst algorithm in the scenario Theoretical-Theoretical, whereas the best one in the scenario Theoretical-Real and competitive in the scenarios Real-
Real and Real-Theoretical against the remaining algorithms. For the application of the tool in industry, for the first case, the regression tree algorithm
is recommended. However, further investigation is required before recommending one of the algorithms for detecting non-functional bugs; this
might be based on the data used and a set of preliminary experiments done before pushing one model to production.

Lesson 3 – Importance of real passengers data: In the study, we showed that the oracles performed competitively when using real data obtained
from the real installation (even if they were trained only with three real passenger profiles). This happened in both cases, functional and non-
functional performance experiements (i.e. RQ1 and RQ2). In other contexts, such as web-engineering, technologies like DevOps permit using data
from operation at design-time to enhance software engineering processes (e.g., testing). The good performance of the proposed approach with
field test data shows the importance of researching on adapting design-operation continuum techniques (e.g., DevOps) in the context of CPSs and
in domains like elevation. The simulation at design-time of situations seen only in operation is of great advantage for engineers. For instance, this
permits the detection of unforeseen situations that can only be seen when the system is in operation.

Lesson 4 – Need for dealing with uncertainty in test verdicts: As it could be appreciated in our empirical evaluation, the accuracy of DARIO with
certain algorithms is competitive. However, using these oracles in Orona increases the uncertainty in relation to the correctness of the verdicts.
This might require re-executing tests in the regression test oracle at certain points in order to confirm verdicts. Although this might increase the
cost of testing, the test results can also be used to retrain the algorithms. The increase in test execution costs is further exacerbated at the HiL and
at operational levels. Potentially, DARIO could be used as preliminary oracle for testing, and use the regression oracle only at critical stages (e.g., to
confirm certain test verdicts). For instance, when a test has failed, but this fail was due to the numerical verdict being close to 0 (i.e., a low severity
fault), the same test could be eventually repeated with a regression test oracle. On the other hand, if the test has failed, but the numerical verdict
was far from 0 (i.e., high severity fault), the test could be classified as fail without the need for confirming the verdict with a regression test oracle.

Lesson 5 – Consequences of mistaken oracle: An oracle may be mistaken when providing a test verdict. That is, the test oracle is subject to false
positives (FPs) and false negatives (FNs). On the one hand, a false positive means that a test was cataloged as “fail”when it should have been provided
a “pass”. This results into, probably, the need of the developer debugging where the potential fault is located. Since there is no fault behind, this may
result into time spent by an engineer in debugging a fault that does not exist. This issue could be mitigated by confirming the test verdict by using
a regression test oracle. In the cases of functional bugs, this issue could happen in 2 to 3% of the cases, given that the precision of the algorithm
Regression tree is between 0.97 and 0.98. Re-running tests to confirm the presence of faults in 3% of the cases is not an issue for our industrial
partner. However, these values increase in the case of non-functional performance faults, having false positives in around 14% of the cases in the
case of the “Theoretical-Theoretical” scenario. This suggests that more research is required to increase the robustness of such algorithms.

On the other hand, a false negative means that a test was cataloged as “pass” when it should have it done as a “fail”. If this happens at design-
time (i.e., at the SiL or at the HiL phases), the bug might be missed and shipped to production. As shown in our experiments, this could happen in
18% of the cases if used a “theoretical-theoretical” test oracle. However, the regression tree algorithm showed a recall of 0.94 in the cases of “real-
real” scenarios, which implies that all the many of these faults could be later detected. These faults are in the limit and could be partially solved if
we consider the uncertainty that the inputs provoke in the ML models. This will be investigated in the future before fully transferring the method
to our industrial partner. The current version could be used as first pass at phases 1 and 2 of Orona’s testing process, while traditional oracles can
be used for corner cases or to confirm test verdicts. In addition, our approach can be used for operational testing, which already outperforms the
current state-of-the-practice in Orona’s context, where this type of test was not possible up to now.

6.3 Open Challenges

In this studywe have assessed the performance of DARIO, a test oracle that is built on top of machine-learning algorithms to detect both, functional
and non-functional bugs. DARIO is a good alternative to a traditionally employed regression test oracle, as it permits new applications, such as
testing of the HMI modules or testing at different test phases (i.e., SiL, HiL and Operation). Deploying DARIO at run-time can be feasible at this
point for Orona by using an architecture based on microservices [29]. However, at run-time, new challenges arise, such as the inherent uncertainty
produced by the environment at which elevators operate. For instance, when executing a test at the SiL or HiL test phases, the weight of passengers
is known beforehand to the oracle, which might impact the performance of the algorithms (e.g., when passengers weight less, more passengers
can enter at an elevator). Conversely, this is unknown to the oracle at design-time, and therefore, uncertainty-wise techniques would need to be
integrated within DARIO. Another uncertainty related issue at operation time could be the wrong use of passengers of the elevator. For instance,
one could be that of calling an elevator, but later not using it. All these uncertain situations need to be classified systematically and integrated in
DARIO in order this oracle to be effective at operation-time, where a regression test oracle cannot be used.

Gartziandia et al 21

Our approach has been exclusively designed for dispatching algorithms. However, performance metrics, both functional and non-functional, can
be found in many other CPSs applications, including those from the automotive [35, 74] or aerospace domains [53]. We believe that another line
of research could be the application of DARIO in other CPS domains. Furthermore, DARIO has been intended to be used as test oracle for already
defined test cases. However, this approach opens the gate to other testing activities. For instance, the use of the numerical verdict to determine
whether a failing test is of critical or low severity could be use for activities like falsification-based test case generation. These techniques are
expensive to execute [51], and therefore, a technique like DARIO could be of great benefit in such a context. This technique could also be combined
with a similar approach of approximation-refinement testing [51] based test generation, in which the tests are only eventually executed in the SUT,
and instead, a surrogate model of the new SUT is used.

7 RELATED WORK

In this section we give an overview of the related work along the following dimensions: (1) use of machine-learning for test oracle generation, (2)
simulation-based testing of CPSs and (3) testing of systems of elevators.

7.1 Use of machine-learning for test oracle generation

The use of machine-learning algorithms for software testing activities has significantly increased in the last few years [23], covering many activities,
including test case generation [13, 14], test case selection [70] or test prioritization [70, 10, 41]. Test oracles are one of the core components
required to allow full test automation. A recent systematic literature review gathered a total of 22 relevant studies that used machine-learning
for the purpose of generating test oracles [25]. Among their findings, they identified that machine-learning was used to (1) generate test verdicts
[16, 31, 45, 63], (2) generate metamorphic relations [32, 33, 38, 39, 55, 78] and (3) generate the expected outputs [1, 22, 36, 54, 62, 64, 65, 69,
76, 68, 46, 79]. In this classification, our machine-learning algorithms fall into the category of the generation of expected outputs, although the
entire test oracle (i.e., DARIO), provides a final test verdict. Just like all the techniques for generating expected outputs identified by Fontes and
Gay [25], our machine-learning algorithms use supervised learning based on prior system executions. In addition, similar to all the studies that
used a machine learning component to generate the expected outputs (with the exception of [22]), our approach used regression to determine the
expected output. However, there are significant differences between our approach and those studies identified in [25]. Firstly, the type of system
that our oracle tackles are CPSs, which have many idiosyncrasies, such as the expected output being a signal over time, or the long test execution
time. Secondly, we investigate the performance of our approach in the context of both, functional and non-functional bugs. Thirdly, we compared
a total of five machine-learning techniques, including SVM, regression tree, ensemble, RGP and Stepwiselm, unlike most of the studies identified
in [25], which use a maximum of two techniques. Lastly, our SUT is a real industrial case-study from the elevator domain (i.e., the Dispatching
algorithm for Orona elevators); this last point paves the way towards overcoming one of the limitations identified by Fontes and Gay [25] in the
context of using machine learning for test oracle generation, i.e., the use of toy examples.

7.2 Simulation-based testing of CPSs

Simulation-based testing has been extensively used to test CPSs [51, 52, 48, 49, 50, 13, 14, 26, 53, 66, 24, 34, 75, 6, 47, 4, 5, 6, 73]. Our approach
relies on simulation-based testing for detecting performance problems (caused by either functional or non-functional bugs) of elevator systems.
In such a context, there are recent studies that tackle the test oracle problem [52, 71]. Menghi et al. proposed a test oracle generation tool for
Simulinkmodels [52]. Their approach consists in a Domain Specific Language (DSL) with sufficient expressiveness to specify signal properties-based
requirements. Later, a model-to-model transformation is performed in order to generate Simulink subsystems. Similar to our work, their oracles
also provide a quantitative measure for the satisfaction degree of a requirement. However, our study is focused on generating a reference signal by
a machine-learning algorithm trained with data from previously tested software versions, and later applying and arbitration mechanism. Although
we could use their tool to generate oracles by specifying some requirements, this would be infeasible for the context of performance metrics,
as inferring the relation between passenger traffic data and functional performance measures (e.g., AWT) as well as non-functional performance
measures (e.g., memory consumption) is nontrivial. Furthermore, this relation is highly dependent on the building installation characteristics, and
would therefore require a manual change every time the dispatching algorithm is tested in a different context; In contrast, training DARIO with
already available data is straightforward and fast. Stocco et al. proposed a technique for testing self-driving cars which use deep neural networks
to determine the driving parameters for the actuators of the vehicle [71]. Similar to our approach, their oracle employs simulation-based testing
and determines a confidence value for the system at each step of the execution. However, the oracle they propose uses an unsupervised learning

22 Gartziandia et al

technique based on the camera images (i.e., the input) of the self-driving car, whereas DARIO uses supervised regression learning based on the
QoS measures of a system of elevators (i.e., the test output in our context).

7.3 Testing of systems of elevators

There are some studies that focus on testing software from elevators systems. Nicolas et al., proposed an encoder based on FPGAs for simulation-
based testing of elevator controllers in real-time [57]; their goal was to test the position and speed of elevators. Sagardui et al., relied onmodel-based
testing and feature models for testing configurable software systems in charge of controlling the doors of elevators [61]; in this paper, the goal was
to test refactored embedded code, and the non-refactored software acted as a golden oracle. In these cases the system was not the dispatching
algorithm, but other software components of the elevators. In our previous paper, we used the techniqueMetamorphic Testing to test the dispatch-
ing algorithm of Orona [8], showing promising results. A problem with metamorphic testing was the difficulty to extract effective metamorphic
relations. To solve this problem, we proposed a technique that combined mutation testing with genetic programming [9]. The generated meta-
morphic relations were as competent as those defined with the assistance from domain experts [9]. However, that metamorphic testing approach
was mainly designed for short-scenario tests, whereas the technique shown in this paper is designed for long-scenario tests. Our previous work
used machine-learning algorithms to detect performance bugs on software updates [28]; nevertheless, the evaluation was not as realistic as in this
case, since the execution of the algorithms was performed in a local PC, whereas in this case we used the real microprocessor used by Orona in
their elevators. In fact, we noticed that the results were significantly different in this case. Galarraga et al., proposed a test case generation method
based on genetic algorithms to the dispatching algorithm under uncertain passenger conditions [27]. While there are many studies in the field of
elevators dispatching algorithms where artificial intelligence algorithms adapted to this context are investigated (e.g., ant-colony optimization and
neural networks [42], genetic algorithms [15]), to the best of our knowledge, this is the first study that proposes a method for testing them (both
from the functional and non-functional perspectives).

8 CONCLUSION AND FUTURE WORK

In this paper we have proposed DARIO, a test oracle that relies on machine-learning to automatically test elevators dispatching algorithms from
the perspective of both, functional and non-functional performance. Compared with the traditionally used regression oracles, which have several
disadvantages, DARIO trains machine-learning algorithms with previous test data. This training takes only a few seconds (always less than 3
seconds), whereas executing the regression test oracle takes minutes or hours at SiL (depending on the length of the test case), and hours or days at
HiL (not being possible to correctly perform some tests, such as those involving HMI). In our evaluation, where an industrial dispatching algorithm
from Orona was used, we tested the proposed approach with two kinds of bugs: functional and non-functional. When using functional bugs, the
accuracy of the proposed test oracle when labeling tests as PASS or FAIL ranged between 0.79 and 0.87. When using non-functional bugs, the
accuracy ranged between 0.8 and 0.87. The type of training data used impacted these results, although it had a greater impact in the case of the
functional bugs. Overall, we believe that these results are competent enough to transfer the tool to practitioners, although further investigation is
required to enhance these results.

As future research lines, we would like to explore handling the uncertainty in oracles from different perspectives. Firstly, as explained in the
lessons-learned section, using DARIO increases the uncertainty related to the correctness of the verdicts. In deep learning algorithms, Kim et al.,
used the surprise adequacy [40]. Similar metrics adapted to the algorithms used by DARIO could be employed to measure such uncertainty. Other
relevant uncertainties could be those that the CPS itself is exposed to, especially in operation. In the context of elevators at operation, in order
DARIO to be effective, the uncertainty from several perspectives needs to be considered (e.g., uncertainty in passengers’ behaviors). Another
example of uncertainty could be related to the hardware itself, such as the noise of the sensors or delays in the communication systems.

References

[1] Aggarwal, K., Y. Singh, A. Kaur, and O. Sangwan, 2004: A neural net based approach to test oracle. ACM SIGSOFT Software Engineering Notes,
29, no. 3, 1–6.

[2] Alpaydin, E., 2020: Introduction to machine learning. MIT press.
[3] Arrieta, A., J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, and M. Arratibel, 2021: Using machine learning to build test oracles: an industrial

case study on elevators dispatching algorithms. 2021 IEEE/ACM International Conference on Automation of Software Test (AST), IEEE, 30–39.

Gartziandia et al 23

[4] Arrieta, A., G. Sagardui, L. Etxeberria, and J. Zander, 2017: Automatic generation of test system instances for configurable cyber-physical
systems. Software Quality Journal, 25, no. 3, 1041–1083.

[5] Arrieta, A., S. Wang, A. Arruabarrena, U. Markiegi, G. Sagardui, and L. Etxeberria, 2018: Multi-objective black-box test case selection for cost-
effectively testing simulation models. Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, GECCO
’18, 1411–1418.
URL http://doi.acm.org/10.1145/3205455.3205490

[6] Arrieta, A., S. Wang, U. Markiegi, A. Arruabarrena, L. Etxeberria, and G. Sagardui, 2019: Pareto efficient multi-objective black-box test case
selection for simulation-based testing. Information & Software Technology, 114, 137–154, doi:10.1016/j.infsof.2019.06.009.
URL https://doi.org/10.1016/j.infsof.2019.06.009

[7] Ayerdi, J., A. Garciandia, A. Arrieta, W. Afzal, E. P. Enoiu, A. Agirre, G. Sagardui, M. Arratibel, and O. Sellin, 2020: Towards a taxonomy for
eliciting design-operation continuum requirements of cyber-physical systems. 28th IEEE International Conference on Requirements Engineering,
RE 2020, Zurich, Switzerland, 2020.

[8] Ayerdi, J., S. Segura, A. Arrieta, G. S. Arratibel, and M. Arratibel, 2020: Qos-aware metamorphic testing: An elevation case study. 2020 IEEE
31st International Symposium on Software Reliability Engineering (ISSRE), IEEE, 104–114.

[9] Ayerdi, J., V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and M. Arratibel, 2021: Generating metamorphic relations for cyber-physical systems
with genetic programming: an industrial case study. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 1264–1274.

[10] Bagherzadeh, M., N. Kahani, and L. Briand, 2021: Reinforcement learning for test case prioritization. IEEE Transactions on Software Engineering.
[11] Barney, G. and L. Al-Sharif, 2015: Elevator traffic handbook: theory and practice. Routledge.
[12] Barr, E. T., M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, 2014: The oracle problem in software testing: A survey. IEEE transactions on

software engineering, 41, no. 5, 507–525.
[13] Ben Abdessalem, R., S. Nejati, L. C. Briand, and T. Stifter, 2016: Testing advanced driver assistance systems using multi-objective search and

neural networks. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 63–74.
[14] — 2018: Testing vision-based control systems using learnable evolutionary algorithms. Proceedings of the 40th International Conference on

Software Engineering, ICSE ’18.
[15] Bolat, B., P. Cortés, E. Yalçin, and M. Alişverişçi, 2010: Optimal car dispatching for elevator groups using genetic algorithms. Intelligent

Automation & Soft Computing, 16, no. 1, 89–99.
[16] Braga, R., P. S. Neto, R. Rabêlo, J. Santiago, and M. Souza, 2018: A machine learning approach to generate test oracles. Proceedings of the

XXXII Brazilian Symposium on Software Engineering, 142–151.
[17] Brunnert, A., A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring, C. Heger, N. Herbst, P. Jamshidi, R. Jung, J. von Kistowski, A. Koziolek,

J. Kroß, S. Spinner, C. Vögele, J. Walter, and A. Wert, 2015: Performance-oriented DevOps: A Research Agenda.
URL http://arxiv.org/abs/1508.04752

[18] Chan, W. K., J. C. Ho, and T. Tse, 2010: Finding failures from passed test cases: Improving the pattern classification approach to the testing
of mesh simplification programs. Software Testing, Verification and Reliability, 20, no. 2, 89–120.

[19] Deisenroth, M. P., A. A. Faisal, and C. S. Ong, 2020:Mathematics for machine learning. Cambridge University Press.
[20] Delgado-Pérez, P., A. B. Sánchez, S. Segura, and I. Medina-Bulo, 2020: Performance mutation testing. Software Testing Verification and

Reliability.
[21] Derler, P., E. A. Lee, and A. Sangiovanni-Vincentelli, 2011: Modeling cyber-physical systems. Proceedings of the IEEE (special issue on CPS), 100,

no. 1, 13 – 28.
[22] Ding, J. and D. Zhang, 2016: A machine learning approach for developing test oracles for testing scientific software. SEKE, 390–395.

24 Gartziandia et al

[23] Durelli, V. H., R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R. Dias, and M. P. Guimaraes, 2019: Machine learning applied to software
testing: A systematic mapping study. IEEE Transactions on Reliability, 68, no. 3, 1189–1212.

[24] Etxeberria, L., F. Larrinaga, U. Markiegi, A. Arrieta, and G. Sagardui, 2017: Enabling co-simulation of smart energy control systems for buildings
and districts. IEEE 22nd Conference on Emerging Technologies and Factory Automation (ETFA2017), 1–4.

[25] Fontes, A. and G. Gay, 2021: Using machine learning to generate test oracles: a systematic literature review. Proceedings of the 1st International
Workshop on Test Oracles, 1–10.

[26] Gaaloul, K., C. Menghi, S. Nejati, L. C. Briand, and D. Wolfe, 2020: Mining assumptions for software components using machine learning. Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
159–171.

[27] Galarraga, J., A. Arrieta, S. Ali, G. Sagardui, and M. Arratibel, 2021: Genetic algorithm-based testing of industrialelevators under passenger
uncertainty. 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE.

[28] Gartziandia, A., A. Arrieta, A. Agirre, G. Sagardui, and M. Arratibel, 2021: Using regression learners to predict performance problems on
software updates: a case study on elevators dispatching algorithms. Proceedings of the 36th Annual ACM Symposium on Applied Computing,
135–144.

[29] Gartziandia, A., J. Ayerdi, A. Arrieta, S. Ali, T. Yue, A. Agirre, G. Sagardui, and M. Arratibel, 2021: Microservices for continuous deployment,
monitoring and validation in cyber-physical systems: an industrial case study for elevators systems. 2021 IEEE 18th International Conference
on Software Architecture Companion (ICSA-C), IEEE, 46–53.

[30] Genç, A. E., H. Sözer, M. F. Kıraç, and B. Aktemur, 2019: Advisor: An adjustable framework for test oracle automation of visual output systems.
IEEE Transactions on Reliability.

[31] Gholami, F., N. Attar, H. Haghighi, M. V. Asl, M. Valueian, and S. Mohamadyari, 2018: A classifier-based test oracle for embedded software.
2018 Real-Time and Embedded Systems and Technologies (RTEST), IEEE, 104–111.

[32] Hardin, B. and U. Kanewala, 2018: Using semi-supervised learning for predicting metamorphic relations. 2018 IEEE/ACM 3rd International
Workshop on Metamorphic Testing (MET), IEEE, 14–17.

[33] Hiremath, D. J., M. Claus, W. Hasselbring, andW. Rath, 2020: Automated identification of metamorphic test scenarios for an ocean-modeling
application. 2020 IEEE International Conference On Artificial Intelligence Testing (AITest), IEEE, 62–63.

[34] Hou, Y., Y. Zhao, A. Wagh, L. Zhang, C. Qiao, K. F. Hulme, C. Wu, A. W. Sadek, and X. Liu, 2015: Simulation-based testing and evaluation tools
for transportation cyber–physical systems. IEEE Transactions on Vehicular Technology, 65, no. 3, 1098–1108.

[35] Jahangirova, G., A. Stocco, and P. Tonella, 2021: Quality metrics and oracles for autonomous vehicles testing. 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST), IEEE, 194–204.

[36] Jin, H., Y. Wang, N.-W. Chen, Z.-J. Gou, and S. Wang, 2008: Artificial neural network for automatic test oracles generation. 2008 International
Conference on Computer Science and Software Engineering, IEEE, volume 2, 727–730.

[37] Just, R., D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, 2014: Are mutants a valid substitute for real faults in software testing?
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM, 654–665.

[38] Kanewala, U. and J. M. Bieman, 2013: Using machine learning techniques to detect metamorphic relations for programs without test oracles.
2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), IEEE, 1–10.

[39] Kanewala, U., J. M. Bieman, and A. Ben-Hur, 2016: Predicting metamorphic relations for testing scientific software: a machine learning
approach using graph kernels. Software testing, verification and reliability, 26, no. 3, 245–269.

[40] Kim, J., R. Feldt, and S. Yoo, 2019: Guiding deep learning system testing using surprise adequacy. 2019 IEEE/ACM41st International Conference
on Software Engineering (ICSE), IEEE, 1039–1049.

[41] Lachmann, R., S. Schulze, M. Nieke, C. Seidl, and I. Schaefer, 2016: System-level test case prioritization using machine learning. 2016 15th
IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, 361–368.

Gartziandia et al 25

[42] Liu, J. and Y. Liu, 2007: Ant colony algorithm and fuzzy neural network-based intelligent dispatching algorithm of an elevator group control
system. 2007 IEEE International Conference on Control and Automation, IEEE, 2306–2310.

[43] Liu, Y., C. Xu, and S. C. Cheung, 2014: Characterizing and detecting performance bugs for smartphone applications. Proceedings - International
Conference on Software Engineering, no. 1, 1013–1024.

[44] Mahdavinejad, M. S., M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, 2018: Machine learning for internet of things data
analysis: a survey. Digital Communications and Networks, 4, 161–175, doi:10.1016/j.dcan.2017.10.002.
URL https://doi.org/10.1016/j.dcan.2017.10.002

[45] Makondo, W., R. Nallanthighal, I. Mapanga, and P. Kadebu, 2016: Exploratory test oracle using multi-layer perceptron neural network. 2016
International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 1166–1171.

[46] Mao, Y., F. Boqin, Z. Li, and L. Yao, 2006: Neural networks based automated test oracle for software testing. International Conference on Neural
Information Processing, Springer, 498–507.

[47] Markiegi, U., A. Arrieta, G. Sagardui, and L. Etxeberria, 2017: Search-based product line fault detection allocating test cases iteratively. Pro-
ceedings of the 21st International Systems and Software Product Line Conference - Volume A, ACM, New York, NY, USA, SPLC ’17, 123–132.
URL http://doi.acm.org/10.1145/3106195.3106210

[48] Matinnejad, R., S. Nejati, L. Briand, T. Bruckmann, and C. Poull, 2015: Search-based automated testing of continuous controllers: Framework,
tool support, and case studies. Information and Software Technology, 57, 705 – 722.

[49] Matinnejad, R., S. Nejati, L. C. Briand, and T. Bruckmann, 2015: Effective test suites for mixed discrete-continuous stateflow controllers.
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, 84–95.

[50] — 2019: Test generation and test prioritization for simulink models with dynamic behavior. IEEE Trans. Software Eng., 45, no. 9, 919–944,
doi:10.1109/TSE.2018.2811489.
URL https://doi.org/10.1109/TSE.2018.2811489

[51] Menghi, C., S. Nejati, L. Briand, and Y. I. Parache, 2020: Approximation-refinement testing of compute-intensive cyber-physical models: An
approach based on system identification. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), IEEE, 372–384.

[52] Menghi, C., S. Nejati, K. Gaaloul, and L. C. Briand, 2019: Generating automated and online test oracles for simulink models with continuous
and uncertain behaviors. Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, 27–38.
URL https://doi.org/10.1145/3338906.3338920

[53] Menghi, C., E. Viganò, D. Bianculli, and L. C. Briand, 2021: Trace-checking cps properties: Bridging the cyber-physical gap. 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), IEEE, 847–859.

[54] Monsefi, A. K., B. Zakeri, S. Samsam, and M. Khashehchi, 2019: Performing software test oracle based on deep neural network with fuzzy
inference system. International Congress on High-Performance Computing and Big Data Analysis, Springer, 406–417.

[55] Nair, A., K. Meinke, and S. Eldh, 2019: Leveraging mutants for automatic prediction of metamorphic relations using machine learning.
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation, 1–6.

[56] Nejati, S., K. Gaaloul, C. Menghi, L. C. Briand, S. Foster, and D. Wolfe, 2019: Evaluating model testing and model checking for finding require-
ments violations in simulink models. Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, 1015–1025.
URL https://doi.org/10.1145/3338906.3340444

[57] Nicolas, C. F., I. Ayestaran, I. Martinez, and P. Franco, 2016: Model-based development of an fpga encoder simulator for real-time testing of
elevator controllers. 2016 IEEE 19th International Symposium on Real-Time Distributed Computing (ISORC), IEEE, 53–60.

[58] Olivo, O., I. Dillig, and C. Lin, 2015: Static detection of asymptotic performance bugs in collection traversals. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2015-June, 369–378.

26 Gartziandia et al

[59] Peters, D. K. and D. L. Parnas, 2002: Requirements-based monitors for real-time systems. IEEE Trans. Software Eng., 28, no. 2, 146–158,
doi:10.1109/32.988496.

[60] Sagardui, G., J. Agirre, U. Markiegi, A. Arrieta, C. F. Nicolás, and J. M. Martín, 2017: Multiplex: A co-simulation architecture for elevators
validation. Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), 2017 IEEE International Workshop of, IEEE,
1–6.

[61] Sagardui, G., L. Etxeberria, J. A. Agirre, A. Arrieta, C. F. Nicolas, and J. M. Martin, 2017: A configurable validation environment for refactored
embedded software: An application to the vertical transport domain. 2017 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), IEEE, 16–19.

[62] Sangwan, O. P., P. K. Bhatia, and Y. Singh, 2011: Radial basis function neural network based approach to test oracle. ACM SIGSOFT Software
Engineering Notes, 36, no. 5, 1–5.

[63] Shahamiri, S. R., W. M. N. W. Kadir, and S. bin Ibrahim, 2010: An automated oracle approach to test decision-making structures. 2010 3rd
International Conference on Computer Science and Information Technology, IEEE, volume 5, 30–34.

[64] Shahamiri, S. R., W. M. N. W. Kadir, S. Ibrahim, and S. Z. M. Hashim, 2011: An automated framework for software test oracle. Information and
Software Technology, 53, no. 7, 774–788.

[65] Shahamiri, S. R., W. M. Wan-Kadir, S. Ibrahim, and S. Z. M. Hashim, 2012: Artificial neural networks as multi-networks automated test oracle.
Automated Software Engineering, 19, no. 3, 303–334.

[66] Shin, S. Y., K. Chaouch, S. Nejati, M. Sabetzadeh, L. C. Briand, and F. Zimmer, 2021: Uncertainty-aware specification and analysis for hardware-
in-the-loop testing of cyber-physical systems. Journal of Systems and Software, 171, 110813.

[67] Siikonen, M.-L., 2000: On traffic planning methodology. Elevator technology, 10, 267–274.
[68] Singhal, A. and A. Bansal, 2014: Generation of test oracles using neural network and decision tree model. 2014 5th International Conference-

Confluence The Next Generation Information Technology Summit (Confluence), IEEE, 313–318.
[69] Singhal, A., A. Bansal, and A. Kumar, 2016: An approach to design test oracle for aspect oriented software systems using soft computing

approach. International Journal of System Assurance Engineering and Management, 7, no. 1, 1–5.
[70] Spieker, H., A. Gotlieb, D. Marijan, and M. Mossige, 2017: Reinforcement learning for automatic test case prioritization and selection in

continuous integration. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, 12–22.
[71] Stocco, A., M. Weiss, M. Calzana, and P. Tonella, 2020: Misbehaviour prediction for autonomous driving systems. Proceedings of 42nd

International Conference on Software Engineering, ACM, ICSE ’20, 12 pages.
[72] Terragni, V., G. Jahangirova, P. Tonella, and M. Pezzè, 2020: Evolutionary improvement of assertion oracles. Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1178–1189.
[73] Turlea, A., 2018: Search based model in the loop testing for cyber physical systems. 2018 IEEE 16th International Conference on Embedded and

Ubiquitous Computing (EUC), IEEE, 22–28.
[74] Valle, P., 2021: Metamorphic testing of autonomous vehicles: a case study on simulink. 2021 IEEE/ACM 43rd International Conference on

Software Engineering: Companion Proceedings (ICSE-Companion), IEEE, 105–107.
[75] van der Meer, A. A., P. Palensky, K. Heussen, D. M. Bondy, O. Gehrke, C. Steinbrinki, M. Blanki, S. Lehnhoff, E. Widl, C. Moyo, et al., 2017:

Cyber-physical energy systems modeling, test specification, and co-simulation based testing. 2017 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES), IEEE, 1–9.

[76] Vanmali, M., M. Last, and A. Kandel, 2002: Using a neural network in the software testing process. International Journal of Intelligent Systems,
17, no. 1, 45–62.

[77] Vokolos, F. I. and E. J. Weyuker, 1998: Performance testing of software systems. Proceedings of the 1st International Workshop on Software and
Performance, Association for Computing Machinery, New York, NY, USA, WOSP ’98, 80–87.
URL https://doi.org/10.1145/287318.287337

Gartziandia et al 27

[78] Zhang, P., X. Zhou, P. Pelliccione, and H. Leung, 2017: Rbf-mlmr: A multi-label metamorphic relation prediction approach using rbf neural
network. IEEE access, 5, 21791–21805.

[79] Zhang, R., Y.-w.Wang, andM.-z. Zhang, 2019: Automatic test oracle based on probabilistic neural networks. Recent Developments in Intelligent
Computing, Communication and Devices, Springer, 437–445.

How to cite this article:Gartziandia A., Arrieta A., Ayerdi J., Illarramendi M., Sagardui G., Agirre A., and Arratibel M. (2022), Using Machine Learning
to Build Test Oracles: an Industrial Case Study on Elevators Dispatching Algorithms, Journal of Software: Evolution and Process, 2022.

	Acknowledgments
	Declaration
	Abstract
	Contents
	Acronyms
	Introduction
	Motivation and Scope
	Research Methodology
	Technical Contribution
	Publications
	Journal Articles
	International Conferences

	Document Structure

	Technical Background
	Cyber Physical Systems life-cycle management
	Cyber-Physical Systems
	DevOps
	Taxonomy for Eliciting Design-Operation Continuum Requirements of CPSs

	Adeptness
	Microservice Architectures
	Adeptness architecture

	Performance Bugs
	AI Techniques
	Machine Learning
	Neural Networks
	Genetic Programming

	State of the Art
	Literature Review Methodology
	Definition of Research Questions
	Search Process
	Inclusion Criteria
	Data Collection

	Software Deployment in CPSs
	Performance Testing on CPSs
	Performance Prediction
	Critical analysis of the State of the Art

	Theoretical Framework
	Objectives
	Hypotheses
	Overview
	Case Study: Orona's Dispatching Algorithm

	The Performance Oracle
	The Oracle as a Microservice
	Interfaces
	Sub-components

	The Oracle in the Adeptness Architecture
	Deployment
	Configuration
	Execution

	Requirements
	Mandatory Requirements
	Additional Requirements

	Evaluation
	Conclusion

	Performance Model
	Training Data
	Monitoring
	Pre-processing

	AI Techniques
	Configuration
	Selection Criteria

	Evaluation
	Research Questions
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Conclusion and Future Work

	Arbiter
	General Logic
	Parameters
	Time-span
	Thresholds

	Evaluation
	Research Questions
	Experimental Setup
	Results
	Discussion
	Threads to Validity

	Conclusion and Future Work

	Conclusion
	Summary of the Contributions
	Hypotheses Validation
	Limitations of the Proposed Solution

	Lessons Learned
	Future Work

	Bibliografy
	Publications
	Towards a Taxonomy for Eliciting Design-Operation Continuum Requirements of Cyber-Physical Systems
	Using Regression Learners to Predict Performance Problems on Software Updates: a Case Study on Elevators Dispatching Algorithms
	Microservices for Continuous Deployment, Monitoring and Validation in Cyber-Physical Systems: an Industrial Case Study for Elevators Systems
	Machine Learning-based Test Oracles for Performance Testing of Cyber-Physical Systems: An Industrial Case Study on Elevators Dispatching Algorithms

