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ract

ning from demonstration (LfD) is considered as an efficient way to transfer skills from humans to robots. Tra-
nally, LfD has been used to transfer Cartesian and joint positions and forces from human demonstrations. The
tional approach works well for some robotic tasks, but for many tasks of interest, it is necessary to learn skills
as orientation, impedance, and/or manipulability that have specific geometric characteristics. An effective encod-
f such skills can be only achieved if the underlying geometric structure of the skill manifold is considered and the
trains arising from this structure are fulfilled during both learning and execution. However, typical learned skill
els such as dynamic movement primitives (DMPs) are limited to Euclidean data and fail in correctly embedding
tities with geometric constraints. In this paper, we propose a novel and mathematically principled framework
uses concepts from Riemannian geometry to allow DMPs to properly embed geometric constrains. The result-
MP formulation can deal with data sampled from any Riemannian manifold including, but not limited to, unit

ernions and symmetric and positive definite matrices. The proposed approach has been extensively evaluated both
imulated data and real robot experiments. The performed evaluation demonstrates that beneficial properties of
s, such as convergence to a given goal and the possibility to change the goal during operation, apply also to the

osed formulation.

ords: Motor control of artificial systems, Movement primitives theory, Dynamic movement primitives,
ning from demonstration, Riemannian manifolds

troduction

liable execution of robotic tasks in highly unstruc-
and dynamic scenarios is fundamental to bring-

obots into human-inhabited environments. In such
onments, robots need to accurately control their
on in free space as well as during physical inter-
ns, which requires the capability to generate and
t online reference behaviors in the form of motion,
dance, and/or force trajectories. Therefore, an ef-
ve encoding of diverse trajectory data is the key to
ding robotic solutions in everyday environments.
e Learning from Demonstration (LfD) paradigm
ims to develop learning solutions that allow the

orresponding author
mail addresses: fabudakka@mondragon.edu
J. Abu-Dakka), matteo.saveriano@unitn.it

eo Saveriano), ville.kyrki@aalto.fi (Ville Kyrki)

robot to enrich its skills via human guidance. Among14

the existing approaches [2, 3], the idea of encoding15

robotic skills into stable dynamical systems has gained16

interest in the LfD community [4, 5, 6]. Dynamic Move-17

ment Primitives (DMPs) [7] are one of the first and most18

popular dynamical system-based approaches for LfD.19

DMPs are capable of encoding both discrete and peri-20

odic robotic skills into time-dependent systems. Dis-21

crete skills, also referred to as point-to-point motions,22

constist of motion trajectories with a fixed start and end23

point (goal) and are well-suited to represent many hu-24

man daily tasks such as picking and placing objects.25

The original DMP formulation considers one Degree26

of Freedom (DoF) trajectories. Multi-DoF trajectories27

are learned separately for each DoF and synchronized28

by a common phase variable. This strategy is effective29

for encoding independent skills like joint or Cartesian30

position trajectories, but it fails if the different DoFs31

are mutually dependent. This situation is common in32

int submitted to Neurocomputing June 6, 2024
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tics, where variables of interest may be interre-
by geometric constraints. Examples of such vari-
include: (i) orientation representations, like rota-

matrices [8] or unit quaternions [8, 9, 10], and (ii)
ia [11], manipulability [12, 13, 14], stiffness, and
ping [15, 16] that are encapsulated in Symmetric
tive Definite (SPD) matrices. For variables interre-

by geometric constraints, the embedding strategy
o be modified to fulfill the constraints during both
ing and execution.
veral robotic skills consist of a combination of vari-
belonging to different manifolds. A simple exam-

s a pose trajectory where the position lies in Carte-
space and the orientation is represented e.g., as
quaternions. To avoid accuracy loss, Riemannian
ics should be embedded in the DMP formulation,
ing the consideration of all the constraints aris-
rom various geometric structures in a unified and
istent manner. This is not possible with existing

formulations [4, 8, 9, 17, 18], which are space-
ndent.
this paper, we propose Geometry-aware DMP

MP), a new formulation that uses differential ge-
try to extend classical DMP for Euclidean data to
r Riemannian manifolds. This extension allows dis-

DMPs to effectively represent data evolving on
rent Riemannian manifolds, which subsequently al-
the generation of smooth trajectories for data that

ot belong to the Euclidean space. The formulation
s to encode various forms of point-to-point ma-

lation skills with specific geometric constraints in
ified and manifold independent manner. The gen-
formulation provided in this paper can be applied
y trajectory of data by considering the correspond-
iemannian manifold. The effectiveness of the pro-

d approach is demonstrated both on synthetic data
hysical experimental setups.

eliminary results of this work have been published
8], where we formulated DMP equations to learn
data profiles. This paper adds several significant

l contributions with respect to our published work:

A unified and mathematically principled frame-
work, G-DMP, that uses differential geometry to
extend classical DMPs to any Riemannian mani-
fold.

Exploitation of manifold composites to encode and
learn composite manifolds in one single DMP for-
mulation.

Proof of the stability of the proposed G-DMP.

4. Formulation of G-DMP goal switching without the82

need to use parallel transport.83

5. An extensive evaluation and comparison with ex-84

isting approaches.85

6. Instructive and unified source codes accompany86

the paper with all necessary datasets at https:87

//gitlab.com/geometry-aware/ga-dmp.88

This paper is organized as follows: Next section89

presents the state-of-the-art. A background about stan-90

dard DMPs and Riemannian geometry are given in91

Sec. 3. Afterwards, we provide the theoretical founda-92

tion of G-DMPs in Sec. 4. Subsequently, we evaluate93

our approach in several experiments (Sec. 5). The work94

is concluded in Sec. 6.95

2. Related Works96

LfD is a valuable framework to teach the robot new97

skills without explicitly coding them. LfD framework is98

effective in extracting relevant patterns from a few task99

demonstrations and in generalizing these patterns to dif-100

ferent scenarios. LfD has been deeply investigated and101

several approaches have been developed in the litera-102

ture. These include, among others, DMP [4, 20], Prob-103

abilistic Movement Primitives (ProMP) [21], Gaussian104

Mixture Models (GMMs) [22], and Kernelized Move-105

ment Primitives (KMP) [10, 23].106

In many previous works, training data are simply107

treated as time series of Euclidean vectors. Other ap-108

proaches, like [24] and [25], learn and adapt quater-109

nion trajectories without enforcing the unit norm con-110

straint, which leads to non-unit quaternions and hence111

requires an additional re-normalization step. Neverthe-112

less, several works in the literature have investigated,113

to some extent, the problem of learning manipulation114

skills with specific geometric constraints. Examples of115

such skills include orientations, impedance, and manip-116

ulability matrices that are encapsulated in SPD matrices.117

The following paragraphs examine the state-of-the-art118

approaches.119

DMP-based approaches: For instance, Abu-120

Dakka et al. extended the classical DMPs to encode dis-121

crete [17] and periodic [26] unit quaternion trajectories,122

while the work in [8] also considers different formu-123

lation to cope with rotation matrices. The quaternion-124

based DMPs were also extended to include the real-time125

goal switching mechanism [8]. The stability of the ori-126

entation DMPs is shown in [19]. In [9], authors pro-127

posed a modified formulation of unit quaternion DMPs128

to prevent oscillations that may arise in some cases.129

2
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1: Comparison among the state-of-the-art of DMP-based approaches and our G-DMP across different Riemannian manifolds: Euclidean
of dimension m Rm, unit quaternion space S3, m-unit sphere manifold Sm, 3D-rotation matrices space SO (3), special orthogonal group in m
sions SO (m), and the space of m × m SPD matrices Sm

++.

Rm S3 Sm SO (3) SO (m) Sm
++

Composite spaces
e.g., S3 × R3

peert et al. [4, 7] X - - - - - -
e et al. [8] - X - X - - -
utras et al. [9], Abu-Dakka et al. [17],
veriano et al. [19] - X - - - - -

u-Dakka et al. [18] - - - - - X -
r G-DMP X X X X X X X

-Dakka and Kyrki [18] reformulated DMPs to gen-
discrete SPD profiles, which is also able to adapt
ew goal-SPD-point. There is an important concep-

difference, about how we fit a curve to data points
demonstration on a manifold, between G-DMP and
revious work [18]. In [18], to fit a curve to data

ts {Pt}Tt=0 on a Riemannian manifoldM, we sought
rve γ : [t0, tT ] → M that passed exactly through

point of the demonstration trajectory. That as-
tion does not guarantee proximity between each

of consecutive points, and, as detailed in Sec. 4.1,
led to the need to use parallel transport to accu-
y compute the covariance derivative. However, in
paper, inspired by [27], we look for γ to be suf-
ntly straight while passing sufficiently close to the
points at the given intervals. This lets us remove
arallel transport operation, i.e., to approximate the
riant derivative with the total derivative, resulting
more compact formulation and a more efficient im-
entation of G-DMP.
nally, unlike our unified formulation, the formu-
ns of all these previously mentioned approaches
pace-specific and do not consider the possibility
eating data from different manifolds in a unified
consistent manner. Table 1 compares our proposed
MP and the state-of-the-art of the DMP-based ap-
ches.
lternative approaches: Point-to-point motions are
articular interest in robotics as they form the ba-
f many everyday manipulation tasks. Therefore,
rchers have developed approaches alternative to
s to represent point-to-point motions. Focusing

ariable orientation profiles, [28] extended GMMs
present the distribution of the quaternion displace-
ts. Starting from this extended GMM, the work
9] exploits the Riemannian structure of the unit
re to encode variable orientations into a geometry-
e Task-Parameterized GMM (TP-GMM) [22].

are extended to unit quaternions in [10] by pro-

jecting orientation data onto the tangent space of the169

unit sphere (which is locally Euclidean). Learning is170

performed in the tangent space and generated data are171

projected back to the manifold.172

SPD matrices are used to encapsulate data in many173

applications, including brain-computer interfaces [30],174

transfer learning [31], diffusion tensor imaging [32], as175

well as various robotic skills [33]. Alternative to DMP,176

the method in [34] used a tensor-based formulation of177

GMM and Gaussian Mixture Regression (GMR) on the178

SPD that enabled learning and reproducing skills in-179

volving SPD without additional data re-parametrization.180

Recently, [14] proposed a kernelized treatment to learn181

and adapt SPD profiles in the tangent space of the SPD182

manifold.183

G-DMP vs. state-of-the-art: The aforementioned184

geometry-aware formulations are space-specific and do185

not consider the possibility of treating data from differ-186

ent manifolds in a unified and consistent manner. On187

the contrary, our G-DMP formulation is general and can188

be applied to any trajectory of data even when differ-189

ent DoFs belong to different spaces. Moreover, DMPs190

are one of the most popular LfD approaches and many191

robotics applications rely on them. In this respect,192

G-DMP provides a useful framework to let users already193

familiar with DMPs to develop new applications.194

3. Preliminaries195

In this section, we briefly introduce the classical for-196

mulation of discrete DMPs (Sec. 3.1) and define funda-197

mental operations on Riemannian manifolds (Sec. 3.2).198

Table 2 summaries the key notations used in this paper.199

3.1. Dynamic Movement Primitives200

DMP is composed of a system of nonlinear differ-
ential equations capable of encoding movements while

3
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Table 2: Key notations. Indices, super/subscripts, constants, and variables have the same meaning over the entire text.
thcal symbols
.,M , denote manifolds.

bold mathcal sym-
bols e.g., P , denote trajectories.

ital letter vari-
s e.g., P , denote points in a manifold.

small letter vari-
ables e.g., p , denote points in a tangent space.

, The tangent space of a manifoldM around
a point P ++ , ++

, Euclidean space of dimension m. Sm , Sphere manifold of dimension m.
(m) , Special orthogonal group of dimension m. SE (m) , Special Euclidean group of dimension m.

, Space of m × m SPD. SYMm , Space of m × m symmetric matrices.
, # of nonlinear basis functions i , index : i = 1, 2, . . . ,N
, index : l = 1, 2, . . . ,T T , Number of samples

, trajectory data and its 1st derivative in
classical DMP

z, ż , scaled velocity and acceleration in
G-DMP

Ẏ , trajectory data and its 1st derivative in
G-DMP Z, Ż , scaled velocity and acceleration in

G-DMP
βz, αx, αg , Positive constant gains. x , DMP phase variable.
), F (x) , forcing term for different spaces wi , adjustable weights

, Gaussian basis functions ci and hi , centers and widths of Ψi

R and G ∈ M , attractor point (goal) in different spaces Ŷ ∈ M , new manifold trajectory generated by
G-DMP

anteeing convergence to a designated goal point (at-
or) [20]. The foundational work on DMPs for dis-
, point-to-point, motions was first introduced by
ert et al. [7]. However, in order to generate move-
ts adaptable to new situations without inducing ex-
ve accelerations or amplification, Pastor et al. in-
ced some modifications [24]. In this paper, we
t the formulation proposed by Pastor et al. . For
gle DoF trajectory y, the DMP system of equations
osed in [24] is described as follows:

τż = αz(βz(g − y − (g − y0)x + f (x)) − z), (1)
τẏ = z, (2)
τẋ = −αxx, (3)

e τ is a positive scalar that represents the temporal
ng factor and determines the overall duration of the
ement. ẏ represents velocity and z denotes scaled
city. x is a phase variable, governing the dynami-
ystem’s evolution towards the attractor point. It is
to avoid explicit time dependency in the formula-
The canonical system, given by (3), is initialized

0) = 1 and vanishes exponentially1 as t → ∞ if
ain αx > 0. βz and αz are positive gains that de-
the dynamical system’s behavior. In order to en-
a critically damped system, we choose αz = 4βz.
attractor (goal) point of the movement is denoted
. This system of equations prevents high accelera-
at the beginning of the motion or when the goal is

he minimum phase to execute a motion within T f seconds can
mputed through x(T f ) = exp(− αx

τ T f ).

close to the initial state, allowing for the reproduction215

of motions with the same initial and target states while216

preventing over-amplifications and trajectory mirroring217

effects when changing the goal.218

The nonlinear forcing term f (x) is classically param-
eterized as a linear combination of N nonlinear radial
basis functions scaled by the phase variable x. f (x)
allows the dynamical system to preserve the shape of
any smooth trajectory, and subsequently, generate this
trajectory from an initial position y0 to the attractor g.
Thus, f (x) is defined as:

f (x) =

∑N
i=1 wiΨi(x)
∑N

i=1 Ψi(x)
x, (4)

Ψi(x) = exp
(
−hi (x − ci)2

)
, (5)

where wi are the weights adjusted based on measured
data to achieve the desired behavior. Ψi(x) are Gaussian
basis functions with centers ci and widths hi. For a given
number of basis functions N, centers ci and widths hi are
defined as follows:

ci = exp
( − αx

i − 1
N − 1

)
, hi =

1
(ci+1 − ci)2 , hN = hN−1

where i = 1, . . . ,N. For each DoF.219

In order to control multiple DoFs systems, such as220

trajectories of joint angles of D DoF manipulator, we221

consider a separate transformation system (1)-(2) for222

each of the D DoFs to control. Additionally, we uti-223

lize a single canonical system (3) shared across the D224

transformation systems, which synchronizes their time225

evolution.226

4
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Riemannian manifolds

n m-dimensional manifold is a topological space
e each point locally resembles Euclidean space Rm.
fferentiable manifold extends this notion to ensure
at each point, there exists a tangent space. A Rie-
nian manifold M is a smooth and differentiable
ifold where each tangent space is equipped with
emannian metric tensor. This tensor, denoted as
, is a positive definite inner product defined on the

ent space TPM for every point P ∈ M. The Rie-
nian metric introduces the concept of length on the
ifold. By utilizing this metric, we can generalize the
n of a “straight line” between two points by defin-
geodesic as the shortest curve that connects two

ts on a manifold. This geodesic allows for the trans-
tion of vectors between tangent spaces [35, 36]. A
esic γ(t) is defined as a continuously differentiable
e that connects points A,B on the manifold M.
ally minimizes the distance between these points,
ts length is given by the functional:

LB
A(γ) =

∫ 1

0
〈γ̇(t), γ̇(t)〉 dt. (6)

distance between points A and B is then defined by
mizing (6), i.e.,

dist(A,B) = minLB
A(γ) (7)

. Mapping operators
e tangent spaces and their bases provide the abil-
perform linear algebra. In order to perform com-

tions on the manifold while preserving distances, a
ping system is needed to switch between the tan-
space TPM and the manifoldM, see Fig. 1. These
ping operators are:

M

P

TPM

A = ExpP(a)

LogP(A)

e 1: A Riemannian manifoldM and its tangent space TPM de-
at point P.

• The logarithmic map
(
LogP (·)) is a function that

maps a point A ∈ M into a point a ∈ TPM (see
Fig. 1). It is defined as:

LogP (·) :M 7→ TPM, (8)

• The exponential map
(
ExpP (·)) is the inverse of the

logarithmic map. It maps a point a ∈ TPM in the
tangent space of P to a point A ∈ M such that A lies
on the geodesic starting from P in the direction of
a with distance of ‖a‖ = 〈a, a〉P (see Fig. 1). It is
defined as:

ExpP (·) :TPM 7→ M, (9)

3.2.2. Cartesian products in Riemannian geometry235

In Riemannian geometry, the Cartesian product of236

two Riemannian manifolds M and N is also a mani-237

fold denoted asM×N . This construction allows us to238

combine the geometric structures of bothM andN into239

a single manifold.240

For any points P1 ∈ M and U1 ∈ N , and their corre-241

sponding tangent vectors p1 ∈ TP1M and u1 ∈ TU1N ,242

the tangent space ofM×N at the point (P1,U1) is iso-243

morphic to the direct sum of the tangent spaces of M244

and N :245

T(P1,U1)(M×N) � TP1M⊕TU1N , (10)

This means that any tangent vector at (P1,U1) can be246

uniquely decomposed into a pair of tangent vectors, one247

in TP1M and the other in TU1N .248

To facilitate computations on the Cartesian product
manifold M × N , we require to redefine the mapping
operators in (8) and (9) as follows:

Log(P1,U1) (P2,U2) :M×N 7→ T(P1,U1)(M×N), (11)

Exp(P1,U1) (p,u) : T(P1,U1)(M×N) 7→ M ×N . (12)

This leads to

Log(P1,U1) (P2,U2) = Log
P1
U1



([
P1
U1

])
=

[
LogP1

(P2)
LogU1

(U2)

]
,

Exp(P1,U1) (p,u) = Exp
P1
U1



([
p
u

])
=

[
ExpP1

(P2)
ExpU1

(U2)

]
.

where (p,u) ∈ T(P1,U1)(M×N) and (P2,U2) ∈ M ×N .249

3.2.3. Computing in Riemannian manifolds250

Let P1,P2 ∈ M and p1,p2 ∈ Rm, then the reinterpre-251

tation of basic standard operations (e.g., addition and252

subtraction) in a Riemannian manifold are summarized253

in Tab. 3.254

5
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3: Re-interpretation of basic standard operations in a Rie-
ian manifold [37].

Euclidean space Riemannian manifold

traction −−−→p1p2 = p2 − p1
−−−→
P1P2 = LogP1

(P2)

ition p2 = p1 +
−−−→p1p2 P2 = ExpP1

(−−−→
P1P2

)

tance dist(p1,p2) =‖ p2 − p1 ‖ dist(P1,P2) =‖ −−−→P1P2 ‖P1

rpolation p(t) = p1 + t−−−→p1p2 P(t) = ExpP1

(
t
−−−→
P1P2

)

. Riemannian geometric mean
iven a set of points {Pi}ni=1 ∈ M and a geodesic
nce dist(P j,Pi) between two points in M, the
het mean [38] is estimated by minimizing the sum
uared geodesic distances

P = arg min
P∈M

N∑

i=1

dist2(P,Pi), (13)

estimation can be efficiently computed iteratively
llowing Alg. 1 [38].

rithm 1 Intrinsic mean

alization: P = P1

while ‖a‖ < δ do
a = 1

N
∑N

i=1 LogP (Pi)
P = ExpP (εa) ; ε ≤ 1

end while

roposed approach

this section, we provide a generalized and unified
ulation for DMPs based on Riemannian geometry
der to learn and adapt robot manipulation skills re-
less its corresponding space, for example orienta-
trajectories

(
SO (3) or S3

)
, pose data (SE (3)), and

profiles (Sm
++) such as stiffness, manipulability, in-

. We also show that our G-DMP inherits desirable
erties of the original formulation like convergence
target and goal switching.

Geometry-aware DMPs formulation
this section, we introduce the mathematical foun-
ns of G-DMP technique. The G-DMP formula-
offers a comprehensive and cohesive approach to
de and execute a discrete trajectory Y = {tl,Yl}Tl=0,
monly known as a point-to-point trajectory, which
es within the confines of a Riemannian manifold

where each Yl ∈ M. Its attractor dynamics on
anifold guarantee the convergence of Y toward a

goal G ∈ M regardless of the initial starting point Y0.277

To achieve this, it is necessary to transform the clas-278

sical DMP system described by (1)–(2) into a unified279

geometry-aware formulation utilizing principles from280

Riemannian geometry. In pursuit of this objective, we281

initiate the process by considering the expression of a282

general second-order system evolving on a manifold, as283

outlined by Fiori et al. [39]284

τ∇ZZ = h (Z,Y , x) , (14)

τẎ = Z, (15)

where Z and Ż represent the scaled first and second
derivatives of Y . The phase variable x is similar to
the one defined in (1) and (3). The covariant deriva-
tive ∇ZZ can be defined from the total derivative Ż
using parallel transport [39, 18]. However, computing
the parallel transport is, in general, time-consuming.
Assuming that consecutive points on the manifold are
sufficiently close, and the geodesic between them ap-
proximates a straight line, the covariant derivative can
be well approximated by manifold-valued finite differ-
ences [40, 27]. This approximation significantly sim-
plifies the computation process while introducing neg-
ligible errors. Thus, in this work, we consider the ap-
proximation ∇ZZ ≈ Ż. The function h(·) may encom-
pass multiple additive contributions. In this study, we
assume that

h (Z,Y , x) = αz

(
βz

(
LogY (G)

− LogY0
(G) x + F (x)

)
−Z

)
, (16)

where G ∈ M is the goal point. The function LogY (·)285

is defined in (8). Additionally, positive gains αz and βz286

are introduced. The term −αzZ represents a dissipative287

force that plays a similar role to damping in a mechan-288

ical system. The term αz(βz LogY (G)) corresponds to289

conservative force and can be interpreted as the nega-290

tive gradient of a potential. This can be demonstrated291

by considering that− 1
2∇Ydist2 (Y ,G) = LogY (G) [39],292

where dist(·, ·) denotes the Riemannian distance. Fi-293

nally, the term F (x) represents a phase-dependent forc-294

ing term which is learned from the demonstration and295

will be further discussed in this section.296

Consequently, we can redefine the dynamic system
presented in (1)–(2) as follows

τŻ = αz

(
βz

(
LogY (G)

− LogY0
(G) x + F (x)

)
−Z

)
. (17)

τẎ = Z, (18)
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forcing term F (x) is defined as follows

F (x) =

∑N
i=1 wiΨi(x)
∑N

i=1 Ψi(x)
x, (19)

e wi ∈ Rm×N are the weights (free parameters) that
be estimated by encoding any sampled trajectory
, any robot manipulation skill profile). In order to
ate the parameters of a corresponding G-DMPs,
eed to estimate the 1st and 2nd time derivatives of
emonstrated trajectory. The 1st time derivative is

puted as follows

Ẏ =
{(

LogYl−1
(Yl)

)
/δt

}T

l=1
∈ TYl−1M, (20)

e δt = tl − tl−1. The 2nd-time-derivative Ÿ can
omputed straight forward from Ẏ using standard
idean tools, i.e., Ÿ = {tl, ÿl}Tl=1 where ÿl = (ẏl −
/δt.
aving all necessary data

{
tl,Yl, ẏl, ÿl

}
, and by invert-

17), the parameters wi and the approximated de-
shape of the demonstration are estimated as fol-

∑N
i=1 wiΨi(xl)∑N

i=1 Ψi(xl)
xl =

τ2ÿl + αzτẏl

αzβz
− LogYl

(G) + LogY0
(G) x

(21)

g (21), the weights wi can be estimated by encoding
ampled robot manipulation skill data.
the reproduction, equation (18) is integrated using

orward Euler-Riemann stepping method [39] as

Ŷ(t + δt) = ExpYt

(
Z(t)

δt
τ

)
, (22)

e Ŷ ∈ M represents the new robot manipula-
skills data. Equation (22) is manifold dependent.

t
(·) is defined as in (9), and we refer to the ap-

ix for the expression of ExpYt
(·) for the manifolds

in this work.
case the manifold is a Lie group, the expression
general second-order system on a Lie group be-

es [39]

τŻ = h (Z,Y , x) , (23)

τẎ = g (Z,Y) , (24)

which is straightforward to derive that

τŻ = αz

(
βz

(
Log

(
Yg ∗Y−1

)

− Log
(
Yg ∗ Y−1

0

)
+ F (x)

)
−Z

)
, (25)

τẎ = g (Z,Y) . (26)

Equation (25) is formally the same as (17), provided we308

use the logarithmic map LogY (·) = Log
(
Yg ∗Y−1

)
de-309

fined using Lie group theory. The term m(·) in (26) is310

the inverse left translation, which maps a tangent vector311

from the Lie algebra to the tangent space at Yt and de-312

pends on the specific Lie group. The expressions of g(·)313

and Log(·) for unit quaternions and rotation matrices,314

two Lie groups commonly used in robotics, are given315

in Appendix A.3 and Appendix A.5.316

As a remark, we used the Riemannian formula-317

tion (17)–(18) in the rest of the paper. However, for318

the sake of completeness, we also have provided a for-319

mulation for Lie groups in (25)–(26).320

4.2. Goal switching321

In many real scenarios, while the robot executes its
trajectory, it may encounter situations where it needs
to adapt its trajectory to a new goal, e.g., new pick-up
point, on the fly. This change of goal, referred to as goal
switching, is a common requirement in dynamic envi-
ronments. In order to achieve smooth transitions be-
tween goals and avoid unnecessary jumps, the authors
of [4] suggested adding an extra first-order differential
equation to gradually transition the current goal g to the
new goal gnew over time. This differential equation can
be written as

τġ = αg(gnew − g), (27)

where αg > 0 is a positive constant gain. The gradual322

transition in (27) ensures that the robot’s behavior re-323

mains continuous and responsive to changes in its task324

environment.325

Analogously, Riemannian manifold-based G-DMP
can switch the goal using

τĠ = αgLogG (Gnew) . (28)

Equation (28) allows to continuously update G until it326

smoothly reaches the new value Gnew ∈ M.327

4.3. Stability analysis328

Theorem 1 states the stability conditions of the329

geometry-aware DMP formulation in Sec. 4.1.330

Theorem 1. Assume that F (x) → 0 for t → +∞ and331

that the gains αz, βz > 0. Under these assumptions, the332

geometry-aware DMP has a globally (in its domain of333

definition) asymptotically stable equilibrium at (G, 0).334

Proof. Recall that, by assumption, we restrict the do-
main to the points where the logarithmic map LogY (G)
is uniquely defined. Recall also that the forcing term

7
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in (17) is a weighted sum of Gaussian basis func-
. Therefore, the non-linear terms in (17) and (18)
mooth and uniquely defined functions. Consider
that the time dependency introduced by x vanishes
→ +∞. Hence, (17) and (18) are an asymptotically
nomous differential system and the stability can be
ed by analyzing its asymptotic behavior [41]. This
s us to neglect the terms F (x) and LogY0

(G) x in
tability analysis and to focus on the asymptotic dy-
ics

Ż = αzβzLogY (G) − αzZ, (29)

Ẏ = Z, (30)

e we set τ = 1 without loss of generality.
e first show that (G, 0) is an equilibrium point of the
m (29) and (30). The right side of (30) vanishes
for Z = 0. With Z = 0, the right side of (29)

shes only for LogY (G) = 0⇔ Y = G. This implies
the system (29) and (30) has a unique equilibrium
t at (G, 0).
e now show that the equilibrium (G, 0) is a
al attractor in the chart where the logarithmic map

(G) is uniquely defined. To this end, we define the
idate Lyapunov function

V(Y ,Z) = dist2 (Y ,G) +
1

αzβz
〈Z,Z〉Y , (31)

e dist(·, ·) is the Riemannian distance defined as
) and 〈·, ·〉Y is the positive definite inner prod-
see Sec. 3.2). V(Y ,Z) is positive definite ev-
here if αzβz > 0 and vanishes only at Y = G

2 (G,G) = 0) and Z = 0 (〈0, 0〉Y = 0). To show
V(Y ,Z) is a valid Lyapunov function we need to
that its time derivative is negative definite and van-
at (G, 0). The time derivative of V(Y ,Z) can be

en as

,Z) =
d
dt

dist2 (Y ,G) +
1

αzβz

d
dt
〈Z,Z〉Y

= −2〈LogY (G) , Ẏ〉Y +
2

αzβz
〈Ż,Z〉Y

(32)

e we used the expression d
dt dist2 (Y ,G) =

ogY (G) , Ẏ〉Y from [42] and the bi-linearity
the symmetry of the interior product to write
,Z〉Y = 2〈Ż,Z〉Y . By replacing Ż from (29)
˙ from (30) into (32), we obtain

,Z) = −2〈LogY (G) ,Z〉Y + 2〈LogY (G) ,Z〉Y
− 2
βz
〈Z,Z〉Y = − 2

βz
〈Z,Z〉Y ≤ 0,

Y1

G

Antipodal

G

Y1

−G

(a) (b)

Figure 2: Results of G-DMP while learning and producing trajecto-
ries that cover both south and north hemispheres. Black dashed curves
denote demonstrations, while brown curves represent reproduction.
Green point Y1 denotes the starting point of the trajectory, while the
blue one indicates the goal G. The red point illustrates the antipodal
point of the goal. The figure shows G-DMP while executing a tra-
jectory that (a) does not contain an antipodal of the goal G, and (b)
contains an antipodal of the goal.

where the last inequality holds if βz > 0. Therefore,342

V̇(Y ,Z) ≤ 0 everywhere in the chart and vanishes only343

at Z = 0. The LaSalle’s invariance theorem [43] allows344

to conclude the stability of (29)–(30).345

Remark 1. The results of Theorem 1 hold where the346

logarithmic map is uniquely defined, e.g., TYl−1M can347

be extended as much as it will not contain points con-348

jugate to Yl−1 [44]. For manifolds with no cut-locus,349

this holds everywhere. Hence, Theorem 1 is globally350

valid on manifolds with no cut-locus (e.g., the manifold351

of SPD matrices with positive definite eigenvalues [37]).352

However, for manifolds with cut-locus (e.g., unit m-353

sphere manifolds [35]), the logarithmic map LogY (G)354

is defined in a region that does not contain points con-355

jugate to G. For the unit m-sphere, the logarithmic map356

LogY (G) is uniquely defined everywhere apart from the357

antipodal point −G.358

For illustration, we used the proposed G-DMP to359

learn two trajectories; (i) the “N” shape on S2 provided360

in [33] (Fig. 2a), and (ii) a “C” curve with π diameter361

(Fig. 2b). The “N” trajectory covers both the north and362

south hemispheres and, as shown in [33], working on363

the Lie algebra will introduce large distortions. More-364

over, the “N” shape is an antipodal free trajectory, such365

that Y = {Yl}T−1
l=1 ∈ S2 | |Yl ·G| < 1. However, the366

“C” curve includes the antipodal of G. Figure 2a shows367

G-DMP successfully reproducing the shape and con-368

verges to the goal (blue point). However, in (b), it fails369

to follow the trajectory when it encounters the antipodal370

of the goal (point in red). G-DMP is supposed to follow371

the trajectory in the direction of the black arrow starting372

8
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the green point. However, it follows the trajec-
until the antipodal point, then returns back to reach
oal from the opposite direction. A possible way to
this issue is to split the trajectory into segments.

he example in Fig. 2b, this can be done by splitting
rajectory into 2 segments, namely Y1 to Y2, and Y2
, where Y2 is any point in the demonstration be-
n −G and −Y1. One can then fit 2 separate G-DMP
moothly merge them [19].

G-DMP on Riemannian manifold products
t us define Y ∈ M and U ∈ N as two arbitrary

ctories from two Riemannian manifoldsM and N ,
ctively. Let us call H = {tl, (Yl,Ul)}Tl=1 the set of
points in one demonstration. We can now define
omposite G-DMP as

V̇ = αz(βzLog(Y ,U) (GY,GU) −V) + F (x), (33)

Ḣ = V, (34)

e V ∈ T(Yl,Ul)(M × N) and Log(Y ,U) (GY,GU) is
ogarithmic map that maps the attractors GY ∈ M
GU ∈ N from the manifold composite M × N to
angent space T(Yl,Ul)(M×N) at each time-step.
s an illustrative example, consider the pose of the
effector of a robot, which can be represented as

artesian product of the hypersphere S3 and 3D-
idean space R3, i.e.,H = S3 ×R3. It is worth men-
ng that the pose of the end-effector of a robot can
ternatively represented as a homogeneous transfor-
on matrix H ∈ SE(3) using the Lie group theory
ulation [45]; however, in this work, we exploit the
esian product property of Riemannian manifolds.

ark 2. The stability of manifold composites
MP formulation in (33) and (34) can be straight-
ardly proven by applying Theorem 1 separately to
nd N .

alidation

e validated the proposed G-DMP in simulation as
as in real setups. More in detail, we performed the
wing evaluations:

In simulation:

– We augmented two public datasets; 2D-
LASA handwriting dataset [5] and 2D-
Letters handwriting dataset [33] with data
samples from three Riemannian manifolds
(unit quaternion, rotation matrix, and sym-
metric and positive definite matrix).

– We compared G-DMP with the baseline ap-411

proaches [9] and [18].412

– Learning manipulability ellipsoids and posi-413

tion by learning R2 × S2
++ with G-DMP.414

– Goal switching simulation.415

• In real experiment:416

– Refilling a watering can by learning R3×S3×417

S3
++ with G-DMP.418

– Picking from different boxes task by learning419

R3 × S3
++ with G-DMP.420

We have created one by modifying the 2D-LASA421

and the 2D-Letters datasets. Mainly, we extended both422

datasets to include S3,SO (3), and S2
++ along with the423

original R2. The 2D-LASA handwriting dataset con-424

tains 30 classes of 2D Euclidean motions starting from425

different initial points and converging to the same goal426

[0, 0]>. Each motion is demonstrated 7 times. A demon-427

stration has exactly 1000 samples and includes position,428

velocity, and acceleration profiles. On the other hand,429

the 2D-Letters handwriting dataset contains 26 letters430

of 2D Euclidean motions starting from different initial431

points and ending to different goals. Each motion is432

demonstrated 10 times. A demonstration has exactly433

200 samples and includes position, velocity, and accel-434

eration profiles.435

The key idea to generate Riemannian data from Eu-436

clidean points is to consider each demonstration as an437

observation of a motion in the tangent space of a given438

Riemannian manifold. This allows us to use the expo-439

nential map to project the motion onto the manifold.440

In both datasets, demonstrations are in 2D (xy-plane),441

however, in order to create the 3D tangent space for both442

S3 and SO (3), we added a z-axis to each demonstration443

as an average of x- and y-axes. As a result, we obtain S3
444

and SO (3) demonstrations for each demonstration from445

both datasets.446

In order to create SPD training data profiles, we447

followed different strategies and used the 2D-LASA448

dataset to generate covariance matrix profiles and the449

2D-Letters dataset to generate manipulability profiles.450

More in detail, we first fit a GMM for each class of the451

2D-LASA dataset. We then used GMR to retrieve a 2×2452

covariance matrix profile. This covariance matrix pro-453

file served as SPD training data for G-DMP. Instead,454

for the 2D-Letters dataset, we placed the base of a 3-455

DoF 2D-manipulator at [0, 0]>, and determined the ma-456

nipulability profile of the manipulator while it tracks the457

Cartesian trajectory of each demonstration. This manip-458

ulability profile served as SPD training data forG-DMP.459

9



Journal Pre-proof

-40

-20

0

20

P

0

0.5

1

Q
el

em
en

ts

0

0.5

1

R
el

em
en

ts

0

10

20

C
el

em
en

ts

Figur
quate
first-d
colum
solid

5.1.460

In461

fied462

man463

Thes464

spon465

of th466

of th467

the d468

G-D469

time470

the 3471

the G472

each473

the p474

of S475

file o476

rotat477

lustr478

2A
in this
del re
 Jo

ur
na

l P
re

-p
ro

of

0 5 100
0.02
0.04
0.06
0.08

-20 10
x

-20

0

20

y

PG-DMP

Pdemo

er
ro

r

0 5 10 0 5 10
-20

0

20

Ṗ
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e 3: Illustrates the performance of G-DMP when executing Riemannian LASA dataset. 1st row: Euclidean 2D trajectory. 2nd row: Unit
rnion trajectory. 3rd row: Rotation matrix trajectory. 4th row: SPD trajectory. 1st column: Trajectories from different manifolds. 2nd column:
erivative in different manifolds. 3rd column: The distance in each manifold between the demonstration and the G-DMP reproduction. 4th

n: The Cartesian representation of the G-DMP reproduction. In 1st and 2nd columns, dashed lines represent demonstration data while colored
lines represent the G-DMP results.

Validation using Riemannian LASA dataset
order to validate the accuracy of the proposed uni-

DMP formulation, we created 4 tests in 4 different
ifolds, P ∈ R2, Q ∈ S3, R ∈ SO (3), and C ∈ S2

++.
e are illustrated in Fig. 3 where each row corre-
ds to a particular manifold. The leftmost column
e figure represents the evolution of the elements
e profile over time2. Dashed black lines represent
emonstration and colored lines the reproduction of
MP. The second column corresponds to the 1st-
-derivative of the profiles in each manifold, while
rd column shows the error or the distance between
-DMP profile and the demonstration profile for

manifold. The last column (rightmost) shows what
rofile looks like in Cartesian space. In the case

3, we rotate the 3D-frame of the 3D-Cartesian pro-
f the G-shape, while in SO (3) we show the frame
ing around [0, 0, 0]>. In the case of the S2

++, we il-
ated the covariance matrices over the 2D-Cartesian

s SPD matrices are symmetric, and for visualization purposes,
figure we visualize the SPD by plotting the corresponding Man-

presentation.

profile of the G-shape. The results shown in this fig-479

ure demonstrate the accuracy of the proposed G-DMP480

to reproduce the desired trajectory profiles in different481

manifolds.482

5.2. Comparison with [9]483

The proposed G-DMP is rigorously derived in484

Sec. 4.1 starting from a generic second-order dynam-485

ics evolving on a manifold. Therefore, our formulation486

is mathematically correct and it does not exhibit the os-487

cillatory behaviors described in [9]. In addition to the488

mathematical derivation, we provide in this simulation489

an experimental comparison to support our claim.490

More in detail, we compared our G-DMP against491

the quaternion-based DMP proposed in3 [9]. We492

used the same simulated unit quaternion trajectory,493

where the initial and final quaternions are Q0 =494

[−0.0092 − 0.7126 0.7015 0.0090]> and Qg =495

[0.8104 0.3364 0.2141 0.4293]>. Moreover, we used496

3We thank Leonidas Koutras for sharing with us the implementa-
tion and test trajectory of their work in [9].
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e 4: G-DMP execution of the same unit quaternion trajectory
in [9]. The first three rows show the error between the current
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ows show the evolution of each unit quaternion element, over
toward the goal and new goal. Dashed black lines represent
ation related to the demonstration trajectory.

ame DMP parameters, e.g., αz = 60, N = 60,
αx = 4.6052. Top-left column of Fig. 4 shows
evolution of the quaternion error computed be-
n the current (from G-DMP) and goal quaternions
gh eQ = 2LogQ

(
Qg

)
. The top-right column shows

volution of the error toward a new goal Qnew
g =

42 0.5414 − 0.0343 0.3897]>. The bottom 4 plots,
the evolution of the trajectories of unit quaternion

ents toward the original goal and the new one. This
e shows the accuracy of the proposed G-DMP to
de and execute a challenging unit quaternion tra-
ry. Moreover, it is clear that G-DMP successfully
rms a goal-switching task.

gure 5 compares the accuracy of our G-DMP with
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lines).

the approach proposed in [9]. The bottom plot shows511

that the proposed G-DMP is more accurate.512

Furthermore, the computational complexity during513

execution, particularly in terms of step time, remains514

compatible with control frequencies. Specifically, the515

means of the computational cost exhibited by [9] and516

G-DMP at each control cycle are 0.04 ms and 0.1 ms,517

respectively. We also consider a baseline approach that518

uses the classical DMP and performs an extra normal-519

ization of the output. For the baseline, the mean compu-520

tational cost for integrating and normalizing the output521

to reproduce a unit quaternion is 0.008 ms per time step.522

This indicates that all considered approaches can com-523

fortably operate at frequencies exceeding 1 kHz, ensur-524

ing real-time responsiveness in robotic control applica-525

tions.526

5.3. Comparison with [18]527

To illustrate the difference between our new for-528

mulation in (17)–(18) and our previous formulation529

described in [18], where parallel transport was em-530

ployed, we have conducted an experiment where both531

approaches executed 20 S2
++ trajectories of the modi-532

fied Riemannian LASA dataset (Sec. 5). Figure 6 shows533

bar plots for computational time required for both ap-534

proaches to learn and execute complete trajectories, and535
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og-Euclidean distance [46] between the generated
profiles and the ground truth demonstrations.
sults in Fig. 6 show that employing parallel trans-
provides slightly more accurate results, as evi-
ed by the reduced log-Euclidean distance from the
nd truth demonstrations. However, this improve-
t comes at a significant computational cost, as indi-

by the increased computational time required for
approach. For instance, the mean of the computa-
l cost exhibited by [18] and G-DMP at each control
are 0.09 ms and 0.04 ms, respectively.
Fig. 7 we observe how this computational cost in-
es exponentially with the approach in [18] as prob-

dimensions increase. Though [18] exhibits a slight
ovement in accuracy, this must be weighed against
ightened computational demands. In this example,

xecuted both approaches, in [18] and G-DMP, over
PD trajectories with dimensions ranging from S2

++

to S20
++, providing a comprehensive comparison.554

This trade-off between accuracy and computational555

efficiency is an important consideration in the selection556

of the appropriate formulation for specific applications.557

For tasks where computational resources are abundant558

and accuracy is paramount, the parallel transport ap-559

proach may be preferred. However, the new formula-560

tion offers a more efficient alternative without penaliz-561

ing the accuracy for real-time applications or scenarios562

with limited computational resources. Finally, it is im-563

portant to note that, while the approach in [18] is specif-564

ically designed for SPD matrices, our G-DMP frame-565

work is applicable to any Riemannian manifold.566

5.4. Learning manipulability ellipsoids567

The manipulability of a robotic arm provides an an-
alytical way to evaluate the manipulator’s ability to
change its end-effector pose from a certain joint con-
figuration. Manipulability can be illustrated as an ellip-
soid in 2- or 3-D Euclidean space. Mathematically, the
manipulability of a robotic arm is computed from the
forward kinematics

Ṗ = JJ̇ , (35)

that relates task velocity Ṗ ∈ Rm and the joint velocity
J̇ ∈ Rn through the Jacobian matrix J ∈ Rm×n. By
considering, in (35), only the joint velocity with unit
norm, i.e.,

∥∥∥J̇
∥∥∥ = J̇>J̇ = 1, we obtain

J̇>J̇ = Ṗ>(J†)>J+Ṗ = P>
(
JJ>

)† Ṗ, (36)

which defines a point on the surface of an ellipsoid568

in the end-effector velocity space. The SPD matrix569

Υ =
(
JJ>

)† ∈ Sm
++, called manipulability ellipsoid,570

gives an intuition of the directions where the manipu-571

lator can move its end-effector at large/small velocities.572

Here we propose to use a toy example similar to
the one in [47] to evaluate our G-DMP formulation
while operating SPD data profiles. One demonstration
Ξ = {tl,Υl}Tl=1 is obtained by performing a tracking task
with a 3-DoF manipulator. Let us call P the Cartesian
position trajectory of the robot end-effector. The de-
sired position trajectory P̂ is then tracked by a 5-DoF
robot. The force F needed to perform the tracking task
is computed using the following control law originally
proposed in [47]

τd = J>F −
(
I − J>J̄>

)
αOgt(J ); α > 0, (37)

where J̄ is the inertia-weighted pseudo-inverse of J and
τd is the desired joint torque. The cost function gt(J ) is

12
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ed as

gt(J ) = log
det


Υ̂t + Υa,t(J )

2




− 1
2

log
(
det

(
Υ̂tΥa,t(J )

)), (38)

e Υa,t(J ) are the actual and Υ̂t the desired manip-
ility ellipsoids, respectively. Υ̂t are generated using
roposed G-DMP.
e results of this procedure, applied to track a 2-

-shape Cartesian trajectory, are shown in Fig. 8.
re 8(top-left) shows that the desired manipulability
le (green ellipses) smoothly and accurately follows
emonstrated manipulability profile (gray ellipses)

e the 5-DoF robot was performing the tracking task.
lar results are shown in Fig. 8(bottom), but consid-

the time evolution of desired and demonstrated
ipulability ellipsoids. Figure 8(top-right) depicts
PD manifold (a cone) and the geodesic curve of
esired and demonstrated manipulability profiles.
G-DMP successfully and accurately followed the
onstrated Cartesian trajectory along with the ma-
lability profile, in its composite Riemannian form
S2

++, and converged to the goal.
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Figure 9: G-DMP adapts the stiffness profile to a new goal using
the mechanism of goal switching (28). Gray ellipsoids represent the
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the red one denotes the new goal ellipsoid. Top-Left: The evolution of
G-DMP over a Cartesian trajectory. Bottom: The evolution of G-DMP
over time. Top-Right: The evolution of the spring forces while track-
ing the Cartesian trajectory.

5.5. Goal switching591

In order to evaluate the proposed G-DMP formula-592

tion characteristics under goal switching, we used it to593

drive an virtual-Mass Spring-Damper (MSD), with a de-594

signed variable stiffness profile, along a specific Carte-595

sian trajectory. The variable stiffness profile is designed,596

such that, it starts with, horizontally-aligned stiffness597

ellipsoid, [622.9934 39.9577; 39.9577 79.5444],598

then we rotated it gradually 90◦, through R>KR599

(R is a rotation matrix), until it ends up with,600

vertically-aligned stiffness ellipsoid, [79.5444 −601

39.9577; −39.9577 588.2443]. This stiffness profile602

K ∈ S2
++ is our demonstration, the gray ellipsoids603

in Fig. 9(top-left), along with the Cartesian trajectory604

P ∈ R2, solid black curve. In this simulation, G-DMP605

encodes the composite Riemannian manifolds R2×S2
++.606

During the execution, we estimated the spring forces607

f s while tracking the Cartesian trajectory. The G-DMP608

reproduction, in the first execution, has been success-609

fully converged to the original goal, dashed lines in610

Fig. 10(bottom). In the second execution, we switched611

to a new stiffness goal [200 0; 0 200], red ellipsoid in612

Fig. 9, at the middle of the execution. From Fig. 10(top),613

we can see the error between G-DMP stiffness result,614

at each time step, and the new stiffness goal converges615

to zero (the solid red line), which indicates that the616

G-DMP converges accurately to the new stiffness goal.617
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Robot experiments
e evaluated the proposed approach on a 7 DoF
ka Emika Panda robot with two experiments,
ely picking from different boxes and refilling a wa-
g can. In order to perform these tasks, the robot
to continuously modulate its position, orientation,
ess, and/or manipulability. In real settings, orien-

n trajectories are often collected from demonstra-
with a real robot. This requires a preprocess-

step to extract unit quaternions from a trajectory
tation matrices. The step is needed because the
t’s forward kinematics is typically expressed as a
ogeneous transformation matrix [48]. Numerical
oaches to continuously compute quaternions from
ion matrices may return a quaternion at time t and
tipodal at t + 1, since antipodal quaternions repre-
the same rotation. The resulting discontinuity can
oided by checking that the dot product qt · qt+1 > 0
eplacing qt+1 with −qt+1 otherwise.

. Refilling a watering can
this experiment, the robot had to refill a watering
y immersing it in a tray full of water (see Fig. 11).

erform the task, the robot was controlled using the
esian impedance control law

p = K p

(
Pdmp −P

)
+Dp

(
Ṗdmp − Ṗ

)
,

o = Ko LogQ
(
Qdmp

)
+Do

(
Wdmp −W

)
,

(39)

e the subscript p indicates position and o orienta-
The measured end-effector position and orienta-

tion (unit quaternion) are indicated by P and Q respec-
tively, and the corresponding linear and angular veloc-
ities are Ṗ and W. The desired trajectories Pdmp and
Qdmp, as well as the variable stiffness matrixK p and the

desired velocities
(
Ṗdmp

andWdmp
)
, were generated

with the proposed G-DMP. The orientation stiffness
was kept constant at Ko = 150 I Nm/rad. The damping
matrices Dp and Do were computed from the respec-
tive stiffness matrices using the double diagonalization
approach [49]. The robot was controlled at 1 KHz using
the joint torques

τd = J>
[F p

F o

]
, (40)

where J> is the transpose of the manipulator Jacobian638

and the Cartesian forces F p and F o are defined as639

in (39).640

Desired position, velocity, and stiffness profiles were641

learned using the proposed G-DMP. In order to esti-642

mate a variable stiffness profile, we collected 5 kines-643

thetic demonstrations containing end-effector positions,644

velocities, accelerations, and sensed forces. These data645

were used through the interaction model proposed in646

[16] to estimate the variable stiffness profile shown in647

Fig. 11 (bottom). Positions and unit quaternion trajecto-648

ries were learned from a single demonstration, obtained649

by averaging the 5 used to obtain the stiffness profile.650

The results in Fig. 11 show that the proposed G-DMP651

formulation is capable of learning complex trajecto-652

ries evolving on composite Riemannian manifolds R3 ×653

S3 ×S3
++ while fulfilling the underlying geometric con-654

straints, i.e., unit norm in variable orientation and sym-655

metry and positive definiteness in variable stiffness pro-656

files.657

5.6.2. Pick from different boxes658

In this experiment, the robot had to enter 3 boxes659

placed at different locations, mimicking a pick from660

each of the boxes (see Fig. 12). The experiment was661

designed to show that geometry-aware DMPs can i) ef-662

fectively encode manipulability profiles and ii) change663

the goal after the learning.664

We provided a kinesthetic demonstration to make the665

robot enter box 1 while collecting end-effector position666

and joint trajectories. As detailed in Sec. 5.4, collected667

trajectories were used to learn position and manipulabil-668

ity profiles using geometry-aware DMPs. At run time,669

the robot was controlled using the control law (37) to670

track the DMP position as main task and to exploit its671

redundant DoF to follow the desired manipulability pro-672

file. As shown in Fig. 12 (top), the robot followed ac-673
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e 11: Results for the refill of a watering can experiment. Top:
obot correctly performs the task. Bottom: Position, orientation,
iffness profiles.

tely both position and manipulability profiles and
essfully entered box 1.
order to experimentally verify the generalization

bilities of geometry-aware DMPs, we repeated the
riment by entering two boxes placed at different lo-
ns wrt box 1. To measure the new goal, we man-
placed the robot inside the boxes and stored its

effector position. As shown in Fig. 12 (middle)–
om), the robot reached the new position goals in-
box 2 and 3. As already mentioned, the manipula-

profile was tracked in the null-space of the posi-
task, which introduces an error between the planned
executed manipulability profiles. However, in this

null-space tracking was sufficient to preserve a
configuration that let the robot enter boxes 2 and

thout collision.
verall, the results in Fig. 12 show that the proposed
MP formulation is capable of learning complex tra-
ries evolving on the composite Riemannian mani-
R3 × S3

++ while fulfilling the underlying geometric
traints, i.e., symmetry and positive definiteness in

variable manipulability profiles.695

6. Conclusion696

In this paper, we have exploited Riemannian geom-697

etry to derive a new formulation of DMP that is capa-698

ble of learning and reproducing robot skills evolving699

on any Riemannian manifold. Our new formulation,700

Geometry-aware DMP (G-DMP), is manifold indepen-701

dent and allows us to treat data belonging to different702

manifolds in a unified manner. It also preserves the703

underlying geometric constraints during both learning704

and reproduction without pre- or post-processing of the705

data. Moreover, it preserves the properties of the clas-706

sical DMP formulation such as convergence to a given707

target and the possibility to change the target at run-time708

(goal switching).709

G-DMP has been extensively validated through mul-710

tiple simulation examples and two experiments on a real711

robotic manipulator. For simulation, we augmented two712

Euclidean datasets (2D-Letters and LASA handwriting)713

with data samples from three Riemannian manifolds714

(S3, SO (3), and S2
++). We showed that G-DMP can ac-715

curately learn profiles evolving on such manifolds while716

converging to a (possibly changing) goal. Moreover, a717

comparison with a baseline approach was conducted on718

a unit quaternion trajectory. In this case, G-DMP shows719

improvement by avoiding slight jumps at the beginning720

of the trajectories. Finally, real experiments show the ef-721

fectiveness of G-DMP in encoding data from manifolds722

such as orientation, and SPD matrices.723

In the future, we propose to integrate our approach724

with iterative learning algorithms—for example itera-725

tive learning control—in order to adapt to different situ-726

ations and perform more complex tasks such as physical727

interaction control. Moreover, extending exploration-728

based learning methods to Riemannian manifolds is an729

open research problem. These methods are crucial when730

a robot needs to significantly adapt its behavior to a new731

situation by considering the data directly on its corre-732

sponding manifold. This will allow us to successfully733

exploit G-DMPs in a large diversity of task situations.734

Appendix A. Characterization of Used Manifolds735

Appendix A.1. The SPD manifold Sm
++736

As early mentioned, SPD matrices is important in737

robotics as it encapsulate different types of data. The738

space Sm
++ is defined as the space of m × m Symmet-739

ric Positive Definite matrices. This space is not closed740

under scalar product and addition [37], thus, we cannot741
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lassical Euclidean arithmetic operators to manip-
these matrices. Alternatively, we can equip SPD

ices with A Riemannian metric in order to form a
annian manifold [37].

ote that the space Sm
++ can be represented as the in-

r of a convex cone embedded in its tangent space of
etric m × m matrices SYMm.

r Q,U ∈ Sm
++ and v ∈ TUSm

++, the logarithmic and
nential maps (8) and (9) can be defined as in [37]

v = LogU(Q) = U
1
2 logm

(
U−

1
2 QU−

1
2

)
U

1
2 , (A.1)

Q = ExpU(v) = U
1
2 expm

(
U−

1
2 vU−

1
2

)
U

1
2 , (A.2)

e logm(·) and expm(·) are the matrix logarithm and
nential functions.

ndix A.2. The unit m-sphere manifold Sm

is a topological space embedded in Rm+1 Carte-
space, where Sm =

{
X ∈ Rm+1 : ‖X‖ = 1

}
. For

∈ Sm and v, r ∈ TUSm then, the logarithmic and
nential maps (9) and (8) are defined as in [50]

v = LogU (Q) =
Q − (U>Q)U
‖Q − (U>Q)U‖d(U,Q),(A.3)

Q = ExpU (v) = U cos(‖v‖) +
v
‖v‖ sin(‖v‖),(A.4)

e d(U,Q) ≡ arccos(Q>U) defines the geodesic dis-
between Q and U.

Appendix A.3. The unit quaternions group S3
760

One way to describe the robot’s end-effector orienta-761

tion, in 3D-space, is to use unit quaternion representa-762

tion. For Q,U ∈ S3 and v, r ∈ TUS3 ≡ R3, where S3 is763

a unit sphere in R4, Q = νq + uq, νq ∈ R, and uq ∈ R3.764

The logarithmic and exponential maps (8) and (9) are765

v = LogU (Q) = Log
(
Q ∗ Ū

)

=


arccos(ν) u

||u|| , u , 0
[0 0 0]>, otherwise.

(A

Q = ExpU (v)

=



[
cos(||v||) + sin(||v||) v

||v||
]
∗ U, v , 0

[
1 + [0 0 0]>

] ∗ U, otherwi

(A

where Q ∗ Ū = ν + u ∈ S3, and v ∈ R3 is treated as a766

quaternion with ν = 0.767

Appendix A.4. The special orthogonal group SO (m)768

SO (m) is a subgroup of the orthogonal group O(m)769

where its determinant is 1. Let us define R1,R2 ∈770

SO (m) and v ∈ TR1SO (m), then the logarithmic and771

exponential maps (9) and (8) are defined as in [50]772

v = LogR1
(R2) = logm

(
R1
>R2

)
, (A.7)

R2 = ExpR1
(v) = expm (v) R1. (A.8)
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ndix A.5. The rotation group SO (3)

aditionally, orientations, in 3D-space, were repre-
d through rotation matrices in SO (3) = {R ∈
: |R| = 1,R>R = RR> = I} which are widely
in robotics. Let us define R1,R2 ∈ SO (3) and
R1SO (3), then (8) will be [51]

v = LogR1
(R2) = Log

(
R2R1

>) = Log (R)

=


[0, 0, 0]>, R = I
ω = θn, otherwise,

(A.9)

e

arccos
(

trace(R) − 1
2

)
, n =

1
2 sin (θ)


r32 − r23
r13 − r31
r21 − r12



9) will be

R2 = ExpR1
([v]×)

=

(
I + sin(θ)

[v]×
||v|| + (1 − cos(θ))

[v]2
×

||v||2
)

R1,
(A.10)

ote that the mappings in (A.5)–(A.6) and in (A.9)–
0) are computed using Lie group theory as unit
ernions and rotation matrices form a Lie group

In particular, the mappings are based on the tan-
space placed at the identity element (the so-called
lgebra), and the product operations are used to par-
transport vectors from the Lie algebra to the tan-
space placed at a different point (U or R1). We
the term Riemannian through the paper since ev-
ie group equipped with a Riemannian metric is a
annian manifold, but not vice versa.

nowledgements

is work is supported in part by Basque Govern-
t (ELKARTEK) projects Proflow KK-2022/00024
HELDU KK-2023/00055, in part by the European
n project INVERSE (GA No. 101136067), and

art by CHIST-ERA project IPALM (Academy of
nd decision 326304). Real experiments were con-

ed at the Department of Computer Science, Univer-
of Innsbruck, Austria.

rences

S. Schaal, Is imitation learning the route to humanoid robots?,
Trends in Cognitive Sciences 3 (6) (1999) 233–242.
A. Billard, S. Calinon, R. Dillmann, Learning from Humans,
2016, pp. 1995–2014.

[3] H. Ravichandar, A. S. Polydoros, S. Chernova, A. Billard, Re-805

cent advances in robot learning from demonstration, Annual806

Review of Control, Robotics, and Autonomous Systems 3 (1)807

(2020) 297–330.808

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal,809

Dynamical movement primitives: learning attractor models for810

motor behaviors, Neural Computation 25 (2) (2013) 328–373.811

[5] S. M. Khansari-Zadeh, A. Billard, Learning stable non-linear812

dynamical systems with gaussian mixture models, IEEE Trans-813

actions on Robotics 27 (5) (2011) 943–957.814

[6] S. M. Khansari-Zadeh, A. Billard, Learning control Lyapunov815

function to ensure stability of dynamical system-based robot816

reaching motions, Robotics and Autonomous Systems 62 (6)817

(2014) 752–765.818

[7] A. J. Ijspeert, J. Nakanishi, S. Schaal, Learning rhythmic819

movements by demonstration using nonlinear oscillators, in:820

IEEE/RSJ International Conference on Intelligent Robots and821

Systems, Lausanne, Switzerland, 2002, pp. 958–963.822
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