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Abstract

Learning from demonstration (LfD) is considered as an efficient way to transfer skills from humans to robots. Tra-
ditionally, LfD has been used to transfer Cartesian and joint positions and forces from human demonstrations. The
traditional approach works well for some robotic tasks, but for many tasks of interest, it is necessary to learn skills
such as orientation, impedance, and/or manipulability that have specific geometric characteristics. An effective encod-
ing of such skills can be only achieved if the underlying geometric structure of the skill manifold is considered and the
constrains arising from this structure are fulfilled during both learning and execution. However, typical learned skill
models such as dynamic movement primitives (DMPs) are limited to Euclidean data and fail in correctly embedding
quantities with geometric constraints. In this paper, we propose a novel and mathematically principled framework
that uses concepts from Riemannian geometry to allow DMPs to properly embed geometric constrains. The result-
ing DMP formulation can deal with data sampled from any Riemannian manifold including, but not limited to, unit
quaternions and symmetric and positive definite matrices. The proposed approach has been extensively evaluated both
on simulated data and real robot experiments. The performed evaluation demonstrates that beneficial properties of
DMPs, such as convergence to a given goal and the possibility to change the goal during operation, apply also to the
proposed formulation.

Keywords: Motor control of artificial systems, Movement primitives theory, Dynamic movement primitives,
Learning from demonstration, Riemannian manifolds

1. Introduction 14 robot to enrich its skills via human guidance. Among
15 the existing approaches [2, 3], the idea of encoding
Reliable execution of robotic tasks in highly unstruc- 1 robotic skills into stable dynamical systems has gained
tured and dynamic scenarios is fundamental to bring- 7 interestin the LfD community [4, 5, 6]. Dynamic Move-
ing robots into human-inhabited environments. In such s ment Primitives (DMPs) [7] are one of the first and most
environments, robots need to accurately control their 1s popular dynamical system-based approaches for LfD.
motion in free space as well as during physical inter- 2 DMPs are capable of encoding both discrete and peri-
actions, which requires the capability to generate and =1 odic robotic skills into time-dependent systems. Dis-
adapt online reference behaviors in the form of motion, 22 crete skills, also referred to as point-to-point motions,
impedance, and/or force trajectories. Therefore, an ef- 22 constist of motion trajectories with a fixed start and end
fective encoding of diverse trajectory data is the key to 2« point (goal) and are well-suited to represent many hu-
spreading robotic solutions in everyday environments. 25 man daily tasks such as picking and placing objects.

The Learning from Demonstration (LfD) paradigm The original DMP formulation considers one Degree
[1] aims to develop learning solutions that allow the , of Freedom (DoF) trajectories. Multi-DoF trajectories
2s are learned separately for each DoF and synchronized
2 by a common phase variable. This strategy is effective

Email addresses: fabudakka@mondragon . edu w0 for .egcodin.g inde.pendent.skius li.ke joint. or Cartesian
(Fares J. Abu-Dakka), matteo.saveriano@unitn. it a1 position trajectories, but it fails if the different DoFs
(Matteo Saveriano), ville.kyrki@aalto.fi (Ville Kyrki) s are mutually dependent. This situation is common in
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robotics, where variables of interest may be interre-
lated by geometric constraints. Examples of such vari-
ables include: (i) orientation representations, like rota-
tion matrices [8] or unit quaternions [8, 9, 10], and (ii)
inertia [11], manipulability [12, 13, 14], stiffness, and
damping [15, 16] that are encapsulated in Symmetric
Positive Definite (SPD) matrices. For variables interre-
lated by geometric constraints, the embedding strategy
has to be modified to fulfill the constraints during both
training and execution.

Several robotic skills consist of a combination of vari-
ables belonging to different manifolds. A simple exam-
ple is a pose trajectory where the position lies in Carte-
sian space and the orientation is represented e.g., as
unit quaternions. To avoid accuracy loss, Riemannian
metrics should be embedded in the DMP formulation,
allowing the consideration of all the constraints aris-
ing from various geometric structures in a unified and
consistent manner. This is not possible with existing
DMP formulations [4, 8, 9, 17, 18], which are space-
dependent.

In this paper, we propose Geometry-aware DMP
(G-DMP), a new formulation that uses differential ge-
ometry to extend classical DMP for Euclidean data to
other Riemannian manifolds. This extension allows dis-
crete DMPs to effectively represent data evolving on
different Riemannian manifolds, which subsequently al-
lows the generation of smooth trajectories for data that
do not belong to the Euclidean space. The formulation
allows to encode various forms of point-to-point ma-
nipulation skills with specific geometric constraints in
a unified and manifold independent manner. The gen-
eral formulation provided in this paper can be applied
to any trajectory of data by considering the correspond-
ing Riemannian manifold. The effectiveness of the pro-
posed approach is demonstrated both on synthetic data
and physical experimental setups.

Preliminary results of this work have been published
in [18], where we formulated DMP equations to learn
SPD data profiles. This paper adds several significant
novel contributions with respect to our published work:

1. A unified and mathematically principled frame-
work, G-DMP, that uses differential geometry to
extend classical DMPs to any Riemannian mani-
fold.

2. Exploitation of manifold composites to encode and
learn composite manifolds in one single DMP for-
mulation.

3. Proof of the stability of the proposed G-DMP.
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4. Formulation of G-DMP goal switching without the
need to use parallel transport.

5. An extensive evaluation and comparison with ex-
isting approaches.

6. Instructive and unified source codes accompany
the paper with all necessary datasets at https:
//gitlab.com/geometry-aware/ga-dmp.

This paper is organized as follows: Next section
presents the state-of-the-art. A background about stan-
dard DMPs and Riemannian geometry are given in
Sec. 3. Afterwards, we provide the theoretical founda-
tion of G-DMPs in Sec. 4. Subsequently, we evaluate
our approach in several experiments (Sec. 5). The work
is concluded in Sec. 6.

2. Related Works

LfD is a valuable framework to teach the robot new
skills without explicitly coding them. LfD framework is
effective in extracting relevant patterns from a few task
demonstrations and in generalizing these patterns to dif-
ferent scenarios. LfD has been deeply investigated and
several approaches have been developed in the litera-
ture. These include, among others, DMP [4, 20], Prob-
abilistic Movement Primitives (ProMP) [21], Gaussian
Mixture Models (GMMs) [22], and Kernelized Move-
ment Primitives (KMP) [10, 23].

In many previous works, training data are simply
treated as time series of Euclidean vectors. Other ap-
proaches, like [24] and [25], learn and adapt quater-
nion trajectories without enforcing the unit norm con-
straint, which leads to non-unit quaternions and hence
requires an additional re-normalization step. Neverthe-
less, several works in the literature have investigated,
to some extent, the problem of learning manipulation
skills with specific geometric constraints. Examples of
such skills include orientations, impedance, and manip-
ulability matrices that are encapsulated in SPD matrices.
The following paragraphs examine the state-of-the-art
approaches.

DMP-based approaches: For instance, Abu-
Dakka et al. extended the classical DMPs to encode dis-
crete [17] and periodic [26] unit quaternion trajectories,
while the work in [8] also considers different formu-
lation to cope with rotation matrices. The quaternion-
based DMPs were also extended to include the real-time
goal switching mechanism [8]. The stability of the ori-
entation DMPs is shown in [19]. In [9], authors pro-
posed a modified formulation of unit quaternion DMPs
to prevent oscillations that may arise in some cases.
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Table 1: Comparison among the state-of-the-art of DMP-based approaches and our G-DMP across different Riemannian manifolds: Euclidean
space of dimension m R™, unit quaternion space S>, m-unit sphere manifold S”, 3D-rotation matrices space SO (3), special orthogonal group in m

dimensions SO (m), and the space of m x m SPD matrices S7, .

Composite spaces

m 3 m m
R S S SO0@3) SOom) ST, eg, S xR

Ijspeert et al. [4,7] v - - - - - R
Ude et al. [8] - V4 - v - B Y
Koutras et al. [9], Abu-Dakka et al. [17],

. v - - - - -
Saveriano et al. [19]
Abu-Dakka et al. [18] - - - - - v N
Our G-DMP v v v v v v v

Abu-Dakka and Kyrki [18] reformulated DMPs to gen-
erate discrete SPD profiles, which is also able to adapt
to a new goal-SPD-point. There is an important concep-
tual difference, about how we fit a curve to data points
of a demonstration on a manifold, between G-DMP and
our previous work [18]. In [18], to fit a curve to data
points {P,}"_ ) on a Riemannian manifold M, we sought
acurve y : [fo,tr] — M that passed exactly through
each point of the demonstration trajectory. That as-
sumption does not guarantee proximity between each
pair of consecutive points, and, as detailed in Sec. 4.1,
this led to the need to use parallel transport to accu-
rately compute the covariance derivative. However, in
this paper, inspired by [27], we look for y to be suf-
ficiently straight while passing sufficiently close to the
data points at the given intervals. This lets us remove
the parallel transport operation, i.e., to approximate the
covariant derivative with the total derivative, resulting
in a more compact formulation and a more efficient im-
plementation of G-DMP.

Finally, unlike our unified formulation, the formu-
lations of all these previously mentioned approaches
are space-specific and do not consider the possibility
of treating data from different manifolds in a unified
and consistent manner. Table 1 compares our proposed
G-DMP and the state-of-the-art of the DMP-based ap-
proaches.

Alternative approaches: Point-to-point motions are
of particular interest in robotics as they form the ba-
sis of many everyday manipulation tasks. Therefore,
researchers have developed approaches alternative to
DMPs to represent point-to-point motions. Focusing
on variable orientation profiles, [28] extended GMMs
to represent the distribution of the quaternion displace-
ments. Starting from this extended GMM, the work
in [29] exploits the Riemannian structure of the unit
sphere to encode variable orientations into a geometry-
aware Task-Parameterized GMM (TP-GMM) [22].
KMP are extended to unit quaternions in [10] by pro-
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jecting orientation data onto the tangent space of the
unit sphere (which is locally Euclidean). Learning is
performed in the tangent space and generated data are
projected back to the manifold.

SPD matrices are used to encapsulate data in many
applications, including brain-computer interfaces [30],
transfer learning [31], diffusion tensor imaging [32], as
well as various robotic skills [33]. Alternative to DMP,
the method in [34] used a tensor-based formulation of
GMM and Gaussian Mixture Regression (GMR) on the
SPD that enabled learning and reproducing skills in-
volving SPD without additional data re-parametrization.
Recently, [14] proposed a kernelized treatment to learn
and adapt SPD profiles in the tangent space of the SPD
manifold.

G-DMP vs. state-of-the-art: The aforementioned
geometry-aware formulations are space-specific and do
not consider the possibility of treating data from differ-
ent manifolds in a unified and consistent manner. On
the contrary, our G-DMP formulation is general and can
be applied to any trajectory of data even when differ-
ent DoFs belong to different spaces. Moreover, DMPs
are one of the most popular LfD approaches and many
robotics applications rely on them. In this respect,
G-DMP provides a useful framework to let users already
familiar with DMPs to develop new applications.

3. Preliminaries

In this section, we briefly introduce the classical for-
mulation of discrete DMPs (Sec. 3.1) and define funda-
mental operations on Riemannian manifolds (Sec. 3.2).
Table 2 summaries the key notations used in this paper.

3.1. Dynamic Movement Primitives

DMP is composed of a system of nonlinear differ-
ential equations capable of encoding movements while
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Table 2: Key notations. Indices, super/subscripts, constants, and variables have the same meaning over the entire text.

mathcal - symbols 5 denote manifolds. bold mathcal sym- o denote trajectories.
eg, M bols e.g., P
:zlr:tsaL I;tt;r var - 4 denote points in a manifold. ZE:: elgettt;r var- - s denote points in a tangent space.
ToM 2 The Fangent space of a manifold M around " & L,
a point P
R £ Euclidean space of dimension m. S” £ Sphere manifold of dimension m.
SO (m) £ Special orthogonal group of dimension m. SE (m) £ Special Euclidean group of dimension .
SE, £ Space of m x m SPD. SYM" £ Space of m x m symmetric matrices.
N £ # of nonlinear basis functions i £ index:i=1,2,...,N
l £ index:1=1,2,...,T T £ Number of samples
"y » trajectory data and its 1st derivative in s » scaled velocity and acceleration in
i = classical DMP ’ = G-DMP
vy » trajectory data and its 1st derivative in z.7 » scaled velocity and acceleration in
’ ~  G-DMP ’ ~  G-DMP
@, B, X, £ Positive constant gains. x £ DMP phase variable.
f(x), F(x) £ forcing term for different spaces Wi £ adjustable weights
Y, £ Gaussian basis functions ¢; and h; £ centers and widths of ¥;
geRandGeM £ attractor point (goal) in different spaces JeM L g?v[\)/Mr;amfold trajectory generated by
guaranteeing convergence to a designated goal point (at- 215 close to the initial state, allowing for the reproduction

tractor) [20]. The foundational work on DMPs for dis-
crete, point-to-point, motions was first introduced by
Ijspeert et al. [7]. However, in order to generate move-
ments adaptable to new situations without inducing ex-
cessive accelerations or amplification, Pastor ef al. in-
troduced some modifications [24]. In this paper, we
adopt the formulation proposed by Pastor et al. . For
a single DoF trajectory y, the DMP system of equations
proposed in [24] is described as follows:

2= (B(g-y—(g—yo)x+ f(x)-2), (1)
Ty =z, @)
TX = —QX, 3)

where 7 is a positive scalar that represents the temporal
scaling factor and determines the overall duration of the
movement. y represents velocity and z denotes scaled
velocity. x is a phase variable, governing the dynami-
cal system’s evolution towards the attractor point. It is
used to avoid explicit time dependency in the formula-
tion. The canonical system, given by (3), is initialized
as x(0) = 1 and vanishes exponentially! as t — oo if
the gain @, > 0. B, and a, are positive gains that de-
fine the dynamical system’s behavior. In order to en-
sure a critically damped system, we choose @, = 4f..
The attractor (goal) point of the movement is denoted
by g. This system of equations prevents high accelera-
tions at the beginning of the motion or when the goal is

The minimum phase to execute a motion within Ty seconds can
be computed through x(T's) = exp(—%Tf),
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224

225
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of motions with the same initial and target states while
preventing over-amplifications and trajectory mirroring
effects when changing the goal.

The nonlinear forcing term f(x) is classically param-
eterized as a linear combination of N nonlinear radial
basis functions scaled by the phase variable x. f(x)
allows the dynamical system to preserve the shape of
any smooth trajectory, and subsequently, generate this
trajectory from an initial position yy to the attractor g.
Thus, f(x) is defined as:

SN wiPi(x)
O Mahia 4
f(x) ﬁl lPi(_X) x’ ( )
Wi(x) = exp (—hi (x — ¢)?). ®)

where w; are the weights adjusted based on measured
data to achieve the desired behavior. ¥;(x) are Gaussian
basis functions with centers ¢; and widths /;. For a given
number of basis functions N, centers ¢; and widths A; are
defined as follows:

1

i—1
c¢; = exp( ¥ 1), h;
wherei = 1,...,N. For each DoF.

In order to control multiple DoFs systems, such as
trajectories of joint angles of D DoF manipulator, we
consider a separate transformation system (1)-(2) for
each of the D DoFs to control. Additionally, we uti-
lize a single canonical system (3) shared across the D
transformation systems, which synchronizes their time
evolution.
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3.2. Riemannian manifolds

An m-dimensional manifold is a topological space
where each point locally resembles Euclidean space R™.
A differentiable manifold extends this notion to ensure
that at each point, there exists a tangent space. A Rie-
mannian manifold M is a smooth and differentiable
manifold where each tangent space is equipped with
a Riemannian metric tensor. This tensor, denoted as
(-, -)p, is a positive definite inner product defined on the
tangent space 7pM for every point P € M. The Rie-
mannian metric introduces the concept of length on the
manifold. By utilizing this metric, we can generalize the
notion of a “straight line” between two points by defin-
ing a geodesic as the shortest curve that connects two
points on a manifold. This geodesic allows for the trans-
portation of vectors between tangent spaces [35, 36]. A
geodesic y(¢) is defined as a continuously differentiable
curve that connects points A,B on the manifold M.
It locally minimizes the distance between these points,
and its length is given by the functional:

1
L) = fo G0, 7(0) dr. ©)

The distance between points A and B is then defined by
minimizing (6), i.e.,

dist(A, B) = min £5(y) (7

3.2.1. Mapping operators

The tangent spaces and their bases provide the abil-
ity to perform linear algebra. In order to perform com-
putations on the manifold while preserving distances, a
mapping system is needed to switch between the tan-
gent space 7pM and the manifold M, see Fig. 1. These
mapping operators are:

Figure 1: A Riemannian manifold M and its tangent space 7p M de-
fined at point P.
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o The logarithmic map (Logp (-)) is a function that
maps a point A € M into a point a € TpM (see
Fig. 1). It is defined as:

Logp (:): M > TpM, 3

o The exponential map (Expp () is the inverse of the
logarithmic map. It maps a point a € 7pM in the
tangent space of P to a point A € M such that A lies
on the geodesic starting from P in the direction of
a with distance of ||a|| = (a,a)p (see Fig. 1). It is
defined as:

Expp ():TpM = M, )
3.2.2. Cartesian products in Riemannian geometry

In Riemannian geometry, the Cartesian product of
two Riemannian manifolds M and N is also a mani-
fold denoted as M x N. This construction allows us to
combine the geometric structures of both M and N into
a single manifold.

For any points P; € M and U; € N, and their corre-
sponding tangent vectors p; € Tp,Mand u; € Ty, N,
the tangent space of M X N at the point (P;, Uy) is iso-
morphic to the direct sum of the tangent spaces of M
and N:

T, upMXN) =Tp M Ty, N, (10)

This means that any tangent vector at (P}, U;) can be
uniquely decomposed into a pair of tangent vectors, one
in 7p, M and the other in 7y, N.

To facilitate computations on the Cartesian product
manifold M X N, we require to redefine the mapping
operators in (8) and (9) as follows:

Log(Pl,Ul) (Pz,Uz) T MXN - 7~(P],U1)(M X N), (1 1)
EXp(P.,Ul) (p, ll) : 7~(P|,U1)(M X N) - MXN. (12)

This leads to
Py ) _ | Logp, (P2)
P]} U, Logy, (Uy)|’
P,

U,
( P ) _ Expp, (P2)
u Expy, (U2)|"
1

where (p,u) € T7p, uy)(Mx N) and (P,,U,) € Mx N.

Logep, u,) (P2, Uz) = Log

Expep, u)) (p,uw) = Exp

3.2.3. Computing in Riemannian manifolds

Let P;,P, € Mand p;,p, € R", then the reinterpre-
tation of basic standard operations (e.g., addition and
subtraction) in a Riemannian manifold are summarized
in Tab. 3.
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Table 3: Re-interpretation of basic standard operations in a Rie-
mannian manifold [37].
Euclidean space

Riemannian manifold

—
PP, = |-09p1 P,)

Subtraction p,p; =p, —p;

Additon  p,=p, + PP, P, = Expp, (PIPE)
Distance  dist(p;.p,) =l p, —p, I dist(P,,Py) =I| P, P, |lp,

Interpolation p(z) = p, + p,p, P(¢) = Expp, (zPle)

3.2.4. Riemannian geometric mean

Given a set of points {P;}.; € M and a geodesic
distance dist(P;,P;) between two points in M, the
Fréchet mean [38] is estimated by minimizing the sum

of squared geodesic distances

N
P=arg min > dist(P, Py, (13)
i=1

This estimation can be efficiently computed iteratively
by following Alg. 1 [38].

Algorithm 1 Intrinsic mean

Initialization: P = P,
1: while ||a]| < 6 do
2 a=L3Y Log (@)
3: l_’=Expl;(ea); e<l
4: end while

4. Proposed approach

In this section, we provide a generalized and unified
formulation for DMPs based on Riemannian geometry
in order to learn and adapt robot manipulation skills re-
gardless its corresponding space, for example orienta-
tion trajectories (SO 3) or 33), pose data (S&(3)), and
SPD profiles (S7,) such as stiffness, manipulability, in-
ertia. We also show that our G-DMP inherits desirable
properties of the original formulation like convergence
to a target and goal switching.

4.1. Geometry-aware DMPs formulation

In this section, we introduce the mathematical foun-
dations of G-DMP technique. The G-DMP formula-
tion offers a comprehensive and cohesive approach to
encode and execute a discrete trajectory Y = {1, Y,}ITZO,
commonly known as a point-to-point trajectory, which
evolves within the confines of a Riemannian manifold
M, where each Y, € M. Its attractor dynamics on

the manifold guarantee the convergence of Y toward a
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goal G € M regardless of the initial starting point Y.
To achieve this, it is necessary to transform the clas-
sical DMP system described by (1)-(2) into a unified
geometry-aware formulation utilizing principles from
Riemannian geometry. In pursuit of this objective, we
initiate the process by considering the expression of a
general second-order system evolving on a manifold, as
outlined by Fiori et al. [39]

VzZ=h(Z, Y,x),
Y =Z,

(14)
as)

where Z and Z represent the scaled first and second
derivatives of Y. The phase variable x is similar to
the one defined in (1) and (3). The covariant deriva-
tive VzZ can be defined from the total derivative Z
using parallel transport [39, 18]. However, computing
the parallel transport is, in general, time-consuming.
Assuming that consecutive points on the manifold are
sufficiently close, and the geodesic between them ap-
proximates a straight line, the covariant derivative can
be well approximated by manifold-valued finite differ-
ences [40, 27]. This approximation significantly sim-
plifies the computation process while introducing neg-
ligible errors. Thus, in this work, we consider the ap-
proximation VzZ ~ Z. The function h(-) may encom-
pass multiple additive contributions. In this study, we
assume that

h(Z,Y,x) = az( Z(Logy G)

- Logy, (G)x+F())-Z). (16

where G € M is the goal point. The function Log,, (-)
is defined in (8). Additionally, positive gains «, and 3,
are introduced. The term —«,Z represents a dissipative
force that plays a similar role to damping in a mechan-
ical system. The term a.(8; Logy (G)) corresponds to
conservative force and can be interpreted as the nega-
tive gradient of a potential. This can be demonstrated
by considering that —%Vydist2 (Y, G) = Logy (G) [39],
where dist(-,-) denotes the Riemannian distance. Fi-
nally, the term ¥ (x) represents a phase-dependent forc-
ing term which is learned from the demonstration and
will be further discussed in this section.

Consequently, we can redefine the dynamic system
presented in (1)—(2) as follows

7Z = a. (. (Logy (G)
— Logy, (G)x+ F(x)) - Z).
Y =2

arn
(18)
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The forcing term ¥ (x) is defined as follows

N
i W,‘\P,‘ X

F(x) = Mx (19)
Z,‘:l Wi(x)

where w; € R™N are the weights (free parameters) that

can be estimated by encoding any sampled trajectory
(e.g., any robot manipulation skill profile). In order to
estimate the parameters of a corresponding G-DMPs,
we need to estimate the 1% and 2" time derivatives of
the demonstrated trajectory. The 1st time derivative is
computed as follows

Y= {(LOgYH (Yl)) /61} =

€Ty M,  (20)

T
I=1
where 6t = #; — t;_;. The 2"-time-derivative Y can
be computed straight forward from v using standard
Euclidean tools, i.e, Y = {1y}, where §, = (§, -
Yi-)/ot.

Having all necessary data {#;, Y, ¥;, ¥;}, and by invert-
ing (17), the parameters w; and the approximated de-
sired shape of the demonstration are estimated as fol-
lows

Sy wittiCa)
~ X
Z,‘: 1 Wi(x;)
szl + a7y,
B,
Using (21), the weights w; can be estimated by encoding
any sampled robot manipulation skill data.

In the reproduction, equation (18) is integrated using
the forward Euler-Riemann stepping method [39] as

1)
— Logy, (G) + Logy, (G) x

Ya+o0=Bxpy, (2002, 22)
where ¥ € M represents the new robot manipula-
tion skills data. Equation (22) is manifold dependent.
Expy, () is defined as in (9), and we refer to the ap-
pendix for the expression of Expy, (-) for the manifolds
used in this work.

In case the manifold is a Lie group, the expression
of a general second-order system on a Lie group be-
comes [39]

tZ=h(Z,Y,, (23)
Y =g(Z.Y), 24)
from which is straightforward to derive that
tZ = a/z( , (Log(Yg # Jl_l)
— Log(Y,#Yy') +F () - Z).  (25)
Y =g(Z.Y). (26)

308

309

310

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Equation (25) is formally the same as (17), provided we
use the logarithmic map Log,, (-) = Log (Yg * y_l) de-
fined using Lie group theory. The term m(-) in (26) is
the inverse left translation, which maps a tangent vector
from the Lie algebra to the tangent space at Y, and de-
pends on the specific Lie group. The expressions of g(-)
and Log(-) for unit quaternions and rotation matrices,
two Lie groups commonly used in robotics, are given
in Appendix A.3 and Appendix A.S.

As a remark, we used the Riemannian formula-
tion (17)—(18) in the rest of the paper. However, for
the sake of completeness, we also have provided a for-
mulation for Lie groups in (25)—(26).

4.2. Goal switching

In many real scenarios, while the robot executes its
trajectory, it may encounter situations where it needs
to adapt its trajectory to a new goal, e.g., new pick-up
point, on the fly. This change of goal, referred to as goal
switching, is a common requirement in dynamic envi-
ronments. In order to achieve smooth transitions be-
tween goals and avoid unnecessary jumps, the authors
of [4] suggested adding an extra first-order differential
equation to gradually transition the current goal g to the
new goal gnw over time. This differential equation can
be written as

Tg = a’g(gnew - g), (27)

where @, > 0 is a positive constant gain. The gradual
transition in (27) ensures that the robot’s behavior re-
mains continuous and responsive to changes in its task
environment.

Analogously, Riemannian manifold-based G-DMP
can switch the goal using

Tg = a’gLOgG (Gnew) . (28)

Equation (28) allows to continuously update G until it
smoothly reaches the new value G,,,, € M.

4.3. Stability analysis

Theorem 1 states the stability conditions of the
geometry-aware DMP formulation in Sec. 4.1.

Theorem 1. Assume that F(x) — 0 for t — +oco and
that the gains a;, 3, > 0. Under these assumptions, the
geometry-aware DMP has a globally (in its domain of
definition) asymptotically stable equilibrium at (G, 0).

Proof. Recall that, by assumption, we restrict the do-
main to the points where the logarithmic map Logy, (G)
is uniquely defined. Recall also that the forcing term
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F(x) in (17) is a weighted sum of Gaussian basis func-
tions. Therefore, the non-linear terms in (17) and (18)
are smooth and uniquely defined functions. Consider
also that the time dependency introduced by x vanishes
for t — +co. Hence, (17) and (18) are an asymptotically
autonomous differential system and the stability can be
proved by analyzing its asymptotic behavior [41]. This
allows us to neglect the terms ¥ (x) and Logy, (G)xin
the stability analysis and to focus on the asymptotic dy-
namics

Z = aBLlogy (G) - a.Z,
y=2z,

(29)
(30)

where we set 7 = 1 without loss of generality.

We first show that (G, 0) is an equilibrium point of the
system (29) and (30). The right side of (30) vanishes
only for Z = 0. With Z = 0, the right side of (29)
vanishes only for Logy (G) = 0 & Y = G. This implies
that the system (29) and (30) has a unique equilibrium
point at (G, 0).

We now show that the equilibrium (G,0) is a
global attractor in the chart where the logarithmic map
Logy (G) is uniquely defined. To this end, we define the
candidate Lyapunov function

1

apB;

V(M,Z) =dist?> (M, G) +

(Z. Dy, (1)
where dist(:,-) is the Riemannian distance defined as
in (7) and (-,-)y is the positive definite inner prod-
uct (see Sec. 3.2). V(Y,Z) is positive definite ev-
erywhere if @8, > 0 and vanishes only at Y = G
(dist? (G,G) = 0) and Z = 0 ({0, 0)y = 0). To show
that V(Y, Z) is a valid Lyapunov function we need to
show that its time derivative is negative definite and van-
ishes at (G, 0). The time derivative of V(Y, Z) can be
written as

d ., 1 d
Edlst Y,G) + a/bBZE<Z’Z>y

. 2 .
=-2Logy (G),Y)y + b (Z,2Z)y
where we used the expression %dist2 Yv,G) =
—2(Logy (G),Y)y from [42] and the bi-linearity
and the symmetry of the interior product to write
4(Z,. Dy = 2Z,Z)y. By replacing Z from (29)
and Y from (30) into (32), we obtain

V¥.2) =
(32)

V(Y,2Z) = -2Logy (G), Z)y + 2(Logy (G), L)y

2 2
- —(Z, =-—(Z, <0,
B (Z. D)y B (Z,. D)y
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Figure 2: Results of G-DMP while learning and producing trajecto-
ries that cover both south and north hemispheres. Black dashed curves
denote demonstrations, while brown curves represent reproduction.
Green point Y; denotes the starting point of the trajectory, while the
blue one indicates the goal G. The red point illustrates the antipodal
point of the goal. The figure shows G-DMP while executing a tra-
jectory that (a) does not contain an antipodal of the goal G, and (b)
contains an antipodal of the goal.

where the last inequality holds if 8, > 0. Therefore,
V(Y, Z) < 0 everywhere in the chart and vanishes only
at Z = 0. The LaSalle’s invariance theorem [43] allows
to conclude the stability of (29)—(30). O

Remark 1. The results of Theorem 1 hold where the
logarithmic map is uniquely defined, e.g., Ty, , M can
be extended as much as it will not contain points con-
jugate to Y-y [44]. For manifolds with no cut-locus,
this holds everywhere. Hence, Theorem I is globally
valid on manifolds with no cut-locus (e.g., the manifold
of SPD matrices with positive definite eigenvalues [37]).
However, for manifolds with cut-locus (e.g., unit m-
sphere manifolds [35]), the logarithmic map Logy (G)
is defined in a region that does not contain points con-
jugate to G. For the unit m-sphere, the logarithmic map
Logy (G) is uniquely defined everywhere apart from the
antipodal point —G.

For illustration, we used the proposed G-DMP to
learn two trajectories; (i) the “N” shape on S? provided
in [33] (Fig. 2a), and (ii) a “C” curve with 7 diameter
(Fig. 2b). The “N” trajectory covers both the north and
south hemispheres and, as shown in [33], working on
the Lie algebra will introduce large distortions. More-
over, the “N” shape is an antipodal free trajectory, such
that ¥ = {Y;})' € 8| Y, G| < 1. However, the
“C” curve includes the antipodal of G. Figure 2a shows
G-DMP successfully reproducing the shape and con-
verges to the goal (blue point). However, in (b), it fails
to follow the trajectory when it encounters the antipodal
of the goal (point in red). G-DMP is supposed to follow
the trajectory in the direction of the black arrow starting
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from the green point. However, it follows the trajec-
tory until the antipodal point, then returns back to reach
the goal from the opposite direction. A possible way to
solve this issue is to split the trajectory into segments.
For the example in Fig. 2b, this can be done by splitting
the trajectory into 2 segments, namely Y, to Y, and Y,
to G, where Y, is any point in the demonstration be-
tween —G and —Y;. One can then fit 2 separate G-DMP
and smoothly merge them [19].

4.4. G-DMP on Riemannian manifold products

Let us define Y € M and U € N as two arbitrary
trajectories from two Riemannian manifolds M and N,
respectively. Let us call H = {1, (Yl,Ul)}lT:1 the set of
data points in one demonstration. We can now define
the composite G-DMP as

(33)
(34)

™V = a.(B.Logy .y (Gy,Gu) = V) + F(x),
TH = Vv,

where V € T(y,uy(M x N) and Logy.ar (Gy, Gu) is
the logarithmic map that maps the attractors Gy € M
and Gy € N from the manifold composite M X N to
the tangent space 7 (y,u)(M X N) at each time-step.
As an illustrative example, consider the pose of the
end-effector of a robot, which can be represented as
the Cartesian product of the hypersphere S* and 3D-
Euclidean space R?, i.e., H = S* x R®. It is worth men-
tioning that the pose of the end-effector of a robot can
be alternatively represented as a homogeneous transfor-
mation matrix H € S&(3) using the Lie group theory
formulation [45]; however, in this work, we exploit the
Cartesian product property of Riemannian manifolds.

Remark 2. The stability of manifold composites
G-DMP formulation in (33) and (34) can be straight-
forwardly proven by applying Theorem 1 separately to
Mand N.

5. Validation

We validated the proposed G-DMP in simulation as
well as in real setups. More in detail, we performed the
following evaluations:

e In simulation:

— We augmented two public datasets; 2D-
LASA handwriting dataset [S5] and 2D-
Letters handwriting dataset [33] with data
samples from three Riemannian manifolds
(unit quaternion, rotation matrix, and sym-
metric and positive definite matrix).
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— We compared G-DMP with the baseline ap-
proaches [9] and [18].

— Learning manipulability ellipsoids and posi-
tion by learning R? x 82, with G-DMP.

— Goal switching simulation.
o In real experiment:

— Refilling a watering can by learning R x S x
83, with G-DMP.

— Picking from different boxes task by learning
R? x 83, with G-DMP.

We have created one by modifying the 2D-LASA
and the 2D-Letters datasets. Mainly, we extended both
datasets to include 8%, 8O (3), and 82, along with the
original R2. The 2D-LASA handwriting dataset con-
tains 30 classes of 2D Euclidean motions starting from
different initial points and converging to the same goal
[0,0]". Each motion is demonstrated 7 times. A demon-
stration has exactly 1000 samples and includes position,
velocity, and acceleration profiles. On the other hand,
the 2D-Letters handwriting dataset contains 26 letters
of 2D Euclidean motions starting from different initial
points and ending to different goals. Each motion is
demonstrated 10 times. A demonstration has exactly
200 samples and includes position, velocity, and accel-
eration profiles.

The key idea to generate Riemannian data from Eu-
clidean points is to consider each demonstration as an
observation of a motion in the tangent space of a given
Riemannian manifold. This allows us to use the expo-
nential map to project the motion onto the manifold.
In both datasets, demonstrations are in 2D (xy-plane),
however, in order to create the 3D tangent space for both
S? and SO (3), we added a z-axis to each demonstration
as an average of x- and y-axes. As a result, we obtain S?
and SO (3) demonstrations for each demonstration from
both datasets.

In order to create SPD training data profiles, we
followed different strategies and used the 2D-LASA
dataset to generate covariance matrix profiles and the
2D-Letters dataset to generate manipulability profiles.
More in detail, we first fit a GMM for each class of the
2D-LASA dataset. We then used GMR to retrieve a 2x2
covariance matrix profile. This covariance matrix pro-
file served as SPD training data for G-DMP. Instead,
for the 2D-Letters dataset, we placed the base of a 3-
DoF 2D-manipulator at [0,0]T, and determined the ma-
nipulability profile of the manipulator while it tracks the
Cartesian trajectory of each demonstration. This manip-
ulability profile served as SPD training data for G-DMP.
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Figure 3: Tllustrates the performance of G-DMP when executing Riemannian LASA dataset. 1% row: Euclidean 2D trajectory. 2" row: Unit
quaternion trajectory. 3" row: Rotation matrix trajectory. 4" row: SPD trajectory. 1% column: Trajectories from different manifolds. 2" column:
first-derivative in different manifolds. 3" column: The distance in each manifold between the demonstration and the G-DMP reproduction. 4™
column: The Cartesian representation of the G-DMP reproduction. In 1% and 2" columns, dashed lines represent demonstration data while colored

solid lines represent the G-DMP results.

5.1. Validation using Riemannian LASA dataset

In order to validate the accuracy of the proposed uni-
fied DMP formulation, we created 4 tests in 4 different
manifolds, P e RZ, Q € S*>, R € SO(3), and C € Si+.
These are illustrated in Fig. 3 where each row corre-
sponds to a particular manifold. The leftmost column
of the figure represents the evolution of the elements
of the profile over time?. Dashed black lines represent
the demonstration and colored lines the reproduction of
G-DMP. The second column corresponds to the 1%-
time-derivative of the profiles in each manifold, while
the 3™ column shows the error or the distance between
the G-DMP profile and the demonstration profile for
each manifold. The last column (rightmost) shows what
the profile looks like in Cartesian space. In the case
of 83, we rotate the 3D-frame of the 3D-Cartesian pro-
file of the G-shape, while in SO (3) we show the frame
rotating around [0, 0,0]7. In the case of the Si - weil-
lustrated the covariance matrices over the 2D-Cartesian

2As SPD matrices are symmetric, and for visualization purposes,
in this figure we visualize the SPD by plotting the corresponding Man-
del representation.

10

profile of the G-shape. The results shown in this fig-
ure demonstrate the accuracy of the proposed G-DMP
to reproduce the desired trajectory profiles in different
manifolds.

5.2. Comparison with [9]

The proposed G-DMP is rigorously derived in
Sec. 4.1 starting from a generic second-order dynam-
ics evolving on a manifold. Therefore, our formulation
is mathematically correct and it does not exhibit the os-
cillatory behaviors described in [9]. In addition to the
mathematical derivation, we provide in this simulation
an experimental comparison to support our claim.

More in detail, we compared our G-DMP against
the quaternion-based DMP proposed in® [9]. We
used the same simulated unit quaternion trajectory,
where the initial and final quaternions are Q, =
[-0.0092 - 0.7126 0.7015 0.0090]" and Q, =
[0.8104 0.3364 0.2141 0.4293]T. Moreover, we used

3We thank Leonidas Koutras for sharing with us the implementa-
tion and test trajectory of their work in [9].
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Figure 4: G-DMP execution of the same unit quaternion trajectory
tested in [9]. The first three rows show the error between the current
unit quaternion and the goal (leff) and new goal (right). The bottom
four rows show the evolution of each unit quaternion element, over
time, toward the goal and new goal. Dashed black lines represent
information related to the demonstration trajectory.

the same DMP parameters, e.g., a; = 60, N = 60,
and @, = 4.6052. Top-left column of Fig. 4 shows
the evolution of the quaternion error computed be-
tween the current (from G-DMP) and goal quaternions
through eq = 2Logq (Qg). The top-right column shows
the evolution of the error toward a new goal Q," =
[0.7442 0.5414 —0.0343 0.3897]". The bottom 4 plots,
show the evolution of the trajectories of unit quaternion
elements toward the original goal and the new one. This
figure shows the accuracy of the proposed G-DMP to
encode and execute a challenging unit quaternion tra-
jectory. Moreover, it is clear that G-DMP successfully
performs a goal-switching task.

Figure 5 compares the accuracy of our G-DMP with
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Figure 5: Comparison between the proposed G-DMP and [9]. The
first three rows show more stable starting using G-DMP. Bottom:
Compares the mean error of G-DMP (in red) and [9] (dashed black
lines).

the approach proposed in [9]. The bottom plot shows
that the proposed G-DMP is more accurate.

Furthermore, the computational complexity during
execution, particularly in terms of step time, remains
compatible with control frequencies. Specifically, the
means of the computational cost exhibited by [9] and
G-DMP at each control cycle are 0.04 ms and 0.1 ms,
respectively. We also consider a baseline approach that
uses the classical DMP and performs an extra normal-
ization of the output. For the baseline, the mean compu-
tational cost for integrating and normalizing the output
to reproduce a unit quaternion is 0.008 ms per time step.
This indicates that all considered approaches can com-
fortably operate at frequencies exceeding 1 kHz, ensur-
ing real-time responsiveness in robotic control applica-
tions.

5.3. Comparison with [18]

To illustrate the difference between our new for-
mulation in (17)—(18) and our previous formulation
described in [18], where parallel transport was em-
ployed, we have conducted an experiment where both
approaches executed 20 S2, trajectories of the modi-
fied Riemannian LASA dataset (Sec. 5). Figure 6 shows
bar plots for computational time required for both ap-
proaches to learn and execute complete trajectories, and
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Figure 7: Comparison between the proposed G-DMP and our previous
approach using parallel transport [18]. Both approaches executed 19
S, trajectories, where m = 2,...,20. Top: The computational cost
in milliseconds per control cycle. Bottom: The error distance between
the demonstration and the reproduction.

the log-Euclidean distance [46] between the generated
SPD profiles and the ground truth demonstrations.

Results in Fig. 6 show that employing parallel trans-
port provides slightly more accurate results, as evi-
denced by the reduced log-Euclidean distance from the
ground truth demonstrations. However, this improve-
ment comes at a significant computational cost, as indi-
cated by the increased computational time required for
this approach. For instance, the mean of the computa-
tional cost exhibited by [18] and G-DMP at each control
cycle are 0.09 ms and 0.04 ms, respectively.

In Fig. 7 we observe how this computational cost in-
creases exponentially with the approach in [18] as prob-
lem dimensions increase. Though [18] exhibits a slight
improvement in accuracy, this must be weighed against
its heightened computational demands. In this example,
we executed both approaches, in [18] and G-DMP, over
19 SPD trajectories with dimensions ranging from S?,

554
555
556

557

559
560
561
562
563
564
565

566

567

12

to S2%, providing a comprehensive comparison.

This trade-off between accuracy and computational
efficiency is an important consideration in the selection
of the appropriate formulation for specific applications.
For tasks where computational resources are abundant
and accuracy is paramount, the parallel transport ap-
proach may be preferred. However, the new formula-
tion offers a more efficient alternative without penaliz-
ing the accuracy for real-time applications or scenarios
with limited computational resources. Finally, it is im-
portant to note that, while the approach in [18] is specif-
ically designed for SPD matrices, our G-DMP frame-
work is applicable to any Riemannian manifold.

5.4. Learning manipulability ellipsoids

The manipulability of a robotic arm provides an an-
alytical way to evaluate the manipulator’s ability to
change its end-effector pose from a certain joint con-
figuration. Manipulability can be illustrated as an ellip-
soid in 2- or 3-D Euclidean space. Mathematically, the
manipulability of a robotic arm is computed from the
forward kinematics

P =19, (35
that relates task velocity 2 € R"™ and the joint velocity
J € R" through the Jacobian matrix J € R"™". By
considering, in (35), only the joint velocity with unit
norm, i.e., ||j|| =97 =1, we obtain

JTG=PTAY TP =P () P 36)
which defines a point on the surface of an ellipsoid
in the end-effector velocity space. The SPD matrix
Y = I e s ., called manipulability ellipsoid,
gives an intuition of the directions where the manipu-
lator can move its end-effector at large/small velocities.

Here we propose to use a toy example similar to
the one in [47] to evaluate our G-DMP formulation
while operating SPD data profiles. One demonstration
ZE={n, Yl}szl is obtained by performing a tracking task
with a 3-DoF manipulator. Let us call £ the Cartesian
position trajectory of the robot end-effector. The de-
sired position trajectory P is then tracked by a 5-DoF
robot. The force F needed to perform the tracking task
is computed using the following control law originally
proposed in [47]

w0 =1"F - (1-1T7)ave(J): a>0. (37)
where J is the inertia-weighted pseudo-inverse of J and
7,4 is the desired joint torque. The cost function g,(J) is
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Figure 8: Top-Left: The Cartesian trajectory (in centimeters) executed
by the 5-DoF manipulator (black dots), the demonstrated manipula-
bility profile (gray ellipses), and the manipulability profile learned by
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of the task. Top-Right: Representation of SPD manifold (gray cone)
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solid line) manipulability profiles. Bottom: Variation of demonstrated
(gray ellipses) and learned (green ellipses) manipulability profiles
over time.

defined as

T+ Yar(T) ]]

8(J) = log (det[ 5

1 RED)
— E]()g (det (T,Ta,r(j)))

where Y, ,(J) are the actual and 'i', the desired manip-
ulability ellipsoids, respectively. Y, are generated using
the proposed G-DMP.

The results of this procedure, applied to track a 2-
D S-shape Cartesian trajectory, are shown in Fig. 8.
Figure 8(top-left) shows that the desired manipulability
profile (green ellipses) smoothly and accurately follows
the demonstrated manipulability profile (gray ellipses)
while the 5-DoF robot was performing the tracking task.
Similar results are shown in Fig. 8(bottom), but consid-
ering the time evolution of desired and demonstrated
manipulability ellipsoids. Figure 8(top-right) depicts
the SPD manifold (a cone) and the geodesic curve of
the desired and demonstrated manipulability profiles.
The G-DMP successfully and accurately followed the
demonstrated Cartesian trajectory along with the ma-
nipulability profile, in its composite Riemannian form
R? x 82, and converged to the goal.
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Figure 9: G-DMP adapts the stiffness profile to a new goal using
the mechanism of goal switching (28). Gray ellipsoids represent the
demonstrated stiffness profile, green ones are the result of G-DMP,
the blue one indicates the instant where goal switching occurred, and
the red one denotes the new goal ellipsoid. Top-Left: The evolution of
G-DMP over a Cartesian trajectory. Bottom: The evolution of G-DMP
over time. Top-Right: The evolution of the spring forces while track-
ing the Cartesian trajectory.

5.5. Goal switching

In order to evaluate the proposed G-DMP formula-
tion characteristics under goal switching, we used it to
drive an virtual-Mass Spring-Damper (MSD), with a de-
signed variable stiffness profile, along a specific Carte-
sian trajectory. The variable stiffness profile is designed,
such that, it starts with, horizontally-aligned stiffness
ellipsoid, [622.9934 39.9577; 39.9577 79.5444],
then we rotated it gradually 90°, through R'KR
(R is a rotation matrix), until it ends up with,
vertically-aligned stiffness ellipsoid, [79.5444 -
39.9577; —39.9577 588.2443]. This stiffness profile
K e 82, is our demonstration, the gray ellipsoids
in Fig. 9(top-left), along with the Cartesian trajectory
P e R?, solid black curve. In this simulation, G-DMP
encodes the composite Riemannian manifolds R2xS2, .

During the execution, we estimated the spring forces
f* while tracking the Cartesian trajectory. The G-DMP
reproduction, in the first execution, has been success-
fully converged to the original goal, dashed lines in
Fig. 10(bottom). In the second execution, we switched
to a new stiffness goal [200 0; 0 200], red ellipsoid in
Fig. 9, at the middle of the execution. From Fig. 10(top),
we can see the error between G-DMP stiffness result,
at each time step, and the new stiffness goal converges
to zero (the solid red line), which indicates that the
G-DMP converges accurately to the new stiffness goal.
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Figure 10: Top: The Log-Euclidean distance between G-DMP evo-
lution and the goal in both cases; reproduction (dashed black lines),
adaptation using goal switching (red solid line). Bottom: The element
of stiffness profile in reproduction (dashed black lines) and adaptation
using goal switching (colored solid lines).

5.6. Robot experiments

We evaluated the proposed approach on a 7 DoF
Franka Emika Panda robot with two experiments,
namely picking from different boxes and refilling a wa-
tering can. In order to perform these tasks, the robot
had to continuously modulate its position, orientation,
stiffness, and/or manipulability. In real settings, orien-
tation trajectories are often collected from demonstra-
tions with a real robot. This requires a preprocess-
ing step to extract unit quaternions from a trajectory
of rotation matrices. The step is needed because the
robot’s forward kinematics is typically expressed as a
homogeneous transformation matrix [48]. Numerical
approaches to continuously compute quaternions from
rotation matrices may return a quaternion at time # and
its antipodal at ¢ + 1, since antipodal quaternions repre-
sent the same rotation. The resulting discontinuity can
be avoided by checking that the dot product g, - q,,; > 0
and replacing q,,; with —q,,; otherwise.

5.6.1. Refilling a watering can

In this experiment, the robot had to refill a watering
can by immersing it in a tray full of water (see Fig. 11).
To perform the task, the robot was controlled using the
Cartesian impedance control law

m ~dm .
Ty =K, (P = P)+ D, (P - P), .
7:0 — 7(0 LOgQ (Qdmp) . Z)o ((dep _ (W) ,

where the subscript p indicates position and o orienta-
tion. The measured end-effector position and orienta-

tion (unit quaternion) are indicated by  and Q respec-
tively, and the corresponding linear and angular veloc-
ities are # and ‘W. The desired trajectories " and
Q™ as well as the variable stiffness matrix K, and the

. .. - dmp
desired velocities (P and WP,

with the proposed G-DMP. The orientation stiffness
was kept constant at K, = 150 INm/rad. The damping
matrices D, and D, were computed from the respec-
tive stiffness matrices using the double diagonalization
approach [49]. The robot was controlled at 1 KHz using
the joint torques

were generated

Td = ..HT [Zp] s (40)

where J7 is the transpose of the manipulator Jacobian
and the Cartesian forces ¥, and ¥, are defined as
in (39).

Desired position, velocity, and stiftness profiles were
learned using the proposed G-DMP. In order to esti-
mate a variable stiffness profile, we collected 5 kines-
thetic demonstrations containing end-effector positions,
velocities, accelerations, and sensed forces. These data
were used through the interaction model proposed in
[16] to estimate the variable stiffness profile shown in
Fig. 11 (bottom). Positions and unit quaternion trajecto-
ries were learned from a single demonstration, obtained
by averaging the 5 used to obtain the stiffness profile.

The results in Fig. 11 show that the proposed G-DMP
formulation is capable of learning complex trajecto-
ries evolving on composite Riemannian manifolds R? x
S? x 83, while fulfilling the underlying geometric con-
straints, i.e., unit norm in variable orientation and sym-
metry and positive definiteness in variable stiffness pro-
files.

5.6.2. Pick from different boxes

In this experiment, the robot had to enter 3 boxes
placed at different locations, mimicking a pick from
each of the boxes (see Fig. 12). The experiment was
designed to show that geometry-aware DMPs can i) ef-
fectively encode manipulability profiles and ii) change
the goal after the learning.

We provided a kinesthetic demonstration to make the
robot enter box 1 while collecting end-effector position
and joint trajectories. As detailed in Sec. 5.4, collected
trajectories were used to learn position and manipulabil-
ity profiles using geometry-aware DMPs. At run time,
the robot was controlled using the control law (37) to
track the DMP position as main task and to exploit its
redundant DoF to follow the desired manipulability pro-
file. As shown in Fig. 12 (top), the robot followed ac-
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Figure 11: Results for the refill of a watering can experiment. Top:
The robot correctly performs the task. Bottom: Position, orientation,
and stiffness profiles.

curately both position and manipulability profiles and
successfully entered box 1.

In order to experimentally verify the generalization
capabilities of geometry-aware DMPs, we repeated the
experiment by entering two boxes placed at different lo-
cations wrt box 1. To measure the new goal, we man-
ually placed the robot inside the boxes and stored its
end-effector position. As shown in Fig. 12 (middle)—
(bottom), the robot reached the new position goals in-
side box 2 and 3. As already mentioned, the manipula-
bility profile was tracked in the null-space of the posi-
tion task, which introduces an error between the planned
and executed manipulability profiles. However, in this
task, null-space tracking was sufficient to preserve a
joint configuration that let the robot enter boxes 2 and
3 without collision.

Overall, the results in Fig. 12 show that the proposed
G-DMP formulation is capable of learning complex tra-
jectories evolving on the composite Riemannian mani-
fold R® x 83, while fulfilling the underlying geometric
constraints, i.e., symmetry and positive definiteness in
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variable manipulability profiles.

6. Conclusion

In this paper, we have exploited Riemannian geom-
etry to derive a new formulation of DMP that is capa-
ble of learning and reproducing robot skills evolving
on any Riemannian manifold. Our new formulation,
Geometry-aware DMP (G-DMP), is manifold indepen-
dent and allows us to treat data belonging to different
manifolds in a unified manner. It also preserves the
underlying geometric constraints during both learning
and reproduction without pre- or post-processing of the
data. Moreover, it preserves the properties of the clas-
sical DMP formulation such as convergence to a given
target and the possibility to change the target at run-time
(goal switching).

G-DMP has been extensively validated through mul-
tiple simulation examples and two experiments on a real
robotic manipulator. For simulation, we augmented two
Euclidean datasets (2D-Letters and LASA handwriting)
with data samples from three Riemannian manifolds
(83, 80(3), and S2,). We showed that G-DMP can ac-
curately learn profiles evolving on such manifolds while
converging to a (possibly changing) goal. Moreover, a
comparison with a baseline approach was conducted on
a unit quaternion trajectory. In this case, G-DMP shows
improvement by avoiding slight jumps at the beginning
of the trajectories. Finally, real experiments show the ef-
fectiveness of G-DMP in encoding data from manifolds
such as orientation, and SPD matrices.

In the future, we propose to integrate our approach
with iterative learning algorithms—for example itera-
tive learning control—in order to adapt to different situ-
ations and perform more complex tasks such as physical
interaction control. Moreover, extending exploration-
based learning methods to Riemannian manifolds is an
open research problem. These methods are crucial when
arobot needs to significantly adapt its behavior to a new
situation by considering the data directly on its corre-
sponding manifold. This will allow us to successfully
exploit G-DMPs in a large diversity of task situations.

Appendix A. Characterization of Used Manifolds

Appendix A.1. The SPD manifold ST,

As early mentioned, SPD matrices is important in
robotics as it encapsulate different types of data. The
space ST, is defined as the space of m X m Symmet-
ric Positive Definite matrices. This space is not closed

under scalar product and addition [37], thus, we cannot
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Figure 12: Results for the pick from different boxes experiment. Top: Picking from the demonstrated box 1. Middle: Goal switching is used to pick
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use classical Euclidean arithmetic operators to manip-
ulate these matrices. Alternatively, we can equip SPD
matrices with A Riemannian metric in order to form a
Riemannian manifold [37].

Note that the space S}, can be represented as the in-
terior of a convex cone embedded in its tangent space of
symmetric m X m matrices SY M™.

For Q,U € 87, and v € TySY,, the logarithmic and
exponential maps (8) and (9) can be defined as in [37]

v

Q

where logm(-) and expm(-) are the matrix logarithm and
exponential functions.

Logy(Q) = Uzlogm(U™2QU™?)U2, (A.1)
Expy(v) = Uzexpm(U™2vU 2 )U7, (A2)

Appendix A.2. The unit m-sphere manifold S™

S™ is a topological space embedded in R”*! Carte-
sian space, where S = {X e R™! X = 1}. For
Q.U € 8 and v,r € Ty8™ then, the logarithmic and
exponential maps (9) and (8) are defined as in [50]

Q-UQU
= L =——d(U,Q),(A3
v 050 (@ = 1o =gV QA
Q = Expy() = Ucos(Ivl) + — sin([IvIXA.4)

lIvil

where d(U, Q) = arccos(QTU) defines the geodesic dis-
tance between Q and U.
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Appendix A.3. The unit quaternions group S*

One way to describe the robot’s end-effector orienta-
tion, in 3D-space, is to use unit quaternion representa-
tion. For Q,U € S® and v, r € TyS? = R3, where S is
a unit sphere in R*, Q = v, + u,, v, € R, and u, € R*.
The logarithmic and exponential maps (8) and (9) are

v = Logy(Q =Log(Q+D)

B arccos(v)ﬁ, uz0

~ 1o 0 o7, otherwise.
Q = Expy(v)

_ {[cosvi + sinIvin % | < U, v#0
S|+ 0017+,

where Q+U = v+u € 8% and v € R? is treated as a
quaternion with v = 0.

Appendix A.4. The special orthogonal group SO (m)

SO (m) is a subgroup of the orthogonal group O(m)
where its determinant is 1. Let us define R|,R, €
SO (m) and v € Tg,SO (m), then the logarithmic and
exponential maps (9) and (8) are defined as in [50]

v
R;

(A7)
(A.8)

Logg, (Ry) = logm (RlTRz) ,
Expg, (V) = expm (V) R;.

(AS)

(A.6)

otherwise.
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Appendix A.5. The rotation group SO (3)

Traditionally, orientations, in 3D-space, were repre-
sented through rotation matrices in SO(3) = {R €
R¥>3 . Rl = 1,R"R = RR" = I} which are widely
used in robotics. Let us define Ri,R, € SO (3) and
v € TR, SO (3), then (8) will be [51]

v = Logg, (Ry) = Log (RoR; ") = Log (R)

_Ji0,0,0", R=1I (A.9)
o= 6n, otherwise,
where
6 = arccos trace(R) — 1 n= ! :32 _ :23
- 2 T 2sing) [P
1 -T2
and (9) will be
R; = Expg, ([Vlx)
2 (A.10)
_ (1 + sin(6) [IIVV]IT + (1 - cos() mE)RI,
\4

Note that the mappings in (A.5)—(A.6) and in (A.9)-
(A.10) are computed using Lie group theory as unit
quaternions and rotation matrices form a Lie group
[45]. In particular, the mappings are based on the tan-
gent space placed at the identity element (the so-called
Lie algebra), and the product operations are used to par-
allel transport vectors from the Lie algebra to the tan-
gent space placed at a different point (U or Ry). We
used the term Riemannian through the paper since ev-
ery Lie group equipped with a Riemannian metric is a
Riemannian manifold, but not vice versa.
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