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Uncertainty Distribution Assessment of
Jiles-Atherton Parameter Estimation

for Inrush Current Studies
Jone Ugarte Valdivielso, Jose I. Aizpurua Unanue, Senior Member, IEEE and Manex Barrenetxea Iñarra

Abstract—Transformers are one of the key assets in AC
distribution grids and renewable power integration. During
transformer energization inrush currents appear, which lead to
transformer degradation and can cause grid instability events.
These inrush currents are a consequence of the transformer’s
magnetic core saturation during its connection to the grid.
Transformer cores are normally modelled by the Jiles-Atherton
(JA) model which contains five parameters. These parameters
can be estimated by metaheuristic-based search algorithms. The
parameter initialization of these algorithms plays an important
role in the algorithm convergence. The most popular strategy
used for JA parameter initialization is a random uniform
distribution. However, techniques such as parameter initialization
by Probability Density Functions (PDFs) have shown to improve
accuracy over random methods. In this context, this research
work presents a framework to assess the impact of different
parameter initialization strategies on the performance of the
JA parameter estimation for inrush current studies. Depending
on available data and expert knowledge, uncertainty levels
are modelled with different PDFs. Moreover, three different
metaheuristic-search algorithms are employed on two different
core materials and their accuracy and computational time are
compared. Results show an improvement in the accuracy and
computational time of the metaheuristic-based algorithms when
PDF parameter initialization is used.

Index Terms—Inrush current, transformer, Jiles-Atherton
model, metaheuristic-based search, probability density function,
uncertainty.

I. INTRODUCTION

TRANSFORMERS are key components for the reliable
and efficient operation of the grid. During energization,

they suffer from inrush currents, which affect their reliability
and life expectancy. Inrush current is a transient phenomenon
that can affect the grid’s stability [1]. In order to minimize
these effects, the inrush current has to be reduced. To do so,
several solutions can be adopted. Existing inrush minimization
techniques include the oversizing of the transformer, addition
of a pre-insertion resistor, pre-magnetization of the transformer
or controlled switching performed by a Circuit Breaker (CB)
[2], [3]. Controlled switching is the most commonly used
strategy, where the opening and closing times of the CB are
controlled [4]. The connection time depends on the remanent
flux of the transformer’s core at the transformer connection
instant. Furthermore, the inrush current magnitude depends on
the magnetic saturation level of the core during energization,
which is described by its B-H curve (see example in Fig. 1
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for the B-H curves of the materials used in this study). In
this context, an accurate model of the core is advantageous to
avoid improper switching actions and limit the impact of the
inrush current on the transformer health [5].

Fig. 1: B-H curves for the two materials analysed in this study.

The relation between the B-H curve and the inrush current
can be comprehended through basic electromagnetic princi-
ples. The flux density [B] can be obtained from the voltage
on the primary side of the transformer and Faraday’s law of
electromagnetic induction. The electromagnetic field strength
[H] is derived from the hysteresis curve of the core material.
Then, the magnetizing current of the transformer can be
directly calculated through Ampère’s circuit law [6].

A. Related Work
The non-linear dynamic behaviour of the transformer core

is normally represented by the Jiles-Atherton (JA) model
due to its better efficiency compared to other models such
as the Preisach model [5]. The JA model solves a Partial
Differential Equation (PDE) through an equivalent method,
which requires five parameters related to the physical proper-
ties of the core material. However, the accurate estimation of
these parameters is challenging [7]. The simplest technique
to estimate JA parameters is a trial-and-error brute-force
algorithm [8]. In this algorithm, the entire parameter range is
swept, and consequently, the computational time is very high.
Therefore, alternative search techniques such as metaheuristic-
based algorithms are preferred over trial-and-error due to their
shorter computational time and efficient search of the global
minimum.
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In this setting, the most used metaheuristic evolutionary
techniques in literature are Genetic Algorithms (GA) [9],
Particle Swarm Optimization (PSO) [10] and Differential
Evolution (DE) [11]. An extensive review of GA, PSO and
DE algorithms in JA parameter estimation studies is presented
in [12].

Most of the presented studies disregard the initialization
stage of the metaheuristic-search algorithm and use a ran-
dom uniform JA parameter initialization strategy with default
settings [13]–[16]. Nonetheless, the selection of inappropri-
ate initial values and limits for JA parameters can lead to
convergence to a local minimum or non-convergence, and
high computational time. In this context, the convergence
of PSO is shown to improve if the initialization is done
in two stages, first by finding the best parameters in a set
number of iterations and then by initializing the algorithm
with those parameters [17]. Additionally, a clustering approach
based on self-organizing maps has been used to estimate
the initial JA parameter values for a GA algorithm [18].
Besides, expressions for JA parameters have been derived to
approximate their real values [19].

Alternatively, an extensive research study compares the
use of different Probability Density Functions (PDFs) for
the initialization of various metaheuristic algorithms in basic
problems. Results show that using different PDFs, rather than
uniform distribution, enhances the accuracy of the algorithm.
Moreover, the findings indicate that PSO’s accuracy is more
sensitive to the initialization strategy than DE and GA. This
implies that the choice of initialization strategy has a greater
impact on the results for PSO than for the rest of the
algorithms. However, the study states that depending on the
complexity of the problem this sensitivity may change. For
instance, the GA parameter initialization is shown to be more
sensitive to complex problems [20]. According to another
study where PSO parameter initialization with different PDFs
is presented, the convergence speed is normally higher for
Gaussian PDF than for uniform PDF [21]. Yet, the accuracy
of the results for these two initialization strategies is reported
to be similar in most of the cases [21].

B. Gap Identification, Contribution & Impact

Even though PDF parameter initialization can improve the
accuracy of metaheuristic-based algorithms [20], it is yet to be
analysed how the influence of different initialization strategies,
including available information or knowledge as equivalent
PDFs, and propagation through the selected metaheuristic-
search techniques, can affect the performance of the search-
based optimization algorithms for JA parameter estimation.

For this analysis, expert knowledge is required to assess the
mean and the variance or uncertainty of each PDF. An expert,
with extensive field knowledge, would confidently select initial
parameters. Accordingly, a low-uncertainty PDF would reflect
the initial value of parameters and the search area would
be reduced. However, if the expert is wrong, the real value
may be different from the expected value, and the algorithm
will not converge to the minimum error. In contrast, a novel
engineer without experience, may not be confident in the

initial value parameters and may be interested in testing and
searching for the effect of different initial values on accuracy
and computational time to iterate and reduce the search space
and design fast and efficient optimization algorithms.

Therefore, it is necessary to devise an uncertainty-aware
JA parameter estimation approach, which can investigate the
impact of uncertainties associated with parameter initializa-
tion to improve the compromise between the error and the
computational time. In this context, the main contribution
of this research work is an uncertainty-aware JA parameter
estimation approach based on metaheuristic-search algorithms.
The framework has been tested with three different algorithms
and validated with two different transformer core materials.

Different metaheuristic-search based algorithms are com-
pared to a base-case, where brute-force has been employed to
estimate the JA parameters. The parameter initialization for the
metaheuristic algorithms has been done with different levels of
uncertainty, which reflect available expert knowledge and pre-
vious data, by employing different PDFs. This information has
been propagated through search-based algorithms and results
show that using a Normal PDF for JA parameter initialization,
instead of uniform parameter initialization, improves the JA
parameter estimation accuracy and computational-efficiency.

The proposed parameter selection framework supports and
improves the JA-based hysteresis modelling approach through
an uncertainty-aware parameter initialization strategy. Thus,
a better electromagnetic model of the transformer core is
obtained.

In this context, core modelling is the first step for develop-
ing transformer models for transient studies. Generally, the
duality-based transformer model is used for inrush current
studies [5], [22], which, in addition to other parameters,
considers the hysteresis of both the transformer legs and yokes.
This makes it mandatory to have accurate core models, oth-
erwise errors would propagate up to the transformer transient
model. Therefore, this research work has a direct impact on
transformer transient studies because it enables the design of
an accurate transformer core model for inrush minimization
analysis.

C. Organization

The rest of the paper is organized as follows. Section II
introduces the basics of the theory behind the JA model, the
fundamental of the chosen metaheuristic algorithms, the prob-
lem statement and the proposed approach for estimating JA
parameters. Then, Section III presents the analysed materials,
the base-case and the study cases. Section IV covers the results
obtained for the different cases and materials. In Section V the
study is discussed followed by the conclusions in Section VI.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Basics of Jiles-Atherton

The Jiles-Atherton hysteresis model assumes that the total
magnetization of a ferromagnetic material is the contribution
of reversible and irreversible magnetization parts [23], [24]

M = Mrev +Mirr (1)
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where M is the total magnetization of the ferromagnetic mate-
rial in [A/m] and Mrev and Mirr are respectively the reversible
and irreversible parts, both in [A/m]. The irreversible term is
obtained by using:

Mirr = Man − kδ
dMirr

dHe
(2)

where Man is the anhysteretic magnetization curve in [A/m],
k is the pinning parameter in [A/m], δ is a direction parameter
which assumes a value of +1 if dH/dt > 0 and -1 if dH/dt <
0, and He is the effective field in [A/m] calculated by:

He = H + αM (3)

where H is the magnetic field strength in [A/m] and α
is unitless and accounts for the inter-domain coupling. The
reversible magnetization is calculated as follows:

Mrev = c(Man −Mirr) (4)

where c is unitless and represents the coefficient of proportion-
ality and Man is the anhysteretic magnetization given in (5).
Anhysteretic magnetization refers to the ideal magnetization
curve without hysteresis. A Langevin function is used to obtain
the anhysteretic magnetization, defined as follows [25]:

Man = Ms

[
coth

(
He

a

)
− a

He

]
(5)

where Ms is the saturation magnetization in [A/m] and a
quantifies the domain wall density in [A/m]. However, other
expressions as the models given by Frölich [5], [26] and
Annakkage [27], [28] have also been used in literature to
calculate this curve.

The Jiles-Atherton model is solved by a PDE that represents
the total magnetization susceptibility, which is expressed as
follows [29]:

dM
dH

=
(1− c) dMirr

dHe
+ c dMan

dHe

1− αc dMan
dHe
− α(1− c) dMirr

dHe

(6)

where dMirr
dHe

is obtained by deriving (2) with respect to He and
is expressed as follows:

dMirr

dHe
=

(Man −Mirr)

kδ
(7)

Additionally, dMan
dHe

is obtained by deriving (5) with respect
to He and is given as:

dMan

dHe
=

Ms

a

[
1− coth2

(
He

a

)
−
(

a

He

)2
]

(8)

The B-H curve is solved by calculating the value of the
magnetization in each time step ∆t of H:

M(t+∆t) = M(t) +
dM
dH

∆H (9)

where t is the time step, ∆t is a discrete increment of t,
M(t + ∆t) is the magnetization value at the instant t + ∆t
in [A/m], M(t) is the magnetization at t in [A/m] and ∆H

is the difference in the discrete increment of the field strength
in [A/m].

Generally, the results are preferred to be presented in terms
of flux density. The equation that relates the magnetization
and flux density of the material, known as the Sommerfeld
convention, is given as B = µ0(H + M) [30], where µ0 is
the permeability of vacuum with a value of 4πx10−7 H/m.
Therefore, the flux density in each time step is obtained as:

B(t+∆t) = µ0 [H(t+∆t) +M(t+∆t)] (10)

where B(t + ∆t) is the magnetic flux density in [T] at the
instant t+∆t and H(t+∆t) is the field strength at the next
step in [A/m].

B. Basics of Metaheuristic Search Algorithms

The selected algorithms are GA, PSO and DE due to their
good accuracy and low computational complexity for the
estimation of JA parameters [12].

GA uses the concept of human reproduction and mutation to
optimize the solution search space. This algorithm initializes
the population by a set of possible solutions. Then, candidate
solutions (parents) are selected and combined to produce a
chromosome (child) through crossover and mutation opera-
tions. By doing so, the algorithm creates better solutions. The
main parameters needed for GA are population size, β (integer
for calculating the probability for each parent’s selection),
mutation step size and mutation rate [31].

PSO is a stochastic optimization process based on the social
behaviour of a swarm. The population, named as particles,
are scattered in a search space. Each particle has a position
and a velocity, which changes in each iteration. The particles
remember their best individual position from past iterations
and also the position of the leader (best solution). Moreover,
the swarm also shares the information with the rest of the
particles accelerating the process. The main parameters needed
for PSO are population size and initial particle velocity [17].

DE is an evolutionary algorithm that optimizes the solution,
changing and combining the existing population of individuals.
For each individual a mutant is generated combining three
randomly chosen individuals. The targeted individual and the
mutant are combined through a crossover operation, which
produces a trial. If this trial is better than the unchanged
individual, the trial replaces its position. The main parameters
for DE are population size and mutation rate and factor [11].

The parameters for each algorithm have been tuned to obtain
optimal solutions with respect to accuracy and computational
time, named as params in Algorithm 1.

C. Problem Statement

Inrush current is a transient phenomenon that can harm
the health and life expectancy of power transformers. To
develop an efficient and reliable inrush minimization strategy
it is necessary to model the precise dynamic response of
the core material’s magnetization. This nonlinear behaviour
is represented by the B-H curve and is normally obtained by
the JA hysteresis model. However, obtaining the JA model
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Fig. 2: Overall block diagram of the proposed framework.

solution is a demanding task, determined by the resolution
of the PDE in (6). This PDE is subjected to five parameters
related to the physical properties of the core material. There
parameters can be estimated through trial-and-error at the cost
of a time-consuming process. To overcome these problems,
metaheuristic-based search algorithms have been employed in
the literature.

Additionally, proper initialization of JA parameters is essen-
tial to avoid convergence to a local minimum, non-convergence
or high computational time. Generally, the JA parameter
initialization is done by setting random limits and following a
uniform distribution. Recent studies on basic simple functions
have demonstrated that using different PDFs can enhance the
accuracy and lower the computational time of metaheuristic-
based algorithms [20]. However, this strategy is yet to be
transferred to real industrial applications, such as transformer
modelling for inrush current studies.

In this context, the aim of this research is to develop an
uncertainty-aware JA parameter estimation framework, which
enables (i) the assessment of data and expert knowledge with
different uncertainty levels on JA parameter initialization and
(ii) their propagation through metaheuristic-based algorithms
for optimal parameter selection. This framework can guide the
selection of the most suitable method to obtain the JA param-
eters, according to the data and knowledge of the engineer
about the transformer. Therefore, this study can improve the
modelling of the transformer core and the accuracy of transient
studies, which can be the base for developing a proper and
reliable inrush current minimization strategy.

D. Proposed Model

Fig. 2 shows the proposed method to identify the JA
parameters based on the probabilistic initialization of pa-
rameters and metaheuristic optimization. To obtain the JA
model, it is necessary to have the B-H hysteresis
loop data of the transformer core, which is used to
solve the PDE determined by the JA model [cf.
(6)]. Then, the JA parameters are initialized through dif-
ferent uncertainty levels, modelled with PDFs. The
parameter initialization is followed by the execution of the
chosen metaheuristic-search algorithm. The error and
computational time obtained in each iteration are stored for
post-processing. After the execution stage is finished,
the optimal parameter selection for each metaheuris-
tic algorithm and parameter initialization strategy are selected
and used to tune the JA model.

The three stages covered by a dashed box in Fig. 2 are part
of the computational process, which is further elaborated in
the pseudocode presented in Algorithm 1. After setting the B-
H curve data as the algorithm input, the time starts counting
and the parameters are initialized by the chosen strategy. Then,

the chosen metaheuristic optimization method is executed. The
selected minimization function is the root mean square error ε
between the measured and the calculated flux density in [%]:

ε =
1

Bs

√√√√ N∑
i

(Bdatai −Bcali)
2

N
x100 (11)

where Bs is the saturation value of the flux density in [T], i is
the current iteration, N is the number of flux density values,
Bdatai is the flux density value in [T] of the material at each
iteration and Bcali is the estimated flux density in [T] values
of the material at each iteration.

As shown in the pseudocode in Algorithm 1, the algorithm
finishes when (i) it converges, i.e. the error has not changed
in the last 100 iterations or (ii) a maximum number of it iter-
ations have been reached (itmax = 10000, in this study). Then,
the error, computational time and JA optimized parameters are
stored, and the same procedure is repeated N = 10000 times
to obtain the error and computational time distributions.

The Algorithm 1 makes use of the infer_stats function
to analyze the error and computational time results. This
function calculates the area under the curve of the distributions
to ensure where the confidence interval (CI) of 95% lays [32].

III. CASE STUDIES

The presented framework is validated with two different
materials and their B-H curves. The pseudocode presented
in Algorithm 1 is executed with an Intel(R) Core(TM) i5-
8265U CPU @ 1.60GHz processor. Material A is a H75-
23 core used in medium voltage transformers and material
B has been obtained from an open-source database of B-H
curves [33]. The JA parameter limits are set based on available
information. For material A, the saturation is known and Ms
is not included in the estimation procedure. The rest of the
material A parameters are set based on approximations and
literature values [19], [31]. The limits for material B are higher
because previous analysis indicated that the parameter values
for material B are higher than for material A [33]. The chosen
limits for both materials are presented in Table I.

TABLE I: LIMITS FOR JA PARAMETERS.

Parameter Limits Material A Limits Material B UnitLower Upper Lower Upper
Ms 1.52x106 1.52x106 9.35x105 11.42x105 A/m
a 1 100 1 1000 A/m
α 10−6 10−5 10−6 10−5 [-]
c 0.1 0.9 0.1 0.9 [-]
k 1 100 1 5000 A/m
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Algorithm 1 Proposed JA parameter estimation algorithm.

Require: Bdata, Hdata ▷ B-H curve data
Select dist(.)← {U(u, l)} ∨ {N(µ, σ)} ▷ Select initialization criteria, distribution dist(.)
Select metaheuristics(params, f(.))← {GA (params, f(.))} ∨ {PSO (params, f(.))} ∨ {DE (params, f(.))}
▷ Select metaheuristic algorithm, with corresponding input parameters and fitness function, as per (11)
for i = 1 : N do ▷ Repeated sampling to infer mean statistics

vε = 0 ▷ Initialize error storage vector
vt = 0 ▷ Initialize time storage vector
vεit = 0 ▷ Initialize iteration error storage vector
Mparams = 0 ▷ Initialize parameter matrix
it = 0 ▷ Initialize iteration counter
itmax = 10000 ▷ Initialize maximum number of iterations
εit = 100 ▷ Initialize error of the it iteration
εlimit = 0 ▷ Initialize acceptable error limit
tcount = 0 ▷ Initialize time counter
{Ms, a, α, c, k} ∼ dist(.) ▷ Draw parameters from the selected distribution
while εit > εlimit and it < itmax do ▷ Stop criteria for the metaheuristics
{params’, εit, tcount} ∼ metaheuristics(params, f(.)) ▷ Execute metaheuristics with fitness function f(.) defined

in (11) and params defined for each algorithm in Subsection II-B
it = it+ 1 ▷ Update iteration
vεit [i] = εit ▷ Store the error of the iteration it
if it > 100 then ▷ Condition to update error limit

εlimit= vεit [it− 100] ▷ Update error limit
end if

end while
vε[i] = εit ▷ Store optimized error
vt[i] = tcount ▷ Store time
Mparams[i, :] = params’ ▷ Store optimized params

end for
stats vε = infer_stats(vε) ▷ Infer, max. likelihood, 95% CI statistics, via infer_stats function
stats vt = infer_stats(vt) ▷ Infer, max. likelihood, 95% CI statistics via infer_stats function return
stats vε, stats vt,Mparams ▷ Distribution statistics for error and time, and optimized JA parameters

A. Bruce-Force Base-Case

In the base-case, the JA parameters are estimated by a brute-
force algorithm. The algorithm sweeps the parameters between
the selected limits and tries all the possible combinations. This
case is used for comparison purposes.

B. Description of the Cases and Uncertainty

The impact on JA parameter initialization with different
PDFs has been analysed for the three algorithms and both
materials. Firstly, the uniform parameter initialization is car-
ried out, which models the case of least knowledge about the
parameters, defined as follows:

f(x) =

{
1

u−l for l ≤ x ≤ u

0 for x < l or x > u
(12)

where l and u are lower and upper boundaries respectively.
These boundaries are given in Table I for materials A and B.

Next, so as to model the level of uncertainty depending on
available data and expert knowledge, the initialization of the
JA parameters is done with the Gaussian PDFs, defined as:

f(x) =
1

σ
√
2π

e

(
− (x−µ)2

2σ2

)
(13)

where µ is the mean value, and σ is the standard deviation.
The impact of the parameter initialization with different

PDF levels on the accuracy and computational time has been
analysed through different uncertainty levels. The selected
scenarios cover the parameter initialization with uniform dis-
tribution as U(u, l) and Gaussian or normal distributions with
σ = {1%, 5%, 10%} which can be formalized as N(µ, 0.01µ),
N(µ, 0.05µ) and N(µ, 0.1µ). Note that, the lower the per-
centage of the standard deviation, the bigger the expert
knowledge. This process results in the probabilistic estimation
of error and computational time for different search-based
algorithms. Selected PDFs are further processed to obtain the
maximum likelihood estimate and 95% confidence interval
values through the function infer_stats using numerical
integration methods [34].

IV. NUMERICAL RESULTS

A. Base-Case

The best fitting JA parameters obtained with the brute-force
algorithm for materials A and B are summarized in Table II,
along with the error and the computational time. Note that the
error obtained for material B is higher than for material A
because of the search space. The sample size used to sweep
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TABLE II: BASE-CASE RESULTS.

Parameter Material A Material B Unit
Ms 1519130 1067217 A/m
a 13 211 A/m
α 1x10−5 9x10−5 [-]
c 0.8 0.2 [-]
k 24 201 A/m

Error 2.33 10.81 %
Time 20.5 167 min

the range of the parameters is bigger for material B, due to
computational limitations, and therefore, the algorithm has a
lower resolution. Moreover, the computational time is higher
for material B owing to the parameter combinations that the
brute-force algorithm needs to try.

B. Uncertainty Assessment

1) Material A: First, the JA parameter initialization has
been carried out using a uniform distribution for the selected
metaheuristic-based search algorithms. Fig. 3 shows that DE
has the best accuracy results of 2.07%. Moreover, further
results displayed in Table III show that DE and PSO have
a lower maximum likelihood error than GA. As for the
computational time, Fig. 4 shows that PSO requires the least
amount of computational time. Further results presented in
Table III indicate that even though PSO is the fastest algorithm
with a maximum likelihood computational time of 3s, it
tends to converge to the local minimum instead of the global
minimum, leading to a worst-case scenario of 17.26% error
with a maximum computational time of 66s. This problem is
evident in the 3D probability distribution plot between error
and computational time shown in Fig. 5b. On the other hand,
GA is the slowest algorithm with a worst-case computational
time of 154s, which can result in an error of 5.66%. Moreover,
the maximum likelihood results for GA are: computational
time of 11s and an error of 2.49%, which makes GA the less
suitable algorithm for uniform parameter initialization. On the
other hand, DE shows the best trade-off between accuracy and
computational time, as demonstrated in the 3D plot shown
in Fig. 5c, and is selected as the most suitable algorithm
whenever no expert knowledge or previous data is available.

Fig. 3: Error PDF for different algorithms with uniform
parameter initialization for material A.

Fig. 4: Computational time PDF for different algorithms with
uniform parameter initialization for material A.

As illustrated in Fig. 6, when a Gaussian PDF is used for
the parameter initialization, the accuracy is highly improved
for all algorithms. Therefore, even the local minimum problem
detected with PSO is solved. As for the computational time,
the distribution comparison in Fig. 7 shows the reduction in the
execution time as the uncertainty decreases. Note that the scale
of the subplots is different for improved visualization. The best

TABLE III: RESULTS FOR UNIFORM AND GAUSSIAN PDF (N(µ, 0.05µ)) INITIALIZATION WITH MATERIAL A.

Genetic Algorithm Particle Swarm Optimization Differential Evolution
Uniform Normal 5% Uniform Normal 5% Uniform Normal 5%

Error [%]
Best/Worst Case 2.07/5.66 2.07/2.17 2.14/17.26 2.07/2.20 2.07/2.50 2.07/2.11
Max. Likelihood 2.49 2.12 2.15 2.08 2.15 2.15

95% Upper/Lower 2.14/2.50 2.08/2.16 2.07/2.5 2.07/2.17 2.14/2.49 2.09/2.12

Time [s]
Best/Worst Case 1/154 1/2 1/66 1/7 1/11 1/6
Max. Likelihood 11 1 3 1 6 2

95% Upper/Lower 5/53 0/2 1/15 0/6 1/9 0/6

Parameter

Ms [A/m] 1519130 1519130 1519130 1519130 1519130 1519130
a [A/m] 12.95 12.89 12.83 13.52 12.82 13.38

α 1.00x10−5 1.01x10−5 1.04x10−5 1.16x10−5 0.83x10−5 1.12x10−5

k [A/m] 24.06 23.75 23.95 25.10 23.49 25.32
c 0.9 0.9 0.9 0.9 0.9 0.9
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(a) GA (b) PSO (c) DE

Fig. 5: Comparison of the probability distribution of error and computational time for material A.

Fig. 6: Comparison of the error between the different param-
eter initialization settings for material A.

Fig. 7: Comparison of the computational time between the
different parameter initialization settings for material A.

Fig. 8: Comparison between the measured and the estimated
B-H curves for material A.

trade-off between accuracy and computational time for each
algorithm is found when the JA parameter initialization is done
with a 5% Gaussian PDF. The results obtained for these cases
are detailed in Table III along with the results obtained with
the uniform parameter initialization strategy. In all scenarios,
the maximum likelihood convergence speed for Gaussian
PDF parameter initialization is between 1s and 2s. The best
compromise between the accuracy and the computational time
is given by GA. Hence, for material A, GA is the most
suitable algorithm if expert knowledge or previous information
is available. To verify the validity of the results, the B-H curve
is obtained from the PDE in (6) using the most accurate case,
which is GA Gaussian PDF with 5% uncertainty. Fig. 8 shows
the agreement between the estimated B-H curves and the real
data for material A.

2) Material B: In the case of the uniform PDF parameter
initialization, Fig. 9 shows that DE has the highest accuracy,
with a maximum likelihood error of 1.69%. PSO shows the
worst accuracy with a maximum likelihood error of 5.01%, as
indicated in Table IV. Moreover, PSO results show that this
algorithm can get stuck in a local minimum with a worst-
case error of 21.04%. As for the computational time, Fig. 10
shows that even though PSO has the highest probability of
converging faster, it can be the slowest algorithm in case of
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TABLE IV: RESULTS FOR UNIFORM AND GAUSSIAN PDF (N(µ, 0.05µ)) INITIALIZATION WITH MATERIAL B.

Genetic Algorithm Particle Swarm Optimization Differential Evolution
Uniform Normal 5% Uniform Normal 5% Uniform Normal 5%

Error [%]
Best/Worst Case 1.71/2.72 1.75/3.56 1.70/21.04 1.74/2.19 1.69/2.50 2.07/2.11
Most Likelihood 2.47 2.49 5.01 1.75 1.7 2.08

95% Upper/Lower 1.70/2.50 1.93/2.51 1.77/8.27 1.74/2.48 1.69/2.49 2.06/2.11

Time [s]
Best/Worst Case 1/90 1/29 1/124 1/31 1/41 1/6
Max. Likelihood 5 4 3 2 5 2

95% Upper/Lower 2/42 1/19 1/47 0/20 2/18 0/6

Parameter

Ms [A/m] 1015196 1018404 1013978 1021701 1015781 1015781
a 63.94 62.82 62.53 69.01 63.89 63.99
α 8.46x10−5 9.78x10−5 8.00x10−5 10x10−5 8.07x10−5 8.22x10−5

k [A/m] 274.01 378.16 272.49 302.51 269.72 264.86
c 0.48 0.64 0.46 0.54 0.46 0.45

Fig. 9: Error PDF for different algorithms with uniform
parameter initialization for material B.

converging to a local minimum. The worst-case computational
time of PSO is 124s. The problem of local minima is better
illustrated in the 3D plot in Fig. 11b, where the PDFs of error
and computational time are shown. On the other hand, even
though the worst-case error obtained with GA is 2.72%, the
maximum computational time is 90s. Therefore, for material
B, DE is also the algorithm with the best trade-off between
error and computational time for a uniform PDF parameter
initialization, as confirmed in Fig. 11c.

Fig. 12 shows the comparison between the error obtained
for the different parameter initialization strategies. The results
obtained for PSO are considerably improved when using the
Gaussian PDF. Nonetheless, the error obtained by GA is not
affected by the parameter initialization strategy, and DE results
are worsened. However, as shown in Fig. 13, the computational
time for DE improves for the 5% and 10% uncertainty cases
and GA is not affected by the initialization strategy. On the
other hand, PSO computational speed is reduced for the Gaus-
sian PDF parameter initialization strategy. For a more detailed
comparison, the results obtained with the 5% Gaussian PDF
parameter initialization for all the algorithms are summarized
in Table IV. By analyzing all the results, for material B,
PSO is found to be the algorithm with the best performance
when a Gaussian PDF-based parameter initialization strategy
is adopted.

The error and computational time of all the cases are

Fig. 10: Computational time PDF for different algorithms with
uniform parameter initialization for material B.

summarized in Table IV. To verify the validity of the results,
the B-H curve is obtained from the PDE presented in (6) using
the most accurate case, which for material B is DE uniform
PDF. Fig. 14 shows the agreement between the estimated B-H
curves and the real data for material B.

C. Analysis of Results

1) Accuracy & Computational Complexity: First, to ver-
ify the improvement of the JA parameter estimation with
metaheuristics, a base-case based on brute-force is analysed
for both materials. Metaheuristic-based search algorithms can
reduce the error from 2.33%, obtained with brute-force, to
2.07% for material A. The error reduction in material B is
more significant, from 10.81%, obtained with brute-force, to
1.69%. As shown in Table II, the search area for material B
is greater than material A. Due to memory constraints, the
resolution for material B is decreased and hence, the brute-
force algorithm is not able to further reduce the error. The
computational time is reduced from 20.5 minutes, in the brute-
force case, to below 1 minute when the parameter initialization
is carried out by a Gaussian PDF. In the case of material B,
the brute-force algorithm lasts 167 minutes because the search
space is higher. The computational time is shown to be reduced
to below 1 minute when a Gaussian PDF is used.

2) Parameter Initialization Strategies: The most significant
issue regarding uniform parameter initialization is the problem
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(a) GA (b) PSO (c) DE

Fig. 11: Comparison of the probability distribution of error and computational time for material B.

Fig. 12: Comparison of the error between the different param-
eter initialization settings for material B.

Fig. 13: Comparison of the computational time between the
different parameter initialization settings for material B.

Fig. 14: Comparison between the measured and the estimated
B-H curves for material B.

of convergence to a local minimum encountered with PSO.
Even though this is outside the 95% confidence interval, as
shown in Tables III and IV, the results for material B show
that the upper 95% quantile for the error and computational
time are 8.27% and 47s, respectively. In the case of GA, the
95% confidence interval shows good performance for material
A. However, for material B, the computational time 95%
upper confidence interval has a value of 42s. Therefore, DE
is found to have the best performance in terms of accuracy
and computational time for both materials when using uniform
distribution. This is visualized in the 3D plots shown in Figs.
5 and 11, where the error and computational time distributions
for uniform parameter initialization are shown.

The parameter initialization with Gaussian PDFs has solved
the local minimum problem for PSO, and results show that
the accuracy and computational time of this algorithm are
improved for both materials. However, for GA and DE, the
utilization of PDFs for parameter initialization has yielded
different results for each material. In the case of GA, the
performance of the algorithm is shown to improve for material
A, as shown in Figs. 6 and 7. However, for material B, GA
has obtained similar results for all the parameter initialization
strategies. This is in accordance with the study presented in
Section I about the impact of different initialization strategies,
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which concludes that GA has lower sensitivity than PSO to the
parameter initialization strategy. Conversely, the performance
of DE is improved with Gaussian PDF parameter initialization
in the case of material A and obtains the best performance
among the tested search algorithms. However, for material B,
the error distribution shows a higher probability of decreasing
the error for random uniform parameter initialization than
for Gaussian PDFs. Therefore, these results demonstrate that
the algorithm with the best performance for Gaussian PDF
parameter initialization for both materials is PSO.

V. DISCUSSION

This research presents a framework to assess the initializa-
tion of JA parameters for their estimation using metaheuris-
tic search algorithms. The parameter initialization strategy
is determined by different uncertainty levels depending on
previous data and expert knowledge. Results show that the
use of PDFs for parameter initialization improves the accuracy
and computational time of the metaheuristic search algorithm
with respect to classical random uniform initialization strate-
gies. However, before drawing definitive conclusions about
the suitability of the analysed metaheuristic algorithms for
modelling the transformer core, further work is necessary to
test the approach for analysing electromagnetic transients, such
as inrush current, in transformers.

The transformer modelling process is a complex task, which
requires the coordination of different models and information
sources, e.g. duality-based transformer model [22]. In this
context, the JA parameter estimation is an offline process
carried out once during the design stage. Even in time-sensitive
applications like transformer’s CB auto-reclosing, related to
inrush current, the computational time needed for JA parameter
estimation is not significant [35]. However, the transformer
design process consists of various demanding stages, such as
optimizing the size and losses, while keeping the temperature
rise below safe values. The accuracy in the calculation of
losses (and temperature rise) is also crucial. In parallel, other
design requirements must also be met, including clamp forces
or transformer insulation codes.

In this context, cost optimization is essential, and in a
competitive market, fast and reliable design processes are
key. Therefore, any reduction in the execution time of these
stages holds potential economic benefits for the company and
alleviates the workload for engineers.

VI. CONCLUSIONS

This study presents a framework to assess the JA parameter
initialization including different levels of uncertainty present
in available data and expert knowledge through metaheuristic-
based search algorithms. The proposed approach uses un-
certainty awareness through PDFs and their propagation in
three different metaheuristic algorithms including GA, PSO
and DE. The obtained accuracy and computational time results
are compared and analysed for two different transformer core
materials. Results show that the accuracy and computational
time of the JA parameter estimation for both materials have

been improved when a Normal PDF initialization strategy is
used instead of the uniform parameter initialization.

The proposed approach eases the decision-making process
for JA-based hysteresis modelling approach for novel and
experienced engineers alike. A novel engineer with limited
field experience may benefit from the proposed framework
through the selection of the most accurate and computation-
ally efficient metaheuristic-search algorithm using the random
uniform parameter initialization. Obtained results show that
DE metaheuristic algorithm is most appropriate among the
analysed algorithms for JA parameter estimation scenarios
with lack of available information. For experienced engineers,
the proposed parameter initialization approach is shown to
improve accuracy and computational time with the selection
of a Normal PDF. Therefore, the framework presented in this
research may benefit end users with different transformer and
field experiences.
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