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Abstract: In industrial quality control, especially in the field of manufacturing defect detection, deep
learning plays an increasingly critical role. However, the efficacy of these advanced models is often
hindered by their need for large-scale, annotated datasets. Moreover, these datasets are mainly based
on RGB images, which are very different from X-ray images. Addressing this limitation, our research
proposes a methodology that incorporates domain-specific self-supervised pretraining techniques
using X-ray imaging to improve defect detection capabilities in manufacturing products. We employ
two pretraining approaches, SimSiam and SimMIM, to refine feature extraction from manufacturing
images. The pretraining stage is carried out using an industrial dataset of 27,901 unlabeled X-ray
images from a manufacturing production line. We analyze the performance of the pretraining against
transfer-learning-based methods in a complex defect detection scenario using a Faster R-CNN model.
We conduct evaluations on both a proprietary industrial dataset and the publicly available GDXray
dataset. The findings reveal that models pretrained with domain-specific X-ray images consistently
outperform those initialized with ImageNet weights. Notably, Swin Transformer models show
superior results in scenarios rich in labeled data, whereas CNN backbones are more effective in
limited-data environments. Moreover, we underscore the enhanced ability of the models pretrained
with X-ray images in detecting critical defects, crucial for ensuring safety in industrial settings. Our
study offers substantial evidence of the benefits of self-supervised learning in manufacturing defect
detection, providing a solid foundation for further research and practical applications in industrial
quality control.

Keywords: defect detection; manufacturing; optical quality control; deep learning; self-supervised
learning

1. Introduction

Over the years, extensive research has been conducted to enhance the visual inspection
of manufacturing products using X-ray imaging. The main focus has been on developing
automated processes capable of identifying defective products. Actually, manual analysis
of each piece is not only a repetitive and fatiguing task for operators, but their accuracy can
also tend to decrease over time [1]. In contrast, data-driven approaches not only ensure
uniform performance over prolonged periods but also effectively mitigate the risk of human
errors. Therefore, they can significantly aid in the operators’ decision-making process.

Recent advancements in deep-learning-based approaches have emerged as the leading
solution for a variety of tasks across multiple domains [2]. Specifically in the context
of manufacturing defect detection, these techniques are now considered state of the art,
significantly outperforming traditional methods [3–5]. However, their performance is
conditioned by a significant condition: their data-hungry nature. These approaches require
extensive datasets of labeled images during training to learn effective visual representations.
Consequently, their effectiveness can drastically diminish when only a limited number of
images is available, highlighting a critical challenge in their application. This challenge
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becomes even more notable in defect detection as the acquisition of extensive, accurately
labeled datasets proves especially difficult within industrial environments.

A potential solution to mitigate the data requirements is the adoption of transfer
learning. This approach fundamentally involves leveraging knowledge acquired from
broadly defined problems and applying it to more specific, targeted tasks. For vision
models, pretraining on extensive datasets like ImageNet [6] enhances their capability
for various downstream tasks. However, despite the demonstrated effectiveness of these
models in manufacturing defect detection, the performance can be impacted by (1) the
disparity between ImageNet images and X-ray images and (2) the potential bias of these
models towards the specific categories present in the dataset.

However, the need for a labeled dataset in these pretraining approaches often presents
a bottleneck in the development of deep learning models. Self-supervised learning emerges
as a solution, enabling the extraction of significant features from images without relying
on labeled data and thus making efficient use of the vast volumes of available data. In
the context of manufacturing defect detection, self-supervised approaches allow for the
utilization of large datasets of unlabeled X-ray images, common in industrial settings. This
facilitates the training of a model adept at understanding X-ray image representations
and reliable in extracting the most relevant features. Subsequently, the model becomes a
suitable backbone for downstream tasks that involve a labeled X-ray dataset, enhancing its
applicability and effectiveness in precise defect identification.

The main contribution of this work is the introduction of a novel methodology for de-
fect detection in manufacturing parts where we utilize specialized pretraining approaches
on X-ray images to develop models with enhanced feature extraction capabilities. By im-
plementing a pretraining phase with images from the specific manufacturing field, our
models evolve into highly adept feature extractors, showing a significant improvement in
identifying task-relevant features compared to models initialized with ImageNet weights.
This methodology is validated by the strong performance of these models in defect detec-
tion tasks within manufacturing contexts, as seen through evaluations both on a public
benchmark dataset and in real-world industrial environments. Such validation underscores
the practical efficacy and significance of our approach in scenarios where precise defect
identification is crucial. Through this work, we contribute to the manufacturing defect de-
tection domain by showcasing how specialized pretraining can effectively extract relevant
features from X-ray images, thus offering new insights into applying this technology in
industrial environments.

2. Related Work
2.1. Manufacturing Defect Detection

Numerous efforts have been made over the years to automate the task of defect
detection in manufacturing using computer vision methods. Currently, manufacturing
defect detection is a well-established problem in the field of computer vision and has been
widely applied in numerous industrial quality control processes [7–9]. Initial attempts
in defect detection used image comparison [10] and Fourier Transform [11] to identify
defects, followed by statistical techniques for feature extraction [8,12]. These features were
then classified using machine learning to distinguish between defective and non-defective
items. However, this manual feature extraction was product specific and not universally
applicable, limiting the transferability of learned knowledge.

The emergence of deep-learning-based approaches has improved the accuracy in
manufacturing quality control [3–5,13–15]. Their complex structures are able to retain and
automatically learn the information contained in the image, more effectively facilitating the
image processing compared to previous techniques. Deep-learning-based models are built
in an end-to-end manner so handcrafting processes are not required to extract discriminant
features [3,16]. In fact, the feature extraction process is carried out automatically from
raw images, followed by a classifier head that learns the boundary between defective and
non-defective features.
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In recent years, numerous studies have employed deep Convolutional Neural Net-
works (CNNs) for image-level classification, effectively differentiating between defective
and non-defective manufacturing images [1,8]. These works focused on refining the fea-
ture extraction process, considering it crucial for developing an effective defect detector.
Kuo et al. [1] compared different feature extraction backbones on surface images with
sandblasting defects. Additionally, Wang et al. [17] used a self-attention module to extract
and classify features from small defects.

However, the aim of defect detection is not only to classify a product at image level but
also to locate the defects throughout the image when the product is defective. Therefore,
research shifted towards the application of object detection models to incorporate location
information [3,13–15,18]. Ferguson et al. [3] applied Faster R-CNN [19] to a GDXray bench-
mark dataset [20], obtaining satisfactory results. Soon after, they improved their results
by applying a Masked R-CNN [4] pretrained on the COCO dataset [21]. Du et al. [13]
proposed several improvements to the Faster R-CNN for defect detection in automobile
manufacturing products, including the Feature Pyramid Network [22] (FPN), RoIAlign [23],
and data augmentation techniques. Furthermore, Wang et al. [17] were the first to integrate
self-attention mechanisms with CNNs, enhancing image defect detection by extracting
subtle features from general features.

The main challenge facing deep-learning-based approaches is their reliance on a large
volume of images to achieve reliable performance [24]. Indeed, applying transfer learning
with pretrained models offers a suitable initial step [4]. However, there is a notable disparity
between X-ray images and those typically used in ImageNet pretraining; X-ray images
are grayscale and depict specific manufacturing parts, contrasting with the RGB images of
varied everyday objects and scenes from ImageNet. This discrepancy leads to a significant
domain shift.

Although there have been significant advancements in applying defect localization to
manufacturing defect detection, a notable gap exists in the use of self-supervised learning on
X-ray manufacturing images. To the best of our knowledge, this specific approach remains
unexplored, representing a promising direction for the enhancement of the accuracy and
efficiency of defect detection in industrial settings. We hypothesize that self-supervised
learning, specifically applied to manufacturing X-ray images, could be an effective strategy
for overcoming the reliance on large, labeled datasets in deep learning. By adopting this
method for pretraining, our goal is to extract and refine the most representative features
intrinsic to this specific domain, which could subsequently enhance the performance
of downstream defect detection tasks. Therefore, this advancement would increase the
effectiveness and reliability of defect detection in real-world industrial applications.

2.2. Self-Supervised Learning

As has been mentioned, it is widely acknowledged that current deep learning algo-
rithms require large-scale training datasets to learn intrinsic data representations and reach
satisfactory generalization ability. In supervised learning, labeled data are compulsory
during the training, so large datasets have to be annotated. This can be seen as a bottleneck
because of the time-consuming and expensive labeling process, as well as infeasible in
several fields. Moreover, the models trained in a supervised way are heavily dependent on
manually annotated labels.

Currently, self-supervised learning is a popular alternative to learning visual repre-
sentations of images without annotated data. It leverages the huge number of unlabeled
data available to train a model solving different pretext tasks. During this process, the
model learns inherent image features that can be used for several final purposes [25].
As proposed in the survey of Liu et al. [26], self-supervised learning approaches can be
summarized as generative based [27], contrastive based [28,29], or GAN based [30]. The
survey shows that generative- and GAN-based approaches underperform in classification
tasks compared to contrastive-based approaches. Therefore, as defect detection can be
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seen as a particular classification problem, our analysis is focused on the self-supervised
contrastive-based techniques.

The main idea of the contrastive approach is to build a simple discrimination problem
based on a pretext task that helps the model to learn representative features from images.
The pretext task clusters the images into different groups under the assumption that images
from the same group are semantically similar whereas images from different groups are
not [25]. According to this, contrastive learning tries to minimize the distance between
image features from the same groups (known as positive pairs), thus decreasing intra-
class similarity, and maximize the distance between image features from different groups
(negative pairs), increasing inter-class similarity.

Attempting to define the pretext task, Wu et al. [31] introduced instance discrimination
with a memory bank for efficient training, emphasizing the importance of a large num-
ber of negative samples for improved performance. This concept was further refined by
He et al. [28], who used a momentum encoder and data augmentation to generate positive
pairs from the same image. Chen et al. [29] proposed SimCLR, eliminating the need for a
memory bank and using current batch negative samples for contrastive loss calculation,
although requiring large batch sizes for better representation quality. Subsequent studies
focused on the impact of hard negatives and batch size balance [32,33]. Grill et al. [34]
addressed the large batch size issue by relying solely on positive pairs and enhancing
the momentum encoder, offering robustness in smaller batch scenarios. Yet, the SimSiam
model by Chen et al. [35] represents a leap forward with its simpler architecture and unique
stop-gradient feature, effectively performing without needing negative samples, large
batches, or momentum encoders.

In the realm of self-supervised learning, a significant evolution has been observed with
the integration of Transformers into computer vision, moving away from the traditional
reliance on CNN-based approaches [36]. These models, well known for their ability to
capture complex relational dependencies within image sequences, have shown remarkable
scalability in handling large-scale networks and datasets [37]. This advancement led to
the development of hierarchical self-attention architectures focused on extracting multi-
resolution features essential for detailed applications like defect detection [38–40].

This transition towards Transformers in vision aligns seamlessly with the broader
advancements in self-supervised learning. Vision Transformers, paralleling NLP techniques
like BERT’s token masking [41], apply similar pretraining strategies. By masking parts
of images and reconstructing them, this method enables learning from large, unlabeled
datasets, reducing dependence on annotated data [42]. This reflects unified progression in
exploiting unlabeled data for complex visual tasks, emphasizing the importance of robust
visual representations [43].

3. Materials and Methods

This section provides a detailed overview of the methodology we employed to achieve
our main goal: improving defect detection performance in a real-world industrial environ-
ment using a pretraining stage. We detail and compare the two self-supervised techniques
used in our approach, emphasizing how each contributes to enhancing the learning of
visual representations. Additionally, we discuss their potential impact on improving defect
identification within industrial settings.

3.1. Our Methodology

Our methodology is centered on the application of self-supervised learning tech-
niques to construct defect detectors for manufacturing with the goal of enhancing the
current state of the art in manufacturing defect detection. It stands out from previous
approaches in manufacturing defect detection by exploiting large datasets of unlabeled
X-ray images, which are commonly found in industrial settings, to train defect detectors in
a self-supervised manner.
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The pretraining phase of our methodology involves the development of models
capable of automatically learning and extracting critical visual features from X-ray images,
independent of annotated data. In this stage, the models are trained in a self-supervised
way on an unlabeled dataset of X-ray manufacturing images. In the subsequent sections
of this paper, we comprehensively detail two distinct self-supervised learning techniques.
These methods have been specifically chosen for their demonstrated efficiency and superior
performance in prior pretraining tasks. As a result of the training, we leverage the inherent
characteristics and patterns present in these images, thus enabling the models to identify
subtle yet significant anomalies that signal defects. Additionally, this pretraining stage is
not burdened with high data gathering costs. The significant expense in data preparation
usually arises from the need for precise image annotations rather than the collection of
raw data itself. In our approach, raw images can be efficiently collected through an X-ray
camera integrated into the production line, enabling the acquisition of a comprehensive set
of manufactured products.

After the self-supervised pretraining, the model serves as a refined feature extractor
for specific downstream tasks, particularly for defect detection in manufacturing. This
approach takes full advantage of the improved ability of the model to understand and
interpret the characteristics of X-ray images. Subsequently, in line with established meth-
ods in the literature [3,4,13], we integrate the feature extractor into an object detection
framework. The model undergoes fine-tuning on a carefully annotated target dataset,
where defects are delineated using bounding boxes or pixel-wise annotations, clearly dis-
tinguishing them from the image background. The emphasis during this fine-tuning stage
is on training the detector to accurately localize and identify defect features within the
entire image, enhancing the precision of the defect detection. Diverging from traditional
methods that commence fine-tuning with ImageNet weights, our methodology employs
features pertinent to manufacturing images, derived from the self-supervised pretraining.
This approach potentially enables the model to assimilate local defect features more effec-
tively as it integrates the learned visual representations with traditional defect detection
mechanisms, leveraging the global representations of manufacturing products acquired
during the pretraining phase. As a result, the final defect detection system is expected to
be more robust and reliable in detecting defects, offering a significant improvement over
traditional approaches.

Figure 1 shows an overview of the methodology, which encompasses two key stages:
pretraining and fine-tuning. In the pretraining phase, the backbone of the model is trained
through a self-supervised learning approach. This training equips the model with the
ability to specifically extract features from X-ray manufacturing images. Following this, the
trained backbone is adapted into an object detection framework. Here, it undergoes a fine-
tuning process with an annotated target dataset, which further refines its defect detection
capabilities for manufacturing images. To assess the effectiveness of our methodology, we
have chosen two self-supervised learning approaches: SimSiam [29] and SimMIM [44].
Detailed descriptions of these techniques are provided in the following subsections.

3.2. SimSiam

We employed SimSiam [29] for pretraining a feature extractor specifically tuned to
discriminate between relevant features from manufacturing images. SimSiam was chosen
for its optimal trade-off between simplicity and effectiveness in image classification tasks.
Its advantage lies in not requiring large batch sizes or a momentum encoder for training,
making it feasible to train on multiple GPUs without demanding significant resources.
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Figure 1. Methodology overview: The process comprises two stages, pretraining and fine-tuning.
Initially, we utilize self-supervised learning techniques SimSiam and SimMIM to train the generic
backbone on large volumes of unlabeled X-ray images. This initial phase helps the model to capture
critical visual features relevant to manufacturing defects, eliminating the need for data annotations.
Subsequently, the pretrained backbone is integrated into an object detection framework, where it
undergoes fine-tuning with an annotated target dataset. The final inference stage applies the fine-
tuned model to accurately detect defects in manufacturing images, using the robust features learned
in earlier phases for improved precision and reliability.

SimSiam is a contrastive learning approach that employs a Siamese-network-based
architecture. This method trains the model to maximize the agreement between different
augmented views of the same data using contrastive loss in the latent space. It generates
two random augmentations, x1 and x2, from an image x which are then processed by an
encoder network f . This encoder f , comprising a backbone such as ResNet50 [45] and a
projection multilayer perceptron (MLP) head, shares its weights across views for consistent
feature extraction. Additionally, a separate MLP, denoted as h, serves as a prediction head,
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transforming one view’s output to align with the other view. Following the notation of
the original paper, the transformed and original vectors are represented as p1 ≜ h( f (x1))
and z2 ≜ f (x2), respectively. In a symmetrized manner, the model also processes the
augmentations inversely, producing z1 ≜ f (x1) and p2 ≜ h( f (x2)). This symmetrization
in the loss function significantly enhances the robustness and learning effectiveness of
the model. The core objective of SimSiam is to minimize the negative cosine similarity
between pairs (p1 and z2 and p2 and z1), thereby aligning these representations despite
their augmentation-induced variations.

D(p1, z2) =− p1

∥p1∥2
· z2

∥z2∥2

D(p2, z1) =− p2

∥p2∥2
· z1

∥z1∥2

(1)

where ∥p1∥2 and ∥p2∥2 are the L2 norms of p1 and p2, respectively. A pivotal element of the
SimSiam approach is the stop-gradient operation, which is key to preventing a collapsing
solution where all outputs converge to the same vector. This operation is applied to the
output of the encoder f , treating it as a constant during a portion of the training. This
technique helps maintain diversity in the learned features, ensuring that the model does
not trivially minimize the loss by converging to a constant output, as illustrated in Figure 2.
The final form of the loss function is defined as follows:

L =
1
2
D(p1, stopgrad(z2)) +

1
2
D(p2, stopgrad(z1)) (2)

image x

encoder f encoder f

x1 x2

similarity

predictor h

p1 z2

gradient ×stop-gradient

Figure 2. Overview of the SimSiam architecture [29]. From an original image, two augmented versions
are processed by a Siamese network to extract and align features, utilizing a stop-gradient operation to
prevent collapsing solutions. This strategy minimizes negative cosine similarity, enhancing consistent
feature identification across variations with efficient contrastive learning.

The goal is for the model to learn representations that are invariant to the augmenta-
tions, ensuring the model yields consistent outputs for different views of the same image.
This necessitates the careful selection of augmentations that are sufficiently invariant for
trivial variations to be ignored, but not excessively, so important information for down-
stream tasks is not discarded [46]. Achieving this balance enables the model to effectively
identify and highlight relevant features. In the original paper, the authors employed a
range of augmentations, including geometric (such as cropping the image by up to 20%
and horizontal flipping), color modifications (brightness, contrast, saturation, hue, and
grayscale), and Gaussian blurring. We followed the same strategy in our approach.
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3.3. SimMIM

Transformers have emerged as state of the art for a wide range of vision-related tasks,
primarily due to their exceptional capability in feature extraction and representation learn-
ing [37]. This progress inspired our exploration into their application for defect detection in
manufacturing processes.

Furthermore, with the aim of maximizing the capabilities of the Transformers, the
selection of a pretraining approach is critical [47]. Considering the need for defect detection
models to accurately detect features across multiple resolutions, we selected the SimMIM
approach [44] for the pretraining phase on X-ray manufacturing images. This choice was
informed by the compatibility of SimMIM with multi-scale Vision Transformers, which is
essential for effective feature discernment at various scales. Adopting the masked image
modeling approach, SimMIM aims to acquire visual representations by reconstructing
randomly masked image patches. This approach allows for a deeper understanding of the
underlying visual context.

The SimMIM approach incorporates an encoder–decoder strategy. The encoder is
responsible for extracting latent feature representations from the unmasked sections of
image patches. The decoder reconstructs the pixel values of masked patches. l1 loss is
used in order to train this model. This process involves down-sampled-resolution feature
maps from the encoder being mapped back to original-resolution feature maps through
a 1 × 1 convolution layer. The l1 loss function is then applied specifically to the masked
pixels using the following formula:

L =
1

Ω(xM)
∥yM − xM∥1 (3)

where x and y represent the input image and predicted values, respectively, with M indicat-
ing masked pixels and Ω the count of images. Figure 3 provides a schematic representation
of the model architecture.

The key aspect of SimMIM is its efficient reconstruction process, which demonstrates
that the lightweight prediction head can perform comparably, if not better, than more
complex reconstruction decoders [44]. This efficiency not only maintains accuracy but also
significantly reduces pretraining time and computational resource demands.

The masking strategy in SimMIM, crucial for maximizing its effectiveness, involves
applying random masking to the image. SimMIM demonstrates that either larger patch
sizes or higher masking ratios lead to improved performance in downstream tasks [44]. This
is attributed to the reduced correlation between unmasked and masked pixels when larger
image areas are masked, compelling the model to learn more semantic information instead
of replicating the closest highly correlated pixels. For instance, in ImageNet classification,
SimMIM achieves optimal results with a 32-pixel masking patch size and a 60% masking
ratio as it forces the model to infer more complex and less obvious image features.

A notable advantage of the SimMIM strategy over approaches like SimSiam is that it
does not require specifically chosen data augmentation for each problem. This characteristic
simplifies the application of the method across various scenarios, reducing the need for
customized augmentation strategies and thereby optimizing the process of model training
and adaptation to different tasks.
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(Conv 1 × 1 Prediction Head)
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Predicted
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Figure 3. Overview of the SimMIM architecture [44]. SimMIM is based on an encoder–decoder
mechanism used for feature extraction and the reconstruction of masked image patches. The encoder
processes unmasked parts of the image, while the decoder aims to reconstruct the masked areas.
It is trained using an l1 loss function to map down-sampled-resolution feature maps back to their
original resolution.

4. Implementation and Results

In this section, we present the experiments conducted to evaluate the effectiveness of
the models pretrained on X-ray images of manufacturing products. We detail the specific
datasets employed in our experiments and discuss the methodologies applied. This section
also discusses the results obtained, offering insights into the performance implications of
different pretraining approaches.

4.1. Pretraining on X-ray Images

We utilized the two above-mentioned self-supervised methods, SimSiam [35] and
SimMIM [44], to carry out a model pretraining stage on X-ray manufacturing images. Our
hypothesis was that self-supervised pretraining on a large dataset of X-ray images could
improve the performance of models in manufacturing defect detection downstream tasks.

For the pretraining phase, a considerable volume of images is essential. However, the
self-supervised approach eliminates the need for annotations, making it easier to gather
a large unlabeled dataset. In industrial settings where images without annotations are
readily available, this approach is particularly advantageous, circumventing the costly and
labor-intensive process of manually annotating defects. Later, an in-depth analysis of the
datasets utilized in our study is provided in Section 4.2.

To assess the impact of pretraining on X-ray images, we contrasted models fine-tuned
from ImageNet with those fine-tuned after X-ray image pretraining. We employed two
evaluation protocols for comparison: linear classification and fine-tuning.

• Linear classification: This evaluation method is a widely recognized protocol for
assessing the efficacy of self-supervised learning techniques [28,29,35,48]. In this
approach, the pretrained backbone network is kept fixed (frozen), and the assessment
focuses on training a singular fully connected layer which is appended to the top
of the backbone. This additional layer, incorporating a softmax activation function,
processes the feature vector derived from the global average pooling layer of the
backbone, and it is trained on a target dataset. The primary objective of this protocol is
to evaluate and compare the classification capabilities of different backbone networks
in a standardized setting, thus providing insights into their relative performance
and adaptability;
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• Fine-tuning: In this protocol, the features of the pretrained backbone are adapted for
specific downstream tasks, such as defect detection. This process involves using the
pretrained weights of the backbone as an initial setup, which is then fine-tuned for
task-specific architectures like Faster R-CNN [19] and UNet [49] on a target dataset,
enhancing their performance in specialized applications.

Fine-tuning generally surpasses linear classification in performance, which is largely
attributable to its utilization of more intricate architectures and the inherent constraints
associated with employing a frozen backbone in the linear classification approach. By con-
currently analyzing both protocols, we facilitated a quick yet comprehensive evaluation of
various feature extractors. This dual-method analysis offers a reliable and robust framework
for assessing models, aligning particularly well with the demands of real-world industrial
applications where practical performance and adaptability are paramount. Nonetheless, the
primary objective of this study was to enhance the effectiveness of existing manufacturing
defect detection systems. In this context, fine-tuning emerges as the more critical metric
given its direct impact on improving practical detection capabilities. Consequently, we
chose fine-tuning as our principal protocol for manufacturing defect detection.

4.2. Use Cases

In the following experiments, we aimed to assess the efficacy of the methods using
two main datasets.

4.2.1. Industrial Dataset

The industrial dataset comprised X-ray manufacturing images obtained from a pro-
duction line within a manufacturing company. The experimental data were obtained using
an X-ray machine that captures images of manufacturing products on the production line.
These images were stored and later annotated by an X-ray expert for use in model training.

The acquisition of X-ray images employed in this study was subject to the proprietary
and confidential protocols required by the collaborating manufacturing company. It is
important to note that our research only began after the images had been acquired, focusing
solely on the deep-learning-based analysis of these images. We did not participate in or
have access to the image acquisition process. Highlighting this fact is essential for a clear
understanding of our research focus, which was solely analyzing the provided images.

This dataset was divided into two subsets: an extensive pretraining dataset and
a smaller, annotated target dataset for model evaluation and fine-tuning. Initially, we
compiled a substantial set containing 27,901 unlabeled images, which we designated as
the pretraining dataset. This dataset served as the foundation for the pretraining stage,
primarily due to its lack of annotations. The acquisition of unlabeled images in a realistic
industrial setting is relatively straightforward. Subsequently, a second set was developed
with image-level and ground-truth annotations, consisting of 5786 images. This set was
smaller than the first, primarily because annotating images is resource intensive. However,
this size was deemed appropriate for our purposes. We designated this set as the target
dataset, which was utilized both for evaluating the backbone using the linear classification
protocol and for fine-tuning the model specifically for manufacturing defect detection in
an industrial environment. In both datasets, grayscale images depict various perspectives
of the same product, each with dimensions of 1024 × 1024 pixels. In the target dataset,
ground-truth annotations for all defects are provided as bounding boxes, ensuring precise
reference points for defect detection. The target dataset contains 19 annotated defect types
of diverse sizes, scales, and intensities, exhibiting significant variability. Following a
preprocessing step, defects are categorized into two main groups: critical and minor. As
their names imply, the accurate detection of critical defects is strictly necessary due to
potential safety implications. Detecting minor defects is also crucial, although their severity
is comparatively lower, rendering their identification equally important but less critical
for safety concerns. The defect distribution includes 7 critical defect types and 12 minor
defect types, posing a challenging defect detection problem with a dual objective: locating
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defects on the product and classifying them into one of the two categories. Concerning
the dataset distribution, a significant class imbalance was evident, with 1784 samples for
critical defects and 4002 samples for minor defects. The partitioning of the target dataset
into training and test sets while maintaining class proportions is detailed in Table 1.

Table 1. Distribution of images for critical and minor defects in the target dataset.

Critical Defects Minor Defects

Train 1424 3200
Test 360 802

4.2.2. GDXray Dataset

As the above-mentioned dataset was privative, we also considered evaluating the
methods on a benchmark dataset. GDXray [20] is a publicly available dataset of X-ray im-
ages. It contains 19,407 images organized into five groups: castings, welds, baggage, natural
objects, and settings, each with multiple series. As we were dealing with manufacturing
defect detection, we focused on the castings group, which is related to manufacturing
and which comprised 2727 X-ray images from 67 series primarily featuring automotive
parts like aluminum wheels and knuckles. These images are annotated with bounding
boxes, similar to in the first dataset, offering a benchmark for assessing our methods in
manufacturing defect detection. However, it is noteworthy that, unlike our industrial target
dataset, GDXray does not categorize defects into different types. Additionally, considering
that the existing literature utilizing GDXray primarily addresses defect detection rather
than classification, we opted to refrain from performing the linear classification evalua-
tion for this dataset. Consequently, our analysis of the GDXray dataset was confined to
fine-tuning evaluation.

4.3. Results

In this section, we present several experiments to evaluate the advantages of applying
a specific pretraining stage for X-ray manufacturing images.

4.4. Linear Classification

Initially, we trained a backbone model using both SimSiam and SimMIM. We fol-
lowed the default scheme from original papers in both cases, and we trained the models
for 100 epochs. Afterwards, we implemented the standard evaluation protocol for the
pretrained models; we added a linear layer at the top of the model, with the rest of the
layers of the backbone frozen. We trained this classification model on the target dataset
with critical and minor defects. We established a baseline using a model with ImageNet
pretrained weights. For SimSiam, we used ResNet50 [45] as the feature extractor, generating
a 2048-dimensional feature vector for the classification layer. Conversely, for SimMIM,
we used the original Swin Transformer [38] configured with a 12-pixel window size. The
feature vector in the case of Swin Transformer was 1024 dimensional. The results of this
linear classification on our target dataset are detailed in Table 2.

Table 2 compares the performance of different backbone architectures using ImageNet
weights versus weights obtained through self-supervised pretraining methods with X-ray
images. From the results, we observed that, for the ResNet backbone, the SimSiam pre-
training method outperforms the supervised approach in both Average Precision (AP)
and accuracy. Specifically, SimSiam achieves a higher AP of 75.9 compared to 72.5 and an
improved accuracy of 71.2 over the 68.4 seen with the supervised method. However, for
the Swin-T backbone, the supervised method demonstrates superior performance with a
high AP of 87.9 and an accuracy of 82.2.
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Table 2. Linear classification results on industrial target dataset for both ResNet and Swin-T back-
bones. ImageNet refers to the model pretrained with the standard ImageNet dataset, X-ray SimSiam
denotes the weights obtained from the SimSiam approach pretrained with X-ray images, and X-ray
SimMIM indicates the weights derived from the SimMIM method under similar conditions.

Backbone Weights AP Accuracy

ResNet
ImageNet 72.5 68.4

X-ray SimSiam 75.9 71.2

Swin-T
ImageNet 87.9 82.2

X-ray SimMIM 70.7 68.6

It is important to note, though, that the results from pretraining with SimMIM are
not as satisfactory. This approach appears to highlight the global features of the image
rather than the more relevant characteristics associated with defects. Since defects are often
quite small relative to the overall image resolution, the features pertinent to these defects
tends to be overshadowed by the more prominent structural features of the manufactured
product. This tendency tends to diminish the effectiveness in specific defect detection unless
fine-tuning is applied to the backbone to accurately teach characteristics of the defects.
In such cases, the model learns both the structural features of the product and the local
characteristics of the defects, contrasting with the lower AP and accuracy values observed
in SimMIM pretraining without such targeted fine-tuning. However, as we explained in
Section 4.1, fine-tuning is the optimal protocol for manufacturing defect detection.

4.5. Fine-Tuning on Manufacturing Datasets

Following the linear classification phase, our study progressed into a more compre-
hensive fine-tuning phase, and we applied the Faster R-CNN model for defect detection
on two distinct datasets: our industrial target dataset and the benchmark GDXray dataset.
This phase was designed to provide a deeper insight into the practical applicability and
effectiveness of the pretrained models in real-world and varied industrial contexts.

In the initial stage of this fine-tuning phase, we trained the Faster R-CNN model
on the industrial target dataset using three sets of starting weights: those obtained from
X-ray pretraining with both the SimSiam and SimMIM methods and those initialized
with ImageNet. This strategy was employed to evaluate the effectiveness of the models in
handling complex, real-world defect detection tasks within the manufacturing industry.
The results, as detailed in Table 3, illustrate the superior performance of the SimSiam and
SimMIM pretraining methods over the conventional supervised approach, especially in
identifying critical defects.

Subsequently, our evaluation was extended to the GDXray dataset, replicating the
fine-tuning process undertaken with the industrial target dataset but this time applying
it to the GDXray training dataset. This step was intended to test the generalizability and
robustness of the model in a distinctively different context. The GDXray dataset, with its
unique characteristics and challenges, provided an ideal platform for assessing how well
the models, pretrained on our industrial unlabeled dataset, could adapt and perform in a
broader range of industrial scenarios.

The combined results from both datasets are presented in Table 3, which includes
performance metrics on both the industrial target dataset and the GDXray dataset. These
results underscore the versatility and efficacy of the SimSiam and SimMIM pretraining
approaches in enhancing the performance of defect detection models across diverse X-ray
image datasets.
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Table 3. Fine-Tuning results on defect detection for manufacturing datasets. The fine-tuning perfor-
mance of the Faster R-CNN model was evaluated on two datasets, the industrial target dataset and
the GDXray dataset, using ResNet and Swin-T backbones with different initial weights (ImageNet,
X-ray SimSiam, and X-ray SimMIM). Mean Average Precision (mAP) is reported for the industrial
dataset and Average Precision (AP) for the GDXray dataset, designated as (m)AP. This notation is
used because the industrial dataset contains two categories of defects, while the GDXray dataset does
not categorize defects. Additionally, AP-Critical is reported for the industrial dataset, indicating the
accuracy of the model in detecting critical defects.

Dataset Backbone Pretraining (m)AP AP-Critical

Industrial
ResNet

ImageNet 88.6 94.4
X-ray SimSiam 89.6 94.8

Swin-T
ImageNet 91.3 94.5

X-ray SimMIM 91.3 95.5

GDXray
ResNet

ImageNet 95.7 -
X-ray SimSiam 96.0 -

Swin-T
ImageNet 94.0 -

X-ray SimMIM 94.6 -

For the industrial dataset, the performance of the model was quantified using Mean
Average Precision (mAP) and AP-Critical, the latter indicating accuracy in detecting critical
defects. The results reveal that both SimSiam and SimMIM pretraining methods enhance the
performance compared to the traditional ImageNet initialization. Notably, for the ResNet
backbone, the SimSiam approach yields a slightly higher mAP of 89.6 and AP-Critical of
94.8 compared to the ImageNet weights. Similarly, the Swin-T backbone pretrained with
SimMIM matches the highest mAP of 91.3 achieved by the ImageNet version and even
surpasses it in AP-Critical with a score of 95.5.

On the GDXray dataset, the fine-tuning process demonstrated the generalizability of
the pretrained models. The SimSiam pretrained ResNet model achieved an AP of 96.0,
slightly outperforming the ImageNet-based version from Ferguson et al. [4]. For the Swin-T
backbone, the SimMIM pretraining method resulted in an AP of 94.6, showing improved
performance over the ImageNet weights. These findings from both datasets underscore the
efficacy of the SimSiam and SimMIM pretraining techniques, not only in improving model
performance in the specific context of industrial defect detection but also in generalizing
well to a broader spectrum of X-ray imaging scenarios.

4.6. Qualitative Results

In this subsection, we present the experimental results through visualizations that
highlight the performance of our defect detection model. However, due to confidentiality
concerns, we cannot showcase images from the industrial dataset in our visualizations. We
instead focus on the GDXray dataset to demonstrate the performance of our defect detection
model. Specifically, we highlight the effectiveness of the ResNet backbone pretrained with
X-ray images using the SimSiam approach. Through the visualization in Figure 4, we aim to
provide insights into the practical application and effectiveness of our model in identifying
defects in industrial scenarios.
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Original image Ground truth Defect detection

Figure 4. Results of defect detection on the GDXray dataset. This figure illustrates the original X-ray
image, ground-truth annotations, and the predictions of the model.
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5. Discussion

These experiments shed light on the effectiveness of pretraining methods using X-ray
images, especially in the context of detecting defects in manufacturing products. Our exper-
iments show that models pretrained with X-ray images generally surpass those pretrained
with ImageNet in discerning relevant features for defect detection. This superiority of
domain-specific pretraining highlights the importance of aligning the pretraining phase
with the unique characteristics of the task-specific images.

In comparing different backbones, the Swin Transformer models demonstrates supe-
rior performance over CNNs when large, labeled data are available [37]. However, the
scenario was different with the GDXray dataset, which has fewer labeled images; here, the
CNN backbones yielded better results. This suggests that, while Transformers outperform
in data-rich environments, CNNs might be more effective with limited data.

A significant aspect of our research is the marked improvement in detecting critical
defects following pretraining with X-ray images. This improvement is especially pertinent
in industrial settings, where accurately identifying such defects is crucial for safety and
reliability. This enhancement in defect detection, particularly for critical defects, could have
substantial implications for industrial applications. Moreover, the pretraining on X-ray
images demonstrated improved results even with the smaller GDXray dataset, indicating
the adaptability of the models to different data volumes. This adaptability is a crucial trait
for practical deployment, where data availability can be variable.

While our system has not been implemented in a real production environment, our
findings suggest that it holds promise for future applications. The execution time of
approximately 0.126 s per image positions our method well within the operational limits
set by industry standards, which allows up to a maximum of 1 s for image analysis. This
performance metric shows the viability of our method for production line integration. It
highlights the potential for real-world deployment, thereby enhancing the feasibility of
using deep learning to detect defects in manufacturing settings.

6. Conclusions

This research contributes to the ongoing efforts in enhancing defect detection in man-
ufacturing products using X-ray images. Our comprehensive experiments and analyses
show several key findings that underscore the effectiveness and practical applicability of
our proposed methodology in industrial settings. Our study conclusively shows that mod-
els pretrained on X-ray images consistently outperform those pretrained with ImageNet
weights. This finding is crucial as it highlights the importance of domain-specific pretrain-
ing in enhancing the ability of the model to discern relevant features for defect detection.
By aligning the pretraining phase with the unique characteristics of the task-specific images,
we achieved superior detection capabilities compared to those achieved with the mod-
els that were pretrained on more general images. Moreover, the comparison of different
backbone architectures revealed valuable trends. We observed that, in scenarios with abun-
dant labeled data, Swin Transformer models outperform traditional CNNs, whereas CNN
backbones are more effective in datasets with fewer labeled images. This implies that an
optimal model can be selected depending on the number of available data and the specific
requirements of the task. Particularly noteworthy is the improvement in the detection of
critical defects, a crucial concern in industrial settings, achieved through the pretraining on
X-ray images. In industrial contexts, where the precise identification of such defects is vital
for ensuring safety and maintaining high quality standards, the advancements shown can
contribute significantly to reducing risks and enhancing reliability.

In conclusion, this study introduces a methodology that leverages domain-specific
pretraining with X-ray images to enhance defect detection in manufacturing products. Our
primary contribution lies in the development and application of this methodology, which
highlights the advantages of customized pretraining and the strategic choice of a backbone
architecture tailored to the specifics of the data. Our methodology significantly improved
the accuracy in detecting critical defects, leading to the development of a more robust
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detection framework. This progress not only advances the frontiers of defect detection
technology but also provides valuable insights for the implementation of these models in
industrial environments. Such an implementation is likely to enhance the effectiveness of
quality control measures, thereby increasing product safety and reliability. Furthermore,
the adoption of these enhanced detection systems could lead to a considerable reduction
in operational downtime and maintenance expenses, optimize production workflows,
and increase overall industrial efficiency. By elevating product quality and minimizing
failure rates, our strategy aids in upholding the reputation of manufacturing entities and
enhancing consumer confidence.
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