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Sparse Sampling-Based View Planning for
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Abstract—In this article, an automatic sampling-based
view planning algorithm is proposed, for accurate 3-D
reconstruction of complex geometry parts present in man-
ufacturing. The initial viewpoint sampling method is able
to lower the complexity of the algorithm by creating a
sparse visibility bipartite graph relating the targeted surface
patches, with the potential viewpoints [camera poses defined
in SE(3)], which are contained in the surroundings of the
object. This graph is used to sample and simulate a subset of
viewpoints, employing an iterative greedy parallel set cover
which weights the coverage of the sparse and simulated vis-
ibility. This method prematurely rejects poor candidates and
prioritizes the viewpoints providing an increased coverage,
with no expensive preprocessing of the 3-D models. A randomized Greedy heuristic with local search has been proposed
to maximize the coverage, while minimizing the total inspection time, first with the set cover of the simulated viewpoints,
and second with the sequencing of the viewpoints and robot positioning with obstacle avoidance. Furthermore, the
performance of the system is demonstrated on a set of complex benchmark models from the Stanford and MIT
repositories, yielding a higher coverage with a lower computational runtime compared with existing sampling-based
methods. The validation of the full system has been carried scanning a Stanford Dragon positioned with a 12-axis
kinematic chain composed of two robots.

21

22

Index Terms— Cameras, clusterization, combinatorics, Greedy, metaheuristics, optimization, robotics, sensor deploy-
ment, smart sensors, surface reconstruction, traveling salesman problem (TSP), view planning.

I. INTRODUCTION23

A. Motivation24

AUTOMATED inspections have gained significance within

AQ:1

25

the smart manufacturing context as they are necessary26

for many downstream applications or quality assurance. These27

systems are commonly required to inspect a surface that will28

ensure the fulfillement of the required specifications. Usually,29

the complete coverage of the surface of interest requires a set30

of capture from different viewpoints. The associated camera31

network design or the automation of the robotic inspection can32

be a lengthy process with many delays. The automatic reso-33

AQ:2 Manuscript received 15 December 2023; revised 21 February 2024;
accepted 24 February 2024. The associate editor coordinating the
review of this article and approving it for publication was Prof. Xiaofeng
Yuan. (Corresponding author: Benat Urtasun.)

AQ:3 Benat Urtasun is with the LORTEK Technological Centre, Basque
Research and Technology Alliance (BRTA), 20240 Ordizia, Spain, and
also with the Robotics and Automation Group, Electronic and Computer
Science Department, Faculty of Engineering, Mondragon University,
20500 Mondragón, Spain (e-mail: benaturtasun@gmail.com).

Imanol Andonegui is with the Robotics and Automation Group, Elec-
tronic and Computer Science Department, Faculty of Engineering,
Mondragon University, 20500 Mondragón, Spain.

Eider Gorostegui-Colinas is with the LORTEK Technological Centre,
Basque Research and Technology Alliance (BRTA), 20240 Ordizia,
Spain.

Digital Object Identifier 10.1109/JSEN.2024.3372622

lution of this aspect is called a view planning problem (VPP), 34

which revolves on the maximization of the coverage of the 35

surface to be inspected while simultaneously reducing the total 36

inspection time. Considering that increased coverage benefits 37

from a higher number of capture points and minimizing the 38

time involves its reduction, the simultaneous optimization of 39

both objectives is not trivial. This work addresses this problem 40

with contributions (Section I-D) that enable the minimization 41

of computation and execution time of the inspection, facilitat- 42

ing the inspection of complex geometries in a reduced time. 43

B. Related Works 44

Typically, the solution to the VPP for an unknown 3-D 45

object is handled with a next best view (NBV) approach. This 46

method determines iteratively the subsequent position that will 47

reveal the greatest possible portion of the component’s surface 48

or its immediate environment for the robot. Some methods 49

recur to octomaps which chart the surroundings of the occu- 50

pied, empty, and unknown space, to estimate a probabilistic 51

map of the information gain [1], enabling the determination 52

of the upcoming pose. Even if this strategy is useful for 53

reverse engineering and path finding of robots [2], [3], [4], 54

among other applications, it requires an intermittent online 55

capture and processing, artificially extending the process and 56

1558-1748 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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incurring in other inefficiencies. Approaching the VPP with57

an approximate model that enables the simulation of the58

inspection allows the usage of different heuristics and methods59

to attain a predictable result.60

Depending on the final goal, many specification criteria61

have been utilized. For instance, in a surface reconstruction62

problem the minimum sampling density and variance of the63

point clouds are considered [5], and in a network placement64

problem, the main objective is to make a complete coverage65

of the scene [6] with the minimum number of viewpoints.66

The classical sampling-based VPP, which employs an67

approximate model of the targeted surface, such as the one68

exposed by Scott [5], starts with the sampling of viewpoints,69

its subsequent simulation, and the final set cover ensuring the70

maximum coverage. The sampling of the viewpoints starts71

by decimating [7] or resampling [8] the surface mesh, which72

yields another mesh with a different distribution and density73

of the primitives. This mesh is used to sample the surface74

points by selecting the vertices or the barycenters of the mesh75

primitives. These points are used to sample a set of a priori76

ideal viewpoints with a normal incidence angle from a distance77

corresponding to the maximum optical resolution, which is78

defined as the center of the depth of field (DOF), as described79

in Algorithm 1.80

Algorithm 1 Sample Offset DOF [5]
1: function SAMPLEOFFSETDOF(Mesh, z f , zn , ncams )
2: Mesh′ ← ResampleMesh(Mesh, ncams)

3: P, N ← SampleBarycenters(Mesh′, ncams)

4: Cams ← ∅
5: for each pi ∈ P do
6: oi ← pi + ni (z f + zn)/2
7: Cams ← Cams ∪ T oFrame(oi ,−ni )

8: return Cams

Other viewpoint sampling methods such as the one exposed81

by Jing et al. [9], summarized in Algorithm 2, generate82

a volume surrounding the object, computed by calculating83

the perpendicular at the surface points of the object, and84

adding the minimum and maximum distance of the DOF.85

This 3-D volume is used to randomly sample the origins of86

the viewpoints, and their orientations are determined with a87

potential function of the neighboring surface normals.88

Algorithm 2 Sample Potential Field [9]
1: function SAMPLEPOTENTIALFIELD(Mesh, z f , zn , ncams )
2: Mesh′ ← ResampleMesh(Mesh, ncams)

3: V ← dilate(Mesh′, z f )− dilate(Mesh′, zn)

4: Ocams ← RandomSampling(V, ncams)

5: Cams ← ∅
6: for each oi ∈ Ocams do
7: vi ← potential Field(oi )

8: Cams ← Cams ∪ T oFrame(oi , v)

9: return Cams

The resulting set of viewpoints is then simulated considering89

the visibility, as well as the incident angle θ , as illustrated90

in Fig. 3(a), among other factors, resulting in a visibility91

vector of the surface points for each viewpoint,
−⇀
Ai . The92

visibility of the N viewpoints, regarding M surface points93

conforms a visibility matrix, Avis = (
−−⇀
A1, . . . ,

−−⇀
AN ), which94

can be interpreted as a bipartite graph relating both disjoint 95

sets, as formulated by Tarbox and Gottschlich [10]. This data 96

structure, which can be interpreted as a bipartite graph, enables 97

a combinatorial formulation of the VPP as a set cover problem 98

(SCP), to maximize the coverage of the surface with the 99

minimum number of viewpoints. 100

Considering that the total area to cover is finite, the likeli- 101

hood of visualizing the same surface patches increases as the 102

number of viewpoints rises. The diminishing returns of this 103

problem is one aspect of its submodularity associated with 104

the total overlap of the visibility [11]. Therefore, the coverage 105

and number of viewpoints are two conflicting objectives which 106

must be approximated in a reasonable time scale. The opti- 107

mization of the problem has been previously solved employing 108

well-established metaheuristics such as, greedy [12], lin- 109

ear programming [13], Lagrangian relaxation [14], simulated 110

annealing [15], particle swarm optimization [16], and genetic 111

algorithms [17]. 112

The conventional greedy set cover [12], described in 113

Algorithm 3, repeatedly selects the next column (viewpoint) 114

of Avis, which maximizes the coverage of the remaining uncov- 115

ered points, until the whole set is covered in O(log n), [18]. Its 116

unweighted cost, as well as the deterministic selection criteria, 117

precludes the exploration of alternative solutions, which can be 118

improved with a randomized selection [19]. Another aspect to 119

consider is that its parallelization is able to reduce the runtime 120

with a similar solution, so long the problem is subdivided 121

into buckets of maximal near-independent sets [20]. The set 122

cover yields a set of unordered inspection frames which might 123

be used to position static cameras or generate an inspection 124

trajectory, minimizing the inspection time and considering the 125

kinematic constraints of the robot and camera attached to the 126

robot wrist, by employing a combinatorial optimization known 127

as the traveling salesman problem (TSP). 128

Algorithm 3 Greedy Set Cover
1: function GREEDYSETCOVER(A = {A1, . . . , An})
2: Sol ← ∅
3: while |Uncovered(Sol)| > 0 do
4: Select j that maximizes |A j ∩Uncovered(Sol)|
5: Sol ← Sol ∪ j
6: return Sol

One of the main drawbacks of all these systems is that 129

they do not use complex geometries instances in the exposed 130

results, as well as a typical runtime to solve the problem on 131

the order of minutes [5], [16], [21], [22]. 132

Considering that the simulation of the viewpoints takes a 133

significant share of the total runtime of this problem, the 134

sampling of an optimal subset of viewpoints is an important 135

aspect of the problem. Most of the conventional viewpoint 136

sampling methods are able to restrict its sampling space, 137

but they do not take into account any information from the 138

surrounding geometry, which limits their ability to extrapolate 139

the mutual visibility of the viewpoints. The occlusion ratio 140

of a point should a priori correlate to the number of incident 141

cameras in a visibility matrix, but it does not retain any spatial 142

information to prioritize the sampling of viewpoints associ- 143

ated with complex surface patches. Some pseudoillumination 144
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models, employed in 3-D rendering to shade the surfaces, such145

as ambient occlusion [23], map a scalar field in the surface,146

by computing the ratio of occluded local random rays. This147

yields a scalar field associated with the vertices or faces of the148

model, with high values related to concave regions, internal149

geometries, or high curvature regions. However, this mapping150

of the surface is nevertheless unable to determine the best151

location of the viewpoints for each surface patch.152

All the mentioned studies expose different methods to solve153

the problem, but they typically involve an expensive mesh154

preprocessing which is prone to alter the original surface155

and its topology, introducing defects such as normal inversion156

affecting the visibility and accuracy of the simulation. Another157

factor to take into account is the extended computational times158

exposed by these studies, which impose restrictions on the159

scale and complexity of the inspected part. Furthermore, the160

minimization of the inspection time focuses mainly on the161

SCP without considering the sequencing of the viewpoints162

restricted by the axes of the robot positioning the sensor and its163

workspace. The contributions addressing these shortcomings164

are enumerated in Section I-D.165

C. Problem Formulation166

The VPP consists on the determination of a minimum set167

of scanning viewpoints Cp to cover a surface. The surface168

of the inspected part, S is composed of a set of vertices in169

R3, and a collection of polygons, which are defined as an170

adjacency list of vertices. Another aspect to consider is that171

the set of viewpoints must be contained in a space belonging172

to the special Euclidean group SE(3) [24] and surrounding S.173

The coverage of S by Cp must also fulfill a set of specification174

parameters γ , which have been defined in this article as: 1) the175

minimum density, defined as the maximum distance between176

the points, δmax[m] and 2) the maximum incident angle of the177

camera toward a point, noted as θmax.178

The combinatorial approach of the VPP requires the dis-179

cretization of both S and Vc (space of possible camera poses),180

yielding a set of M points or polygons P = {p1, . . . , pM}, and181

N viewpoints, C = {c1, . . . cN } with Cp ∈ C. The determina-182

tion of the visibility of a point pi , regarding a viewpoint c j ,183

can be formulated as a binary scalar (0—nonvisible and 1—184

visible), ai j that takes into consideration the direct line of sight185

and the specification compliance. Therefore, the computation186

of the visibility of a viewpoint viewpoint c j , regarding the187

whole set of points P, can be defined as a binary visibility188

vector,
−−⇀
A j = (a1 j , . . . , aM j )

T , with ai j being the visibility189

of pi regarding c j . The combination of all the viewpoint190

visibility vectors conforms a binary visibility matrix [10], with191

the points and the viewpoints corresponding to the rows and192

columns, respectively, noted as Avis = (
−−⇀
A1, . . . ,

−−⇀
AN )|P|×|C|.193

Note that Avis can be represented as a bipartite graph of two194

disjoint sets, P and C. Fig. 1 shows their symbolic relationAQ:4 195

in (a), as well as its bipartite graph in (b), with the vertices on196

the top symbolizing the viewpoints, the points below, as well197

as the edges representing their visibility. The visibility matrix198

of this figure is shown as follows.199

Consequently, we can define the VPP as the joint mini-200

mization of (1) the number of viewpoints |Cp| with Cp ∈ Vc201

Fig. 1. Visibility as a bipartite graph. (a) Symbolic representation of
the visibility with two cameras covering a surface discretized in four
points and the dotted line showing the visibility of each point toward
the cameras. (b) Bipartite visibility graph corresponding to the left side
in this figure.

and (2) the ratio of uncovered points of P, subjected to the 202

visibility and specification compliance γ as follows: 203

min
Cp∈Vc

(
f
(
Cp

)
,
∣∣Cp

∣∣) with f
(
Cp

)
= 1−

1
M

M∑
i

N
∪
j

−−⇀
A j . (1) 204

Note that f (Cp) represents the ratio of uncovered points 205

considering the union of the visibility vectors of Cp. 206

D. Contributions 207

A sampling-based view-planning system is exposed with a 208

set of distinct contributions aimed at reducing the runtime of 209

the VPP and the total inspection time of the robot. 210

1) A novel sampling view-planning that employs a sparse 211

representation of the underlying visibility, reducing the 212

sampling space with a clusterization preserving the 213

relation between the space of the viewpoints and the 214

surface. 215

2) A sampling and simulation algorithm that does not 216

require any expensive preprocessing of the 3-D model, 217

yielding typical runtimes close to 1 s. 218

3) An improved greedy heuristic for the SCP and robot 219

traveling salesman (rTSP) problem, with a randomized 220

local search, analogous to GRASP [19], to minimize AQ:5221

the time to traverse the viewpoints by the robot. 222

4) Results validated with a set of 20 complex benchmark 223

models demonstrating a higher coverage with a lower 224

runtime compared to existing sampling-based methods, 225

as well as the evaluation of the full system scanning a 226

Stanford Dragon with two robots. 227

II. PROPOSED METHOD 228

Based on the submodular property of the VPP [11], a set of 229

assumptions can be established to approximate the underlying 230

visibility matrix, which can be used for efficient sampling of 231

the simulated viewpoints. 232

Taking into account that this is a sampling-based view- 233

planning, the proposed method estimates a visibility matrix 234

which serves as the basis for the optimization of the objectives 235

to attain the maximum coverage and minimum inspection 236

time. An overview of the system is displayed in Fig. 2, 237

starting by sampling the surface (Section II-A), which does not 238

require an expensive pre-processing of the mesh. A subsequent 239

estimation of the visibility yields a sparse visibility matrix 240
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Fig. 2. System overview.

(Section II-B2), which is employed to iteratively select a set241

of viewpoints (Section II-B3), weighing both the sparse and242

simulated visibility (Section II-B1), taking into account the243

accessibility of the robot (Section II-C). The resulting set of244

viewpoint vectors links P on a dense visibility matrix, which245

serves as the basis for the minimization of the total inspection246

time (Section II-D), first by reducing the set of viewpoints that247

ensures the coverage by employing a Greedy randomized SCP248

(Section II-D1) and a subsequent reordering of the viewpoints,249

taking into account the robot (Section II-D2), in a problem250

known as the RTSP.251

A. Surface Point Sampling252

As previously stated, depending on the specification param-253

eters of resolution and inherent variable sampling density of254

most surface reconstruction algorithms employed in the gener-255

ation of the 3-D models, it is necessary to produce a uniform256

point sampling of the surface, S. In this system, a modified257

version of the algorithm exposed by Corsini et al. [25], has258

been implemented, starting with a Monte Carlo point sampling259

of the surface with a higher resolution of the predefined δmax,260

typically by a factor of 10. A subsequent subsampling is car-261

ried out by iteratively selecting random points and discarding262

the neighboring ones at δmax radius. The neighboring points263

are typically selected, employing spatial indexers, such as kd-264

trees [26], or hash tables [27], among others methods. The265

iterative selection terminates when the projected number of266

points, based on the area is reached, or no points remain on267

the uncovered list.268

B. Visibility Calculation269

The determination of the visibility in this scenario starts by270

the determination of the sparse visibility matrix and the subse-271

quent iterative selection of viewpoints and camera simulation.272

Note that in this scenario, Section II-B1 is exposed before273

Section II-B2 to present the view frustum.274

1) Camera Simulation Employed 3-D Camera: The275

employed scanner in this work is a precalibrated Gocator276

3520, composed of two 5-MP cameras and a 100-W blue277

light fringe projector, allowing for the 3-D measurement,278

so long the projector has the co-visibility of one camera,279

enabling the reduction of the shadows and mutual occlusions280

present in complex geometries. It is based on a structured281

light phase-shifting scanner, projecting a set of shifted282

sinusoidal patterns, which ultimately allows the pixelwise283

association between the cameras and the projector. This284

enables the triangulation of the scanned surface points, taking285

Fig. 3. Visibility evaluation. (a) Pinhole view-frustum with a DOF
between zn and zf, FOV with ϕx and ϕy. A ray directed from the focal
point toward p with an incident angle θp is drawn with a dotted line.
(b) Stereo camera and projector relative position with a baseline b and
vergence angle θv.

TABLE I
GOCATOR 3520 VIEW-FRUSTUM PARAMETERS

into account the calibrated optics and their relative positions, 286

as illustrated in Fig. 3(b). 287

As a result, a conservative visibility evaluation of the 288

scanner fuses the visibility of each device as a combination of 289

the visibility of the projector and the cameras. Therefore, the 290

visibility of a point p is defined as v = vproj ∩ (vc1 ∪ vc2) with 291

vproj, vc1 and vc2, being the separated visibility of the projector 292

and both cameras respectively. 293

The visibility of each device toward the surface points 294

has been assessed individually through a three-step process. 295

First, by examining the view-frustum containment of each 296

point [28]; second, by evaluating specification compliance; and 297

finally, by ensuring an unobstructed line of sight. 298

A pinhole model has been used to describe the view-frustum 299

of each camera, as well as the projector. Fig. 3(a) displays 300

the view-frustum as a truncated pyramid in a darker shade, 301

with ϕx and ϕy being the field of view (FOV) constrained 302

by the sensor rectangular shape in the horizontal and vertical 303

axes, respectively. The minimum optical resolution is ensured 304

by constraining the DOF, between zn and z f . The relative 305

position of the stereo camera with the projector is shown 306

in Fig. 3(b), being θv , the vergence angle in the X Z plane 307

and b, the distance between the cameras. Table I depicts the 308

parameters associated with the Gocator 3520, assuming the 309

same view-frustum for the three devices, with Rx and Ry being 310

their resolution. 311

Note that the maximum incidence angle depends on the 312

reflectance of the surface, the exposure, and aperture among 313

other factors which has been determined empirically, yielding 314

a value of θmax = 70◦. 315

The specification compliance of the minimum resolution, 316

δmax, has been estimated with a similar approach to the one 317

exposed by Scott [5], which can be approximated with the 318

following equation: 319

δp =
Rp1ϕ

H
(
θp < θmax

)
cos θp

. (2) 320
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where Rp = z p/(cos ϕp) is the distance between p and321

the focal point, 1ϕ = min((ϕx/Rx ), (ϕy/Ry)) is the mini-322

mum angular resolution of the sensor, H(θp < θmax) being323

the Heaviside step function with θmax being the maximum324

incidence angle, and (cos θp)
−1 modeling the Lambertian325

reflectance associated with the incidence θp, as shown in326

Fig. 3(a).327

Another aspect to consider is the computation of the direct328

line of sight of the cameras, which is known to be a complex329

problem [29], which can limit the scale and complexity of the330

VPP. The two main ways to solve this problem consist of the331

ray casting of the optical rays originating from the sensor to332

the scene, and alternatively the projection of the world into333

the plane of the sensor.334

Using the ray casting to estimate the visibility implies the335

evaluation of the intersection between each ray with all the336

geometric primitives of the scene. The alternative, based on337

the Z -buffer method [30] has an exponential decay [31] in338

its precision, and the rasterization of the projection implies339

that the framebuffer resolution must be sufficiently small to340

visualize the specified surface resolution, δmax.341

In this article, a ray-tracing technique, such as Embree [32],342

has been integrated to project rays from the camera toward343

the remaining points within the view-frustum. This process344

adheres to specification compliance and effectively separates345

the visibility runtime from the sensor’s resolution.346

2) Sparse Visibility Matrix: The sparse visibility matrix is347

based on the extrapolation of the visibility of the neighboring348

viewpoints. The visibility from a point pos, surrounding the349

surface is illustrated in Fig. 4(a) showing the visible surface350

points with solid rays, which are restricted by the direct line351

of sight, DOF, and their respective incident angle. Therefore,352

if two of the remaining rays are contained in the FOV of353

a viewpoint, both of their respective surface points will be354

visible. For instance in Fig. 4(a), a 45◦ FOV camera with its355

optical axis aligned with the ray of p1 will also visualize p2.356

The same idea can be extended for the viewpoints located on357

an Euclidean radius around pos. The sparse visibility matrix358

can be defined as an approximation of the dense visibility359

matrix described in Section I-C; however, it exhibits two clear360

differences. The first one lies in the fact that it relates the361

visibility toward a random subset of P denoted by Psp. The362

second one is that it has an explicit partition of the viewpoints.363

This is due to the way the visibility is extrapolated with a364

spatial indexation of the viewpoints, as it will be explained365

later. Therefore, the sparse visibility matrix can be denoted as366

follows: Asp = (A1, . . . , An), where Ai|Psp |×|Ci |
is the submatrix367

of the extrapolated visibility of a subset of viewpoints Ci,368

regarding Psp. The sparse visibility matrix is built based on the369

efficient extrapolation of the local visibility, starting with the370

sampling of a collection of viewpoint axes from each surface371

point, and the subsequent extrapolation of the visibility.372

a) Point visibility sampling: The first phase involves sam-373

pling a set of optical axes associated with the points on the374

surface with a direct visibility. The process starts by selecting375

a random fraction κ of P, denoted by Psp. For each point p376

in Psp, a subset of fixed vectors is sampled, representing the377

optical axes of potential viewpoints directed to p. To ensure378

Fig. 4. Camera sampling. (a) Symbolic representation of the omnidi-
rectional visibility from a point in space pos, casting rays to the visible
points in solid lines conditioned by the distance, incident angle, and the
occlusions. (b) Point visibility sampling volume, representing a partial
spherical cone, with its vertex and axis coincidental to p and surface
normal, n, respectively.

Fig. 5. Optical axes grid parameters in R3 for rp and the latitude γ and
longitude λ of kp regarding the frame of the object.

the visibility of an optical axis kp toward p with its normal 379

n p, a point visibility space is defined with two equations 380

depending on the pinhole parameters of the camera and kp: 381

1) zn ≤ kT
p n p ≤ z f and 2) (kp/(|kp|))

T n p > cos θmax, 382

representing DOF containment and feasible angle of incidence. 383

This volume has the shape of a partial spherical cone, with its 384

vertex and axis coincidental to the point p and surface normal, 385

n p, respectively. The maximum and minimum radii correspond 386

to the DOF range, and the cone half-angle is associated with 387

the maximum incidence angle, θmax, as illustrated in Fig. 4(b). 388

A set of vectors pointing to p is sampled from this volume 389

with a 3-D uniform grid and a 1d resolution. The direct line of 390

sight is evaluated by ray casting from kp toward p, discarding 391

the occluded ones. Based on the experiments, the following 392

grid sampling resolution gives good results: 393

1d =
1
3

(
z f + zn

2

(
tan ϕx + tan ϕy

)
+ z f − zn

)
. (3) 394

1d represents an average of the DOF, and the dimensions 395

corresponding to the mid-plane cross section of the viewfrus- 396

tum. 397

b) Visibility extrapolation: The second phase consists of the 398

extrapolation of the visibility of the neighboring optical axes. 399

Considering that each optical axis is linked to a surface, the 400

extrapolation has been carried out in two steps. The first one 401

consisting of the binning of the optical axes employing a grid 402

which partitions the Euclidean space R3, and the orientation 403

space with spherical coordinates, as shown in Fig. 5. 404

The grid is built by indexing the optical axes, assigning five 405

integer scalars (three for position and two for orientation) to 406

each optical axis, which are then sorted first by the Euclidean 407

position, and subsequently by the orientation. This effectively 408

groups the optical axes belonging to the same orientation bin, 409

denoted by ORI, contained on an Euclidean bin, denoted by 410

POS. As a result, all the consecutive elements with the same 411

benat
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Fig. 6. Hierarchical binning is depicted with a two-level spatial indexing
of the optical axes, with an Euclidean POS, and orientation ORI parti-
tioning, corresponding to the first and second levels, respectively. The
left side of the figure shows that each orientation bin contains a set
of optical axes which are linked to a single point each. The right side
displays the centroids of the axes of each bin linked to all incident points
of ORI.

Fig. 7. Rays directed to the points illustrated in Fig. 4(a) from pos
partitioned in 60◦ bins with the axes centroids of each bin in blue.

orientation belong to the same bin. The left side of Fig. 6412

displays the relation of the ordered optical axes, denoted by413

CAMS, contained in the orientation and position bins. So long,414

the Euclidean and angular resolution of the grid, 1d and415

1β, respectively, are sufficiently small, all the optical axes416

contained in the same orientation and position, bin will have417

similar rp and kp vectors, resulting in a comparable visibility.418

Therefore, the centroid of the optical axes of each orientation419

bin inherits the predominant visibility of the bin. The right420

side of Fig. 6 displays the centroids of the orientation bin421

inheriting the visibility of the surface points from the optical422

axes. Experiments have shown that the Euclidean resolution423

of the grid 1d , described in (3) gives good results, as well424

as the following angular resolution: 1β = min(ϕx , ϕy)/4.425

The centroid of the optical axes is determined as follows:426

rC = (1/n)
∑n

i=0 ri and kC = (
∑n

i=1 ki )/(|
∑n

i=1 ki |).427

Note that the ordered list of points of the spatial binning428

and the strides of the orientation bins associated with the429

clustered camera centroids can be seamlessly copied to the430

row and column index buffers of a binary compressed row431

sparse (CRS) matrix, respectively. The resulting CRS matrix432

conforms an approximation of Avis with a lower density.433

Considering that the hierarchical binning groups the camera434

centroids by Euclidean bins, the sparse visibility matrix can435

be as noted as a set of n column blocks corresponding to the436

Euclidean bins POS, denoted by A′sp = (A1 , . . . , An).437

One of the drawbacks of the binning is that the resulting438

clusterization depends on the origin of the spatial partition.439

For instance, a cluster of optical axis can be divided, resulting440

in two contiguous centroids, instead of one that clusters the441

group. Fig. 7 shows a set of outgoing rays from pos directed442

to the points shown Fig. 4(b), with an angular partition of443

1β = 60◦, represented with dotted lines, and their respective444

centroids drawn in blue.445

In this example, the viewpoint aligned with Vori1 will446

probably see most of the points visualized by Vori2 , but447

Fig. 8. Bipartite graph relating the visibility of the viewpoints on top
and the points at the bottom related to Fig. 4(a). The gray edges are
associated with the binning, and the black ones to the extrapolation.
The dotted lines denote the orientation adjacency of the viewpoints.

none of the points corresponding to Vori3 . Alternatively, Vori2 , 448

will probably visualize most of their adjacent ones. This 449

redundant co-visibility of the axis centroids can be used to 450

further increase the number of edges in the sparse bipartite 451

graph. Therefore, the co-visibility of the local axes centroids 452

contained in an Euclidean bin, Kbin = {k1, . . . , km}, can be for- 453

mulated as a symmetric adjacency matrix, denoted by: Acams = 454

(. . . ei j . . .)m×m , with ei j = kT
i ·k j > cos 1β. The extrapolation 455

of the visibility within the Euclidean bin, has been carried 456

out with a graph composition of the sparse visibility matrix, 457

Asp and the optical axis orientation adjacency matrix Acams, 458

with the following binary matrix multiplication, Asp = A′sp × 459

Acams, with Asp being the final sparse visibility matrix. Fig. 8 460

shows a visibility graph corresponding to Fig. 4(a), with the 461

upper row corresponding to a set of viewpoint nodes and their 462

mutual adjacency represented by the dotted edges. As a result, 463

the nodes in the bottom are associated with the points P, which 464

are connected to the viewpoints C, either by the initial binning 465

with gray edges or by the subsequent extrapolation in black. 466

The following expression shows the graph composition of 467

the visibility extrapolation illustrated in Fig. 8, corresponding 468

to Fig. 4(a): 469

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


A′sp

×


1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 1


Acams

=



1 111 0 0
1 111 0 0
111 1 111 0
111 1 111 0
111 1 111 0
0 111 1 0
0 0 0 1
0 0 0 1


Asp

. 470

(4) 471

The generation of the sparse visibility is summarized in 472

Algorithm 4. 473

Algorithm 4 Build Sparse Visibility
1: function BUILDSPARSEVISIBILITY(P, θmax, CampPars, κ)
2: Psp ← SubsamplePoints(P, κ)

▷ Sample and ray-cast optical axes for each point (Section II-B2a)
3: Axes← PointVisibility(Psp, θmax, Cam Pars)
4: Centroids, Asp, Bins ← VisibilityExtrapolation(Psp, Axes)

▷ Optical axes centroids to viewpoints
5: C← T oFrames(Centroids)

▷ Filter invalid Robot viewpoints
6: C← FilterInvalidViewpoints(C)
7: return Psp, C, Asp

Note that the viewpoints are calculated from the centroids 474

with a random rotation of the z-axis in line 5 of Algorithm 4. 475
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3) Greedy Iterative Selection: The sampling and simulation476

of the viewpoints are based on a greedy set cover (alg. 3),477

weighting the coverage globally, with a local parallel selection.478

The selection penalizes the number of covers of each point479

by weighting both the extrapolated visibility (Asp), and the480

simulated viewpoints, up to a minimum number of covers,481

mincov. Considering that the neighboring viewpoints, contained482

in the same Euclidean bin (POS), have a higher overlap483

of the surface visibility, compared with the farthest ones,484

it enables its parallel selection in buckets of maximal near-485

independent sets [20], approximating the sequential greedy set486

cover solution with a shorter runtime. The proposed method to487

sample and simulate the viewpoints is exposed in Algorithm 5.488

Algorithm 5 Sparse Iterative Sampling
1: function SPARSEITERATIVESAMPLING(P, mincov , CamPars)

▷ Initialize P, Centroids and Sparse visibility, alg. 4
2: Psp, C, Asp ← BuildSparseVisibility(P, θmax, CampPars, κ)

▷ Initialize camera viewpoints, visibility matrix, and coverage vector
3: Cams ← ∅, Avis ← ∅ Cov← ∅

▷ Iterative selection and camera simulation
4: while True do

▷ Weighted uncovered points vector
5:

−−−−−⇀
Uncov← max(0, 1−

−−⇀
Cov

mincov
)

6: Cams′ ← ∅
▷ Greedy parallel selection

7: for each A ∈ Asp do
▷ Remaining weighted coverage

8:
−−−−−−−−−−−−⇀
UncovCams ← AT

×Uncov

9: Select i maximum row of
−−−−−−−−−−−−⇀
UncovCams

10: if
−−−−−−−−−−−−⇀
UncovCamsi ≥ 1 then

11: Discard i th camera in A
12: Cams′ ← Cams′ ∪ Ci

13: if Cams′ == ∅ then
14: break
15: A′vis ←CameraSimulation(P, Cams′, CamPars)

▷ Save viewpoints and simulated visibility
16: Cams ← Cams ∪ Cams′, Avis ← Avis ∪ A′vis
17: Add the dense and sparse coverage of Psp to

−−−⇀
Cov

18: return Cams, Avis

After calculating the sparse visibility matrix with489

Algorithm 4 in line 2, the vector
−−−⇀
Cov, which counts490

the accumulated covers of each point of Psp is initialized,491

as well as the final set of viewpoints, Cams and the simulated492

visibility matrix Avis of P. The iterative selection starts by493

initializing the vector
−−−−−⇀
Uncov, which negatively weights the494

accumulated covers of each point of Psp, up to a minimum495

number of covers, mincov, as shown in line 5. The parallel496

selection within each bin POS, starts by calculating the497

weighted new coverage
−−−−−−−−−−−⇀
UncovCams, of each viewpoint in498

line 8, with A, being the block of Asp corresponding to the499

viewpoints contained in POS. Afterward, the viewpoint with500

the maximum value, greater or equal to one, is saved. The501

parallel selection, yields at most a viewpoint for each bin,502

which is then simulated in line 15 and saved in Avis. The503

accumulated coverage of the points
−−−⇀
Cov, is updated with the504

summation of the dense and sparse visibility of Cams′. This505

process is repeated until no viewpoints are selected.506

C. Robot Accessibility Testing507

The accessibility of the viewpoints is evaluated based on508

the existence of a valid robot configuration with no collision.509

A fast inverse kinematic (IK) solver, such as IKFAST [33], has 510

been employed returning, the complete set of solutions. The 511

sampling of robot configurations for kinematic chains with 512

more than six degrees of freedom has been carried out with 513

two different methods. In the case of the external positioning 514

axis, a random or uniform sampling for each redundant axis is 515

sufficient, and for multiple robotic arms, a Cartesian bounding 516

box is defined to randomly sample the possible configurations, 517

as described in the results. 518

The resulting robot configurations are subsequently tested 519

for any intersection of the robot with the scene. The collision 520

detection is typically handled using a two-phase approach 521

consisting of an initial broad phase and a subsequent narrow 522

phase. The broad phase employs a simplified primitive geom- 523

etry of the objects to discard the evaluation of distant objects. 524

Some implementations use the sort and sweep algorithm to 525

evaluate the overlap of the projected bounds of the primitives 526

into the three axes. While other approaches recur to a parallel 527

spatial cell subdivisions to evaluate the collision of objects 528

contained in the same cell. The second phase computes the 529

exact contact points of the intersected geometry. A collision 530

detection library, such as FCL [34] has been implemented in 531

this instance with both the broad and narrow phases. 532

D. Inspection Time Optimization 533

After simulating the visibility of the sampled viewpoints, 534

the problem must be able to minimize the total inspection 535

time, maximizing the coverage. The joint optimization of both 536

problems is notoriously hard which has motivated the division 537

of the problem in two steps. The first one consists of the 538

minimization of the number of selected viewpoints on an 539

SCP, analogous to the greedy set cover Alogirthm 3. And, 540

a second phase aims at minimizing the time to visit each 541

viewpoint by simultaneously reordering them considering the 542

robot configurations, which is a variation of the TSP, known as 543

the RTSP. Since the solution of both problems can be formu- 544

lated as an ordered list, a sequential greedy insertion [12], 545

can be employed in an iterative manner. Some heuristics, 546

such as GRASP [19], add some randomization to the greedy 547

heuristic by choosing among the k candidates for the solution, 548

instead of the best one. The proposed generic resolution of 549

both problems is displayed in Algorithm 6, consisting of the 550

generation of an initial solution S, conformed as an ordered 551

list. This solution is iteratively optimized, by employing a 552

similar scheme to a variable neighborhood search (VNS) [35], 553

first by discarding g elements and a subsequent randomized 554

insertion of the k nearest neighbors. The resulting solution S′ is 555

preserved so long it improves S. The local search is terminated 556

after tmax seconds, or lmax iterations with no improvements. 557

To enable the adaptation of the generic optimization scheme, 558

to the SCP and RTSP, the following functions must be altered 559

accordingly, RandomizedGreedyInsertion, discardGRandom, 560

as well as compareSolution. The adaptation of the proposed 561

scheme is detailed in the following sections. AQ:6562

1) SCP: Both the initial solution shown in line 2, as well 563

as the insertion of the local search in line 6 from Algorithm 564

6, have been implemented with Algorithm 7, consid- 565

ering the previously calculated visibility matrix, Avis = 566

benat
Updated, with explicit references.
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Algorithm 6 Greedy Variable Neighborhood Search
1: function RANDOMIZEDGREEDYVNS(A = {A1, . . . , An}, k, g)

▷ Initial solution
2: S′ ← RandomizedGreedyInsertion(A, ∅, k)
3: S← S′, l ← 1
4: while l ≤ lmax ∩ t < tmax do
5: S′ ←discardGRandom(S′, g)
6: S′ ←RandomizedGreedyInsertion(A, S′, k)
7: if compareSolution(S′, S) then S← S′, l ← 1
8: else l ← l + 1
9: return S

(
−−⇀
A1, . . . ,

−−⇀
AN )|P|×|C|. Note that the insertion of viewpoints stops567

after reaching a coverage ratio, ηvis is reached as shown in568

line 2. It starts by determining the number of uncovered points569

of the solution S of each viewpoint, resulting in the vector570
−−−−−−⇀
Covers. Subsequently, a column among the k maximums of571
−−−−−−⇀
Covers is choosen. The random removal of g elements in572

the unordered solution S, discardGRandom follows a uniform573

distribution. The iterative local search saves the solution S′,574

so long it has a lower cardinality regarding the best S, or an575

improved coverage with the same cardinality.576

Algorithm 7 Randomized Greedy SCP
1: function RANDOMIZEDGREEDYINSERTIONSCP(Avis = {A1, . . . , AN },

S, k)
2: while 1

M |Uncovered(S)| > 1− ηvis do
▷ New covers for each viewpoint

3:
−−−−−−⇀
Covers ← (. . . , |Uncovered(S) ∩ A j |, . . .) j∈{1,...,N }

4: Pick random j column within the k maximums of
−−−−−−⇀
Covers

5: S← S ∪ j
6: return S

2) Robot Traveling Salesman Problem: The minimum set of577

viewpoints with a coverage ratio of ηvis that complies with578

the specifications must be sequenced to minimize the time579

to visit each viewpoint. The scanning space, or task space,580

T , is contained in SE(3), which is associated with the end581

effector of the robot. The projection of the robot space R,582

onto T , known as the forward kinematic (FK), is unique, but583

its opposite, the IK, does not share the same property. Non-584

holonomic robots, as well as singular points in T , might even585

have infinite IK solutions. Consequently, every target ti within586

the set T forms a cluster of robot configurations denoted as587

Ri = {ri j }, thereby extending the TSP to a Clustered TSP588

(CTSP).589

In most industrial inspections, the start of any robot routine590

coincides with the end on a “home” configuration, rhome,591

conforming a Hamiltonian tour traversing all the viewpoints.592

The RTSP is a particularization of the CTSP, which in some593

approximations leverages the duality of the robot and task594

space to reduce the complexity of the problem [36]. Fig. 9(a)595

displays the Hamiltonian tour on a TSP graph in the task space,596

and b represents the corresponding RTSP.597

The complete set of clusters, including home, is defined as598

A = {A0, . . . , AN−1}, with each cluster Ai composed by a599

varying number of robot configurations, with A(i, j) = ai j ,600

being the robot configuration j of the target i . A tour S is601

defined as an ordered list of M pairs, {x, y}, with x and y602

being the set point number and its associated configuration603

respectively.604

Fig. 9. Scan sequencing. (a) TSP. (b) Robot-TSP.

The time to transition from a robot configuration −⇀ai j to −−⇀akl is 605

defined as: cost(−⇀ai j ,
−−⇀akl) = max(|

−⇀ai j −
−−⇀akl |⊘

−⇀ω), with −⇀ω being 606

the axes velocities of the robot and ⊘ the elementwise vector 607

division. As a result, the cost of a tour S is the summation of 608

all the segment costs. And, the function compareSolution of 609

line 7 in Algorithm 6 for the RTSP determines if S′ has a 610

lower cost compared with S. 611

Adapting the function RandomizedGreedyInsertion for the 612

RTSP has resulted in Algorithm 8, which assigns a random 613

configuration of A when the sequence is empty, and then 614

iteratively chooses the configurations that are among the k 615

minimum costs of the unvisited target configurations. 616

The implementation of discardGRandom for the RTSP, 617

defined in line 5 from Algorithm 6, erases a set of g contiguous 618

elements of the circular sequence, yielding a unique gap for 619

the subsequent insertions. 620

Algorithm 8 Randomized Greedy Insertion RTSP
1: function RANDOMIZEDGREEDYINSERTIONRTSP(Avis={A1, . . . , AN },

S, k)
▷ Hamiltonian cycle enables random start

2: if then|S| == ∅
3: pick random i ∈ {0, . . . , M − 1} and j ∈ {0, . . . , |Ri | − 1}
4: S0 ← {i, j}

▷ Insert in the first gap, next
5: curr ← f irst Be f oreNull(S), next ← (curr + 1)%M
6: repeat

▷ Costs from Scurr to remaining viewpoint configurations
7: Costs={{Cost (Scurr , {i, j})}∀i∈({0,...,M−1}−S),∀ j∈{0,...,|Ri |−1}
8: Pick random {i, j} among k minimums in Costs

▷ Add to sequence
9: Snext ← {i, j}

10: curr ← next, next ← (curr + 1)%M
11: until Snext ̸= 0
12: return S

III. EXPERIMENTS AND RESULTS 621

The evaluation of the proposed method has been conducted 622

in two phases. The first one compares the view-planning 623

system without the robot. The second phase benchmarks the 624

full system with two robotic arms and a printed Stanford 625

Dragon. 626

A. Synthetic View Planning 627

To evaluate the performance of the contributions, regardless 628

of the employed kinematic chain, a set of four models from 629

the Stanford repository and 16, from the MIT CSAIL Textured 630

Models Database has been simulated throughout the pose 631

generation, simulation, and the Greedy Set Cover exposed in 632

Algorithm 3 selecting up to 20 viewpoints. The quantitative 633

evaluation has been carried out by employing the area under 634
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Fig. 10. Coverage sequence up to 20 viewpoints comparing the
proposed method (sparse) and two alternative methods. (a) Comparison
between three models of the dataset. (b) Average of the whole dataset.

the curve (AUC) [37], measuring the accumulated information635

gain of the final Greedy selection sequence.636

The minimum resolution is δmax = 0.001 m with a max-637

imum incidence angle, θmax = 70◦, employing the camera638

parameters associated with the Gocator3520, as shown in639

Table I.640

Two alternative pose generation methods have been com-641

pared, the first one proposed by Scott [5], implemented with642

Algorithm 1, and a second exposed by Jing et al. [9] following643

Algorithm 2. Both methods sample a predetermined number644

of viewpoints based on the resolution and the area of the mesh645

as: ncams = (1/20)(areamodel/δ
2
max). Since both methods require646

a mesh resampling, the method exposed by Schroeder et al. [7]647

has been used, which is implemented in VTK with the operator648

vtkDecimatePro [38]. Note that the presented method employs649

the following parameters: κ = 0.25 and mincov = 15.650

Table II displays the results of the 20 models and the three651

methods, reporting the coverage of 2, 4, and 6 viewpoints,652

as well as the AUC and the runtime in seconds. Note that653

to reduce the randomness, the results are averaged in ten654

runs, executed in a laptop with a Ryzen 9 5900HX with655

16 parallel threads in eight cores and 32 GB of RAM.656

Fig. 10(a) illustrates three instances of the coverage sequence,657

and Fig. 10(b) displays the average of the whole set.658

B. Real Tests659

1) Setup: The tests have been carried out with a kinematic660

chain composed of two manipulators with six axes, consisting661

of an ABB IRB 6700 235/2.65 carrying the scanner and an662

ABB IRB4600 60/2.05 with a printed Stanford Dragon tied to663

the 6th axis, as illustrated in Fig. 11. To replicate the real setup664

in the simulation, the kinematic chain shown in Fig. 11 has665

been calibrated employing common methods. The FK of both666

robots, associated with the frames of their flanges regarding667

their respective bases, robTFL, have been determined using the668

nominal DH parameters of both robots. The relative position669

of their bases, robcam Trobpart has been calibrated following the670

default method provided by the robot controller with an error671

of 2.2 mm. As for the hand-eye calibration associated with the672

relative position of the scanner coordinate system, FLcam Tcam,673

centered in the projector focal point, regarding the flange of its674

robot, it has been estimated with the quaternion method [39],675

with a set of 12 captures employing a checkerboard pattern,676

yielding a square error of 0.278 mm and 0.012◦. The frame of677

the inspected part regarding the flange of the robot, robpart Tpart,678

has been determined by averaging the registration of the model679

Fig. 11. Setup and approximate frames of the kinematic chain carrying
the scanner and the part.

with six captures yielding an average error of 15.67 mm and 680

0.44◦. 681

2) Reconstruction Analysis: The employed parameters of 682

the system are presented in Table III. 683

The resulting sampling has simulated 474 poses for a set 684

of 32 671 surface points. The final selection has employed the 685

randomized Greedy SCP with 16 instances in parallel for 10 s, 686

selecting the best solution. Fig. 13(a) shows the comparison of 687

the resulting sequence of the conventional Greedy SCP, as well 688

as the corresponding accumulated visibility of the scanned 689

point clouds. The solution is composed of s viewpoints 690

which have been sequenced, employing the RTSP algorithm 691

described in Section II-D2. The 12 axes robot configurations 692

of the capture poses have been sampled, first by selecting a 693

random pose of the viewpoint on a Cartesian bounding box of 694

0.5 × 0.5 × 0.5 m to determine the corresponding frame of the 695

other robot. The dense path with obstacle avoidance of the 696

resulting sequence of robot configurations has been planned 697

with RRT-Connect [40] implemented in OMPL [41], which 698

has been subsequently post-processed to generate two robot 699

programs compatible with the controller enabling a synchro- 700

nized execution. The accumulated errors of the kinematic 701

chain alter the resulting pose which provokes a deviation from 702

the simulated visibility. The Cartesian deviation of the robot 703

has been measured by registering the point cloud from the 704

theoretical frame of the model, regarding the model itself. The 705

total overlap of the point clouds has been determined, first by 706

discarding the points that do not attain the minimum resolu- 707

tion, δmax, determined by a minimum number of neighbors, 708

minNN, within a radius, r = 2δmax, employing the following 709

expression: minNN = (πr2)/δ2
max. And, second by estimating 710

the number of points of the simulated point cloud within 711

a 2δmax distance of the registered capture. Fig. 13(b) shows 712

the registration distance with the resulting overlap. The seven 713

captures of the inspection are presented in the columns of 714

Fig. 12, with the top and middle rows displaying the projected 715

point clouds of the simulated and scanned viewpoints. The 716

third row displays the model with the point cloud overlapped to 717

the simulated in red, and the non-overlapping in green, as well 718

as the synthetic points which are not scanned in blue. The sur- 719

face reconstruction of the model has followed a conventional 720

method consisting of the prealignment of the clouds to the 721
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*line 710*

....... And, second by estimating the number of points of the simulated point cloud within a 2δmax distance of the registered capture.



The seven captures of the inspection are presented in the columns of Fig. 12, with the top and middle rows displaying the projected point clouds of the simulated and scanned viewpoints. The third row displays the model with the point cloud overlapped to the simulated in red, and the non-overlapping in green, as well as the synthetic points which are not scanned in blue. 



Fig. 13(a) shows the comparison of the resulting sequence of the conventional Greedy SCP, as well as the corresponding accumulated visibility of the scanned point clouds. 



Fig. 13(b) shows the registration distance with the resulting overlap.



The surface reconstruction of the model has followed a conventional method consisting of the prealignment of the clouds to the...
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TABLE II
COMPARISON ON MODELS FROM STANFORD AND MIT REPOSITORIES, REPORTING THE ABSOLUTE COVERAGE OF 2, 4, AND 6 CAMERAS, THE

AUC UP TO 20 CAMERAS AND THE TOTAL RUNTIME. ALL RESULTS ARE AVERAGED WITH TEN RUNS

Fig. 12. Comparison of the simulated poses and the resulting point clouds with the first and second rows displaying the projected cloud from the
viewpoint of the simulated and scanned pose. The third row displays the resulting cloud registered to the model and its corresponding viewpoint.
And, the last row shows the incremental registration of the clouds with the registered cloud in red and the previous ones in blue.

TABLE III
ROBOT VIEW-PLANNING PARAMETERS

frame of the robot flange carrying the scanned object and a722

subsequent incremental registration with a modified iterative723

closest point (ICP) [42]. The ICP has been implemented using724

the point cloud library [43], employing a different objective725

function [44], and a correspondence estimation based on a726

normal shooting coupled with normal rejection. The set of727

registered clouds is the basis for the surface reconstruction728

employing the software GOM inspect. Fig. 14 shows the 729

resulting surface of the model. 730

IV. DISCUSSION 731

The outcome presented in Section III-A reveals an enhanced 732

coverage in the majority of instances compared to the 733

analyzed alternatives with a shorter runtime. The employment 734

of expensive mesh preprocessing penalizes the duration of 735

the alternative methods significantly. The results exposed in 736

Table II shows that some instances, such as the vase, goblet, 737

and bowl improve the coverage by a significant margin, 738

which is likely caused by the deep internal concavity of these 739

containers. Given that the predominant orientation of the faces 740

points to a region where they will not have a direct visibility of 741

the interior, its visibility is restricted to a set of viewpoints with 742
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Fig. 13. Evaluated coverage sequence and displacement errors. (a)
Accumulated visibility of the Greedy set cover, and the randomized
Greedy with the visibility of the scanner. (b) Overlap ratio of the simu-
lated viewpoints and the registered point cloud, including the registration
distance in millimeters.

Fig. 14. Reconstructed model rendered from four perspectives based
on the seven registered point clouds.

an incidence angle and region of the viewpoint space that is743

not effectively sampled by these alternative methods. On the744

contrary, the proposed method samples a subset of cameras745

that prematurely discards all occluded candidates, ensuring746

that the subsequent clusterization preserves them by positively747

weighting their unique visibility. On the other hand, primarily748

convex objects with reduced curvature, such as the head and749

bunny, have an increased co-visibility of the surface, resulting750

in a comparable coverage. Considering the positive results of751

the proposed method, future instances of the problem could752

adapt the sampling and clusterization criteria considering other753

variables which would a priori enable an improved sampling.754

The field test has shown that the full system is able to755

perform with similar results to the simulated problem, even756

with an average positioning error of 6 mm, yielding an average757

overlap of 92% of the simulated poses regarding the real758

captures. The accumulated visibility shown in Fig. 13(a) is759

higher than the simulated one, which could be associated with760

multiple factors such as a conservative maximum incident761

angle and the mutual compensation of the visibility of the762

whole set of point clouds.763

Another aspect to consider is that only one instance of the764

randomized set cover has been exposed, which has enabled the765

reduction of one pose with a higher coverage. Future instances 766

of the problem could integrate other objectives in this SCP 767

algorithm factoring the minimum overlap between the captures 768

and the inclusion of other variables to enable the optimization 769

of secondary objectives. The reduced computational cost of the 770

sparse visibility matrix could serve as the basis for the visibil- 771

ity segmentation which could be employed in the positioning 772

of the parts or the design of tooling factoring the visibility. 773

The greedy RTSP employed with the two robotic arms has 774

not been analyzed but it could be extended to systems with 775

multiple independent scanners. 776

V. CONCLUSION 777

In this article, a novel method for the view planning has 778

been introduced based on the efficient sampling of a predefined 779

3-D model, by employing a sparse representation of the under- 780

lying visibility without any expensive mesh preprocessing. 781

Experiments on a set of 20 complex models have shown that 782

the presented method is nearly 3 times faster than conventional 783

methods, yielding improved coverage with the same number 784

of viewpoints. This method is able to build a sparse represen- 785

tation of the visibility which enables a premature rejection 786

of poor viewpoint candidates. What is more, at the same 787

time prioritizes the sampling of viewpoints covering complex 788

surface patches, without any expensive mesh preprocessing. 789

Finally, a modified randomized greedy heuristic has been 790

proposed to solve separately the set cover, as well as the 791

sequencing of the robot scanning poses with satisfactory 792

results. This method has been tested with a stereo-structured 793

light scanner mounted on a robot to scan a complex model 794

positioned by another robot. Despite the significant position- 795

ing errors accumulated in the kinematic chain, the resulting 796

coverage of the whole set of captures has produced a higher 797

coverage. 798
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[35] N. Mladenović and P. Hansen, “Variable neighborhood search,” Comput. 900

Oper. Res., vol. 24, no. 11, pp. 1097–1100, Nov. 1997. 901

[36] S. Alatartsev, S. Stellmacher, and F. Ortmeier, “Robotic task sequencing 902

problem: A survey,” J. Intell. Robotic Syst., vol. 80, no. 2, pp. 279–298, 903

Nov. 2015. 904

[37] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A comparison 905

of volumetric information gain metrics for active 3D object reconstruc- 906

tion,” Auto. Robots, vol. 42, no. 2, pp. 197–208, Feb. 2018. 907

[38] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, 908

4th ed. Kitware, 2006. AQ:7909

[39] J. C. K. Chou and M. Kamel, “Finding the position and orientation of 910

a sensor on a robot manipulator using quaternions,” Int. J. Robot. Res., 911

vol. 10, no. 3, pp. 240–254, Jun. 1991. 912

[40] J. J. Kuffner and S. M. La Valle, “RRT-connect: An efficient approach 913

to single-query path planning,” in Proc. IEEE Int. Conf. Robot. Autom., 914

vol. 2, Apr. 2000, pp. 995–1001. 915

[41] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning 916

library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012. 917

[42] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” 918

Proc. SPIE, vol. 1611, pp. 586–606, Apr. 1992. 919

[43] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in 920

Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4. 921

[44] S. Rusinkiewicz, “A symmetric objective function for ICP,” ACM Trans. 922

Graph., vol. 38, no. 4, pp. 1–7, Aug. 2019. 923

Benat Urtasun received the master’s degree 924

in electrical engineering from Deusto University, 925

Bilbao, Spain, in 2017. He is currently pursuing 926

the Ph.D. degree with the University of Mon- 927

dragon, Mondragón, Spain. 928

Since 2018, he has been an Electronic 929

Engineer in robotics and thermography with 930

the LORTEK Technological Center, Basque 931

Research and Technology Alliance (BRTA), 932

Ordizia, Spain. He has specialized in thermogra- 933

phy and 3-D inspection for welded metal additive 934

manufacturing and welded components, which is also part of his Ph.D. 935

topic. 936

Imanol Andonegui received the B.Sc. degree in telecommunication AQ:8937

engineering and the M.Sc. and Ph.D. degrees from the University of the 938

Basque Country. His doctoral thesis focused on the characterization,
AQ:9

939

modeling, and linear and nonlinear analysis of nanophotonic materials 940

based on structures with electromagnetic bandgap.

AQ:10

AQ:11941

He conducted a research stay at the Centre for Ultrahigh Bandwidth 942

Devices for Optical Systems (CUDOS laboratories) belonging to the 943

Australian Research Excellence Network at the University of Sydney. 944

During his research activities, he conducted the first experimental test of 945

optical guidance based on topological theory on silicon nanowires. Later, 946

he joined the Robotics and Computer Vision Research Group, Mon- 947

dragon University, Mondragón, Spain, where he conducted research 948

related to the dynamic study of robotic manipulators, new sensors for 949

3-D reconstruction in industrial applications, trajectory planning for part 950

inspection in a thermographic inspection process, and the application of 951

artificial intelligence for predictive maintenance of industrial assets and 952

robotics, as well as the development of AI-based models for optimizing 953

robotic processes. 954

Eider Gorostegui-Colinas received the Ph.D. 955

degree in applied physics from the University of 956

Navarra (San Sebastian), in 2012, specializing in 957

finite-element method (FEM) modeling of mate- 958

rials during her time at CEIT. 959

From 2013 to 2015, she actively contributed 960

to the simulation domain at LORTEK, concen- 961

trating on FEM simulations to predict distortions 962

and stresses in welding processes. In 2015, 963

she redirected her career toward thermography 964

applied to nondestructive testing (NDT) and pro- 965

cess monitoring. Her primary focus has been on advancing inductive 966

thermography. She is presently dedicated to automating this technology 967

and developing algorithms for reliable automatic defect detection. The 968

ultimate goal is to develop a reliable automated technology that can 969

supplant conventional manual methods, leading to improved detection 970

efficiency and enhanced working conditions for technicians. 971

http://dx.doi.org/10.1007/s11633-015-0916-8
benat
AQ:7


The publisher is Kitware (software vendor responsible of the library)


Alternatively, the citation can be substituted with the original one from 1998:





@book{schroeder1998visualization,

  title={The visualization toolkit an object-oriented approach to 3D graphics},

  author={Schroeder, Will and Martin, Kenneth M and Lorensen, William E},

  year={1998},

  publisher={Prentice-Hall, Inc.}

}

benat
Answered in first page notes.


	Portada AAM IEEE.pdf
	Sparse sampling-based view planning for complex geometries.pdf



