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Abstract: The European Union aims for its existing building stock to be highly energy-efficient
and decarbonized by 2050 through long-term renovation strategies so that all residential buildings
are nearly zero-energy buildings. The objective of this work is to determine the optimal energy
renovation solution for rural residential buildings located in cold climate zones of Spain to achieve
nearly zero-energy buildings. For this purpose, the energy, environmental and economic impacts
of 48 energy renovation proposals in three different climate zones are assessed, taking La Rioja as a
case study. Considering these impacts, the optimal solution is a solution that improves the thermal
envelope, applying the life cycle cost analysis, and that uses renewable energy sources to meet thermal
needs and a portion of the electrical energy needs. Under the optimal solution, overall savings of
up to EUR 2.4 can be achieved for each euro invested, resulting in reductions in non-renewable
primary energy consumption by up to 97%, total primary energy consumption by up to 81% and CO2

emissions by up to 97%. The methodology followed and the results obtained can serve as a guide for
establishing energy renovation policies in other cold rural Mediterranean zones.

Keywords: sustainable rural development; energy renovation; rural residential buildings; nearly
zero-energy buildings; Spain

1. Introduction

The building sector is responsible for approximately 40% of European Union (EU)
energy consumption and 36% of greenhouse gas emissions because approximately 35%
of the EU’s buildings are over 50 years old, nearly 75% of the building stock is energy-
inefficient and only approximately 1% of the building stock is renovated each year [1].
The final energy consumption of the residential sector in the EU was 245.86 Mtoe in 2019,
representing 26.28% of the total final energy consumption, and has experienced an average
annual decrease of 1.18% since 2010 [2]; greenhouse gas emissions associated with this
sector were 753.10 Mt CO2 equivalent in 2019, representing 24.69% of total greenhouse gas
emissions, and have decreased annually by 7.78% on average since 2010 [3]. In addition,
approximately 94% of residential buildings were built before 2008 [4]. The characteris-
tics and the energy performance of the residential building stock in numerous European
countries were studied at the national, regional and local levels by the Intelligent Energy
Europe projects TABULA and EPISCOPE [5]. These projects [5] have made it possible to
effectively and transparently develop energy renovation policies and to establish energy
performance indicators to measure energy savings [6]. Based on these projects, different
research efforts have been carried out in the Mediterranean environment, such as those
carried out in Spain [7], France [8,9], Italy [10,11], Bosnia and Herzegovina [12], Serbia [13],
Greece [14–17] and Cyprus [18]. A great pending challenge is to take advantage of the
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energy saving potential of the Mediterranean residential building stock after harmoniz-
ing the existing heterogeneous data, as was performed in [19] with data from Eastern
European countries.

To promote the energy efficiency of buildings, during the last 20 years, the EU has
updated the Energy Performance of Buildings Directive (EPBD) several times [20–22], which
is paving the way for achieving nearly zero-energy building (NZEB) stock [23]. The EPBD
2018 [22] urges the establishment of long-term renovation strategies to achieve a highly
energy-efficient and decarbonized residential building stock before 2050, amending the
EPBD 2010 [21] and the Energy Efficiency Directive 2012 [24]. The EPBD 2010 [21] aimed to
make all new residential buildings NZEBs as of 31 December 2020, and was complemented
with the comparative methodological framework established by the Commission Delegated
Regulation (EU) No. 244/2012 [25]. The achievement of NZEBs in Mediterranean countries
through the energy renovation of residential buildings by implementing the EPBD 2010 [21]
and the application of the Commission Delegated Regulation (EU) No. 244/2012 [25] are
outlined in studies carried out in Portugal [26,27], France [28], Italy [29,30] and Greece [31].
López-Ochoa et al. [32], Monzón-Chavarrías et al. [33] and Cerezo-Narváez et al. [34]
studied how to achieve NZEBs through energy renovation and their impact on the Spanish
residential sector, implementing the EPBD 2010 [21]. In addition, López-Ochoa et al. [35]
illustrated scenarios to assess the energy and environmental impact of implementing the
EPBD 2010 [21] in the Spanish residential sector for the period 2020–2050 and showed that
this residential sector is well on track to achieve the objectives of the EPBD 2018 [22].

There are few studies on the energy renovation of traditional residential buildings in
rural areas in the Mediterranean environment. Rocchi et al. [36] performed a sustainability
evaluation of different energy renovation solutions for the roof of an Italian traditional
farmhouse, using a hybrid multi-criteria method, which combines energy and thermal
comfort optimization with environmental and economic life cycle analysis. Tahsildoost and
Zomorodian [37] defined optimal energy renovation strategies for rural buildings in the
Iranian Mediterranean-influenced hot-summer humid continental climate. The strategies
considered were architectural, constructional and renewable and took into account environ-
mental, economic and comfort performance to perform a carbon emission and cost analysis.
In addition, Gouveia et al. [38] developed heating and cooling energy poverty vulnerability
indices, which combine the subindices’ ability to implement alleviation measures and
energy performance gaps. The researchers discovered that the rural areas located across
the inland region of mainland Portugal should be prioritized by the country in terms of
heating service, given the high rates of unemployment, low income, aging population, low
educational levels and more severe winter climate.

Through the Sustainable Rural Development Programme, the Government of Spain
and the Spanish Ministry of Agriculture, Fisheries and Food, together with the autonomous
communities [39], have prioritized the sustainable development of rural revitalization areas,
that is, those rural areas with low population density, important agricultural activity, low
income levels and significant geographic isolation or difficulties in land use management.
Recently, the Government of Spain and the Spanish Ministry for the Ecological Transition
and the Demographic Challenge have promoted building sustainability in demographic
challenge municipalities (municipalities or nuclei of up to 5000 inhabitants) through the
Energy Renovation Programme for Existing Buildings in demographic challenge munici-
palities (PREE 5000 Programme) [40]. Therefore, the objective of this work is to assess the
energy, environmental and economic impacts of various energy renovation measures for
rural residential buildings located in cold Mediterranean climate zones of Spain to achieve
NZEBs, taking as a case study the Autonomous Community of La Rioja. For this purpose,
it was necessary to study the rural residential building stock of La Rioja and then select
representative municipalities and define the characteristic building type of the different
rural revitalization areas. Finally, optimal energy renovation solutions were selected that
can be extrapolated to other rural areas or demographic challenge areas in both La Rioja
and other Spanish autonomous communities.



Buildings 2023, 13, 680 3 of 48

2. Methodology

The methodology followed in this work is as follows:

1. Analyzing the rural residential building stock of La Rioja, determining the main
characteristics of the residential building stock in rural areas to be revitalized and
defining their characteristic buildings.

2. Proposing different energy renovation solutions.
3. Verifying compliance with Spanish regulations on energy saving in buildings and the

achievement of NZEBs with the proposed solutions.
4. Assessing the energy, environmental and economic impacts of the different pro-

posed solutions.
5. Selecting the optimal solution for energy renovation and estimating its impact for the

rural population of La Rioja.

2.1. La Rioja and Its Residential Building Stock

La Rioja is a Spanish autonomous community located in the north of the Iberian Penin-
sula, with an area of 5045 km2. It has a population of 319,914 inhabitants and comprises
174 municipalities, with 165 municipalities having fewer than 5001 inhabitants [41]. In
addition, La Rioja has 130,000 households [42]. The residential sector of La Rioja consumed
148,616 toe of final energy (2.56 times that of 1991) and 176,888 toe of primary energy
(1.86 times the value of 1991) in 2013, with a renewable energy contribution of 23.49%
(2.06 times that of 1991) [43]. The energy performance certificates for the residential sector
in La Rioja [44] revealed that the average primary energy consumption varied between
229.4 kWh/m2·year and 309.4 kWh/m2·year, and the associated CO2 emissions varied
from 51.7 kg CO2/m2·year to 72.0 kg CO2/m2·year, depending on climate zone.

The different requirements of Spanish regulations regarding energy saving in buildings
have always been linked to the climate zone assigned to the municipality where the building
is located, with climate zoning having undergone three major changes from 1981 to the
present [32]. On the one hand, most existing buildings were built before 2008 [45], so
the characteristics of their thermal envelopes were defined as a function of the climate
zones according to the Basic Building Norm on Thermal Conditions in Buildings (NBE-CT-
79) [46]. The thermal transmittances of the enclosures, as well as the interior partitions, were
considered slightly lower than the corresponding NBE-CT-79 maximum allowable thermal
transmittances [46], as was considered in [47] and [48]. The climate zones according to the
NBE-CT-79 [46] are a combination of the heating climate zones and the January climate
zones. La Rioja includes the climate zones DX, DY, EX and EY. The heating degree days
with a base temperature of 15 ◦C are between 1301 and 1800 ◦C·day/year in heating
climate zone D and above 1800 ◦C·day/year in heating climate zone E, while the average
minimum temperature in January is between 1.5 and 3.9 ◦C in the January climate zone X
and lower than 1.5 ◦C in the January climate zone Y. To determine these climate zones, the
temperature data from the meteorological stations of the Government of La Rioja [49,50]
were used for municipalities that have them, and the PVGIS database [51] was used for
the other municipalities. On the other hand, to proceed with the energy renovation of
existing buildings, it is necessary to comply with the Basic Document on Energy Saving of
the Technical Building Code (CTE-DB-HE) [52], whose requirements depend on the climate
zone according to the CTE-DB-HE [52]. The climate zones according to the CTE-DB-HE [52]
are categorized by elevation above sea level of the municipalities of each Spanish province
and are a combination of the winter and the summer climate zones, whose characteristics
are described in [53]. According to CTE-DB-HE [52], municipalities of La Rioja whose
elevation above sea level is less than or equal to 700 m are in climate zone D2, while the
remaining municipalities are designated as climate zone E1. Both climate zones correspond
to the cold climate zones of Spain [54], with climate zone D2 having a high energy demand
for heating and a low energy demand for cooling, and climate zone E1 having a very
high energy demand for heating and practically no energy demand for cooling. Finally,
combining the climate zones according to the NBE-CT-79 [46] and the CTE-DB-HE [52],
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5 possible combined climate zones (CCZs) are obtained for La Rioja: DX-D2, DX-E1, EX-D2,
EX-E1 and EY-E1.

Those municipalities with fewer than 5001 inhabitants are considered rural or de-
mographic challenge municipalities [40], representing 94.83% of La Rioja’s municipalities.
A total of 54.55% of rural municipalities are in the CCZ DX-D2, 26.67% are in the CCZ
EY-E1, 12.12% are in the CCZ EX-E1, and the remainder are in the CCZs DX-E1 and EX-D2
(Figure 1a). In addition, within rural municipalities, this study focuses mainly on mu-
nicipalities in rural revitalization areas according to the Sustainable Rural Development
Programme in La Rioja [55], which are Cameros, Najerilla and Rioja Baja (Figure 1b). Based
on the INSPIRE services of Cadastral Cartography of the General Directorate for Cadas-
tre [56] and using the QGIS 3.10.10 software program [57], Table 1 was created, which
shows that single-family houses represent the majority of residential buildings in the rural
residential building stock. Table 1 shows the main characteristics of the single-family
houses in the residential building stock in La Rioja, both rural and rural revitalization areas,
by CCZ. While single-family houses represent 60.34% of the rural residential building stock
and have an average surface area per floor of 91.42 m2 and 2.74 floors on average, with
92.02% of them built before 2008, they represent 74.90% of the residential building stock in
rural revitalization areas with an average surface area per floor of 88.12 m2 and 2.84 floors
on average, with 93.88% of them built before 2008 (Table 1). The average surface area
and age of single-family houses in rural revitalization areas are similar to those of rural
single-family houses, although their share is greater within their residential building stock
(Table 1).

Table 1. Main characteristics of the single-family houses in the residential building stock in La Rioja,
both rural and rural revitalization areas, by CCZ.

CCZ
Number of

Municipalities
(–)

Number of
Single-Family

Houses (–)

Average
Surface Area

Per Floor (m2)

Number of
Floors (–)

Single-Family
Houses in the

Residential
Building
Stock (%)

Single-Family
Houses Built
before 2008

(%)

Rural

DX-D2 90 31,743 93.13 2.72 59.22 91.95

DX-E1 4 740 75.87 3.11 92.62 95.68

EX-D2 6 909 90.85 2.78 80.09 91.20

EX-E1 20 3457 89.21 2.75 78.75 90.31

EY-E1 * 44 5573 85.20 2.74 53.68 93.07

Total 164 42,422 91.42 2.74 60.34 92.02

Rural
revitalization

areas

DX-D2 34 9951 90.27 2.83 70.55 93.74

DX-E1 3 696 74.59 3.13 92.19 95.98

EX-D2 6 909 90.85 2.78 80.09 91.20

EX-E1 15 2158 85.84 2.82 88.01 94.21

EY-E1 37 4116 85.83 2.83 76.82 94.29

Total 95 17,830 88.12 2.84 74.90 93.88

* Villarta-Quintana is not included, because no data are available for this municipality in [56].
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Figure 1. Map of La Rioja: (a) the CCZs of the rural municipalities; (b) the demographic chal-
lenge municipalities.

2.2. Existing Study Buildings Representative of the Rural Revitalization Areas

The selection criteria used to select the representative municipalities of each CCZ were,
initially, the selection of the municipality for each rural revitalization area with the greatest
number of single-family houses per CCZ. Subsequently, the selection of the representative
municipality was prioritized according to the predominance of different CCZs from highest
to lowest, that is, following the sequence DX-D2, EY-E1 and EX-E1 (Table 1). Table 2 shows
the main characteristics of the single-family houses in the residential building stock of rural
revitalization areas, by rural revitalization area and CCZ, highlighting municipalities with
the greatest number of single-family houses. With these criteria, Cervera del Río Alhama
(Rioja Baja rural revitalization area) was selected as a representative municipality of the
CCZ DX-D2, Torrecilla en Cameros (Cameros rural revitalization area) was selected as
a representative municipality of the CCZ EY-E1 and San Millán de la Cogolla (Najerilla
rural revitalization area) was selected as a representative municipality of the CCZ EX-E1
(Table 2). In Cervera del Río Alhama, 67.66% of the residential building stock comprises
single-family houses, with an average floor area of 84.54 m2 and 2.78 floors on average,



Buildings 2023, 13, 680 6 of 48

with 97.84% of them built before 2008; in San Millan de la Cogolla, 89.41% of the residential
building stock comprises single-family houses, with an average floor area of 89.91 m2 and
3.00 floors on average, with 93.84% of them built before 2008; and in Torrecilla en Cameros,
50.07% of the residential building stock comprises single-family houses, with an average
floor area of 84.08 m2 and 2.52 floors on average, with 95.28% of them built before 2008
(Table 2).

Table 2. Main characteristics of the single-family houses in the residential building stock in rural
revitalization areas, by rural revitalization area and CCZ, highlighting those municipalities with the
greatest number of single-family houses.

Rural
Revitalization

Area
CCZ Municipalities

Number of
Municipalities

(–)

Number of
Single-Family

Houses (–)

Average
Surface Area

per Floor (m2)

Number of
Floors (–)

Single-Family
Houses in the

Residential
Building
Stock (%)

Single-Family
Houses Built
before 2008

(%)

Cameros

DX-D2
Ribafrecha 1 499 84.35 3.15 69.79 86.57

Total 6 1483 93.41 2.90 60.36 87.73

DX-E1
Daroca de Rioja 1 71 80.17 2.44 95.95 84.51

Total 1 71 80.17 2.44 95.95 84.51

EX-D2
Viguera 1 261 82.64 2.75 63.04 96.55

Total 2 358 85.29 2.69 69.51 93.30

EX-E1
Sorzano 1 244 95.87 2.84 82.99 92.21

Total 4 691 81.98 2.92 83.05 93.78

EY-E1

Torrecilla
en Cameros 1 339 84.08 2.52 50.07 95.28

Total 22 2372 93.84 2.73 76.52 94.10

Total 35 4975 91.25 2.80 71.30 91.96

Najerilla

DX-D2
Alesanco 1 649 87.51 2.70 49.06 94.76

Total 22 5344 94.59 2.78 72.56 93.99

EX-D2
Matute 1 195 91.45 2.81 97.99 96.41

Total 4 551 94.46 2.83 88.87 89.84

EX-E1

San Millán de
la Cogolla 1 211 89.91 3.00 89.41 93.84

Total 9 1150 90.85 2.78 89.56 94.43

EY-E1

Canales de
la Sierra 1 168 84.68 2.55 87.96 92.86

Total 8 818 78.19 2.84 64.87 93.37

Total 43 7863 92.33 2.79 74.67 93.70

Rioja Baja

DX-D2

Cervera del
Río Alhama 1 1619 84.54 2.78 67.66 97.84

Total 6 3124 81.38 2.88 72.94 96.16

DX-E1
Cornago 1 446 67.64 3.15 90.84 98.43

Total 2 625 73.95 3.21 91.78 97.28

EX-E1
Préjano 1 255 80.76 2.72 93.75 94.90

Total 2 317 76.05 2.70 94.35 94.32

EY-E1
Enciso 1 341 77.60 2.85 89.27 95.01

Total 7 926 72.09 3.05 92.88 95.57

Total 17 4992 78.39 2.94 79.28 96.07

Considering the main characteristics of the single-family houses in the rural revi-
talization areas, a model of the existing characteristic study building for the three CCZs
was created. The existing study building is a traditional attached single-family house in
representative rural municipalities, consisting of three floors (one ground floor and two
upper floors) and having a main façade oriented to the south (Figure 2). The base of the
building is rectangular with an area of 85.80 m2 (7.80 m × 11 m), and the height of each
floor is 3.00 m. The ground floor is uninhabitable, while both the first and second floors
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are habitable. The roof is gabled and has a height of 2.15 m. The plans of each floor of
the building are shown in Figure 3. The window-to-wall ratio is 0.1816, and the building
compactness is 2.72 m3/m2.
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The main characteristics of the different opaque elements of the thermal envelope and
of the interior partitions for the existing study building in the three CCZs are presented in
Tables 3–5: the compositions of both the opaque elements and the interior partitions are
shown in Table 3, and the thermal transmittance and thicknesses of the original expanded
polystyrene (EPS) thermal insulation material with a thermal conductivity of 0.038 W/m·K
for each of these elements are shown in Tables 4 and 5. The thermal transmittances, both of
the opaque elements of the thermal envelope and of the interior partitions, of the existing
study building do not exceed the maximum thermal transmittances set by the NBE-CT-
79 [46]. The thermal transmittance of the windows for the existing study building for



Buildings 2023, 13, 680 8 of 48

the three CCZs is 4.65 W/m2·K. These windows are single-pane glass, with a thermal
transmittance of 5.70 W/m2·K and a g-value of 0.850, within a wooden frame, with a
thermal transmittance of 2.20 W/m2·K and an absorptivity of 0.70. The window frame
fraction is 30%, and its air permeability is 27 m3/h·m2 with an overpressure of 100 Pa. In
addition, the windows have blinds. The doors for the existing study building in the three
CCZs are made of medium-density wood with a thermal transmittance of 2.20 W/m2·K
and an absorptivity of 0.70, and the air permeability is 27 m3/h·m2 with an overpressure of
100 Pa. Finally, the thermal bridges of the existing study building are those considered by
default [58,59].

Table 3. Composition and main characteristics of the opaque elements of the thermal envelope and
the interior partitions for the study building. An asterisk (*) indicates that the thickness of thermal
insulation material is variable in each case.

Element Layer Material Thickness
(m)

Thermal
Conductivity

(W/m·K)

Density
(kg/m3)

Specific Heat
(J/kg·K)

Roof

1 Ceramic–porcelain roof tile 0.020 1.300 2300 840

2 Polyvinyl chloride (PVC) 0.002 0.170 1390 900

3 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.050 1.300 1900 1000

4 One-way ceramic-reinforced slab 0.250 0.908 1220 1000

5 Original EPS expanded polystyrene
(0.038 W/m·K) * 0.038 30 1000

6 High-hardness plaster 1200 < d < 1500 0.020 0.560 1350 1000

Walls

1 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.025 1.300 1900 1000

2 Solid metric or Catalan brick of 1/2 foot
40 mm < G < 50 mm 0.115 0.991 2170 1000

3 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.025 1.300 1900 1000

4 Single LH partition 40mm < E < 60 mm 0.060 0.445 1000 1000

5 Original EPS expanded polystyrene
(0.038 W/m·K) * 0.038 30 1000

6 High-hardness plaster 1200 < d < 1500 0.020 0.560 1350 1000

Ground floor

1 Wafer or ceramic tile 0.015 1.000 2000 800

2 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.035 1.300 1900 1000

3 Original EPS expanded polystyrene
(0.038 W/m·K) * 0.038 30 1000

4 Mass concrete 2000 < d < 2200 0.200 1.650 2150 1000

5 Sand and gravel 1700 < d < 2200 0.350 2.000 1450 1050

First-floor
framework

1 Wafer or ceramic tile 0.015 1.000 2000 800

2 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.030 1.300 1900 1000

3 One-way ceramic-reinforced slab 0.250 0.908 1220 1000

4 Original EPS expanded polystyrene
(0.038 W/m·K) * 0.038 30 1000

5 High-hardness plaster 1200 < d < 1500 0.015 0.560 1350 1000
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Table 3. Cont.

Element Layer Material Thickness
(m)

Thermal
Conductivity

(W/m·K)

Density
(kg/m3)

Specific Heat
(J/kg·K)

Roof-floor
framework

1 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.050 1.300 1900 1000

2 One-way ceramic-reinforced slab 0.250 0.908 1220 1000

3 Original EPS expanded polystyrene
(0.038 W/m·K) * 0.038 30 1000

4 High-hardness plaster 1200 < d < 1500 0.015 0.560 1350 1000

Mezzanine
framework

1 Wafer or ceramic tile 0.015 1.000 2000 800

2 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.030 1.300 1900 1000

3 One-way ceramic-reinforced slab 0.250 0.908 1220 1000

4 High-hardness plaster 1200 < d < 1500 0.015 0.560 1350 1000

Dividing
walls

1 Triple LH solid block
100 mm < E < 110 mm 0.100 0.427 920 1000

2 Cement or lime mortar for masonry and
for rendering/plastering 1800 < d < 2000 0.020 1.300 1900 1000

3 Original EPS expanded polystyrene
(0.038 W/m·K) * 0.038 30 1000

4 Plasterboard (PYL) 750 < d < 900 0.020 0.250 825 1000

Vertical
interior

partitions

1 High-hardness plaster 1200 < d < 1500 0.015 0.560 1350 1000

2 Single LH partition 40 mm < E < 60 mm 0.060 0.445 1000 1000

3 High-hardness plaster 1200 < d < 1500 0.015 0.560 1350 1000

Table 4. Thermal transmittances (U), in W/m2·K, and thicknesses of thermal insulation material (t),
in m, for ground floor, first-floor framework, roof-floor framework, mezzanine framework, dividing
walls and vertical interior partitions of the existing and renovated building by CCZ.

Existing Building Renovated Building

Original EPS EPS MW PUR XPS

CCZ Element U T U t * U t * U t * U t *

DX-D2

Ground floor 1.56 0.005 0.46 0.055 0.51 0.045 0.45 0.040 0.47 0.050

First-floor framework 1.29 0.010 0.46 0.050 0.51 0.040 0.46 0.035 0.48 0.045

Roof-floor framework 1.29 0.010 0.46 0.050 0.51 0.040 0.46 0.035 0.48 0.045

Mezzanine framework 1.96 - 1.08 0.015 1.05 0.015 1.10 0.010 1.05 0.015

Dividing walls 1.58 0.005 0.46 0.055 0.51 0.045 0.45 0.040 0.48 0.050

Vertical interior partitions 2.79 - 1.09 0.020 1.06 0.020 1.04 0.015 1.06 0.020

EX-E1

Ground floor 1.56 0.005 0.46 0.055 0.51 0.045 0.45 0.040 0.47 0.050

First-floor framework 1.29 0.010 0.46 0.050 0.51 0.040 0.46 0.035 0.48 0.045

Roof-floor framework 1.29 0.010 0.46 0.050 0.51 0.040 0.46 0.035 0.48 0.045

Mezzanine framework 1.96 - 0.94 0.020 0.91 0.020 0.90 0.015 0.91 0.020

Dividing walls 1.58 0.005 0.46 0.055 0.51 0.045 0.45 0.040 0.48 0.050

Vertical interior partitions 2.79 - 0.95 0.025 0.91 0.025 0.86 0.020 0.91 0.025
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Table 4. Cont.

Existing Building Renovated Building

Original EPS EPS MW PUR XPS

CCZ Element U T U t * U t * U t * U t *

EY-E1

Ground floor 1.29 0.010 0.46 0.050 0.48 0.045 0.46 0.035 0.48 0.045

First-floor framework 1.11 0.015 0.46 0.045 0.48 0.040 0.48 0.030 0.48 0.040

Roof-floor framework 1.10 0.015 0.46 0.045 0.48 0.040 0.47 0.030 0.48 0.040

Mezzanine framework 1.96 - 0.94 0.020 0.91 0.020 0.90 0.015 0.91 0.020

Dividing walls 1.31 0.010 0.46 0.050 0.48 0.045 0.46 0.035 0.48 0.045

Vertical interior partitions 2.79 - 0.95 0.025 0.91 0.025 0.86 0.020 0.91 0.025

* Thickness of thermal insulation material to be added in energy renovation.

Table 5. Thermal transmittance (U), in W/m2·K, and thicknesses of the thermal insulation material
(t), in m, for roof and walls of the existing and renovated building, by CCZ, heating system and
thermal insulation material.

Roof Walls

CCZ Building Heating System Thermal Insulation Material U t * U t *

DX-D2

Existing Existing heating oil boiler Original EPS 1.06 0.015 1.59 0.005

Renovated

New heating oil boiler

EPS 0.28 0.095 0.27 0.110

MW 0.23 0.115 0.23 0.125

PUR 0.28 0.065 0.29 0.070

XPS 0.33 0.070 0.34 0.080

New natural gas boiler

EPS 0.25 0.110 0.25 0.120

MW 0.22 0.125 0.22 0.135

PUR 0.27 0.070 0.26 0.080

XPS 0.30 0.080 0.31 0.090

New biomass boiler

EPS 0.33 0.075 0.32 0.090

MW 0.28 0.090 0.28 0.100

PUR 0.34 0.050 0.33 0.060

XPS 0.35 0.065 0.39 0.065

EX-E1

Existing Existing heating oil boiler Original EPS 1.06 0.015 1.59 0.005

Renovated

New heating oil boiler

EPS 0.25 0.110 0.24 0.125

MW 0.21 0.130 0.21 0.140

PUR 0.25 0.075 0.26 0.080

XPS 0.29 0.085 0.29 0.095

New natural gas boiler

EPS 0.23 0.125 0.23 0.135

MW 0.19 0.145 0.19 0.155

PUR 0.24 0.080 0.24 0.090

XPS 0.27 0.095 0.27 0.105

New biomass boiler

EPS 0.29 0.090 0.29 0.100

MW 0.25 0.105 0.25 0.115

PUR 0.30 0.060 0.31 0.065

XPS 0.33 0.070 0.35 0.075
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Table 5. Cont.

Roof Walls

CCZ Building Heating System Thermal Insulation Material U t * U t *

EY-E1

Existing Existing heating oil boiler Original EPS 0.82 0.025 1.31 0.010

Renovated

New heating oil boiler

EPS 0.25 0.100 0.24 0.120

MW 0.21 0.120 0.21 0.135

PUR 0.26 0.065 0.25 0.080

XPS 0.29 0.075 0.29 0.090

New natural gas boiler

EPS 0.23 0.115 0.23 0.130

MW 0.19 0.135 0.19 0.150

PUR 0.24 0.075 0.24 0.085

XPS 0.27 0.085 0.27 0.100

New biomass boiler

EPS 0.29 0.080 0.29 0.095

MW 0.25 0.095 0.25 0.110

PUR 0.31 0.050 0.30 0.065

XPS 0.32 0.065 0.35 0.070

* In the existing building, thickness of the thermal insulation material; in the renovated building, thickness of the
thermal insulation material to be added.

Heating and domestic hot water (DHW) needs are met using (a) a heating oil boiler
with a thermal performance of 0.70 [60] in the existing study building that has not replaced
the boiler or (b) a heating oil boiler with a thermal performance of 0.85 [61] in the existing
study building with a boiler replaced between 1981 and 2007. The heating system consists
of radiators, and there is no solar thermal system for the DHW. In addition, all electrical
energy needs are met by connections to the electrical grid.

2.3. Proposals for Energy Renovation and Case Studies

The energy renovation of the existing study building in the three CCZs was conducted,
seeking to comply with the CTE-DB-HE [52] (Table A1). The CTE-DB-HE [52] specifies that
energy-renovated buildings must meet a series of requirements related to the limitation
on energy consumption (CTE-DB-HE0), the conditions for controlling energy demand
(CTE-DB-HE1) and the minimum renewable energy contribution to meet DHW demand
(CTE-DB-HE4). In addition, the building must meet the requirements of the CTE-DB-
HE0 [52] for new buildings if an NZEB is desired.

On the one hand, the following energy renovation measures are proposed for imple-
mentation in the thermal envelope and interior partitions:

• Reduction in the thermal transmittance of the ground floor, first-floor framework, mez-
zanine framework, roof-floor framework, dividing walls and vertical interior partitions
by adding the thermal insulation thicknesses necessary to not exceed the correspond-
ing thermal transmittance limit according to CTE-DB-HE1 [52], using the following
thermal insulation materials: EPS with a thermal conductivity of 0.036 W/m·K, min-
eral wool (MW) with a thermal conductivity of 0.034 W/m·K, polyurethane (PUR)
with a thermal conductivity of 0.025 W/m·K and extruded polystyrene (XPS) with a
thermal conductivity of 0.034 W/m·K.

• Reduction in the thermal transmittance of roof and walls by adding the optimal
thermal insulation thicknesses to minimize total heating costs, applying the life cycle
cost analysis [47,48,62,63], taking into account both the thermal insulation materials to
be used, as mentioned above, and the heating systems to be used, which are a heating
oil boiler with a thermal performance of 0.92, a natural gas boiler with a thermal
performance of 0.92 and a biomass boiler with a thermal performance of 0.85.
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• Replacement of existing windows and doors with new ones. The thermal transmittance
of the new windows is 1.38 W/m2·K. These windows are low-emissive double-pane
glass and filled with argon gas, with a thermal transmittance of 1.20 W/m2·K and a
g-value of 0.791, and a three-chamber PVC frame, with a thermal transmittance of
1.80 W/m2·K and an absorptivity of 0.70. The window frame fraction is 30%, and its air
permeability is 9 m3/h·m2 with an overpressure of 100 Pa. In addition, new windows
have blinds. The new doors are made of medium-low-density wood, with a thermal
transmittance of 2.00 W/m2·K and an absorptivity of 0.70, and the air permeability is
9 m3/h·m2 with an overpressure of 100 Pa.

On the other hand, the following energy renovation measures are proposed for im-
plementation, both in the heating and DHW systems and in the incorporation of renew-
able energies:

• Replacement of the existing heating and DHW system with a new system.
• Incorporation of a solar thermal system.
• Incorporation of a solar photovoltaic system without and with the possibility of selling

surplus production to the electrical grid.

Table 4 shows the thermal transmittance of the ground floor, first-floor framework,
roof-floor framework, mezzanine framework, dividing walls and vertical interior partitions,
and the thicknesses of EPS, MW, PUR and XPS thermal insulation materials to add in the
energy renovation of each of these elements to comply with the CTE-DB-HE1 [52] (Table A1)
for the existing study building in the three CCZs.

The optimal thickness of the thermal insulation material to be added to the roof or
walls, e, of the existing study building to minimize the total heating cost, xopt,e, in m,
applying the life cycle cost analysis, is obtained by the following equation [47,48]:

xopt,e =

(0.024·HDD·C f uel ·λ insu·PWF
η·Cinsu

)0.5

− λ insu·Rexis
e (1)

where HDD represents the heating degree days for a base temperature of 20 ◦C, in
◦C·day/year, and is 2857 ◦C·day/year and 3548 ◦C·day/year for the climate zones D2 and
E1 according to the CTE-DB-HE [52], respectively, according to [64]; Cfuel is the price of fuel
used, in EUR/kWh, indicated in Table 6; λ insu is the thermal conductivity of the thermal
insulation material, in W/m·K; PWF is the present worth factor, dimensionless, with a
value of 21.10 because the study is carried out in Spain [47,48]; η is the thermal performance
of the heating system used, per unit; Cinsu is the price of the thermal insulation material
used, in EUR/m3, indicated in Table 6; and Rexis

e is the thermal resistance of the element
e of the thermal envelope of the existing study building, in m2·K/W, being 0.94 m2·K/W
for the roof and 0.63 m2·K/W for the walls in the climate zones DX and EX according to
the NBE-CT-79 [46] and 1.22 m2·K/W for the roof and 0.76 m2·K/W for the walls in the
climate zone EY according to NBE-CT-79 [46] (Tables 3 and 5).

Table 6. Cost of the energy carriers for the starting year, cost of the different energy renovation
measures and estimated investment cost of the reference buildings.

Unit Value Reference

Energy carrier

Heating oil EUR/kWh 0.0743 [65]

Natural gas EUR/kWh 0.0879 [66]

Biomass EUR/kWh 0.0491 [67]

Electricity (bought with an annual consumption between
2500 and 5000 kWh) EUR/kWh 0.2399 [68]

Electricity (sold) EUR/kWh 0.0479 [69]
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Table 6. Cont.

Unit Value Reference

Thermal envelope and
interior partitions

EPS with a thermal conductivity of 0.036 W/m·K EUR/m3 246.49 [70]

MW with a thermal conductivity of 0.034 W/m·K EUR/m3 189.32 [70]

PUR with a thermal conductivity of 0.025 W/m·K EUR/m3 384.76 [70]

XPS with a thermal conductivity of 0.034 W/m·K EUR/m3 372.86 [70]

New window EUR/m2 402.33 [70]

New door EUR/m2 949.47 [70]

New garage door EUR/m2 1620.90 [71]

Heating and
DHW system

Heating oil boiler of 30 kW EUR 4136.47 [70]

Natural gas boiler of 30 kW EUR 3251.21 [70]

Biomass boiler of 45 kW EUR 5671.23 [70]

Radiator of 4 elements of type 1 (331.6 W) EUR 161.31 [71]

Radiator of 5 elements of type 1 (414.5 W) EUR 185.77 [71]

Radiator of 6 elements of type 1 (497.4 W) EUR 210.19 [71]

Radiator of 5 elements of type 2 (777.5 W) EUR 180.96 [71]

Radiator of 6 elements of type 2 (933 W) EUR 204.41 [71]

Radiator of 7 elements of type 2 (1088.5 W) EUR 227.90 [71]

Radiator of 8 elements of type 2 (1244 W) EUR 251.34 [71]

Radiator of 9 elements of type 2 (1399.5 W) EUR 274.84 [71]

Radiator of 10 elements of type 2 (1555 W) EUR 298.34 [71]

All the required additional elements for the heating and
DHW system EUR 3489.64 [70]

Solar thermal system

Solar thermal panel (1.92 m2, optical efficiency factor of
0.729 and overall loss factor of 4.357 W/m2·K)

EUR 716.83 [70]

Structure for 2 solar thermal panels EUR 160.53 [70]

DHW storage tank (200 l) EUR 1263.53 [70]

All the required additional elements for the solar
thermal system EUR 1096.83 [70]

Solar
photovoltaic system

Solar photovoltaic panel (1.80 kW in cases EE2 and
2.40 kW in cases EE3) EUR/W 1.15 [70]

Structure for solar photovoltaic panels EUR/W 0.47 [70]

Inverter (1.50 kW in cases EE2 and 2.00 kW in cases EE3) EUR/W 0.50 [70]

Dynamic power controller (to ensure zero injection to the
electrical grid in cases EE2) EUR 106.95 Estimated

All the required additional elements for the solar
photovoltaic system in cases EE2 EUR 184.06 [70]

All the required additional elements for the solar
photovoltaic system in cases EE3 EUR 245.40 [70]
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Table 6. Cont.

Unit Value Reference

Estimated investment
cost of the

reference buildings

Case DX-D2-S1-NoInsu-EE1 EUR 5735.58 Estimated from
[70] and [71]

Case EX-E1-S1-NoInsu-EE1 EUR 5901.78 Estimated from
[70] and [71]

Case EY-E1-S1-NoInsu-EE1 EUR 5700.86 Estimated from
[70] and [71]

Case DX-D2-S2-NoInsu-EE1 EUR 8603.37 Estimated from
[70] and [71]

Case EX-E1-S2-NoInsu-EE1 EUR 8852.66 Estimated from
[70] and [71]

Case EY-E1-S2-NoInsu-EE1 EUR 8551.28 Estimated from
[70] and [71]

After applying Equation (1), Table 5 shows the thermal transmittance of the roof and
walls and the thicknesses of the EPS, MW, PUR and XPS thermal insulation materials,
rounded to the nearest commercial thickness, to add in the energy renovation of each of
these elements, according to the heating system used.

In total, 50 cases were studied for each CCZ: 2 cases for the existing study building
and 48 cases for the energy-renovated building. Each case study has been named using
the nomenclature CCZ-Sx-Insu-EEx, where CCZ corresponds to the CCZ (DX-D2, EX-E1
and EY-E1); Sx corresponds to the system used to meet heating and DHW needs (S1, S2,
S3, S4, S5 and S6) consisting of a boiler, and in some cases, supported by a solar thermal
system; Insu corresponds to the thermal insulation material to be added (EPS, MW, PUR
and XPS), using NoInsu (no thermal insulation material added) for the case of the existing
study building; and EEx refers to the alternatives used to meet electrical energy needs (EE1,
EE2 and EE3).

To meet the heating and DHW needs of the study building, the following six systems
were studied:

• S1: Heating oil boiler with a thermal performance of 0.70 to meet heating and
DHW needs.

• S2: Heating oil boiler with a thermal performance of 0.85 to meet heating and
DHW needs.

• S3: Heating oil boiler with a thermal performance of 0.92 to meet heating and DHW
needs and a solar thermal system to meet a portion of the DHW needs.

• S4: Natural gas boiler with a thermal performance of 0.92 to meet the heating and
DHW needs and a solar thermal system to meet a portion of the DHW needs.

• S5: Biomass boiler with a thermal performance of 0.85 to meet the heating and
DHW needs.

• S6: Biomass boiler with a thermal performance of 0.85 to meet the heating and
DHW needs and a solar thermal system to meet a portion of the DHW needs.

To meet the electrical energy needs of the study building, the following three alterna-
tives were considered:

• EE1: Electrical energy needs are met by connecting to the electrical grid.
• EE2: Electrical energy needs are met by connecting to the electrical grid and using a

solar photovoltaic system without selling surpluses to the electrical grid.
• EE3: Electrical energy needs are met by connecting to the electrical grid and using a

solar photovoltaic system with the possibility of selling surpluses to the electrical grid.
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2.4. Heating System, Solar Thermal System and Solar Photovoltaic System

The heating system for the existing buildings has been estimated, and the heating
system has been designed for energy renovation solutions. All the heating systems are
monotube systems.

The DHW energy demand has been assessed as required by the CTE-DB-HE [52], and
the solar contribution for DHW has been assessed using the f-chart method [72], with the
solar thermal system meeting at least 60% of the DHW energy demand (Table A1). The
average daily irradiance data were obtained from PVGIS [51], and data on the necessary
temperatures were obtained from CTE-DB-HE [52] and PVGIS [51]. The annual solar
contribution to DHW achieved by the solar thermal system in cases S3, S4 and S6 is 71.82%
for the CCZ DX-D2, 61.40% for the CCZ EX-E1 and 61.27% for the CCZ EY-E1 (Figure A1).

The resulting boiler power for heating and DHW is 50 kW in cases S1 and S2, 30 kW
in cases S3 and S4, and 45 kW in cases S5 and S6.

To correctly implement a solar photovoltaic system, it must be designed and dimen-
sioned, taking into account whether there is the possibility of selling surpluses to the
electrical grid and making the relevant electrical energy balances:

Eneeds,mon + Esurplus,mon = Econsump,mon + EPV,mon (2)

where Eneeds,mon are the monthly electrical energy needs, in kWh/month, estimated from
the average Spanish electricity consumption per household [73]; Esurplus,mon is the monthly
surplus electrical energy generated by the solar photovoltaic system, in kWh/month;
Econsump,mon is the monthly electrical energy consumed by the electrical grid, in kWh/month;
and EPV,mon is the monthly electrical energy generated by the solar photovoltaic system,
in kWh/month, calculated according to the Technical Specifications for Installations Con-
nected to the Electrical Grid for Solar Photovoltaic Energy Installations of IDAE [74]. The
monthly irradiation on the plane of the generator and the monthly ambient temperature
were obtained from PVGIS [51].

Equation (2) must be met in case EE3. Applying Equation (2) for the remaining cases
shows that Equation (3) should be applied in case EE1 and Equation (4) should be applied
in case EE2:

Eneeds,mon = Econsump,mon (3)

Eneeds,mon = Econsump,mon + EPV,mon (4)

Using the solar photovoltaic systems, 75.10% of the electrical energy needs are met
for the CCZ DX-D2, 67.94% for the CCZ EX-E1 and 68.10% for the CCZ EY-E1 in case EE2;
the percentages in case EE3 are 86.13% for the CCZ DX-D2, 80.68% for the CCZ EX-E1 and
80.30% for the CCZ EY-E1 (Figure A2). To assess the electrical energy needs met by solar
photovoltaic systems, a calculation period of 30 years [25], a lifetime of 25 years and an
annual degradation rate of 0.9% for solar photovoltaic panels were used [75].

2.5. Energy and Environmental Impacts and Requirements of CTE-DB-HE

The energy impact (energy demand, final energy consumption, non-renewable pri-
mary energy consumption and energy performance rating in non-renewable primary
energy consumption) and the environmental impact (CO2 emissions and energy perfor-
mance rating in CO2 emissions), both broken down by heating, cooling and DHW services
as well as the total of the three services, in each case study, were assessed using HULC
2017 [58]. HULC 2017 [58] is the official energy simulation tool in Spain to verify compli-
ance with the previous CTE-DB-HE [76] and to obtain the energy performance certification
of buildings. HULC 2017 [58] was used in other research works about energy renovation
of residential buildings such as [48]. Table A1 presents the requirements that the energy-
renovated building must meet to comply with the current CTE-DB-HE [52] as a renovated
building and as a new building. In addition, if only an NZEB is desired, the requirements of
the CTE-DB-HE0 [52] must be met for new buildings. Given that HULC 2020 [77] (the new
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version of HULC) is in the testing phase, HULC 2017 [58] (the previous version of HULC)
was used. Therefore, it was necessary to adapt the verification methodology of the previous
CTE-DB-HE [76] to verify the current CTE-DB-HE [52]. Although no cooling system was
designed or used in this study, HULC 2017 [58] considers, by default, an electric cooling
system with a thermal efficiency of 2.00 to meet cooling needs. HULC 2017 [58] also con-
siders operational conditions and use profiles required by the current CTE-DB-HE [52]. In
addition, 1.50 air changes per hour were considered for the existing study building [78,79],
while 0.63 air changes per hour were considered for the energy-renovated building [58].

To verify compliance with the current CTE-DB-HE [52], it was necessary to verify
compliance with its different requirements:

• To verify compliance with the current CTE-DB-HE0 [52], the total primary energy
consumption was assessed based on the final energy consumption of the different
services and considering the conversion factors from final energy to total primary
energy of the different energy carriers [80].

• To verify compliance with the current CTE-DB-HE1 [52], the calculation methods used
to assess the global heat transfer coefficient through the thermal envelope of the build-
ing, the solar control parameter and the air change ratio with a differential pressure
of 50 Pa are indicated by CTE-DB-HE [52] and Supporting Document 1 associated
with the CTE-DB-HE [81]. The global heat transfer coefficient through the thermal
envelope of the building was assessed by considering the corresponding linear and
point thermal transmittance of the different thermal bridges, ensuring the continu-
ity of the thermal insulation in cases of energy renovation according to Supporting
Document 3 associated with the CTE-DB-HE [59]. In addition, the absence of surface
and interstitial condensation was verified following the indications of Supporting
Document 2 associated with the CTE-DB-HE [82].

• To verify compliance with the current CTE-DB-HE4 [52], the renewable energy con-
tribution to meet DHW demand was assessed by considering the conversion factors
from final energy to renewable primary energy and to total primary energy of the
different energy carriers [80].

The energy impact (final energy consumption, non-renewable primary energy con-
sumption and total primary energy consumption) and the environmental impact (CO2
emissions) of electrical energy in each case study were assessed by considering the indica-
tions in Section 2.4 and the different conversion factors of electricity [80].

Finally, to verify compliance with the CTE-DB-HE [52] in each case study, the heating,
cooling and DHW services were considered, discounting the solar thermal energy for DHW
and/or the self-consumed electrical energy from solar photovoltaic systems used for these
services (heating, cooling and DHW). Additionally, to assess the energy and environmental
impact for each case study, the final energy consumption of heating, DHW and electricity
was considered, discounting the solar thermal energy for DHW and/or the self-consumed
electrical energy from the solar photovoltaic systems.

2.6. Economic Impact

The economic impact of the different energy renovation solutions was assessed by
applying the Commission Delegated Regulation (EU) No. 244/2012 [25] and the accom-
panying guidelines [83]. The Commission Delegated Regulation (EU) No. 244/2012 [25]
establishes the comparative methodological framework to be used by the EU Member
States to calculate the optimal profitability of the minimum energy efficiency requirements
of new and existing buildings and their elements.

The global cost throughout the calculation period, τ, in years, referring to the starting
year (τ0), Cg(τ), in EUR, was calculated using the following formula:

Cg(τ) = CI + ∑
j

[
τ

∑
i=1

(Cm,i(j)·Rd(i) + Cr,i(j)·Rd(i) + Ce,i(j)·Rd(i))− Vf ,τ(j)

]
(5)



Buildings 2023, 13, 680 17 of 48

where CI is the initial investment cost of the set of measures in EUR; Cm,i(j) is the main-
tenance cost during year i for each measure j of the set of measures in EUR; Cr,i(j) is the
replacement cost during year i for each measure j of the set of measures in EUR; Ce,i(j) is
the energy cost during year i for each measure j of the set of measures in EUR; Vf ,τ(j) is the
residual value of each measure j of the set of measures at the end of the calculation period
τ in EUR; and Rd(i) is the discount factor for the year i.

Rd(i) is calculated using the following formula:

Rd(i) =
(

1
1 + (r/100)

)i
(6)

where r is the real discount rate in %.
The following was considered when assessing the economic impact in all the case studies:

• The calculation period is 30 years [25].
• Real discount rates of 2%, 3% and 4% were used to ensure an accurate sensitivity

analysis [25,83].
• The reference buildings are the existing study buildings corresponding to the cases

CCZ-S1-NoInsu-EE1 and CCZ-S2-NoInsu-EE1 in each CCZ.
• The initial investment costs for the reference buildings were estimated to assess the

maintenance costs, the replacement costs and the respective residual values. These ini-
tial investment costs correspond to the heating and DHW systems and were estimated
from [70,71] (Table 6).

• The sets of energy renovation measures assessed correspond to the 48 energy renova-
tion solutions proposed in each CCZ.

• The initial investment cost of each different proposed energy renovation measure was
assessed using Table 6.

• For the thermal envelope and interior partitions, the lifetime is 50 years [84].
• For systems that meet heating and DHW needs, including solar thermal systems in

the corresponding cases, the annual maintenance cost is 2% of the investment cost for
cases S1, S2, S3 and S4, and 2.5% of the investment cost for cases S5 and S6, and the
lifetime is 20 years [85].

• For solar photovoltaic systems in cases EE2 and EE3, the annual maintenance cost is
1% of the investment cost, and the lifetime is 25 years [75].

• The maintenance costs and the lifetime considered for the different case studies are
among the typical values in this type of economic study [86].

• The energy cost was obtained from the price of fuels used and electricity (Table 6).
The annual variation rates of energy prices are 3.50% for heating oil according to the
evolution of its prices in the period 2009–2019 [65], 4.50% for natural gas according to
the evolution of its prices in the period 2009–2019 [66], 2.50% for biomass according
to the evolution of its prices in the period 2015–2019 [67] and 4.00% for electricity
according to the evolution of its prices in the period 2009–2019 [68].

Finally, in rural revitalization areas, the impacts of the application of the subsidies of
the PREE 5000 Programme [40], regulated by Royal Decree 691/2021 [87], and of the aid
of the incentive program for implementing self-consumption installations, approved by
Royal Decree 477/2021 [88], are assessed, and the number of single-family houses that can
benefit is determined.

3. Results and Discussion
3.1. Verification of Compliance with the CTE-DB-HE

After simulating all the case studies in Cervera del Río Alhama (CCZ DX-D2), San
Millán de la Cogolla (CCZ EX-E1) and Torrecilla en Cameros (CCZ EY-E1) with HULC
2017 [58], compliance with CTE-DB-HE [52] was verified, as shown in Tables A2–A4. The
existing study buildings in the three CCZs do not meet the CTE-DB-HE [52] as renovated
buildings, as new buildings or as NZEBs (buildings that meet the CTE-DB-HE0 [52] as new
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buildings), as was expected (Tables A2–A4). All energy renovation solutions in the three
CCZs complied with CTE-DB-HE [52] as renovated buildings (Tables A2–A4). All energy
renovation solutions in the CCZ DX-D2 and 93.75% of the energy renovation solutions in
the CCZs EX-E1 and EY-E1 are NZEBs (Tables A2–A4). The energy renovation solutions
corresponding to cases EX-E1-S3-XPS and EY-E1-S3-XPS cannot be NZEBs (Tables A2–A4).
In addition, all the energy renovation solutions in the CCZ DX-D2 and 81.25% of the energy
renovation solutions in the CCZs EX-E1 and EY-E1 comply with the CTE-DB-HE [52] as
new buildings (Tables A2–A4). The energy renovation solutions for cases EX-E1-S5-XPS,
EX-E1-S6-XPS, EY-E1-S5-XPS and EY-E1-S6-XPS, in addition to cases EX-E1-S3-XPS and
EY-E1-S3-XPS indicated above, do not comply with the CTE-DB-HE [52] as new buildings
(Tables A2–A4).

3.2. Energy and Environmental Impacts

After simulating all the case studies in the three CCZs with HULC 2017 [58] and
verifying compliance with CTE-DB-HE [52], the energy and environmental impacts were
assessed for all the case studies in the three CCZs (Tables 7–9).

3.2.1. Energy Demand and Final Energy Consumption for Heating and DHW

The heating energy demand of the energy renovation solutions is between
14.67 kWh/m2·year and 20.42 kWh/m2·year in the CCZ DX-D2, achieving a reduction
in that energy demand of between 85.63% and 89.68% with respect to the existing study
building (Table 7); between 23.07 kWh/m2·year and 30.23 kWh/m2·year in the CCZ EX-
E1, achieving a reduction in that energy demand of between 83.41% and 87.34% with
respect to the existing study building (Table 8); and between 22.79 kWh/m2·year and
30.11 kWh/m2·year in the CCZ EY-E1, achieving a reduction in that energy demand of
between 81.37% and 85.90% with respect to the existing study building (Table 9). The
lowest heating energy demand is achieved by the solutions that use natural gas boilers
with solar thermal support systems and MW thermal insulation material (cases DX-D2-S4-
MW, EX-E1-S4-MW and EY-E1-S4-MW), while the highest heating energy demand occurs
in the energy renovation solutions using biomass boilers with or without solar thermal
support systems and XPS thermal insulation material (cases DX-D2-S5-XPS, EX-E1-S5-XPS,
EY-E1-S5-XPS, DX-D2-S6-XPS, EX-E1-S6-XPS and EY-E1-S6-XPS) (Tables 7–9).

The DHW energy demand of all energy renovation solutions is 16.78 kWh/m2·year
in the CCZ DX-D2, 17.09 kWh/m2·year in the CCZ EX-E1 and 17.17 kWh/m2·year in the
CCZ EY-E1.

The final energy consumption for heating and DHW of the energy renovation solutions
is between 21.00 kWh/m2·year and 54.00 kWh/m2·year for CCZ DX-D2, achieving a
reduction in that energy consumption of between 76.81% and 90.98% with respect to
the existing study building with no boiler replacement and between 72.24% and 89.20%
with respect to the existing study building with boiler replacement (Table 7); between
31.90 kWh/m2·year and 69.30 kWh/m2·year for CCZ EX-E1, achieving a reduction in
that energy consumption of between 76.11% and 89.00% with respect to the existing study
building with no boiler replacement and between 71.42% and 86.85% with respect to the
existing study building with boiler replacement (Table 8); and between 31.60 kWh/m2·year
and 69.10 kWh/m2·year for CCZ EY-E1, achieving a reduction in that energy consumption
of between 73.44% and 87.86% with respect to the existing study building with no boiler
replacement and between 68.23% and 85.47% with respect to the existing study building
with boiler replacement (Table 9). The lowest final energy consumption for heating and
DHW is achieved in energy renovation solutions that use natural gas boilers with solar
thermal support systems and MW thermal insulation material (cases DX-D2-S4-MW, EX-
E1-S4-MW and EY-E1-S4-MW), while the highest final energy consumption for heating and
DHW is obtained in the solutions that use biomass boilers without solar thermal support
systems and XPS thermal insulation material (cases DX-D2-S5-XPS, EX-E1-S5-XPS and
EY-E1-S5-XPS) (Tables 7–9).
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Table 7. Energy, environmental and economic impacts for each case study in Cervera del Río Alhama (CCZ DX-D2).

HED
(kWh/m2·year)

CED
(kWh/m2·year)

FECHEAT+DHW
(kWh/m2·year)

FECELEC
(kWh/m2·year)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year)

EM
(kg CO2/m2·year)

NRPEC Rating
(Rating; kWh/m2·year)

EM Rating
(Rating; kg CO2/m2·year)

Global Costs
(EUR/m2)

DX-D2-S1-NoInsu-EE1 142.12 4.55 232.90 19.07 311.96 320.56 77.79 E 279.14 E 72.23 751.75

DX-D2-S2-NoInsu-EE1 142.12 4.55 194.50 19.07 266.82 275.30 65.88 E 234.00 E 60.32 675.24

DX-D2-S3-EPS-EE1 16.38 4.05 22.80 19.07 64.11 72.08 13.32 A 30.81 A 7.68 481.97

DX-D2-S4-EPS-EE1 15.60 4.05 22.00 19.07 63.41 71.42 11.85 A 30.10 A 6.21 493.28

DX-D2-S5-EPS-EE1 18.15 4.04 50.20 19.07 43.06 101.03 7.53 A 9.74 A 1.90 473.40

DX-D2-S6-EPS-EE1 18.15 4.04 36.10 19.07 41.86 85.34 7.28 A 8.54 A 1.64 502.47

DX-D2-S3-MW-EE1 15.21 4.04 21.50 19.07 62.60 70.56 12.93 A 29.29 A 7.29 463.56

DX-D2-S4-MW-EE1 14.67 4.05 21.00 19.07 62.23 70.23 11.60 A 28.91 A 5.96 473.55

DX-D2-S5-MW-EE1 16.95 4.04 48.30 19.07 42.76 98.92 7.47 A 9.44 A 1.83 456.03

DX-D2-S6-MW-EE1 16.95 4.04 34.20 19.07 41.56 83.22 7.22 A 8.24 A 1.58 485.10

DX-D2-S3-PUR-EE1 17.03 4.03 23.50 19.07 64.93 72.90 13.53 A 31.61 A 7.89 488.50

DX-D2-S4-PUR-EE1 16.10 4.04 22.50 19.07 64.01 72.02 11.97 A 30.70 A 6.33 499.77

DX-D2-S5-PUR-EE1 18.62 4.03 50.90 19.07 43.18 101.81 7.56 A 9.86 A 1.92 479.41

DX-D2-S6-PUR-EE1 18.62 4.03 36.80 19.07 41.98 86.12 7.31 A 8.65 A 1.67 508.48

DX-D2-S3-XPS-EE1 18.72 4.03 25.30 19.07 67.03 75.00 14.07 A 33.71 A 8.43 505.35

DX-D2-S4-XPS-EE1 17.62 4.04 24.10 19.07 65.91 73.93 12.38 A 32.59 A 6.73 518.09

DX-D2-S5-XPS-EE1 20.42 4.00 54.00 19.07 43.68 105.26 7.67 A 10.32 A 2.02 497.27

DX-D2-S6-XPS-EE1 20.42 4.00 39.90 19.07 42.48 89.57 7.42 A 9.12 A 1.77 526.34

DX-D2-S3-EPS-EE2 16.38 4.05 22.80 4.75 36.13 38.16 8.58 A 26.85 A 7.01 395.52

DX-D2-S4-EPS-EE2 15.60 4.05 22.00 4.75 35.43 37.50 7.11 A 26.15 A 5.54 406.84

DX-D2-S5-EPS-EE2 18.15 4.04 50.20 4.75 15.08 67.12 2.79 A 5.79 A 1.23 386.95

DX-D2-S6-EPS-EE2 18.15 4.04 36.10 4.75 13.88 51.42 2.54 A 4.59 A 0.97 416.02

DX-D2-S3-MW-EE2 15.21 4.04 21.50 4.75 34.62 36.65 8.19 A 25.34 A 6.62 377.12

DX-D2-S4-MW-EE2 14.67 4.05 21.00 4.75 34.25 36.32 6.86 A 24.96 A 5.29 387.10

DX-D2-S5-MW-EE2 16.95 4.04 48.30 4.75 14.78 65.00 2.73 A 5.50 A 1.16 369.59

DX-D2-S6-MW-EE2 16.95 4.04 34.20 4.75 13.58 49.31 2.48 A 4.30 A 0.91 398.66

DX-D2-S3-PUR-EE2 17.03 4.03 23.50 4.75 36.95 38.98 8.79 A 27.67 A 7.22 402.05
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Table 7. Cont.

HED
(kWh/m2·year)

CED
(kWh/m2·year)

FECHEAT+DHW
(kWh/m2·year)

FECELEC
(kWh/m2·year)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year)

EM
(kg CO2/m2·year)

NRPEC Rating
(Rating; kWh/m2·year)

EM Rating
(Rating; kg CO2/m2·year)

Global Costs
(EUR/m2)

DX-D2-S4-PUR-EE2 16.10 4.04 22.50 4.75 36.03 38.10 7.23 A 26.75 A 5.66 413.32

DX-D2-S5-PUR-EE2 18.62 4.03 50.90 4.75 15.20 67.89 2.82 A 5.92 A 1.25 392.97

DX-D2-S6-PUR-EE2 18.62 4.03 36.80 4.75 14.00 52.20 2.57 A 4.71 A 1.00 422.04

DX-D2-S3-XPS-EE2 18.72 4.03 25.30 4.75 39.05 41.09 9.33 A 29.77 A 7.76 418.90

DX-D2-S4-XPS-EE2 17.62 4.04 24.10 4.75 37.93 40.01 7.64 A 28.65 A 6.06 431.64

DX-D2-S5-XPS-EE2 20.42 4.00 54.00 4.75 15.70 71.34 2.93 A 6.41 A 1.36 410.83

DX-D2-S6-XPS-EE2 20.42 4.00 39.90 4.75 14.50 55.65 2.68 A 5.21 A 1.11 439.90

DX-D2-S3-EPS-EE3 16.38 4.05 22.80 2.65 32.02 33.18 7.89 A 26.85 A 7.01 382.22

DX-D2-S4-EPS-EE3 15.60 4.05 22.00 2.65 31.32 32.52 6.42 A 26.15 A 5.54 393.53

DX-D2-S5-EPS-EE3 18.15 4.04 50.20 2.65 10.97 62.14 2.10 A 5.79 A 1.23 373.65

DX-D2-S6-EPS-EE3 18.15 4.04 36.10 2.65 9.77 46.44 1.85 A 4.59 A 0.97 402.72

DX-D2-S3-MW-EE3 15.21 4.04 21.50 2.65 30.51 31.67 7.50 A 25.34 A 6.62 363.82

DX-D2-S4-MW-EE3 14.67 4.05 21.00 2.65 30.14 31.34 6.17 A 24.96 A 5.29 373.80

DX-D2-S5-MW-EE3 16.95 4.04 48.30 2.65 10.67 60.02 2.04 A 5.50 A 1.16 356.29

DX-D2-S6-MW-EE3 16.95 4.04 34.20 2.65 9.47 44.33 1.79 A 4.30 A 0.91 385.36

DX-D2-S3-PUR-EE3 17.03 4.03 23.50 2.65 32.84 34.00 8.10 A 27.67 A 7.22 388.75

DX-D2-S4-PUR-EE3 16.10 4.04 22.50 2.65 31.92 33.13 6.54 A 26.75 A 5.66 400.02

DX-D2-S5-PUR-EE3 18.62 4.03 50.90 2.65 11.09 62.92 2.13 A 5.92 A 1.25 379.67

DX-D2-S6-PUR-EE3 18.62 4.03 36.80 2.65 9.89 47.22 1.88 A 4.71 A 1.00 408.74

DX-D2-S3-XPS-EE3 18.72 4.03 25.30 2.65 34.94 36.11 8.64 A 29.77 A 7.76 405.60

DX-D2-S4-XPS-EE3 17.62 4.04 24.10 2.65 33.82 35.03 6.95 A 28.65 A 6.06 418.34

DX-D2-S5-XPS-EE3 20.42 4.00 54.00 2.65 11.59 66.37 2.24 A 6.41 A 1.36 397.53

DX-D2-S6-XPS-EE3 20.42 4.00 39.90 2.65 10.39 50.67 1.99 A 5.21 A 1.11 426.60

Note: HED is heating energy demand; CED is cooling energy demand; FECHEAT+DHW is final energy consumption for heating and domestic hot water (DHW); FECELECT is final energy
consumption for electricity; NRPEC is non-renewable primary energy consumption for heating, DHW and electricity; TPEC is total primary energy consumption for heating, DHW and
electricity; EM is CO2 emissions for heating, DHW and electricity; NRPEC rating is non-renewable primary energy consumption rating according to CTE-DB-HE [52]; EM rating is CO2
emissions rating according to CTE-DB-HE [52].
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Table 8. Energy, environmental and economic impacts for each case study in San Millán de la Cogolla (CCZ EX-E1).

HED
(kWh/m2·year)

CED
(kWh/m2·year)

FECHEAT+DHW
(kWh/m2·year)

FECELEC
(kWh/m2·year)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year)

EM
(kg CO2/m2·year)

NRPEC Rating
(Rating; kWh/m2·year)

EM Rating
(Rating; kg CO2/m2·year)

Global Cost
(EUR/m2)

EX-E1-S1-NoInsu-EE1 182.18 0.38 290.10 19.07 379.47 388.24 95.31 E 342.59 E 89.06 890.22

EX-E1-S2-NoInsu-EE1 182.18 0.38 242.50 19.07 323.41 332.04 80.52 E 286.53 E 74.27 792.05

EX-E1-S3-EPS-EE1 25.20 0.66 34.00 19.07 77.34 85.34 16.75 A 40.72 A 10.55 515.32

EX-E1-S4-EPS-EE1 24.33 0.66 33.10 19.07 76.61 84.67 14.64 A 39.99 A 8.44 536.34

EX-E1-S5-EPS-EE1 27.44 0.64 65.00 19.07 45.43 117.50 8.04 A 8.79 A 1.84 499.73

EX-E1-S6-EPS-EE1 27.44 0.64 53.10 19.07 44.41 104.26 7.83 A 7.78 A 1.62 531.81

EX-E1-S3-MW-EE1 23.95 0.66 32.80 19.07 75.91 83.91 16.38 A 39.29 A 10.18 495.91

EX-E1-S4-MW-EE1 23.07 0.66 31.90 19.07 75.19 83.25 14.34 A 38.57 A 8.14 515.65

EX-E1-S5-MW-EE1 25.83 0.64 62.60 19.07 45.02 114.83 7.95 A 8.39 A 1.75 480.83

EX-E1-S6-MW-EE1 25.83 0.64 50.70 19.07 44.00 101.59 7.74 A 7.37 A 1.53 511.96

EX-E1-S3-PUR-EE1 25.94 0.66 34.80 19.07 78.31 86.31 17.00 A 41.70 A 10.80 523.69

EX-E1-S4-PUR-EE1 24.95 0.67 33.80 19.07 77.44 85.51 14.81 A 40.83 A 8.62 544.83

EX-E1-S5-PUR-EE1 28.23 0.65 66.20 19.07 45.64 118.84 8.08 A 9.01 A 1.88 507.40

EX-E1-S6-PUR-EE1 28.23 0.65 54.30 19.07 44.62 105.59 7.87 A 8.00 A 1.67 539.47

EX-E1-S3-XPS-EE1 27.55 0.64 36.50 19.07 80.27 88.28 17.51 A 43.64 A 11.30 541.70

EX-E1-S4-XPS-EE1 26.44 0.65 35.30 19.07 79.25 87.32 15.20 A 42.62 A 9.00 564.75

EX-E1-S5-XPS-EE1 30.23 0.62 69.30 19.07 46.18 122.29 8.19 A 9.52 A 1.99 525.00

EX-E1-S6-XPS-EE1 30.23 0.62 57.40 19.07 45.16 109.04 7.98 A 8.50 A 1.77 557.08

EX-E1-S3-EPS-EE2 25.20 0.66 34.00 6.11 52.03 54.66 12.46 A 40.08 A 10.44 440.35

EX-E1-S4-EPS-EE2 24.33 0.66 33.10 6.11 51.30 53.99 10.35 A 39.35 A 8.33 461.37

EX-E1-S5-EPS-EE2 27.44 0.64 65.00 6.11 20.12 86.82 3.75 A 8.17 A 1.73 424.76

EX-E1-S6-EPS-EE2 27.44 0.64 53.10 6.11 19.10 73.58 3.54 A 7.16 A 1.51 456.84

EX-E1-S3-MW-EE2 23.95 0.66 32.80 6.11 50.60 53.23 12.09 A 38.65 A 10.07 420.94

EX-E1-S4-MW-EE2 23.07 0.66 31.90 6.11 49.88 52.57 10.05 A 37.92 A 8.03 440.68

EX-E1-S5-MW-EE2 25.83 0.64 62.60 6.11 19.71 84.15 3.66 A 7.76 A 1.64 405.86

EX-E1-S6-MW-EE2 25.83 0.64 50.70 6.11 18.69 70.91 3.45 A 6.74 A 1.42 436.99

EX-E1-S3-PUR-EE2 25.94 0.66 34.80 6.11 53.00 55.63 12.71 A 41.05 A 10.69 448.72

EX-E1-S4-PUR-EE2 24.95 0.67 33.80 6.11 52.13 54.83 10.52 A 40.17 A 8.51 469.86
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Table 8. Cont.

HED
(kWh/m2·year)

CED
(kWh/m2·year)

FECHEAT+DHW
(kWh/m2·year)

FECELEC
(kWh/m2·year)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year)

EM
(kg CO2/m2·year)

NRPEC Rating
(Rating; kWh/m2·year)

EM Rating
(Rating; kg CO2/m2·year)

Global Cost
(EUR/m2)

EX-E1-S5-PUR-EE2 28.23 0.65 66.20 6.11 20.33 88.16 3.79 A 8.38 A 1.77 432.43

EX-E1-S6-PUR-EE2 28.23 0.65 54.30 6.11 19.31 74.91 3.58 A 7.37 A 1.56 464.51

EX-E1-S3-XPS-EE2 27.55 0.64 36.50 6.11 54.96 57.60 13.22 A 43.01 A 11.19 466.74

EX-E1-S4-XPS-EE2 26.44 0.65 35.30 6.11 53.94 56.64 10.91 A 41.99 A 8.89 489.79

EX-E1-S5-XPS-EE2 30.23 0.62 69.30 6.11 20.87 91.61 3.90 A 8.91 A 1.89 450.04

EX-E1-S6-XPS-EE2 30.23 0.62 57.40 6.11 19.85 78.36 3.69 A 7.89 A 1.67 482.11

EX-E1-S3-EPS-EE3 25.20 0.66 34.00 3.68 47.28 48.90 11.66 A 40.08 A 10.44 426.33

EX-E1-S4-EPS-EE3 24.33 0.66 33.10 3.68 46.55 48.24 9.55 A 39.35 A 8.33 447.36

EX-E1-S5-EPS-EE3 27.44 0.64 65.00 3.68 15.37 81.07 2.95 A 8.17 A 1.73 410.75

EX-E1-S6-EPS-EE3 27.44 0.64 53.10 3.68 14.35 67.82 2.74 A 7.16 A 1.51 442.82

EX-E1-S3-MW-EE3 23.95 0.66 32.80 3.68 45.85 47.47 11.29 A 38.65 A 10.07 406.92

EX-E1-S4-MW-EE3 23.07 0.66 31.90 3.68 45.13 46.81 9.25 A 37.92 A 8.03 426.67

EX-E1-S5-MW-EE3 25.83 0.64 62.60 3.68 14.96 78.40 2.86 A 7.76 A 1.64 391.85

EX-E1-S6-MW-EE3 25.83 0.64 50.70 3.68 13.94 65.15 2.65 A 6.74 A 1.42 422.97

EX-E1-S3-PUR-EE3 25.94 0.66 34.80 3.68 48.25 49.88 11.91 A 41.05 A 10.69 434.71

EX-E1-S4-PUR-EE3 24.95 0.67 33.80 3.68 47.38 49.07 9.72 A 40.17 A 8.51 455.84

EX-E1-S5-PUR-EE3 28.23 0.65 66.20 3.68 15.58 82.40 2.99 A 8.38 A 1.77 418.41

EX-E1-S6-PUR-EE3 28.23 0.65 54.30 3.68 14.56 69.16 2.78 A 7.37 A 1.56 450.49

EX-E1-S3-XPS-EE3 27.55 0.64 36.50 3.68 50.21 51.84 12.42 A 43.01 A 11.19 452.72

EX-E1-S4-XPS-EE3 26.44 0.65 35.30 3.68 49.19 50.89 10.11 A 41.99 A 8.89 475.77

EX-E1-S5-XPS-EE3 30.23 0.62 69.30 3.68 16.12 85.85 3.10 A 8.91 A 1.89 436.02

EX-E1-S6-XPS-EE3 30.23 0.62 57.40 3.68 15.10 72.61 2.89 A 7.89 A 1.67 468.10

Note: HED is heating energy demand; CED is cooling energy demand; FECHEAT+DHW is final energy consumption for heating and domestic hot water (DHW); FECELECT is final energy
consumption for electricity; NRPEC is non-renewable primary energy consumption for heating, DHW and electricity; TPEC is total primary energy consumption for heating, DHW and
electricity; EM is CO2 emissions for heating, DHW and electricity; NRPEC rating is non-renewable primary energy consumption rating according to CTE-DB-HE [52]; EM rating is CO2
emissions rating according to CTE-DB-HE [52].
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Table 9. Energy, environmental and economic impacts for each case study in Torrecilla en Cameros (CCZ EY-E1).

HED
(kWh/m2·year)

CED
(kWh/m2·year)

FECHEAT+DHW
(kWh/m2·year)

FECELEC
(kWh/m2·year)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year)

EM
(kg CO2/m2·year)

NRPEC Rating
(Rating; kWh/m2·year)

EM Rating
(Rating; kg CO2/m2·year)

Global Cost
(EUR/m2)

EY-E1-S1-NoInsu-EE1 161.65 0.46 260.20 19.07 344.18 352.86 86.14 E 307.38 E 79.90 817.21

EY-E1-S2-NoInsu-EE1 161.65 0.46 217.50 19.07 293.87 302.42 72.87 E 257.07 E 66.63 730.26

EY-E1-S3-EPS-EE1 25.18 0.66 34.00 19.07 77.31 85.31 16.74 A 40.70 A 10.54 510.65

EY-E1-S4-EPS-EE1 24.31 0.66 33.10 19.07 76.57 84.63 14.63 A 39.95 A 8.43 531.67

EY-E1-S5-EPS-EE1 27.42 0.64 65.00 19.07 45.43 117.50 8.04 A 8.79 A 1.83 495.06

EY-E1-S6-EPS-EE1 27.42 0.64 53.10 19.07 44.41 104.26 7.83 A 7.77 A 1.62 527.14

EY-E1-S3-MW-EE1 23.66 0.67 32.50 19.07 75.50 83.49 16.28 A 38.90 A 10.08 493.27

EY-E1-S4-MW-EE1 22.79 0.67 31.60 19.07 74.77 82.82 14.25 A 38.17 A 8.05 513.01

EY-E1-S5-MW-EE1 25.53 0.65 62.10 19.07 44.94 114.27 7.93 A 8.32 A 1.73 478.48

EY-E1-S6-MW-EE1 25.53 0.65 50.20 19.07 43.92 101.03 7.72 A 7.30 A 1.52 510.56

EY-E1-S3-PUR-EE1 25.86 0.67 34.70 19.07 78.19 86.19 16.97 A 41.59 A 10.77 517.24

EY-E1-S4-PUR-EE1 25.09 0.67 33.90 19.07 77.59 85.66 14.85 A 40.98 A 8.65 538.74

EY-E1-S5-PUR-EE1 27.72 0.67 65.40 19.07 45.50 117.95 8.05 A 8.89 A 1.85 500.09

EY-E1-S6-PUR-EE1 27.72 0.67 53.50 19.07 44.48 104.70 7.84 A 7.87 A 1.64 532.17

EY-E1-S3-XPS-EE1 27.62 0.64 36.50 19.07 80.34 88.35 17.52 A 43.71 A 11.32 534.64

EY-E1-S4-XPS-EE1 26.49 0.65 35.40 19.07 79.30 87.37 15.21 A 42.67 A 9.01 558.02

EY-E1-S5-XPS-EE1 30.11 0.62 69.10 19.07 46.15 122.07 8.19 A 9.50 A 1.99 518.50

EY-E1-S6-XPS-EE1 30.11 0.62 57.30 19.07 45.13 108.93 7.98 A 8.48 A 1.77 550.72

EY-E1-S3-EPS-EE2 25.18 0.66 34.00 6.08 51.94 54.56 12.44 A 40.06 A 10.43 435.41

EY-E1-S4-EPS-EE2 24.31 0.66 33.10 6.08 51.20 53.88 10.33 A 39.30 A 8.32 456.44

EY-E1-S5-EPS-EE2 27.42 0.64 65.00 6.08 20.06 86.75 3.74 A 8.16 A 1.72 419.83

EY-E1-S6-EPS-EE2 27.42 0.64 53.10 6.08 19.04 73.50 3.53 A 7.14 A 1.51 451.90

EY-E1-S3-MW-EE2 23.66 0.67 32.50 6.08 50.13 52.74 11.98 A 38.25 A 9.97 418.04

EY-E1-S4-MW-EE2 22.79 0.67 31.60 6.08 49.40 52.07 9.95 A 37.51 A 7.94 437.77

EY-E1-S5-MW-EE2 25.53 0.65 62.10 6.08 19.57 83.52 3.63 A 7.68 A 1.62 403.25

EY-E1-S6-MW-EE2 25.53 0.65 50.20 6.08 18.55 70.28 3.42 A 6.66 A 1.41 435.32

EY-E1-S3-PUR-EE2 25.86 0.67 34.70 6.08 52.82 55.44 12.67 A 40.94 A 10.66 442.00

EY-E1-S4-PUR-EE2 25.09 0.67 33.90 6.08 52.22 54.90 10.55 A 40.33 A 8.54 463.50
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Table 9. Cont.

HED
(kWh/m2·year)

CED
(kWh/m2·year)

FECHEAT+DHW
(kWh/m2·year)

FECELEC
(kWh/m2·year)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year)

EM
(kg CO2/m2·year)

NRPEC Rating
(Rating; kWh/m2·year)

EM Rating
(Rating; kg CO2/m2·year)

Global Cost
(EUR/m2)

EY-E1-S5-PUR-EE2 27.72 0.67 65.40 6.08 20.13 87.19 3.75 A 8.24 A 1.74 424.85

EY-E1-S6-PUR-EE2 27.72 0.67 53.50 6.08 19.11 73.95 3.54 A 7.22 A 1.53 456.93

EY-E1-S3-XPS-EE2 27.62 0.64 36.50 6.08 54.97 57.59 13.22 A 43.08 A 11.21 459.41

EY-E1-S4-XPS-EE2 26.49 0.65 35.40 6.08 53.93 56.62 10.91 A 42.04 A 8.90 482.79

EY-E1-S5-XPS-EE2 30.11 0.62 69.10 6.08 20.78 91.31 3.89 A 8.89 A 1.89 443.27

EY-E1-S6-XPS-EE2 30.11 0.62 57.30 6.08 19.76 78.18 3.68 A 7.87 A 1.67 475.48

EY-E1-S3-EPS-EE3 25.18 0.66 34.00 3.76 47.39 49.05 11.67 A 40.06 A 10.43 421.97

EY-E1-S4-EPS-EE3 24.31 0.66 33.10 3.76 46.65 48.37 9.56 A 39.30 A 8.32 443.00

EY-E1-S5-EPS-EE3 27.42 0.64 65.00 3.76 15.51 81.24 2.97 A 8.16 A 1.72 406.39

EY-E1-S6-EPS-EE3 27.42 0.64 53.10 3.76 14.49 67.99 2.76 A 7.14 A 1.51 438.46

EY-E1-S3-MW-EE3 23.66 0.67 32.50 3.76 45.58 47.23 11.21 A 38.25 A 9.97 404.60

EY-E1-S4-MW-EE3 22.79 0.67 31.60 3.76 44.85 46.56 9.18 A 37.51 A 7.94 424.33

EY-E1-S5-MW-EE3 25.53 0.65 62.10 3.76 15.02 78.01 2.86 A 7.68 A 1.62 389.81

EY-E1-S6-MW-EE3 25.53 0.65 50.20 3.76 14.00 64.77 2.65 A 6.66 A 1.41 421.89

EY-E1-S3-PUR-EE3 25.86 0.67 34.70 3.76 48.27 49.93 11.90 A 40.94 A 10.66 428.56

EY-E1-S4-PUR-EE3 25.09 0.67 33.90 3.76 47.67 49.39 9.78 A 40.33 A 8.54 450.06

EY-E1-S5-PUR-EE3 27.72 0.67 65.40 3.76 15.58 81.68 2.98 A 8.24 A 1.74 411.42

EY-E1-S6-PUR-EE3 27.72 0.67 53.50 3.76 14.56 68.44 2.77 A 7.22 A 1.53 443.49

EY-E1-S3-XPS-EE3 27.62 0.64 36.50 3.76 50.42 52.08 12.45 A 43.08 A 11.21 445.97

EY-E1-S4-XPS-EE3 26.49 0.65 35.40 3.76 49.38 51.11 10.14 A 42.04 A 8.90 469.35

EY-E1-S5-XPS-EE3 30.11 0.62 69.10 3.76 16.23 85.80 3.12 A 8.89 A 1.89 429.83

EY-E1-S6-XPS-EE3 30.11 0.62 57.30 3.76 15.21 72.67 2.91 A 7.87 A 1.67 462.04

Note: HED is heating energy demand; CED is cooling energy demand; FECHEAT+DHW is final energy consumption for heating and domestic hot water (DHW); FECELECT is final energy
consumption for electricity; NRPEC is non-renewable primary energy consumption for heating, DHW and electricity; TPEC is total primary energy consumption for heating, DHW and
electricity; EM is CO2 emissions for heating, DHW and electricity; NRPEC rating is non-renewable primary energy consumption rating according to CTE-DB-HE [52]; EM rating is CO2
emissions rating according to CTE-DB-HE [52].
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3.2.2. Final Energy Consumption of Electrical Energy

With solar photovoltaic systems that do not sell surpluses to the electrical grid (cases
EE2), 14.32 kWh/m2·year of self-consumed electrical energy is achieved in the CCZ DX-D2,
representing a reduction in final energy consumption of electrical energy of 75.10% with
respect to the existing study building; 12.96 kWh/m2·year of self-consumed electrical
energy is achieved in the CCZ EX-E1, representing a reduction of 67.94% with respect to
the existing study building; and 12.99 kWh/m2·year of self-consumed electrical energy is
achieved in the CCZ EY-E1, representing a reduction of 68.10% with respect to the existing
study building. With solar photovoltaic systems that can sell surpluses to the electrical grid
(cases EE3), 16.42 kWh/m2·year of self-consumed electrical energy is achieved in the CCZ
DX-D2, representing a reduction in final energy consumption of electrical energy of 86.13%
with respect to the existing study building; 15.39 kWh/m2·year of self-consumed electrical
energy is achieved in the CCZ EX-E1, representing a reduction of 80.68% with respect to
the existing study building; and 15.31 kWh/m2·year of self-consumed electrical energy is
achieved in the CCZ EY-E1, representing a reduction of 80.30% with respect to the existing
study building (Tables 7–9).

3.2.3. Non-Renewable Primary Energy Consumption, Total Primary Energy Consumption,
CO2 Emissions and Energy Performance Ratings

The lowest non-renewable primary energy consumption and the lowest CO2 emissions
are obtained in the energy renovation solution that uses a biomass boiler with a solar
thermal support system, MW thermal insulation material and a solar photovoltaic system
that can sell surpluses to the electrical grid (cases DX-D2-S6-MW-EE3, EX-E1-S6-MW-EE3
and EY-E1-S6-MW-EE3). The highest non-renewable primary energy consumption and the
highest CO2 emissions are obtained in the solution using a heating oil boiler with a solar
thermal support system, XPS thermal insulation material and no solar photovoltaic system
(cases DX-D2-S3-XPS-EE1, EX-E1-S3-XPS-EE1 and EY-E1-S3-XPS-EE1) (Tables 7–9).

The lowest total primary energy consumption is obtained in the energy renovation
solution that uses a natural gas boiler with a solar thermal support system, MW thermal
insulation material and a solar photovoltaic system that can sell surpluses to the electrical
grid (cases DX-D2-S4-MW-EE3, EX-E1-S4-MW-EE3 and EY-E1-S4-MW-EE3). The highest
total primary energy consumption is obtained in the solution using a biomass boiler without
a solar thermal support system, XPS thermal insulation material and no solar photovoltaic
system (cases DX-D2-S5-XPS-EE1, EX-E1-S5-XPS-EE1 and EY-E1-S5-XPS-EE1) (Tables 7–9).

The energy performance ratings for both non-renewable primary energy consumption
and CO2 emissions for all energy renovation solutions in the three CCZs are A, the best
possible rating, improving the energy performance ratings of the corresponding existing
study buildings by four letters (Tables 7–9).

3.3. Economic Impact

To assess economic impact, the Commission Delegated Regulation (EU) No. 244/2012 [25]
and the accompanying guidelines [83] were taken into account. The global cost, with a
real discount rate of 3%, for all the case studies is presented for CCZs DX-D2, EX-E1 and
EY-E1 in Tables 7–9, respectively, and the breakdown of the initial investment costs of all
the energy renovation solutions for these CCZs is presented in Figure 4. In addition to
assessing the global cost of the different case studies with a real discount rate of 3%, to
ensure an accurate sensitivity analysis, the global cost was also assessed with real discount
rates of 2% and 4%. The global cost breakdown of the existing study building with no boiler
replacement and with boiler replacement at the three real discount rates for the three CCZs
is presented in Figure 5. The global cost breakdown of all the energy renovation solutions at
the three real discount rates is presented for CCZs DX-D2, EX-E1 and EY-E1 in Figures 6–8,
respectively. The global cost at the three real discount rates and the total primary energy
consumption for all energy renovation solutions for these CCZs are presented in Figure 9.
As expected, the higher the real discount rate is, the lower the global cost is (Figures 6–9).
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Regarding the global costs in CCZ DX-D2 with a real discount rate of 3%, Figures 6 and 9
reveal that energy renovation solutions without a solar photovoltaic system (cases EE1) have
a global cost between 6.32% and 8.03% higher at a real discount rate of 2% and between
5.33% and 6.67% lower at a real discount rate of 4%, solutions with solar photovoltaic
systems that do not sell surpluses back to the electrical grid (cases EE2) have a global cost
between 2.92% and 4.54% higher at a real discount rate of 2% and between 2.64% and 3.91%
lower at a real discount rate of 4%, and solutions with a solar photovoltaic system that
can sell surpluses to the electrical grid (cases EE3) have a global cost between 2.07% and
3.64% higher at a real discount rate of 2% and between 1.97% and 3.20% lower at a real
discount rate of 4%. The lowest global cost at real discount rates of 2% (368.12 EUR/m2), 3%
(356.29 EUR/m2) and 4% (345.75 EUR/m2) is achieved in the energy renovation solution
that uses a biomass boiler without a solar thermal support system, MW thermal insulation
material and a solar photovoltaic system that can sell surpluses to the electrical grid
(case DX-D2-S5-MW-EE3) (Figures 6 and 9). This solution has a total primary energy
consumption of 60.02 kWh/m2·year, a non-renewable primary energy consumption of
10.67 kWh/m2·year and CO2 emissions of 2.04 kg CO2/m2·year (Table 7), and it achieves
the cost-optimal level of minimum energy performance requirements among all solutions
(Figure 9).

Regarding the global costs in CCZ EX-E1 with a real discount rate of 3%, Figures 7 and 9
reveal that energy renovation solutions without a solar photovoltaic system (cases EE1) have
a global cost between 6.61% and 8.57% higher at a real discount rate of 2% and between
5.56% and 7.10% lower at a real discount rate of 4%, solutions with solar photovoltaic
systems that do not sell surpluses back to the electrical grid (cases EE2) have a global cost
between 3.83% and 5.86% higher at a real discount rate of 2% and between 3.36% and 4.95%
lower at a real discount rate of 4%, and solutions with a solar photovoltaic system that
can sell surpluses to the electrical grid (cases EE3) have a global cost between 3.06% and
5.08% higher at a real discount rate of 2% and between 2.75% and 4.34% lower at a real
discount rate of 4%. The lowest global cost at real discount rates of 2% (408.52 EUR/m2), 3%
(391.85 EUR/m2) and 4% (377.35 EUR/m2) is achieved in the energy renovation solution
that uses a biomass boiler without a solar thermal support system, MW thermal insulation
material and a solar photovoltaic system that can sell surpluses to the electrical grid
(case EX-E1-S5-MW-EE3) (Figures 7 and 9). This solution has a total primary energy
consumption of 78.40 kWh/m2·year, a non-renewable primary energy consumption of
14.96 kWh/m2·year and CO2 emissions of 2.86 kg CO2/m2·year (Table 8), and it achieves
the cost-optimal level of minimum energy performance requirements among all solutions
(Figure 9).

Regarding the global costs in CCZ EY-E1 with a real discount rate of 3%, Figures 8 and 9
reveal that energy renovation solutions without a solar photovoltaic system (cases EE1) have
a global cost between 6.76% and 8.70% higher at a real discount rate of 2% and between
5.68% and 7.12% lower at a real discount rate of 4%, solutions with solar photovoltaic
systems that do not sell surpluses back to the electrical grid (cases EE2) have a global cost
between 3.95% and 5.86% higher at a real discount rate of 2% and between 3.46% and 4.96%
lower at a real discount rate of 4%, and solutions with a solar photovoltaic system that
can sell surpluses to the electrical grid (cases EE3) have a global cost between 3.20% and
5.10% higher at a real discount rate of 2% and between 2.86% and 4.35% lower at a real
discount rate of 4%. The lowest global cost at real discount rates of 2% (406.51 EUR/m2), 3%
(389.81 EUR/m2) and 4% (375.30 EUR/m2) is achieved in the energy renovation solution
that uses a biomass boiler without a solar thermal support system, MW thermal insulation
material and a solar photovoltaic system that can sell surpluses to the electrical grid (case EY-
E1-S5-MW-EE3) (Figures 8 and 9). This solution has a total primary energy consumption of
78.01 kWh/m2·year, a non-renewable primary energy consumption of 15.02 kWh/m2·year
and CO2 emissions of 2.86 kg CO2/m2·year (Table 9), and it achieves the cost-optimal level
of minimum energy performance requirements among all solutions (Figure 9).



Buildings 2023, 13, 680 32 of 48

In addition, the energy renovation solution with the lowest global cost in each CCZ
obtains an energy performance rating of A both in non-renewable primary energy con-
sumption and in CO2 emissions (Tables 7–9).

Finally, the global savings of all energy renovation solutions at real discount rates of
2%, 3% and 4% compared to the existing study building with no boiler replacement and
the existing study building with boiler replacement are presented for CCZs DX-D2, EX-E1
and EY-E1 in Figure 10.
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3.4. Optimal Energy Renovation Solution for Rural La Rioja

The best energy renovation solution for each CCZ of study, according to energy, en-
vironmental and economic criteria, is the one that uses a biomass boiler without a solar
thermal support system, MW thermal insulation material and a solar photovoltaic system
with the possibility of selling surpluses to the electrical grid (cases DX-D2-MW-S5-EE3,
EX-E1-MW-S5-EE3 and EY-E1-MW-S5-EE3). The replacement of fossil fuel boilers with
biomass boilers in residential buildings is a very good strategy for energy renovation,
especially in cold winter climate zones [61]. In addition, the use of autochthonous biomass
would improve distributed thermal production in rural areas, achieving self-sustaining
rural systems, as demonstrated for the municipality of Ezcaray in La Rioja, where boiler
replacement occurred alongside the installation of a pellet mill plant [89]. In Spain, the
application of CTE-DB-HE [52] in the energy renovation of residential buildings makes
biomass boilers and heat pumps the two main alternatives to natural gas boilers to achieve
NZEBs [32]. Although decarbonizing the Spanish residential sector is being supported
mainly with heat pumps [35,90], this study shows that it is also possible to achieve de-
carbonization with biomass boilers since they present viable alternatives at all levels and
contribute to sustainable rural development. On the other hand, the use of solar photo-
voltaic systems with the possibility of selling surpluses to the electrical grid is cost-effective
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in Spain, although its legal framework should be improved and it should be promoted to
residential consumers, especially those affected by energy poverty [91].

Applying the PREE 5000 Programme [87] and the incentive program for implementing
self-consumption installations without storage of renewable energy sources [88], without
considering social criteria, the subsidies and aid that homeowners can receive by carrying
out the following energy renovation solutions were assessed:

• The subsidy referring to the action corresponding to an improvement in the energy
efficiency of the thermal envelope [87] was estimated at 40% of the associated in-
vestment required but not exceeding EUR 12,000, in line with the aid to promote
previous building renovation [92] since with the selected energy renovation solu-
tions, notable reductions in the energy demand for heating and cooling are achieved
(Tables 7–9) and the requirements of the CTE-DB-HE1 [52] for renovated buildings
are met (Tables A2–A4). This subsidy amounts to 42.46 EUR/m2 in the CCZ DX-D2,
44.42 EUR/m2 in the CCZ EX-E1 and 43.76 EUR/m2 in the CCZ EY-E1 (Figure 11).

• The subsidy referring to the action corresponding to an improvement in energy effi-
ciency and renewable energies in thermal installations for heating, air conditioning,
ventilation and DHW by replacing conventional energy with biomass in thermal in-
stallations [87] is 55% of the associated investment required but not exceeding EUR
24,142 since with the selected energy renovation solutions, reductions in greenhouse
gas emissions of at least 80% are achieved (Tables 7–9). For this subsidy, the addi-
tional aid for integrated action was taken into account since, in addition to replacing
the existing heating and DHW system with a heating oil boiler with a new system
with a biomass boiler, the energy demand for heating and cooling was reduced by at
least 30% (Tables 7–9). This subsidy amounts to 37.06 EUR/m2 in the CCZ DX-D2,
37.37 EUR/m2 in the CCZ EX-E1 and 37.29 EUR/m2 in the CCZ EY-E1 (Figure 11).

• The aid for self-consumption solar photovoltaic installation is 600 EUR/kW and an
additional 55 EUR/kW to be distributed in demographic challenge municipalities [88]
since with the energy renovation solutions selected, the installed power of the solar
photovoltaic system is less than 2.63 kW and the electrical energy consumed is at least
80% of the electrical energy generated by the solar photovoltaic system (Tables 7–9).
This aid amounts to 9.16 EUR/m2 in all the CCZs of the study (Figure 11).
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The global cost with the different real discount rates for the energy renovation solution
selected in each CCZ, broken down in terms of both the different subsidies and aid to
be received by the homeowner and the global cost the homeowner is responsible for, is
presented in Figure 11. Figure 11 shows that an overall average reduction of 23.73% is
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achieved thanks to the different subsidies and aid. Finally, with the budget allocations
assigned to La Rioja in [87,88], the comprehensive energy renovation of approximately
62 single-family houses could be carried out, such as the cases studied, assuming the energy
renovation of 0.35% of the single-family houses in the existing residential building stock
of the rural revitalization areas and 0.15% of the single-family houses in the existing rural
residential building stock.

The energy renovation proposals selected can serve as a guide, especially for policy-
makers of La Rioja and those of other autonomous communities and other Mediterranean
states with similar cold climate zones, for achieving the transformation of their existing
residential building into NZEBs in rural areas, thus contributing to the achievement of
a highly energy-efficient and decarbonized rural building stock and aligning with the
objectives of the EPBD 2018 [22]. Finally, the following future research works focused on
the energy renovation of buildings in different rural Spanish areas are proposed: (a) the def-
inition of the characteristic residential and non-residential buildings and the selection of the
optimal energy renovation solutions; (b) the assessment of the impact of different climate
change scenarios; and (c) the study of the implementation of other aspects of the EPBD
2018 [22], such as the electric vehicle charging infrastructure, the building smartification or
the building renovation passports.

4. Conclusions

Various measures of energy renovation of rural residential buildings located in La
Rioja were assessed to achieve NZEBs, seeking the optimal solution of energy renovation at
the energy, environmental and economic levels. The optimal solution for energy renovation
was found to use a biomass boiler without a solar thermal support system, MW thermal
insulation material and a solar photovoltaic system with the possibility of selling surpluses
to the electrical grid. With this solution, compared to the existing study building with boiler
replacement, the following was found for the CCZs studied:

• In CCZ DX-D2, with an initial investment cost that represents 57.14% of the global
cost, a global savings of 47.24% (EUR 1.57 savings for each euro invested) is achieved,
resulting in a reduction of 96.00% in non-renewable primary energy consumption,
a reduction of 78.20% in total primary energy consumption and a reduction of 96.91%
in CO2 emissions.

• In CCZ EX-E1, with an initial investment cost that represents 53.35% of the global
cost, a global savings of 50.53% (EUR 1.91 savings for each euro invested) is achieved,
resulting in a reduction of 95.38% in non-renewable primary energy consumption,
a reduction of 76.39% in total primary energy consumption and a reduction of 96.45%
in CO2 emissions.

• In CCZ EY-E1, with an initial investment cost that represents 53.17% of the global
cost, a global savings of 46.62% (EUR 1.64 savings for each euro invested) is achieved,
resulting in a reduction of 94.89% in non-renewable primary energy consumption,
a reduction of 74.20% in total primary energy consumption and a reduction of 96.07%
in CO2 emissions.

• In the three CCZs, an energy performance rating of A is achieved in both non-
renewable primary energy consumption and CO2 emissions.

In addition, with the subsidies and aid that homeowners can receive, without taking
into account social criteria, an average global reduction of 23.73% in the global cost of the
optimal solution can be achieved.

Finally, the methodology followed and the results obtained in this work can serve as a
guide for policymakers to achieve highly energy-efficient and decarbonized rural building
stock in other similar cold Mediterranean climate zones by 2050.
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Appendix A

Table A1. Requirements to comply with the CTE-DB-HE [52] as a renovated building and as a
new building.

Basic Document Parameter

Climate Zone D2 Climate Zone E1

Renovated
Building New Building Renovated

Building New Building

CTE-DB-HE0

Non-renewable primary energy
consumption limit (kWh/m2·year) 70.00 38.00 80.00 43.00

Total primary energy consumption limit
(kWh/m2·year) 105.00 76.00 115.00 86.00

CTE-DB-HE1

Thermal transmittance limit for walls
(W/m2·K) 0.41 0.41 0.37 0.37

Thermal transmittance limit for roof
(W/m2·K) 0.35 0.35 0.33 0.33

Thermal transmittance limit for ground
floor (W/m2·K) 0.65 0.65 0.59 0.59

Thermal transmittance limit for dividing
walls (W/m2·K) 0.65 0.65 0.59 0.59

Thermal transmittance limit for windows
(W/m2·K) 1.80 1.80 1.80 1.80

Thermal transmittance limit for doors
(W/m2·K) 5.70 5.70 5.70 5.70

Global heat transfer coefficient limit
through the thermal envelope of the

building (W/m2·K)
0.67 0.59 0.59 0.54

Solar control parameter limit
(kWh/m2·month) 2.00 2.00 2.00 2.00

Air permeability limit of the openings of
the thermal envelope (m3/h·m2) 9.00 9.00 9.00 9.00

Air change ratio limit with a differential
pressure of 50 Pa (h−1) - 4.54 - 4.54

Thermal transmittance limit for interior
partitions that delimit units of the same

use (W/m2·K)
1.20 1.20 1.00 1.00

Thermal transmittance limit for interior
partitions that delimit units of different

uses (W/m2·K)
0.85 0.85 0.70 0.70

Possibility of surface condensation
(Yes/No) No No No No

Possibility of interstitial condensation
(Yes/No) No No No No

CTE-DB-HE4 Minimum renewable energy contribution
to meet the DHW demand (%) 60.00 60.00 60.00 60.00
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Figure A1. Monthly DHW energy demand, in kWh, monthly DHW energy demand met by the solar 
thermal system, in kWh, and monthly solar contribution, in %, in each CCZ. 

Figure A1. Monthly DHW energy demand, in kWh, monthly DHW energy demand met by the solar
thermal system, in kWh, and monthly solar contribution, in %, in each CCZ.
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Figure A2. Monthly electrical energy balances for cases EE2 and EE3 in the different CCZs. 

Table A2. Verification of compliance with the CTE-DB-HE [52] for each case study in Cervera del 
Río Alhama (CCZ DX-D2). 

 Main Parameters Compliance with the CTE-DB-HE [52] 

 K 
(W/m2·K) 

q 
(kWh/m2·month) 

REC 
(–) 

NRPEC 
(kWh/m2·year) 

TPEC 
(kWh/m2·year) Renovated Building New Building NZEB 

DX-D2-S1-NoInsu-EE1 2.025 0.320 0.0025 279.14 280.78 No No No 
DX-D2-S2-NoInsu-EE1 2.025 0.320 0.0025 234.00 235.52 No No No 

DX-D2-S3-EPS-EE1 0.500 0.160 0.7189 30.81 31.72 Yes Yes Yes 
DX-D2-S4-EPS-EE1 0.480 0.160 0.7194 30.10 31.05 Yes Yes Yes 

Figure A2. Monthly electrical energy balances for cases EE2 and EE3 in the different CCZs.
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Table A2. Verification of compliance with the CTE-DB-HE [52] for each case study in Cervera del Río Alhama (CCZ DX-D2).

Main Parameters Compliance with the CTE-DB-HE [52]

K
(W/m2·K)

q
(kWh/m2·month)

REC
(–)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year) Renovated Building New Building NZEB

DX-D2-S1-NoInsu-EE1 2.025 0.320 0.0025 279.14 280.78 No No No

DX-D2-S2-NoInsu-EE1 2.025 0.320 0.0025 234.00 235.52 No No No

DX-D2-S3-EPS-EE1 0.500 0.160 0.7189 30.81 31.72 Yes Yes Yes

DX-D2-S4-EPS-EE1 0.480 0.160 0.7194 30.10 31.05 Yes Yes Yes

DX-D2-S5-EPS-EE1 0.542 0.160 0.9236 9.74 60.61 Yes Yes Yes

DX-D2-S6-EPS-EE1 0.542 0.160 0.9785 8.54 44.92 Yes Yes Yes

DX-D2-S3-MW-EE1 0.481 0.160 0.7189 29.29 30.19 Yes Yes Yes

DX-D2-S4-MW-EE1 0.473 0.160 0.7194 28.91 29.86 Yes Yes Yes

DX-D2-S5-MW-EE1 0.518 0.160 0.9236 9.44 58.49 Yes Yes Yes

DX-D2-S6-MW-EE1 0.518 0.160 0.9785 8.24 42.80 Yes Yes Yes

DX-D2-S3-PUR-EE1 0.505 0.160 0.7189 31.61 32.52 Yes Yes Yes

DX-D2-S4-PUR-EE1 0.489 0.160 0.7194 30.70 31.65 Yes Yes Yes

DX-D2-S5-PUR-EE1 0.541 0.160 0.9236 9.86 61.39 Yes Yes Yes

DX-D2-S6-PUR-EE1 0.541 0.160 0.9785 8.65 45.69 Yes Yes Yes

DX-D2-S3-XPS-EE1 0.549 0.160 0.7189 33.71 34.62 Yes Yes Yes

DX-D2-S4-XPS-EE1 0.525 0.160 0.7194 32.59 33.55 Yes Yes Yes

DX-D2-S5-XPS-EE1 0.577 0.160 0.9236 10.32 64.84 Yes Yes Yes

DX-D2-S6-XPS-EE1 0.577 0.160 0.9785 9.12 49.14 Yes Yes Yes

DX-D2-S3-EPS-EE2 0.500 0.160 0.7189 26.85 26.92 Yes Yes Yes

DX-D2-S4-EPS-EE2 0.480 0.160 0.7194 26.15 26.26 Yes Yes Yes

DX-D2-S5-EPS-EE2 0.542 0.160 0.9236 5.79 55.87 Yes Yes Yes

DX-D2-S6-EPS-EE2 0.542 0.160 0.9785 4.59 40.18 Yes Yes Yes

DX-D2-S3-MW-EE2 0.481 0.160 0.7189 25.34 25.40 Yes Yes Yes

DX-D2-S4-MW-EE2 0.473 0.160 0.7194 24.96 25.07 Yes Yes Yes

DX-D2-S5-MW-EE2 0.518 0.160 0.9236 5.50 53.76 Yes Yes Yes

DX-D2-S6-MW-EE2 0.518 0.160 0.9785 4.30 38.06 Yes Yes Yes
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Table A2. Cont.

Main Parameters Compliance with the CTE-DB-HE [52]

K
(W/m2·K)

q
(kWh/m2·month)

REC
(–)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year) Renovated Building New Building NZEB

DX-D2-S3-PUR-EE2 0.505 0.160 0.7189 27.67 27.74 Yes Yes Yes

DX-D2-S4-PUR-EE2 0.489 0.160 0.7194 26.75 26.86 Yes Yes Yes

DX-D2-S5-PUR-EE2 0.541 0.160 0.9236 5.92 56.65 Yes Yes Yes

DX-D2-S6-PUR-EE2 0.541 0.160 0.9785 4.71 40.96 Yes Yes Yes

DX-D2-S3-XPS-EE2 0.549 0.160 0.7189 29.77 29.85 Yes Yes Yes

DX-D2-S4-XPS-EE2 0.525 0.160 0.7194 28.65 28.77 Yes Yes Yes

DX-D2-S5-XPS-EE2 0.577 0.160 0.9236 6.41 60.10 Yes Yes Yes

DX-D2-S6-XPS-EE2 0.577 0.160 0.9785 5.21 44.41 Yes Yes Yes

DX-D2-S3-EPS-EE3 0.500 0.160 0.7189 26.85 26.92 Yes Yes Yes

DX-D2-S4-EPS-EE3 0.480 0.160 0.7194 26.15 26.26 Yes Yes Yes

DX-D2-S5-EPS-EE3 0.542 0.160 0.9236 5.79 55.87 Yes Yes Yes

DX-D2-S6-EPS-EE3 0.542 0.160 0.9785 4.59 40.18 Yes Yes Yes

DX-D2-S3-MW-EE3 0.481 0.160 0.7189 25.34 25.40 Yes Yes Yes

DX-D2-S4-MW-EE3 0.473 0.160 0.7194 24.96 25.07 Yes Yes Yes

DX-D2-S5-MW-EE3 0.518 0.160 0.9236 5.50 53.76 Yes Yes Yes

DX-D2-S6-MW-EE3 0.518 0.160 0.9785 4.30 38.06 Yes Yes Yes

DX-D2-S3-PUR-EE3 0.505 0.160 0.7189 27.67 27.74 Yes Yes Yes

DX-D2-S4-PUR-EE3 0.489 0.160 0.7194 26.75 26.86 Yes Yes Yes

DX-D2-S5-PUR-EE3 0.541 0.160 0.9236 5.92 56.65 Yes Yes Yes

DX-D2-S6-PUR-EE3 0.541 0.160 0.9785 4.71 40.96 Yes Yes Yes

DX-D2-S3-XPS-EE3 0.549 0.160 0.7189 29.77 29.85 Yes Yes Yes

DX-D2-S4-XPS-EE3 0.525 0.160 0.7194 28.65 28.77 Yes Yes Yes

DX-D2-S5-XPS-EE3 0.577 0.160 0.9236 6.41 60.10 Yes Yes Yes

DX-D2-S6-XPS-EE3 0.577 0.160 0.9785 5.21 44.41 Yes Yes Yes

Note: K is global heat transfer coefficient through the thermal envelope of the building; q is solar control parameter; REC is renewable energy contribution to meet DHW demand;
NRPEC is non-renewable primary energy consumption; TPEC is total primary energy consumption.
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Table A3. Verification of compliance with the CTE-DB-HE [52] for each case study in San Millán de la Cogolla (CCZ EX-E1).

Main Parameters Compliance with the CTE-DB-HE [52]

K
(W/m2·K)

q
(kWh/m2·month)

REC
(–)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year) Renovated Building New Building NZEB

EX-E1-S1-NoInsu-EE1 2.025 0.302 0.0025 342.59 343.53 No No No

EX-E1-S2-NoInsu-EE1 2.025 0.302 0.0025 286.53 287.33 No No No

EX-E1-S3-EPS-EE1 0.475 0.151 0.6150 40.72 40.96 Yes Yes Yes

EX-E1-S4-EPS-EE1 0.466 0.151 0.6156 39.99 40.29 Yes Yes Yes

EX-E1-S5-EPS-EE1 0.512 0.151 0.9236 8.79 73.06 Yes Yes Yes

EX-E1-S6-EPS-EE1 0.512 0.151 0.9705 7.78 59.81 Yes Yes Yes

EX-E1-S3-MW-EE1 0.465 0.151 0.6150 39.29 39.52 Yes Yes Yes

EX-E1-S4-MW-EE1 0.451 0.151 0.6156 38.57 38.88 Yes Yes Yes

EX-E1-S5-MW-EE1 0.495 0.151 0.9236 8.39 70.38 Yes Yes Yes

EX-E1-S6-MW-EE1 0.495 0.151 0.9705 7.37 57.14 Yes Yes Yes

EX-E1-S3-PUR-EE1 0.482 0.151 0.6150 41.70 41.94 Yes Yes Yes

EX-E1-S4-PUR-EE1 0.469 0.151 0.6156 40.83 41.15 Yes Yes Yes

EX-E1-S5-PUR-EE1 0.520 0.151 0.9236 9.01 74.39 Yes Yes Yes

EX-E1-S6-PUR-EE1 0.520 0.151 0.9705 8.00 61.15 Yes Yes Yes

EX-E1-S3-XPS-EE1 0.514 0.151 0.6150 43.64 43.88 Yes No No

EX-E1-S4-XPS-EE1 0.500 0.151 0.6156 42.62 42.93 Yes Yes Yes

EX-E1-S5-XPS-EE1 0.553 0.151 0.9236 9.52 77.84 Yes No Yes

EX-E1-S6-XPS-EE1 0.553 0.151 0.9705 8.50 64.60 Yes No Yes

EX-E1-S3-EPS-EE2 0.475 0.151 0.6150 40.08 40.18 Yes Yes Yes

EX-E1-S4-EPS-EE2 0.466 0.151 0.6156 39.35 39.52 Yes Yes Yes

EX-E1-S5-EPS-EE2 0.512 0.151 0.9236 8.17 72.35 Yes Yes Yes

EX-E1-S6-EPS-EE2 0.512 0.151 0.9705 7.16 59.10 Yes Yes Yes

EX-E1-S3-MW-EE2 0.465 0.151 0.6150 38.65 38.75 Yes Yes Yes

EX-E1-S4-MW-EE2 0.451 0.151 0.6156 37.92 38.09 Yes Yes Yes

EX-E1-S5-MW-EE2 0.495 0.151 0.9236 7.76 69.67 Yes Yes Yes

EX-E1-S6-MW-EE2 0.495 0.151 0.9705 6.74 56.43 Yes Yes Yes



Buildings 2023, 13, 680 41 of 48

Table A3. Cont.

Main Parameters Compliance with the CTE-DB-HE [52]

K
(W/m2·K)

q
(kWh/m2·month)

REC
(–)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year) Renovated Building New Building NZEB

EX-E1-S3-PUR-EE2 0.482 0.151 0.6150 41.05 41.15 Yes Yes Yes

EX-E1-S4-PUR-EE2 0.469 0.151 0.6156 40.17 40.35 Yes Yes Yes

EX-E1-S5-PUR-EE2 0.520 0.151 0.9236 8.38 73.68 Yes Yes Yes

EX-E1-S6-PUR-EE2 0.520 0.151 0.9705 7.37 60.44 Yes Yes Yes

EX-E1-S3-XPS-EE2 0.514 0.151 0.6150 43.01 43.12 Yes No No

EX-E1-S4-XPS-EE2 0.500 0.151 0.6156 41.99 42.17 Yes Yes Yes

EX-E1-S5-XPS-EE2 0.553 0.151 0.9236 8.91 77.13 Yes No Yes

EX-E1-S6-XPS-EE2 0.553 0.151 0.9705 7.89 63.89 Yes No Yes

EX-E1-S3-EPS-EE3 0.475 0.151 0.6150 40.08 40.18 Yes Yes Yes

EX-E1-S4-EPS-EE3 0.466 0.151 0.6156 39.35 39.52 Yes Yes Yes

EX-E1-S5-EPS-EE3 0.512 0.151 0.9236 8.17 72.35 Yes Yes Yes

EX-E1-S6-EPS-EE3 0.512 0.151 0.9705 7.16 59.10 Yes Yes Yes

EX-E1-S3-MW-EE3 0.465 0.151 0.6150 38.65 38.75 Yes Yes Yes

EX-E1-S4-MW-EE3 0.451 0.151 0.6156 37.92 38.09 Yes Yes Yes

EX-E1-S5-MW-EE3 0.495 0.151 0.9236 7.76 69.67 Yes Yes Yes

EX-E1-S6-MW-EE3 0.495 0.151 0.9705 6.74 56.43 Yes Yes Yes

EX-E1-S3-PUR-EE3 0.482 0.151 0.6150 41.05 41.15 Yes Yes Yes

EX-E1-S4-PUR-EE3 0.469 0.151 0.6156 40.17 40.35 Yes Yes Yes

EX-E1-S5-PUR-EE3 0.520 0.151 0.9236 8.38 73.68 Yes Yes Yes

EX-E1-S6-PUR-EE3 0.520 0.151 0.9705 7.37 60.44 Yes Yes Yes

EX-E1-S3-XPS-EE3 0.514 0.151 0.6150 43.01 43.12 Yes No No

EX-E1-S4-XPS-EE3 0.500 0.151 0.6156 41.99 42.17 Yes Yes Yes

EX-E1-S5-XPS-EE3 0.553 0.151 0.9236 8.91 77.13 Yes No Yes

EX-E1-S6-XPS-EE3 0.553 0.151 0.9705 7.89 63.89 Yes No Yes

Note: K is global heat transfer coefficient through the thermal envelope of the building; q is solar control parameter; REC is renewable energy contribution to meet DHW demand;
NRPEC is non-renewable primary energy consumption; TPEC is total primary energy consumption.
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Table A4. Verification of compliance with the CTE-DB-HE [52] for each case study in Torrecilla en Cameros (CCZ EY-E1).

Main Parameters Compliance with the CTE-DB-HE [52]

K
(W/m2·K)

q
(kWh/m2·month)

REC
(–)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year) Renovated Building New Building NZEB

EY-E1-S1-NoInsu-EE1 1.782 0.302 0.0025 307.38 308.25 No No No

EY-E1-S2-NoInsu-EE1 1.782 0.302 0.0025 257.07 257.81 No No No

EY-E1-S3-EPS-EE1 0.475 0.151 0.6137 40.70 40.93 Yes Yes Yes

EY-E1-S4-EPS-EE1 0.466 0.151 0.6143 39.95 40.26 Yes Yes Yes

EY-E1-S5-EPS-EE1 0.512 0.151 0.9236 8.79 73.06 Yes Yes Yes

EY-E1-S6-EPS-EE1 0.512 0.151 0.9704 7.77 59.81 Yes Yes Yes

EY-E1-S3-MW-EE1 0.456 0.151 0.6137 38.90 39.13 Yes Yes Yes

EY-E1-S4-MW-EE1 0.442 0.151 0.6143 38.17 38.47 Yes Yes Yes

EY-E1-S5-MW-EE1 0.487 0.151 0.9236 8.32 69.83 Yes Yes Yes

EY-E1-S6-MW-EE1 0.487 0.151 0.9704 7.30 56.58 Yes Yes Yes

EY-E1-S3-PUR-EE1 0.484 0.151 0.6137 41.59 41.82 Yes Yes Yes

EY-E1-S4-PUR-EE1 0.472 0.151 0.6143 40.98 41.29 Yes Yes Yes

EY-E1-S5-PUR-EE1 0.524 0.151 0.9236 8.89 73.50 Yes Yes Yes

EY-E1-S6-PUR-EE1 0.524 0.151 0.9704 7.87 60.26 Yes Yes Yes

EY-E1-S3-XPS-EE1 0.518 0.151 0.6137 43.71 43.95 Yes No No

EY-E1-S4-XPS-EE1 0.503 0.151 0.6143 42.67 42.98 Yes Yes Yes

EY-E1-S5-XPS-EE1 0.553 0.151 0.9236 9.50 77.62 Yes No Yes

EY-E1-S6-XPS-EE1 0.553 0.151 0.9704 8.48 64.49 Yes No Yes

EY-E1-S3-EPS-EE2 0.475 0.151 0.6137 40.06 40.15 Yes Yes Yes

EY-E1-S4-EPS-EE2 0.466 0.151 0.6143 39.30 39.48 Yes Yes Yes

EY-E1-S5-EPS-EE2 0.512 0.151 0.9236 8.16 72.35 Yes Yes Yes

EY-E1-S6-EPS-EE2 0.512 0.151 0.9704 7.14 59.10 Yes Yes Yes

EY-E1-S3-MW-EE2 0.456 0.151 0.6137 38.25 38.34 Yes Yes Yes

EY-E1-S4-MW-EE2 0.442 0.151 0.6143 37.51 37.67 Yes Yes Yes

EY-E1-S5-MW-EE2 0.487 0.151 0.9236 7.68 69.12 Yes Yes Yes

EY-E1-S6-MW-EE2 0.487 0.151 0.9704 6.66 55.87 Yes Yes Yes
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Table A4. Cont.

Main Parameters Compliance with the CTE-DB-HE [52]

K
(W/m2·K)

q
(kWh/m2·month)

REC
(–)

NRPEC
(kWh/m2·year)

TPEC
(kWh/m2·year) Renovated Building New Building NZEB

EY-E1-S3-PUR-EE2 0.484 0.151 0.6137 40.94 41.03 Yes Yes Yes

EY-E1-S4-PUR-EE2 0.472 0.151 0.6143 40.33 40.50 Yes Yes Yes

EY-E1-S5-PUR-EE2 0.524 0.151 0.9236 8.24 72.79 Yes Yes Yes

EY-E1-S6-PUR-EE2 0.524 0.151 0.9704 7.22 59.55 Yes Yes Yes

EY-E1-S3-XPS-EE2 0.518 0.151 0.6137 43.08 43.19 Yes No No

EY-E1-S4-XPS-EE2 0.503 0.151 0.6143 42.04 42.22 Yes Yes Yes

EY-E1-S5-XPS-EE2 0.553 0.151 0.9236 8.89 76.91 Yes No Yes

EY-E1-S6-XPS-EE2 0.553 0.151 0.9704 7.87 63.77 Yes No Yes

EY-E1-S3-EPS-EE3 0.475 0.151 0.6137 40.06 40.15 Yes Yes Yes

EY-E1-S4-EPS-EE3 0.466 0.151 0.6143 39.30 39.48 Yes Yes Yes

EY-E1-S5-EPS-EE3 0.512 0.151 0.9236 8.16 72.35 Yes Yes Yes

EY-E1-S6-EPS-EE3 0.512 0.151 0.9704 7.14 59.10 Yes Yes Yes

EY-E1-S3-MW-EE3 0.456 0.151 0.6137 38.25 38.34 Yes Yes Yes

EY-E1-S4-MW-EE3 0.442 0.151 0.6143 37.51 37.67 Yes Yes Yes

EY-E1-S5-MW-EE3 0.487 0.151 0.9236 7.68 69.12 Yes Yes Yes

EY-E1-S6-MW-EE3 0.487 0.151 0.9704 6.66 55.87 Yes Yes Yes

EY-E1-S3-PUR-EE3 0.484 0.151 0.6137 40.94 41.03 Yes Yes Yes

EY-E1-S4-PUR-EE3 0.472 0.151 0.6143 40.33 40.50 Yes Yes Yes

EY-E1-S5-PUR-EE3 0.524 0.151 0.9236 8.24 72.79 Yes Yes Yes

EY-E1-S6-PUR-EE3 0.524 0.151 0.9704 7.22 59.55 Yes Yes Yes

EY-E1-S3-XPS-EE3 0.518 0.151 0.6137 43.08 43.19 Yes No No

EY-E1-S4-XPS-EE3 0.503 0.151 0.6143 42.04 42.22 Yes Yes Yes

EY-E1-S5-XPS-EE3 0.553 0.151 0.9236 8.89 76.91 Yes No Yes

EY-E1-S6-XPS-EE3 0.553 0.151 0.9704 7.87 63.77 Yes No Yes

Note: K is global heat transfer coefficient through the thermal envelope of the building; q is solar control parameter; REC is renewable energy contribution to meet DHW demand;
NRPEC is non-renewable primary energy consumption; TPEC is total primary energy consumption.
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In Tables A2–A4, for existing buildings in the three CCZs, the air change ratio with a
differential pressure of 50 Pa is 4.87 h−1, and air permeability due to openings in the thermal
envelope is 27 m3/h·m2 with an overpressure of 100 Pa; and, for all energy renovation
solutions in the three CCZs, the air change ratio with a differential pressure of 50 Pa is
2.58 h−1, and the air permeability due to openings in the thermal envelope is 9 m3/h·m2

with an overpressure of 100 Pa.
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