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Abstract. Rack and pinion drive systems are widely used in machine tools with long travel distances because 

the stiffness is independent of the travelled distance, in contrast to other drive systems such as ballscrews. 

Although the inherent backlash problem of gear systems has been solved by means of utilizing two pinions 

independently preloaded, the time-varying mesh stiffness causes periodic position differences between the 

motor encoder and table position, which is known as transmission error, and may lead to vibrations and 

dynamic load. Few experimental works have analyzed such transmission error, but there are no theoretical 

approaches in the scientific literature. Therefore, this work aims to first extend previous analytical and 

approximate equations for mesh stiffness of gearing to rack and pinion systems and validate them with finite 

element methods. Finally, the effect of geometry variations, such as pressure angle and tooth thickness 

tolerance, on transmission error is discussed. 

1 Introduction 

Rack and pinion drive systems are widely employed in 

machine tools with long travel distances due to their 

inherent advantages, including high stiffness and 

independence from the travelled distance. Unlike other 

drive systems, such as ballscrews, where stiffness can 

vary based on the distance travelled, rack and pinion 

systems provide consistent stiffness throughout the entire 

travel range [1]. This characteristic makes them 

particularly suitable for applications requiring precise and 

rigid positioning. 

However, despite the advantages of rack and pinion 

systems, they are not immune to certain challenges. One 

significant issue is the presence of backlash inherent to 

any geared system. To mitigate such source errors, one 

notable approach involves the utilization of two pinions 

with independent preload, which effectively addresses the 

inherent backlash problem in gear systems [2, 3]. By 

independently preloading the pinions, the inherent 

backlash can be minimized, ensuring a more precise and 

reliable operation of the rack and pinion drive system [4]. 

Another significant issue is the transmission error, 

which refers to periodic position differences between the 

motor encoder and the table position during operation. 

Transmission error occur due to the time-varying mesh 

stiffness inherent in gear systems [5-9]. These periodic 

position differences, if not properly controlled, can lead to 

detrimental effects such as dynamic load, vibrations, and 

reduced positioning accuracy, impacting the overall 

performance of the system. 

While some experimental works have explored the 

analysis of transmission error in rack and pinion systems 

[10], there is a significant gap in the existing literature 

when it comes to theoretical approaches. The few 

theoretical approaches in rack and pinion systems are 

related to other applications, such as pure rolling [11], 

automotive engine [12], and steering rack [13] or ship lift 

mechanism [14], but they are not focused on transmission 

error. The scientific literature lacks comprehensive 

theoretical investigations and models specifically 

addressing transmission error in rack and pinion systems. 

Therefore, there is a need to develop analytical and 

approximate equations to accurately quantify the mesh 

stiffness of gearing in rack and pinion systems. 

The objective of this research is to bridge this gap and 

provide a theoretical analysis of transmission error in rack 

and pinion systems. The primary aim is to extend previous 

analytical and approximate equations for mesh stiffness of 

gearing to specifically address rack and pinion systems. 

These equations will be validated through finite element 

methods, ensuring the accuracy and reliability of the 

theoretical model. Furthermore, the research will explore 

the effect of geometry variations, such as pressure angle and 

tooth thickness tolerance, on transmission error, shedding 

light on potential strategies for mitigating this issue. 

By conducting a comprehensive theoretical analysis, 

this research contributes to the understanding and 

optimization of rack and pinion drive systems, leading to 

enhanced performance, reduced vibrations, and improved 

positioning accuracy. The findings of this study will 

provide valuable insights for engineers and researchers 

involved in the design, development, and control of 

machine tools and other applications utilizing rack and 

pinion systems. 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
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2 Analytical model for the mesh stiffness 

The mesh stiffness of a tooth pair, also called single mesh 

stiffness (SMS) and denoted by 𝐾𝑀, can be expressed as 

[5]: 
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where 𝑘𝑥 is the bending stiffness, 𝑘𝑠 the shear stiffness, 

𝑘𝑛 the compressive stiffness, 𝑘𝑅 the gear body stiffness, 

𝑘𝐻 the contact stiffness, and subscripts 1 and 2 denote the 

pinion and the rack, respectively. 

The bending, shear, and compressive stiffnesses can 

be assessed from the potential energy method, which is a 

widely accepted analytical approach [5]. This method 

treats the gear tooth as a variable-section cantilever beam 

fixed at its dedendum diameter and estimates its total 

potential energy by solving analytical expressions derived 

from mechanics of materials. Accordingly, the equations 

for three components are: 
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where 𝐸 is the modulus of elasticity of steel, 𝐺 is the 

transverse modulus of elasticity, 𝑏 is the face width, and 

𝐶𝑠 is the shear stress correction factor, which for a 

rectangular section takes the value 𝐶𝑠 = 1.2. Subscript 𝑐 

denotes the contact point and therefore 𝑟𝑐  is the radius of 

the contact point, 𝛾𝑐 the angular thickness at the 

corresponding tooth section, and 𝛼𝐶 the load angle at this 

contact point. Finally, 𝑦 is a linear coordinate along the 

tooth centerline from the center of the gear (gear rotation 

axis), 𝑦𝑝 corresponds to the embedded tooth section at the 

dedendum circle, 𝑦𝑐 corresponds to the load tooth section, 

and 𝑒(𝑦) is the chordal thickness at tooth section 

described by 𝑦. For the tooth rack, the origin of coordinate 

𝑦 is an arbitrary plane parallel to the pitch plane, the 

angular thicknesses are equal to the corresponding 

chordal thicknesses, and the load angle is equal to the 

standard normal pressure angle 𝛼𝑛 at any contact point. 

The contact stiffness can be assessed from the Hertz 

approach or Weber-Banaschek approach. The Hertz 

approach results in [5]: 

 𝑘𝐻
−1 =

4

π
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𝐸𝑏
 (5) 

𝜈 being the Poisson ratio. The Weber approach is more 

complicated and can be found in [6]. Finally, the gear 

body stiffness can be calculated according to Weber-

Banaschek [6] or Sainsot [7] contributions. 

 

Fig. 1. Typical shape of single mesh stiffness curve. 

Different combinations of those approaches were 

studied in [8], but in all the cases the curve of single mesh 

stiffness presents a shape as the one in Figure 1. 

This curve can be accurately approximated by the 

equation [5]: 

 𝐾𝑀(𝜉) = 𝐾𝑀𝑚𝑎𝑥 cos(𝑏0(𝜉 − 𝜉𝑚)) (6) 

where 𝐾𝑀𝑚𝑎𝑥 is the SMS at the midpoint of the path of 

contact, subscript 𝑚 denotes this midpoint, and: 
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in which 𝜀𝛼 in the contact ratio, 𝑧1 the number of teeth on 

pinion, and 𝑟𝑏 the base radius. Coefficients 𝜅1 and 𝜅2 are 

introduced to adjust the SMS curve to eq. (6). Values for 

𝜅1 and 𝜅2 for different combinations of contact stiffness 

and gear body stiffness can be found in [8]. In all the 

cases, the value of 𝐾𝑀𝑚𝑎𝑥  should be obtained from 

numerical calculations or FE analyses. Obviously, 𝐾𝑀𝑚𝑎𝑥 

depends on the geometry of the meshing gears and the 

specific considered combination of approaches, but not on 

the applied torque. 

It is observed that the rotation of the pinion Δ𝜗 is 

related with the parameter 𝜉 as follows: 

 Δ𝜗 =
2π

𝑧1

Δ𝜉 (9) 

3 Finite element model 

A quasi-static two-dimensional finite element model 

(FEM) is developed to analyze and assess the impact of 

transmission error in rack and pinion systems. The 

numerical models are automatically generated using a 

specialized gear mesh generator [15], and the FEM 

models are computed using Abaqus solver. 

The generation of rack and pinion mesh follows the 

well-stablished methodology introduced by Litvin [16]. 

This methodology entails assigning a higher density of 

elements to the teeth compared to the body of the pinion, 
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as depicted in Figure 2. Additionally, a progressive mesh 

density, known as bias factor, is determined from the 

symmetry axis of the tooth to the contact area [17]. To 

accurately capture the behavior of the system, four-node, 

isoparametric, arbitrary quadrilateral elements suitable 

for plane stress applications are employed (specifically, 

element type CPS4 in the Abaqus software [18]). 

Regarding the boundary conditions, a prescribed 

translation velocity is imposed on the rack (𝑣) to simulate 

fixed linear motion, while a torque (𝑇) is applied to the 

pinion. To mitigate the influence of boundary conditions, 

all the teeth of the pinion are taken into consideration in 

the simulations [19]. Moreover, in order to avoid 

preloading of the teeth during contact initiation, a 

preliminary interference was introduced between meshing 

teeth. It induces a small angular deviation 𝜗0, which 

should be accounted for comparisons between FEM and 

analytical models. 

The transmission error 𝑇𝐸(𝜗) is determined by 

calculating the difference between the computed rotation 

of the pinion 𝜗𝑃
𝐹𝐸𝑀 and the theoretical rotation resulting 

from the prescribed translation of the rack 𝜗𝑃
𝑇, as 

described in eq. (10). This calculation allows for the 

quantification of the deviation or variation between the 

actual motion of the pinion and the expected motion based 

on the translation of the rack, accounting for the 

deformations arising from mesh stiffness. 

 𝑇𝐸(𝜗) = 𝜗𝑃
𝐹𝐸𝑀 − 𝜗𝑃

𝑇 (10) 

where: 

 𝜗𝑃
𝑇 =

𝑣 · 𝑡

π · 𝑚n · 𝑧1

 (11) 

Here, 𝑡 represents the simulated time (with a time 

increment employed of 1 ms in this specific case), and 𝑚n 

denotes the normal module. 

 

 

Fig. 2. Finite element mesh detail and boundary conditions of 

the numerical model. 

4 Approximate equations for the time-
varying mesh stiffness and transmission 
error 

From the hypothesis of minimum elastic potential energy, 

the theoretical load at a specific tooth pair 𝐹𝑖 at the load 

position described by 𝜉 is [5]: 

 𝐹𝑖(𝜉) =
𝐾𝑀𝑖(𝜉)

∑ 𝐾𝑀𝑗(𝜉)𝑗

𝐹𝑇 =
𝐾𝑀𝑖(𝜉)

∑ 𝐾𝑀(𝜉 + 𝑗)𝑗

𝐹𝑇 (12) 

where 𝐹𝑇 is the total transmitted load and the sum is 

extended to all the tooth-pairs in simultaneous contact. 

Accordingly, the theoretical tooth-pair deflection 𝛿𝑖 at 

any contact position will be given by [5]: 

 𝛿𝑖(𝜉) =
𝐹𝑖(𝜉)

𝐾𝑀𝑖(𝜉)
=

𝐹𝑇

∑ 𝐾𝑀(𝜉 + 𝑗)𝑗

 (13) 

As the right term does not depend on 𝑖, the tooth pair 

deflection is equal for all the tooth-pairs in contact and 

describes the delay of the driven gear with respect to the 

driving gear, as a distance measured on the pressure line. 

Obviously, the relation between the delay distance and the 

angle transmission error is: 
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Equations (12) to (15) correspond to the theoretical 

contact model and are valid for weakly loaded teeth. For 

heavily loaded teeth, the delay of the driven gear results 

in an earlier start of contact and a delayed end of contact 

[20]. These additional contact intervals depend on the 

transmitted load and result in an affective contact ratio 

greater than the theoretical one. As described in [20], the 

distance 𝛿𝐺 that the driving tooth should approach to (or 

move away) the driven one to start (end) the contact at a 

given meshing position 𝜉, can be expressed as: 

 𝛿𝐺(𝜉) = (
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2
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where 𝜉𝑖𝑛𝑛 and 𝜉𝑜𝑢𝑡 are the inner and outer limits of the 

theoretical contact interval, and 𝐶𝑝−𝑖𝑛𝑛  and 𝐶𝑝−𝑜𝑢𝑡 can be 

computed as described in [20]. Accordingly, considering 

that 𝛿𝐺(𝜉) = 0 inside the theoretical contact interval, the 

load transmitted by the tooth pair is: 

 𝐹(𝜉) = 𝐾𝑀(𝜉)(𝛿(𝜉) − 𝛿𝐺(𝜉)) (18) 

the total transmitted load will be: 

 

𝐹𝑇 = ∑ 𝐾𝑀(𝜉 + 𝑗)(𝛿(𝜉) − 𝛿𝐺(𝜉 + 𝑗))

𝑗

 

= 𝛿(𝜉) ∑ 𝐾𝑀(𝜉 + 𝑗)

𝑗

− ∑ 𝐾𝑀(𝜉 + 𝑗)𝛿𝐺(𝜉 + 𝑗)
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(19) 

and the tooth-pair deflection: 

3

MATEC Web of Conferences 387, 01001 (2023) https://doi.org/10.1051/matecconf/202338701001
Power Transmissions 2023



 𝛿(𝜉) =
𝐹𝑇 + ∑ 𝐾𝑀(𝜉 + 𝑗)𝛿𝐺(𝜉 + 𝑗)𝑗

∑ 𝐾𝑀(𝜉 + 𝑗)𝑗
 (20) 

from which the transmission error will be given by: 

 𝑇𝐸(𝜉) =
𝐹𝑇 + ∑ 𝐾𝑀(𝜉 + 𝑗)𝛿𝐺(𝜉 + 𝑗)𝑗

𝑟𝑏1 ∑ 𝐾𝑀(𝜉 + 𝑗)𝑗
 (21) 

Finally, the time varying meshing stiffness can be 

expressed as: 

 𝐾𝑇(𝜉) =
𝐹𝑇

𝛿(𝜉)
 (22) 

Equations (18), (21), and (22) describe the evolution 

of the load sharing, transmission error, and meshing 

stiffness along the path of contact under actual load 

conditions. The limits of the actual contact interval 

(extended contact interval), 𝜉min and 𝜉max, can be 

obtained from eq. (18), by doing 𝐹(𝜉) = 0. The actual 

contact ratio will be given by: 

 𝜀𝛼−𝑒𝑥𝑡 = 𝜉max − 𝜉min (23) 

5 Results and discussion 

5.1. Case studies 

Table 1 summarizes the geometrical characteristics of the 

rack and pinion system under consideration. Five different 

torque levels are applied, ranging from 50 Nm to 150 Nm. 

The material selected for the pinion and rack is a steel with 

206 GPa Young modulus and 0.3 Poisson coefficient. 

Three case studies have been selected with the aim of 

validating the proposed model for rack and pinion 

systems. The theoretical contact ratio of each case is 

respectively, 1.657, 1.791 and 1,657. First, Case 2 focuses 

on studying the effect of pressure angle on the 

transmission error, aiming to observe the effect of the 

contact ratio. Subsequently, Case 3 introduces the 

influence of tooth thickness tolerance, serving to 

demonstrate the capability of the proposed model in 

accommodating tooth geometry modifications. 

5.2. Model validation 

To apply the extended contact model to the contact in 

rack-pinion systems, it is necessary to adjust the 

coefficients 𝜅1 and 𝜅2 of the single mesh stiffness curve 

(eqs. (6) and (7)). As the flexibility of the gear body 

affects the SMS, the coefficients 𝜅1 and 𝜅2 will be 

influenced by the pinion rim thickness and pinion size. It 

has been proved that 𝜅1 and 𝜅2 for internal and external 

gears are different, even for the same approaches of the 

contact and gear body stiffnesses [21]. In addition, 

analytical approaches of Weber [6] and Sainsot [7] are not 

valid for very high number of teeth, as frequently occurs 

for internal gears, and even more for infinite teeth, as the 

rack case. 

After a correlation study, the adjusted values of the 

coefficients 𝜅1 and 𝜅2 for rigid body tooth pinion and rack 

body height around 1.5 𝑚n are the following: 

 𝜅1 = 1.661 (24) 

 𝜅2 = 2.233 (25) 

These values are not far from those of rigid body 

pinion and wheel (approach IV in [8]) where 𝜅1 = 1.56 

and 𝜅2 = 2.00, indicating a reasonable result. 

Moreover, the SMS at the midpoint of the path of 

contact (𝐾𝑀𝑚𝑎𝑥) has been calculated through FEM 

analysis for the three cases, with stiffness units expressed 

in N/mm: 

 𝐾𝑀𝑚𝑎𝑥
1 = 5.076 · 105 (26) 

 𝐾𝑀𝑚𝑎𝑥
2 = 4.814 · 105  (27) 

 𝐾𝑀𝑚𝑎𝑥
3 = 4.784 · 105 (28) 

These values are consistent with other findings in the 

literature for similar gear geometries [22] and capture the 

distinctive variations among the case studies. Specifically, 

the first case exhibits the highest stiffness due to a higher 

pressure angle, whereas the last case displays the lowest 

stiffness due to a smaller tooth root thickness. 

Upon calculating the specific coefficients for the 

proposed analytical model (eq. 24-28), a comparison 

between the analytical model and Finite Element Method 

(FEM) results is presented in Figure 3. It is important to 

note that the coordinate system of the FEM curves has 

been adjusted to align with the analytical curves, 

compensating for the initial offset introduced in the FEM 

during contact initiation. 

The results reveal that the proposed approximate 

model accurately represents both the overall values and 

the shape of the transmission error in rack and pinion 

systems. The model effectively captures the 

characteristics of the single tooth contact region and the 

contact ratio. Furthermore, the peak-to-peak error, which 

contributes to the dynamic load, exhibits a strong 

correlation between the analytical model and the 

numerical FEM, with maximum error lower than 5% for 

all the analyzed cases, as depicted in Figure 4. 

Table 1. Geometry parameters of the rack and pinion system. 

 Symbol Case 1 Case 2 Case 3 

Number of teeth 𝑧1 24 

Normal module 𝑚n 2.116 mm 

Pressure angle 𝛼n 22.5° 20º 22.5º 

Face width 𝑏 25 mm 

Profile shift 𝑥1 0 

Operating center distance 𝑎𝑤 25.392 mm 

Reference profile - ISO 53 [-] A (1.25/0.25/0.38) 

Tolerance - DIN 3967 [-] 0 0 - 90 m 
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Fig. 3. Transmission error results for the FEM (continuous line) 

and analytical model (discontinuous line) for Case 1. 

 

Fig. 4. Peak-to-peak transmission error for different torque and 

maximum error between analytical and FEM results for Case 1. 

Looking into the differences, it can be observed that 

the analytical model predicts a symmetrical response in 

the transmission error, whereas the FEM results exhibit a 

different response during the loading and unloading 

phases from single to double teeth contact regions. These 

findings are in agreement with the results reported in [22], 

where an increase in such asymmetry was observed when 

increasing the transmission ratio. In the context of rack 

and pinion systems, where the transmission ratio is 

theoretically infinite, this represents the extreme 

condition and that is why it is even more noticeable. 

However, it is worth noting that for practical applications, 

these differences can be considered negligible, even under 

such extreme transmission ratio conditions. 

5.3. Influence of the pressure angle 

Following the validation of the analytical model, an 

investigation into the impact of the pressure angle is 

conducted. The pressure angle influences the amplitude of 

SMS and the contact ratio, which results in a slightly 

different curves of mesh stiffness and transmission error. 

The results for a pressure angle of 20° are presented in 

Figure 5. Notably, both models exhibit remarkably similar 

results, with peak-to-peak transmission error values 

consistently below 10% (as illustrated in Figure 6). 

 

Fig. 5. Transmission error results for the FEM (continuous line) 

and analytical model (discontinuous line) for Case 2. 

 

Fig. 6. Peak-to-peak transmission error for different torque and 

maximum error between analytical and FEM results for Case 2. 

Furthermore, when compared to case study 1, it is 

worth noting that the initial peak-to-peak transmission 

error exhibits a slight increase, which aligns with the 

expected trend attributed to lower stiffness values. 

However, it is also noticeable that the contact ratio is 

higher in this case study, resulting in a shorter single tooth 

contact region. Consequently, for torques exceeding 100 

Nm, three teeth come into contact, leading to the 

stabilization of the peak-to-peak transmission error. Both 

models successfully capture this phenomenon, although 

some discrepancies are observed within these regions. 

Probably, the FEM model is slightly less accurate for 

three tooth-pairs in contact; however, discrepancies are 

small, and results can be considered acceptable. 

5.4. Influence of thickness tolerance 

Finally, the effect of tooth thickness is considered in the 

analysis. Figure 7 shows the comparison between 

analytical and FEM results for the transmission error, 

while Figure 8 depicts the corresponding peak-to-peak 

transmission error. Notably, the obtained results align 

with previous findings, demonstrating a strong agreement 

between both models. When comparing it to Case 1, the 

stiffness of the tooth is lower and therefore, slight increase 

of the peak-to-peak transmission errors are observed. 
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Fig. 7. Transmission error results for the FEM (continuous line) 

and analytical model (discontinuous line) for Case 3. 

 

Fig. 8. Peak-to-peak transmission error for different torque and 

maximum error between analytical and FEM results for Case 3. 

6 Conclusions 

Based on the results shown in the present study, the 

following conclusions can be drawn: 

• The proposed analytical model effectively represents 

the transmission error in rack and pinion systems, 

capturing both the overall values and the shape of the 

transmission error curve.  

• The effect of different factors on the transmission 

error has been investigated. The impact of variables 

such as pressure angle, tooth thickness, and contact 

ratio has been examined. The results demonstrate that 

these factors influence the magnitude and 

characteristics of the transmission error. 

• The analysis of the transmission error under different 

scenarios and conditions provides valuable insights 

for understanding the dynamic behavior and 

performance of rack and pinion systems. These 

findings contribute to improving the design and 

operational efficiency of these systems. 

In conclusion, the results highlight the accuracy of the 

analytical model, the influence of various factors on the 

transmission error, and the significance of tooth stiffness. 

This knowledge enhances our understanding of rack and 

pinion systems and enables informed decision-making for 

design improvements and performance optimization. 
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