

Teaching Model-Based Systems Engineering with

MATLAB & Simulink for Smart Energy Systems

Jon del-Olmo Larrañaga

Mondragon Unibertsitatea

Faculty of Engineering

20500 Arrasate-Mondragon, Gipuzkoa,

Spain

jdelolmo@mondragon.edu

Jennifer J. Gago Muñoz

MathWorks

Madrid, Spain

jgagomu@mathworks.com

Iosu Aizpuru Larrañaga

Mondragon Unibertsitatea

Faculty of Engineering

20500 Arrasate-Mondragon, Gipuzkoa,

Spain

iaizpuru@mondragon.edu

David Gonzalez-Jimenez

Mondragon Unibertsitatea

Faculty of Engineering

20500 Arrasate-Mondragon, Gipuzkoa,

Spain

dgonzalez@mondragon.edu

Manu Sanchez Alberdi

Mondragon Unibertsitatea

Faculty of Engineering

20500 Arrasate-Mondragon, Gipuzkoa,

Spain

manu.sanchez@alumni.mondragon.edu

Abstract— Developing complex and smart energy systems is

a challenge for today's industry. Systems are developed

consisting of power hardware, control and communication

hardware, and software of all kinds with more and more

connectivity. Typically, engineering students at the Master's

level specialize in technologies to apply later during their

careers. However, a company’s organisation and processes are

far different from what students study in class. Product

development implies several phases, from customer

requirements definition to systematic verification and

validation. Mondragon Unibertsitatea has identified the need to

work with students on a product’s whole life cycle, not only in

the design process as usual. This paper presents the

development of a curriculum to work on Model-Based Systems

Engineering with MATLAB® & Simulink®. The main objective

was to generate educational resources so students could focus on

different life cycle phases, such as requirements definition,

architecture design and management, and continuous

verification and testing. The curriculum has been integrated in

a 4.5 ECTS course related to Systems Engineering in the

Master's Degree in Smart Energy Systems at the Faculty

Engineering of Mondragon Unibertsitatea.

Keywords— Model-Based Systems Engineering, smart energy

systems, requirements, architecture, validation, verification,

testing, v-model, life cycle management, smart energy systems.

I. INTRODUCTION

Product development and manufacturing have several
phases these days. Complex products consisting of many
subsystems, which can be both hardware and software, are
often commercialized in the energy field. In addition, the
connectivity of Industry 4.0 makes today's systems cyber-
physical. Computer-based algorithms control a set of
mechanisms.

In this context, it is necessary to establish a methodology
that enables development, taking into account the principles
of RAMS (Reliability, Availability, Maintainability and
Safety). One of the most widely used standard processes in
this regard today is the so-called V-model (Figure 1).

Although originally intended for software development,
the V-model now extends to systems engineering. It is being
adopted by governments such as the German [1] and the
United States for transportation system development [2]. It has
also been standardized by IEC 62278 for the railway industry
and ISO 26262 for the automotive industry.

Figure 1 Electric scooter component architecture diagram

Until a few years ago, the cyber-physical systems
development process was a document-centric methodology.
The information generated in the process was collected and
transmitted through documents.

This way of working has become increasingly difficult to
manage because of today's complex systems. It is difficult to
represent all the viewpoints from which a system can be
looked at through documents and to keep them updated as the
design and the life cycle progresses. Companies have adopted
a new way of working called Model-Based Systems
Engineering (MBSE) in response to these difficulties. In the
MBSE philosophy, a single virtual model represents the
requirements, architecture, and system behaviour. MATLAB
& Simulink are the main tools to model and simulate products
under development in the energy systems field. Apart from
being used for model-based design and simulation in recent
years, this software incorporates systems engineering-related
functionalities, such as requirements management
(Requirements Toolbox™), architecture management (System
Composer™), and systematic testing (Simulink Test™).

In this context, this article presents a curriculum
development project that aims to bring MBSE into an
engineering classroom. The aim of the curriculum is to
provide teachers with a practical framework for teaching
MBSE beyond classical theoretical content. This is achieved
working in the MATLAB® & Simulink® environment.
Specifically, it presents the design of different activities
carried out for the Master of Science Degree in Smart Energy

Phase 1
Customer

requirements

Phase 2
Concept

Phase 3
System

requirements

Phase 10
Operation and
maintenance

Phase 4
System

architecture

Phase 5
Detailed
design

Phase 6
Implementation

Phase 7
Unit testing

Phase 8
Subsystem
integration

Phase 9
System testing
and validation

Phase 11
Upgrade and
retirement

System validation

time

Verification activities

Validation activities

Systems at Faculty of Engineering of Mondragon
Unibertsitatea. [3]. The student is introduced to the application
of the V-model processes using MathWorks tools through the
master’s curriculum in a 4.5 ECTS course related to Systems
Engineering. The work focuses on the V-model’s three
phases: how to perform the requirements management (Phase
3) with the Requirements Editor, functional and formal
decomposition (Phase 5) using System Composer, and
validation against the requirements using Simulink Test
(Phases 7-8). It should be noted that students on this master's
course have already acquired knowledge of the design and
manufacture of energy systems. Therefore, the detailed design
and implementation phases (5 and 6) have not been covered
on in this curriculum. Curriculum learning outcomes include:

- Managing the energy system’s life cycle with the V-model
and model-based techniques, and recognising the
MBSE’s ability to facilitate traceability.

- Writing and managing requirements with MATLAB®
Requirements Editor.

- Composing system architectures and organising system
components with System Composer.

- Arranging verification and validation tests against system
requirements with test harnesses and test suites.

During the course, an electric scooter will be used as an
example of a system. It is a system that the students have
worked with before, so it is suitable for working on the
requirements, architecture and validation phases. Figure 2
shows a block diagram of an electric scooter.

Figure 2 Electric scooter component architecture diagram

The structure of the article is as follows. Section II briefly
introduces the V-model. Section III illustrates requirements
basics and their management in Requirements Editor. Section
IV presents an electric scooter’s candidate architecture and the
definition of different components in System Composer.
Section V demonstrates the way to link behavioural and
architecture models. Section VI explains using Test Harnesses
and Test Manager to manage verification, validation, and
testing following the V-model phases. Finally, section VII
presents the conclusions. All the information and teaching
material is available in a GitHub repository [4].

II. V-MODEL

As mentioned previously, the V-model is a standard
methodology for life cycle management. The model is divided
into two branches (Figure 1). The left branch contains
conception processes, the requirements definition, and the
design (high-level and detailed). This process leads to product
development and manufacturing (hardware and software). In

the right branch, integration, verification, and validation
processes are performed. The time axis is bent to form a V in
this model and each phase on the left branch is put at the same
level as its counterpart in the right branch [5].

In the first six phases the system is decomposed starting
from the high-level architecture. In the following phases,
verification and validation activities are performed while
integrating all the subsystem. For each phase on the left side,
the requirements that guide the next phase are written, as well
as the validation plan for the equivalent level on the right side.
For each phase on the verification and validation side,
documentation for user training and validation is created.

It is important to state the differences between

verification and validation activities. On the one hand,

verification activities are defined as the assessment that a

product or service complies with design standards or

specifications. The following question is answered during

this process: Are we developing the product correctly? In

short, it is about ensuring that the system that was built is

well-designed, safe, and functions correctly. This process

evaluates against internal requirements. Verification involves

only one or two consecutive phases.

On the other hand, validation is defined as the

assessment that a product meets the customer's requirements

and needs. It usually involves external development

stakeholders. The following question is answered during this

process: Are we developing the right product? Validation is a

relatively subjective process that evaluates how well the

product solves the customer's problem. That is why system

validation is done against system requirements.

III. SYSTEM REQUIREMENTS SPECIFICATION

It is time to write system requirements once customer
requirements are received and a concept is proposed. In [6] a
requirement is defined as a statement that identifies a product
or process operational, functional, or design characteristic or
constraint, which is unambiguous, testable or measurable, and
necessary for product or process acceptability (by consumers
or internal quality assurance guidelines).

Concerning the curriculum, the main objective of the
requirements module is to convey to students that
requirements are a tool for communication between people.
As stated before, systems are becoming increasingly complex,
and their design, development and validation should have
requirements as reference. Requirements should have the
characteristics shown in Table 1.

Table 1 Characteristics of a requirement [7], [8]

Characteristic Description

Feasible Technically possible (cost and schedule).

Verifiable Each statement can be tested. There is a

feasible procedure to do so.

Unambiguous Each statement is precise, there are no

ambiguities. There is only one

interpretation.

Clear Each statement can be understood. There

are not spelling or other kind of mistakes.

Atomic The requirement defines a single

traceable element.

Legal Does not make you break any law.

DC

DC

Electric

Motor
Battery pack

Charger

Embedded

traction

controller

Throttle

VV

AA

Display

Brake

Frame

R
e

a
r

w
h

e
e
l

F
ro

n
t

w
h

e
e
l

Abstract The requirement does not specify a

certain solution.

Complete It contains all the information to

understand it.

The IEEE Standards Style Manual [9] recommends using
the term shall to indicate mandatory requirements to be
followed strictly. The term should implies that among several
possibilities, one is recommended without excluding others.
Table 2 gives some examples of requirements writing.

Table 2 Requirement quality examples

Quality Requirement Characteristic

Poor The system should give full

power at any speed.

Feasibility

High The system shall give full

power up to 2000 rpm.

Feasibility

Poor An amplifier stage must

amplify the input voltage by a

factor of 2.

Abstract

High The input voltage shall be

amplified by a factor of 2.

High

In MATLAB®, requirements are managed using the
Requirements Editor from the Requirements Toolbox. This
tool enables authoring and organising requirements but, most
importantly, linking them with other artifacts developed in
MATLAB® & Simulink®.

Figure 3 shows the summary table of the system
requirements defined for the electric scooter. The
requirements’ main attributes are shown. In addition, the
implementation and verification levels are also shown. Each
requirement can be linked to a specific component once an
architecture has been defined in Simulink (see Section III).
Depending on the existing links, the editor sets a level of
requirement implementation. In addition, the verification
status is obtained from the test results programmed using
Simulink Test (see Section VI).

Figure 3 System requirements defined in Requirements Editor

Each requirement has an attached sheet where all its
information is gathered (see Figure 4). Functional
requirements are the core type and describe the expected
behaviour of the system. This kind of requirements can be
linked to components and Requirements Toolbox obtains
implementation and verification status for them.

An interesting functionality of this tool is the possibility to
link requirements among them or to other artifacts in the
project, such as components in Simulink or tests. For example,
Figure 4 shows links to another requirement in the same set
and different components in the architecture.

IV. SYSTEM ARCHITECTURE DESIGN

Phase 4 in the V-model life cycle is system architecture
design. Once customer requirements are clear, a concept is
proposed, and system requirements are specified, it is time to
propose an architecture that meets client's needs. The main

tool for that in the MATLAB® & Simulink® environment is
System Composer™.

Figure 5 shows the electric scooter’s formal architecture.
It was designed following the system requirements presented
in Section III. The formal architecture represents the system
composition with all the components and the signals they
exchange. With System Composer™, the design can be built
in the Simulink environment and linked to information stored
in other MATLAB® & Simulink® tools. The following
subsections show the different functionalities of this tool.

A. Architecture design

The basic element of creating an architecture is the
component. Components are boxes that can be filled with
more components or simulation behaviour models. As shown
in Figure 5, components can have data inputs and outputs, but
physical interfaces (diamond shaped) can also be used. With
physical inputs, Simscape™ models can be integrated into the
architecture.

Figure 4 Requirements sheet

B. Requirements Linking

Each component, or even the whole architecture, can be
linked to requirements defined in the Requirements Editor to
help maintain traceability and checks the proposed
architecture’s consistency. The System Composer and
Simulink requirements views show the mapping between
requirements and components. Moreover, the Editor shows
which components implement with which requirements and
the implementation status. With this feature, students can start
understanding the fundamentals of Model-Based Systems
Engineering. They will begin using a model-centric approach
that gathers components and requirements in the same
environment.

C. Stereotypes

Stereotypes are used to define component or signal types
so the architecture can be organized and analyzed more easily.
For example, software and hardware components have been

defined in the scooter architecture. Within the software
components, some may be dedicated to traction control, others
dedicated to communications, and others to hardware input
and output management. Components can be classified and
facilitate development management by defining stereotypes.
In the architecture shown in Figure 5, the components were
classified into the following groups: storage systems, power
electronics, sensing, electric machine, mechanical parts,
actuators, and software. Moreover, each stereotype has its
attributes such as mass, nominal power, or useful life. These
attributes may be used to further analyze the proposed solution
feasibility and compare different alternatives

D. Views

Once the architecture is defined and stereotypes applied,
views help analyze the structure from different points of view.
System Composer has integrated an Architecture Views
gallery where component hierarchies, architecture hierarchies,
and sequence diagrams can be created interactively.

Figure 6 Embedded traction control strategy for electric scooter

Figure 6 shows a hierarchy view, where a filter was
applied to see the power electronics components only. This
tool is very useful for developers when they want to focus on
a specific part of the design. Views are created interactively,
but complete system information remains in the model. There
is no need to create ad-hoc documents about the architecture

for each team involved in the design with this model-based
tool compared to a document-centric approach.

V. LINKING DETAILED DESIGNS WITH ARCHITECTURES

In principle, this curriculum’s objective is not to work on
the detailed design of embedded controls for electric drives. It
is assumed that students have acquired sufficient knowledge
to understand the hardware and software components of an
electric scooter. However, it is worth mentioning that
architectures designed with System Composer can be linked
with dynamic behaviour designs developed in Simulink.

The control structure used for the example is shown in

Figure 7. It is composed by a cascade structure that controls

the motor’s speed and/or current/torque of the motor

according to the reference established by the user in the

throttle.

Figure 7 Embedded traction control strategy for electric scooter

It is proposed that students merge the components of the

architecture with the dynamic model in the curriculum

activities. Thus, if the architecture includes links to the

requirements, an executable specification is available in a

single file for continuous verification and validation.

Figure 8 shows the behaviour model of the current

controller linked to its architecture component. Since the

architecture component is linked to some requirements, the

link section in the Requirements Editor is updated to show it.

Moreover, as presented in Figure 3, a column showing the

implementation status also appears.

A full electric scooter model developed with System

Composer and Simulink lets designers perform continuous

verification and validation (V&V) activities during the whole

life cycle, not only in the late phases of the V-model. Figure 9

charger
<<HardwareBaseStereotype>>

Mass: double (kg) = 0.5

Name: string = Battery charger

UsefulLife: double (hours) = 100000

<<PowerElectronics>>
nominalPower: double (W) = 500

Ports

in Vgrid_I

in Vgrid_n

conn Vbat+

conn Vbat-

converter
<<HardwareBaseStereotype>>

Mass: double (kg) = 0.4

Name: string = converter

UsefulLife: double (hours) = 300000

<<PowerElectronics>>
nominalPower: double (W) = 500

Ports
in switchingCmd

conn Vbat+

conn Vbat-

conn Vout_+

conn Vout_-

Power Electronics

Vout_-Vbat-

Vout_+Vbat+

s
w

it
c
h

in
g
C

m
d

Vout_-

Vout_+

p
o
s
it
io

n

Vbat_out-Vbat_in-

Vbat_out+Vbat_in+

s
w

it
c
h

1
c
lo

s
e

C
m

d

tu
rn

O
n

Speed_sense

Im_sense

Ibat_sense

Vbat_sense

accRate

s
w

it
c
h

in
g
C

m
d

displayMsg

turnOn

s
w

it
c
h

1
c
lo

s
e

C
m

d

s
m

a
rt

p
h
o

n
e

M
s
g

Vbat_in-Vbat-

Ib
a

t_
s
e

n
s
e

Vbat_in+Vbat+

V
b
a

t_
s
e

n
s
e

accRate

Vout_-Vin_-

Im
_

s
e
n

s
e

Vout_+Vin_+

p
o
s
it
io

n

S
p
e

e
d

_
s
e

n
s
e

Vbat-Vgrid_n

Vbat+Vgrid_l

Vbat-Vbat_in-

Vbat+Vbat_in+

Vgrid_n

Vgrid_l

s
m

a
rt

p
h
o

n
e

M
s
g

IMPLEMENTS

turn on switch

control unit

display

motordrive sensingconverterswitchbattery sensebattery charger

throttle

d
is

p
la

y
M

s
g

display
Users shall be able

to turn on/off scooter

The scooter shall have

only one mechanical

turn on/off switch

#4 Turn on/off switch

#2 Scooter turn on/off

The scooter shall

display SOC when the

turn on/off button is in

ON position while SOC

is more than 10%

#7 Display SOC

Figure 5 Scooter architecture in System Composer

shows some simulation results performed during the tuning of

the control strategy. It is worth mentioning that the tunning of

the controllers was also carried out with the MATLAB®

Control System Toolbox™.

From these results, control code programming would be

the next step. The code may be generated manually or using

automatic code generation tools, such as Simulink Embedded

Coder®. This task is out of the scope of the curriculum, so the

verification and validation processes will be explained in the

simulation environment shown up to now.

(a)

(b)

Figure 8 Behaviour simulations linked to architecture

components (a) architecture component (b) behaviour model

inside the torqueControl component

Figure 9 Current control simulation results

VI. VALIDATION AND TESTING

The phases of unit testing, subsystem integration and
system validation follow a bottom-up strategy. First, the
correct behaviour of atomic components is tested. After, two
or more components are integrated and tested. Finally, a
general system validation is performed against system
requirements. The process follows the grouping of
components selected in the architecture. Simulink Test helps
to manage this process with test harnesses and a Test Manager.

A. Test harnesses and unit tests

Unit testing isolates atomic components from the general
design and tests their behaviour in standalone mode so that in
MATLAB® & Simulink®, each component can be isolated
using test harnesses. A test harness is a separate model file
where the component is tested, and all the artifacts needed for

that are included. Figure 10 shows a test harness for the current
control mentioned before.

The harness is embedded in the main simulation file and is
linked to its parent component. Simulink Test handles any
change made to the component, so all instances are updated
continuously. The harness shown in Figure 10 includes a test
sequence and a test assessment block. These allow for
implementing test inputs and verifying code programmatically
with MATLAB® language. If the component under test needs
any additional block to check its operation, it can be added
here. The current loop uses a simplified motor transfer
function to test its response in the example. In this way, there
is no need to run all the components in the architecture, so unit
testing is simplified.

Figure 10 Current control test harness

Apart from the test sequence and assessment blocks,
several alternatives can be used to configure inputs and check
outputs, such as Signal Builders or charts or signals imported
from the workspace. Finally, it is worth mentioning that test
harnesses can also be stored in a separate file, making it easier
to distribute tasks in validation teams.

B. Test Manager

The general philosophy of Model-Based V&V is that the
sooner designs can be verified, the sooner bugs will be
detected and corrected. If the system is small enough, test
harnesses, tests, and results may be handled manually.
However, this can lead to many tests and results in complex
systems. The example used in this curriculum project in a first
approximation of system requirements (top-level
requirements) already has 43. If each subsystem or component
has its own requirements, testing management may be a
challenge.

Simulink Test Manager is the main tool in MATLAB® to
author, manage and execute Model-Based testing. Once test
harnesses and environments are configured for a design,
Simulink Test enables executing all of them in batch and
getting the results in the same interface. Tests are grouped by
test files, suites, and cases (Figure 11). There are different test
case types. In the one shown below, a simulation test was
configured to execute the harness presented in section VI.A.
Baseline tests can also be configured, where the results of a
simulation are compared to baseline data, for example, results

torqueRef

limitTorqueFlag
accRate

Im_sense

Vm_ref

torqueRef

accRate

Im_sense

torqueControlacc2torqueRef

Vm_ref

limitTorqueFlag

Im_sense

torqueRef
Vm_ref

Im*

Im

Vm*

Current loop

from a previous simulation or laboratory results. Equivalence
tests are used to compare two simulation results.

Once tests are configured, the Test Manager executes them
in batch. Simulations run in the background, and results are
stored in the test file. Each test case can be linked to
requirements defined previously in the Requirements Editor,
which shows the verification status depending on test case
results. Thanks to this feature, students have a powerful
resource to understand how test cases are linked to
requirements, how Model-Based tools can help validate
designs, and how traceability tools can help manage complex
system development.

Figure 11 Test Manager and test case configuration

As an example, Figure 12 shows the results of a test where
current’s overshoot is checked. A test was programmed where
Simulink Test automatically evaluates if the current’s
response has an overshoot greater than 20 %.

This is the result of simulating the test harness shown in
Figure 10. Apart from simulation signals, Simulink Test
shows sample by sample the result of the verification test (in
green samples that passed, in red samples that did not and in
grey samples that where not checked).

VII. CONCLUSIONS

This article shows curriculum development for working with

MBSE in engineering studies. The necessary resources have

been created to work on the most important aspects of this

field, Based on the V-model for life cycle management and

MATLAB & Simulink. A student’s primary learning outcome

was learning to manage the energy systems’ life cycle using

the V-model and model-based techniques.

Figure 12 Test Manager and test results

First, creating a set of requirements in the Requirements

Editor was shown following the guidelines established in the

IEEE Standards Style Manual. Next, the creation of

architectures and the linking with requirements and dynamic

behaviour models was presented. Finally, the process and

tools for verification, validation, and testing against

requirements were presented.

In conclusion, the tools integrated between MATLAB® &
Simulink® can be a suitable starting point for working on
MBSE in the classroom. Academic institutions usually use
this software in the classroom in the energy and electronics
field. The curriculum and related activities have been
integrated into a subject linked to Systems Engineering during
the 2022-2023 academic year. This first experience has shown
that if students are familiar with this software, they can begin
to develop competences linked to systems engineering
without the need for specific software training.

REFERENCES

[1] M. Meisinger and I. H. Krüger, “A Service-Oriented

Extension of the V-Modell XT *,” 2007.
[2] US Department of Transportation, “Systems

engineering for intelligent transportation systems,” p.

11, 2007, [Online]. Available:

http://ops.fhwa.dot.gov/publications/seitsguide/segu

ide.pdf

[3] Mondragon Unibertsitatea, “Smart Energy Systems

Master’s Degree.”

https://www.mondragon.edu/en/master-degree-

smart-energy-systems

[4] “GitHub - Model-based life cycle with MATLAB &

Simulink.” https://github.com/MU-

MATHWORKS/MODEL-BASED-LIFE-CYCLE-

WITH-MATLAB-SIMULINK

[5] T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker,

Model-Based System Architecture. in Wiley Series in

Systems Engineering and Management. Wiley, 2015.

[Online]. Available:

https://books.google.es/books?id=w1TKCQAAQB

AJ

[6] IEEE Standards Association, “IEEE Standard for

Application and Management of the Systems

Engineering Process, IEEE 1220-2005,” 2005.

[7] E. Hull, K. Jackson, and J. Dick, Requirements

Engineering. London: Springer London, 2011. doi:

10.1007/978-1-84996-405-0.

[8] I. C. S. Committee, “IEEE Guide to Software

Requirements Specifications,” IEEE, 1984.

[9] IEEE Standards Association, “2021 IEEE SA

Standards Style Manual,” 2021. Accessed: Jan. 02,

2023. [Online]. Available:

https://mentor.ieee.org/myproject/Public/mytools/dr

aft/styleman.pdf

