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Abstract— Developing complex and smart energy systems is 

a challenge for today's industry. Systems are developed 

consisting of power hardware, control and communication 

hardware, and software of all kinds with more and more 

connectivity. Typically, engineering students at the Master's 

level specialize in technologies to apply later during their 

careers. However, a company’s organisation and processes are 

far different from what students study in class. Product 

development implies several phases, from customer 

requirements definition to systematic verification and 

validation. Mondragon Unibertsitatea has identified the need to 

work with students on a product’s whole life cycle, not only in 

the design process as usual. This paper presents the 

development of a curriculum to work on Model-Based Systems 

Engineering with MATLAB® & Simulink®. The main objective 

was to generate educational resources so students could focus on 

different life cycle phases, such as requirements definition, 

architecture design and management, and continuous 

verification and testing. The curriculum has been integrated in 

a 4.5 ECTS course related to Systems Engineering in the 

Master's Degree in Smart Energy Systems at the Faculty 

Engineering of Mondragon Unibertsitatea. 

Keywords— Model-Based Systems Engineering, smart energy 

systems, requirements, architecture, validation, verification, 

testing, v-model, life cycle management, smart energy systems. 

I. INTRODUCTION  

Product development and manufacturing have several 
phases these days. Complex products consisting of many 
subsystems, which can be both hardware and software, are 
often commercialized in the energy field. In addition, the 
connectivity of Industry 4.0 makes today's systems cyber-
physical. Computer-based algorithms control a set of 
mechanisms. 

In this context, it is necessary to establish a methodology 
that enables development, taking into account the principles 
of RAMS (Reliability, Availability, Maintainability and 
Safety). One of the most widely used standard processes in 
this regard today is the so-called V-model (Figure 1). 

Although originally intended for software development, 
the V-model now extends to systems engineering. It is being 
adopted by governments such as the German [1] and the 
United States for transportation system development [2]. It has 
also been standardized by IEC 62278 for the railway industry 
and ISO 26262 for the automotive industry. 

 

Figure 1 Electric scooter component architecture diagram 

Until a few years ago, the cyber-physical systems 
development process was a document-centric methodology. 
The information generated in the process was collected and 
transmitted through documents. 

This way of working has become increasingly difficult to 
manage because of today's complex systems. It is difficult to 
represent all the viewpoints from which a system can be 
looked at through documents and to keep them updated as the 
design and the life cycle progresses. Companies have adopted 
a new way of working called Model-Based Systems 
Engineering (MBSE) in response to these difficulties. In the 
MBSE philosophy, a single virtual model represents the 
requirements, architecture, and system behaviour. MATLAB 
& Simulink are the main tools to model and simulate products 
under development in the energy systems field. Apart from 
being used for model-based design and simulation in recent 
years, this software incorporates systems engineering-related 
functionalities, such as requirements management 
(Requirements Toolbox™), architecture management (System 
Composer™), and systematic testing (Simulink Test™). 

In this context, this article presents a curriculum 
development project that aims to bring MBSE into an 
engineering classroom. The aim of the curriculum is to 
provide teachers with a practical framework for teaching 
MBSE beyond classical theoretical content. This is achieved 
working in the MATLAB® & Simulink® environment. 
Specifically, it presents the design of different activities 
carried out for the Master of Science Degree in Smart Energy 
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Systems at Faculty of Engineering of Mondragon 
Unibertsitatea. [3]. The student is introduced to the application 
of the V-model processes using MathWorks tools through the 
master’s curriculum in a 4.5 ECTS course related to Systems 
Engineering. The work focuses on the V-model’s three 
phases: how to perform the requirements management (Phase 
3) with the Requirements Editor, functional and formal 
decomposition (Phase 5) using System Composer, and 
validation against the requirements using Simulink Test 
(Phases 7-8). It should be noted that students on this master's 
course have already acquired knowledge of the design and 
manufacture of energy systems. Therefore, the detailed design 
and implementation phases (5 and 6) have not been covered 
on in this curriculum. Curriculum learning outcomes include: 

- Managing the energy system’s life cycle with the V-model 
and model-based techniques, and recognising the 
MBSE’s ability to facilitate traceability. 

- Writing and managing requirements with MATLAB® 
Requirements Editor. 

- Composing system architectures and organising system 
components with System Composer. 

- Arranging verification and validation tests against system 
requirements with test harnesses and test suites. 

During the course, an electric scooter will be used as an 
example of a system. It is a system that the students have 
worked with before, so it is suitable for working on the 
requirements, architecture and validation phases. Figure 2 
shows a block diagram of an electric scooter. 

 

Figure 2 Electric scooter component architecture diagram 

The structure of the article is as follows. Section II briefly 
introduces the V-model. Section III illustrates requirements 
basics and their management in Requirements Editor. Section 
IV presents an electric scooter’s candidate architecture and the 
definition of different components in System Composer. 
Section V demonstrates the way to link behavioural and 
architecture models. Section VI explains using Test Harnesses 
and Test Manager to manage verification, validation, and 
testing following the V-model phases. Finally, section VII 
presents the conclusions. All the information and teaching 
material is available in a GitHub repository [4]. 

II. V-MODEL 

As mentioned previously, the V-model is a standard 
methodology for life cycle management. The model is divided 
into two branches (Figure 1). The left branch contains 
conception processes, the requirements definition, and the 
design (high-level and detailed). This process leads to product 
development and manufacturing (hardware and software). In 

the right branch, integration, verification, and validation 
processes are performed. The time axis is bent to form a V in 
this model and each phase on the left branch is put at the same 
level as its counterpart in the right branch [5]. 

In the first six phases the system is decomposed starting 
from the high-level architecture. In the following phases, 
verification and validation activities are performed while 
integrating all the subsystem. For each phase on the left side, 
the requirements that guide the next phase are written, as well 
as the validation plan for the equivalent level on the right side. 
For each phase on the verification and validation side, 
documentation for user training and validation is created. 

It is important to state the differences between 

verification and validation activities. On the one hand, 

verification activities are defined as the assessment that a 

product or service complies with design standards or 

specifications. The following question is answered during 

this process: Are we developing the product correctly? In 

short, it is about ensuring that the system that was built is 

well-designed, safe, and functions correctly. This process 

evaluates against internal requirements. Verification involves 

only one or two consecutive phases. 

 

On the other hand, validation is defined as the 

assessment that a product meets the customer's requirements 

and needs. It usually involves external development 

stakeholders. The following question is answered during this 

process: Are we developing the right product? Validation is a 

relatively subjective process that evaluates how well the 

product solves the customer's problem. That is why system 

validation is done against system requirements. 

III. SYSTEM REQUIREMENTS SPECIFICATION 

It is time to write system requirements once customer 
requirements are received and a concept is proposed. In [6] a 
requirement is defined as a statement that identifies a product 
or process operational, functional, or design characteristic or 
constraint, which is unambiguous, testable or measurable, and 
necessary for product or process acceptability (by consumers 
or internal quality assurance guidelines).  

Concerning the curriculum, the main objective of the 
requirements module is to convey to students that 
requirements are a tool for communication between people. 
As stated before, systems are becoming increasingly complex, 
and their design, development and validation should have 
requirements as reference. Requirements should have the 
characteristics shown in Table 1. 

Table 1 Characteristics of a requirement [7], [8] 

Characteristic Description 

Feasible Technically possible (cost and schedule). 

Verifiable Each statement can be tested. There is a 

feasible procedure to do so. 

Unambiguous Each statement is precise, there are no 

ambiguities. There is only one 

interpretation. 

Clear Each statement can be understood. There 

are not spelling or other kind of mistakes. 

Atomic The requirement defines a single 

traceable element. 

Legal Does not make you break any law. 
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Abstract The requirement does not specify a 

certain solution. 

Complete It contains all the information to 

understand it. 

The IEEE Standards Style Manual [9] recommends using 
the term shall to indicate mandatory requirements to be 
followed strictly. The term should implies that among several 
possibilities, one is recommended without excluding others. 
Table 2 gives some examples of requirements writing. 

Table 2 Requirement quality examples 

Quality Requirement Characteristic 

Poor The system should give full 

power at any speed. 

Feasibility 

High The system shall give full 

power up to 2000 rpm. 

Feasibility 

Poor An amplifier stage must 

amplify the input voltage by a 

factor of 2. 

Abstract 

High The input voltage shall be 

amplified by a factor of 2. 

High 

In MATLAB®, requirements are managed using the 
Requirements Editor from the Requirements Toolbox. This 
tool enables authoring and organising requirements but, most 
importantly, linking them with other artifacts developed in 
MATLAB® & Simulink®.  

Figure 3 shows the summary table of the system 
requirements defined for the electric scooter. The 
requirements’ main attributes are shown. In addition, the 
implementation and verification levels are also shown. Each 
requirement can be linked to a specific component once an 
architecture has been defined in Simulink (see Section III). 
Depending on the existing links, the editor sets a level of 
requirement implementation. In addition, the verification 
status is obtained from the test results programmed using 
Simulink Test (see Section VI).  

 

Figure 3 System requirements defined in Requirements Editor 

Each requirement has an attached sheet where all its 
information is gathered (see Figure 4). Functional 
requirements are the core type and describe the expected 
behaviour of the system. This kind of requirements can be 
linked to components and Requirements Toolbox obtains 
implementation and verification status for them. 

An interesting functionality of this tool is the possibility to 
link requirements among them or to other artifacts in the 
project, such as components in Simulink or tests. For example, 
Figure 4 shows links to another requirement in the same set 
and different components in the architecture. 

IV. SYSTEM ARCHITECTURE DESIGN 

Phase 4 in the V-model life cycle is system architecture 
design. Once customer requirements are clear, a concept is 
proposed, and system requirements are specified, it is time to 
propose an architecture that meets client's needs. The main 

tool for that in the MATLAB® & Simulink® environment is 
System Composer™. 

Figure 5 shows the electric scooter’s formal architecture. 
It was designed following the system requirements presented 
in Section III. The formal architecture represents the system 
composition with all the components and the signals they 
exchange. With System Composer™, the design can be built 
in the Simulink environment and linked to information stored 
in other MATLAB® & Simulink® tools. The following 
subsections show the different functionalities of this tool. 

A. Architecture design 

The basic element of creating an architecture is the 
component. Components are boxes that can be filled with 
more components or simulation behaviour models. As shown 
in Figure 5, components can have data inputs and outputs, but 
physical interfaces (diamond shaped) can also be used. With 
physical inputs, Simscape™ models can be integrated into the 
architecture. 

 

Figure 4 Requirements sheet 

B. Requirements Linking 

Each component, or even the whole architecture, can be 
linked to requirements defined in the Requirements Editor to 
help maintain traceability and checks the proposed 
architecture’s consistency. The System Composer and 
Simulink requirements views show the mapping between 
requirements and components. Moreover, the Editor shows 
which components implement with which requirements and 
the implementation status. With this feature, students can start 
understanding the fundamentals of Model-Based Systems 
Engineering. They will begin using a model-centric approach 
that gathers components and requirements in the same 
environment. 

C. Stereotypes 

Stereotypes are used to define component or signal types 
so the architecture can be organized and analyzed more easily. 
For example, software and hardware components have been 



defined in the scooter architecture. Within the software 
components, some may be dedicated to traction control, others 
dedicated to communications, and others to hardware input 
and output management. Components can be classified and 
facilitate development management by defining stereotypes. 
In the architecture shown in Figure 5, the components were 
classified into the following groups: storage systems, power 
electronics, sensing, electric machine, mechanical parts, 
actuators, and software. Moreover, each stereotype has its 
attributes such as mass, nominal power, or useful life. These 
attributes may be used to further analyze the proposed solution 
feasibility and compare different alternatives 

D. Views 

Once the architecture is defined and stereotypes applied, 
views help analyze the structure from different points of view. 
System Composer has integrated an Architecture Views 
gallery where component hierarchies, architecture hierarchies, 
and sequence diagrams can be created interactively. 

 

Figure 6 Embedded traction control strategy for electric scooter 

Figure 6 shows a hierarchy view, where a filter was 
applied to see the power electronics components only. This 
tool is very useful for developers when they want to focus on 
a specific part of the design. Views are created interactively, 
but complete system information remains in the model. There 
is no need to create ad-hoc documents about the architecture 

for each team involved in the design with this model-based 
tool compared to a document-centric approach. 

V. LINKING DETAILED DESIGNS WITH ARCHITECTURES 

In principle, this curriculum’s objective is not to work on 
the detailed design of embedded controls for electric drives. It 
is assumed that students have acquired sufficient knowledge 
to understand the hardware and software components of an 
electric scooter. However, it is worth mentioning that 
architectures designed with System Composer can be linked 
with dynamic behaviour designs developed in Simulink. 

The control structure used for the example is shown in 

Figure 7. It is composed by a cascade structure that controls 

the motor’s speed and/or current/torque of the motor 

according to the reference established by the user in the 

throttle. 

 

Figure 7 Embedded traction control strategy for electric scooter 

It is proposed that students merge the components of the 

architecture with the dynamic model in the curriculum 

activities. Thus, if the architecture includes links to the 

requirements, an executable specification is available in a 

single file for continuous verification and validation. 

Figure 8 shows the behaviour model of the current 

controller linked to its architecture component. Since the 

architecture component is linked to some requirements, the 

link section in the Requirements Editor is updated to show it. 

Moreover, as presented in Figure 3,  a column showing the 

implementation status also appears. 

A full electric scooter model developed with System 

Composer and Simulink lets designers perform continuous 

verification and validation (V&V) activities during the whole 

life cycle, not only in the late phases of the V-model. Figure 9 
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shows some simulation results performed during the tuning of 

the control strategy. It is worth mentioning that the tunning of 

the controllers was also carried out with the MATLAB® 

Control System Toolbox™. 

From these results, control code programming would be 

the next step. The code may be generated manually or using 

automatic code generation tools, such as Simulink Embedded 

Coder®. This task is out of the scope of the curriculum, so the 

verification and validation processes will be explained in the 

simulation environment shown up to now. 
 

 
(a) 

 

 
(b) 

Figure 8 Behaviour simulations linked to architecture 

components (a) architecture component (b) behaviour model 

inside the torqueControl component 

 

 

Figure 9 Current control simulation results 

VI. VALIDATION AND TESTING 

The phases of unit testing, subsystem integration and 
system validation follow a bottom-up strategy. First, the 
correct behaviour of atomic components is tested. After, two 
or more components are integrated and tested. Finally, a 
general system validation is performed against system 
requirements. The process follows the grouping of 
components selected in the architecture. Simulink Test helps 
to manage this process with test harnesses and a Test Manager.  

A. Test harnesses and unit tests 

Unit testing isolates atomic components from the general 
design and tests their behaviour in standalone mode so that in 
MATLAB® & Simulink®, each component can be isolated 
using test harnesses. A test harness is a separate model file 
where the component is tested, and all the artifacts needed for 

that are included. Figure 10 shows a test harness for the current 
control mentioned before.  

The harness is embedded in the main simulation file and is 
linked to its parent component. Simulink Test handles any 
change made to the component, so all instances are updated 
continuously. The harness shown in Figure 10 includes a test 
sequence and a test assessment block. These allow for 
implementing test inputs and verifying code programmatically 
with MATLAB® language. If the component under test needs 
any additional block to check its operation, it can be added 
here. The current loop uses a simplified motor transfer 
function to test its response in the example. In this way, there 
is no need to run all the components in the architecture, so unit 
testing is simplified. 

 

Figure 10 Current control test harness 

Apart from the test sequence and assessment blocks, 
several alternatives can be used to configure inputs and check 
outputs, such as Signal Builders or charts or signals imported 
from the workspace. Finally, it is worth mentioning that test 
harnesses can also be stored in a separate file, making it easier 
to distribute tasks in validation teams. 

B. Test Manager 

The general philosophy of Model-Based V&V is that the 
sooner designs can be verified, the sooner bugs will be 
detected and corrected. If the system is small enough, test 
harnesses, tests, and results may be handled manually. 
However, this can lead to many tests and results in complex 
systems. The example used in this curriculum project in a first 
approximation of system requirements (top-level 
requirements) already has 43. If each subsystem or component 
has its own requirements, testing management may be a 
challenge.  

Simulink Test Manager is the main tool in MATLAB® to 
author, manage and execute Model-Based testing. Once test 
harnesses and environments are configured for a design, 
Simulink Test enables executing all of them in batch and 
getting the results in the same interface. Tests are grouped by 
test files, suites, and cases (Figure 11). There are different test 
case types. In the one shown below, a simulation test was 
configured to execute the harness presented in section VI.A. 
Baseline tests can also be configured, where the results of a 
simulation are compared to baseline data, for example, results 
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from a previous simulation or laboratory results. Equivalence 
tests are used to compare two simulation results. 

Once tests are configured, the Test Manager executes them 
in batch. Simulations run in the background, and results are 
stored in the test file. Each test case can be linked to 
requirements defined previously in the Requirements Editor, 
which shows the verification status depending on test case 
results. Thanks to this feature, students have a powerful 
resource to understand how test cases are linked to 
requirements, how Model-Based tools can help validate 
designs, and how traceability tools can help manage complex 
system development. 

 

 
Figure 11 Test Manager and test case configuration 

As an example, Figure 12 shows the results of a test where 
current’s overshoot is checked. A test was programmed where 
Simulink Test automatically evaluates if the current’s 
response has an overshoot greater than 20 %. 

This is the result of simulating the test harness shown in 
Figure 10. Apart from simulation signals, Simulink Test 
shows sample by sample the result of the verification test (in 
green samples that passed, in red samples that did not and in 
grey samples that where not checked). 

VII. CONCLUSIONS 

This article shows curriculum development for working with 

MBSE in engineering studies. The necessary resources have 

been created to work on the most important aspects of this 

field, Based on the V-model for life cycle management and 

MATLAB & Simulink. A student’s primary learning outcome 

was learning to manage the energy systems’ life cycle using 

the V-model and model-based techniques.  

 

 

Figure 12 Test Manager and test results 

First, creating a set of requirements in the Requirements 

Editor was shown following the guidelines established in the 

IEEE Standards Style Manual. Next, the creation of 

architectures and the linking with requirements and dynamic 

behaviour models was presented. Finally, the process and 

tools for verification, validation, and testing against 

requirements were presented. 

In conclusion, the tools integrated between MATLAB® & 
Simulink® can be a suitable starting point for working on 
MBSE in the classroom. Academic institutions usually use 
this software in the classroom in the energy and electronics 
field. The curriculum and related activities have been 
integrated into a subject linked to Systems Engineering during 
the 2022-2023 academic year. This first experience has shown 
that if students are familiar with this software, they can begin 
to develop competences linked to systems engineering 
without the need for specific software training. 
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