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ABSTRACT
Machine learning (ML) based systems have shown promising re-
sults for intrusion detection due to their ability to learn complex
patterns. In particular, unsupervised anomaly detection approaches
offer practical advantages as does not require labeling the train-
ing data, which is costly and time-consuming. To further address
practical concerns, there is a rising interest in adopting federated
learning (FL) techniques as a recent ML model training paradigm
for distributed settings (e.g., IoT), thereby addressing challenges
such as data privacy, availability and communication cost concerns.
However, output generated by unsupervised models provide limited
contextual information to security analysts at SOCs, as they usually
lack the means to know why a sample was classified as anomalous
or cannot distinguish between different types of anomalies, diffi-
culting the extraction of actionable information and correlation
with other indicators. Moreover, ML explainability methods have
received little attention in FL settings and present additional chal-
lenges due to the distributed nature and data locality requirements.
This paper proposes a newmethodology to characterize and explain
the anomalies detected by unsupervised ML-based intrusion detec-
tion models in FL settings. We adapt and develop explainability,
clustering and cluster validation algorithms to FL settings to mine
patterns in the anomalous samples and identify different threats
throughout the entire network, demonstrating the results on two
network intrusion detection datasets containing real IoT malware,
namely Gafgyt and Mirai, and various attack traces. The learned
clustering results can be used to classify emerging anomalies, pro-
vide additional context that can be leveraged to gain more insight
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and enable the correlation of the anomalies with alerts triggered
by other security solutions.
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1 INTRODUCTION
The use of an IntrusionDetection System (IDS) is a common practice
for monitoring assets both in IT [1] and Internet of Things (IoT) [2]
infrastructures. Over the last decades, there has been an increasing
interest inmachine learning (ML) and deep learning (DL) algorithms
for the development of IDS, as they can show greater generalization
capabilities over traditional rule-based systems [3–5].

ML and DL-based IDS generally take three different approaches,
among others, for data modeling: supervised [6], unsupervised [7]
and semi-supervised [8]. Training supervised learning models re-
quire the data to be labeled into a finite set of classes, each repre-
senting a specific malicious activity and a class for normal (benign)
activity. The objective is then to classify new incoming data samples
into those classes. Regarding unsupervised approaches, they are
popular for anomaly detection, where the model learns a represen-
tation of the legitimate or benign behavior and flags all samples that
deviate from that baseline as anomalous. Unsupervised approaches
do not need labeled data, but they typically assume that the training
samples are benign. Lastly, semi-supervised models follow a hybrid
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approach where labeling information is limited to a subset of the
training data while the rest are unlabeled.

Regarding IDS model training paradigms, a current direction
gaining substantial interest is the adoption of federated learning
(FL) [9]. FL is a distributed setting to train a single global model
between multiple collaborating clients. The training data of each
client is kept local at each device and never shared; instead, they
partially train a model and communicate the trained parameters to
a central server. The central server aggregates the model updates
provided by all the clients to create the global model. This train-
ing process is usually repeated iteratively until the global model
converges. FL provides greater data privacy and network commu-
nication efficiency, which can be preferable to traditional cloud or
edge training settings.

However, despite the promising results of ML and DL for in-
trusion detection, multiple issues still limit the practical and wide-
spread adoption of these methods. Challenges such as the availabil-
ity and cost of data labeling or the need for more interpretation and
explainability of the results have been [10] and continue to be [8]
present since the use of these methods for intrusion detection.

Regarding the interpretation of the results, an advantage of su-
pervised approaches is that by predicting the label of a malicious
event, the security analysts have an idea of what kind of threats
they face, assuming a correct classification. However, obtaining
labeled data for model training is costly, time-consuming, and of-
ten infeasible in practical scenarios. Additionally, using a finite set
of classes limits the types of attacks that a supervised model can
detect. In contrast, anomaly detection systems with unsupervised
approaches do not need labeled data and can potentially find novel
attacks; however, the ability to characterize the detected anomalies
to automatically provide an interpretation gets limited.

Recently, the ML community has increased its efforts in the field
of eXplainable Artificial Intelligence (XAI) to provide interpretation
and explainability of both the models and the predictions made
with them [11], and thus, address the black box nature of ML and
especially DL models. Some IDSs have also adopted XAI methods,
which is crucial to increase the trust of these techniques by security
analysts [12].

However, the integration of XAI methods into FL is an area that
has received little attention and presents additional challenges due
to the particularities of this setting. Implying that while IDS training
can benefit from FL properties, such as a bigger pool of training
data, higher communication efficiency or increased data privacy
(although attacks against FL and defenses exist [13]), SOC analysts
lack an increased trust or visibility offered by XAI methods as they
are underdeveloped in this settings. For instance, FL challenges,
including the distributed nature of the datasets, high heterogeneity
regarding data distribution and client capabilities, large scale in
terms of the number of clients in the federated network, and the
need to maintain the training data local to each client are issues that
need to be considered for using XAI methods into FL [14, 15]. In
such a distributed and heterogeneous network, raised anomalies can
greatly vary between clients, difficulting the overall visibility of the
security in the network. Providing a common ground to ensure the
same anomalous events happening in different clients are explained
in the same terms by means of a federated XAI method, it could
allow analysts to better assess the security level of the network

This work aims to fill this gap by proposing a method to charac-
terize and explain the anomalies detected by unsupervised ML/DL-
based IDS models in a FL setting. In particular, we use XAI and
clustering techniques to explain anomalies and group common
anomalous patterns. The method is evaluated on anomalies gener-
ated by network attacks from real IoT malware, namely Gafgyt and
Mirai [16]. Each client in a FL setting might be exposed to different
attacks; hence, by characterizing the anomalies in a federated way,
all clients can be aware of the various anomalous patterns that have
occurred across the federated network. In summary, our work aims
to address the following questions in the context of FL:

(1) What features have been the most decisive in classifying
those samples as anomalous?

(2) Can the explainability model identify different groups of
anomalies?

(3) What do all anomalies in a specific group have in common?
The contributions can be summarized as follows:
• We introduce a novel methodology to explain and character-
ize anomalies generated by ML/DL-based anomaly detection
models in a FL setting. Particularly, the characterization is
based on training SHAP [11] explainability models in a fed-
erated way. Additionally, to make all the clients aware of the
various anomalous patterns that occurred across the whole
network, we leverage a federated version of k-means [17]
and also adapt a clustering internal validation metric to be
computed in a distributed manner.
• We perform an experimental validation of the methodology
on two different IoT network security datasets with awide va-
riety of attacks and malicious behaviors. The first is based on
network packet-level data from theGothamTestbed [18], and
the second uses network flow-level data from N-BaIoT [19].
Autoencoders are used as the anomaly detection model for
both datasets.
• We show the results of the generated explanations and the
characterization of the anomalies. Additionally, we leverage
IDMEF as an alert message exchange format to enable the
interoperability of the proposed method with third-party
security solutions such as SIEMs so that the characterized
anomalies can be used for correlation with events generated
by other data sources.

The source code for the implementation is available at [20].

2 RELATEDWORK
Many applications require both high accuracy and interpretability
of the results. For the latter, various methods have been proposed
to help interpret the predictions of complex models. Lundberg et al.
present SHAP (SHapley Additive exPlanation) [11], a framework
for interpreting predictions that unifies six existing explainability
methods, including LIME, DeepLIFT and classical Shapley values.
The process requires a certain number of training data samples as
a baseline for the computation of the SHAP values. For an explana-
tion method designed for models applied to general cybersecurity
applications, Guo et al. present LEMNA [21], an explainer based
on a mixture regression model and fused lasso penalty term. They
test the method in malware classification for PDF files and binary
reverse-engineering examples.
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2.1 Explainability for cybersecurity anomaly or
attack detection in non-FL settings

Most of the works regarding XAI techniques for cybersecurity
are mainly focused on using them as an end for visualization or
model/prediction verification purposes.

Wang et al. [22] propose a framework that uses SHAP to pro-
vide local and global explanations of IDS to help security analysts
interpret the predictions. Explanations are evaluated and compared
for two supervised models trained on the NSL-KDD dataset1. They
show how different attack types generate different SHAP value
patterns; however, they only use it for visualization purposes and
do not discuss analysis on top of these values to extract further
information.

Antwarg et al. [23] use SHAP to explain anomalies detected by
an unsupervised autoencoder model to provide additional infor-
mation for domain experts. They first identify the features with
high reconstruction error and then use SHAP to explain them. They
evaluate the proposal on the KDD Cup 1999 dataset, among other
datasets from different fields. The explanations are visualized for
easier understanding and triaging of anomalies.

Liu et al. present FAIXID [24], a generic framework to add ex-
plainability to IDS at different layers. The layers include data clean-
ing, explaining the internals of a trained supervised model, local ex-
planations of the predictions, and presenting the results to security
analysts using different visualizations depending on the expertise
or role of each analyst.

Rao et al. [25] train an isolation forest on the NSL-KDD dataset
to classify normal and anomalous samples. They use SHAP and
LIME to extract and visualize explanations. In addition, they auto-
generate labels for the attacks by assigning to each anomaly the
name of the most important feature to make the prediction.

Other proposals leverage or provide additional analysis on top
of the explainability results to extract further information from the
detected anomalies or predicted classes.

Nguyen et al. present GEE [26], an explainable variational au-
toencoder (VAE) for network anomaly detection, which is tested on
NetFlow traces from the UGR16 dataset. In addition, they provide a
gradient-based technique to explain the anomalous samples by iden-
tifying the main features that cause the anomaly. Furthermore, they
use gradient information as a fingerprint to group similar anom-
alies. However, this particular point is underexplored in the paper,
and the gradient method is specific to the VAE model. Liyanage et
al. [27] leverage GEE to develop a framework for characterizing
attacks from network flow anomalies. Instead of using XAI tech-
niques or GEE’s gradient-based explanation methods, they use two
levels of frequent itemset mining (FIM) to extract anomalous data
patterns. Some steps of the mining require labeled data samples.

Barnard et al. [28] present a network IDS divided into two stages.
The first stage involves training a supervised XGBoost model for
binary classification of network flow data and SHAP to explain the
predictions. The second stage trains an autoencoder which uses as
input the SHAP explanations from the previous stage. The central
hypothesis they are testing is whether the system can use the first
stage to distinguish normal from anomalous flows, and the second
stage to distinguish known from unknown behavior. The proposal
1https://www.unb.ca/cic/datasets/nsl.html

is evaluated on the NSL-KDD dataset. However, the second stage is
tightly coupled to the first one, which requires labeled data, and they
do not consider the characterization of different attack behavior
clusters within the explanations.

Sudheera et al. [29] develop ADEPT, a framework for network
flow anomaly detection and attack-stage identification in a dis-
tributed IoT network based on multiple clients and a centralized
server. It works in three phases. Each client locally detects anoma-
lous network flows, which are then sent to the central server. Then,
the central server uses FIM for data mining across all the anoma-
lous flows from all the clients. While explainability is not regarded
in this work, the patterns extracted with FIM have the benefit of
being interpretable. Finally, the malicious flows are classified into
attack stages using supervised learning approaches, which require
ground truth data labels. While their distributed approach bene-
fits from improved privacy and reduced bandwidth compared to
a fully centralized one, anomalous flows containing sensitive data
are still sent to the central server. In contrast, FL architectures can
offer greater privacy and data reduction while still being able to
cooperate with clients.

2.2 Explainability for cybersecurity in federated
learning settings

Haffar et al. [30] use random forests (RF) as surrogates of the su-
pervised FL model. Each client in the network trains a RF using its
local training data. When the FL model misclassifies a sample, they
leverage the trees in the RF to compute feature importance values.
The feature importance is used to detect and explain attacks against
the FL model training process. The explanations are performed at
the client level and require labeled training data. Each client has its
own explainer model, which might differ from the rest as they are
trained independently and not in a federated way, difficulting the
interpretation of the explanations globally. Their focus is not on
explaining and characterizing predictions but on detecting potential
attacks against the FL training process.

Huong et al. [31] propose a FL-based anomaly detection archi-
tecture for industrial control systems. They use SHAP to interpret
and verify the trained FL model, and provide visualizations as a
supporting tool to domain experts. The SHAPmodel explainer itself
is not trained in a federated way. SHAP needs background data
samples as a baseline; however, the authors do not discuss how the
baseline is extracted, which should be given special consideration
due to the distributed nature of data in FL settings.

2.3 Discussion
Most of the literature regarding XAI techniques is focused on us-
ing explanations for visualization and model verification purposes.
Meanwhile, works that leverage and build on top of the explana-
tions to provide additional functionalities (such as giving context
to anomalies in order to group or characterize them) are scarce and
are designed for centralized or distributed architectures that do not
offer the same benefits as FL. Moreover, most works require labeled
data in certain stages of their proposal [22, 24, 27–30], which might
not be feasible in practical settings.

https://www.unb.ca/cic/datasets/nsl.html
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Additionally, while some works use XAI techniques in FL set-
tings, the objective is to verify the FL training process to detect ad-
versarial attacks [30] or visualize and verify the trained model [31].
The explainer models were not trained in a federated way; this
requires breaking the FL assumptions/properties to offer the expla-
nations or using a different explainer on each client, difficulting
the interpretation across the federated network because the same
sample can have different explanations on different clients.

None of the works using SHAP in FL consider or discuss how to
extract a baseline for SHAP in a federated way, which is required
to generate the explainer. The baseline selection is critical in SHAP
because the generated explanations depend on them [32, 33]. In FL,
explanations from all the clients should have a “common ground”
so the same event happening in different clients is explained in the
same terms so the information can be shared with all the federated
devices.

To the best of our knowledge, this work is the first to leverage the
explanations generated with XAI techniques in a FL architecture
in order to give context to the alerts produced by unsupervised
ML-based IDS models for clustering, characterization and auto-
labeling of the anomalous events. All steps are performed in an
unsupervised way.

3 PROPOSED SYSTEM MODEL
In this section, we first describe the considered FL setting and the
threat model. Then, we provide background knowledge on the
SHAP explanation model. Finally, we present an overview of the
proposed method’s architecture.

3.1 Federated learning setting
The proposed system is designed to be deployed in a standard cross-
device FL architecture [34], composed of many clients and a single
FL aggregation server. Low-powered IoT clients are expected to be
connected to the FL aggregation server via a hub or gateway. Mean-
while, more capable IoT clients or other endpoints might be directly
connected to the aggregation server without any intermediary.

All data (training and evaluation data) is generated locally at
each device and remains decentralized throughout the process,
including at the model training and explanation generation phases.
The aggregation server coordinates the process and only receives
model updates or highly aggregated data.

All the clients are expected to be able to perform ML model
training and inference tasks. We do not assume any particular ML
model for the unsupervised anomaly detection process. The expla-
nations are also performed independently of the selected ML model,
as we are adopting the model-agnostic Kernel SHAP algorithm to
generate the explanations (further detailed in section 3.3). However,
to perform the implementation and evaluation (section 5.2), we use
autoencoders due to the successful application of these models for
unsupervised network anomaly detection [7, 19].

3.2 Threat model
We consider a common IoT threat model consisting of different at-
tack stages which generate various network patterns. These stages
are modeled based on the Mirai [16] malware behavior, including:

(i) network scanning to find vulnerable devices, (ii) brute-forcing at-
tacks, (iii) periodic communication with the command and control
(C&C) server, (iv) ingress tool transfer or malware downloading
into the compromised devices, (v) remote command execution and
(vi) denial of service (DoS) attacks. The different malicious activities
are distributed across time and space, not all devices will be exposed
to the same attacks, and they may occur at different times.

This work assumes that no IoT device is compromised prior to
the FL model training. However, they can be attacked or compro-
mised after model training and during the generation of explanation
models. We also assume that no device behaves in an adversarial
manner. Model poisoning attacks against FL [35] are outside the
scope of this paper.

3.3 SHAP background
Lundberg et al. [11] introduce the observation that any explanation
for the prediction of a model 𝑓 is itself a model 𝑔. Here, 𝑔 is the
explanation model, a simpler and more interpretable model that ap-
proximates 𝑓 . They focus on explanation models following additive
feature attribution methods, a linear function of binary variables.
The binary variables are simplified inputs 𝑥 ′, where 𝑥 ′ ∈ {0, 1}𝑀
and𝑀 is the number of features. The simplified inputs are derived
from the original inputs 𝑥 by a mapping function 𝑥 = ℎ𝑥 (𝑥 ′) de-
fined for each input. Additive feature attribution methods follow
the definition shown in equation (1).

𝑓 (𝑥) = 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 (1)

The 𝜙𝑖 ∈ R values represent the importance effect of the corre-
sponding feature for a particular prediction. The class of additive
feature attribution methods presents a unique solution where the
𝜙𝑖 values are the Shapley values [11] from cooperative game theory.
The computation of Shapley values involves testing different sub-
sets of data features, and the importance value is assigned based on
the effect on the model prediction of including that feature. SHAP
values are adapted Shapley values; since most ML models cannot
handle changes in the number of sample features, SHAP represents
an absent feature by approximating it using a conditional expecta-
tion function of 𝑓 . The SHAP value of a particular feature gives the
change in the expected model prediction with respect to the base
value when conditioning on that feature. Adding the SHAP values
of all the features results in the same value as the prediction 𝑓 (𝑥).
The base value (𝜙0) represents the value that would be predicted if
all the sample features were absent.

Kernel SHAP is a model-agnostic method to approximate those
values more efficiently than classic Shapley sampling methods. The
method requires a background dataset to compute the expected
values. For large datasets, this background data is usually subsam-
pled from the training data because the computation time for the
SHAP values increases linearly with the size of the background
data. However, in FL settings, the dataset is distributed across all
the clients, and no party (including the FL aggregation server) can
directly access the raw data of others. Therefore, the selection of
the background data requires special attention in order to capture
representative samples from all the clients in the network while also
respecting data locality requirements (privacy reasons) and data
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transmission volume minimization. Ensuring that all the clients
use the same background samples will guarantee that all the expla-
nations provided by the clients are computed with respect to the
same background and be comparable to each other.

3.4 Architecture of the proposed method
The diagram of all the components involved in the proposedmethod
is shown in Figure 1. The diagram is divided into three main blocks:
(i) anomaly detection model training, (ii) model inference and (iii)
explainer model training and the characterization of the anomalies.

The main focus of this manuscript is not on the FL anomaly
detection model training or inference, but on the third block re-
garding the FL explainer training and anomaly characterization, as
denoted by the steps with a shaded background in Figure 1.

As shown in Figure 1, the last block includes two steps that are
performed in a federated way: the explainer model training and the
characterization of the anomalies. We will use Kernel SHAP to train
the explainer model, and as mentioned in section 3.3, it requires
two inputs, the prediction model 𝑓 and a background dataset. The
output of this step is the explainer model 𝑔. The prediction model
𝑓 is the global anomaly detection model trained with FL, which
is common to all clients. To ensure that all clients have the same
explainer model 𝑔, the same background dataset must be used,
which is usually a representative subsample of the training data.
However, the data in FL settings are distributed across all clients
and not shared. To generate a common representative background
set as a subsample of the entire distributed dataset, we will leverage
and adapt a federated version of k-means based on k-FED [17]. In
this step, the 𝑘 from k-means refers to the number of subsampled
data samples to be used as the background for SHAP.

The anomaly characterization process is the second step that
requires the use of FL. One of the inputs of this process is the
generated explanations for the anomalous samples, that is, the 𝜙𝑖
SHAP values showing the importance of each feature. The other
inputs are the processed data and the raw data of the anomalous
samples. While some features, such as source and destination IP
addresses or timestamps, are not suitable as inputs to the ML model
to prevent learning from spurious correlations [36, 37], they are
certainly valuable for security analysts for correlating with other
events. Hence, we use both for the characterization. Since the anom-
aly explanations are local to each client, we use FL to ensure that
all clients are able to know and identify all the different anomalous
activities found across the federated network, even if each client
has been exposed to a different set of attacks. Specifically, we will
again leverage k-FED [17] to group the explainability results in
each client and share it with other peers in the network so that all
can have the same clustering labels to refer to the same anomalous
instances. In this step, 𝑘 refers to the global number of anomalous
behaviors found throughout the federated network.

4 ALGORITHM DETAILS
In this section, we detail the procedures to perform the explainer
model training and the anomaly clustering in a FL setting. Addition-
ally, we describe the cluster explanation and the anomaly message
exchange format.

Algorithm 1: FL training for the Kernel SHAP explainer
model.
Input: A set of clients 𝑍 each with local data 𝑵 (𝑧) , local number of

clusters for each client 𝑘 (𝑧) and number of global clusters 𝑘 .
Result: A trained Kernel SHAP model at each client.

1 foreach client 𝑧 ∈ 𝑍 in parallel do
2 Run k-means with 𝑘 (𝑧) in local data 𝑵 (𝑧) and obtain cluster

centers Θ(𝑧) = (𝜽 (𝑧)1 , . . . , 𝜽 (𝑧)
𝑘 (𝑧) ) .

3 Compute number of data samples in each cluster
𝐶 (𝑧) = (𝑐 (𝑧)1 , . . . , 𝑐

(𝑧)
𝑘 (𝑧) ) .

4 for 𝑖 ∈ {1, 2, . . . , 𝑘 (𝑧) } do
5 for 𝑗 ∈ {1, 2, . . . , d} do
6 t← argmint ( |𝑵 (𝑧) [t, 𝑗 ] − 𝜽

(𝑧)
𝑖
[ 𝑗 ] | )

7 𝜽 (𝑧)
𝑖
[ 𝑗 ] ← 𝑵 (𝑧) [𝑡, 𝑗 ].

8 end
9 end

10 Send Θ(𝑧) and𝐶 (𝑧) to the central server.
11 end
12 Pick any 𝑧 ∈ [𝑍 ] and let𝑀 ← Θ(𝑧) (in server).
13 while there are less than 𝑘 points in𝑀 do
14 Let 𝜽 ← argmax𝑧∈ [𝑍 ],𝑖∈ [𝑘 ]𝑑𝑀 (𝜽

(𝑧)
𝑖
) . That is, the farthest

𝜽 (𝑧)
𝑖

from the set𝑀 .
15 𝑀 ← 𝑀 ∪ {𝜽 }.
16 end
17 Run one round of Lloyd’s heuristic (k-means), using the points in𝑀

as initial centers, to cluster points 𝜽 (𝑧)
𝑖

, 𝑧 ∈ [𝑍 ], 𝑖 ∈ [𝑘 ] into 𝑘
clusters: B = (𝒃1,𝒃2, . . . ,𝒃𝑘 ) .

18 𝐶 ← Estimate total number of data samples in the global clustering
results using B and𝐶 (𝑧) .

19 for 𝑖 ∈ {1, 2, . . . , 𝑘 } do
20 𝒃𝒊 ← Θ(𝑧) [argmin(𝑑 (𝒃𝒊,Θ(𝑧) ) ) ].
21 end
22 foreach client 𝑧 ∈ 𝑍 in parallel do
23 Receive B and𝐶 from the server.
24 Train Kernel SHAP model (B,𝐶).
25 end

As explained in section 3.4, we leverage and adapt k-FED [17]
for both FL processes. k-FED includes several practical advantages
that make it suitable for large federated networks. First, it is a one-
shot process that only requires a single round of communication
to compute the global clustering results, significantly reducing the
communication overhead. Second, the computation is done locally
at each client and is independent of each other; therefore, it does
not require synchronization and can be easily parallelized.

4.1 Federated learning for explainer model
training

The FL method to train the Kernel SHAP explainer models is de-
scribed in Algorithm 1. The main objective of this algorithm is to
compute SHAP background baseline samples common to all the
clients in the federated network. Using a notation similar to the one
in k-FED [17], 𝑵 (𝑧 ) ∈ R𝑛 (𝑧)×𝑑 denotes the local training dataset of
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Figure 1: Diagram of the proposed methodology. The components within the dashed frames represent steps performed using
FL. Components with shaded background refer to the contributions of this paper.

a particular client 𝑧 with 𝑛 (𝑧 ) local training samples, each having 𝑑
dimensions.

Each client computes a local k-means process (as described in the
first algorithm from [17]) using 𝑘 (𝑧 ) centroids. Unlike the original
k-FED (described in the second algorithm from the same reference),
we include two additional steps to adapt it for SHAP background
data extraction. First, we compute the number of data samples in
each cluster (𝐶 (𝑧 ) , line 3 in Algorithm 1). Then, we round the ob-
tained cluster center values so that the features of each center are
equal to the value of the closest feature in 𝑵 (𝑧 ) (lines 4–9). This
rounding step is included to match the non-federated implemen-
tation of k-means sampling in the SHAP source code [38]. The
rounded cluster centers Θ(𝑧 ) and the 𝐶 (𝑧 ) are sent to the server.

At the server, the global clustering into 𝑘 groups is performed
in the same way as in k-FED. However, we again include two addi-
tional postprocessing steps. We estimate the total number of sam-
ples in each global cluster (𝐶 , line 18) based on the received 𝐶 (𝑧 )
values and the final clustering result B. Then, each global centroid
is assigned to the nearest center from the local cluster candidates
Θ(𝑧 ) (lines 19-21). This rounding step is performed to ensure that
the final clustering centroids include values representative of the
training data from all 𝑵 (𝑧 ) .

The global results B and 𝐶 are sent to all clients; therefore, they
use the same values as SHAP background baseline samples during
the Kernel SHAP model training.

4.2 Federated learning for anomaly clustering
The anomaly clustering process across the federated network is
detailed in Algorithm 2. The main objective of this step is to com-
pute a global clustering of the anomalies found across all the clients
using FL. The results are shared with all clients, so they can identify
and know all the found activities throughout the network (even if
each client has not been exposed to all attacks or no attack at all).

Using the explainer model trained with Algorithm 1, first, each
client computes the SHAP values of all its anomalous samples

Algorithm 2: FL clustering of the SHAP values of the iden-
tified anomalies.
Input: A set of clients 𝑍 with anomalous samples, and number of

global clusters 𝑘 .
Result: The global clustering results of the anomalies across all the

clients in the federated network.
1 foreach client 𝑧 ∈ 𝑍 in parallel do
2 Run trained Kernel SHAP on the anomalous samples to create

the local dataset 𝚽(𝑧) .
3 𝚽

(𝑧)
norm ← independently scale samples from 𝚽

(𝑧) to unit norm.
4 Estimate 𝑘 (𝑧) with HDBSCAN on 𝚽

(𝑧)
norm. Send it to the server.

5 end
6 𝑘 ′ ← max𝑧 (𝑘 (𝑧) ) . Send 𝑘 ′ to the clients.
7 foreach client 𝑧 ∈ 𝑍 in parallel do
8 Run k-means with 𝑘 ′ in local data 𝚽(𝑧)norm and obtain cluster

centers Σ(𝑧) = (𝝈 (𝑧)1 , . . . ,𝝈 (𝑧)
𝑘′ ) .

9 Send Σ(𝑧) to the central server.
10 end
11 Pick any 𝑧 ∈ [𝑍 ] and let𝑀 ← Σ(𝑧) (in server).
12 while there are less than 𝑘 points in𝑀 do
13 Let 𝝈̄ ← argmax𝑧∈ [𝑍 ],𝑖∈ [𝑘 ]𝑑𝑀 (𝝈

(𝑧)
𝑖
) . That is, the farthest

𝝈 (𝑧)
𝑖

from the set𝑀 .
14 𝑀 ← 𝑀 ∪ {𝝈̄ }.
15 end
16 Run one round of Lloyd’s heuristic (k-means), using the points in𝑀

as initial centers, to cluster points 𝝈 (𝑧)
𝑖

, 𝑧 ∈ [𝑍 ], 𝑖 ∈ [𝑘 ] into 𝑘
clusters: S = (𝒔1, 𝒔2, . . . , 𝒔𝑘 ) . Send S to clients.

(𝚽(𝑧 ) ∈ R𝑛
(𝑧)
anom×𝑑 ). Then, each sample from 𝚽

(𝑧 ) is scaled to unit
norm to create 𝚽(𝑧 )norm; this step is performed so that the subsequent
clustering steps give more weight to the direction of the SHAP
values instead of the magnitude.

After the normalization step, each client locally applies the HDB-
SCAN clustering algorithm to automatically estimate the number
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of clusters (𝑘 (𝑧 ) ) in𝚽(𝑧 )norm (at this step, we are only interested in the
local estimation of the number of clusters, not the clustering results
themselves). HDBSCAN is used due to easier and more intuitive
hyperparameter selection compared to sweeping through different
values of 𝑘 (𝑧 ) , clustering the data, and then using internal cluster-
ing validation metrics to evaluate the fitness, which might require
manual inspection to interpret the fitness results. Since the number
of clients in a FL setting can be very large, using HDBSCAN can
improve the automation of this process.

After estimating 𝑘 (𝑧 ) in each client, the value is sent to the server.
The server selects 𝑘′ as the maximum 𝑘 (𝑧 ) for all clients 𝑧. 𝑘′ is the
number of clusters per device, and 𝑘 is the total number of clusters
over the federated network.

The rest of the federated k-means clustering is performed in the
same way as in k-FED. In the end, all clients will have the clustering
results S corresponding to the different anomalous patterns found
throughout the network.

In Algorithm 2, we assume for simplicity that 𝑘 is known and it is
an input of the algorithm. However 𝑘 will be unknown in practice,
as it refers to the number of anomalous behavior clusters found
throughout the network. Therefore, to address this issue, we are
going to consider 𝑘 as unknown and will estimate and select it
based on unsupervised internal clustering validation metrics, with
the added complexity that the metric must be computed efficiently
in a federated (distributed) setting. For this purpose, we are going
to adapt the Calinski-Harabasz (CH) score to a FL setting, shown
in Algorithm 3. Since the CH score is based on the between-group
and within-group sum of squares ratios, these values can be easily
computed in a distributed setting and only incur minimal trans-
mission costs. Alternative metrics, such as the Silhouette score,
may not be suitable in FL settings because it requires computing
pairwise distances between all the samples. Since samples in the
same cluster can be distributed among different clients, this would
require higher data transmission and computation costs.

For the estimation of 𝑘 , we repeat the steps from lines 7–16 in
Algorithm 2 for different values of 𝑘 , starting from 𝑘′ to no more
than 𝑘′ |𝑍 |. After each repetition, we use Algorithm 3 to measure
the clustering performance, where a higher CH score indicates a
better fit.

4.3 Explaining clusters
After executing the steps described in Algorithms 1 and 2, each
client has the information about which features have been the most
decisive in classifying the samples as anomalous by means of the
SHAP values. Additionally, those samples can be grouped using
the global clustering results computed using FL. Thus, groups of
anomalies can be broadly characterized by the SHAP values of their
corresponding cluster center.

However, SHAP values only give the importance of a feature
for the prediction of the model, not the actual values of said fea-
ture. To find out which feature values the anomalies for a specific
cluster have in common, we will compute basic summary statis-
tics (e.g., min, max, mean, std, percentiles) over the features of all
anomalous samples for each cluster. More sophisticated data ex-
traction processes could be used to extract additional patterns from
the anomalies in each group. While a detailed description of those

Algorithm 3: Computation of the Calinski-Harabasz score
in a federated (distributed) way.
Input: A set of clients 𝑍 with local data X(𝑧) , cluster labeling

results L(𝑧) for the local data and global cluster centers GC.
Result: Calinski-Harabasz score CH.

1 𝐾 ← total number of unique labels (clusters).
2 foreach client 𝑧 ∈ 𝑍 in parallel do
3 𝑛 (𝑧) ← number of samples in X(𝑧) .
4 𝑠 (𝑧) ← sum of X(𝑧) along the columns (features).
5 Send 𝑛 (𝑧) and 𝑠 (𝑧) to the server.
6 end
7 𝑁 ← sum of 𝑛 (𝑧) for all clients 𝑧 ∈ 𝑍 . (total number of samples)

8 𝐶𝑔 ← sum of 𝑠 (𝑧) along columns for all clients 𝑧∈𝑍
𝑁

. (dataset center)
9 𝑊𝐺𝑆𝑆 ← 0 (within-group sum of squares).

10 𝐵𝐺𝑆𝑆 ← 0 (between-group sum of squares).
11 for 𝑘 in range 𝐾 do
12 foreach client 𝑧 ∈ 𝑍 in parallel do
13 X(𝑧)

𝑘
← X(𝑧) where L(𝑧) = 𝑘 .

14 𝑊 (𝑧) ← sum of squared distances between X(𝑧)
𝑘

and GC𝑘 .
15 𝑛

(𝑧)
𝑘
← number of samples in X(𝑧)

𝑘
.

16 Send𝑊 (𝑧) and 𝑛 (𝑧)
𝑘

to the server.
17 end
18 𝑊𝐺𝑆𝑆 ←𝑊𝐺𝑆𝑆+ sum𝑊 (𝑧) for all clients 𝑧 ∈ 𝑍 .
19 𝐵𝐺𝑆𝑆 ← 𝐵𝐺𝑆𝑆+ (sum 𝑛

(𝑧)
𝑘

for all clients 𝑧 ∈ 𝑍 ) × squared
distance between GC𝑘 and𝐶𝑔 .

20 end
21 CH← 𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
𝑁 −𝐾
𝐾−1 .

methods is considered outside the scope of this paper, some exam-
ples could include frequent itemset mining to extract the repeating
feature patterns within a cluster, or training shallow decision trees
or linear models to identify the most salient feature ranges that
differentiate one cluster of anomalies from the rest of clusters in a
one-vs-all approach or considering all clusters simultaneously.

4.4 Anomaly message exchange
Grouping the anomalies based on a similar explanation allows
several benefits, such as capturing more context of the events, alert
volume reduction (reducing overload for the security analysts) and
fewer data transmission costs when exchanging the alerts to a
security management system (e.g., SIEM). Anomalies detected in
the new incoming data can be automatically assigned to one of
the learned global clusters based on proximity (in the explanation
space) to the nearest center and auto-tagged with the cluster’s
index to provide a context that is common to all the clients in the
federated network.

Additionally, since a single attack can generate multiple anoma-
lous activities corresponding to different clusters, providing alert
messages related to the temporal correlation of the anomalous
clusters occurring simultaneously could help identify the tools or
methods used to perform the attack.

To this end, using a standard anomaly message exchange format
makes communicating with all the clients in the network easier.
Moreover, it allows interoperability with other intrusion detection
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systems and event correlation engines to create actionable informa-
tion by combining alerts from this type of unsupervised anomaly
detection systems and other traditional solutions.

To allow this interconnection and communication, we rely on the
Intrusion Detection Message Exchange Format (IDMEF) described
in RFC 4765 and RFC 4766 [39]. The Alert IDMEF message type
provides a way to describe detailed event information. In our case,
we use the Alert type to create a message generated by a group of
anomalous events corresponding to a single cluster. To also provide
temporal correlation of anomalies falling into different clusters at
similar time windows, we use the CorrelationAlert class, which
groups one or more Alert messages.

Since we still keep the raw network data available for the anom-
aly characterization step, as shown in Figure 1, we can populate the
Source and Target classes with information regarding the source
and destination addresses involved in the anomalous events. As
the Classification class, we include the cluster’s index of the
anomalies. Besides, the AdditionalData class allows us to include
the relevant context regarding the group of anomalies, such as the
summary statistics described in the previous section. Since the aver-
age SHAP values of each cluster (centroids) are known to all clients
and the FL server, they can also be sent to the security analysts, so
they know which features require more attention.

5 EVALUATION
In this section we present the experimental results evaluated on
two network-based attack detection datasets. The first relies on
characteristics found in individual network packets, while the sec-
ond dataset extracts features across packets in a network flow and
several temporal windows.

5.1 Datasets
The dataset for network packet-level features is extracted using the
Gotham Testbed [18], a platform to create reproducible and large-
scale IoT scenarios for dataset generation. The data processing
and the FL anomaly detection model training methodology is taken
from [40], where, for each network packet, 69 features are extracted
from the packet header, content and inter-arrival times.

Gotham includes, among others, the real Mirai malware and
several red-teaming tools to generate the attack dataset. For the
evaluation in this paper, the selected behaviors and attacks gen-
erated with Mirai comprise most stages from the botnet life cycle
(which includes stealthier as well as volumetric activities): C&C
communication, network scanning for vulnerable devices, creden-
tial brute forcing, reporting victims to the C&C server, infecting
the victims with the Mirai binary and remote command execu-
tion. DoS attacks are included in the following flow-level dataset.
Red-teaming tools include activities such as Masscan and Nmap
network-wide scans with different packet rates and port ranges,
and CoAP amplification attacks.

Additionally, we use N-BaIoT [19] to evaluate the proposed
method in a dataset based on network flow-level features. When
a packet arrives/leaves, the feature extraction process computes a
total of 115 features, which includes summary statistics taken over
several temporal windows of packets and aggregated by different
combinations of source IP, MAC and port addresses. Further details

on the feature extraction process are given by Mirsky et al. [7].
For the attack evaluation, N-BaIoT includes two real IoT malware
binaries, Gafgyt (a.k.a. BASHLITE) and Mirai, that generate the fol-
lowing volumetric attacks. For Gafgyt: Scan (network scanning for
vulnerable devices), Junk (sending spam data), UDP flooding, TCP
flooding and Combo (combination of Junk and opening connections
to specific hosts). For Mirai: Scan, ACK flooding, SYN flooding, UDP
flooding, UDPplain (UDP flooding with higher packet rate).

5.2 Federated learning model training
The federated model training corresponds to the first block depicted
in Figure 1 (anomaly detection model training). The selected anom-
aly detection model for both datasets is an autoencoder trained
and tuned on benign instances from their respective datasets and
evaluated on data not used for training.

For the packet-level dataset, we use the same autoencoder de-
scribed by Sáez-de-Cámara et al. [40], with input and output sizes of
69 nodes and 2 hidden encoder layers composed of 34 and 17 nodes,
respectively. The decoder part is symmetric. The ReLU activation
function is used after each layer. The model is trained in a FL set-
ting composed of 11 clients, corresponding to one City power and
ten Combined cycle nodes from [18], which use CoAP as the pri-
mary protocol to transmit the telemetry data. FL is performed for
100 rounds and 4 local training epochs using the Adam optimizer
with a 0.005 learning rate and 1 × 10−5 𝐿2 regularization weight.

The anomaly threshold for each device is computed using an-
other separate validation set of benign instances (also local to each
device and not used during training), the maximum value of the
autoencoder reconstruction error is selected as a threshold to mini-
mize the number of false positives. After evaluating the FL model
on the attacking instances, we obtain F1 scores greater than 0.9999.

For the flow-level dataset, we reproduce the autoencoder model
from [19]. The autoencoder has an input and output size of 115
nodes and 4 hidden encoder layers composed of 86, 57, 37 and
28 nodes, respectively, with a symmetric decoder. We use the ReLU
activation function after each layer. For the FL training, we select 2
clients, the two Doorbell IoT devices Danmini and Ennio from [19].
Features are transformed using a MinMax scaler fitted across the
federated network. FL is performed for 30 rounds and 1 local train-
ing epoch using the Adam optimizer with a 0.008 learning rate and
1 × 10−5 𝐿2 regularization weight.

In this case, the anomaly detection threshold for each device is
selected in the same way as described by Meidan et al. [19], taking
the sum of the reconstruction error mean and standard deviation
over a separate validation set of benign instances not used during
training (scaled using the previously fitted MinMax scaler). The
FL model evaluation on the scaled attack samples gives F1 scores
greater than 0.9997.

5.3 Federated learning SHAP explainer and
SHAP values

In this section, we are going to show the application of the FL
SHAP explainer training and the generated explanations. These
results correspond to the “Train XAI explainer” and “Generate
explanations” steps from the third block shown in Figure 1.
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As noted in Algorithm 1, the FL Kernel SHAP explainer model
training requires a set of clients 𝑍 , the local number of clusters
for each client 𝑘 (𝑧 ) and the number of global clusters 𝑘 . Since the
computation time increases linearly with the size of the background
data 𝑘 , we are going to select small values for 𝑘 relative to the
available number of training samples and set 𝑘 (𝑧 ) = 𝑘 ∀𝑧 ∈ 𝑍 to
simplify the parameter selection for Algorithm 1. However, since
the selection of 𝑘 can affect the generated SHAP values, we are
going to repeat the process for two values, 𝑘 = 5 and 𝑘 = 20, to
explore their effect.

After sampling the𝑘 background values and using them as a base-
line to create the Kernel SHAP explainer (Algorithm 1), each client
evaluates the explainer on the identified anomalous samples, and
then, the SHAP values are normalized (lines 2–3 in Algorithm 2).

For the packet-level dataset, among the 11 clients used for the
federated model training, 2 of them received attacks. Each attacked
device is exposed to different anomalous activities; however, some
are common to multiple devices. The first device is exposed to Mirai
C&C traffic and the initial stages of the malware (scanning, prein-
fection and infection phases). The second device received various
scanning activities from Nmap first, and then it was exploited to
perform reflected DoS CoAP amplification attacks.

The generated SHAP values of the anomalies are local to each
client; however, for illustrative purposes, Figure 2 shows, for both
𝑘 = 5 and 20, a 2D visualization of the SHAP values of all the
anomalous samples in a centralized way using the UMAP dimension
reduction technique. In practice, centralizing the data would not
be feasible in federated settings because it requires each client to
transmit the SHAP values to the central server. Figure 2 highlights
the difference between using 𝑘 = 5 samples as baseline (Figure 2a)
and 𝑘 = 20 samples (Figure 2b). We use the same UMAP random
seed initialization for both cases to make them comparable. The
𝑘 = 20 case shows more clearly defined clusters compared to 𝑘 = 5.
Each anomalous point is colored according to an attack label (the
normal label represents a few false positives). The labeling process
is performed using a heuristic based on the IP source and origin
addresses and timestamps, and it is only used for visualization
purposes and not for training. Under the same label, there might
be more than one anomalous behavior, and different labels can also
have patterns in common, as shown in Figure 2.

We use the same methodology for the flow-level dataset as in the
previous one. However, in the N-BaIoT dataset, for each device, the
attack samples are provided in a separate file for each distinct attack
type. The attacks for the Danmini device include 5 Gafgyt and 5
Mirai attacks, whereas, for Ennio, it only includes 5 Gafgyt attacks.
Therefore, to train the Kernel SHAP explainer and the generation
of the SHAP values, we are going to simulate 15 clients in the
federated network, where each attack file is assigned to a simulated
IoT client. To compute the SHAP background samples, the benign
instances from Danmini are shared among the 10 simulated clients,
and the benign instances from Ennio are shared for the remaining
5. Each simulated client then computes the SHAP values of its
corresponding attack type anomalies (all simulated clients use the
same trained FL anomaly detection model described in section 5.2).

Figure 3 shows the 2D visualization of the SHAP values (all cen-
tralized) for 𝑘 = 5 (Figure 3a) and 𝑘 = 20 (Figure 3b). In this case, the

difference between the sizes of the SHAP background samples is not
as apparent as in the packet-level dataset. The visualization shows
interesting patterns in the SHAP values of the anomalous samples.
For instance, Gafgyt Junk and Combo are close to each other and
span a similar region in the embedding. According to [19], Gafgyt
Combo comprises Gafgyt Junk and additional connections. Simi-
larly, Gafgyt TCP and UDP share the same space in the embedding,
both are attacks with similar behavior, but the feature extraction
process does not distinguish between TCP and UDP. Mirai scan and
Gafgyt scan activities are also placed in a similar embedding space.

5.4 Federated learning anomaly clustering
The federated anomaly clustering step is going to be performed us-
ing the SHAP values obtained with the 𝑘 = 20 background samples
case for both datasets. As noted in Algorithm 2, we estimate each
𝑘 (𝑧 )—the number of anomalous clusters local to each device—using
HDBSCAN and compute 𝑘′ at the server as the maximum of all the
received 𝑘 (𝑧 ) . We use the same HDBSCAN parameters for all the
clients: minimum cluster size set to 300, min number of samples to
1 and cluster selection epsilon to 0.05.

For the packet-level dataset, the estimated number of clusters
for the first client is 𝑘 (1) = 14, and 𝑘 (2) = 4 for the second. Thus,
the final value for 𝑘′ is set to 14 for both clients when performing
the federated k-means process. Since 𝑘—the optimal value of the
total number of anomalous clusters over the federated network—is
unknown, we will perform multiple federated k-means trials for 𝑘
ranging from 𝑘′ to (𝑘′ ×number of devices) − 1 (from 14 to 27) and
compute the corresponding CH scores, as explained in section 4.2.
Additionally, we will perform 30 repetitions for each trial to account
for the effects caused by the random initialization of the k-means
centroids.

The obtained clustering validation metrics are shown in Figure 4.
The results of the unsupervised internal validation metrics using
the CH score computed in a federated (distributed) way are shown
in Figure 4a, where higher scores indicate a better fit. Figure 4b
shows an additional experiment to measure the clustering quality
results between the federated and centralized settings. For this
comparison, we compute the adjusted Rand score between the
federated k-means and the centralized HDBSCAN on the joined
data using the same parameters as for the estimation of the 𝑘 (𝑧 )
values for each client. The global HDBSCAN clustered the data into
16 clusters (and some non-clustered samples, which are considered
noise). However, unlike HDBSCAN, k-means does not consider any
samples as non-clustered noise.

In a deployment FL scenario, using ground truth clustering re-
sults or centralizing all the data is not feasible for selecting the
optimal value for 𝑘 . Accordingly, the decision will be only based on
the unsupervised internal validation metrics, selecting the smallest
number of clusters that show a high enough CH score. According
to Figure 4a, 𝑘 = 22 is an acceptable value. The final distribution
of the number of anomalous samples for each cluster and client is
detailed in Table 1. For each client, the table shows the percentage
of the anomalous samples grouped into a particular cluster.

For the flow-level dataset, we follow the same methodology as
in the previous case and use the same HDBSCAN parameters to
estimate 𝑘′, yielding a value of 8. This time we test 𝑘 from 8 to 59 to
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(a) SHAP using 𝑘 = 5 samples as background.
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(b) SHAP using 𝑘 = 20 samples as background.

Figure 2: 2D visualization of the packet-based SHAP values of anomalous samples (centralized) total: 138,435 anomalies.
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(a) SHAP using 𝑘 = 5 samples as background.
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(b) SHAP using 𝑘 = 20 samples as background.

Figure 3: 2D visualization of the flow-based SHAP values of anomalous samples (centralized) total: 1,285,084 anomalies.
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(a) Calinski-Harabasz score computed in a federated way.
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(b) Adjusted Rand score between the federated k-means and centralized HDB-
SCAN clustering.

Figure 4: Federated k-means clustering validation metrics for the packet-based dataset. Horizontal axis represents the global
number of clusters 𝑘 . For each 𝑘 , the box plot shows the scores for 30 repetitions.
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Table 1: Distribution of the 22 global clusters for the packet-based dataset across the 2 clients that received attacks. The values
are shown as percentage (%) of samples that belong to each cluster per client. A value of ’-’ represents 0 samples.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Client 1 3.47 12.2 16.6 31.3 1.08 0.87 0.87 11.1 0.94 1.04 0.70 0.87 18.3 0.66 0.00 - - - - - 0.01 -
Client 2 - - - - - - - - 2.70 - 0.00 - - - 47.1 0.15 47.1 0.02 2.44 0.01 0.06 0.33

reduce the number of repetitions. Figure 5 shows the results of the
clustering validation metrics. Based on the results from Figure 5a,
we select 11 as the global number of clusters. While the CH score
seems to have an increasing trend for higher values of 𝑘 , 11 is the
smallest number of clusters that show a spike in the score. The final
distribution of the clusters for each client is shown in Table 2.

5.5 Anomaly cluster alert explanation
Here we show the interpretation or explanation of the results ob-
tained after the federated k-means clustering of the SHAP values
from the anomalous samples from Table 1 and Table 2.

For the packet-level dataset (Table 1), we can see little over-
lap in the anomaly clustering results between the two clients,
which is reasonable considering the different types of attacks that
target the two clients. However, there is a significant overlap in
the anomalies belonging to cluster C8. The most salient features
given by SHAP that contribute towards classifying the packets
as anomaly are ip_tos, ip_flag_DF, sport_PRIVILEGED_PORTS,
dport_PRIVILEGED_PORTS and ip_proto_ICMP. The packets cor-
responding to C8 from both clients are composed of ICMP desti-
nation unreachable messages as a response to some port scanning
activity.

The SHAP values corresponding to the nearest anomalous sam-
ple to each cluster center for the first client in the packet-based
dataset is shown in the heat-map from Figure 6. The remaining
heat-maps are all shown in the appendix in Figure 7 and Figure 8
for the first (again) and second clients, respectively.

C4 and C10 are related to the Mirai binary downloading stage
from the first client. The second client also has a few packets in
C10, which correspond to port scanning in the HTTP range. Most
clusters C1-C3, C5-C7, C9 and C11-C13 are related to Mirai port
scanning activities.

Some interesting clusters in client 2 are C14 and C16, which
correspond to CoAP amplification attacks that send a flood of GET
requests to the .well-known/core resource with a spoofed source
address using code from the AMP-Research [41] tool. The legitimate
training data of this particular device does include packets with the
same request; however, the packets from the attack are correctly
classified as anomalous. In particular, the anomalies from C16 show
high SHAP values in the ip_ttl and ip_flag_DF. After inspecting
the source code of the attack from [41], those fields are specifically
set to certain values, which differed from the normal behavior, and
the model detected those implementation particularities.

For the flow-level dataset (Table 2), we can see that clients do
share samples from many clusters. In particular, the different ac-
tivity from Gafgyt across the two IoT devices (Danmini and Ennio)
show very similar distribution, while Mirai related attacks show
different set of clusters, except for Mirai scan, which is similar to
Gafgyt scan activity.

The SHAP values corresponding to the nearest anomalous sam-
ple to each cluster center are shown in the appendix from Figure 9
to Figure 23 for all 15 clients.

5.6 Anomaly message exchange
Listing 1 shows an example of an IDMEF alert message generated as
a response to many anomalous samples from client 2 in the packet-
based dataset falling under cluster C16. In addition, the message
includes the CorrelationAlert class referencing another alert
message of anomalies co-occurring in time that belong to another
cluster center. The AdditionalData class is populated with extra
information, such as the number of anomalies included in the alert
and summary statistics (including mean, variance and percentiles)
of the features of the data taken over all anomalous samples in the
referenced cluster.

Listing 1: IDMEF alert message example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE IDMEF-Message PUBLIC
"-//IETF//DTD RFC XXXX IDMEF v1.0//EN" "idmef-message.dtd">

<IDMEF-Message >
<Alert messageid="000064185718162468100002 A6D0001">

<Analyzer analyzerid="fl-client-01"/>
<CreateTime ntpstamp="0xe7c2d598 .0x0">2023 -03-20-T12 :52:40Z
</CreateTime >
<DetectTime >2023 -03-20-T12 :30:51Z</DetectTime >
<Source >

<Node>
<Address category="ipv4-addr">

<address >192.168.0.200 </address >
</Address > </Node> </Source >

<Target >
<Node>

<Address category="ipv4-addr">
<address >192.168.20.10 </address >

</Address > </Node>
<Service >

<portlist >5683</portlist >
</Service > </Target >

<Classification text="anomalies from cluster C16"/>
<CorrelationAlert >

<name>anomalies from multiple clusters in short time </name>
<alertident >000064185585629925100002 A620001 </alertident >

</CorrelationAlert >
<AdditionalData meaning="packet_length-std" type="real">0.0
</AdditionalData >
<AdditionalData meaning="packet_length-mean" type="real">63
</AdditionalData >
<!-- (...) More data omitted (...) -->
<AdditionalData meaning="anomalies count" type="integer">32171
</AdditionalData >

</Alert >
</IDMEF-Message >

While the correlation alert we describe is only temporal and
computed from anomalies generated at each device in isolation,
more sophisticated correlation processes could be made at the SIEM
level. Including alert correlation across clients, analyzing alert clus-
ters that usually appear together that could be attributed to attacks
from certain tools or malware by correlating with alerts triggered
from other security solutions and indicators of compromise.
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(a) Calinski-Harabasz score computed in a federated way.
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(b) Adjusted Rand score between the federated k-means and centralized HDB-
SCAN clustering.

Figure 5: Federated k-means clustering validation metrics for the flow-based dataset. Horizontal axis represents the global
number of clusters 𝑘 . For each 𝑘 , the box plot shows the scores for 30 repetitions.

Table 2: Distribution of the 11 global clusters for the flow-based dataset across the 15 clients that received attacks. The values
are shown as percentage (%) of samples that belong to each cluster per client. A value of ’-’ represents 0 samples.

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Danmini_Doorbell gafgyt_combo - 83.10 0.01 14.28 2.30 - 0.23 0.07 0.01 - -
Danmini_Doorbell gafgyt_junk - 60.49 0.02 32.56 6.59 - 0.18 0.16 0.01 - -
Danmini_Doorbell gafgyt_scan - - 0.01 - - - 95.13 4.85 0.01 - -
Danmini_Doorbell gafgyt_tcp - - 0.00 - - - - - 99.91 0.09 -
Danmini_Doorbell gafgyt_udp - 0.00 0.02 - - - - - 99.91 0.03 0.03
Danmini_Doorbell mirai_ack 61.20 - 0.01 - - 4.17 33.68 0.94 - - -
Danmini_Doorbell mirai_scan - - - - - - 99.99 - 0.01 - -
Danmini_Doorbell mirai_syn 62.54 - 0.00 - 0.00 6.88 28.35 2.22 0.00 - -
Danmini_Doorbell mirai_udp 62.84 - - - - 2.59 33.79 0.77 0.00 - -
Danmini_Doorbell mirai_udpplain 0.01 - 0.01 - - - 42.63 1.42 - - 55.93
Ennio_Doorbell gafgyt_combo - 88.05 0.01 11.62 0.00 - 0.24 0.07 0.01 - -
Ennio_Doorbell gafgyt_junk - 65.44 0.02 31.76 2.43 - 0.18 0.15 0.01 - -
Ennio_Doorbell gafgyt_scan - - 0.01 - - - 95.62 4.32 0.06 - -
Ennio_Doorbell gafgyt_tcp - - 0.00 - - - - - 99.92 0.08 -
Ennio_Doorbell gafgyt_udp - - 0.01 - - - - - 99.95 0.04 0.01
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Figure 6: Client 1 SHAP values for each cluster center in the packet-based dataset.

The IDMEF data model includes other classes that could also
be leveraged by the proposed system. One of those classes is the
Confidence inside the Assessment class. The confidence could be
assessed based on the distance of the detected anomalous samples

to the centroid of it’s corresponding cluster, density-based measure-
ments or other types of fitness scores. Samples with low confidence
scores in an alert could indicate that the network is facing new
anomalous behaviors not observed during the training stages.
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5.7 Algorithm costs
In this section, we provide the costs of the proposed approach in
terms of data transmission in the FL setting, and also discuss the
high computational requirements for SHAP.

Regarding the data transmission, here we provide expressions
for the number of floats transmitted (uploaded and downloaded)
across all the devices in the federated network. The actual band-
width will depend on the float precision, compression and the data
transmission protocol, which are not considered here as they are
implementation dependent. Denoting as 𝑍 the number of partici-
pating clients in the federated network and 𝑑 the dimensions of the
data, the transmission costs for Algorithm 1 (SHAP baseline) are
2𝑍 (𝑘𝑑 + 𝑘), where here 𝑘 refers to the number of SHAP baseline
samples. For Algorithm 2, assuming that the number of anomalous
clusters 𝑘 is known, the cost is given by 2𝑍 + 𝑍𝑘′𝑑 + 𝑍𝑘𝑑 . Mea-
suring the CH score (Algorithm 3) for a single value of 𝑘 yields
𝑍 (1 + 𝑑) + 2𝑘𝑍 . Finally, by combining algorithms 2 and 3 with
several trials to test different values for 𝑘 (from some set of val-
ues K , being 𝑇 the size of that set) and 𝑅 repetitions for each trial
(as performed in the evaluation), the expression for the cost is
2𝑍 + 𝑍𝑘′𝑑𝑇𝑅 + 𝑅𝑍𝑑∑𝑘𝑡 ∈K 𝑘𝑡 + 𝑅

∑
𝑘𝑡 ∈K (𝑍 (1 + 𝑑) + 2𝑘𝑡𝑍 ).

Regarding the SHAP model, this paper focused on Kernel SHAP,
as it is a general and model-agnostic approach to provide explana-
tions. However, Kernel SHAP is computationally expensive, and the
computation time increases linearly with the size of the background
data. Nevertheless, other faster approaches exist for particular types
of MLmodels, including Tree SHAP for trees and ensembles of trees,
Deep SHAP or Gradient Explainer for many DL algorithms, or Lin-
ear Explainer for linear models [38]. Exploring and applying the
proposed method for those model-specific approaches could be a
relevant future line of work.

6 CONCLUSIONS
In this paper, we have proposed a methodology to explain and
characterize anomalies of unsupervised intrusion detection models
in a federated learning setting, where the clients throughout the
network can have differences in data or behavior distribution and
might also be exposed to distinct types of attacks. The explana-
tions are based on the Kernel SHAP model-agnostic method, using
a federated version of the k-means algorithm to subsample the
background dataset required for SHAP model training across all
the clients. We leverage the generated explanations by clustering
(in the SHAP space) all the identified anomalies in the network
using again an adapted version of the federated k-means algorithm.
Since the number of anomalous patterns or groups is not known a
priori, we also presented an adaptation of the Calinski-Harabasz
internal cluster validation metric for distributed settings to allow
the estimation of a suitable number of anomalous clusters found
among all the clients.

A practical benefit of the proposed method is that all the feder-
ated steps can be performed in a one-shot manner (a single round
of communication), which reduces the data transmission between
the clients and the FL aggregation server. However, we note that
selecting an adequate number of anomalous clusters requires re-
peating the federated k-means process for different values of 𝑘 .
Additionally, for robustness, it is recommended to perform various

trials for the same 𝑘 to account for random processes, such as the
initialization of the centroids in the k-FED k-means process, as the
experimental results show high variability in the Calinski-Harabasz
scores. While each process requires minimal data transmission over-
head proportional to 𝑘 , multiple trials and repetitions can rapidly
increase the cost; for communication efficiency, this should be con-
sidered compared to the amount of local training data on each
device.

Both k-means and the Calinski-Harabasz algorithms tend to
prefer isotropic cluster shapes as their main objective function is
based on the minimization of the within-group sum of squares.
However, some anomalous patterns might naturally cluster into
elongated shapes. Studying and adapting other types of clustering
and validation algorithms (such as density-based ones) to federated
settings is a relevant line of future work.

In addition, in this work, we considered two different values
for the number of SHAP background samples. Another future step
could consider the identification of an optimal or suitable number
of background samples required for each dataset to improve au-
tomation. Moreover, related to improved automation, developing
methods or heuristics to reduce the search space for the HDBSCAN
hyperparameters to estimate the local number of clusters, or the
number of trials to identify a suitable number of anomalous clusters
could help the automation and reduce communication costs.

Regarding privacy implications, a sensitive step is obtaining
the SHAP background samples in a federated way, which includes
disclosing few (much less than local training data amount) values
of rounded k-means centroids to the aggregation server and back
to the clients (although clients do not know which centroids came
from which clients). Evaluating how much information is disclosed
and, more interestingly, measuring how countermeasures such as
differential privacy could be applied to the background samples and
how it affects the generated explanations is a relevant future line
of work to improve the robustness of the proposed methodology.

The proposed method identified several anomalous behaviors
in the evaluated datasets and assigned a label to each of them
that can be used to identify and characterize groups of anomalies.
The labels are shared and known to all the clients and serve as a
naming system to refer to the same anomalous patterns across all
the clients in the federated network. New incoming alerts can be
grouped and auto-labeled into the known anomaly behaviors, which
can be used to send contextualized alerts representing multiple
anomalies using the IDMEFmessage format, as shown in the results,
for interoperability with third-party tools.
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Figure 7: Client 1 SHAP values for each cluster center in the packet-based dataset. (Same as Figure 6)

pa
ck

et
 le

ng
th ia
t h

ip
 to

s
ip

 tt
l

w
in

do
w

ip
 p

ro
to

 T
C

P
ip

 p
ro

to
 U

D
P

ip
 p

ro
to

 IC
M

P
sp

or
t m

qt
tP

or
ts

sp
or

t c
oa

pP
or

ts
sp

or
t r

ts
pP

or
ts

sp
or

t h
ttp

Po
rts

sp
or

t m
ai

lP
or

ts
sp

or
t d

ns
Po

rts
sp

or
t f

tp
Po

rts
sp

or
t s

he
llP

or
ts

sp
or

t r
em

ot
eE

xe
cP

or
ts

sp
or

t a
ut

hP
or

ts
sp

or
t p

as
sw

or
dP

or
ts

sp
or

t n
ew

sP
or

ts
sp

or
t c

ha
tP

or
ts

sp
or

t p
rin

tP
or

ts
sp

or
t t

im
eP

or
ts

sp
or

t d
bm

sP
or

ts
sp

or
t d

hc
pP

or
ts

sp
or

t w
ho

is
Po

rts
sp

or
t n

et
bi

os
Po

rts
sp

or
t k

er
be

ro
sP

or
ts

sp
or

t R
PC

Po
rts

sp
or

t s
nm

pP
or

ts
sp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
sp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
dp

or
t m

qt
tP

or
ts

dp
or

t c
oa

pP
or

ts
dp

or
t r

ts
pP

or
ts

dp
or

t h
ttp

Po
rts

dp
or

t m
ai

lP
or

ts
dp

or
t d

ns
Po

rts
dp

or
t f

tp
Po

rts
dp

or
t s

he
llP

or
ts

dp
or

t r
em

ot
eE

xe
cP

or
ts

dp
or

t a
ut

hP
or

ts
dp

or
t p

as
sw

or
dP

or
ts

dp
or

t n
ew

sP
or

ts
dp

or
t c

ha
tP

or
ts

dp
or

t p
rin

tP
or

ts
dp

or
t t

im
eP

or
ts

dp
or

t d
bm

sP
or

ts
dp

or
t d

hc
pP

or
ts

dp
or

t w
ho

is
Po

rts
dp

or
t n

et
bi

os
Po

rts
dp

or
t k

er
be

ro
sP

or
ts

dp
or

t R
PC

Po
rts

dp
or

t s
nm

pP
or

ts
dp

or
t P

R
IV

IL
EG

ED
 P

O
RT

S
dp

or
t N

O
N

PR
IV

IL
EG

ED
 P

O
RT

S
ip

 fl
ag

 M
F

ip
 fl

ag
 D

F
ip

 fl
ag

 e
vi

l
tc

p 
fla

g 
F

tc
p 

fla
g 

S
tc

p 
fla

g 
R

tc
p 

fla
g 

P
tc

p 
fla

g 
A

tc
p 

fla
g 

U
tc

p 
fla

g 
E

tc
p 

fla
g 

C
tc

p 
fla

g 
N

C8
C10
C14
C15
C16
C17
C18
C19
C20
C21

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 8: Client 2 SHAP values for each cluster center in the packet-based dataset.
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Figure 9: Client 1 SHAP values for each cluster center in the flow-based dataset.
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Figure 10: Client 2 SHAP values for each cluster center in the flow-based dataset.
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Figure 11: Client 3 SHAP values for each cluster center in the flow-based dataset.
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Figure 12: Client 4 SHAP values for each cluster center in the flow-based dataset.
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Figure 13: Client 5 SHAP values for each cluster center in the flow-based dataset.
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Figure 14: Client 6 SHAP values for each cluster center in the flow-based dataset.
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Figure 15: Client 7 SHAP values for each cluster center in the flow-based dataset.
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Figure 16: Client 8 SHAP values for each cluster center in the flow-based dataset.
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Figure 17: Client 9 SHAP values for each cluster center in the flow-based dataset.
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Figure 18: Client 10 SHAP values for each cluster center in the flow-based dataset.

M
I d

ir 
L5

 w
ei

gh
t

M
I d

ir 
L5

 m
ea

n
M

I d
ir 

L5
 v

ar
ia

nc
e

M
I d

ir 
L3

 w
ei

gh
t

M
I d

ir 
L3

 m
ea

n
M

I d
ir 

L3
 v

ar
ia

nc
e

M
I d

ir 
L1

 w
ei

gh
t

M
I d

ir 
L1

 m
ea

n
M

I d
ir 

L1
 v

ar
ia

nc
e

M
I d

ir 
L0

.1
 w

ei
gh

t
M

I d
ir 

L0
.1

 m
ea

n
M

I d
ir 

L0
.1

 v
ar

ia
nc

e
M

I d
ir 

L0
.0

1 
w

ei
gh

t
M

I d
ir 

L0
.0

1 
m

ea
n

M
I d

ir 
L0

.0
1 

va
ria

nc
e

H
 L

5 
w

ei
gh

t
H

 L
5 

m
ea

n
H

 L
5 

va
ria

nc
e

H
 L

3 
w

ei
gh

t
H

 L
3 

m
ea

n
H

 L
3 

va
ria

nc
e

H
 L

1 
w

ei
gh

t
H

 L
1 

m
ea

n
H

 L
1 

va
ria

nc
e

H
 L

0.
1 

w
ei

gh
t

H
 L

0.
1 

m
ea

n
H

 L
0.

1 
va

ria
nc

e
H

 L
0.

01
 w

ei
gh

t
H

 L
0.

01
 m

ea
n

H
 L

0.
01

 v
ar

ia
nc

e
H

H
 L

5 
w

ei
gh

t
H

H
 L

5 
m

ea
n

H
H

 L
5 

st
d

H
H

 L
5 

m
ag

ni
tu

de
H

H
 L

5 
ra

di
us

H
H

 L
5 

co
va

ria
nc

e
H

H
 L

5 
pc

c
H

H
 L

3 
w

ei
gh

t
H

H
 L

3 
m

ea
n

H
H

 L
3 

st
d

H
H

 L
3 

m
ag

ni
tu

de
H

H
 L

3 
ra

di
us

H
H

 L
3 

co
va

ria
nc

e
H

H
 L

3 
pc

c
H

H
 L

1 
w

ei
gh

t
H

H
 L

1 
m

ea
n

H
H

 L
1 

st
d

H
H

 L
1 

m
ag

ni
tu

de
H

H
 L

1 
ra

di
us

H
H

 L
1 

co
va

ria
nc

e
H

H
 L

1 
pc

c
H

H
 L

0.
1 

w
ei

gh
t

H
H

 L
0.

1 
m

ea
n

H
H

 L
0.

1 
st

d
H

H
 L

0.
1 

m
ag

ni
tu

de
H

H
 L

0.
1 

ra
di

us
H

H
 L

0.
1 

co
va

ria
nc

e
H

H
 L

0.
1 

pc
c

H
H

 L
0.

01
 w

ei
gh

t
H

H
 L

0.
01

 m
ea

n
H

H
 L

0.
01

 st
d

H
H

 L
0.

01
 m

ag
ni

tu
de

H
H

 L
0.

01
 ra

di
us

H
H

 L
0.

01
 c

ov
ar

ia
nc

e
H

H
 L

0.
01

 p
cc

H
H

 ji
t L

5 
w

ei
gh

t
H

H
 ji

t L
5 

m
ea

n
H

H
 ji

t L
5 

va
ria

nc
e

H
H

 ji
t L

3 
w

ei
gh

t
H

H
 ji

t L
3 

m
ea

n
H

H
 ji

t L
3 

va
ria

nc
e

H
H

 ji
t L

1 
w

ei
gh

t
H

H
 ji

t L
1 

m
ea

n
H

H
 ji

t L
1 

va
ria

nc
e

H
H

 ji
t L

0.
1 

w
ei

gh
t

H
H

 ji
t L

0.
1 

m
ea

n
H

H
 ji

t L
0.

1 
va

ria
nc

e
H

H
 ji

t L
0.

01
 w

ei
gh

t
H

H
 ji

t L
0.

01
 m

ea
n

H
H

 ji
t L

0.
01

 v
ar

ia
nc

e
H

pH
p 

L5
 w

ei
gh

t
H

pH
p 

L5
 m

ea
n

H
pH

p 
L5

 st
d

H
pH

p 
L5

 m
ag

ni
tu

de
H

pH
p 

L5
 ra

di
us

H
pH

p 
L5

 c
ov

ar
ia

nc
e

H
pH

p 
L5

 p
cc

H
pH

p 
L3

 w
ei

gh
t

H
pH

p 
L3

 m
ea

n
H

pH
p 

L3
 st

d
H

pH
p 

L3
 m

ag
ni

tu
de

H
pH

p 
L3

 ra
di

us
H

pH
p 

L3
 c

ov
ar

ia
nc

e
H

pH
p 

L3
 p

cc
H

pH
p 

L1
 w

ei
gh

t
H

pH
p 

L1
 m

ea
n

H
pH

p 
L1

 st
d

H
pH

p 
L1

 m
ag

ni
tu

de
H

pH
p 

L1
 ra

di
us

H
pH

p 
L1

 c
ov

ar
ia

nc
e

H
pH

p 
L1

 p
cc

H
pH

p 
L0

.1
 w

ei
gh

t
H

pH
p 

L0
.1

 m
ea

n
H

pH
p 

L0
.1

 st
d

H
pH

p 
L0

.1
 m

ag
ni

tu
de

H
pH

p 
L0

.1
 ra

di
us

H
pH

p 
L0

.1
 c

ov
ar

ia
nc

e
H

pH
p 

L0
.1

 p
cc

H
pH

p 
L0

.0
1 

w
ei

gh
t

H
pH

p 
L0

.0
1 

m
ea

n
H

pH
p 

L0
.0

1 
st

d
H

pH
p 

L0
.0

1 
m

ag
ni

tu
de

H
pH

p 
L0

.0
1 

ra
di

us
H

pH
p 

L0
.0

1 
co

va
ria

nc
e

H
pH

p 
L0

.0
1 

pc
c

C1
C2
C3
C4
C6
C7
C8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 19: Client 11 SHAP values for each cluster center in the flow-based dataset.
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Figure 20: Client 12 SHAP values for each cluster center in the flow-based dataset.
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Figure 21: Client 13 SHAP values for each cluster center in the flow-based dataset.
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Figure 22: Client 14 SHAP values for each cluster center in the flow-based dataset.
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Figure 23: Client 15 SHAP values for each cluster center in the flow-based dataset.
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