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A B S T R A C T

The manufacturing industry of the future requires innovative approaches to optimize operational efficiency and
adaptability. Integrating context-awareness into workflow management systems has emerged as a promising
avenue to enhance efficiency in modern manufacturing processes. This research presents an innovative context-
aware workflow management architecture designed to address industry-related challenges and overcome
current limitations in the state-of-the-art. The architecture leverages Industry 4.0 standards for asset repre-
sentation and workflow notation while incorporating a Context Analyzer component for real-time context
interpretation. The effectiveness of the proposed solution is demonstrated in a real-world manufacturing
setting, specifically in the scenario of collecting work order materials using the Robot Operating System
(ROS) technology for robot navigation. The evaluation showcases improvements in task completion rate,
resource utilization, and task completion time. These outcomes exemplify the potential benefits of incorporating
context-awareness into manufacturing workflows, providing insights for further improvements. Contributions
include advancing the understanding of context-aware workflow management, a review of the challenges
that cap its adoption in the manufacturing domain, a qualitative comparison of similar approaches, practical
implementation of the proposed architecture, evaluation of the context-aware component, and provision of the
source code and datasets to the community for future advancement and reproducibility.
1. Introduction

The manufacturing industry of the future faces numerous chal-
lenges in optimizing operational efficiency while ensuring adaptability.
With the increasing complexity and dynamism of modern production
processes, traditional workflow management systems often struggle
to keep pace. Efficient workflow management plays a critical role in
coordinating assets, streamlining tasks, and ensuring smooth opera-
tions throughout the workflow management life cycle [1]. To address
these challenges, context-awareness has emerged as a promising ap-
proach to enhance the reactiveness of manufacturing systems [2].
Context-aware workflow management systems leverage real-time data
about environmental and situational information to dynamically adapt
workflows. This way, manufacturing companies can optimize resource
utilization and improve the overall efficiency of manufacturing oper-
ations [3]. This paper specifically focuses on applying context-aware
workflow management to the domain of Industry 4.0 and to emphasize
its application, a use case involving robots is provided.

In the Industry 4.0 context, workflow management requires stan-
dardization in coordinating and orchestrating industrial assets [4].
Assets encompass a wide range of units that perform tasks, including
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robots, machines, sensors, and other industrial equipment [5]. Orches-
tration on the counterpart involves defining how a set of tasks or
activities within a workflow should be executed to achieve a specific
goal [6]. In this regard, the Business Process Management (BPM)
discipline offers tools and techniques for modeling and managing work-
flows, including the widely adopted BPMN (Business Process Modeling
and Notation) language [7].

In the manufacturing domain, workflows encompass various objec-
tives, including material transformation, asset allocation, and informa-
tion processing [8]. Within the scope of this paper, workflows primarily
comprise tasks related to robot manipulation, with the goal of using
these robots to collect materials for designated work orders.

A key challenge in this domain is the coordinated asset allocation
to ensure smooth operations in dynamic and variable manufacturing
environments, wherein traditional systems often fall short in handling
such scenarios [1]. This challenge has led industries to adopt standards
for asset interoperability. Standardization of digital assets has gained
significant attention, with the Asset Administration Shell (AAS), which
aligns with the principles of the Reference Architectural Model for
Industry 4.0 (RAMI 4.0) [9]. AAS simplifies asset interoperation and
identification by providing technical and operational data.
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However, to truly address the challenges in manufacturing, context-
awareness needs to be integrated into workflow management systems.
Context-awareness introduces new capabilities and opportunities for
improving efficiency, adaptability, and responsiveness in manufactur-
ing processes [10]. Context-aware workflow management systems can
dynamically adapt and optimize processes by analyzing real-time infor-
mation and performing intelligent decision-making [11]. These systems
leverage contextual factors such as resource availability, resource sta-
tus, and environmental changes [12] to make decisions on dynamically
adjusting the workflow during execution. Resulting in a reduction in
delays and improved manufacturing efficiency.

For instance, consider a scenario in a smart manufacturing facility,
which employs robots to perform various tasks. These robots have
characteristics such as battery level, position, uncertainty, and payload
capacity (the maximum weight the robot can carry). In a context-aware
workflow, when a new task arises, the system can analyze the real-time
contextual information. If one robot has a low battery level, another is
closer to the working location, and a third has a high payload capacity,
the context-aware system can intelligently decide which robot is best
suited for the task, ensuring efficient resource utilization, timely task
completion, and increased task completion rate.

This research proposal aims to contribute to advancing context-
aware workflow management in the manufacturing domain. Building
upon existing literature and research, the proposed study focuses on
developing a context-aware workflow management architecture and
evaluating its context-aware component in a real-world manufacturing
setting. The proposed architecture leverages dynamic asset allocation
and provides intelligent decision-making on adjusting the workflow
during runtime. The architecture aims to address the challenges of
manufacturing operations, optimizing the utilization of resources and
streamlining the overall manufacturing process.

Establishing Research Questions (RQs) is crucial to determine the
focus of research [13]. In this study, two RQs guide the development
and evaluation of the proposed architecture:

RQ1: How does the proposed context-aware workflow management
architecture improve operational efficiency and responsiveness
within manufacturing processes?

RQ2: What challenges and limitations arise when integrating the pro-
posed architecture in real-world manufacturing environments,
and how can they be addressed?

The structure of this paper is organized as follows: Section 2 ana-
yzes industry-related challenges that hinder the adoption of workflow
anagement systems in manufacturing companies. Section 3 reviews

he state-of-the-art and investigates the challenges and limitations of
ntegrating context-awareness into workflow management systems by
omparing existing solutions in a qualitative manner. Section 4 sum-
arizes the literature findings and research gaps, highlighting the

urrent state of context-aware workflow management. In Section 5,
he architecture for context-aware workflow management is presented.
ection 6 assesses the effectiveness of the proposal for improving
perational efficiency, responsiveness, and resource utilization in a
eal-world manufacturing scenario on collecting work order resources
here multiple robots are employed. Section 7 discusses the results ob-

ained from the testing phase and explains the challenges addressed by
his approach. Finally, Section 8 presents the concluding remarks, along
ith a suggestion for potential future research. The findings of this

esearch will contribute to the field of context-aware workflow manage-
ent, enabling researchers and practitioners to enhance manufacturing
rocesses and drive the industry toward dynamic adaptability.

. Industry-related challenges for efficient workflow management

A comprehensive analysis of industry-related challenges that hinder
he adoption of workflow management systems is presented in [14],
hese are categorized based on the workflow management life cycle. In
his section, the most critical challenges are identified and analyzed.
506

hese include: o
1. Workflow Modeling: It involves architectural design and work-
low representation. The requirements for workflow representation
nclude: fitting for collaborative context, supporting workflow genera-
ion, compactness, compositionality, open semantics, and extensibility.
hese requirements can be addressed through the use of formal mod-
ling languages such as BPMN, BPEL (Business Process Execution Lan-
uage), state machines, Petri Nets, and YAWL (Yet Another Workflow
anguage) [15], with BPMN being ratified as the standard language by
he Object Management Group (OMG) for business process design[16].

2. Heterogeneous Infrastructure Scale: Designers face the chal-
enge of finding the right level of aggregation/abstraction for compos-
ng workflows in a heterogeneous infrastructure [17]. They need to
alance the decreasing unit of execution in edge environments with
he requirement for interaction with central cloud orchestrator systems.
calability is achieved through hierarchical models and abstract rep-
esentations of units, considering numerous devices and their specific
unctionalities [18].

(a) Chaining Data From Heterogeneous Functions: In an IoT archi-
ecture, the collaboration between cloud and fog devices introduces
hallenges in handling fragmented information and diverse data loca-
ions [19]. Designers need to chain this fragmented functionality into
ohesive workflows to ensure proper workflow management.

(b) Feasibility: Assessing the feasibility of workflows involves veri-
ying technical feasibility as well as considering contextual factors [20].
esigners must determine if there are services of sufficient quality
vailable for each task in the workflow and check for any policies that
ay restrict the execution of certain services within the workflow.

3. Collaboration: Workflow Management Systems need to operate
n collaboration with industrial designers, machine operators, their
esources, and other systems [21]. This requires standardizing out-
ut, communication, syntax, and semantics. Orchestrating workflows
cross multiple organizations while handling heterogeneous edge-cloud
mplementations poses architectural constraints.

4. Parallel Execution Capabilities: This challenge involves ex-
cuting multiple instances of the same workflow concurrently and
andling scenarios where multiple workflows request the same service
imultaneously or a single workflow requests multiple services simulta-
eously [22]. It requires considering the various possibilities for paral-
elism and determining which actions can be performed simultaneously
n each scenario.

5. Asynchronous Task Execution: Enabling workflows to handle
synchronous task communications, allowing them to proceed without
aiting for immediate replies, is a significant challenge [23]. Such
echanisms listen for replies from workflow tasks in order to continue
orkflow execution. In contrast, synchronous communication requires

asks to pause until a reply is received.
6. Dynamic Nature of Microservice Architectures: Microservice

rchitectures introduce dynamic phenomena such as constant changes
nd dynamism given by mixed cloud, edge, and IoT devices, requir-
ng dynamic adaptation mechanisms for runtime configuration and
eployment [24]. The volatility and rotation of edge resources pose re-
iability challenges, as functionality and deployment conditions quickly
ecome obsolete [25]. Microservice-based architectures offer fast re-
ponse times and rapid deployment but require workflow orchestrators
o handle the speed of deployment and failures effectively [26]. Addi-
ionally, the discovery of available services at runtime becomes crucial
ue to the constantly changing availability of services at the edge, de-
anding efficient device and service registration for optimal workflow

xecution efficiency [17].

These industry-related challenges discern the multifaceted complex-
ties that pose obstacles to the adoption of workflow management
ystems in the industry domain. Building upon this foundation, the next
ection delves into advancements, limitations, and challenges within
he state-of-the-art, specifically examining approaches to context-aware
orkflow management. This analysis will provide an understanding

f the existing landscape and pave the way for the development of
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Table 1
Comparison of context-aware workflow management approaches.

REF Workflow format Design Orchestrator Context-aware
integration

Context data Evaluation

User-
centric

Data-
driven

Central Edge Design time Runtime Calculated Sensor Case study Real-world Metrics

[27] BPEL, State
machine

✕ ✓ ✓ ✕ ✕ ✓ Availability and Execution
time of service operations.
These variable values are
calculated by doing a ping
periodically.

✕ Workflow
composition

✕ Execution time and
memory consumption.

[28] BPMO (Business
Process Modeling
Ontology)

✕ ✓ ✓ ✕ ✕ ✓ Cost efficiency, product
stock availability.

✕ Sales orders ✕
Synthetic
dataset

Task failure rate

[29] HTN
(Hierarchical
Task Network)

± ✓ ✓ ✕ ✕ ✓ Non-specified. But assuming
those that come in the
WSC dataset: availability
and throughput.

✕ Loan approval ✕
Synthetic
dataset

Precision, Recall, and
F-Score on service
discovery and selection.

[30] Control diagram ✕ ✓ ✓ ✕ ✕ ✓ Frequency, response time,
memory, CPU, and
precision.

Temperature, humidity,
location, connection Media
(WiFi), transmission
Latency, and remaining
system lifetime.

Car-seat FabLab ± Cost time of policy
aggregation and matching
(SPARQL query built).
Three epochs from 1 to 10
context variables.

[31] BPMN, DMN ✓ ✓ ✓ ✕ ✕ ✓ ✕ Temperature, Humidity,
Smoke, Weight, and GPS.

Pickup cargo ✕ ✕

[32] BPMN ±
Semantic
expert is
required

✓ ✓ ✕ ✓ ✓ Service unavailability,
execution cost, energy
consumption, precision,
outcome rate, acquisition
cost, time, delivery rate,
setup cost, and expected
revenues.

✕ Bicycle
manufacturing

✓ Quality of final
composition

[33] APFL (Adaptable
Pervasive Flow
Language)

±
Semantic
expert is
required

✓ ✓ ✕ ✓ ✓ Service unavailability,
status, type, and location.

✕ Process chain of the
car logistics in a
harbor

✓ CPU performance vs.
Number of services
involved in a workflow
composition. Number of
compositions resolved
within N seconds.

[34] BPMN ✕ ✓ ✓ ✕ ✓ ✕ Energy consumption ✕ Workflow
composition

✕
Synthetic
dataset

Running time to achieve
service composition plan

[35] Not specified ✕ ✓ ✓ ✕ ✕ ✓ Cost, availability,
reliability, and reputation

✕ Workflow
composition

✕ The score of the optimal
composition, execution
time, and deviation.

[36] BPMN ✓ ✓ ✓ ✕ ✕ ✓ Arrival time Temperature, location Smart irrigation
system, Ventilation
system, Health care
system

✕ ✕

[37] BPMN ± ✓ ✓ ✕ ✕ ✓ ✕ Machine status (whether it
is on or off)

Fischertechnik smart
factory

✓ Composition time vs.
number of services. Search
time for the best service.

Ours BPMN ✓ ± ✓ ✓ ± ✓ Average success rate,
network latency, response
time. More can be added.

Temperature, humidity,
proximity, battery level,
payload capacity, and
positional uncertainty.
More can be added.

ROS-based robots in
a pick-and-deliver
warehouse scenario.

✓ Task completion rate,
resource utilization, and
task completion time.

✓: The approach entirely covers the feature
±: The approach covers the feature with limitations

: The approach does not cover the feature.
he solution presented in this work, which aims at addressing these
hallenges and advancing the state-of-the-art in dynamic context-aware
orkflow management for Industry 4.0.

. Related work

This section examines existing literature and research pertaining
o context-aware workflow management. Additionally, it builds upon

comprehensive systematic literature review conducted on semantic
orkflow management systems in [38]. This section provides an up-
ated revision and deepens into the strengths, limitations, and gaps
dentified in the current body of work.

The characteristics of existing approaches in the field of context-
ware workflow management are compared in Table 1. The table
ncludes columns such as ‘‘Workflow Format’’, which denotes the no-
ation language employed for workflow design; ‘‘Design’’ indicates
hether the platform implements user-centric designs that prioritize
ser interactions and preferences [39], or data-driven designs that rely
n data analysis techniques [40] to automatize workflow modeling. The

‘Orchestrator’’ column describes whether the approach adopts a central
nd/or edge workflow executor, indicating how the workflow tasks are
istributed and managed within the system [41].

Additionally, the ‘‘Context-Aware Integration’’ column highlights
ow context-awareness is integrated, either during the workflow design
507
phase, where context is pre-defined, or at runtime, where real-time
context data is utilized to adapt workflows dynamically [42]. The ‘‘Con-
text Data’’ column identifies the type of context data considered, which
can be derived from sensors, such as sensors for proximity, humidity,
temperature, etc. or calculated based on historical data and analyt-
ics [43]. Furthermore, the evaluation aspects are presented through the
‘‘Evaluation’’ column, encompassing three sub-columns: ‘‘Case Study’’
specifying the context in which the approach was tested; ‘‘Real-World’’
indicating whether the approach was tested in an actual manufacturing
scenario with real robots and resources; and ‘‘Metrics’’ detailing the
evaluation metrics employed by each approach to measure performance
and efficiency.

The works compared in Table 1 propose innovative approaches that
leverage a diverse range of techniques and frameworks to address the
challenges faced in workflow management. It is worth mentioning that
there are two types of properties used in these approaches: Functional
Properties (FPs) and Non-Functional Properties (NFPs). FPs define the
functionality of a system and its components, while NFPs encompass
Quality of Service (QoS) properties that determine how well the tasks
or services deliver results [44].

The following enumeration analyzes the approaches by classifying
them considering the critical challenge they addressed. These cate-

gories are:
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(I) Workflow composition and recomposition
One common theme among the reviewed studies is the use of

context-awareness for workflow composition and recomposition, allow-
ing to handle exceptional situations by adapting workflows in response
to context changes. For instance, the work of Bucchiarone et al. [33]
and Alférez and Pelechano [27], emphasize the importance of cap-
turing context for composing and adapting workflows dynamically.
Bucchiarone et al. proposed an AI (Automated artificial intelligence)
planning-based composition framework. This framework enables ser-
vice discovery, selection, composition, and deployment of workflows.
With their approach, activities (workflow tasks) can be annotated with
preconditions and effects at design time, and workflow compositions
are created using a planner module. AI is employed as the reasoning
mechanism to minimize the search space by considering knowledge
from previous executions and analyzing context for the reuse of smaller
workflows in the final composition.

Similarly, Alférez and Pelechano proposed a tool-supported context-
aware framework to guide autonomic adjustment of service composi-
tions at runtime. Their proposal implements the components of IBM
MAPE-K (Monitor, analyze, plan, execute, and knowledge) [45], a
widely used framework for building autonomous systems. The MAPE-K-
based framework allows for dynamic adaptation in response to excep-
tional situations that may arise when executing a task of a workflow.

(II) Semantic web-based workflows
Another aspect explored in the literature is the integration of se-

mantic technologies into workflow management, enabling more intel-
ligent and automated workflow adaptation. In this regard, Arul and
Prakash [29] and Mazzola et al. [32] focus on adding semantics to
web services and workflows to improve automatic service composition.
Arul and Prakash’s framework uses ontology-based search to convert
syntactic service definitions into semantic representations, enabling the
creation of optimal abstract and concrete-executable workflows. Simi-
larly, Mazzola et al. employ semantic annotations and pattern-based
algorithms to facilitate the semantic composition of business processes.
In addition, Bekkouche et al. [35] developed an automatic semantic
web service composition approach that replaces services within work-
flows at runtime. Services are rated using the Harmony Search (HS)
algorithm, which considers QoS constraints to select the most suitable
service.

(III) Real-time context data for adaptive workflows
The utilization of real-time context information for intelligent

decision-making capabilities is also a prominent theme in the reviewed
works. Kir and Erdogan [28] propose an intelligent business pro-
cess management framework that captures social aspects and employs
agents and ontologies to handle process exceptions. Their approach
provides cognitive capabilities and supports knowledge workers in
decision-making tasks. Valderas et al. [36] focus on modeling IoT
characteristics in workflows and utilizing contextual knowledge for
adaptive decision-making. Their approach performs decision-making by
injecting high-level events while maintaining the workflow complexity.

Furthermore, several studies address the challenges and limitations
associated with integrating IoT-derived context data into workflow
management systems. Song et al. [31] emphasize the importance of
considering IoT data and context ontologies to enhance business pro-
cess decision-making. They propose a context-aware BPM ecosystem
that enables adaptive processes at both design time and runtime. Mal-
burg et al. [37] propose an architectural solution and implementation
proposals for adaptive workflow management in smart factories, ad-
dressing issues related to process monitoring, adaptation, and compat-
ibility with other running processes. Similarly, Lyu et al. [30] propose
a context manager module that continuously analyzes the system envi-
ronment using IoT devices and sensors to control the system behavior.
The module makes decisions on whether a service should be kept,
tuned, or changed on the fly. The architecture consists of IoT devices
that are described semantically by means of FPs and NFPs. A micro-
service layer is integrated to select the best device and service to invoke
508

it properly based on the context at runtime.
(IV) QoS scheduling approaches for workflow applications
In contrast to the previous studies, several literature approaches

emphasize evaluating QoS criteria for optimal solution selection from
a massive pool of candidates and constraints, using various algorithms
to allocate resources of the highest quality for scheduled execution.
For instance, in [46], a Quality-of-Service fault-tolerant workflow man-
agement system (QFWMS) is introduced by Ahmad et al. It employs
QoS-aware scheduling for scientific workflows in cloud computing. The
QoS criteria evaluation considers parameters like make-span – time
taken to complete a job, cost – resources consumed by a job, dead-
line and budget – time and resource constraints, and SLA violation –
whether the service level agreements are unmet. This approach outper-
forms by efficiently assigning tasks to the nearest available resources.
Similarly, Ambursa et al. introduced LAPSO [47], a particle swarm op-
timization and min–max-based workflow scheduling algorithm. LAPSO
focuses on balancing six critical QoS workflow scheduling objectives:
time, cost, reliability, availability, security, and reputation. It offers an
effective solution for scenarios with strict constraints.

Furthermore, Sharma et al. proposed an ant colony-based opti-
mization model for QoS-based task scheduling in cloud computing
environments [48]. Their multi-objective optimization approach eval-
uates three primary factors: response time, throughput, and reliability.
The study addresses various QoS constraints, such as maximum re-
sponse time and minimum throughput, aiming to identify an optimal
solution that adheres to these constraints while accommodating the
dynamic nature of QoS criteria. Similarly, Yu et al. proposed a QoS-
based workflow management system for service grids [49], which
enables users to specify QoS requirements, including deadline and
budget, for workflow execution. It employs a scheduling algorithm
that minimizes execution costs while ensuring the deadline is met,
considering measurements of time constraints and execution costs. This
approach demonstrates its adaptability to dynamic situations through
runtime rescheduling.

It is worth mentioning that AAS could play a key role in context-
aware workflow management, as previously highlighted in Section 1.
AAS provides a standardized means for digitally representing and
describing machines. For instance, the TechnicalData [50], Name-
Plate [51], and CapabilitiesSkillsServices [52] AAS submodels provide
a consistent way to describe the technical and operational character-
istics of machines. Specifically, the capabilities, skills, and services of
assets would facilitate context-aware workflow management systems to
discover and orchestrate assets dynamically. As an example, consider a
context-aware workflow management system that leverages these AAS
submodels to identify robots with the capability to collect work order
resources. This system can then orchestrate these robots to accomplish
the task. Although the CapabilitiesSkillsServices AAS submodel is still
under development, its potential to transform workflow management
in Industry 4.0 environments is promising.

The examination of these various approaches has revealed different
strategies and technologies in the field of context-aware workflow
management, raising the Industry 4.0 domain. However, this exami-
nation has also revealed challenges that still need to be addressed to
advance toward dynamic context-aware workflow management in the
manufacturing domain.

4. Literature findings and research gaps

The reviewed studies on context-aware workflow management re-
vealed several strengths in addressing the challenges of workflow
management. These studies propose innovative approaches, leveraging
techniques such as AI planning, semantic technologies, and real-time
context information to improve workflow composition, adaptation, and
decision-making. The use of context-awareness in workflow composi-
tion and re-composition allows for dynamic adaptation to changing

circumstances, while the integration of semantic technologies enhances
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Fig. 1. Architecture for context-aware workflow management: An asset administration shell-based approach.
Source: Extended from [53].
automatic service composition and workflow design. Additionally, the
utilization of real-time context information enables intelligent decision-
making capabilities, supporting knowledge workers and improving
overall workflow management. Furthermore, the studies address the
challenges of integrating IoT-derived context data into workflow man-
agement systems, proposing architectural solutions and implementa-
tion proposals for adaptive workflow management in smart factories.
Overall, these strengths contribute to advancing the state-of-the-art
in context-aware workflow management and highlight the practical
implementation challenges that need to be addressed.

However, the exploration of existing literature in the field of
context-aware workflow management has also revealed several areas
with opportunities for further research and improvement. These include
(1) Need for real-world implementations, (2) Consideration of a broader
range of context variables, including both calculated and sensor-derived
data, and (3) Utilization of industry-oriented standards and standard-
ized workflow formats. Additionally, there is also (4) Need for user-
centric design approaches and migration from abstract workflows to
executable workflows. Another notable area is (5) Need for decoupled
systems, as current approaches often lack decoupling between various
components such as the workflow modeling software, the workflow ex-
ecution software, and the context-aware component. This lack of decou-
pling restricts their compatibility with a wider variety of components
and systems. For instance, decoupling the context-aware component
from the workflow management system would offer the advantage of
easy integration with already existing workflow management systems.

Inspired by these limitations, this work proposes a context-aware
workflow management architecture that differs from existing
approaches in the following aspects: (1) Tested in a realistic manufac-
turing environment with ROS-based robots and the provision of metrics
demonstrating improved manufacturing efficiency, (2) Utilization of
semantic web technologies to allow the inclusion of a broader range of
context variables, including both calculated and sensor-derived data,
within the definition and evaluation of quality conditions, and (3)
Utilization of industry-oriented standards and standardized workflow
509
formats within a decoupled architecture to improve compatibility with
existing systems.

5. Architecture for context-aware workflow management

This section presents details of the context-aware workflow manage-
ment architecture. Outlines key components, algorithms, and method-
ologies for achieving dynamic context-aware workflow management.
This section also explains the compatibility of the architecture with the
manufacturing environment.

The architecture, as illustrated in Fig. 1 and described briefly in
Table 2, is designed to facilitate the orchestration of machine/device
services at both the central and edge levels, providing a more dis-
tributed and flexible workflow. The decoupled nature of the archi-
tecture allows for easy implementation of any individual component
into existing workflow management systems. This work develops an
updated version of the proposed architecture previously introduced
in [53], with a particular focus on the novel context-aware component.
An additional advantage of this architecture and all its components is
the Apache-2.0 license, which allows for community use and further
enhancements.1

5.1. Workflow design and execution process

This architecture orchestrates asset services by first describing the
technical and operational data of assets, which are represented as .aasx
files. These digital descriptions are stored in the AAS Repository. The
next step is to design the workflow recipe using any BPMN Mod-
eling Tool. In order to ease the modeling of AAS-based workflows,
a Camunda Modeler plugin called ‘‘AAS Web Service Discoverer’’ is
included. The plugin lists the assets and services offered by the ad-
ministration shell server. Users can include them in the workflow by
performing drag and drop into the canvas.

1 https://github.com/MUFacultyOfEngineering.

https://github.com/MUFacultyOfEngineering
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Table 2
Components of the architecture for context-aware workflow management.

Component Description

Assets AAS is utilized to digitize I4.0 physical machines/devices at plant level and represent them as I4.0 digital assets [54].

AAS Repository Contains the AAS Server that stores administration shell data. The data can be queried and/or maintained using the AAS
Server API (Application Programming Interface). The AAS Server can be any including Basyx [55], NOVAAS [56],
Admin-shell-io (AASX Server).

AAS Submodels Describes technical and operational data of assets [57,58]. The RestServices AAS submodel, in particular, characterizes
attributes of REST services, including URL, name, method, IsAsync, RequestBody, and Response. This submodel, initially
introduced in [53], is used to facilitate a Service-Discovery mechanism within Camunda Modeler.

BPMN Modeling Tool It can be any BPMN modeling software. In order to ease the modeling of workflows, a plugin for Camunda Modeler called
‘‘AAS Web Service Discoverer’’ is provided. The plugin enables Camunda Modeler to discover services from a chosen AAS
Repository. With this tool, users can design manufacturing business processes out of asset services in BPMN format. In
addition, the plugin provides an interface to set quality conditions using the quality properties of the assets.

BPMN Execution Platform Comprehends any workflow executor software that can understand BPMN recipes. There are several BPMN executor
software options available, including Camunda Platform, WSO2, Bonita BPM, and Node-RED Workflow Manager
(Node-RED WM) [59]. The latest one is a workflow management system that interprets and runs workflow recipes written
in BPMN. It can be installed in embedded systems with low resource requirements and is pre-programmed to make
decisions in response to context changes by communicating with the API of Context Analyzer.

Context Analyzer Employs semantic web technologies for context mapping and the MAPE-K (Monitor, Analyze, Plan, Execute, and
Knowledge) reference model for autonomous systems [60]. Its goal is to enhance workflow dynamism during runtime.
Once the design of the workflow is completed, the corresponding
ML representation is uploaded to the BPMN Execution Platform. This
an be any workflow manager that can read BPMN. In this case, Node-
ED WM is proposed as a lightweight workflow manager that can
perate at central and edge levels. Furthermore, Node-RED WM is
re-programmed to automatically make decisions based on the rec-
mmendations provided by the Context Analyzer. When a process is
nitiated, the Context Analyzer is queried by Node-RED WM each time
Service-Task is scheduled for execution. Context Analyzer evaluates
hether a service should be replaced or not on-the-fly by analyzing

ontext variables and quality conditions.
In summary, the decoupled nature of this architecture allows for

ore flexibility and integration into existing workflow management
ystems. The next subsection describes in detail how the architecture
nd Context Analyzer work, including the algorithm that performs the
election of the best device/service during workflow execution.

.2. Context analyzer

Context recognition is crucial for manufacturing systems to react
orrectly and enable dynamic changes to the workflow during run-
ime based on context data [61]. Semantic Web technologies have
emonstrated advantages in effectively describing and inferring con-
ext data [38]. The Context Analyzer serves as a pivotal component
n the proposed context-aware workflow management architecture. It
everages semantic web technologies for context description to provide
evice and service recommendations.

The Context Analyzer not only interprets contextual information but
lso incorporates elements of Recommendation Systems (RS). Recom-
endation Systems utilize intelligent algorithms to analyze preferences

nd behaviors to provide suggestions for products, services, or con-
ent [62]. Service and device re-selection is crucial to perform workflow
daptations in response to context changes [63]. In this work, the
ontext Analyzer acts as a specialized RS by leveraging contextual
ata and quality conditions to recommend optimal devices or services
hat can perform workflow tasks with higher efficiency. Furthermore,
his component offers an API REST interface, which makes it a de-
ached component. This feature allows for easy integration into existing
orkflow management systems.

The component is built using a combination of semantic web tech-
ologies and the widely adopted MAPE-K model for autonomous sys-
510

ems [45]. MAPE-K-based systems are particularly suited to address
exceptional situations that may arise during workflow execution [60].
In the context of smart manufacturing facilities involving robots, ex-
ceptional situations might include scenarios where a robot encounters
a sudden obstacle in its path, experiences a drop in battery level, or
faces unexpected environmental changes that affect its operation. These
situations demand real-time adaptive responses to ensure the smooth
progression of the workflow.

Furthermore, the combination of semantic web technologies and the
MAPE-K model offers capabilities to effectively describe administration
shells, devices, sensors, and services. The MAPE-K model is employed
as the architectural reference, providing a framework for handling
context data including specialized modules for capturing context data,
analyzing and storing it in a knowledge base, composing a plan to
improve the workflow or overcome problems, and applying adaptations
to the workflow at runtime.

Fig. 2 provides an overview of the technology stack and sub-
components that comprise the Context Analyzer. This comprehensive
technology stack empowers the architecture to effectively interpret
and leverage contextual information, enabling intelligent recommen-
dations, decision-making, and adaptive workflow management.

5.2.1. MAPE-K modules
The following itemization briefly explains the MAPE-K modules

of Context Analyzer and their interactions with other components of
the proposed architecture. Context Analyzer includes modules that
gather data, analyze it, and deliver a recommendation object for service
replacement. These modules make use of semantic web technologies
to enable the representation and interpretation of data in a structured
machine-readable format.

• Monitor: Comprehends a module called Context Monitor, which
continuously gathers real-time data from devices and sensors at plant-
level. This module makes use of AAS to gather relevant information
about connectivity options to gather real-time data from assets. Con-
text Monitor offers various connectivity options, including OPCUA,
HTTP, ROS Topics, MQTT, and more. The collected data is stored
in a semantic repository. It can be any semantic web repository that
supports RDF, in this case GraphDB is employed. To insert the data,
Context-Monitor follows the schemas defined in the DeviceServiceOnt
ontology to dynamically build insert statements. This ontology provides
semantic descriptions of administration shells, devices, services, and

quality properties.
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Fig. 2. Context analyzer technology stack and interaction with other components in this architecture.
• Analyze: Details about administration shells, assets, services, and
quality conditions are received for the computation phase. SPARQL
queries are built dynamically considering the DeviceServiceOnt ontol-
ogy and the received quality conditions. The queries are then executed
in the semantic repository. (See Algorithm 1).

• Plan: The resultset returned by the semantic repository is used to
prepare a final response, a JSON object representing a recommendation
for service replacement.

• Execute: The recommendation object is delivered to the API
consumer, which will decide whether to accept the suggestion or not.
In this proposal, Node-RED WM serves as the API consumer. Node-RED
WM is designed to always accept the suggestion, resulting in service
replacement during workflow runtime.

• Knowledge: Stores triplets about administration shells,
devices/machines, services, inputs, outputs, and quality parameters
using the DeviceServiceOnt ontology and GraphDB as the semantic
repository. The DeviceServiceOnt ontology leverages semantic web
standards, such as RDF and OWL, to provide a formal and expressive
representation.

5.2.2. Semantic web integration
The Context Analyzer component incorporates semantic web tech-

nologies to enable the representation and interpretation of data in
a structured and machine-readable format. Key technologies of this
integration include Web Ontology Language (OWL), Resource Descrip-
tion Framework (RDF), and Simple Protocol and RDF Query Language
(SPARQL), which collectively empower the architecture with semantic
capabilities [64].

OWL is the language for ontology design that facilitates the in-
terpretability of information by machines [65]. In this work, OWL is
employed to design the DeviceServiceOnt ontology, which provides
the vocabulary for describing the various entities within manufactur-
ing processes and their relationships. RDF, on the other hand, is a
data model for expressing information about resources in a graph-like
format using subject–predicate–object triples [66]. In this work, RDF
is employed to define and connect entities within the manufacturing
workflow, such as administration shells, devices, services, inputs, out-
puts, and quality parameters. SPARQL serves as the query language
for RDF [67], enabling the Context Analyzer to gather semantically
meaningful information in real-time from the semantic repository.
511
Furthermore, reusing ontologies ensures interoperability and align-
ment with established standards, facilitating integration with existing
systems and enabling semantic interoperability across domains [68].
Thereby, the design of the DeviceServiceOnt ontology, as illustrated
in Fig. 3, incorporates relevant classes and properties from I40GO,2 a
global ontology for Industry 4.0 applications.

I40GO restructures and categorizes the knowledge contained in
various Industry 4.0 ontologies in various layers and modules. Con-
structed through a fusion of MODDALS [69] and NeOn [70] method-
ologies, I40GO promotes compatibility across applications. It adheres
to the FAIR principles — Findability, Accessibility, Interoperability,
and Reusability [71]. Its modular structure segregates knowledge into
various abstraction layers, each of which contains specific modules and
classes. The strength of I40GO lies in its ability to unite and harmonize
knowledge derived from a variety of existing ontologies, including MA-
SON, Digital Reference, GENIAL, RAMI 4.0, I40KG, AutomationML, and
OntoCAPE. This amalgamation ensures that domain-specific ontologies
like DeviceServiceOnt can draw from a rich, shared resource, thus
advancing knowledge representation and interoperability within the
Industry 4.0 domain.

The incorporation of these semantic web technologies in the Context
Analyzer component ensures a consistent and structured representation
of the data, enabling dynamic querying and inference capabilities.

5.2.3. Best service/device selection algorithm
The Context Analyzer component performs the best device/service

selection by executing the steps described in Algorithm 1. This al-
gorithm takes the quality conditions into account and treats them
as minimal constraints that a service/device must meet to become a
candidate for selection. The quality conditions are also later used to
choose the best service/device from the pool of candidates. To achieve
this, the algorithm within the Context Analyzer component creates
SPARQL queries based on the service name and quality conditions
expressed as conditional expressions. These queries are then forwarded
to the semantic repository, and the resultset is returned to the Context
Analyzer for further processing.

Initially, the algorithm assigns weights to all the instances in the
repository to determine which of them fully or partially satisfies the

2 https://purl.org/i4go.

https://purl.org/i4go
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Fig. 3. DeviceServiceOnt ontology classes and relations.
quality conditions. For instance, if there are five quality conditions and
one instance meets all five, the ‘‘Conditions Met Rate’’ is 100%. How-
ever, if an instance meets only two, the ‘‘Conditions Met Rate’’ is 40%.

The following enumeration delves into details on the possible sce-
narios that may arise in the selection process for the best device or
service, these cases are influenced by the QoS-Aware service recom-
mendation technique explained in [62,72] and are:

Case 1. When a single device/service satisfies all quality conditions,
the selection process concludes by returning and recommending that
instance for task execution.

Case 2. When multiple devices/services meet all quality conditions,
a sorting operation is employed to identify the device/service with the
optimal quality values among the pool of candidates. This entity is then
recommended for task execution.

Case 3. When none of the devices/services satisfies all quality con-
ditions but some partially meet these conditions, a sorting operation
is executed. The device/service with the best quality values among the
pool of candidates is recommended for task execution, accompanied by
warnings.

Case 4. When none of the devices/services aligns with any quality
condition, a sorting process identifies the device/service with the most
favorable quality values. However, executing the task is not advisable,
as it may not reach completion.

The sorting operation for determining the best service/device em-
ploys two sorting strategies: (1) ‘‘the lower the quality value, the better’’
and (2) ‘‘the higher the quality value, the better’’. These strategies
are subject to the conditional symbols (>, ≥, <, ≤) provided in the
conditional expression. For instance, HUMIDITY ≤ 52 indicates that less
humidity is better, while SuccessRate > 90 means a higher success rate
is better. Thus, sorting sub-queries are built considering the priority
and the conditional symbols established in the quality conditions.
These sorting sub-queries are then executed accordingly in the semantic
repository. Finally, the first instance within the resultset is taken and
considered the best service/device.

In summary, the Context Analyzer component relies on the MAPE-K
modules and semantic web technologies that work together to gather
data, analyze it, and deliver a recommendation for service/device
replacement. With this understanding, the next section evaluates the
context-aware component and demonstrates how it can improve man-
ufacturing efficiency.
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Algorithm 1 Context Analyzer Best Service/Device Selection
Require: Service Name and List of Quality Conditions
function SelectBestService(ServiceName, QualityConditions)

resultSet ← ∅
while resultSet = ∅ and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) ≥ 1 do

𝑞𝑢𝑒𝑟𝑦 ← buildSparqlQuery(ServiceName, QualityConditions)
sortingQuery ← 𝑒𝑚𝑝𝑡𝑦
for 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∈ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 do

𝑠𝑦𝑚𝑏𝑜𝑙 ← extractConditionalSymbol(condition)
𝑝𝑁𝑎𝑚𝑒 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑁𝑎𝑚𝑒(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
sortingQuery ← sortingQuery + buildSortingQuery(symbol, pName)

end for
𝑞𝑢𝑒𝑟𝑦 ← 𝑞𝑢𝑒𝑟𝑦 + sortingQuery
resultSet ← executeQuerySemanticRepository(query)
if resultSet = ∅ then

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝐿𝑎𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)
end if

end while
return getFirst(resultSet)

end function

6. Evaluation

This section presents the evaluation of the proposed context-aware
workflow management architecture using a case study on a warehouse
scenario that includes ROS-based robots. The evaluation focuses on
assessing the performance of the Context Analyzer, which leverages the
quality properties of robots gathered by the Context Monitor through
subscriptions to ROS topics. Key metrics such as task completion rate,
resource utilization, and task completion time are used to evaluate
the effectiveness of the Context Analyzer in enhancing manufacturing
efficiency. With these results, a discussion of the practical applicability
of the architecture is conducted.

6.1. Experiment setup

The experiment was conducted in a simulated scenario using Nvidia
Isaac Sim,3 a widely adopted scalable robotics simulation application

3 https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.
html.

https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
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Fig. 4. Front and back side of the Nvidia Carter V1 robot.

used by industry leaders such as Amazon Warehouse, Fraunhofer, and
Festo. Nvidia Isaac Sim provides photorealistic and physically accurate
virtual environments, enabling realistic evaluation of robotic systems.
ROS Noetic served as the controller software for robot navigation,
providing the necessary libraries. The simulation utilized a Google
Cloud Virtual Machine equipped with 12 vCPUs, 28 GB of memory, an
NVIDIA Tesla T4 GPU, and Ubuntu 20.04 for computational resources.

The warehouse scenario includes 10 Carter v1 robots.4 Fig. 4 dis-
plays the front and back views of the robot used in the experiment.
Carter v1 is based on a differential drive and uses a lidar sensor and a
camera to perceive the world.

Visualization was enabled using RViz, a complementary ROS tool
that enables the robots to perceive the world, also allowing users
to monitor the state of the robots. Fig. 5 illustrates the simulation
environment in both Isaac Sim and RViz, with the 10 robots positioned
at their respective start positions. Two transit cones and a wet floor
sign were included as obstacles for the robots.

In addition to the simulation setup, the components of the architec-
ture described in Section 5 were properly deployed and configured. The
AAS Server (Basyx) and the semantic repository (GraphDB) were in-
stalled using Docker containers on the same Google machine. Leverag-
ing Docker containers ensured seamless deployment, while the compu-
tational capacity of the Google machine allowed smooth management
of the semantic repository.

On the user’s computer, the BPMN Modeling tool (Camunda Mod-
eler with the AAS Service Discoverer plugin) and the workflow execu-
tor software (Node-RED WM) were installed. The provision of these
tools enables the user to create and execute AAS-based manufacturing
workflows, as well as to define quality conditions.

4 https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_
hardware.html.
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The Context Analyzer component, responsible for real-time mon-
itoring and context interpretation, was also deployed on the Google
machine, adjacent to the AAS Server and semantic repository. This
close proximity to the simulation allowed stable subscription to ROS
topics and low-latency data processing. Thus, enabling retrieval and
analysis of quality properties from the ROS-based robots in real-time.
The component then stored and processed this data using semantic web
technologies and the DeviceServiceOnt ontology.

6.2. Case study: Collect work order resources

The case study was conducted using a BPMN diagram designed for a
representative manufacturing scenario that involves 10 robots picking
up and delivering bins. As depicted in Fig. 6, the user is required to
input the work order materials, providing a list specifying the color and
quantity of materials to be dispatched. A conveyor system facilitates
material transportation, with bins dispatched to positions 𝐴, 𝐵, and 𝐶
based on their colors (red, yellow, and blue). The Context Analyzer
component is tasked with selecting one robot from the pool of 10
to pick up each dispatched bin and deliver it to the corresponding
palette. This process continues until the required number of resources
is dispatched.

Each robot in the simulation has different quality property values.
These include PROXIMITY_PICKUP with values ranging from 0 m to
30 m, where 0 m represents the robot being at the pickup location
and 30 m indicates a significant distance from the pickup location.
The POSITIONAL_UNCERTAINTY quality property can contain values
ranging from 0.0 to 100.0, representing the level of uncertainty the
robot has about its current position. A value of 0 indicates that the
robot precisely knows its location, while a value of 100 means the robot
has significant uncertainty about its position, making it more likely
to be lost. The BATTERY quality property can contain values ranging
from 0% to 100%, reflecting the remaining battery capacity. And the
PAYLOAD_CAPACITY quality property can have values ranging from
0.3 kg to 2.0 kg, indicating the maximum weight each robot can carry.

During the design phase, quality conditions are defined using the
‘‘AAS Web Service Discoverer’’ plugin for Camunda Modeler, as shown
in Fig. 7. This plugin provides a list of available quality properties
from the administration shell, allowing the user to establish the quality
conditions for each task. Thus, the quality conditions established for
the ‘‘Collect Bins’’ task are: PROXIMITY_PICKUP ≤ 20.0&& BATTERY ≥
25 && POSITIONAL_UNCERTAINTY ≤ 0.90&& PAYLOAD_CAPACITY
≥ 0.60.

To provide a glimpse of the scenario and illustrate the execution of
the ‘‘Collect Bins’’ task, Fig. 8 provides a step-by-step demonstration.
Initially, in Fig. 8(a), the 10 robots are located at their start positions,
while in Fig. 8(b), they are placed at random positions. Subsequently,
in Fig. 8(c), the Context-Aware Workflow Manager is executed, and the
Context Analyzer selects the best device to perform the Collect Bins
task. The selection is based on real-time quality properties and the rules
provided during design. In Figs. 8(d), 8(e), and 8(f) the selected robot
executes the task.

To explain which robots could be capable of completing the desig-
nated ‘‘Collect Bins’’ task, a set of instances is presented in Table 3.
For instance, the Carter10 robot would not be able to complete the
designated task due to its Proximity of 26 m (relative to the pickup
location), its Battery level of 13%, its Positional Uncertainty of 2.37,
and its Payload Capacity of 0.5 kg. These values do not meet the
conditions established for the completion of this job. In contrast, the
Carter2 and Carter9 robots are well-equipped for the job. In this case,
Context Analyzer would choose the Carter2 as the robot with the best
quality values among the 10 robots, with a Proximity of 5 m, a Battery
level of 96%, a Positional Uncertainty of 0.73, and a Payload Capacity
of 1.9 kg, meeting the conditions established for the completion of this
task.

https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
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Fig. 5. Simulation environment.
Fig. 6. Collect work order resources - BPMN diagram. This is a simplified version, the full version can be found here.
Table 3
Quality evaluation examples for the Collect Bins task.

Asset Battery Proximity Positional uncertainty Payload capacity Num. conditions met Conditions met rate

Carter1 75% 3 m 3.12 1.6 kg 3/4 75%
Carter2 96% 5 m 0.73 1.9 kg 4/4 100%
Carter3 20% 23 m 2.93 2.0 kg 1/4 25%
Carter4 62% 12 m 0.62 0.5 kg 3/4 75%
Carter5 14% 27 m 4.12 0.9 kg 1/4 25%
Carter6 15% 13 m 0.37 1.6 kg 3/4 75%
Carter7 2% 5 m 2.37 1.2 kg 2/4 50%
Carter8 3% 11 m 0.97 0.7 kg 2/4 50%
Carter9 42% 16 m 0.64 1.3 kg 4/4 100%
Carter10 13% 26 m 0.94 0.5 kg 0/4 0%
Fig. 7. Defining quality conditions using the ‘‘AAS Web Service Discoverer’’ plugin for
Camunda Modeler during the workflow design phase.

This simulation was iterated 100 times to evaluate the perfor-
mance and effectiveness of the Context Analyzer. The evaluation met-
rics selected align with the goals and objectives of context-aware
workflow management and have been commonly employed in similar
approaches, as revised in Section 3. Therefore, task completion rate,
resource utilization, and task completion time were chosen as the
key performance indicators to assess the performance of the Context
Analyzer.

6.2.1. Reliability and responsiveness
This metric evaluates the performance of the Context Analyzer by

scrutinizing the task completion rate during incremental testing. The
task completion rate is calculated using the formula:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
∑𝑛

𝑖=1 𝑆𝑢𝑐𝑐𝑇 𝑎𝑠𝑘𝑖 × 100
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𝑛

In the formula, SuccTask represents the number of successfully
completed tasks, and n denotes the total number of tasks executed. The
summation symbol ∑ indicates the sum of the individual success rates
of each task from 𝑖 = 1 to 𝑖 = 𝑛. The resulting value is divided by 𝑛 and
then multiplied by 100 to obtain the success rate as a percentage.

Fig. 9 compares the task completion rates with Context Analyzer
(With CA) and without Context Analyzer (Without CA). The analysis
involves comparing task completion rates starting from 5 robots up
to 10 robots, and each rate is calculated using the formula described
previously. Each iteration was executed 100 times to provide statistics
on the reliability of the Context Analyzer. In the figure, task completion
rate reflects the percentage of successfully completed tasks out of
the total assigned tasks. With the integration of the Context Analyzer
(With CA), the task completion rate consistently outperforms scenarios
without the Context Analyzer (Without CA). Context Analyzer selects
robot configurations based on context and quality conditions, leading
to higher task completion rates. As the number of robots increases,
the improvement in task completion rate becomes more evident. With
5 robots, the task completion rate increases from 42% without the
Context Analyzer to 84% with it. Similarly, with 10 robots, the task
completion rate reaches 96% with the Context Analyzer, compared to
57% without it.

In addition, the conditions met rate represents the likelihood of the
selected robot configurations meeting all quality conditions required for

https://github.com/MUFacultyOfEngineering/ContextAnalyzer/blob/main/BpmnExamples/WorkOrderCollectResources.png
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Fig. 8. Step-by-step case study simulation in RViz.
Fig. 9. Task completion rate comparison.
successful task execution. The Context Analyzer identifies robot config-
urations that satisfy quality conditions. With 5 robots, the conditions
met rate improves from 44% without the Context Analyzer to 90% with
it. Similarly, with 10 robots, the conditions met rate reaches 100% with
the Context Analyzer, compared to 55% without it.

The high task completion rates and conditions met rates achieved
with the Context Analyzer demonstrate its reliability and responsive-
ness. Context Analyzer intelligently selects devices by identifying robot
configurations, based on real-time context data and quality condi-
tions. This capability ensures a higher likelihood of successful task
completion. However, it is important to note that while the Context
Analyzer plays a crucial role in selecting the best device/service and
enhancing task completion rates, it cannot guarantee task completion
in all scenarios. Task completion ultimately depends on the conditions
set during the design phase of the manufacturing process, which should
align with the specific goals for task completion. Furthermore, external
factors such as ineffective robot navigation may influence the outcome.
515
6.2.2. Resource utilization
This metric evaluates how efficiently the system utilizes resources,

particularly in terms of battery consumption. Fig. 10 presents a com-
parison of the battery consumption between the robot selected by the
Context-Analyzer and the robot selected randomly to complete the task.

As observed in Fig. 10(a), the Context Analyzer tends to select
robots with higher battery levels for the execution of the designated
task. Although the median battery levels in both cases are similar (62
With CA and 60 Without CA), a significant difference emerges in the
lower quartile, with 47 for the robots selected With CA, compared to
32 Without CA. This indicates that the Context Analyzer intelligently
selects robots with more charge at the start of the task.

After task completion (Fig. 10(b)), another convincing observation
is that the robots chosen by the Context Analyzer maintain higher
battery levels, with a lower quartile of 26 With CA, compared to
only 2 Without CA. This result highlights the selection process of the
Context Analyzer, which takes into account both, the battery levels
and the proximity of robots to the pickup location. By including both
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Fig. 10. Energy consumption comparison.
factors in the conditional expression, the Context Analyzer ensures that
the selected robots remain well-charged even after completing their
assignments.

Furthermore, the devices selected by the Context Analyzer ex-
hibit lower energy consumption compared to those chosen randomly.
Fig. 10(c) depicts the median battery consumption in both cases,
showing 20 for the robots selected With CA and 28 Without CA.
Signifying a median on energy saving of 8%.

In summary, this metric demonstrates the capability of the Con-
text Analyzer in efficiently utilizing battery power. The Context Ana-
lyzer contributes to improving the system performance by intelligently
selecting well-charged and nearby robots. This way, optimizing en-
ergy consumption and opening up opportunities for additional task
assignments.

6.2.3. Task completion time
This metric quantifies the duration taken by the selected robot to

complete the task, which encompasses moving to the pickup location,
picking up bins, moving to the delivery location, and delivering the
bins. Fig. 11 illustrates the duration, in seconds, taken by the selected
robot to complete the task, including the aforementioned steps. The
comparison is made between the scenarios With CA (utilizing the best
device selection) and Without CA (employing random device selection).

Fig. 11(a) depicts a boxplot comparison of task completion time
in seconds. As seen in the figure, the devices selected by the Context
Analyzer exhibit shorter task completion times. The median task com-
pletion time With CA is 199 s, a notable improvement compared to the
median time of 285 s Without CA. This reduction in task completion
time, averaging 30%, showcases the effectiveness of the Context An-
alyzer in optimizing task execution. Furthermore, the upper quartile,
representing the maximum completion time is equivalent to the me-
dian completion time Without CA, with 298 and 285 s, respectively.
This observation indicates a notable improvement in the worst-case
scenario.

Additionally, the dispersion of the data, as depicted in Fig. 11(b), is
noticeably smaller With CA compared to Without CA. This reduction
in dispersion signifies a more consistent and reliable performance.
The ability of the Context Analyzer to reduce task completion time
variability ensures a more predictable and efficient workflow.

For the sake of replicability, detailed proofs of this experiment
and the dataset can be accessed at https://github.com/MUFacultyOf
Engineering/ContextAnalyzer/tree/main/SimulationProofs. In addition
to the experimental results, the dataset generated from this study is
also a valuable contribution. It encompasses information from 100
incremental simulations conducted with varying numbers of robots,
ranging from 5 to 10. This dataset captures essential data such as
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Fig. 11. Task completion time comparison.

the positions of the robots, quality properties of all devices prior to
selecting the best and random devices, the time taken by the selected
device to complete the Collect Bins task, and the remaining battery
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level upon task termination. This dataset not only provides valuable
insights into the experimental outcomes but also serves as a foundation
for further research and analysis in the field of context-aware workflow
management in manufacturing environments. Furthermore, a compre-
hensive video showcasing the steps conducted during the experiment
is provided in the same repository, offering a visual representation of
the methodology and procedures employed.

7. Discussion

In this section, the answers to the RQ established in Section 1 are
presented. The responses serve as an opportunity to discuss the results
of the testing phase and explain the advantages and features of the
proposed architecture.

Answer to RQ1. ‘‘How does the proposed context-aware work-
flow management architecture improve operational efficiency and
responsiveness within manufacturing processes?’’: The answer to
this question encompasses how the challenges identified in Section 4
are addressed by this proposal. These challenges are:

1. Need for real-world implementations: To assess the effective-
ness of the proposed architecture, a real-world case study scenario
involving ROS-based robots was conducted. Three key metrics were
employed: Task completion rate, resource utilization, and task comple-
tion time. The feasibility of the implementation was demonstrated by
the results of the evaluation, indicating that operational efficiency and
responsiveness in manufacturing processes are effectively enhanced by
the proposed architecture.

2. Consideration of a broader range of context variables, in-
cluding both calculated and sensor-derived data: The utilization of
semantic web technologies allows for the inclusion of a wider range of
context variables within the definition of quality conditions. To pro-
vide context-awareness, the architecture incorporates a robust Context
Analyzer component built using semantic web technologies within a
MAPE-K-based architecture. The system is granted the capability to
gather and analyze context variables using a wide array of connectivity
options for gathering context values from various sensors, including
OPCUA, HTTP, ROS Topics, and MQTT. The flexibility in connectivity
options allows for the integration of diverse sensor data sources, en-
hancing the accuracy and relevance of the context information used in
decision-making. Context data is then stored within a flexible semantic
repository, with its core being the DeviceServiceOnt domain-specific
ontology. The ontology, in turn, reuses knowledge from a well-defined
Industry 4.0 global ontology named I40GO.

3. Utilization of industry-oriented standards and standardized
workflow formats: The proposal leverages industry-oriented stan-
dards, including BPMN, and uses standardized workflow formats within
a decoupled architecture to improve compatibility with existing sys-
tems. The workflow modeling challenge is effectively tackled by lever-
aging BPMN as the formal workflow modeling language, ensuring
a standardized and comprehensive representation of manufacturing
workflows. The utilization of Asset Administration Shell as the Industry
4.0 standard contributes to addressing this challenge by managing
the rotation of assets at plant-level. The proposal also leverages AAS
in combination with BPMN offering orchestration of AAS assets over
REST, thereby tackling the flexibility and adaptability required to
handle the dynamic nature of modern industrial environments within
a microservice-oriented architecture. A heterogeneous infrastructure
scale is achieved through the utilization of Node-RED WM, allow-
ing for seamless integration and interaction between edge devices.
Node-RED WM also offers parallel and asynchronous execution capabil-
ities, enabling concurrent execution of multiple instances of the same
517

workflow. a
4. Need for user-centric design approaches and migration from
abstract workflows to executable workflows: One key advantage
of this proposal lies in its compatibility with the widely recognized
BPMN as the standard workflow format. By embracing BPMN and
AAS, the architecture facilitates user-centric design by providing a
familiar and intuitive environment for manufacturing workflow design
with a dedicated component that offers available devices and their
corresponding services within the modeler palette, enabling users to
conveniently drag and drop device services into their workflows.

Furthermore, integrating quality conditions into the architecture is
a critical aspect that underscores the importance of human expertise
in manufacturing process design. Quality conditions are set during the
workflow design phase, enabling the inclusion of specific criteria and
constraints. These conditions can incorporate sensor-derived data, such
as humidity, temperature, and proximity, as well as calculated-derived
data like response time, network latency, and success rate. By consid-
ering these quality conditions, the proposed architecture facilitates the
selection of the most suitable device or service for executing a desired
task based on the real-time context.

5. Need for decoupled systems: The proposal decouples compo-
ents such as the context-aware module from the workflow manage-
ent system, enhancing compatibility with a variety of components

nd systems. Another key strength of the proposed architecture is its
bility to execute workflows efficiently in different computing environ-
ents. The workflow executor component is designed to run smoothly

n both Central and Edge environments, requiring minimal resources.
his versatility enables the architecture to adapt to various deploy-
ent scenarios, ensuring optimal performance and responsiveness in

esource-constrained environments.

Answer to RQ2. ‘‘What challenges and limitations arise when
ntegrating the proposed architecture in real-world manufacturing
nvironments, and how can they be addressed?’’: The integration
f the proposed architecture in a real-world manufacturing setting can
resent certain challenges and limitations that need to be addressed to
ptimize efficiency. During the experimental phase, it became evident
hat the conditions set during the design phase of the manufacturing
rocess play a crucial role in determining task completion. If the quality
onditions are not properly defined or aligned with the specific goals,
t may not guarantee task completion in all scenarios.

To address this challenge, it is essential to develop an automatic
echanism that can identify and suggest appropriate quality conditions
uring the workflow design phase. This mechanism would leverage
istorical data, machine learning algorithms, and expert knowledge to
ecommend optimal quality conditions based on specific manufacturing
equirements. By incorporating intelligent algorithms into the design
hase, manufacturers can ensure that the quality conditions are accu-
ately defined, leading to improved task completion rates and overall
erformance.

Furthermore, a potential limitation arises from the focused search
pace and task-by-task optimization inherent in the proposed approach.
hile this design enhances efficiency for the current task at hand,

t may pose challenges in scenarios where inter-task dependencies or
lobal optimization across the entire workflow are critical. This could
imit the adaptability of the approach in workflows with intricate
ependencies and complex interactions among a large number of assets
nd tasks. To address this limitation, future iterations of the proposed
pproach could explore the integration of optimization algorithms com-
only utilized in QoS-based scheduling approaches. By incorporating

uch algorithms, the system could extend its scope to consider global
orkflow dynamics.

Overall, the proposed architecture stands out as a comprehensive
nd adaptable solution for context-aware workflow management in
he manufacturing industry. Its compatibility with BPMN and AAS,
eamless service discovery, diverse connectivity options, efficient exe-
ution, integration of quality conditions, real-time context analysis, and
avorable evaluation results collectively contribute to its effectiveness

nd viability.
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8. Conclusions

This paper presented a context-aware workflow management solu-
tion that addresses industry-related challenges and incorporates state-
of-the-art advancements. This solution optimizes manufacturing pro-
cesses by leveraging BPMN as the standard for workflow design, Asset
Administration Shell for asset representation, and a Context Analyzer
Component for real-time context interpretation.

The experimentation and evaluation phase have demonstrated the
effectiveness and efficiency of the proposed solution in improving
workflow management in the Industry 4.0 domain. The
context-awareness component provides intelligent service selection and
dynamic workflow adaptation, resulting in significant improvements in
task completion time, resource utilization, task completion rate, and
overall manufacturing efficiency. The utilization of semantic web tech-
nologies and the MAPE-K model has played a pivotal role in enabling
context interpretation and successful service selection during runtime,
effectively incorporating context-awareness into the architecture.

Furthermore, the architecture offers flexibility by providing de-
coupled components, making it scalable and applicable to diverse
workflow systems and company configurations. The Context Analyzer,
in particular, empowers users to define rules that apply to diverse in-
dustrial processes with varying quality conditions, making it adaptable
to different manufacturing scenarios. These capabilities of this solution
empower organizations to tailor the workflow management system to
their specific needs, optimizing the utilization of resources and services
based on unique quality criteria.

In future work, we aim to enhance the Context Analyzer component
by integrating a notification mechanism for cases where tasks cannot
be completed due to the unavailability of devices or services meet-
ing the required quality conditions. Furthermore, we plan to explore
the integration of optimization algorithms commonly utilized in QoS-
based scheduling approaches to extend the scope of the system. This
enhancement will enable our approach to consider global workflow
dynamics, addressing the challenge posed by the focused search space
and task-by-task optimization. Additionally, we intend to develop an
automatic mechanism for identifying and suggesting appropriate qual-
ity conditions during the design phase. These combined advancements
will reinforce the practical applicability and benefits of this solu-
tion, facilitating its adoption and contributing to the improvement of
manufacturing operations.
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