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Abstract: This paper proposes an approach for analyzing the benefits that partial-power-processing-
based converters can bring to fully electric maritime applications. With the aim of making the
system modular and scalable to different powers/energies, series-connected partial power converters
are proposed. Serializing these converters entails significant overvoltage issues, and this paper
tackles them for one series-connected module failure case. A reliability analysis has been carried
out considering that the components of the battery system follow an independent and identical
distribution in terms of failure probability. Furthermore, a redundancy factor has been added to allow
a certain failure rate in what is known as a fault-tolerant system. Finally, to demonstrate the high
efficiency of partial power converters, a 3 kW prototype is tested at different working points that
model the charging process of a battery. The experimental results show a peak efficiency of 99.36%.

Keywords: electric vessel; energy storage system (ESS); hybrid; modular converter; DC–DC power
converter; partial power processing (PPP); partial power converter (PPC); dual active bridge (DAB)

1. Introduction

Waterborne transport contributed to around 14% of all greenhouse gas (GHG) emis-
sions from transport in the European Union in 2018, representing about 2.8% of total
human-made emissions that year. In total, European ships generated 140 million tons of
CO2 emissions, approximately 18% of all CO2 emissions generated by maritime transport
worldwide [1,2]. If carbon intensive modes of transport continue to grow as expected [3],
maritime transport could face a 50–250% GHG emission increase by 2050. In line with
the Paris Agreement goals, in 2018, the International Maritime Organization (IMO) devel-
oped a strategy to reduce the shipping industry’s GHG emissions by at least 50% by 2050
compared with their level in 2008 [4,5].

A promising solution to reach this target is the electrification of the maritime sector.
Indeed, the increasing amount of hybrid and full-electric vessels reflects the interest of
ship operators, shipbuilders, fleet service providers, and other actors involved in maritime
transportation to electrically retrofit fuel-based fleets, or even to acquire newbuild electrical
vessels [6,7]. However, the current technology is not yet mature, and the batteries used in
this sector are considerably more expensive than automotive ones [8]. Battery propulsion is
not so evident, as batteries have technical limitations such as energy density, power density,
and lifetime. The choice of storage technology therefore influences the operational perfor-
mance of ships, such as speed and range. In addition, batteries have other shortcomings to
take into account when using them in this application, such as their cost, cycle life, safety,
and the need for fast-recharging infrastructure on shore [7]. Usually, on-board, electrical
energy storage systems for maritime applications are characterized by including only
a single type of battery cell technology. Hence, the monotype battery is used for different
energy demand missions (maintaining cruising speed, maneuvering, fast charging, etc.),
i.e., without differentiating between high-energy (HE) and high-power (HP) operations.
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This results in battery systems with excessive energy or power capacity, increasing the cost,
weight, and volume of the solution and making it inflexible [9]. In the literature, hybrid
energy storage systems have been proposed for many different operating strategies, such
as filtering, rule-based limitations of the operating window of the high-energy battery, or
optimized load splitting for predefined load profiles [10–14]. To seek the best aboard energy
sources for waterborne transport, many electrical energy storage combinations able to suit
ship applications are being examined in terms of price, autonomy, and lifetime [15,16]. Nev-
ertheless, to date, hybridization is not a common practice in waterborne transport electrical
systems. The development of hybrid energy storage systems (HESS) makes it possible to
take full advantage of the characteristics that each technology possesses, depending on the
HE or HP demand of the load. This way, the storage system gets optimized, avoiding the
need for oversized batteries. Hence, determining the optimal sizing of the HESS is crucial
for achieving those benefits.

Just as important as having the possibility to use different type of batteries for both
HE and HP operations is the implementation of high efficiency converters [17–19] that can
adapt the energy provided by the batteries to ensure a stable output voltage of the HESS.
Power electronic converters play a key role in the interface between the energy storage
systems (ESS) and the distribution network of the ship. Usually, the battery-based ESS is
connected to the distribution system through a single bidirectional full power converter,
although recent studies propose distributed concepts based on series and/or parallel
connection of modules composed of a single cell and a converter [20]. Regarding the types
of DC/DC converters used in maritime applications, the Dual Active Bridge (DAB), the
three-level Neutral Point Clamped (3L-NPC), or the isolated Modular Multilevel Converter
(iMMC) are possible [20]. It should be noted that all of them operate by processing all input
power, i.e., they are used as full power converters. This leads to higher voltage-current
rated components, which are related to a higher cost and bigger volume, and, in addition,
by using a single converter, the reliability of the system is compromised in case of converter
failure. On the other hand, when working at high power, power electronic devices are
usually heavy and take up a lot of space. As the DC/DC converter is a power conversion
device, one of the most important characteristics to pay attention to is its energy efficiency.
Therefore, smaller size, lighter and higher efficiency power converters are required in
maritime applications [21].

The recent literature around electric vehicle fast charging applications presents ad-
vanced architectures based on partial power processing (PPP) [22,23]. These types of
strategies aim to reduce the power to be processed by the power converter, achieving
more efficient and downsized solutions [23–25]. Indeed, PPP-based converters have been
proposed for a broad variety of unidirectional power flow applications. These converters
are usually placed in series with an energy storage bank, and they are suitable for DC–DC
applications where the voltage difference between the input and output terminals is not
very high. According to [26], PPP strategies for DC–DC applications are classified into three
different groups: differential power converters, partial power converters (PPC), and mixed
strategies. This work is focused on the implementation of PPCs, which control the total
power flow between two elements by only processing a portion of the total power [27–29].
The interest of this article relies on the analysis of the modularity of PPCs to meet high
power and/or energy demands. The literature shows that the parallel connection of PPCs
does not present mayor challenges compared to the full power converters [30,31]. However,
there is a lack of research on series-connected PPCs. The performance of PPCs is highly
dependent on the voltage gain of the application. Therefore, this article presents a sizing
method for parallel- and series-connected modular PPCs.

For all the above reasons, developing modular HESS and high efficiency converters
will be key in the electrification of the maritime sector and, thus, to meet GHG emissions
reduction goals. Therefore, this paper presents a HESS based on modular PPC (see Figure 1)
suitable for HE and HP operations in a fully electric vessel that enhances the flexibility and
scalability of the system. The main contribution of this work is the use of PPC in these



Electronics 2023, 12, 2778 3 of 24

applications and, in particular, their series connection. Each DC–DC converter is in charge
of controlling the power flow of a single ESS. The group formed by an ESS and a DC–DC
converter will hereinafter be referred as an ESS module. Depending on the cell technology
used, the ESS modules can be HE or HP modules. The ESS modules are connected in
series, forming a string of several HE or HP modules to reach the desired string voltage
and making the system scalable. Finally, different strings in parallel form the HESS.
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Figure 1. The HESS architecture comprises strings of series-connected HP modules, connected in
parallel with strings of series-connected HE modules.

This paper is divided in the following sections: in Section 2, the HESS sizing and
hybridization analysis is conducted for a specific use case, whereas Section 3 describes the
design of the modular PPC, taking into account the reliability analysis of the battery system.
Finally, Section 4 presents the modeling of the modular PPC solution and the simulations
results, and in Section 5, a 3 kW PPC prototype is tested at different working points that
model the charging process of a battery.

2. Hybrid Energy Storage System Design
2.1. Electric Vessel Power Profile

According to [32–34], the electrification of ships mainly takes place on ferries that
usually follow the same route. A real power profile of an electric urban ferry (Figure 2),
has been used as the starting point for the dimensioning of the HESS. The power profile
consists of two cycles: During half of the year (183 days), it makes eight short trips per
day with high-power demand. The rest of the year (182 days), the short trip is repeated
seven times followed by a larger one, consuming more energy.
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Figure 2. Electric urban ferry load profile. (a) First cycle of 8 short trips. (b) Second cycle of 7 short
trips and a larger one. Courtesy: Damen shipyards group.
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2.2. HESS Cells Selection

The use of lithium-ion batteries for electric mobility and, more specifically, for waterborne
transport is extensive, as shown in [35–38]. The variety of lithium-ion battery cells in the market
is large depending on the material and properties of the electrolyte and electrodes. Those
materials and properties provide the cells with different characteristics. Certain cells are notable
for their high specific energy, such as, nickel–manganese–cobalt oxide (NMC) and nickel–cobalt–
aluminum oxide (NCA), making them suitable for applications with higher energy demands.
Antagonist cell technologies exhibit higher power densities, so they are used in applications
where the power requirement is high, e.g., lithium–iron–phosphate (LFP) and lithium–titanate
oxide (LTO), among others [39–41].

In battery cell technology, the increment of the energy density occurs at the cost of
decreasing the power capability of the cell. A common practice is to oversize the battery
system to cover the energy and power required by the application Figure 3.
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Figure 3. Battery solutions for different energy-demand applications. (a) The battery is oversized
to fulfill energy and power requirements in case of using a unique battery type (HP or HE). (b) The
dimensioning can be optimized using a hybrid battery. Own figure based on [42].

Alternatively, hybridization allows the system to obtain high-power and high-energy
capabilities while using the best properties of two battery technologies. Indeed, hybridiza-
tion brings significant advantages concerning weight, volume, and investment [42]. To
design the HESS, LTO technology is selected as high-power (HP) technology because of its
high power density. On the other hand, NMC cells are selected as high-energy (HE) cells
because of their good energy density [14].

2.3. Monotype vs. Hybrid Battery Sizing

Considering the proposed battery technologies and the power profile of the urban
ferry, the evaluation of the storage system has been carried out taking into account the
specifications shown in Table 1:

Table 1. Storage system specification.

Battery Cells Samsung SDI 94 Ah NMC 0.109 €/Wh
Toshiba SCiB 23 Ah LTO 0.43 €/Wh

Typically required minimum lifetime in maritime applications 10 years
Maximum power peak of the profile 150 kW

Minimum stored energy of the profile 136 kWh
Maximum DC bus voltage (below limits of Low Voltage Directive) 1000 V

State of Charge range of the batteries Between 90% and 10% (safety margin)

The sizing of the urban ferry ESS by considering monotype HE or HP system is
gathered in Table 2. In the case of choosing a NMC ESS, more power and energy are
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installed due to its higher degradation, but the battery pack is cheaper due to the lower
price of the NMC cells.

Table 2. Dimensioning of the battery system in case of having HE or HP cells.

Monotype HE Monotype HP

Battery cells Samsung SDI 94Ah NMC Toshiba SCiB 23Ah LTO
Cells layout 224S10P 352S12P
Peak power 1393.1 kW 1049.2 kW

Energy 774.9 kWh 223.4 kWh
Cost 82,910 € 96,083 €

On the other hand, when working with two technologies (NMC and LTO), a power
split control is necessary to decide the amount of power that will be provided by each
technology. For the sake of simplicity, this paper proposes a power split that limits the
maximum power supplied by the HE battery. This way, HE batteries operate under stable
working cycle conditions and HP batteries will cover variable load demands, such as speed
variations or port maneuvers.

In order to reduce the cost of the HESS, different HE power limits have been defined
to find the case with the lowest possible cost, i.e., the optimal one. Figures 4 and 5
show, respectively, the flowchart of the HESS’s cost for different HE power limits and its
results Figure 5.
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Figure 5. Cost of the HESS depending on the HE power limit (NMC power limit). The leftmost cost
value corresponds to a full HP battery. The rightmost cost value corresponds to a full HE battery. The
mid-point cost value corresponds to the hybridization case where the HE and HP are sized to give
the same total power.

By limiting the HE battery power to the optimal operation point, i.e., 66.66 kW, the
cheapest battery system is achieved. The sizing of the battery for this case can be seen
in Table 3.

Table 3. Dimensioning of the battery system in case of having both HE and HP cells, implementing
the cheapest HESS.

Hybrid Battery Total
HE HP HE + HP

Cells layout 224S5P 352S4P
Power 696.5 kW 349.7 kW 1046.2 kW
Energy 387.4 kWh 74.5 kWh 461.9 kWh

Cost 32,028 € 41,455 € 73,483 €

Although the HE battery is initially limited to 66.6 kW as the most optimal point
(Figure 5), it is necessary to oversize it to meet State of Charge (SoC) and lifetime require-
ments. Considering them, the final size of the HE battery is 696.5 kW and 387.4 kWh,
although the real operating point will be limited to 66.6 kW. The same occurs with the HP
battery. Although it is initially sized for 84 kW as the most optimal point, it is oversized to
349.7 kW to meet the requirements.

Even if the battery is oversized, comparing the results of Tables 2 and 3, the power
sizing in the case of hybridization is the most optimal. Furthermore, if the prices of the
battery packs are compared, the savings for installing a hybrid battery would be 9427 €
(11.4 %) in the case of replacing a pure NMC battery and 22,600 € (23.5 %) to replace a pure
LTO battery.

The power split of the electric urban ferry load is shown in Figure 6, where the power
of the HE power is limited to 66.66 kW.

It has been shown that hybridization can be cost-effective, but the price of each
technology has a strong influence on it. If LTO battery prices decrease in the future,
hybridization might not be profitable.

Once the battery pack has been sized for an urban ferry application, it is necessary to
pay attention to the efficiency of the conversion stage, i.e., the converter.
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3. Modular PPC Design

Within the family of PPC, there are two main architectures: Input-Parallel–Output-
Series (IPOS, Figure 7a) and Input-Series–Output-Parallel (ISOP, Figure 7b). Depending
on the operating conditions, each architecture achieves a different reduction of the power
processed by the converter. This can be compared by calculating the partial power ratio
(Kpr), which consists of the ratio of the converter power (Pconv) to the system power (Psource).
Applying Kirchhoff’s laws, Kpr curves of both architectures are obtained as a function of
the static voltage gain (GV) and are defined in (1)–(4) [43].

Kpr =
Pconv

Psource
(1)

KprIPOS = ηsystem −
ηsystem

GV
(2)

KprISOP = ηsystem − GV (3)

GV =
Vload

Vsource
(4)

where KprIPOS and KprISOP are the processed power ratios of the IPOS and ISOP architectures.
ηsystem is the efficiency of the system, which is given in (5).

ηsystem =
Vload·Iload

Vsource·Isource
(5)
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Equations (2) and (3) are plotted in Figure 8, where ηsystem is considered ideal.
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Analyzing Figure 8, several conclusions can be drawn. First, it is observed that as
GV approaches 1, the value of Kpr decreases. That is, the smaller the voltage gain, the less
power the converter will process. This is the same for both architectures.

Secondly, if the application requires only voltage boost (GV > 1), the architecture that
obtains lower Kpr values is IPOS. In fact, its Kpr curve never exceeds the value of 1 when
working in boost mode, meaning that the converter will process only a part of the total
power transferred to the load. On the contrary, the ISOP architecture obtains Kpr values
less than −1 when GV is greater than 2. Beyond that value, the converter does not operate
in the partial power range, thus losing all advantages.

Thirdly, if the application requires only to reduce the voltage (0 < GV < 1), the
architecture that obtains lower Kpr values is the ISOP. As in the previous case, in buck
mode, the ISOP architecture never exceeds the value of 1 for Kpr. However, the IPOS
architecture does when GV is less than 0.5.

Finally, if the application requires buck-boost functionality, the power converter will
enter in the shaded blue (IPOS case) and red (ISOP case) areas from Figure 8. At these
regions, the Kpr curve achieves negatives values, which means that the power flow inside
the converter is reversed [44]. In the case of the IPOS, the polarization of Vout is inverted
and the flow of Iin changes its direction to the opposite way. The same thing occurs with
the ISOP for step-up applications. In this case, the polarity of Vin and the direction of Iout
must be inverted.

To sum up, the IPOS architecture is the optimal solution for purely boost applica-
tions and the ISOP is optimal for purely buck applications. If the application consists
of a buck-boost, the selection between the IPOS and the ISOP is not that evident and it
requires a more complex comparison. Furthermore, the circuit inside the converter requires
a higher number of components [44]. As presented in [44], in order to achieve buck-boost
capabilities, both IPOS and ISOP architectures require the back-to-back connection between
two semiconductors. These could be a diode and a MOSFET of double MOSFET.

Bearing in mind that the concerned converter is located between an ESS and a DC
voltage, it is concluded that the most feasible solution in terms of number of cells is to
work in boost mode when discharging the ESS. This means that in an IPOS architecture
(Figure 7a), the ESS represents the source and the DC voltage represents the load. When
charging the ESS, a reverse power flow will exist (buck mode) and the ISOP architecture
will be imposed (Figure 7b). At this working point, the DC voltage will act as the source
and the ESS will act as the load.
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3.1. Modular PPC Dimensioning

The aim of the present article is to design a modular PPC that can be scalable in
series and parallel for different applications and a flexible battery system. This subsection
describes the design procedure to define the number of series-connected modules (ns)
and the number of series-connected cells per module (ncellm). Figure 9 shows a simplified
electric diagram of a single string. As it can be observed, each module consists of four
main voltages: battery cell voltage (Vcell), battery module voltage (Vbat = ncellm ·Vcell),
converter output voltage (Vout), and module output voltage (Vmod = VDC/ns). VDC is the
DC bus voltage.
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3.1.1. Preliminary Considerations

The Kpr curve of an IPOS architecture, such as the one shown in Figure 9, is defined as
in (6). There, it can be observed that Kpr is directly dependent on GV, which in this case is
defined as the division between Vload = Vmod and Vsource = Vbat (7).

Kpr =
Pconv

Pmod
= 1 − 1

GV
(6)

GV =
Vmod
Vbat

=
VDC/ns

Vbat
(7)

Focusing on (7), Vmod is considered as a constant parameter, since it is defined by VDC
and ns. On the other hand, Vbat is considered as a variable parameter, since it depends
on the SoC of the battery. In an ideal case, the lowest achievable GV is given when the
maximum value of the battery (Vbatmax) coincides with Vmod. In this case, GV will obtain
a value of 1 and the power processed by the converter would be 0. However, as the battery
discharges, Vbat reduces until the battery is totally discharged (Vbatmin). This will be the
most critical point of the converter in terms of processed power (8), (9).

G∗
V =

Vmod
Vbatmin

=
Vbatmax

Vbatmin

=
ncellm ·Vcellmax

ncellm ·Vcellmin

=
Vcellmax

Vcellmin

(8)

K∗
pr = 1 − 1

G∗
V

(9)
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K∗
pr represents the minimum value that can be defined for the design value of Kpr.

Due to the fact that ncellm needs to be an integer number, it is very rare to make coincide the
values of Vbatmax and Vmod. Therefore, Kpr (also known as KprMAX ) must be defined slightly
higher than K∗

pr (10). Together with it, the maximum permitted GVMAX can be obtained (11).

KprMAX > K∗
pr (10)

GVMAX =
1

1 − KprMAX

(11)

3.1.2. Number of Cells Per Module

It must be mentioned that ns consists of a vector with integer values from 2 to 20.
Thus, the first step consists of calculating the corresponding ncellm value for each ns. This is
obtained by applying Equations (12) and (13).

Vbatmin =
Vmod

GVMAX

=
VDC/ns

GVMAX

(12)

ncellm =

⌈
Vbatmin

Vcellmin

⌉
(13)

Due to the cell operation in (13), it is possible that the resulting Vbatmax obtains a higher
value than Vmod. This would suppose a voltage step-down working condition (GV < 1),
which implies a bipolar Vout and a more complex circuit. For this reason, it must be ensured
that GV gives a value greater than 1 for each ns. In case the resulting GV is lower than 1,
that ns is deleted.

3.1.3. Number of Modules

The total number of modules of the final solution will result from the product between
the modules connected in series and the number of strings connected in parallel. The
number of strings will be given by the total maximum power of the application and the
power capability of the batteries. However, the definition of the number of modules in
series is not that evident. Therefore, the present section aims to describe the steps followed
to define the necessary number of modules in series.

The PPC architecture is focused on reducing the power processed by the converter and,
thus, implementing lower rated components. Bearing this in mind, this analysis proposes
to optimize the concerned reduction by considering that in case a single module fails, the
rest of the modules must assume the resulting overload.

If one of the modules fails in Figure 9, the whole string stops working. In order to
avoid this, it is suggested to design the converters for a possible one-module failure. This
way, the concerned module would be short-circuited, and the rest of the modules would
increment their power and voltage levels. Concerning this, the present analysis aims to
select the value of ns that minimizes the possible overload of the Kpr and the Vout.

With this purpose, two different cases are analyzed:Kpr and Vout for each value of ns
(nominal conditions) and for ns − 1 (1 module fail). On the one hand, Figure 10a presents
the obtained results for the Kpr parameter. As it can be observed, as the number of modules
increases, the Kpr increment reduces. This means that the more modules are implemented,
the less overload will exist in case one of them fails.

On the other hand, Figure 10b shows the obtained results for the Vout parameter.
Similar to the Kpr analysis, as the value of ns increases, a lower overvoltage is expected at
the output of the converter in case one of the modules fails. Based on these results, it is
decided to define ns = 8. With this value, the expected overvoltage for both technologies
(NMC and LTO) goes from 37 V to 55 V. This way, a 100 V rated switch with a lower on
resistance can be implemented without taking any risk.
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Finally, bearing in mind that ns = 8, the number of cells per module (ncellm ) is calculated
for each battery technology by using (12) and (13): ncellm = 28 (NMC) and ncellm = 44 (LTO).
Then, the maximum voltage of the battery module is computed (14). The obtained Vbatmax

are used as input in the HESS sizing section.

Vbatmax = ncellm ·Vcellmax (14)

To sum up, Figure 11 presents a flowchart of the previously discussed steps.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 24 
 

 

  
(a) (b) 

Figure 10. (a) K  increment for one module failure (b). V  increment for one module failure. 

On the other hand, Figure 10b shows the obtained results for the V  parameter. 
Similar to the K  analysis, as the value of n  increases, a lower overvoltage is expected 
at the output of the converter in case one of the modules fails. Based on these results, it is 
decided to define n  = 8. With this value, the expected overvoltage for both technologies 
(NMC and LTO) goes from 37 V to 55 V. This way, a 100 V rated switch with a lower on 
resistance can be implemented without taking any risk. 

Finally, bearing in mind that n  = 8, the number of cells per module (n ) is calcu-
lated for each battery technology by using (12) and (13): n = 28 (NMC) and n  = 44 
(LTO). Then, the maximum voltage of the battery module is computed (14). The obtained V  are used as input in the HESS sizing section. V = n · V  (14)

To sum up, Figure 11 presents a flowchart of the previously discussed steps. 

 
Figure 11. Block diagram of the number of cells (n ) and number of series-connected modules 
(n ) selection process. 

3.2. Reliability Analysis 

Figure 11. Block diagram of the number of cells (ncellm ) and number of series-connected modules (ns)
selection process.

3.2. Reliability Analysis

To perform the reliability analysis of the system, the first step is to define the states
of the system and the degree of redundancy that it will have. If we consider a system
with redundancy, we will have a minimum of three possible states: completely working
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(full performance), partially working (reduced performance) and completely failed (out
of service)

The system will be sized with a certain number of cells in series and parallel to
meet the power and energy requirements of the application. Besides that, series and
parallel redundancy factors can be added allowing a certain failure rate in what is known
as fault-tolerant system. Otherwise, if one element fails, the whole system could not
continue operating.

Among the existing reliability calculation methods used for electronic devices, the
empirical prediction method based on statistical curve fitting of historical failure data is
chosen [45]. Applying the parts count prediction method employed by the MIL-HDBK-217,
the failure rate of our module (λM) is estimated as follows in (15),

λM =
J

∑
j=1

Nj
(
λgπQ

)
(15)

where λg is the generic failure rate for the jth generic part; πQ is the corresponding quality
factor; Nj is the quantity of the jth generic part; and J is the number of different generic part
categories in the equipment.

The failure rates of the components that make up a module are shown in Table 4.
The values of the components that make up the converter were obtained from the MIL-
HDBK-217 database [46]. As for batteries, if lithium-ion battery cells are operated within
manufacturer recommended limits, its failure rate is estimated to be 1 in 10 million or even
less [47,48]. Assuming a relatively conservative margin of 30%, a failure rate of 1.3 out of
10 million has been considered, or in other words a failure rate of 1.3·× 10−7.

Table 4. Failure rate data of module components, given in [failures/hours].

Component Qty. (Nj) Value

Power switch 8 1.1 × 10−9

Capacitor 2 2.5 × 10−9

HF transformer 1 9.6 × 10−7

HE Battery 28 1.3 × 10−7

HP Battery 44 1.3 × 10−7

HE Module 4.6 × 10−6

HP Module 6.69 × 10−6

Considering a unity quality factor (πQ = 1), the reliability of one module can be
calculated by using the classical exponential distribution approach of (16).

RM(t) = e−λMt (16)

Since the reliability result depends on time, a period of one year has been used as
a reference to carry out the subsequent calculation. In the case of HE modules which
contain 28 cells in series, the module reliability result after one year is 0.96. On the other
hand, HP modules contain 44 cells which give a reliability result of 0.943 after one year. By
way of example and for the purpose of making a fair comparison of the results, a value
of 0.95 will be set for the reliability of each of the modules. Previously, the number of
series-connected modules has been defined as ns = 8, considering one of the modules as
redundant. In this situation, the fact that one of the modules is redundant means that seven
are completely necessary. Without any kind of redundancy, the reliability of the system
will be calculated only with seven modules, as is shown in (17).

R = 0.957 = 0.6983 (17)

In this example, every module is necessary because if even one of them fails, the
system cannot continue working. For a HESS responsible for feeding the main loads of
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an electrical vessel (such as the propulsion), this is not permitted, so it will be necessary
to add some redundant elements. To compute the reliability of this fault-tolerant system,
a k-out-of-n structure should be developed [49].

The reliability of a k-out-of-n system with independently and identically distributed
components is equal to the probability that the number of working components is greater
than or equal to k (18).

R(k, n) =
n

∑
i=k

(
n
i

)
piqn−i (18)

where
(

n
i

)
is the binomial coefficient which represents the number of ways to choose i

elements from an n-element set. It is given by Equation (19).(
n
i

)
=

n!
i!(n − i)!

(19)

Then, the reliability of the system can be calculated as in (20).

R(k, n) =
n

∑
i=k

n!
i!(n − i)!

piqn−i (20)

In this case, the energy storage system is composed of eight modules connected in
series, where a minimum of seven modules working may be sufficient to continue operating.
In this case, one of the modules can be considered as redundant (21).

R(7, 8) =
(

8
7

)
0.9570.05 +

(
8
8

)
0.958 =

8!
7!(8 − 7)!︸ ︷︷ ︸

=8

0.9570.05 +
8!

8!(8 − 8)!︸ ︷︷ ︸
=1

0.958 = 0.9428 (21)

As can be observed, including a redundant element considerably increases the total
reliability of the system. As expected, the architecture of the energy storage unit will
determine its reliability. Furthermore, it becomes even more important when a fault has
already occurred, and it is operating in a partial working state.

For the sake of simplicity, some assumptions have been considered. The same 0.95
module reliability value has been taken for all cases, whether there is redundancy or not.
If one of the modules fails, the performed analysis does not consider the fact that seven
modules are supporting work that was previously performed by eight. This situation
would probably decrease the reliability of each individual module from 0.95 to a slightly
lower value since the batteries work at higher current rates. In any case, the analysis has
been carried out with the aim of demonstrating the impact that adding a redundant module
in series would have on the reliability of the system.

After calculating the reliability of a single branch of series-connected modules, is the
time to calculate the reliability of the entire energy storage system. This system consists of
nine branches connected in parallel, where five of them are HE and four are HP branches, as
indicated in Table 3. Under normal conditions, all nine branches will be working. However,
if one of them fails, the system could continue operating with limited power performance
compared to normal operation. In any case, the case that an entire branch fails is a rather
unlikely situation, since not only one but two modules on the same branch should fail for
that to happen.

The series and parallel module configuration (see Figure 12) presents one module
redundancy on each branch while, at the same time, it can operate with only eight of
the nine branches. Taking the previously performed single branch k-out-of-n analysis as
a starting point, the following step will be to compute the reliability of the nine parallel
branches together. For this purpose, the reliability value calculated in Equation (21) for
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a single branch will be used (R = 0.9428). Considering one of the branches as redundant,
an eight out of nine reliability evaluation should be performed (22).

R(8, 9) =
9!

8!(9 − 8)!︸ ︷︷ ︸
=9

0.942880.0572 +
9!

9!(9 − 9)!︸ ︷︷ ︸
=1

0.94289 = 0.9099 (22)
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As can be seen, in this specific case, the reliability of the entire system is reduced
by placing nine branches in parallel, despite the fact that one of them is redundant. The
reason for this is that increasing the number of elements—in this case the number of
branches—also increases the probability that one of them fails.

The same can be calculated for a different number of branches. In order to make a fair
comparison, it is going to be assumed that adding the battery capacity of all the branches
the result is the same. Similarly, in all cases, one of the branches will be redundant, so
the system allows one of them to fail. Figure 13 shows the results of this calculation for
different numbers of parallel branches. Note that these results may change if a different
module reliability value is chosen at the beginning.
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In conclusion, it can be stated that the introduction of redundant elements both in
series and in parallel increases the reliability of the system.

A decreasing trend in reliability has also been observed as a greater number of elements
is introduced: in this case, a greater number of branches in parallel. The only possible
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solution to improve this would be to choose a larger cell capacity in order to connect fewer
branches in parallel. This would be interesting as long as it is possible to maintain at least
one redundant branch, since if the redundancy disappears, the reliability calculation would
automatically be even more unfavorable.

4. Modeling and Simulation of a HESS for a Fully Electric Vessel

In the following section, a case study where a PPC for a HESS oriented to a maritime
application (i.e., the electric urban ferry) is presented.

4.1. Case Study and Modeling of the Converter
4.1.1. Case Study

The selected power profile for the use case is the one presented in Figure 6. This
corresponds to an urban ferry application, where two main cycles are identified.

The PPC architectures from Figure 7 require an isolated topology to avoid a short-
circuit of Vsource or Vload. Therefore, a dual active bridge (DAB, Figure 14) is implemented
due to its simple control (phase-shift modulation, PSM), power bidirectionality and soft
switching conditions. In addition, in comparison to alternative isolated topologies such
as the phase-shifted full bridge, the DAB-PPC enables the implementation of lower rated
voltage and current devices in the low voltage side of the converter (Q5−7 from Figure 14).
The required phase-shift (φ) at each operating point is obtained from (23).

PDAB =
n·Vin·Vout·φ·(π − φ)

2·π2· fsw·L
(23)
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Figure 14. Simplified electrical diagram of the DAB-PPC.

Table 5 details the design parameters of each of the power converters. As it can be
observed, due to the PPC configuration, a maximum voltage of 25 V is expected at the
output of both converters (Vmod − Vbat). As a consequence, low voltage semiconductors
with better conducting capabilities can be implemented. The main difference between both
designs is the power level. This is defined by the power split strategy, which defines that
the LTO batteries must be designed to provide higher peak power values than the NMC
batteries (2.6 kW vs. 1.6 kW). Please notice that in both designs, the Kpr does not exceed 0.3.
It must be mentioned that the simulations assume a constant battery voltage at its nominal
value (VbatNMC = 103.4 V and VbatLTO = 101.2 V).

4.1.2. Modeling of the Converter

Regarding the modeling of the PPC, its main objective is to compute the power losses
caused by the components inside the power converter. These are computed by applying
(24) and (25). The energy loss at the ith time is given by Elossi and is obtained by using
(24). Here, Plossi is the power loss at the ith time instant, and Plossi−1 is the power loss at
the (i − 1)th time instant. The total energy loss over the complete cycle is obtained by
summing the energy loss at each time instant and is given by (25).

Elossi =
Plossi + Plossi−1

2
·(ti − ti−1) (24)



Electronics 2023, 12, 2778 16 of 24

Elosstotal
=

k

∑
i=1

Elossi (25)

where k is the total number of time instants.

Table 5. Design parameters of the DAB-PPC for the NMC and LTO strings.

Parameter DAB-PPC (NMC) DAB-PPC (LTO)

PmodMAX [kW] 1.6 2.6
PconvMAX [W](

Kpr
) 470

(0.29)
770

(0.29)
Vin[V] 100 100
Vout[V] 25 25

n 5 5
L[µH] 63 39.6
C[µF] 300 300

fsw[kHz] 50 50

Q1−4
IPT111N20NFDATMA1

(Vds = 200 V, Rds = 11.1 mΩ)
IPT111N20NFDATMA1

(Vds = 200 V, Rds = 11.1 mΩ)

Q5−8
IPT015N10N5ATMA1

(Vds = 100 V, Rds = 1.5 mΩ)
IPT015N10N5ATMA1

(Vds = 100 V, Rds = 1.5 mΩ)

The total Ploss is given by (26) and is the sum of the switching and conduction losses.
The conduction loss Pcond is given by (27). It is obtained using the RMS of the current and
the on-state resistance (Ron) of the devices.

Ploss = Pcond + Psw (26)

Pcond = Ron·I2
RMS (27)

The calculus of the switching losses is based on the analytical switching loss modeling
described in [50,51]. Depending on the flow of the inductor current, the switching losses are
classified into zero voltage switching (ZVS), incomplete ZVS (iZVS), and hard switching.
In order to summarize the simulation in an image, Figure 15 presents a graphical abstract
with the main steps.

1 

 

 

Figure 15. Graphical abstract of the numerical simulations.
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4.2. Simulation Results

In the first place, Figure 16 presents the ZVS regions of each solution as a function of
the voltage gain value (M) and the phase-shift (φ). The yellow line represents the working
points of the converter through a complete charging process. As can be observed, at
both solutions, this line maintains a constant M, but at different levels. This is due to
the different nominal voltages for each battery technology. It can also be observed that
the maximum phase-shift is designed for 45◦. This way, the PSM control is designed to
work inside the linear region and extra power can be delivered or absorbed by the battery
whenever is necessary. Both solutions will work inside the ZVS region for a great part of
the charging process except for during low power conditions. With phase-shift values close
to 0, the secondary side semiconductors enter hard switching conditions. However, these
semiconductors are expected to observe a reduced output voltage (Table 5).
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In the second place, Table 6 shows the energy losses (Eloss) and the total energy
consumed (Etotal) through a whole year. The energy losses are divided into conduction
(Econduction) and switching losses (Eswitching). The weight of Eloss with respect to Etotal is
shown between parentheses. As shown in Figure 16, the secondary side semiconductors in
the NMC work under hard switching conditions during a longer period than the ones in
the LTO. Therefore, its switching losses have a major presence. However, since the switched
voltage is very low (around 25 V, see Table 5) the switching losses are non-disturbing.

Table 6. Energy losses through one whole year.

Energy (Per Year) NMC LTO Total

Econduction [MWh] 0.664 0.148 0.812
Eswitching [MWh] 0.220 0.075 0.295

Eloss [MWh] 0.884 (0.87%) 0.223 (1.99%) 1.107 (0.98%)
Etotal [MWh] 101 11.18 112.18

5. Experimental Validation of the PPC

The converter under analysis consists of a downscaled prototype that has been de-
signed to operate as a battery charger. The modeled charging profile of the battery is
presented in Figure 17. As it can be observed, the modeled battery performs a constant
current charging process by increasing its voltage and power as it is charged. Regarding the
control method of the DAB-PPC, it consists of an open-loop control, in which the defined
phase-shift ensures the required power consumed by the battery. For the present analysis,
four test points are defined in Figure 17. “Test point 1” and “Test point 4” represent the
beginning and the end of the charging process, respectively. On the other hand, “Test point
2” and “Test point 3” represent two intermediate points. Regarding Vmod, this parameter
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represents the constant DC voltage of a single module (Figure 9). The test points defined in
Figure 17 represent a battery charging process, which can be considered as a buck applica-
tion (Vmod > Vbat). Therefore, an ISOP architecture is imposed (Figure 18a). Figure 18b,c
show an image of the test bench setup. In Figure 18b, the electronic devices that form the
DAB are identified, whereas in Figure 18c, each equipment used in the experimental tests
is described.
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Figure 18. (a) Simplified electric diagram of a DAB-PPC, ISOP architecture. (b) DAB-PPC prototype.
(c) System test setup.

Table 7 details the selected active and passive components. Focusing on the semi-
conductors, the ones from the primary side (Q1−4) are designed for a maximum voltage
value of 75 V (V̂in = VDC − ˇVbat). This way, reduced resistance semiconductors can be
implemented. On the other hand, the secondary side semiconductors (Q5−8) are designed
for a maximum voltage of 295 V ( ˆVout = ˆVbat). However, they are expected to observe
a lower current (Iout = Ibat − IDC).
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Table 7. Active and passive components.

Components Description

Q1−4 IRFS4115-7P (VDS = 150 V, RDS = 11.8 mΩ)
Q5−8 IPBE65R075CFD7A (VDS = 650 V, RDS = 75 mΩ)

n 0.2
L [µH] 15
C [µF] 200

Experimental Results

In the first place, Figure 19a presents the efficiency results obtained with the prototype
at each test point. The worst case corresponds to “Test point 1”, where VESS = 225 V. At
this point, the battery is at its lowest value (minimum SoC) and, therefore, the voltage gain
is the highest. Consequently, the power converter processes a higher amount of power.
However, as the voltage increases (VESS = 250 V “Test point 2” & VESS = 275 V “Test point
3”), the power processed by the converter decreases, increasing the efficiency up to a peak
value of 99.36%. In “Test point 4” (VESS = 295 V), the efficiency drops to 99.246%. This is
due to an increment of the inductor RMS current. This is later explained in further detail.
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In the second place, Figure 19b presents the top-case temperature of the primary
side (Q1−4) and secondary side (Q5−6) semiconductors. Each steady state temperature
from Figure 19a represents the achieved temperature by the semiconductors in each test
point. Similar to the efficiency results, the most critical working point is “Test point 1”,
where the hottest primary side semiconductor reach to 100 ◦C. When moving to “Test
point 2” and “Test point 3”, the temperature of the semiconductors decreases significantly,
achieving a maximum value of 70 ◦C and 60 ◦C, respectively. Finally, in “Test point 4”,
the temperature increases again. This thermal behavior matches completely with the
efficiency results from Figure 19a. The better the efficiency, the lower the temperature of
the semiconductors will be. It is also very interesting to observe that the secondary side
semiconductors hardly heat up at all. This is due to the reduced current that exists in the
secondary side of an ISOP architecture.

Finally, related with the electrical stress suffered by the semiconductors, Figure 20
presents the steady-state waveforms of the primary and secondary AC voltages (vpri
and vsec) and the inductor current (IL). On the one hand, the current waveforms from
Figure 20 demonstrate that the efficiency and temperature variation from Figure 19 is
related to the inductor RMS current: IRMSA = 14.44 A, IRMSB = 11.61 A, IRMSC = 10.95 A,
and IRMSD = 12.34 A. On the other hand, Figure 20 shows how the primary side voltage
decreases from 75 V (Figure 20a) down to 5 V (Figure 20d) as the battery charges. The
main benefit of this voltage reduction is that although hard switching conditions occur in
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Figure 20d (IL > 0 when vpri is rising), they occur with only 5 V. As a consequence, the
switching losses are negligible, and the semiconductors are not endangered by overvoltage.
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In the end, the experimental results demonstrate that the DAB-PPC is an efficient
solution with low thermal and electrical stress of the devices. The peak efficiency is about
99.36%, and the temperature results show that the main hotspot is located in the primary
side. Indeed, the thermal stress of the secondary side devices is almost negligible. In
addition, the electrical stress of the semiconductors is reduced, as the voltage blocked by
the secondary side devices decreases from 75 V to 5 V.

6. Conclusions

The electrification of the maritime sector is a promising solution to reduce GHG
emissions produced by the maritime industry. An example of this is the use of ESS to
power propulsion and hotel loads. Generally, single technology (monotype) batteries are
used, resulting in oversized solutions that increase the cost, weight, and volume of the
system. HESS can improve these aspects and, together with the appropriate converters,
offer a more efficient solution.
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Due to the nature of the batteries, the system output DC voltage will vary depending
on the SoC of them. Therefore, it is necessary to include a converter to control the power
flow and ensure a stable output voltage. In this sense, the use of smaller and more efficient
power electronic converters is another key factor in the electrification of the maritime sector,
where a single converter is predominantly used to process all the input power, which means
higher cost and volume and compromised system reliability in the event of converter failure.
In this paper, modular high efficiency converters based on PPP for fully electric vessels
are presented. These converters process only a portion of the total power, reducing the
converter cooling system and the total power losses. Unlike the parallel connection of
PPCs, the series connection presents certain difficulties compared to full power converters.
This article proposes a modular HESS solution based on the series connection of these
converters to make the system flexible and scalable. In addition, as one of the challenges of
using battery-based ESS is determining its optimal sizing, this work presents the sizing of
a HESS for a real electric vessel that depends on the power and energy requirements of the
application, the selected power split between HE and HP cells, and the cost of the cells.

Moreover, a methodology for selecting the number of modules in series together with
a reliability analysis of the series and parallel connection configurations has been carried
out. Although both configurations are very similar, it can be noticed that the P-S module
presents higher reliability. The main conclusion that can be drawn from this analysis is that
the greater the interconnection between the different elements, the greater the resulting
reliability of the system.

Regarding the design of a modular PPC, a DAB is implemented due to its simple
control, power bidirectionality, and soft switching conditions. With these configurations,
low voltage semiconductors with better conducting capabilities can be implemented. It
is observed that the series connection of the DAB-PPC presents considerable overloads
if one of the series connected modules fails. However, the flow diagram for the sizing of
the modular PPC presented in this paper helps to minimize the overload of the converter
and the overvoltage of the switching devices. It is concluded that both can be minimized
exponentially by increasing the number of modules connected in series.

A 3 kW PPC prototype was tested to demonstrate the high efficiency of this type of
converters and the result were (a) as the voltage increases the power processed by the
converter decreases, increasing the efficiency up to a peak value of 99.36%; (b) the thermal
behavior matches completely with the efficiency results. The better the efficiency, the
lower the temperature of the semiconductors will be. The secondary side semiconductors
hardly heat up at all due to the reduced current that exists in the secondary side of an
ISOP architecture; and (c) the primary side voltage decreases from 75 V down to 5 V
as the battery charges. The main benefit of this voltage reduction is that although hard
switching conditions occur, they occur with only 5 V. In consequence, the switching losses
are negligible, and the semiconductors are not endangered by overvoltage.

As this article has shown, a modular HESS based on PPC can help to reduce the cost,
volume, weight, and improve the flexibility of fully electric vessels. Still, there are some
challenges to consider when implementing these systems. For example, one concern is
that the charging infrastructure is not ready to accommodate batteries of this caliber, as
they take a long time to charge, and this requires fast charging technology. Moreover, there
are currently no international standards for battery installations in marine applications,
although the International Electrotechnical Commission is working on standards 62619 and
62620, and classification societies have developed specific rules and/or Additional Class
notation to complement some international standards. In this context, ensuring that HESS
is safe and reliable is another challenge to take into account.

Finally, although the thermal and efficiency results of the DAB-PPC are very promising,
potential challenges arise regarding its faulty conditions, especially due to its lack of
galvanic isolation. In this sense, future research on the safety and faulty conditions of the
DAB-PPC would support the implementation of PPC solutions in modular applications.
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