
Computers & Security 131 (2023) 103299

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Clustere d fe derate d learning architecture for network anomaly

detection in large scale heterogeneous IoT networks

Xabier Sáez-de-Cámara

a , b , ∗, Jose Luis Flores a , Cristóbal Arellano

a , Aitor Urbieta

a ,
Urko Zurutuza

b

a Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Arrasate-Mondragón, Spain
b Mondragon Unibertsitatea, Arrasate-Mondragón, Spain

a r t i c l e i n f o

Article history:

Received 14 August 2022

Revised 14 March 2023

Accepted 17 May 2023

Available online 20 May 2023

Keywords:

Anomaly detection

Botnet

Internet of things

Intrusion detection

Machine learning

Network security

a b s t r a c t

There is a growing trend of cyberattacks against Internet of Things (IoT) devices; moreover, the sophisti-

cation and motivation of those attacks is increasing. The vast scale of IoT, diverse hardware and software,

and being typically placed in uncontrolled environments make traditional IT security mechanisms such

as signature-based intrusion detection and prevention systems challenging to integrate. They also strug-

gle to cope with the rapidly evolving IoT threat landscape due to long delays between the analysis and

publication of the detection rules. Machine learning methods have shown faster response to emerging

threats; however, model training architectures like cloud or edge computing face multiple drawbacks in

IoT settings, including network overhead and data isolation arising from the large scale and heterogeneity

that characterizes these networks.

This work presents an architecture for training unsupervised models for network intrusion detection in

large, distributed IoT and Industrial IoT (IIoT) deployments. We leverage Federated Learning (FL) to col-

laboratively train between peers and reduce isolation and network overhead problems. We build upon

it to include an unsupervised device clustering algorithm fully integrated into the FL pipeline to address

the heterogeneity issues that arise in FL settings. The architecture is implemented and evaluated using a

testbed that includes various emulated IoT/IIoT devices and attackers interacting in a complex network

topology comprising 100 emulated devices, 30 switches and 10 routers. The anomaly detection models

are evaluated on real attacks performed by the testbed’s threat actors, including the entire Mirai malware

lifecycle, an additional botnet based on the Merlin command and control server and other red-teaming

tools performing scanning activities and multiple attacks targeting the emulated devices.

© 2023 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

e

b

o

I

“

t

a

j

(

l

h

b

t

c

m

m

2

h

0

. Introduction

The ever-growing adoption of the Internet of Things (IoT) is

nabling manufacturers multiple benefits, such as productivity

oosts, increased automation, cost savings, and the minimization

f production errors and waste. This is achieved by connecting

nternet-enabled devices, Cyber-Physical Systems (CPS) and other

things” with the ability to collect, monitor, analyze and share data

o make decisions and interact with physical processes, often with
∗ Corresponding author at: Ikerlan Technology Research Centre, Basque Research

nd Technology Alliance (BRTA), Arrasate-Mondragón, Spain.

E-mail addresses: xsaezdecamara@ikerlan.es (X. Sáez-de-Cámara),

lflores@ikerlan.es (J.L. Flores), carellano@ikerlan.es (C. Arellano), aurbieta@ikerlan.es

A. Urbieta), uzurutuza@mondragon.edu (U. Zurutuza) .

i

t

w

w

u

N

ttps://doi.org/10.1016/j.cose.2023.103299

167-4048/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article u
ittle or no human intervention (Boyes et al., 2018). However, this

igh level of connectivity also brings a higher risk of cybersecurity

reaches and a bigger attack surface both for domestic and indus-

rial IoT devices (Rehman et al., 2019; Sisinni et al., 2018). Espe-

ially nowadays that many solutions are being replaced with com-

ercial off-the-shelf devices (Boyes et al., 2018) that prioritize fast

arket adoption and convenience over security (Jalali et al., 2019).

Poor security practices and vulnerabilities (Neshenko et al.,

019), coupled with the mass adoption and high interconnectiv-

ty, make IoT an attractive target for malware designers. A no-

able example is the 2016 Mirai worm (Antonakakis et al., 2017),

hich exploited the widespread use of weak or hardcoded pass-

ords to compromise a diverse set of devices from various man-

facturers. The sophistication of those threats continues to grow.

ewer Mirai variants developed after the public release of its
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103299
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103299&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:xsaezdecamara@ikerlan.es
mailto:jlflores@ikerlan.es
mailto:carellano@ikerlan.es
mailto:aurbieta@ikerlan.es
mailto:uzurutuza@mondragon.edu
https://doi.org/10.1016/j.cose.2023.103299
http://creativecommons.org/licenses/by/4.0/

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

s

a

i

S

p

S

v

t

m

v

o

o

a

e

u

t

g

o

t

I

t

e

b

a

fi

c

a

o

s

b

m

o

t

s

a

l

h

a

I

n

t

E

c

e

s

i

a

a

h

a

i

m

d

e

s

d

g

m

m

p

i

l

b

a

g

(

s

T

n

o

f

I

t

a

s

a

g

n

v

i

t

i

c

e

s

i

c

t

ource code (Gamblin, 2023) and other advanced IoT malware such

s Mozi 1 and VPNFilter 2 include additional functionality exploit-

ng different protocols and software vulnerabilities (Vervier and

hen, 2018). The compromised devices are usually leveraged to

erform different attack campaigns, including Distributed Denial of

ervice (DDoS) attacks, cryptocurrency mining, spamming or ad-

ertisement click fraud (Kambourakis et al., 2019). Exposed indus-

rial IoT (IIoT) systems are also the targets of numerous attacks that

ay pose additional risks due to the critical nature of these de-

ices, including ransomware, sabotage, intellectual property theft,

r be used as a pivot point to infiltrate into other systems in the IT

r OT infrastructure (McLaughlin et al., 2016; Sadeghi et al., 2015).

Several mitigation strategies have been proposed to defend

gainst these threats. For instance, the use of specialized Op-

rating Systems, the removal of nonessential services, reliable

pdate mechanisms, event loggers and basic hardening opera-

ions (Kambourakis et al., 2017). However, those mitigations do not

uarantee a secure environment; misconfigurations, the discovery

f new vulnerabilities and zero-days still make IoT devices prone

o attacks (Meneghello et al., 2019). As an additional security layer,

ntrusion Detection Systems (IDS) and Intrusion Prevention Sys-

ems (IPS) are commonly deployed to protect the network. How-

ver, traditional signature-based IDS and other methods, such as

locklists, struggle to keep up with new IoT threats due to the us-

ge of obfuscation techniques, packed binaries, and string modi-

cations by malware distributors (Antonakakis et al., 2017), rapid

hanges in botnet control infrastructure (Vervier and Shen, 2018)

nd long delays between the malware analysis and the publication

f the corresponding rules (Costin and Zaddach, 2018).

Machine Learning (ML) and Deep Learning (DL) methods have

hown promising results in developing IDS, exhibiting more flexi-

ility and generalization than traditional signature-based detection

ethods (Ferrag et al., 2020). However, from the point of view

f ML model training infrastructure, cloud-based centralized archi-

ectures exhibit many problems in IoT settings due to the mas-

ive scale and heterogeneity of these deployments. Problems such

s high bandwidth consumption, network resource congestion and

oad balancing arise, leading to packet loss, transmission delays,

igh latency and traffic peaks (Yu et al., 2018) that can adversely

ffect the training process or even make cloud training infeasible.

n addition, data centralization can raise privacy concerns and the

eed to comply with regulations such as the General Data Protec-

ion Regulation (GDPR) (European Parliament and Council of the

uropean Union, 2016). As an alternative, proposals to shift the

omputation toward the “edge” of the network are being made (Yu

t al., 2018; Zhang et al., 2019). While edge computing can alleviate

ome of the problems of centralized architectures, other additional

ssues like data islands and isolation arise, which can hinder the

pplication of ML because it effectively reduces the volume of data

vailable for training (Liu et al., 2021).

A promising alternative that could address the network over-

ead, privacy and data isolation issues and is gaining significant

ttention is Federated Learning (FL). FL is a ML setting introduced

n 2016 by Kone ̌cný et al. (2016) with the objective to train a single

odel (the global model) from data distributed at multiple remote

evices (clients). The most particular characteristic about FL is that

ach device’s local training dataset does not leave the device; in-

tead, each client independently computes some local model up-

ate and communicates the results to a central server, which ag-

regates the local updates from all the clients to train the global

odel iteratively. Data is kept locally on each device, and only

odel updates are transmitted to the aggregation server, which
1 https://malpedia.caad.fkie.fraunhofer.de/details/elf.mozi .
2 https://malpedia.caad.fkie.fraunhofer.de/details/elf.vpnfilter .

i

t

S

l

2
reserves data privacy requirements. Since model updates are typ-

cally smaller than the size of the dataset, network overhead prob-

ems can also be reduced. Additionally, data isolation is minimized

ecause multiple clients participate in training the global model.

However, there are still some difficulties to be considered for

 practical FL deployment. Even though FL assumes that the data

eneration does not follow Independent and Identically Distributed

IID) assumptions across all the clients, in practice, highly non-IID

ettings can hinder global model convergence (Kairouz et al., 2019).

his can happen in highly heterogeneous settings such as large IoT

etworks composed of devices communicating with a diverse set

f protocols.

To address the described issues, we propose a FL architecture

or training anomaly-based IDS in large networks of heterogeneous

oT devices. To aggregate knowledge from all the devices, the sys-

em will leverage the FL framework to collaboratively train the

nomaly detection models between multiple participants without

ending each device’s local data, thus reducing network overhead

nd tackling data isolation and privacy considerations.

In particular, to address the mentioned global model conver-

ence problems that arise in typical FL settings with heteroge-

eous clients, we propose a clustered FL process that can be di-

ided into two steps. First, before the local models are aggregated

n the initial FL round, the local partially trained models from all

he clients are clustered in a fully unsupervised way based on sim-

larities between model parameters, following the hypothesis that

lients with similar data distributions will converge towards mod-

ls with similar parameter values. In this step, each client is as-

igned to a cluster center. Then, an independent FL training process

s started for each identified cluster of devices. The contributions

an be summarized as follows:

• We propose and test a clustered FL architecture for unsuper-

vised anomaly detection IDS model training applied to a net-

work of heterogeneous IoT devices. We test and optimize differ-

ent FL aggregation functions. The detection model is based on

autoencoders trained on benign instances of IoT network traffic

data to model their normal behavior. Attack traces are not used

for training, only for evaluation; hence, a labeled attack dataset

is unnecessary for model training.

• We propose an unsupervised model fingerprinting for device

clustering method to address global model convergence prob-

lems in heterogeneous FL settings. The method is performed

on the local model updates; thus, there is no need to send ad-

ditional metadata to the FL server, incorporate external finger-

printing tools or perform manual clustering. The method is fully

integrated into the FL pipeline and does not need human inter-

vention.

• We evaluate the clustered FL architecture on an emulated

network scenario based on the Gotham testbed (Sáez-de-

Cámara et al., 2023). The scenario includes 78 IoT and IIoT de-

vices communicating with a diverse set of protocols (including

MQTT, CoAP and RTSP) and different network behavior to emu-

late a heterogeneous environment. The IoT devices interact with

12 different cloud layer services and applications. Additionally,

the scenario includes 10 attacker machines executing real IoT

threats.

• We provide experimental results for the trained FL models. In-

cluding comparisons with a state-of-the-art approach.

The rest of this paper is structured as follows. Section 2 covers

he related work. Section 3 discusses the proposed system model,

ncluding the FL process, the model fingerprinting for device clus-

ering algorithm and the autoencoder anomaly detection model.

ection 4 details the IoT testbed and the data generation and col-

ection setup. Section 5 describes the implementation methodol-

https://malpedia.caad.fkie.fraunhofer.de/details/elf.mozi
https://malpedia.caad.fkie.fraunhofer.de/details/elf.vpnfilter

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

o

t

2

c

m

d

o

2

f

p

t

b

v

m

v

t

b

m

t

t

v

I

a

I

d

a

c

s

R

e

p

b

f

b

m

p

t

a

w

g

c

H

e

a

t

t

Z

p

t

p

F

u

w

a

m

p

p

b

t

M

T

i

i

a

c

P

d

p

v

f

c

r

a

m

m

l

c

c

c

h

o

d

k

K

t

o

a

r

l

i

m

i

I

a

2

I

i

c

t

m

w

t

2

g

s

f

G

r

I

g

i

g

t

i

s

p

gy of the experiments, and Section 6 shows the results. Finally,

he paper is concluded in Section 7 .

. Related work

In this section, we are going to describe state-of-the-art publi-

ations related to the proposals in this work. First, we will review

anuscripts that apply FL techniques for IoT intrusion or anomaly

etection. Then, we will describe works about clustered FL meth-

ds.

.1. Federated learning for IoT intrusion and anomaly detection

Recently, several proposals have emerged that use FL techniques

or IoT intrusion detection. In (Nguyen et al., 2019), Nguyen et al.

resent DÏot, an unsupervised system for network anomaly detec-

ion applied to consumer IoT devices for detecting Mirai-like worm

ehavior. First, an external fingerprinting tool groups all the de-

ices based on their network behavior. Then, the FL process trains

ultiple global models, each one of them specific to an IoT de-

ice type group. However, one limiting factor in this approach is

hat a software for automatically identifying IoT device types must

e available in each gateway prior to the FL process, making the

odel training and the device grouping not fully integrated into

he same process and requiring additional time to deploy and train

he system. Applied in a similar environment, Rey et al. (2021) de-

elop a framework based on FL to detect cyberattacks against

oT devices using the N-BaIoT dataset. Additionally, they evalu-

te several adversarial attacks against the proposed FL framework.

n (Popoola et al., 2021), Popoola et al. use the Bot-IoT and N-BaIoT

atasets to train a single supervised classification global model in

 FL setting and compares it with centralized and localized ar-

hitectures. Another comparison between a FL intrusion detection

cheme with a centralized and on-device training is shown by

ahman et al. (2020) .

Other proposals focus on training models, or ensembles of mod-

ls, that combine different input data types or views. Attota et al.

ropose in Attota et al. (2021) an IDS using a multi-view ensem-

le of models trained with FL; three specific models are trained

or each different view (network packets, unidirectional flow and

idirectional flow). Features are selected via a Grey Wolves opti-

ization process. A random forest classifier is used to combine the

rediction of the three models. Similarly, Qin and Kondo (2021) in-

roduce a greedy feature selection algorithm to obtain appropri-

te feature sets according to a single attack type that each device

ants to detect. They suggest training multiple global models by

rouping the devices based on the feature set selected in each

lient and initiating an independent FL process for each group.

owever, in practice, this grouping method requires prior knowl-

dge of attacks that may not be available in a realistic environment

nd leaks feature set information to the aggregation server. Addi-

ionally, devices can be under multiple types of attacks at different

ime intervals, which will not be detected based on this method.

hao et al. (2019) train a single multi-task model in a FL setting to

erform network anomaly detection, traffic classification and Tor

raffic identification simultaneously using multiple input datasets.

Alternative architectures like hierarchical FL, are also being ex-

lored for IoT intrusion detection. Wang et al. (2021b) describe an

L architecture based on four levels and assumes some of them are

ntrusted. Saadat et al. (2021) compare a standard FL architecture

ith a hierarchical one in terms of model training loss progression

nd testing accuracy for the training of an IDS using a supervised

ultilayer neural network on the NSL-KDD dataset. Wei et al. ap-

ly it to a 5G network (Wei et al., 2021).

For more industrial approaches, in Li et al. (2021) Li et al.

resent an IDS for industrial CPSs based on a FL scheme com-
3
ined with a Paillier cryptosystem to increase the security of

he model updates during the training. A recent example by

othukuri et al. (2021) shows a FL-based IDS for IoT networks.

hey use a dataset composed of labeled network traffic data from

ndustrial Modbus protocol. Kelli et al. (2021) propose an IDS for

ndustrial DNP3 protocol specific attack detection combining FL

nd active learning to perform local model personalization for each

lient.

Alternative IoT attack detection approaches exist, such as UW-

EE (Xie et al., 2023), where they use a UAV to collect data from

istributed IoT devices, and develop a detector based on wavelet

acket energy entropy to detect attacks and assign trust to the de-

ices. Outside of the network intrusion detection field, FL settings

or IoT devices have also been proposed in sectors such as health-

are (Chen et al., 2020; Huang et al., 2019; Schneble and Thamila-

asu, 2019) and predictive maintenance (Liu et al., 2021), to name

 few.

Most of the proposed approaches use supervised methods for

odel training, while unsupervised methods do not receive as

uch attention in the literature. In a real deployment, obtaining

abeled network data to train the models is not viable at a practi-

al level. Extending FL to unsupervised methods is still an open

hallenge (Kairouz et al., 2019). Additionally, only a few papers

onsider the heterogeneity of IoT devices. In the cases where the

eterogeneity is considered, they require a manual segmentation

f the IoT devices (Schneble and Thamilarasu, 2019), hardcoded

evice properties such as the 6-tuple in Wei et al. (2021) , prior

nowledge of attack types that target the IoT devices (Qin and

ondo, 2021) or the help of external tools that are not fully in-

egrated into the FL training pipeline (Nguyen et al., 2019). More-

ver, most datasets for intrusion detection were not designed to be

pplicable to large distributed IoT environments; therefore, many

esearchers resort to artificially partitioning the dataset to simu-

ate distributed environments in which to apply FL, which is not

ndicative of a realistic heterogeneous IoT environment. Further-

ore, most articles limit themselves to the order of 10 participat-

ng clients or less in the FL process, which does not reflect typical

oT environments, making it difficult to draw conclusions on the

pplicability of FL for IoT anomaly detection.

.2. Clustered federated learning

Even though FL is based on the assumption that data is non-

ID, in practice, it can show convergence problems when learn-

ng a single global model in settings with many heterogeneous

lients (Kairouz et al., 2019). Several strategies have been proposed

o address these challenges and increase the personalization of FL

odels. One of the strategies is based on client or data clustering,

hich is particularly suitable for environments with inherent par-

itioning among FL clients, as can occur in IoT settings (Tan et al.,

022).

Sattler et al. propose Clustered FL (Sattler et al., 2020), which

roups the client population into clusters based on the co-

ine similarity of clients’ gradient updates. The clustering is per-

ormed as a post-processing step after the FL has converged.

hosh et al. (2019) present an outlier robust clustering algo-

ithm based on K -means that also considers an adversarial setting.

n (Briggs et al., 2020), Briggs et al. introduce a clustering step to

roup clients according to the similarity of their local updates us-

ng hierarchical clustering methods. Then, FL is performed on each

roup independently.

Ghosh et al. develop IFCA (Ghosh et al., 2020), which itera-

ively solves the estimation of cluster identities and model train-

ng. When the cluster structure is ambiguous, they leverage weight

haring techniques from multi-task learning. Contrary to our ap-

roach, it does not require a centralized clustering algorithm.

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

H

s

a

k

r

t

e

m

i

a

t

f

c

t

K

c

t

s

o

p

i

m

g

c

t

t

T

m

n

K

o

p

a

f

e

d

n

c

a

d

b

t

i

d

t

c

t

W

c

t

w

i

w

c

p

2

t

e

t

p

2

w

2

p

f

p

a

r

s

o

v

I

F

o

a

3

s

p

t

t

fi

a

3

I

s

Fig. 1. Proposed system architecture. Each IoT device (FL clients) holds a copy of

the ML model for local training and inference. The FL training process is mediated

by the aggregation server. The FL aggregation server can also be part of the IoT

cloud, but here it is shown separately for clarity.
owever, since clients need to identify their own cluster member-

hip, each client receives all k models, increasing transmission cost

nd client computation load. Additionally, the value of k must be

nown at the start of the FL process.

A Community-based FL algorithm for processing medical

ecords is presented by Huang et al. (2019) , which includes a clus-

ering step to group the distributed data (not the clients) into sev-

ral communities and a FL training step on each community. Their

ethod requires two FL processes. The first one consists of train-

ng an autoencoder model for 1 FL round. The trained encoder is

pplied to each local data sample, and the averages are sent to

he server to train a K -means model. In the second step, K dif-

erent neural networks are trained in multiple rounds of FL. Each

lient receives and transmits all K models at each round. Locally,

he autoencoder and K -means are used to segment the data into

 fractions, one for each global model, significantly increasing the

lient’s workload and data transmission.

Duan et al. present FedGroup (Duan et al., 2021), a framework

hat groups the clients using a proposed metric based on the co-

ine similarity between the optimization direction. The number

f groups needs to be known a priori, and the selection of this

arameter is not thoroughly discussed. Before the client cluster-

ng, a subset of the clients need to perform full pretraining of the

odel. After the groups are identified, the FL training process be-

ins. In (Duan et al., 2022), they propose an updated version that

onsiders client distribution changes; when the shift is significant,

hey treat them as newcomer devices.

Xie et al. (2021) propose a multi-center aggregation algorithm

o learn multiple global models in a supervised learning scenario.

his is performed by solving a joint optimization problem that

inimizes the supervised loss function and the distance to the

earest global model of each cluster. The number of global models

 needs to be known a priori, and since K is embedded into the

ptimization problem, selecting the optimal value of K requires re-

eating several FL processes fully until convergence, difficulting its

pplication in practical settings.

Li et al. (2022) exploit the natural geographical clustering of

actories to group the clients and propose a method that consid-

rs the divergence in class label distribution between the clients’

ata to minimize heterogeneity. However, the number of clusters

eeds to be selected prior to the training, and it requires data

lass labeling information, which is unsuitable for unsupervised

pproaches. Similarly, Hiessl et al. (2022) group clients with similar

ata distributions using two approaches. The first one requires la-

eled data. The second one sends clients’ training data statistics to

he server, increasing communication costs and partially disclosing

nformation.

Guo et al. (2022) mitigate the data imbalance by presenting a

ata adjustment method that finds the samples corresponding to

he minority class label and oversamples them. They require the FL

entral server to have training data to infer the data distribution of

he clients and retrain the global model on the oversampled data.

hen the data is insufficient, the server will dynamically group

lients with an adequate data class balance and use them to refine

he global model at each FL round.

Other lines of work relax the hard clustering assumptions,

here a client is associated with a single cluster, to a soft cluster-

ng model that allows combining data from different distributions

ith varying mixture ratios, as in Ruan and Joe-Wong (2022) .

Our work differs from the previously referenced proposals on

lustered FL in several ways. The approaches that group model

arameters using centralized clustering algorithms (Briggs et al.,

020; Ghosh et al., 2019; Sattler et al., 2020) lead to high compu-

ation costs and may not be practical for setting with large mod-

ls and a large number of clients. In contrast, we include parame-

er dimensionality reduction methods to mitigate that issue. Other
4
roposals require each client to process K models (Ghosh et al.,

020; Huang et al., 2019), increasing local computation and band-

idth load. In (Duan et al., 2021; 2022; Ghosh et al., 2020; Li et al.,

022; Xie et al., 2021), the number of clusters needs to be known a

riori, and selecting an optimal value for it requires completing the

ull clustered FL training, which is costly and complicates the hy-

erparameter selection step in practical settings. More importantly,

ll the approaches assume a supervised learning setting, and some

equire the presence of labels to perform the clustering or per-

onalization process (Guo et al., 2022; Li et al., 2022). In contrast,

ur proposal and experimentation methodology focus on unsuper-

ised settings. Finally, none of those methods were applied to the

oT security field. This paper presents a practical use of clustered

L methods to address IoT network attacks using clustering meth-

ds fully integrated into the FL training pipeline and unsupervised

nomaly-based network intrusion detection models.

. Proposed system model

This section first shows a high-level overview of the proposed

ystem architecture and the targeted deployment setting. Then, we

resent the proposed clustered FL architecture, describing our con-

ributions on top of the standard FL process to include the in-

egrated model fingerprinting for the device clustering step. We

nally have a brief review of autoencoder neural networks for

nomaly detection.

.1. Deployment setting and architecture

The proposed architecture to train the IDS is depicted in Fig. 1 .

t comprises many clients and a central aggregation server and also

hows potential attackers.

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

3

o

t

d

g

d

l

s

m

p

o

p

f

t

w

d

i

3

t

r

fi

g

g

t

3

o

i

c

p

a

s

t

b

3

t

e

e

p

a

I

t

s

s

w

p

i

s

2

m

t

a

t

a

t

i

Algorithm 1: Generalized federated learning process. The

ClientOpt , ServerOpt , their respective learning rates (η, ηs)

and the pseudogradient concepts are explained in detail by

Reddi et al. (2021) .

Function LocalTrain(w , epochs) :
for local epoch e ← 1 to epochs do

for batch b in local training data do

g ← compute gradient

w ← ClientOpt (w , g , η, e)

end

end

return w , number of local training samples

Input : A set of clients C, initialized model W 0

Result : Trained global model W G

E ← number of local epochs

R ← total federated learning rounds

W G ← W 0

for federated learning round t = 1, 2, …, R do

foreach client c ∈ C in parallel do

receive W G from the server

W c , n c ← LocalTrain(W G , E)
local model delta �c ← W c − W G

send (�c , n c) to the server

end

n ←

∑

i ∈C n i
pseudogradient g G ← −∑

i ∈C
n i
n �i

W G ← ServerOpt (W G , g G , ηs , t)

end

b

a

t

t

m

s

b

n

c

r

i

m

m

w

a

t

t

c

A

c

b

p

d

S

3

t

c

t

t

.1.1. Clients

The proposed system is devised to operate in a large network

f heterogeneous IoT devices such as gateways, CPS and indus-

rial machines that communicate using different protocols. Those

evices can be located in different network segments or geo-

raphically distributed, which may influence their behavior. The

evices are constantly sending/receiving data to/from the cloud

ayer.

Each device is considered a client in the FL process. They are re-

ponsible for capturing relevant data, local ML model training, and

odel inference for anomaly detection after the training is com-

leted. No training data is transmitted to the aggregation server,

nly model parameters and minimal metadata relevant to the FL

rocess. Devices are expected to perform lightweight ML tasks, but

or low-powered IoT devices such as sensors and actuators, the sys-

em is expected to be deployed at the hub or gateway level. In this

ork, we prioritize the use of lightweight ML models for anomaly

etection to limit the computational overhead during model train-

ng or inference.

.1.2. Aggregation server

It coordinates all the FL training process by initializing and dis-

ributing the model and training hyperparameters to the clients,

eceiving model updates from the clients, performing the model

ngerprinting and device clustering, running the per cluster aggre-

ation of the received models and sending the corresponding ag-

regated global model to each client. These steps are explained in

he next subsection.

.1.3. Attackers

In this paper, we consider two primary threat models. The first

ne considers external actors that remotely scan the IoT devices

n the network, find vulnerable devices to exploit and remotely

ompromise them. The second assumes a local adversary com-

romising one or many IoT devices within the protected network

nd leveraging them to launch attacks against other devices in the

ame network or target external victims. In Section 4 , we will de-

ail the different threat actors, attacks performed and malicious

ehavior.

.2. Clustered federated learning process for heterogeneous devices

For the FL deployment, we consider a typical cross-device set-

ing (Kairouz et al., 2019) with a large number of devices. How-

ver, due to availability guarantees required by many IoT devices,

specially in industrial settings, we expect most devices to partici-

ate in the FL training process. This allows the server to maintain

 persistent state for each client to perform the clustering step.

n this work, we assume that no IoT device is infected prior to

he FL model training and that none of them behave in an adver-

arial manner. Model poisoning attacks against FL are outside the

cope of this paper, even if already considered in some academic

orks (Bagdasaryan et al., 2020).

Our clustered FL builds upon the generalized FL setting pro-

osed by Reddi et al. (2021) . This generalized FL setting, described

n Algorithm 1 , improves over standard FL optimization methods

uch as the popular Federated Averaging (FedAvg) (McMahan et al.,

017) by including adaptive optimization methods for the local

odel training at each client and also at the server level during

he model aggregation process.

The proposed clustered FL is described in Algorithm 2 . First, the

ggregation server initializes the model weights W 0 and selects the

raining hyperparameters. Then, the server sends those values to

ll the participating clients. In the next step, each client partially

rains W 0 using only its local data for ε epochs. The local train-

ng is performed using the ClientOpt (Reddi et al., 2021) gradient-
5

ased optimizer to minimize the local training loss. ClientOpt is

n abstraction for optimizers such as SGD, Adam or RMSprop. After

he local training, each client sends the partially trained model to

he aggregation server. The aggregation server collects all the local

odels and uses them to group the clients into K clusters based on

imilarities between the trained model parameters (weights and

iases). The grouping process is discussed in more detail in the

ext subsection.

For each identified cluster k , an independent FL process is exe-

uted in parallel (Algorithm 1). We perform multiple FL rounds (R

ounds) until the global model for each cluster converges, result-

ng in a set of K global models. At each round, the clients trans-

it the difference between the weights from the received global

odel at the start of the round and the locally updated model

eights. The server uses these weight deltas to compute what the

uthors in Reddi et al. (2021) call as pseudo-gradient , i.e., the nega-

ive of the averaged model deltas. The pseudo-gradient , along with

he server learning rate ηs is used for the model aggregation pro-

ess, which is generalized in the ServerOpt function as shown in

lgorithm 1 . The ClientOpt and ServerOpt abstraction allows in-

orporating momentum or other adaptive optimization methods to

oth client-side training and server-side model aggregation com-

ared to the FedAvg algorithm (Reddi et al., 2021). The popular Fe-

Avg aggregation method can be considered a special case where

erverOpt is set to SGD with server learning rate ηs = 1 . 0 .

.3. Model fingerprinting for device clustering

In a network of heterogeneous devices, the underlying data dis-

ribution might not be IID. In a FL setting, a single global model

omplex enough could be able to fit the data properly; however,

raining a complex model in IoT devices might not be possible due

o hardware constraints. Consequently, we will group the devices

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Algorithm 2: Proposed clustered federated learn-

ing for heterogeneous clients. The LocalTrain and

FederatedLearning functions are described in

Algorithm 1 .

Function ModelFingerprinting(weight _ list) :
W ← empty list

for w in weight _ list do

append flattened w to W

end

W ← apply PCA dimensionality reduction to W

S ← empty list

L ← empty list

for n ← 2 to max number of clusters do

K-means clustering of W into n clusters

append clustering labels to L

append clustering quality score to S
end

K ← number of clusters with optimal score in S
return labels from L corresponding to n = K, K

Input : A set of clients C
Result : A set of global models

initialize model W 0 on server

ε ← number of local epochs for clustering

foreach client c ∈ C in parallel do

receive W 0 from the server

W c , n c ← LocalTrain(W 0 , ε)
send W c to the server

end

W ← list of all the received W c ∈C
L , K ← ModelFingerprinting(W)
foreach label k ∈ { 1 , . . . , K} in parallel do

C k ← subset of clients ∈ C with labels L = k

W

C = k
G

← average of W with labels L = k

W

C = k
G

← FederatedLearning (C k , W

C = k
G

)

end

w

t

v

g

a

t

u

t

c

i

p

a

T

e

r

m

s

a

W

s

d

d

(

s

i

f

r

a

a

w

e

a

v

3

n

b

t

p

w

b

t

n

s

c

r

s

i

e

a

s

t

m

t

l

i

M

L

o

w

t

F

m

p

t

s

s

f

r

4

w

d

a

t

g

a

m

ith similar behavior to create a set of global models specifically

ailored to each group of devices. With this method, each IoT de-

ice is assigned a group label in an unsupervised manner that is

oing to be used during the FL process.

The main advantages of using the locally trained model updates

s inputs for the clustering method are that i) there is no need

o integrate any external device fingerprinting algorithms or man-

al methods, ii) does not require waiting for a certain amount of

ime to identify the devices before starting the model training pro-

ess and iii) everything is completely integrated into the FL train-

ng pipeline.

As detailed in Algorithm 2 , the first step for the model finger-

rinting consists of partially training each local model for ε epochs,

nd sending the partially trained model to the aggregation server.

hen, the server flattens the parameters (weights and biases) of

ach model and performs Principal Component Analysis (PCA) to

educe the dimensionality of the parameters. The reduced di-

ensionality helps speed up the computation of the clustering

tep and can limit the problems of clustering high dimension-

lity data in models with a considerable number of parameters.

e use the K -means algorithm with the k -means++ initialization

cheme (Arthur and Vassilvitskii, 2006) to cluster the reduced

imensionality data. The hypothesis is that clients with similar

ata distributions will converge to models with similar parameter

weights and biases) values, provided that all clients start from the

ame initial random model W .
0

6
Due to the unsupervised nature of our proposal, we will use

nternal clustering validation metrics to select an optimal value

or the number of clusters K. Internal validation metrics do not

ely on any external data and are mainly based on measures such

s the compactness of samples within the same cluster and sep-

ration between different clusters (Liu et al., 2010). Specifically,

e will evaluate the following internal validation metrics: Silhou-

tte (Rousseeuw, 1987), Davies–Bouldin (Davies and Bouldin, 1979)

nd S_Dbw (Halkidi and Vazirgiannis, 2001) scores to select the

alue of K.

.4. Anomaly detection model

In this paper, we are going to employ autoencoder neural

etworks as the anomaly detection models, which have already

een used in similar domains for network-based attack detec-

ion (Meidan et al., 2018; Mirsky et al., 2018). We are going to

rioritize lightweight autoencoders (small number of parameters),

hich makes them especially suitable for our deployment scenario

ecause it not only requires less computational load for model

raining or inference in constrained devices, but also reduces the

etwork traffic volume between the devices and the aggregation

erver during the FL rounds due to less number of parameters

ompared to more complex models.

Autoencoders are unsupervised neural networks that attempt to

eplicate the input data on their output layer under some con-

traints to avoid learning the identity function. The autoencoder

s composed of two networks, the encoder and the decoder. The

ncoder takes the input features x ∈ R

n and transforms them into

 hidden encoded space h ∈ R

e , where e < n to impose a con-

traint to avoid learning the identity function. Then, the decoder

ransforms h into x ′ ∈ R

n . The objective of the autoencoder is to

inimize the mean squared error (MSE, reconstruction error) be-

ween x and x ′ as in Eq. (1) . The autoencoder is trained using the

oss function shown in Eq. (2) , which in addition to the MSE, it

ncludes the L 2 regularization term.

SE =

1

n

n ∑

i =1

(x i − x ′ i) 2 . (1)

 = MSE + λ
∑

i

w

2
i (2)

We train the autoencoder using samples of normal (legitimate

r benign) IoT network traffic which does not contain attacks; this

ay, the model learns a representation of the normal behavior of

hese devices. Once the autoencoder is trained (using the proposed

L approach), it is evaluated on network traces containing legiti-

ate and attack samples. The reconstruction error between the in-

ut and output layers is used as a measure of the anomaly level in

he new incoming data. New network samples that came from a

imilar distribution as the training data will have a small recon-

truction error; however, we expect that attack samples diverge

rom the trained data distribution, and thus, the reconstruction er-

or will be higher.

. IoT testbed and experimental setup

In this section, we present the experimental setup. We begin

ith a description of the selected IoT testbed used to extract the

ataset and implement the experiments, including a description of

ll the considered IoT device types and attackers. We then con-

inue to detail the training and validation network traffic datasets

enerated with the testbed. For the validation datasets, we include

 list of the malicious activities performed according to our threat

odel.

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

4

d

c

b

u

b

w

a

d

(

r

b

n

h

c

c

p

s

t

4

d

t

d

a

t

g

v

i

i

t

r

t

a

b

o

a

s

t

b

t

s

g

i

T

I

n

c

t

e

f

c

n

i

q

d

p

o

K

4

a

w

I

c

4

t

e

a

a

t

M

s

w

t

.1. IoT testbed

The experimental setup is based on the Gotham Testbed (Sáez-

e-Cámara et al., 2023), a testbed to perform large-scale IoT se-

urity experiments in a realistic and reproducible way. Gotham is

uilt on top of the GNS3 (Grossmann et al., 2023) network em-

lator, and it includes a repository of Docker images and QEMU-

ased virtual machines to emulate various IoT/IIoT devices, mal-

are samples, servers and networking equipment such as switches

nd routers. To generate real network traffic traces, the emulated

evices run real production libraries, network switching software

Open vSwitch) and routing operating systems (VyOS), as well as

eal malware samples and red-teaming tools, which are going to

e briefly described in this section.

To create the IoT scenario, we use the default case study sce-

ario presented at Sáez-de-Cámara et al. (2023) composed of many

eterogeneous nodes. The scenario comprises three main networks

onnected by 10 routers and 30 switches: the city network, the

loud network and the threat network. The full details are ex-

lained in Sáez-de-Cámara et al. (2023) , but here we will present a

ummary of the different emulated devices which are relevant for

he discussion in the following sections.

.1.1. City network devices

The city network contains the emulated IoT/IIoT devices. The

evices communicate with the cloud network using various pro-

ocols, including MQTT, CoAP (two protocols that are specifically

esigned and well-suited for machines with constrained resources

nd the IoT paradigm Minerva et al., 2015) and RTSP. Additionally,

o increase the protocol heterogeneity, the devices generate back-

round traffic such as DNS, NTP and ICMP. In total, there are 12 de-

ice templates to simulate a heterogeneous environment, as shown

n Table 1 .

Each device template presented in Table 1 has a distinct behav-

or. The telemetry payload size (from 10 bytes per payload to more

han 7500 bytes per payload), format (JSON, XML, Base64) and pe-

iodicity of the communications vary between the templates. The

elemetry data is transmitted in plain text for some nodes and over

n encrypted channel using TL S or DTL S for other nodes. Some

rokers at the cloud network accept unauthenticated clients, while

thers require clients to be authenticated with a username and

 password before sending the data. For the MQTT-based nodes,

ome templates only publish to a single topic, while others publish

o multiple topics. The CoAP-based nodes also serve different num-

ers of resources, nine for the City power and five resources for

he Combined cycle nodes. Regarding data transmission behavior,

ome devices open a single connection with the cloud at the be-

inning of the transmission and keep it alive by periodically send-

ng telemetry data and keep-alive messages. Other nodes open a
able 1

ncluded IoT/IIoT device templates in the testbed scenario.

Template name Instances Main protocol

Air quality 1 MQTT (plain)

Building monitor 5 MQTT (plain)

City power 1 CoAP (plain)

Combined cycle 10 CoAP (plain)

Combined cycle tls 5 CoAP (DTLS)

Cooler motor 15 MQTT (plain and TLS)

Domotic monitor 5 MQTT (plain)

Hydraulic system 15 MQTT (plan and TLS)

IP camera street 2 RTSP

IP camera museum 2 RTSP

IP camera consumer 2 RTSP

Predictive maintenance 15 MQTT (plain and TLS)
2

7
ew connection to the cloud, send the data and then close the

onnection each time they need to send telemetry.

The Gotham testbed scenario includes a total of 78 instances of

hose device templates, as shown in Table 1 . To increase the het-

rogeneity, each instance has small random deviations and jitter

ollowing a normal distribution in the periodicity of the communi-

ations.

The distributed dataset generated by the testbed is highly

on-IID due to all the different client behaviors implemented in

t. It primarily includes high feature distribution skew and data

uantity skew (all clients do not generate the same amount of

ata). Additionally, due to the data being network traces, sam-

les can be non-independent. The described behaviors are some

f the common ways in which data is non-IID, as described by

airouz et al. (2019) .

.1.2. Cloud network devices

The cloud network includes the necessary cloud services to en-

ble communication with the devices in the city and threat net-

orks. The services include many MQTT brokers, CoAP clients and

P camera streaming servers. Additionally, the cloud network in-

ludes nodes to provide DNS and NTP services.

.1.3. Threat network devices

To launch realistic attacks, the testbed scenario includes three

hreat actors.

Maroni crime family It includes the real Mirai (Antonakakis

t al., 2017) malware. All the nodes in this threat actor were cre-

ted based on the published Mirai source code (Gamblin, 2023),

dapted and compiled to run on the testbed. The nodes include

he (i) Mirai bot, (ii) Mirai Command and Control (C&C) server, (iii)

irai scan listener, (iv) Mirai loader and the (v) Mirai download

erver. All the nodes in this threat actor allow the execution of the

hole Mirai malware lifecycle. We use this threat actor to perform

he following attack activities:

• (A1) Mirai C&C communication : Includes the periodic commu-

nication between the Mirai bots and the Mirai C&C server.

• (A2) Mirai network scanning : Each bot infected with Mirai

scans the network in a pseudorandom order sending TCP SYN

packets to the Telnet 23 and 2323 ports.

• (A3) Mirai brute forcing : If the Mirai scanner detects an open

telnet port, it tries to brute force the credentials using a list of

common IoT usernames and passwords.

• (A4) Mirai reporting : After a successful brute forcing, the Mirai

bot reports the victim’s IP address, port, username and pass-

word to the Mirai scan listener.

• (A5) Mirai ingress tool transfer : Includes the infection phase

of Mirai. The Mirai loader connects to vulnerable nodes listed

in the Mirai scan listener server and proceeds to download and

execute the malware.

• (A6) Mirai remote command execution : The Mirai bot mas-

ter connects to the Mirai C&C and sends commands to the bots

to perform subsequent DoS attacks against other targets in the

network.

• (A7) Mirai denial of service attacks : The following list enu-

merates the performed DoS attacks by the Mirai bots against

the targets (it does not include all attack types supported by

Mirai): (i) UDP plain attack, (ii) UDP attack, (iii) Valve Source

engine attack, (iv) DNS attack, (v) TCP ACK attack, (vi) TCP SYN

attack, (vii) GRE IP attack, (viii) GRE Ethernet attack. All at-

tacks were performed for a duration of 10s. All attacks targeted

other IoT devices in the city network, except for the DNS attack,

which targeted the DNS server at the cloud network.

Falcone crime family This threat actor includes the Merlin (Tuyl,

023) cross-platform post-exploitation C&C server, the Merlin

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

a

a

C

t

i

a

p

a

n

t

M

a

a

4

t

fi

F

c

v

i

i

s

4

w

a

c

n

t

t

t

v

o

4

t

s

H

e

t

T

a

4

t

p

v

r

t

c

v

T

a

t

v

t

n

w

b

s

c

c

w

a

t

F

e

t

w

F

d

a

4

p

a

p

t

a

a

s

gents and the hping3 (Sanfilippo, 2023) TCP/IP packet assembler

nd analyzer. The Merlin server supports multiple protocols for

&C (HTTP/1.1 clear-text, HTTP/1.1 over TLS, HTTP/2, HTTP/2 clear-

ext (h2c), HTTP/3) and can execute code on the victims under

ts control. When a victim device is compromised with the Merlin

gent, it starts communicating with the Merlin C&C and becomes

art of its botnet. We use this threat actor to perform the following

ttacks:

• (A8) Merlin C&C communication : Periodic communication be-

tween the IoT nodes infected with the Merlin agent and the

Merlin C&C server.

• (A9) Merlin ingress tool transfer : The Merlin C&C server trans-

fers the hping3 binary into each of the compromised victims

through the C&C channel.

• (A10) Merlin remote command execution : The Merlin bot

master connects to the Merlin C&C and sends commands to the

bots to perform subsequent DoS attacks against other targets in

the network.

• (A11) Merlin denial of service attacks : The DoS attacks are im-

plemented using hping3: (i) ICMP echo-request, (ii) UDP, (iii)

TCP SYN and (iv) TCP ACK flood attacks. Each attack generates

approximately 50 0 0 packets at a 1 ms/packet rate. The UDP

flood payload consists of 512 bytes of random data, with TTL

set to 64 and TOS to 0, which corresponds to the default values

for the UDP attack in Mirai.

Calabrese crime family It includes many nodes performing

etwork-wide scanning operations and launching attacks against

he devices. It is comprised of nodes that include the Nmap and

asscan scanners and the AMP-Research tool for implementing

mplification attacks against the CoAP servers. We use this threat

ctor to perform the following attacks:

• (A12) Network-wide scans : Masscan is used to scan the city

network for the TCP ports 80,80 0 0-810 0,5683 at three different

packet rates: (i) 100, (ii) 10 0 0 and (iii) 10,0 0 0 packets/s. Nmap

is used to scan some IoT nodes to check for open UDP ports

using three strategies: (iv) the 5683 port, (v) 600 random ports

and (vi) the 10 0 0 most used UDP ports.

• (A13) CoAP amplification attack : The attacker leverages a

CoAP device in the city network to launch an amplification at-

tack against a victim for a duration of 10 s.

.2. Data generation and collection method

The Gotham testbed allows the capturing of network traffic

races for dataset generation. The data captured under normal traf-

c conditions (without attacks) will be used to train the clustered

L anomaly detection models. Then, the validation data is captured,

onsisting of two sets: validation-normal and validation-attack. The

alidation-attack is further divided into different datasets depend-

ng on the attack scenario.

All this data is captured in a federated way. Each device holds

ts own part of the data (captured on its network interface), as

hown in Fig. 1 . This data is never aggregated into a single dataset.

.2.1. Normal traffic data

This data is composed of the normal behavior of the city net-

ork IoT/IIoT devices periodically communicating the telemetry

nd background data with the cloud. Network packet traces are

ollected for each device and saved in pcap format while the sce-

ario runs without any attack. This dataset will be used for fea-

ure preprocessing, hyperparameter selection and the clustered FL

raining.

The normal traffic data has been captured in a period including

he first two hours (the first hour for the IP camera related de-
8
ices, due to the high data volume they create), generating a total

f 3.3 GB of raw packet data for all the 78 devices in the network.

.2.2. Validation-normal traffic data

The validation-normal dataset consists of traces including only

he normal behavior of the city network devices captured with the

ame methodology from the previously described normal dataset.

owever, it is extracted later so that it does not include the same

vents. It includes captures over a two-hour period (one hour for

he IP cameras) starting after the end of the normal traffic capture.

his data is not used during training; it will only be used for the

nomaly threshold selection.

.2.3. Validation-attack traffic data

While the city network devices are performing their normal ac-

ivities, the attacker nodes become active and start launching the

reviously mentioned attacks against the city network IoT/IIoT de-

ices. The validation-attack traffic data is captured during this pe-

iod and consists of both normal and attacking traces.

We configure the testbed’s three threat actors to create five at-

acking scenarios. For each scenario, we extract network packet

aptures from the city network devices.

Validation-attack-mirai-scan-load

Some city network devices are first configured to make them

ulnerable to Mirai, as detailed in Sáez-de-Cámara et al. (2023) .

he testbed’s Mirai bot node is activated (A1) and starts scanning

ll city network devices (A2). When vulnerable devices are iden-

ified, the Mirai bot performs the (A3) and (A4) activities. After a

ulnerable device is reported, the (A5) activity is performed to in-

egrate the device into the botnet. After becoming part of the bot-

et, the device repeats the described Mirai lifecycle.

Validation-attack-mirai-cnc-dos

This data also includes Mirai malware activity, but in this case,

e recompile the Mirai bot binary to disable the scanning and

rute-forcing modules. This modification is done to make Mirai

tealthier. The modified Mirai bot is manually installed in some

ity network devices. After executing the bot, the C&C communi-

ation activity starts (A1). By connecting to the Mirai C&C server,

e command each bot (A6) to launch multiple DoS attacks (A7)

gainst random targets in the testbed.

Validation-attack-merlin-cnc-dos

The Merlin agent is installed in some city network devices. Af-

er executing the agents, they connect to the Merlin server (A8).

or each bot, the Merlin server performs (A9) and (A10). Finally,

ach bot is instructed to launch DoS attacks (A11) against random

argets in the testbed.

Validation-attack-masscan

Network traffic data is captured from the city network devices

hile they are being scanned by the Masscan node (A12).

Validation-attack-scan-amplification

This data is captured on the CoAP-based city network devices.

irst, Nmap is used to scan the network (A12) to search for CoAP

evices; then, those devices are leveraged to perform (A13) attacks

gainst random targets in the testbed.

.3. Machine learning and federated learning setup

We used the PyTorch (Paszke et al., 2019) Python library to im-

lement the ML models and training procedures. The FL model

ggregation (the ServerOpt server-side optimization) is also im-

lemented using the PyTorch library directly. For the client’s local

raining process, we used GNU Parallel (Tange, 2011) to coordinate

nd execute all the jobs in parallel. We implemented the clustering

lgorithms, validation metrics, dimensionality reduction, etc. with

cikit-learn (Pedregosa et al., 2011).

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

5

f

i

s

T

w

i

b

p

m

d

o

5

t

t

m

e

a

f

p

s

m

t

a

t

h

t

s

i

m

a

r

b

T

S

h

h

t

p

M

o

(

i
v

t

i
c

5

s

f

i

s

w

n

a

t

d

c

e

t

c

t

(

f

4

6

. Implementation

This section will describe the methodology followed to per-

orm the experimentation. A visual representation of all the steps

s shown in Fig. 2 . We first explain the network data processing

tep, which includes filtering, feature extraction and preprocessing.

hen, we detail the autoencoder model selection procedure. Next,

e describe the implementation for the clustered FL process, start-

ng from the model fingerprinting for device clustering, followed

y the federated hyperparameter tuning and then the FL training

rocess for each identified cluster. Finally, we review the trained

odels’ anomaly detection evaluation process and metrics. We ad-

itionally explain the baseline comparisons done with other state-

f-the-art IDS methods.

.1. Network data processing

After collecting the dataset, the raw pcap files are first filtered,

hen relevant network features are selected, and finally, those fea-

ures are preprocessed to make them suitable as input to the ML

odels. Note that the dataset is federated and not centralized;

ach device holds its fraction of data.

The first step consists of filtering the raw pcap files to drop

ll IPv6 and ARP packets. The filtered packets are passed to the

eature extraction process. For each network packet in the filtered

cap file, a set of 11 features are extracted as listed in Table 2 . The

ource and destination IP addresses were discarded to prevent the

odel from learning the machines themselves instead of the at-

acking nature. The main reason for using those features is that

ttacking patterns from IoT malware such as Mirai includes op-

ions to craft packets with tweaked values for the payload size, IP

eader fields, and TCP flags, among others (Gamblin, 2023). Addi-

ionally, the attack packet payload usually includes randomized or

ome fixed values that can lead to high or low entropy. By select-

ng those features and training on the normal traffic dataset, the

odel learns the distribution of normal IoT communication. Devi-

tions from it (large MSE between the input and the autoencoder

econstructed output) allows to potentially detect not only Mirai

ut, in general, other malware with similar network attacking be-
able 2

elected packet feature names and descriptions.

Feature name Description

len Full packet length in bytes.

iat Inter arrival time from the previous packet.

h Entropy (base 2) of the full packet.

ip_tos IP type of service.

ip_flags IP flags (MF, DF, R bits).

ip_ttl IP time to live.

ip_proto IP protocol (TCP, UDP, ICMP).

src_port Source port number.

dst_port Destination port number.

tcp_flags TCP flags (F, S, R, P, A, U, E, C, N).

tcp_win TCP window size.

t

t

t

b

e

C

i

f

b

t

t

Fig. 2. Implementation

9
avior and C&C communication like the attacks performed with

ping3 and Merlin C&C as described in the previous section.

Due to the different orders of magnitude of some features and

he mixture of both numerical and categorical variables, a feature

reprocessing step is necessary before using them as inputs for the

L models.

The numerical features are normalized by the maximum value

f each field defined in the TCP/IP stack. len is divided by 1514

the Ethernet maximum transmission unit plus the header), both

p_tos and ip_ttl are divided by 255 and tcp_win is di-

ided by 65,535. h is divided by 8 and iat is transformed with

he natural logarithm of iat plus one. The categorical variables

p_flags , ip_proto and tcp_flags are directly one-hot en-

oded.

.1.1. Source and destination port feature processing

The src_port and dst_port feature processing requires

pecial consideration. The application port numbers are numerical

eatures that can take 2 16 different integer values; however, treat-

ng the ports just as a numerical feature does not maintain the

emantics of the services that use those port numbers. In other

ords, port numbers that are numerically close to each other does

ot mean that the programs that communicate with those ports

re used to perform similar tasks.

In this work, we are going to discretize the source and des-

ination port numbers into a smaller number of bins using two

ifferent strategies: three-range discretization and hierarchical dis-

retization. After the discretization, the bin numbers are one-hot

ncoded. In Section 6 , we will evaluate the differences between

he two strategies and select the most appropriate one for this use

ase.

Three-range discretization

The source and destination port numbers are divided into the

hree ranges assigned by the Internet Assigned Numbers Authority

IANA) (Cotton et al., 2011): the System Ports, or Well Known Ports,

rom 0 to 1023; the User Ports, or Registered Ports, from 1024 to

9,151; and the Dynamic Ports, or Ephemeral Ports, from 49,152 to

5,535. These ranges are large, and might not capture the seman-

ics of the ports.

After all the previously mentioned transformations and using

he three-range discretization for the source and destination ports,

he 11 features of Table 2 are transformed into a set of 27 features.

Hierarchical discretization

The source and destination port numbers are discretized

ased on the generalization hierarchy presented in Zurutuza

t al. (2008) and adapted to include information about the MQTT,

oAP and RTSP ports used in the testbed. The hierarchy used

s summarized in Table 3 . When classifying a port number, bins

rom the top of the table have precedence over the bins from the

ottom.

After all the previously mentioned transformations and using

he hierarchical discretization for the source and destination ports,

he 11 features of Table 2 are transformed into a set of 69 features.
method pipeline.

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Table 3

Port number generalization hierarchy.

Bin name Ports

mqttPorts 1883, 8883

coapPorts 5683, 5684

rtspPorts 8554, 8322, 8000–8003, 1935, 8888

httpPorts 80, 280, 443, 591, 593, 777, 488, 1183, 1184, 2069,

2301, 2381, 8008, 8080

mailPorts 24, 25, 50, 58, 61, 109, 110, 143, 158, 174, 209, 220,

406, 512, 585, 993, 995

dnsPorts 42, 53, 81, 101, 105, 261

ftpPorts 20, 21, 47, 69, 115, 152, 189, 349, 574, 662, 989, 990

shellPorts 22, 23, 59, 87, 89, 107, 211, 221, 222, 513, 614, 759,

992

remoteExecPorts 512, 514

authPorts 13, 56, 113, 316, 353, 370, 749, 750

passwordPorts 229, 464, 586, 774

newsPorts 114, 119, 532, 563

chatPorts 194, 258, 531, 994

printPorts 35, 92, 170, 515, 631

timePorts 13, 37, 52, 123, 519, 525

dbmsPorts 65, 66, 118, 150, 156, 217

dhcpPorts 546, 547, 647, 847

whoisPorts 43, 63

netbiosPorts 137–139

kerberosPorts 88, 748, 750

RPCPorts 111, 121, 369, 530, 567, 593, 602

snmpPorts 161, 162, 391

privilegedPorts 0–1023

nonprivilegedPorts 1024–65,535

5

t

e

n

g

g

e

p

n

i

c

t

n

t

c

s

t

w

u

(

m

c

t

d

t

m

c

t

a

t

i

a

fi

s

t

m

m

w

w

o

s

t

5

t

p

d

c

t

p

t

A

p

a

l

k

t

1

t

v

5

e

f

C

l

c

t

w

i

t

A

w

i

0

a

2

o

b

o

a

a

d

t

5

i

fi

t

.2. Autoencoder model selection

In FL, there is a much larger set of hyperparameters to be

uned compared to a typical centralized ML setting. Those param-

ters include the ML model itself (number of layers, number of

odes per layer, activation functions, etc.), client-side optimizer al-

orithm ClientOpt and learning rate η, server-side optimizer al-

orithm ServerOpt and learning rate ηs , number of local training

pochs E, number of FL rounds R and number of clients sampled

er FL round M. Due to the infeasibility to explore all the combi-

ations simultaneously, we are going to simplify the search tun-

ng those hyperparameters step by step using different subsets of

ombinations. Additionally, considering the unsupervised nature of

he problem (or rather semi-supervised, given that it is trained on

ormal data without attacks), the selection is going to be based on

hose values that minimize the MSE loss in fewer rounds/epochs.

First, we start defining the general architecture of the autoen-

oder. We select a small subset of the normal traffic data (corre-

ponding to various IoT clients) and use it to explore different au-

oencoder models. This exploration is not performed in a federated

ay. Each dataset is partitioned into 80% training and 20% eval-

ation. Among the tested models, we selected the simplest one

fewer parameters) that produced low enough evaluation loss to

inimize overfitting problems.

Regarding the minimization of overfitting problems, the autoen-

oder training loss function includes a L 2 regularization term con-

rolled by the λ parameter, as noted in Eq. (2) . The regularization

irects the training in such a way as to make the model parame-

ers smaller and prevent a single or few features from having too

uch weight in the model prediction results. While the autoen-

oder model selection step is performed in a non federated way,

he final FL training process of the following steps can also have

dded advantages for preventing overfitting problems. According

o McMahan et al. (2017) , one of the benefits of model averaging

n FL is that it produces a regularization effect similar to the one

chieved by dropout. In this case, FL helps to mitigate the over-

tting problems that can occur in clients with fewer training data

amples.
10
The number of nodes for the input and output layer of the au-

oencoder is fixed to the same number as the input feature di-

ensions (which can be 27 or 69, depending on the discretization

ethod for the source and destination ports). For the encoder part,

e evaluated different combinations with 1, 2 and 3 hidden layers,

ith each following layer having half as many nodes as the previ-

us one � # nodes previous layer
2 � , and a symmetric decoder. The

elected autoencoder model and hyperparameters will be used in

he next step: device clustering.

.3. Device clustering

Using the selected autoencoder model from the previous step,

he device clustering process begins, which consists of the first

hase detailed in Algorithm 2 .

The FL server initializes the selected autoencoder model and

istributes it to all IoT clients (78 nodes in the city network). Each

lient locally trains the model for ε epochs using as the Clien-

Opt optimizer, the optimizer selected from the previous step. The

artially trained models are uploaded back to the server to start

he model fingerprinting and clustering process. As detailed in

lgorithm 2 , the server flattens the parameters of each model and

erforms PCA to reduce the dimensionality of the parameters. We

re going to select the number of components needed to explain at

east 90% of the variance. We use the K -means algorithm with the

 -means++ initialization scheme to cluster the models, and hence

he clients.

The experiments are repeated for different values of ε =

 , 2 , 4 , 8 , 16 and 32, and the optimal number of clusters K is au-

omatically selected based on the analysis of the following internal

alidation metrics: Silhouette, Davies–Bouldin and S_Dbw.

.4. Federated hyperparameter tuning

In this step, we are going to tune the rest of the FL hyperparam-

ters. Each cluster identified in the previous step will have its own

ederated hyperparameter tuning. First, we are going to tune the

lientOpt and ServerOpt optimizer algorithms. Then, for the se-

ected ClientOpt and ServerOpt , we are going to further refine the

lient and server learning rates. While in the previous step of au-

oencoder model selection the client optimizer and learning rates

ere selected, these values might not be optimal for the FL train-

ng process.

The ClientOpt and ServerOpt are tuned by comparing mul-

iple combinations of SGD (with and without momentum) and

dam optimizers both for the clients and the server. SGD is tested

ithout momentum and with momentum set to 0.9 (as suggested

n Wang et al., 2021a), for Adam two combinations are tested: β1 =

 . 9 , β2 = 0 . 999 , ε = 1 × 10 −8 (default values defined in PyTorch)

nd β1 = 0 . 9 , β2 = 0 . 99 , ε = 0 . 001 (as suggested in Wang et al.,

021a). In total, 16 combinations are evaluated. Each client trains

n 80% of its local data and is evaluated on the remaining 20%;

oth losses are reported to the aggregation server. We select the

ptimizer combination that minimizes the average evaluation loss

cross all the cluster clients in fewer FL training rounds.

Then, the η and ηs learning rates are refined via grid search. For

ll the hyperparameter tuning we set E = 1 , and use the same ran-

om seed to initialize the ML model parameters in order to reduce

he effects of the random model initialization noise.

.5. Clustered federated learning

After the device clustering and federated hyperparameter tun-

ng steps, we perform the clustered federated learning using the

ne-tuned ClientOpt and ServerOpt optimizers and their respec-

ive learning rates. We perform R FL rounds to train the K global

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

m

p

E

c

r

m

t

a

t

5

a

R

m

a

n

5

o

a

t

w

t

t

s

a

5

i

d

w

g

f

I

t

g

m

n

i

u

t

m

p

t

(

M

5

a

c

5

b

T

m

d

F

e

t

m

f

m

i

o

5

A

w

o

t

5

c

c

w

i

g

s

c

s

6

i

6

t

m

d

d

c

w

w

a

t

fi

1

6

l

u

A

E

6

c

e

t

F

w

t

c

u

odels, one for each identified cluster. In this case, we repeat the

rocess for different values of the number of local training epochs

 = 1 , 2 , 4 and 8 to evaluate its effect on the training process.

Similar to the previous steps, each client trains on 80% of its lo-

al data and evaluates the model on the remaining 20%. Each client

ecords the loss for the training and evaluation splits after the local

odel training and sends it to the server. This is repeated for all

he FL rounds. This way, the server can monitor both the training

nd evaluation loss progression and check if there are any overfit-

ing signs.

.6. Anomaly detection

After training the models with FL, we are going to evaluate the

nomaly detection performance of the resulting K global models.

ecall that at this step, each device holds a local copy of the global

odel that corresponds to its cluster. To estimate the unsupervised

nomaly detection capabilities, we are going to use the validation-

ormal and validation-attack datasets.

.6.1. Threshold selection

For each client, we will first evaluate the trained global model

n its corresponding validation-normal dataset to estimate the

nomaly detection threshold. Note that the evaluation is local;

herefore, each device will compute its own threshold value. We

ill opt for a simplistic approach and select the largest MSE from

he validation-normal dataset as the threshold. Packets with MSE >

hreshold will be considered anomalous. Then, we will evaluate the

ame model on the multiple validation-attack datasets to identify

ll the anomalous packets.

.6.2. Anomaly detection performance

The anomaly detection performance is measured by evaluat-

ng the trained global models on the multiple validation-attack

atasets detailed in Section 4.2 . To obtain performance metrics,

e will manually label the validation-attack datasets to provide

round truth labels to be compared with the detected anomalies

rom the autoencoder. The labeling process is based on the known

P addresses of the attacker, victim, IoT and cloud nodes, and at-

ack timestamps extracted from the scenario. We recall that this

round truth labeling is only used to compute the performance

etrics and is never used for training; also, the IP addresses are

ever used for model training. In a real deployment, prior label-

ng of the network data might not be feasible, but here it will give

s an estimate of the performance of the global models to detect

he attacks considered in our threat model; however, note that the

anual labeling process is a heuristic and might misclassify some

ackets.

We provide the standard confusion matrix metrics: true posi-

ives (TP), false negatives (FN), false positives (FP), true negatives

TN) and their derivate metrics, including accuracy, F1 score and

atthews correlation coefficient (MCC).

.7. Baseline experimental comparisons

We are considering Kitsune (Mirsky et al., 2018) network IDS

nd two non-clustered FL approaches for the baseline experimental

omparisons.

.7.1. Kitsune

Kitsune is a state-of-the-art network IDS that uses an ensem-

le of autoencoders trained in an unsupervised and online manner.

he similarities of being unsupervised and based on autoencoders

ake it an interesting comparison; however, there are some fun-

amental differences between Kitsune and the proposed method.

irst, Kitsune does not use FL to train the model; it is deployed in
11
ach machine and only uses local data. Second, Kitsune uses fea-

ures based on temporal statistics of network packets taken over

ultiple damped windows; instead, we extract features obtained

rom each packet in isolation. Third, Kitsune is trained in an online

anner, so the training is performed using one sample at a time

nstead of multiple training iterations over batches of the data. An-

ther difference is that Kitsune does not filter IPv6 or ARP packets.

.7.2. Non-clustered FL with weighted aggregation

This FL baseline is identical to the proposed approach from

lgorithm 2 , except that the clustering step is removed. That is,

e consider K = 1 (all clients belong to the same cluster), and the

bjective is to train a single global model that fits all the clients in

he federated network.

.7.3. Non-clustered FL without weighted aggregation

In the server model aggregation step, the contribution of each

lient is weighted by the number of training samples used by that

lient (Algorithm 1). This process can bias the global model to-

ards clients with more training samples. Hence, this FL baseline

s the same as the previous non-clustered FL baseline (K = 1 , single

lobal model for all clients), except that at the server aggregation

tep, the contribution of all clients will be equally weighted.

Both non-clustered FL baselines are used to experimentally

ompare whether clustering offers significant advantages for un-

upervised anomaly detection in FL settings.

. Results

In this section, we present the results obtained from the exper-

ments described in Section 5 .

.1. Autoencoder model selection

As previously stated, the input and output shapes of the au-

oencoder are the same as the number of input data feature di-

ensions. Depending on the selected source and destination port

iscretization method from the network data processing step, the

imensions are 27 or 69 for the three-range and hierarchical dis-

retization, respectively. For the autoencoder model selection, we

ill consider both cases. The distinction between the two methods

ill be shown later in the device clustering results.

We detected no significant improvement in the validation loss

fter 2 hidden encoder layers, irrespective of the port discretiza-

ion method. Thus, for the three-range discretization method, the

nal autoencoder model is a two hidden layer encoder with

3 and 6 nodes, respectively, and a symmetric decoder with

 and 13 nodes. For the hierarchical discretization, the encoder

ayers include 34 and 17 nodes with a symmetric decoder. We

se the ReLU activation function after each layer. The optimizer is

dam with a 1 × 10 −3 learning rate, L 2 regularization weight from

q. (2) λ = 1 × 10 −5 and a batch size of 32.

.2. Device clustering

The clustering experiments are repeated for the two port dis-

retization methods and multiple values of the local training

pochs ε = 1 , 2 , 4 , 8 , 16 and 32 using the client optimizer parame-

ers obtained from the previous autoencoder model selection step.

or each value of ε, to identify the optimal number of clusters K,

e perform K -means clustering with K ranging from 2 to 40 clus-

er centroids. The results for ε = 4 using the three-range port dis-

retization method are shown in Fig. 3 , while the results for ε = 4

sing the hierarchical discretization method are shown in Fig. 4 .

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Fig. 3. Device clustering results for ε = 4 using the three-range discretization strategy for the source and destination ports.

Fig. 4. Device clustering results for ε = 4 using the hierarchical discretization strategy for the source and destination ports.

F

t

s

K

t

B

i

t

t

D

t

s

t

m

m

a

m

i

i

a

w

t

i

i

t

a

c

c

p

a

F

n

a

t

t

q

d

t

w

b

T

s

t

The unsupervised clustering quality scores are shown in

igs. 3 (a) and 4 (a). For Silhouette higher scores represent bet-

er clusters, for Davies–Bouldin and S_Dbw lower scores repre-

ent better clusters. The dotted vertical line marks the selected

for each discretization method. For the three-range discretiza-

ion, the Silhouette score is maximized at K = 16 , and the Davies–

ouldin score shows a dip at the same point. For S_Dbw the score

s monotonously decreasing; however, 16 is a good number of clus-

ers based on the elbow method. For the hierarchical discretiza-

ion method, the Silhouette score is maximized at K = 8 and both

avies–Bouldin and S_Dbw show a dip at that point. A 2D projec-

ion of the model fingerprints and the clustering results is repre-

ented in Fig. 3 (c) with K = 16 and Fig. 4 (c) with K = 8 .

Due to the differences in the clustering results depending on

he port discretization strategy, we perform an additional experi-

ent. For each strategy, we measure the similarity between the K -

eans clustering labels and the ground truth clustering using the

djusted Rand index, adjusted mutual information score and the V-

easure score. To create the ground truth labeling, we assign each

nstance a label based on its template type according to the data

n Table 1 (12 different labels). The results are shown in Figs. 3 (b)

nd 4 (b). For the three-port discretization, the score is maximized

hen K = 12 (in contrast to the K = 16 from the internal valida-

ion metrics). The results for the hierarchical discretization method
12
n Fig. 4 (b) show a maximum in K = 8 (same results as with the

nternal validation metrics) and overall higher scores compared to

he previous method.

Using the hierarchical discretization method, we obtain an

greement in the optimal value for K between the unsupervised

lustering and the similarity with the ground truth scores. It also

reates a clearer distinction between the clusters (Fig. 4 (c)) com-

ared to the three-port discretization method (Fig. 3 (c)). Addition-

lly, it may be desirable to lean towards small K values so that the

L process benefits from a larger cohort size for each cluster. From

ow on, we are going to use the hierarchical discretization method

nd K = 8 for the rest of the experimentation.

In real deployment settings, where there might be no ground

ruth labels for the device types, only unsupervised internal clus-

ering validation metrics will be available to analyze the clustering

uality. Hence, from the experimental results, we infer that in or-

er to select the number of clusters K, a robust approach is first

o consider the value that maximizes the Silhouette score. In cases

here there are different values of K with similar scores, break ties

y considering the Davies-Bouldin and S_Dbw metrics.

The device clustering results from Fig. 4 (c) are shown in

able 4 . All the IP camera related devices are grouped into the

ame cluster. Interestingly, for devices of the same type, the clus-

ering method can distinguish between those communicating via

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

p

d

C

a

t

M

t

c

m

c

o

c

i

i

I

3

a

f

i

m

t

s

m

n

w

t

p

t

d

i

t

c

a

6

f

H

t

a

t

b

u

m

4

g

i

t

w

p

i

i

i

i

1

o

t

b

v

m

e

s

Fig. 5. Cluster stability results for varying training data sizes. Each training data

fraction percentage shows a boxplot for 30 repetitions of the adjusted Rand score

with the clustering results from Table 4 (K = 8). Circles indicate outliers, i.e., sam-

ples outside 1.5x of the inter-quartile range. The orange line in each boxplot shows

the medians.

Table 4

Unsupervised clustering results using the hierarchical port discretization strategy

for ε = 4 and K = 8 .

Cluster name Cluster contents

Cluster 0 Air quality (x1), Building monitor (x5), Domotic monitor (x5)

Cluster 1 Hydraulic system (x15)

Cluster 2 City power (x1), Combined cycle (x10)

Cluster 3 Cooler motor (x15)

Cluster 4 IP camera museum (x2), IP camera street (x2), IP camera

consumer (x2)

Cluster 5 Predictive maintenance (x10)

Cluster 6 Predictive maintenance (x5)

Cluster 7 Combined cycle tls (x5)

c

t

8

6

f

b

r

f

f

a

t

a

p

s

v

(

s

a

m

(

t

t

f

i

m

u

F

lain text or over an encrypted channel; for example, the Pre-

ictive maintenance devices in Cluster 5 and Cluster 6 or the

ombined cycle in Cluster 2 and Cluster 7. Clusters 0, 2 and 4

re composed of heterogeneous devices; however, the devices in

he same cluster communicate using the same primary protocol:

QTT, CoAP and RTSP, respectively.

Regarding the clustering results for the other tested values of ε,

he results in the ε = 8 case are very similar to the discussed ε = 4

ase, where the unsupervised and supervised clustering validation

etrics agree on the optimal number of groups. However, in some

ases, the number of clusters decreases to 7, merging the groups

f the same device types that communicate in plain or over an en-

rypted channel. In the ε = 2 case, the number of clusters accord-

ng to the unsupervised metrics is 9, and in the ε = 1 case, it is

ncreased to 11. Both cases tend to split the groups formed by the

P camera devices and Predictive maintenance ones. For ε = 16 and

2, the number of identified clusters using unsupervised metrics

lso tends to increase to around 11 and 17, respectively; moreover,

or both cases, the supervised metrics still show the optimum at 8,

ndicating a discrepancy between the unsupervised and supervised

etrics for higher values of ε.

From Fig. 4 (c), while some clusters are clearly separated from

he rest, others, such as clusters 0, 1 and 7 or clusters 6 and 5,

eem to be close in the 2D projection. The dimensionality of the

odel fingerprints is the same as the number of PCA components

eeded to explain at least 90% of the model parameter variance,

hich in this particular case is 23. Figure 4 (c) only shows the first

wo dimensions, corresponding to approximately 40% of the ex-

lained variance. This might indicate that clusters that are close

o each other in the 2D representation are also close in the higher-

imensional space. When the training data amount of each device

s insufficient or due to the random model initialization influence,

he clustering results’ stability might be affected for those groups

lose to each other. In order to study the clustering stability, we

re going to perform an additional experiment.

.2.1. Cluster stability for varying training data size

In this experiment, we will repeat the device clustering process

or the ε = 4 and the hierarchical discretization port method case.

owever, we will vary the fraction of training data used to par-

ially train the models. The server initializes an autoencoder model,

nd each client will randomly subsample a fraction of its own local

raining data. The clustering procedure is the same as explained

efore, only that each client performs local training for ε epochs

sing only the specified fraction of the data. A different experi-

ent is conducted for the following fractions: 1%, 10%, 20%, 30%,

0%, 50%, 60%, 70%, 80%, 90% and 99%. All those experiments are

oing to be further repeated 30 times to account for any variabil-

ty in the results due to the random model initialization effect at

he server and the random subsampling process at each device.

To measure the cluster stability for varying training data sizes,

e select K = 8 and compare the clustering results of the new ex-

eriments with the clustering results obtained in Table 4 . The sim-

larity is measured using the adjusted Rand score. A value of 1.0

s obtained when the clusterings are identical, and values near 0.0

ndicate random labeling. The results are shown in Fig. 5 . For train-

ng data fractions ≥ 50% , the majority of runs achieve a score of

.0, showing that the clustering results are mostly stable, but some

utliers appear. The number of outliers is reduced with increasing

raining data fraction. When the training data fraction is reduced

elow 50%, the clustering quality is negatively affected.

We also note that for small training data fractions, the optimal

alue of K shown by unsupervised internal clustering validation

etrics tends to decrease, is more unstable from repetition to rep-

tition and diverges considerably from the optimal value shown by

upervised clustering metrics using the ground truth labeling. The
13
ontrary occurs when the training data fraction is ≥ 60% , where

he unsupervised and supervised metrics are close, and K is around

 ± 1 .

.3. Federated hyperparameter tuning

To select the ClientOpt and ServerOpt optimizer algorithms,

or each cluster we performed 16 trials consisting of different com-

inations of SGD and Adam as defined in Table 5 . Client learning

ates are fixed to η = 1 × 10 −3 and the L 2 regularization weight

rom Eq. (2) is set to λ = 1 × 10 −5 .

We show the results of the mean evaluation loss progression

or 100 FL rounds and all the trials for Clusters 0, 2 and 4 in Fig. 6 ,

s these three clusters are more complex than the others because

hey are formed by heterogeneous devices. In general, including

daptive optimization methods for ClientOpt , ServerOpt or both

rovides faster convergence and smaller losses compared to the

tandard SGD; however, some combinations have difficulty to con-

erge, showing an increasing loss trend as in Trial 10 for Cluster 0

 Fig. 6 (a)). For Cluster 0, Trial 9 clearly shows faster convergence

peeds and a smaller evaluation loss after 100 FL rounds. Trial 12

lso shows a similar evaluation loss at the last round, but at a

uch slower convergence rate. For Clusters 2 and 4 (Fig. 6 (b) and

c)), Trials 9 and 10 show the best performance. Trial 10 from Clus-

er 2 reaches a smaller loss than Trial 9; however, by fine tuning

he Trial 9 learning rates, it can reach the same loss values.

The client and server learning rates (η and ηs , respectively)

or each cluster are fine tuned by performing a grid search vary-

ng both values simultaneously. The results are shown in the heat

aps from Fig. 7 . The heat maps show the logarithm of the eval-

ation loss after 60 FL rounds; darker colors show a smaller loss.

or the three cases, many combinations achieve a similar low loss;

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Fig. 6. Federated hyperparameter tuning, ClientOpt and ServerOpt optimizer selection. E = 1 . The trials are defined in Table 5 .

Fig. 7. Federated hyperparameter tuning, η and ηs learning rate grid search. The values represent base 10 logarithm of the evaluation loss after 60 FL rounds.

Table 5

ClientOpt and ServerOpt combinations for each hyperparameter tuning trial. “SGD”

is SGD without momentum, “SGDm” refers to SGD with momentum 0.9, “Adam1”

refers to β1 = 0 . 9 , β2 = 0 . 999 , ε = 1 × 10 −8 and “Adam2” refers to Adam β1 = 0 . 9 ,

β2 = 0 . 99 , ε = 10 −3 . λ is set to 1 × 10 −5 for all trials.

Trial ClientOpt η ServerOpt ηs

Trial 1 SGD 1 × 10 −3 SGD 1.0

Trial 2 SGD 1 × 10 −3 SGDm 1.0

Trial 3 SGD 1 × 10 −3 Adam1 1 × 10 −2

Trial 4 SGD 1 × 10 −3 Adam2 1 × 10 −2

Trial 5 SGDm 1 × 10 −3 SGD 1.0

Trial 6 SGDm 1 × 10 −3 SGDm 1.0

Trial 7 SGDm 1 × 10 −3 Adam1 1 × 10 −2

Trial 8 SGDm 1 × 10 −3 Adam2 1 × 10 −2

Trial 9 Adam1 1 × 10 −3 SGD 1.0

Trial 10 Adam1 1 × 10 −3 SGDm 1.0

Trial 11 Adam1 1 × 10 −3 Adam1 1 × 10 −2

Trial 12 Adam1 1 × 10 −3 Adam2 1 × 10 −2

Trial 13 Adam2 1 × 10 −3 SGD 1.0

Trial 14 Adam2 1 × 10 −3 SGDm 1.0

Trial 15 Adam2 1 × 10 −3 Adam1 1 × 10 −2

Trial 16 Adam2 1 × 10 −3 Adam2 1 × 10 −2

w

c

i

C

S

a

6

a

f

f

f

8

t

a

o

d

e

r

s

c

c

a

a

6

c

e are going to select the combination with a smaller loss for all

ases.

The final optimizer selection are as follows. Cluster 0 ClientOpt

s Adam1 with η = 0 . 005 , and ServerOpt is SGD with ηs = 0 . 75 .

luster 2 ClientOpt is Adam1 with η = 0 . 005 , and ServerOpt is
14
GD with ηs = 1 . 25 . Cluster 4 ClientOpt is Adam1 with η = 0 . 001 ,

nd ServerOpt is SGD with ηs = 1 . 5 .

.4. Clustered federated learning

The final FL training process is performed using the client-side

nd server-side optimizers and learning rates obtained after the

ederated hyperparameter tuning described in the previous step

or each identified cluster. We repeated the experiments for dif-

erent values of the number of local training epochs E = 1 , 2 , 4 and

. Increasing the number of local training epochs generally leads

o lower loss values and fewer FL rounds to reach convergence

t the expense of more local computation time. However, we also

bserved an increased variance in the loss distribution across the

evices of the cluster when using large numbers of local training

pochs. The training results for E = 4 local epochs and R = 100 FL

ounds are shown in Fig. 8 for Clusters 0, 2 and 4. Each boxplot

hows the evaluation loss distribution across the devices of the

luster at a certain FL round.

The progression of both training and evaluation losses was

hecked, there was a small gap between the training and evalu-

tion loss, however, this gap remained more or less constant for

ll the FL rounds and did not show overfitting patterns.

.4.1. Training baseline

As a training baseline, we performed additional experiments to

ompare the training evaluation loss progression between FL and

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Fig. 8. Clustered FL training progression for E = 4 local training epochs and R = 100 FL rounds (blue boxplots). It is compared with isolated edge training where each device

trains on its own dataset for R × E = 400 epochs (orange boxplots). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 6

The number of packets after the IPv6 and ARP filtering step in the validation-attack

datasets.

Validation-attack- ∗ Cluster 0 Cluster 2 Cluster 4

mirai-scan-load 110,354 70,592 888,833

mirai-cnc-dos 6,810,612 7,777,427 7,924,688

merlin-cnc-dos 32,282 31,014 868,586

masscan 816 571 203,814

scan-amplification n/a 68,422 n/a

i

w

s

u

i

t

T

l

a

w

t

d

a

s

d

H

m

d

u

s

6

c

t

s

t

i

t

d

6

v

i

a

h

T

0

c

F

n

i

h

t

w

6

t

t

d

fl

r

p

6

v

b

e

n

T

c

a

0

F

t

a

t

solated edge training, where each device trains on its local data

ithout cooperation. In isolated training, each device in the cluster

tarts with a random initialization of the autoencoder and trains it

sing the same client-side optimizer as in the FL case. The training

s performed for a total of R × E epochs so that the amount of local

raining performed by each device is comparable to the FL case.

he comparison is shown in Fig. 8 .

For Clusters 0 and 2, there is a noticeable gap in the evaluation

oss between the FL and isolated training methods, where FL shows

 faster convergence rate, especially in early rounds. For Cluster 4,

hile FL shows a lower average loss, the loss distribution is similar

o the isolated training.

This difference might be explained due to the different training

ata volumes generated by each device. Cluster 4 devices generate

 much larger data volume because they are comprised of image

treaming devices, ranging between 300 to 800 MB of raw pcap

ata; this extensive training data can benefit local isolated training.

owever, the raw pcap data for Cluster 0 devices ranges approxi-

ately between 230 KB to 270 KB. For Cluster 2 devices, the raw

ata is between 100 KB to 170 KB. This suggests the advantages of

sing FL for devices that generate a low volume of training data

amples.

.5. Anomaly detection

Here we provide the anomaly detection performance results for

lusters 0, 2 and 4 by evaluating the trained global models from

he previous step on the multiple validation-attack datasets de-

cribed in Section 4.2 . The number of packets (normal and at-

ack) after filtering the pcaps is shown in Table 6 . As explained

n Section 5 , the anomaly threshold of each device is selected so
15
hat there are no false positives in the device’s validation-normal

ataset. The attack packets are considered as the positive class.

.5.1. Cluster 0 (MQTT)

We evaluate the global model of Cluster 0 on the four

alidation-attack datasets captured from one instance of the Build-

ng monitor device.

For the mirai-scan-load data, the reconstruction error of all

nomalous packets is above the threshold, and the normal packets

ave a low reconstruction error except for a single false positive:

P, FN, FP, TN = 108532, 0, 1, 1821 (0.9999 accuracy, 0.9999 F1 and

.9997 MCC). Similarly, for the masscan data the model correctly

lassified all packets: TP, FN, FP, TN = 528, 0, 0, 288 (1.0 accuracy,

1 and MCC).

For the mirai-cnc-dos and merlin-cnc-dos datasets, some false

egatives are reported. In the mirai-cnc-dos case, the C&C activ-

ty and seven out of eight DoS attacks were all correctly classified;

owever, some (but not all) of the attack packets corresponding to

he same time frame when the DNS attack was being performed

ere below the anomaly threshold: TP, FN, FP, TN = 6743222,

6190, 0, 1200 (0.9903 accuracy, 0.9951 F1 and 0.1328 MCC). For

he merlin-cnc-dos case, the C&C activity, ingress tool transfer and

hree out of four attacks were all correctly classified. The model

id not detect the anomalous packets corresponding to the ICMP

ood attack: TP, FN, FP, TN = 25828, 5277, 0, 1177 (0.8365 accu-

acy, 0.9073 F1 and 0.3891 MCC). The reconstruction error scatter

lot for the merlin-cnc-dos case is shown in Fig. 9 (a).

.5.2. Cluster 2 (CoAP)

The global model of Cluster 2 is evaluated on the five

alidation-attack datasets captured from one instance of the Com-

ined cycle device.

This model correctly classified all normal and anomalous pack-

ts for all the validation-attack datasets except for a single false

egative packet. The mirai-scan-load case obtained: TP, FN, FP,

N = 70,195, 0, 0, 397 (1.0 accuracy, F1 and MCC). For the mirai-

nc-dos data: TP, FN, FP, TN = 7,777,173, 0, 0, 254 (1.0 accuracy, F1

nd MCC). In the merlin-cnc-dos case: TP, FN, FP, TN = 30,754, 0,

, 260 (1.0 accuracy, F1 and MCC). The masscan data obtained: TP,

N, FP, TN = 522, 0, 0, 49 (1.0 accuracy, F1 and MCC). And lastly,

he scan-amplification: TP, FN, FP, TN = 68,237, 1, 0, 184 (0.9999

ccuracy, 0.9999 F1 and 0.9973 MCC). The reconstruction error for

he scan-amplification dataset is shown in Fig. 9 (b).

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Fig. 9. Anomaly detection examples. Dotted line indicates the anomaly threshold, packets with MSE above the threshold are considered anomalous.

6

v

c

a

e

T

M

t

d

f

t

a

c

a

c

r

6

c

6

P

u

c

d

t

m

c

r

m

d

t

f

r

0

p

l

m

o

m

c

f

t

c

t

f

t

C

F

K

r

0

s

a

H

t

M

r

i

0

s

r

6

c

t

c

e

C

η

a

m

d

v

t

p

h

o

t

F

i

p

v

.5.3. Cluster 4 (camera)

We evaluate the global model of Cluster 4 on the four

alidation-attack datasets captured from one instance of the IP

amera museum.

For the mirai-scan-load data, the reconstruction error of all

nomalous packets is above the threshold, and the normal pack-

ts are correctly classified except for a false positive: TP, FN, FP,

N = 81,604, 0, 1, 807,228 (0.9999 accuracy, 0.9999 F1 and 0.9999

CC). This case is shown in Fig. 9 (c). The number of false posi-

ives and false negatives is slightly increased in the mirai-cnc-dos

ataset, part (but not all) of the packets corresponding to the time

rame where the Mirai GRE IP and GRE Ethernet attacks are below

he threshold: TP, FN, FP, TN = 7,424,929, 224, 4, 499,531 (0.9999

ccuracy, 0.9999 F1 and 0.9997 MCC).

For the merlin-cnc-dos dataset, all the packets were correctly

lassified: TP, FN, FP, TN = 30,990, 0, 0, 837,596 (1.0 accuracy, F1

nd MCC). Similarly, the packets of the masscan dataset were also

orrectly classified: TP, FN, FP, TN = 548, 0, 0, 203,266 (1.0 accu-

acy, F1 and MCC).

.6. Baseline experimental comparisons

Here we provide anomaly detection performance results for the

onsidered baseline approaches.

.6.1. Kitsune

For the comparison with Kitsune, we use its publicly available

ython implementation (Mirsky, 2023). We configure Kitsune to

se the default parameters (m = 10 maximum size for any autoen-

oder in the ensemble layer). Kitsune does not use FL, so for each

evice on which we deploy it, we use its corresponding normal

raffic data for training (the first 10% to learn Kitsune’s feature

apping and the remaining 90% for the training of the autoen-

oder ensemble itself). Then, it is evaluated on the device’s cor-

esponding validation-attack datasets. In this comparison experi-

ent, we are not primarily interested in the results of the anomaly

etection metrics; however, we are interested in what kind of at-

acks or malicious behavior detection our proposed method differs

rom Kitsune.

Regarding the mirai-scan-load dataset, the measured met-

ics ranged from 0.9729–0.9771 accuracy, 0.9861–0.9883 F1 and

.3518–0.4525 MCC depending on the device type. Overall, most

ackets related to the Mirai scanning, brute-forcing and malware

oading stages appeared above the anomaly threshold. However,

ost Mirai C&C related traffic went undetected.

The results on the Mirai C&C related traffic are best observed

n the mirai-cnc-dos datasets, shown in Fig. 10 (b). The measured

etrics are 0.9998 accuracy, 0.9999 F1 and 0.7397 MCC. Kitsune
16
orrectly detected all the performed DoS attacks as anomalous, but

ailed to detect the C&C related traffic. During the period between

he Mirai bot activation and the first attack, the device periodically

ommunicates with the Mirai C&C server. This traffic went unde-

ected for Kitsune as its reconstruction error is close to the error

or normal traffic. In contrast, while our proposed method failed

o detect some packets related to the DoS attacks, all the Mirai

&C traffic is well separated from the normal activity, as shown in

ig. 10 (a).

The masscan dataset also shows significant differences between

itsune and the proposed clustered FL model. The measured met-

ics ranged from 0.7781–0.8122 accuracy, 0.8026–0.8865 F1 and

.4665–0.5971 MCC. All the low-volume scanning activity and a

ignificant number of packets from the medium-volume scanning

ctivity were below Kitsune’s threshold, as shown in Fig. 11 (b).

owever, our proposed method detected all activity irrespective of

he scanning rate, as shown in Fig. 11 (a).

Unlike Mirai’s C&C behavior, Kitsune was able to detect the

erlin C&C activity, which is noisier than Mirai’s. Some packets

elated to the ICMP attack went undetected; however, all attacks

ncluded packets above the anomaly threshold: 0.9791 accuracy,

.9891 F1 and 0.7392 MCC. Most anomalous packets from the

can-amplification data were also correctly classified: 0.9912 accu-

acy, 0.9955 F1 and 0.5988.

.6.2. Non-clustered FL with weighted aggregation

In this baseline, we train a single global model for all the

lients, i.e., we are considering the K = 1 case. The architecture for

he anomaly detection autoencoder model is the same as in the

lustered FL approach. We performed the federated hyperparam-

ter tuning step, and the final optimizer selection is as follows:

lientOpt is Adam1 with η = 0 . 005 , and ServerOpt is SGD with

s = 1 . 25 . The full FL training is performed with E = 4 and R = 100 ,

s in the clustered case. Finally, we evaluate the trained global

odel on the mentioned validation-attack datasets. The anomaly

etection threshold is selected in the same way as in the clustered

ersion.

The evaluation of the global model on the devices that belonged

o Cluster 0 and Cluster 2 resulted in subpar anomaly detection

erformance. All presented some normal packet instances with

igh reconstruction error that raised the anomaly detection thresh-

ld. The reconstruction error of anomalous samples was close to

he error for normal traffic samples, yielding a near-zero value for

1 and MCC. While the anomaly detection performance could be

mproved by lowering the threshold at the expense of more false

ositives, most attacks would still be misclassified for all the tested

alidation-attack datasets.

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

Fig. 10. Anomaly detection results for the validation-attack-mirai-cnc-dos dataset on one of the Building monitor devices. (A) Start Mirai bot on the device. (B)–(C) DoS

attacks. (D) stop Mirai bot. Dotted line indicates the anomaly threshold.

Fig. 11. Anomaly detection results for the validation-attack-masscan dataset on one of the Building monitor devices. (A) Masscan node performs low-volume scan. (B)

Masscan node performs medium-volume scan. (C) Masscan node performs high volume scan. Dotted line indicates the anomaly threshold.

d

t

a

o

h

t

o

a

a

p

b

t

T

w

6

t

v

e

c

η

i

t

t

M

t

c

s

0

s

0

d

C

f

F

0

7

t

t

p

m

w

a

t

On the contrary, the evaluation of the global model on the

evices that belonged to Cluster 4 offered good anomaly detec-

ion performance, similar to the performance of the clustered

nomaly detection version. While the anomaly detection thresh-

ld was larger than the clustered one due to some packets with

igher reconstruction error, most anomalous packets were above

he threshold. The measured metrics were greater than 0.9999 F1

r 0.9997 MCC for all the tested validation-attack datasets.

This baseline shows that the single FL global model is highly bi-

sed towards the six devices that belonged to Cluster 4 (IP cameras

nd stream consumers), which generate more data volume com-

ared to the rest of the devices in the network. This effect might

e caused because the aggregation server weights the client’s con-

ribution based on the number of training samples of that client.

o adjust for this effect, the following FL baseline will equally

eigh the contribution of all the federated clients.

.6.3. Non-clustered FL without weighted aggregation

We train a single global model (K = 1) using the same architec-

ure for the anomaly detection autoencoder model as in the pre-

ious cases, but equally weighting the contribution of all the fed-

rated clients instead of by the amount of training data on each

lient. We use the following optimizers: ClientOpt is Adam1 with

= 0 . 005 , and ServerOpt is SGD with ηs = 1 . 0 . The full FL training

s performed with E = 4 and R = 100 , as in the previous cases.
17
The evaluation of the global model on the devices that belonged

o Cluster 2 showed bad anomaly detection performance, similar

o the previous baseline results with near zero metrics for F1 and

CC. However, the devices that belonged to Cluster 0 and Clus-

er 4 showed better anomaly detection metrics, but worse than the

lustered FL approach: For the mirai-scan-load dataset, Cluster 0

howed 0.441 accuracy, 0.603 F1 and 0.111 MCC; Cluster 4 showed

.947 accuracy, 0.599 F1, 0.636 MCC. For mirai-cnc-dos, Cluster 0

howed 0.213 accuracy, 0.194 F1 and 0.119 MCC; Cluster 4 showed

.180 accuracy, 0.222 F1 and 0.094 MCC. For the merlin-cnc-dos

ataset, Cluster 0 showed 0.146 accuracy, 0.205 F1 and 0.068 MCC;

luster 4 showed 0.972 accuracy, 0.348 F1 and 0.452 MCC. Finally,

or the masscan dataset, Cluster 0 showed 0.783 accuracy, 0.799

1 and 0.642 MCC; Cluster 4 showed 0.999 accuracy, 0.816 F1 and

.830 MCC.

. Conclusions

In this work, we have proposed a clustered FL architecture

hat allows training unsupervised anomaly and intrusion detec-

ion models in large networks of heterogeneous IoT devices. The

roposed FL architecture does not need supervised data labeling,

aking it appropriate for real deployments where precise net-

ork traffic labeling is not feasible. To address the problems that

rise with FL in heterogeneous environments, the proposed archi-

ecture includes an unsupervised device clustering algorithm that

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

w

e

p

m

F

l

v

d

m

c

m

w

e

t

b

m

t

c

a

m

c

f

l

t

a

s

r

t

t

s

s

a

o

a

F

n

m

m

t

a

v

p

t

T

w

a

t

c

c

b

a

a

l

t

t

t

c

t

p

n

m

fl

D

c

i

D

A

t

a

b

a

R

2

t

e

U

R

A

A

A

B

B

B

C

C

C

D

D

D

E

F

G

orks by inspecting the parameters of the partially trained mod-

ls. This clustering method is fully integrated into the FL training

ipeline. It does not rely on any external fingerprinting tools or

anual clustering methods, which can ease the implementation of

L-based architectures in deployment settings.

The architecture was implemented and evaluated on an emu-

ated testbed comprised of multiple heterogeneous IoT and IIoT de-

ices running real production libraries that generate traffic with a

iverse set of network protocols. The proposed device clustering

ethod showed successful grouping of the devices with similar

ommunication patterns. However, as shown in the experiments, it

ust be noted that the clustering quality can be reduced in cases

here the local training data in each device is not sufficient. Nev-

rtheless, there was a wide margin of training data amount where

he clustering results were mainly stable, and this can be mitigated

y ensuring enough data is available before starting the process. It

ay also be advisable for the server to do several repetitions of

he clustering step to ensure the stability of the process. Since the

lustering step does not require much local training computation

nd only one round of communication is needed, it does not incur

uch cost. Additionally, training using FL exhibited a faster model

onvergence rate compared to the isolated edge method, especially

or the devices that generate low volumes of training data.

The global models were evaluated on real attacks showing

ow false positive rates and high detection for most of the at-

acks. While few DoS-based attacks were not correctly classified

s anomalous for some of the device clusters, the proposed model

uccessfully detected stealthier malicious actions such as the Mi-

ai C&C heartbeat packets and slow scanning activities. In contrast,

he comparison with the ML-based Kitsune network IDS showed

hat Kitsune correctly detected those DoS attacks but misclassified

tealthier activity. This can indicate that for a more comprehen-

ive detection, we could deploy alongside the clustered FL model

 simpler model that, for instance, uses the frequency of packets

ver a time window to detect generic volumetric attacks. Addition-

lly, the proposed clustered approach outperformed non-clustered

L baselines. Training a single global model for all the heteroge-

eous devices showed high bias towards the devices that generate

ore training data or a lack of generalization of the single global

odel. This highlights the advantage of personalization using clus-

ered FL approaches for unsupervised network anomaly detection.

The IoT device types considered in the experimental scenario

re devices with low mobility capabilities. The inclusion of de-

ices with high mobility, such as intelligent vehicles and UAVs,

resents additional challenges due to their frequent transitions be-

ween multiple wireless networks with varying quality of service.

his movement can cause continuous changes in the extracted net-

ork features. Evaluating or adapting unsupervised clustered FL

pproaches in high mobility settings is a future line of work. If

he data distribution of a device changes after the clustering pro-

ess but before finishing the complete FL training, dynamic or soft

lustering approaches might be considered to increase the flexi-

ility when dealing with high-mobility IoT networks. Additionally,

nalyzing the root cause of an anomaly to distinguish intrusions or

ttacks between other causes, such as device updates, is another

ine of future work.

Lastly, we note that the unsupervised model training assumes

hat the devices are operating in normal conditions (i.e., during the

raining phase, the devices are not compromised). This assump-

ion might not hold for some adversarial settings. Future work

an include exploring how compromised or adversarial devices in

he network affect the unsupervised device clustering stage of the

roposed method. Compromised devices might deviate from other

ormal devices that should belong to the same cluster. This drift

ight be indicative of anomalous behavior, and the device can be

agged or filtered out before the FL process starts.
18
eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The European commission financially supported this work

hrough Horizon Europe program under the IDUNN project (grant

greement number 101021911). It was also partially supported

y the Department of Economic Development, Sustainability

nd Environment of the Basque Government under the ELKA-

TEK 2023 program, project BEACON (with registration number

023RTE00242510). Urko Zurutuza is part of the Intelligent Sys-

ems for Industrial Systems research group of Mondragon Unib-

rtsitatea (IT1676-22), supported by the Department of Education,

niversities and Research of the Basque Government.

eferences

ntonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Du-
rumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever, C.,

Ma, Z., Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K.,
Zhou, Y., 2017. Understanding the mirai botnet. In: 26th USENIX Se-

curity Symposium (USENIX Security 17). USENIX Association, Vancou-

ver, BC, pp. 1093–1110 . https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis .

rthur, D., Vassilvitskii, S., 2006. K -means++: The Advantages of Careful Seeding.
Techreport. Stanford InfoLab .

ttota, D.C., Mothukuri, V., Parizi, R.M., Pouriyeh, S., 2021. An ensemble multi-view

federated learning intrusion detection for IoT. IEEE Access 9, 117734–117745.

doi: 10.1109/ACCESS.2021.3107337 .

agdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V., 2020. How to back-
door federated learning. In: Chiappa, S., Calandra, R. (Eds.), Proceedings of

the Twenty Third International Conference on Artificial Intelligence and Statis-
tics. PMLR, pp. 2938–2948 . https://proceedings.mlr.press/v108/bagdasaryan20a.

html .
oyes, H., Hallaq, B., Cunningham, J., Watson, T., 2018. The industrial internet of

things (IIoT): an analysis framework. Comput. Ind. 101, 1–12. doi: 10.1016/j.

compind.2018.04.015 .
riggs, C., Fan, Z., Andras, P., 2020. Federated learning with hierarchical clustering of

local updates to improve training on non-iid data. In: 2020 International Joint
Conference on Neural Networks (IJCNN), pp. 1–9. doi: 10.1109/IJCNN48605.2020.

9207469 .
hen, Y., Qin, X., Wang, J., Yu, C., Gao, W., 2020. FedHealth: a federated transfer

learning framework for wearable healthcare. IEEE Intell. Syst. 35 (4), 83–93.

doi: 10.1109/MIS.2020.2988604 .
ostin, A., Zaddach, J., 2018. IoT Malware: Comprehensive Survey, Analysis Frame-

work and Case Studies. BlackHat USA .
otton, M., Eggert, L., Touch, J., Westerlund, M., Cheshire, S., 2011. Internet Assigned

Numbers Authority (IANA) Procedures for the Management of the Service Name
and Transport Protocol Port Number Registry. BCP. RFC Editor .

avies, D.L., Bouldin, D.W., 1979. A cluster separation measure. IEEE Trans. Pattern

Anal. Mach. Intell. PAMI-1 (2), 224–227. doi: 10.1109/tpami.1979.4766909 .
uan, M., Liu, D., Ji, X., Liu, R., Liang, L., Chen, X., Tan, Y., 2021. Fedgroup: effi-

cient federated learning via decomposed similarity-based clustering. In: 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data

& Cloud Computing, Sustainable Computing & Communications, Social Comput-
ing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pp. 228–237. doi: 10.

1109/ISPA- BDCloud- SocialCom- SustainCom52081.2021.0 0 042 .

uan, M., Liu, D., Ji, X., Wu, Y., Liang, L., Chen, X., Tan, Y., Ren, A., 2022. Flexible
clustered federated learning for client-level data distribution shift. IEEE Trans.

Parallel Distrib. Syst. 33 (11), 2661–2674. doi: 10.1109/TPDS.2021.3134263 .
uropean Parliament and Council of the European Union, 2016. Regulation (EU)

2016/679 of the european parliament and of the council of 27 april 2016 on the
protection of natural persons with regard to the processing of personal data and

on the free movement of such data, and repealing directive 95/46/EC (general
data protection regulation). Accessed 2023/02/07. https://eur-lex.europa.eu/eli/

reg/2016/679 .

errag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H., 2020. Deep learning for
cyber security intrusion detection: approaches, datasets, and comparative study.

J. Inf. Secur. Appl. 50. doi: 10.1016/j.jisa.2019.102419 .
amblin, J., 2023. Leaked mirai source code for research/ioc development purposes.

Accessed 2023/02/07, https://github.com/jgamblin/Mirai- Source- Code .

https://doi.org/10.13039/501100007601
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0002
https://doi.org/10.1109/ACCESS.2021.3107337
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://doi.org/10.1016/j.compind.2018.04.015
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1109/MIS.2020.2988604
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0009
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
https://doi.org/10.1109/TPDS.2021.3134263
https://eur-lex.europa.eu/eli/reg/2016/679
https://doi.org/10.1016/j.jisa.2019.102419
https://github.com/jgamblin/Mirai-Source-Code

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

G

G

G

G

H

H

H

J

K

K

K

K

K

L

L

L

L

M

M

M

M

M

M

M

M

N

N

P

P

P

Q

R

R

R

R

R

R

S

S

S

S

S

S

S

T

T

T

V

hosh, A., Chung, J., Yin, D., Ramchandran, K., 2020. An efficient framework for clus-
tered federated learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,

Lin, H. (Eds.), Advances in Neural Information Processing Systems. Curran As-
sociates, Inc., pp. 19586–19597 . https://proceedings.neurips.cc/paper/2020/file/

e32cc80bf07915058ce90722ee17bb71-Paper.pdf .
hosh, A., Hong, J., Yin, D., Ramchandran, K., 2019. Robust federated learning in

a heterogeneous environment. CoRR abs/1906.06629 http://arxiv.org/abs/1906.
06629 .

rossmann, J., et al., 2023. Graphical network simulator 3. Accessed 2023/02/07,

https://www.gns3.com/ .
uo, J., Wu, J., Liu, A., Xiong, N.N., 2022. Lightfed: an efficient and secure federated

edge learning system on model splitting. IEEE Trans. Parallel Distrib. Syst. 33
(11), 2701–2713. doi: 10.1109/TPDS.2021.3127712 .

alkidi, M., Vazirgiannis, M., 2001. Clustering validity assessment: finding the op-
timal partitioning of a data set. In: Proceedings 2001 IEEE International Con-

ference on Data Mining. IEEE Comput. Soc, pp. 187–194. doi: 10.1109/icdm.2001.

989517 .
iessl, T., Rezapour Lakani, S., Kemnitz, J., Schall, D., Schulte, S., 2022. Cohort-based

federated learning services for industrial collaboration on the edge. J. Parallel
Distrib. Comput. 167, 64–76. doi: 10.1016/j.jpdc.2022.04.021 .

uang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H., Liu, D., 2019. Patient clustering
improves efficiency of federated machine learning to predict mortality and hos-

pital stay time using distributed electronic medical records. J. Biomed. Inform.

99, 103291. doi: 10.1016/j.jbi.2019.103291 .
alali, M.S., Kaiser, J.P., Siegel, M., Madnick, S., 2019. The internet of things promises

new benefits and risks a systematic analysis of adoption dynamics of IoT prod-
ucts. IEEE Secur. Privacy 17 (2), 39–48. doi: 10.1109/MSEC.2018.2888780 .

airouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz,
K., Charles, Z., Cormode, G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E.,

Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser,

M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi,
T., Joshi, G., Khodak, M., Kone ̌cný, J., Korolova, A., Koushanfar, F., Koyejo, S., Le-

point, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M.,
Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh,

A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F.
X., Yu, H., Zhao, S., 2019. Advances and open problems in federated learning.

arXiv:1912.04977 http://arxiv.org/abs/1912.04977 .

ambourakis, G., Anagnostopoulos, M., Meng, W., Zhou, P., 2019. Botnets: Architec-
tures, Countermeasures, and Challenges. CRC Press .

ambourakis, G., Kolias, C., Stavrou, A., 2017. The mirai botnet and the IoT zom-
bie armies. In: MILCOM 2017 - 2017 IEEE Military Communications Conference

(MILCOM). In: IEEE Military Communications Conference (MILCOM), Baltimore,
MD, OCT 23–25, 2017, pp. 267–272. doi: 10.1109/milcom.2017.8170867 .

elli, V., Argyriou, V., Lagkas, T., Fragulis, G., Grigoriou, E., Sarigiannidis, P., 2021. IDS

for industrial applications: a federated learning approach with active personal-
ization. Sensors 21 (20). doi: 10.3390/s21206743 .

one ̌cný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., Bacon, D., 2016.
Federated learning: strategies for improving communication efficiency. arXiv:

1610.05492 http://arxiv.org/abs/1610.05492 .
i, B., Wu, Y., Song, J., Lu, R., Li, T., Zhao, L., 2021. DeepFed: federated deep learning

for intrusion detection in industrial cyber-physical systems. IEEE Trans. Ind. Inf.
17 (8), 5615–5624. doi: 10.1109/TII.2020.3023430 .

i, Z., He, Y., Yu, H., Kang, J., Li, X., Xu, Z., Niyato, D., 2022. Data heterogeneity-

robust federated learning via group client selection in industrial IoT. IEEE Inter-
net Things J. 9 (18), 17844–17857. doi: 10.1109/JIOT.2022.3161943 .

iu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J., Hossain, M.S., 2021. Deep
anomaly detection for time-series data in industrial IoT: A Communication-

Efficient on-Device federated learning approach. IEEE Internet Things J. 8 (8),
6348–6358. doi: 10.1109/JIOT.2020.3011726 .

iu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., 2010. Understanding of internal clustering

validation measures. In: 2010 IEEE International Conference on Data Mining.
IEEE, pp. 911–916. doi: 10.1109/icdm.2010.35 .

cLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi, A.-R., Maniatakos, M.,
Karri, R., 2016. The cybersecurity landscape in industrial control systems. Proc.

IEEE 104 (5, SI), 1039–1057. doi: 10.1109/JPROC.2015.2512235 .
cMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A., 2017.

Communication-efficient learning of deep networks from decentralized data. In:

Singh, A., Zhu, J. (Eds.), Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics. PMLR, Fort Lauderdale, FL, USA, pp. 1273–

1282 . http://proceedings.mlr.press/v54/mcmahan17a.html .
eidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D.,

Elovici, Y., 2018. N-BaIoT—network-based detection of IoT botnet attacks us-
ing deep autoencoders. IEEE Pervasive Comput. 17 (3), 12–22. doi: 10.1109/mprv.

2018.03367731 .

eneghello, F., Calore, M., Zucchetto, D., Polese, M., Zanella, A., 2019. IoT: internet
of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE

Internet Things J. 6 (5), 8182–8201. doi: 10.1109/JIOT.2019.2935189 .
inerva, R., Biru, A., Rotondi, D., 2015. Towards a definition of the internet of things

(IoT). IEEE Internet Initiat. 1 (1), 1–86 .
irsky, Y., 2023. Python implementation of kitsune. Accessed 2023/02/07, https://

github.com/ymirsky/Kitsune-py .

irsky, Y., Doitshman, T., Elovici, Y., Shabtai, A., 2018. Kitsune: an ensemble of au-
toencoders for online network intrusion detection. 25th Annual Network and

Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18–21, 2018. The Internet Society . http://wp.internetsociety.org/ndss/

wp-content/uploads/sites/25/2018/02/ndss2018 _ 03A-3 _ Mirsky _ paper.pdf .
19
othukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivastava, G.,
2021. Federated learning-based anomaly detection for IoTsecurity attacks. IEEE

Internet Things J. doi: 10.1109/JIOT.2021.3077803 .
eshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N., 2019. Demystifying

IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical
look on internet-scale IoTexploitations. IEEE Commun. Surv. Tutor. 21 (3), 2702–

2733. doi: 10.1109/COMST.2019.2910750 .
guyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.-R.,

2019. DIoT: a federated self-learning anomaly detection system for IoT. In: 2019

IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
pp. 756–767. doi: 10.1109/ICDCS.2019.0 0 080 . 39th IEEE International Confer-

ence on Distributed Computing Systems (ICDCS), Richardson, TX, JUL 07-09,
2019.

aszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-

Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,

Chintala, S., 2019. Pytorch: an imperative style, high-performance deep learn-
ing library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,

Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Sys-
tems 32. Curran Associates, Inc., pp. 8024–8035 . http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf .
edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 .

opoola, S.I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M., Jogunola, O., 2021. Fed-
erated deep learning for zero-day botnet attack detection in IoT edge devices.

IEEE Internet Things J. 1. doi: 10.1109/JIOT.2021.3100755 .
in, Y., Kondo, M., 2021. Federated learning-based network intrusion detection

with a feature selection approach. In: 2021 International Conference on Electri-

cal, Communication, and Computer Engineering (ICECCE), pp. 1–6. doi: 10.1109/
ICECCE52056.2021.9514222 .

ahman, S.A., Tout, H., Talhi, C., Mourad, A., 2020. Internet of things intrusion detec-
tion: centralized, on-device, or federated learning? IEEE Netw. 34 (6), 310–317.

doi: 10.1109/MNET.011.20 0 0286 .
eddi, S.J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Kone ̌cný, J., Kumar, S., McMa-

han, H.B., 2021. Adaptive federated optimization. In: 9th International Confer-

ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3–7,
2021. OpenReview.net . https://openreview.net/forum?id=LkFG3lB13U5 .

ehman, M.H.U., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P.P., Perera, C., 2019. The
role of big data analytics in industrial internet of things. Future Gener. Comput.

Syst. 99, 247–259. doi: 10.1016/j.future.2019.04.020 .
ey, V., Sánchez, P. M. S., Celdrán, A. H., Bovet, G., Jaggi, M., 2021. Federated learning

for malware detection in IoTdevices. CoRR abs/2104.09994 https://arxiv.org/abs/

2104.09994 .
ousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and val-

idation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi: 10.1016/
0377- 0427(87)90125- 7 .

uan, Y., Joe-Wong, C., 2022. Fedsoft: soft clustered federated learning with proxi-
mal local updating. In: Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 36, pp. 8124–8131. doi: 10.1609/aaai.v36i7.20785 .
aadat, H., Aboumadi, A., Mohamed, A., Erbad, A., Guizani, M., 2021. Hierarchi-

cal federated learning for collaborative ids in IoT applications. In: 2021 10th

Mediterranean Conference on Embedded Computing (MECO), pp. 1–6. doi: 10.
1109/MECO52532.2021.9460304 .

adeghi, A.-R., Wachsmann, C., Waidner, M., 2015. Security and privacy challenges in
industrial internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
New York, NY, JUN 08–12, 2015 doi: 10.1145/2744769.2747942 .

anfilippo, S., 2023. hping network tool. Accessed 2023/02/07, https://github.com/

antirez/hping .
attler, F., Müller, K.R., Samek, W., 2020. Clustered federated learning: model-

agnostic distributed multitask optimization under privacy constraints. IEEE
Trans. Neural Netw. Learn. Syst. 1–13. doi: 10.1109/tnnls.2020.3015958 .

chneble, W., Thamilarasu, G., 2019. Attack detection using federated learning in
medical cyber-physical systems. In: 2019 28th International Conference on

Computer Communication and Networks, ICCCN, pp. 1–8 .

isinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M., 2018. Industrial internet
of things: challenges, opportunities, and directions. IEEE Trans. Ind. Inf. 14 (11),

4724–4734. doi: 10.1109/TII.2018.2852491 .
áez-de-Cámara, X., Flores, J.L., Arellano, C., Urbieta, A., Zurutuza, U., 2023. Gotham

testbed: a reproducible IoT testbed for security experiments and dataset gen-
eration. IEEE Trans. Dependable Secure Comput. 1–18. doi: 10.1109/TDSC.2023.

3247166 .

an, A.Z., Yu, H., Cui, L., Yang, Q., 2022. Towards personalized federated learn-
ing. IEEE Trans. Neural Netw. Learn. Syst. 1–17. doi: 10.1109/TNNLS.2022.

3160699 .
ange, O., 2011. GNU parallel: the command-line power tool. Login Usenix Mag.

36 (1) . https://www.usenix.org/publications/login/february- 2011- volume- 36-
number- 1/gnu- parallel- command- line- power- tool .

uyl, R. V., 2023. Merlin is a cross-platform post-exploitation http/2 command &

control server and agent written in golang. Accessed 2023/02/07, https://github.
com/Ne0nd0g/merlin .

ervier, P.-A., Shen, Y., 2018. Before toasters rise up: a view into the emerg-
ing IoT threat landscape. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioan-

nidis, S. (Eds.), Research in Attacks, Intrusions, and Defenses, RAID 2018. In:

https://proceedings.neurips.cc/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
http://arxiv.org/abs/1906.06629
http://arxiv.org/abs/1906.06629
https://www.gns3.com/
https://doi.org/10.1109/TPDS.2021.3127712
https://doi.org/10.1109/icdm.2001.989517
https://doi.org/10.1016/j.jpdc.2022.04.021
https://doi.org/10.1016/j.jbi.2019.103291
https://doi.org/10.1109/MSEC.2018.2888780
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0020
https://doi.org/10.1109/milcom.2017.8170867
https://doi.org/10.3390/s21206743
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://doi.org/10.1109/TII.2020.3023430
https://doi.org/10.1109/JIOT.2022.3161943
https://doi.org/10.1109/JIOT.2020.3011726
https://doi.org/10.1109/icdm.2010.35
https://doi.org/10.1109/JPROC.2015.2512235
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/mprv.2018.03367731
https://doi.org/10.1109/JIOT.2019.2935189
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0031
https://github.com/ymirsky/Kitsune-py
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-3_Mirsky_paper.pdf
https://doi.org/10.1109/JIOT.2021.3077803
https://doi.org/10.1109/COMST.2019.2910750
https://doi.org/10.1109/ICDCS.2019.00080
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0037
https://doi.org/10.1109/JIOT.2021.3100755
https://doi.org/10.1109/ICECCE52056.2021.9514222
https://doi.org/10.1109/MNET.011.2000286
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1016/j.future.2019.04.020
http://arxiv.org/abs/2104.09994
https://arxiv.org/abs/2104.09994
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1609/aaai.v36i7.20785
https://doi.org/10.1109/MECO52532.2021.9460304
https://doi.org/10.1145/2744769.2747942
https://github.com/antirez/hping
https://doi.org/10.1109/tnnls.2020.3015958
http://refhub.elsevier.com/S0167-4048(23)00209-2/sbref0048
https://doi.org/10.1109/TII.2018.2852491
https://doi.org/10.1109/TDSC.2023.3247166
https://doi.org/10.1109/TNNLS.2022.penalty -@M 3160699
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://github.com/Ne0nd0g/merlin

X. Sáez-de-Cámara, J.L. Flores, C. Arellano et al. Computers & Security 131 (2023) 103299

W

W

W

X

X

Y

Z

Z

Z

X

n
s

a

a
D

i

J

C
v

l

o
L

D
B

i
I

D

P
i

i

m

a

D
w

e
w

H
n

B

C
a

m
e

D

d
s

e
r

c
m

t

o
R

as DIMVA or RAID.
Lecture Notes in Computer Science, vol. 11050, pp. 556–576. doi: 10.1007/
978- 3- 030- 00470- 5 _ 26 . 21st International Symposium on Research in Attacks,

Intrusions and Defenses (RAID), Heraklion, GREECE, SEP 10-12, 2018
ang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B., y Arcas, B. A., Al-Shedivat, M.,

Andrew, G., Avestimehr, S., Daly, K., Data, D., Diggavi, S. N., Eichner, H., Gadhikar,
A., Garrett, Z., Girgis, A. M., Hanzely, F., Hard, A., He, C., Horvath, S., Huo, Z., In-

german, A., Jaggi, M., Javidi, T., Kairouz, P., Kale, S., Karimireddy, S. P., Kone ̌cný,
J., Koyejo, S., Li, T., Liu, L., Mohri, M., Qi, H., Reddi, S. J., Richtárik, P., Singhal, K.,

Smith, V., Soltanolkotabi, M., Song, W., Suresh, A. T., Stich, S. U., Talwalkar, A.,

Wang, H., Woodworth, B. E., Wu, S., Yu, F. X., Yuan, H., Zaheer, M., Zhang, M.,
Zhang, T., Zheng, C., Zhu, C., Zhu, W., 2021a. A field guide to federated optimiza-

tion. arXiv:2107.06917 https://arxiv.org/abs/2107.06917 .
ang, X., Garg, S., Lin, H., Hu, J., Kaddoum, G., Piran, M.J., Hossain, M.S., 2021.

Towards accurate anomaly detection in industrial internet-of-things using hi-
erarchical federated learning. IEEE Internet Things J. 1. doi: 10.1109/JIOT.2021.

3074382 .

ei, Y., Zhou, S., Leng, S., Maharjan, S., Zhang, Y., 2021. Federated learning empow-
ered end-edge-cloud cooperation for 5G hetnet security. IEEE Netw. 35 (2), 88–

94. doi: 10.1109/MNET.011.20 0 0340 .
ie, M., Long, G., Shen, T., Zhou, T., Wang, X., Jiang, J., Zhang, C., 2021. Multi-center

federated learning. arXiv:2108.08647 https://arxiv.org/abs/2108.08647 .
ie, Z., Li, Z., Gui, J., Liu, A., Xiong, N.N., Zhang, S., 2023. Uwpee: using uav and

wavelet packet energy entropy to predict traffic-based attacks under limited

communication, computing and caching for 6g wireless systems. Future Gener.
Comput. Syst. 140, 238–252. doi: 10.1016/j.future.2022.10.013 .

u, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J., Yang, X., 2018. A survey on the
edge computing for the internet of things. IEEE Access 6, 6900–6919. doi: 10.

1109/ACCESS.2017.2778504 .
hang, Y., Huang, H., Yang, L.-X., Xiang, Y., Li, M., 2019. Serious challenges and po-

tential solutions for the industrial internet of things with edge intelligence. IEEE

Netw. 33 (5), 41–45. doi: 10.1109/MNET.0 01.180 0478 .
hao, Y., Chen, J., Wu, D., Teng, J., Yu, S., 2019. Multi-task network anomaly detec-

tion using federated learning. In: SoICT 2019: Proceedings of the Tenth Inter-
national Symposium on Information and Communication Technology, pp. 273–

279. doi: 10.1145/3368926.3369705 . 10th International Symposium on Informa-
tion and Communication Technology (SoICT), VIETNAM, DEC 04-06, 2019

urutuza, U., Uribeetxeberria, R., Zamboni, D., 2008. A data mining approach for

analysis of worm activity through automatic signature generation. In: Proceed-
ings of the 1st ACM Workshop on Workshop on AISec. Association for Com-

puting Machinery, New York, NY, USA, pp. 61–70. doi: 10.1145/1456377.1456394 .

abier Sáez de Cámara received his B.Sc. degree in Physics and Electronic Engi-

eering from the Faculty of Science and Technology of the Basque Country Univer-
ity in 2015 and 2016, respectively. He holds an M.Sc. in Computational Engineering

nd Intelligent Systems from the University of the Basque Country. He is currently
20
 Ph.D. student at IKERLAN in the Cybersecurity in Digital Platforms team and the
ata Analysis and Cybersecurity research area at Mondragon Unibertsitatea, work-

ng on intrusion detection methods in IoT networks.

ose Luis Flores is a researcher at Ikerlan Technology Research Center within the

ybersecurity in Embedded Systems team. He holds a M.Sc. in Robotics and Ad-
anced Control from the University of the Basque Country. His main interest is re-

ated to Artificial Intelligence and Cybersecurity. As such, the main lines he works

n in each organization are Embedded System security at Ikerlan, and Machine
earning and Optimization at the university.

r. Cristóbal Arellano studied Computer Engineering at the University of the
asque Country, where he obtained his Ph.D. degree (with international mention)

n Web Information Systems in 2013 (Cum Laude unanimously). He has been with
KERLAN since 2015 as a researcher and he currently is part of the Cybersecurity in

igital Platforms team. His current research interests include Cybersecurity in Cloud

latforms, Device Identity Management, DevSecOps, Federated Learning, Vulnerabil-
ty Monitoring and Threat Detection. He has participated as an author or co-author

n conferences such as WWW, ICWE, WISE, etc. He also has participated and led
ultiple European funded projects such as FP7 MONDO, UTEST, H2020 QUALITY

nd H2020 IDUNN.

r. Aitor Urbieta studied Computer Engineering at the University of Mondragon,
here he obtained his Ph.D. degree (with international mention) in Computer Sci-

nce in 2010 (Cum Laude unanimously). He has been with IKERLAN since 2007
here he currently leads the Cybersecurity in Digital Platforms research team.

is current research interests include Cybersecurity in Digital Platforms, Inter-
et of Things (IoT), Cybersecurity in Communication Protocols, Federated Learning,

lockchain, End-To-End Security, Vulnerability Monitoring, Threat Detection, Fog

omputing, Edge Computing and IoT environment validation. He has participated
s an author or co-author in more than 30 scientific publications in the previously

entioned areas, some of them Q1, published in national and international confer-
nces and articles in JCR journals.

r. Urko Zurutuza is the principal investigator of the Intelligent Systems for In-

ustrial Systems research group, and coordinator of the Data Analysis and Cyber-
ecurity research area. He obtained his Ph.D. in January 2008 at Mondragon Unib-

rtsitatea, in collaboration with the Zürich IBM Research Lab. His research interests
evolve around applications of Machine Learning to real world problems, and spe-

ially Cybersecurity. He has published more than 20 articles in high impact journals,
ore than 55 publications in blind peer-reviewed conferences, edited 3 books (2 of

hem as conference proceedings), and coauthored 7 book chapters. He is member

f the Board of Directors of RENIC (National Network of Excellence in Cybersecurity
esearch), and serves in Steering Boards of leading international conferences such

https://doi.org/10.1007/978-3-030-00470-5_26
http://arxiv.org/abs/2107.06917
https://arxiv.org/abs/2107.06917
https://doi.org/10.1109/JIOT.2021.3074382
https://doi.org/10.1109/MNET.011.2000340
http://arxiv.org/abs/2108.08647
https://arxiv.org/abs/2108.08647
https://doi.org/10.1016/j.future.2022.10.013
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/MNET.001.1800478
https://doi.org/10.1145/3368926.3369705
https://doi.org/10.1145/1456377.1456394

	Clustered federated learning architecture for network anomaly detection in large scale heterogeneous IoT networks
	1 Introduction
	2 Related work
	2.1 Federated learning for IoT intrusion and anomaly detection
	2.2 Clustered federated learning

	3 Proposed system model
	3.1 Deployment setting and architecture
	3.1.1 Clients
	3.1.2 Aggregation server
	3.1.3 Attackers

	3.2 Clustered federated learning process for heterogeneous devices
	3.3 Model fingerprinting for device clustering
	3.4 Anomaly detection model

	4 IoT testbed and experimental setup
	4.1 IoT testbed
	4.1.1 City network devices
	4.1.2 Cloud network devices
	4.1.3 Threat network devices

	4.2 Data generation and collection method
	4.2.1 Normal traffic data
	4.2.2 Validation-normal traffic data
	4.2.3 Validation-attack traffic data

	4.3 Machine learning and federated learning setup

	5 Implementation
	5.1 Network data processing
	5.1.1 Source and destination port feature processing

	5.2 Autoencoder model selection
	5.3 Device clustering
	5.4 Federated hyperparameter tuning
	5.5 Clustered federated learning
	5.6 Anomaly detection
	5.6.1 Threshold selection
	5.6.2 Anomaly detection performance

	5.7 Baseline experimental comparisons
	5.7.1 Kitsune
	5.7.2 Non-clustered FL with weighted aggregation
	5.7.3 Non-clustered FL without weighted aggregation

	6 Results
	6.1 Autoencoder model selection
	6.2 Device clustering
	6.2.1 Cluster stability for varying training data size

	6.3 Federated hyperparameter tuning
	6.4 Clustered federated learning
	6.4.1 Training baseline

	6.5 Anomaly detection
	6.5.1 Cluster 0 (MQTT)
	6.5.2 Cluster 2 (CoAP)
	6.5.3 Cluster 4 (camera)

	6.6 Baseline experimental comparisons
	6.6.1 Kitsune
	6.6.2 Non-clustered FL with weighted aggregation
	6.6.3 Non-clustered FL without weighted aggregation

	7 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References

