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Abstract 

Background  Synthetic data is an emerging approach for addressing legal and regulatory concerns in biomedical 
research that deals with personal and clinical data, whether as a single tool or through its combination with other 
privacy enhancing technologies. Generating uncompromised synthetic data could significantly benefit external 
researchers performing secondary analyses by providing unlimited access to information while fulfilling pertinent 
regulations. However, the original data to be synthesized (e.g., data acquired in Living Labs) may consist of subjects’ 
metadata (static) and a longitudinal component (set of time-dependent measurements), making it challenging 
to produce coherent synthetic counterparts.

Methods  Three synthetic time series generation approaches were defined and compared in this work: only gener-
ating the metadata and coupling it with the real time series from the original data (A1), generating both metadata 
and time series separately to join them afterwards (A2), and jointly generating both metadata and time series (A3). 
The comparative assessment of the three approaches was carried out using two different synthetic data generation 
models: the Wasserstein GAN with Gradient Penalty (WGAN-GP) and the DöppelGANger (DGAN). The experiments 
were performed with three different healthcare-related longitudinal datasets: Treadmill Maximal Effort Test (TMET) 
measurements from the University of Malaga (1), a hypotension subset derived from the MIMIC-III v1.4 database (2), 
and a lifelogging dataset named PMData (3).

Results  Three pivotal dimensions were assessed on the generated synthetic data: resemblance to the original data 
(1), utility (2), and privacy level (3). The optimal approach fluctuates based on the assessed dimension and metric.

Conclusion  The initial characteristics of the datasets to be synthesized play a crucial role in determining the best 
approach. Coupling synthetic metadata with real time series (A1), as well as jointly generating synthetic time series 
and metadata (A3), are both competitive methods, while separately generating time series and metadata (A2) appears 
to perform more poorly overall.
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Background
Amidst the information era in which the digitalization 
of healthcare applications is being streamlined, privacy 
is evolving towards an increasingly precious asset. Data 
protection regulations, such as the GDPR (General Data 
Protection Regulation) in Europe or the HIPAA (Health 
Insurance Portability and Accountability Act) in the 
USA, regulate the processing of Personally Identifiable 
Information (PII) by, for example, defining the rights of 
the data subjects, the responsibilities of data processing 
agents, or various codes of conduct [1]. However, attacks 
against theoretically secure private datasets are becom-
ing increasingly sophisticated and have managed to break 
security barriers down [2, 3], which obliges data collec-
tors, controllers, and processors, to implement harsher 
privacy safeguards.

A relatively novel and mainstream technology to help 
data leakage risks is Synthetic Data Generation (SDG). 
This technology consists of creating artificial versions of 
real data (RD) using generative models, statistical mod-
els or models based on expert knowledge that can learn 
underlying variable distributions and multivariate cor-
relations [4]. Once an SDG model is trained, as many 
data records as wanted can be synthesized, following the 
original patterns from the real dataset. However, even if 
SDG techniques offer certain privacy guarantees, current 
literature on the topic is evolving towards determining 
whether the generated synthetic data (SD) is still consid-
ered personal data or not [5].

Among the different sectors in which SDG can be 
used, healthcare is critical in terms of sensitive informa-
tion, and thus one of the most compromised information 
sources that needs to be controlled and monitored [6]. In 
this context, it is common the data to have two compo-
nents, the first one being classified as subjects’ metadata 
(the static component, which does not change in time) 
and the second one being the time series or longitudinal 
part (the dynamic component, measured across a time 
axis). Up to now, clinical SDG has mostly been focused 
on generating private and useful tabular static data, while 
the longitudinal component, and the joint generation of 
both, have fallen behind. Considering this scenario, it is 
worth noting the need to ensure the privacy of both men-
tioned components [7]. The combination of metadata 
with time series could potentially help re-identification 
and compromised data breaches, but synthesizing time 
series brings inherent challenges with it, as temporal cor-
relations must be learnt by data generators apart from 
the usual intervariable correlations.

Regarding generative models, the first Generative 
Adversarial Network (GAN) architecture was pre-
sented by Goodfellow et al. in 2014 [8]. Since then, sev-
eral modified versions have been published to improve 
its performance for specific tasks in a healthcare con-
text [9]. As for synthesizing time series, TimeGAN [10] 
was the first specific variant that paved the way for 
newer networks that can also handle the temporality of 
the data [11]. However, how time series that are linked 
to metadata are synthesized remains a field for further 
research, as current models are solely focused on gen-
erating time series, or they generate them jointly with 
the associated metadata, still having a gap on the com-
parison analysis of these latter approaches, which is the 
primary focus of the current work.

In 2022, we proposed two different approaches for 
the Synthetic Time Series Generation (STSG) task [12], 
where different combinations of real and synthetic meta-
data and time series are merged to find the best approach 
for achieving useful time series. In the present work, a 
more extensive evaluation of both approaches is carried 
out assessing the resemblance of the SD with respect to 
the RD (1), how useful the SD is to build downstream 
applications (2), and how private the generated informa-
tion is (3). The alignment and balance of these compo-
nents is still an open problem in the current literature, 
as there exists a complex relationship between the three. 
A strong privacy guarantee is related to a higher bias of 
the SD with respect to the RD, which makes the utility 
and the resemblance of the former to decrease. In con-
trast, maintaining a higher data utility results in compro-
mised SD, since personal information could potentially 
be extracted from it due to the extensive resemblance 
between SD and RD. Furthermore, the relevance of each 
component depends on the target application, as there 
are critical examples that need to address the privacy 
issue and sacrifice the resemblance and utility of the 
SD, but it is not always the case. Moreover, the models 
we evaluated in Isasa et al. [13] were included as a third 
STSG approach, where the metadata and the time series 
are jointly generated using a single model. Drawing from 
our prior studies, this is, to our understanding, the first 
work that evaluates three distinct variants to generate 
SD that combines time series and related metadata. A 
common evaluation procedure is employed to assess the 
resemblance, utility and privacy of the results, thereby 
making a significant contribution to the field.

The remainder of this document is organised as 
follows: the “Methods”  section provides a detailed 
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description of how the SD was generated using mul-
tiple model and dataset combinations, as well as how 
the data was coupled and evaluated after the generation 
step. Next, the results of the assessment are presented, 
followed by a discussion, as well as a list of limitations 
that were found across this research. Finally, the overall 
conclusion of the comparison is presented.

Methods
This section first describes the datasets utilized for this 
work and the preprocessing steps needed to prepare the 
data. Then, three different STSG approaches are pre-
sented, followed by the used SDG models. Finally, the 
evaluation of the generated SD is explained.

Data sources
To ensure outcome consistency devoid of data reliance, 
the experiments were conducted using two different 
datasets sourced from Physionet [14] and a third lifelog-
ging dataset named PMData.

First, a dataset consisting of cardiorespiratory measure-
ments acquired during 992 Treadmill Maximal Exercise 
Tests (TMET) performed by amateur and professional 
athletes was considered [15, 16]. The experiments com-
prised longitudinal measurements of Graded Exercise 
Tests (GETs) as well as subject-related metadata, and they 
were carried out on a Powerjog J Series treadmill to which 
a CPX MedGraphics gas analyzer and a Mortara 12-lead 
ECG device were connected. With those, the Heart Rate 
(HR) of the subjects was recorded, along with the oxygen 
consumption (VO2), carbon dioxide generation (VCO2), 
and pulmonary ventilation measures (Respiratory Rate, 
RR; Exhaled Volume, VE). As for the metadata compo-
nent, the age (M: 27.10, Q1-Q3: 21.10-36.32), sex (5.66:1 
male to female ratio), height (M: 175.00, Q1-Q3: 170.00-
180.00), and weight (M: 73.00, Q1-Q3: 66.00-80.23) of 
the subjects were obtained, along with ambient measure-
ments such as air temperature (M: 22.90, Q1-Q3: 20.80–
24.40) and humidity (M: 47.00, Q1-Q3: 42.00–54.00). 
The GETs comprised a warmup period at a 5 km/h pace, 
and speed increments ranging from 0.5 to 1 km/h were 
applied until the consumed oxygen volume was saturated. 
The subjects recovered the effort at the initial velocity of 
5  km/h. The research, published by the Exercise Physi-
ology and Human Performance Lab of the University of 
Malaga, complied with all the relevant national regula-
tions, and was performed following the tenets of the Hel-
sinki Declaration. The study protocols were approved by 
the Research Ethics Committee of the University of Mal-
aga, and written informed consent was collected from all 
the participants or their legal representatives.

Second, a hypotension subset was derived from the 
MIMIC-III v1.4 (Medical Information Mart for Intensive 

Care) database [17, 18]. The database consists of deiden-
tified health-related data from patients that stayed in the 
critical care unit of the Beth Israel Deaconess Medical 
Center, in Boston, between 2001 and 2012. Two different 
critical care information systems were utilized to record 
patient information: the Philips CareVue Clinical Infor-
mation System (Philips Healthcare, Andover, MA), and 
the iMDsoft Metavision ICU (iMDsoft, Needham, MA). 
Using those, diastolic and systolic pressures, fraction of 
inspired oxygen (FiO2), urine outputs, and administered 
vasopressors were monitored. Moreover, Glasgow Coma 
Scale (GCS) scores were recorded, and the longitudinal 
data was merged with consequent gender and ethnic-
ity metadata. The hypotension subset was obtained by 
selecting adult (> 18 years) patients having a Mean Arte-
rial Pressure (MAP) lower than 65 mmHg [19]. All the 
data is in line with the data protection requirements in 
the HIPAA, and the project was approved by the Institu-
tional Review Boards of the Beth Israel Deaconess Medi-
cal Center (Boston, MA), and the Massachusetts Institute 
of Technology (Cambridge, MA).

Third, a lifelogging dataset was incorporated to the 
analysis, named PMData [20]. FitBit Versa 2 smartwatch 
wristbands were carried by 16 (13 men and 3 women) 
people for five months for data collection. The informa-
tion was enriched with PMSys sports logging application 
data, as well as a set of responses to a questionnaire that 
aimed to collect static information (age, gender, height, 
and whether the subject has a type A or a type B person-
ality). On the other hand, time series that were acquired 
during the study ranged from weekly recordings to every-
five-second measurements. All participants on this study 
signed an informed consent form, and the research was 
carried out under the evaluation of the Norwegian Cen-
tre for Research Data (NSD) and in accordance with Nor-
wegian and EU data protection laws.

Data preprocessing
First, the TMET dataset was preprocessed following 
the steps defined in Larrea et  al. [12]. Starting from a 
992-subject dataset, 30 of them were directly excluded 
due to missing values on subject metadata. Regarding the 
longitudinal component, experiments with more than 
30 lacking data points were excluded, while the others 
were linearly interpolated to avoid missing values. Since 
942 samples were found missing for the HR variable 
and 4,871 samples were lacking for both VO2 and VCO2 
variables, 12 more experiments were excluded from the 
research. The final TMET dataset consisted of 950 exper-
iments, resulting in 216,600 time stamps overall for a 
constant sequence length of 228 samples.

Second, the hypotension subset derived from 
MIMIC-III was generated by directly querying the 
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Google Cloud Platform (GCP) where it is made avail-
able. Subjects with missing values in either the systolic 
or the diastolic pressure measurements were excluded 
from the final dataset. Assuming missing values on the 
remaining measurements would entail no alterations 
on the subjects’ previous state, the time series were 
imputed using a technique called forward filling. This 
technique uses the last valid measurement of each vari-
able to determine the values of the missing cells until a 
new valid measurement is found. The categorical vari-
ables on this dataset were label-encoded for the DGAN, 
as it is a model-specific requirement. One-hot encoding 
was considered better for the WGAN-GP not to cause 
misinterpretations to the model. The gender variable 
was binarized, while the ethnicities were clustered into 
five classes. Finally, 674 subjects were included in the 
dataset, each of them consisting of 48 hourly measure-
ments and resulting in a total of 32,352 time stamps.

Last, the PMData-based dataset for the experiment 
was built by selecting the heart rate variable (a meas-
urement was acquired every five seconds) from the lon-
gitudinal information and joining it to the associated 
metadata (age, height, gender, and personality), starting 
the preprocessing step with a dataset size of 20,991,392 
samples and seven variables. Considering the subjects 
contained variable length heart rate series, the length of 
the shortest series was chosen to truncate the remain-
ing ones. The remaining dataset consisted of 10,155,936 
samples with a time series length of 634,746 samples 
per subject. Finally, the generation process of the syn-
thetic time series had to be limited to a length of 50,000 
samples due to computational resource limitations.

Synthetic time series generation approaches
In this study, three different approaches to generate syn-
thetic time series are presented and compared, namely 
synthetic metadata generation and real time series cou-
pling or A1, separate synthetic metadata and time series 
generation and later coupling or A2, and joint synthetic 
metadata and time series generation, A3. The first two 
by Larrea et al. [12] were earlier introduced in the manu-
script, as well as the third approach considered by Isasa 
et al. in [13]. In this section, more detailed explanations 
about the different approaches can be found supported 
by Fig. 1, which graphically represents the workflow each 
method follows to generate SD.

The first approach (A1) assumes that no private infor-
mation is disclosed within real time series data. This 
approach was inspired by Schiff et  al. [21], which is 
based on enriching synthetic subject metadata with real 
time series. To do that, meaningful statistical measure-
ments (maximum, minimum, and mean values of each 
time series) are calculated from the real measurement 
sequence to be treated as metadata. Next, a synthetic 
counterpart of the metadata is generated, consisting of 
synthetic subject metadata and synthetic time series sta-
tistical measurements. Finally, the synthetic metadata is 
coherently coupled to the real time series by pairing the 
generated values with the real ones so that the distance 
between them is as small as possible.

As for the second approach (A2), the same meaning-
ful statistical measurements are calculated from the set 
of real time series. However, in this case, a synthetic set 
of time series is separately generated. Then, the same 
coherent coupling is conducted between the synthetic 
metadata and synthetic time series that were separately 
generated.

Fig. 1  Workflow of the three approaches that were compared in this research. Accentuated boxes refer to the coupling steps of A1 and A2
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Lastly, the third approach (A3) assumes that subject 
metadata positively impacts the quality of the generated 
time series. In this case, subject metadata and time series 
are generated in a single step.

Synthetic data generation models
The approaches presented in the previous section were 
tested using two different SDG models that can incor-
porate metadata into the time series generation task. 
Hyperparameter values were experimentally selected for 
both models and remained unchanged among approxi-
mation and dataset combinations.

The Wasserstein GAN with Gradient Penalty (WGAN-
GP) was first used with the additional alignment loss 
feature proposed in the Health Gym project [22]. The 
alignment loss shapes the generator loss function ( LG ) by 
calculating the L1 norm of the disparity between inter-
variable correlation coefficients in the real and synthetic 
datasets, as defined below:

where � is the alignment coefficient, r̂i,j is the correlation 
coefficient between two synthetically generated variables 
and ri,j is its real counterpart. With this loss function, the 
generator network gets more penalized if the generated 
data is not appropriately correlated.

The WGAN-GP was trained for 5,000 epochs using 
a batch size of 64 samples for the TMET dataset, while 
for the hypotension subset, a batch size of 32 samples 
was selected. For the PMData dataset, a batch size of 2 
was used due to the low number of subjects. The critic 
network was updated 5 times more than the generator 
network at a constant learning rate of 0.001 for all the 
datasets. Also, the alignment coefficient remained con-
stant at a value of 10.0.

The second generative model used in this research 
is the DöppelGANger or DGAN [23]. The DGAN first 
generates the metadata to posteriorly generate time 
series conditionally on top of it. A Multi-Layer Percep-
tron (MLP) generates the metadata component, and the 
output is incorporated into a Recurrent Neural Network 
(RNN) at each time step, whose task is to generate the 
longitudinal data. In the DGAN, batch generation is used 
to generate S records per each RNN iteration, a process 
that aims to capture longer-term effects from the time 
series. Additionally, a complex discriminator architecture 
is incorporated into the model, by adding an auxiliary 
discriminator to focus solely on the metadata. A com-
bined discriminator is responsible for ultimately classify-
ing samples as real or fake. The batch sizes that were used 
to train the DGAN models were equal to the ones used 

LG = −E[D(G(z))]+ �

n

i=1

i−1

j=1

� ri,j − ri,j �L1

for the WGAN-GP models. An S value of 12 was consid-
ered for the TMET dataset, a value of 6 for the hypoten-
sion subset, and a value of 127 for the PMData dataset. 
For these models, a constant learning rate of 0.001 was 
also utilized for a training process of 5,000 epochs, while 
the gradient penalty coefficient was set to 10.0 for the 
DGAN models.

Synthetic data evaluation
The SD generated using different approaches was evalu-
ated against diverse metrics, quantifying its resemblance 
to the original data (1), its utility for building downstream 
applications (2), and the level of privacy of the syntheti-
cally generated data (3).

Since generative models produce different data assets 
each time they are used, a pseudo-cross-validation meth-
odology was incorporated into the evaluation pipeline to 
eliminate the potential bias due to this aspect. Eight dif-
ferent equally dimensioned synthetic datasets per model 
and used dataset were generated and used as pseudo-
cross-validation folds for this methodology. The results 
for each evaluation metric and method were combined 
by calculating the mean value of the different folds. The 
evaluation methods used in this analysis were mostly 
based on Hernandez et  al. [24], who proposed a collec-
tion of objective and universal metrics for evaluating and 
comparing SDG models and approaches.

The resemblance metrics calculated in this work aim to 
assess how similar synthetic datasets are with respect to 
their real counterparts, considering statistical, distribu-
tional, and correlational characteristics between them. 
For this purpose, a multivariate analysis was performed 
first to check for inter-variable correlations. Numeri-
cal variable pairs were evaluated using the Pearson cor-
relation coefficient, while categorical variable pairs were 
examined with the Cramér’s V value that was calculated 
from previous χ2-tests. Mixed-type correlations were 
assessed using the R2 coefficient of a linear regression 
of the numeric feature over the categorical one. A final 
correlation matrix was generated from the SD using the 
mean value of every fold on the pseudo-cross-validation 
process. The final matrix was compared to the correla-
tions corresponding to the real dataset using the cosine 
similarity metric, which is defined as 1− dcos , where a 
higher value denotes a better correlation preservation.

where both xi and x′i refer to the samples to be compared.
Another method to evaluate how SD resembles real 

data is the Data Labelling Analysis (DLA). This pro-
cess consists of training several classification models 

dcos(x, x
′) =

∑n
i=1 xi · x

′

i∑n
i=1 xi ·

∑n
i=1 x

′

i
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(Random Forests, k-Nearest Neighbors, Decision Trees, 
Support Vector Machines, and a MLP, in this case) to see 
if they can distinguish synthetic from real samples, simu-
lating a GAN discriminator. The details on how each clas-
sification model was configured can be found in Table 1. 
The prediction performance was assessed using the 
Area Under the Receiver Operating Characteristic curve 
(AUROC), random predictions implying values around 
0.5, and the models being unable to distinguish samples 
from the different sources.

From the proposal of Sajjadi et al. [25], Precision Recall 
Distribution (PRD) plots were also generated to easily 
quantify the quality of the model using a single numeric 
value pair. In their publication, a notion of precision, α , 
and recall, β , is presented to compare two distributions, 
the former approximating the quality of the generated 
samples, and the latter measuring the overlapped propor-
tion between them. Both α and β can be merged on a sin-
gle metric by computing the maximum F-score as shown 
in the following equation:

where γ is a positive real factor that weighs the recall with 
regard to the precision. For this analysis, a γ value of 8 
was empirically selected for the evaluation, weighing the 
recall higher, although it was not of major importance as 
a relative analysis was prioritized over an absolute assess-
ment. Moreover, adjustments in the γ value would result 
in an absolute repositioning of the values, with no altera-
tion in the relative differences between approaches nor 
models.

Data utility refers to the degree to which the SD effec-
tively mimics the original data for analytical or model-
ling purposes. Regarding that definition, in this work, a 
Train on Synthetic Test on Real (TSTR) setup was tested 
against a Train on Real Test on Real (TRTR) one. In these, 
various Machine Learning (ML) model twins are trained 
on RD first and SD afterwards, separately. Each twin is 
tested against an equal real testing set. A regression task 
was defined for the ML models in both cases, with the 

Fγ =

(
1+ γ 2

) α · β(
γ 2α

)
+ β

VE and GCS variables as the targets on the TMET data-
set and the hypotension subset. In this work, each mod-
el’s performance was evaluated with the Mean Absolute 
Error (MAE), and the models trained on SD were com-
pared to the RD counterpart using the cosine similar-
ity metric previously presented. This similarity metric is 
proportional to the MAE similarity, which gives informa-
tion about the utility of the synthetic data.

The significance of the observed resemblance and util-
ity metric differences between approaches was assessed 
using t-tests. For a Significance Level (SL) set at 0.05, a 
p-value below it implies the null hypothesis rejection, 
meaning that differences being tested are statistically 
significant.

Finally, in a SDG context, privacy can be defined as 
the extent to which the generated data protects the sen-
sitive information by preventing the membership of real 
individuals being disclosed in the original dataset. In this 
analysis, the privacy was evaluated using a Membership 
Inference Attack (MIA) setup. In this attack, an adversary 
was considered to possess a proportion of the original 
data used to train the generative models, ranging from 10 
to 50%. Also, SD was thought to be publicly available and, 
therefore, accessible to the adversary, as it is one of the 
strengths of SD. For every generated synthetic sample, 
the cosine distance was calculated with respect to every 
real sample in the original dataset. A distance value of 
0.2 was used as a threshold to consider a synthetic sam-
ple similar enough to mark it as one coming from the RD 
used to train the generative models. As a longitudinal 
data setup, a single match between the two datasets led 
to the subject being marked as disclosed.

Results
In this section, the results of the resemblance, utility, and 
privacy analyses are presented. In the interest of clarity 
and simplicity, the models we refer to in this section are 
subscripted with letters T, M or P, referring to TMET, 
MIMIC or PMData, which indicate the dataset used in 
each case to train the model. Also, the p-values derived 
from all the t-test calculations that were performed dur-
ing the analysis can be observed in Tables 2 and 3.

Table 1  Classification model parameters

Model Configuration

RF Number of trees: 100, split criteria: Gini index

KNN Number of neighbors: 10

DT Split criteria: Gini index

SVM Regularization parameter: 100, maximum epochs: 300, kernel type: linear

MLP Maximum epochs: 100, hidden layers: (a) 64 neurons and (b) 32 neurons, 
activation: relu, solver: adam, batch size: 200, learning rate: 0.001
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Regarding the resemblance, the DGANT model has 
resulted in near-perfect precision ( α : 0.975–0.987) and 
recall ( β : 0.974–0.994) values on the A1 PRD plot, as well 

as the DGANM model ( α : 0.983–0.990, β : 0.984–0.994). 
The DGANP model matched the recall ( β : 0.953–0.985) 
and precision metrics achieved by the previous models 
to a great extent, even if the latter’s variability between 
different iterations was high ( α : 0.643–0.941). The A2 
counterparts of the models have shown a higher devia-
tion inside each pseudo-cross-validation fold, resulting 
in precision values ranging from 0.918 to 0.970 and recall 
values ranging from 0.785 to 0.893 for the TMET data-
set, precision values from 0.906–0.939 and recall values 
from 0.705–0.813 for the hypotension subset, and preci-
sion values from 0.640–0.877 and recall values between 
0.472–0.794 for the PMData dataset. The A3 approach 
for the DGAN noted further differences between data-
sets, resulting in a better performance with the TMET 
dataset ( α : 0.984–0.987, β : 0.933–0.950) with respect to 
the hypotension subset ( α : 0.966–0.976, β : 0.720–0.763), 
and even more with the PMData one ( α : 0.160–0.297, β : 
0.425–0.704).

Regarding the WGAN-GPT models, recall values 
from 0.974 to 0.987 and precision values around 0.987 
were achieved after the pseudo-cross-validation evalu-
ation of the A1 approach. For A2, the β value ranged 
from 0.903 to 0.934, and α fluctuated between 0.491 
and 0.530, while for A3, the former was between 0.979 
and 0.986, and the latter was between 0.865 and 0.886. 
For the WGAN-GPM models, the results on the A1 
coupling varied between 0.933 and 0.947 for β and 

Table 2  T-test p-values perfomed between approach pairs for the resemblance metrics

a Significant results for a SL = 0.05 are underlined and bold

Model Approach 
comparison

DLA AUROCa Correlation Similaritya Autocorrelation MAEa
Fγ

a

DGANT A1-A2  ~ 1.00 3.39 × 10–8 9.33 × 10–4 3.47 × 10–8

A2-A3 7.46 × 10–1 7.25 × 10–12 1.10 × 10–4 1.80 × 10–6

A3-A1 7.90 × 10–1 5.83 × 10–6 2.04 × 10–1 1.26 × 10–9

WGAN-GPT A1-A2 8.36 × 10–1 5.56 × 10–11  ~ 0.00 2.30 × 10–11

A2-A3 4.44 × 10–1 2.22 × 10–16  ~ 0.00 9.11 × 10–12

A3-A1 2.64 × 10–1  ~ 0.00  ~ 0.00 5.37 × 10–1

DGANM A1-A2 4.20 × 10–13 9.17 × 10–6 5.67 × 10–2 1.82 × 10–10

A2-A3 4.19 × 10–4 5.50 × 10–2  ~ 0.00 3.15 × 10–1

A3-A1 8.90 × 10–14 3.34 × 10–7  ~ 0.00 8.88 × 10–16

WGAN-GPM A1-A2 1.36 × 10–6 1.18 × 10–7 1.46 × 10–9 3.42 × 10–3

A2-A3 5.60 × 10–5 2.20 × 10–11  ~ 0.00 7.31 × 10–1

A3-A1 1.01 × 10–9  ~ 0.00  ~ 0.00 9.92 × 10–12

DGANP A1-A2 1.00 1.379 × 10–1 4.001 × 10–10 1.811 × 10–6

A2-A3 1.00 1.806 × 10–6 4.563 × 10–10 3.659 × 10–3

A3-A1 1.00 2.114 × 10–5 4.911 × 10–12 1.029 × 10–9

WGAN-GPP A1-A2 1.00 3.718 × 10–3 3.044 × 10–12 8.882 × 10–16

A2-A3 1.00 8.677 × 10–1  ~ 0.00 1.222 × 10–7

A3-A1 1.00 1.510 × 10–4 4.441 × 10–16 4.996 × 10–14

Table 3  T-test p-values perfomed between approach pairs for 
the utility metrics

a Significant results for a SL = 0.05 are underlined and bold

Model Approach comparison TSTR metrica

DGANT A1-A2 6.46 × 10−1

A2-A3 9.31 × 10−1

A3-A1 7.23 × 10−2

WGAN-GPT A1-A2 2.83 × 10−1

A2-A3 3.65 × 10−1

A3-A1 7.22 × 10−1

DGANM A1-A2 1.04 × 10−1

A2-A3 5.51 × 10−1

A3-A1 3.08 × 10−1

WGAN-GPM A1-A2 6.10 × 10−1

A2-A3 3.56 × 10−3

A3-A1 8.98 × 10−3

DGANP A1-A2 2.02 × 10−2

A2-A3 1.10 × 10−1

A3-A1 6.20 × 10−4

WGAN-GPP A1-A2 ~ 0.00
A2-A3 5.02 × 10−3

A3-A1 2.33 × 10−4
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between 0.918 and 0.951 for α . The A2 method led to 
worse results for both precision and recall, the for-
mer ranging from 0.814 to 0.884 and the latter varying 
between 0.610 and 0.679. Third, the joint generation of 
A3 resulted in β values between 0.932 and 0. 0.947 and 
α values between 0.918 and 0.951.

Last, the best results among the WGAN-GPP models 
were achieved with the A1 approach, varying between 
an α of 0.483–0.636 and a β of 0.791–0.960. A3 was 
the second best approach for the PMData dataset ( α : 
0.041–0.047, β : 0.095–0.209), followed by A2 that did not 
achieve to cover the real distribution nor the quality of 
the original data ( α : 0, β : 0.003–0.008). In Fig. 2 the PRD 
plot with every pseudo-cross-validation α and β value 
pairs can be observed, and the F8-scores combining these 
values are shown in Table  4, where it can be observed 
that A1 outperforms the other two approaches.

The multivariate analysis on the DGANT models 
has shown that the most realistic correlation matrix 
was achieved using the A3 approach, as it can be visu-
ally appreciated in Fig.  3 and numerically confirmed 
in Table  4. Regarding the WGAN-GPT model, the best 
correlation was achieved with the A1 approach, and the 
worst one was achieved with the A2 approach. Figure 3 
shows how the subjects’ metadata in A2 is not correlated 
to the time series set.

As for the DGANM models, the A1 was the best-per-
forming one, just as it can be observed in Fig. 4 and cor-
roborated in Table  4. The WGAN-GP counterparts on 
the TMET dataset show worsening intervariable correla-
tions that are proportional to the syntheticity of the data, 
best performing on A1 and worst performing on A3, just 
as the WGAN-GP models trained on the hypotension 
subset.

As for the third multivariate analysis, Fig. 5 shows the 
correlations that were calculated for the PMData dataset. 
The A3 approach for the DGANP was the only model that 
managed to produce the correlations of the original data-
set as the rest of the models missed to capture the ones 
that involved binary variables. The A1 approach was the 
best for the WGAN-GPP model, but the similarity met-
rics in Table 4 show poor results.

The DLA analysis on the TMET dataset proved to be 
similar for every approach, resulting in values near 0.9 
in every experiment. Regarding the hypotension subset, 
the best results were achieved with the first approach 
(A1), as the predictions were closer to 0.5. The best-per-
forming WGAN-GPT model on the DLA assessment was 
obtained with the A3 approach, even if closely followed 
by the other methods. Moreover, the assessment on the 
WGAN-GPM models show that the lowest classifica-
bility of the samples is achieved when following the A1 

Table 4  Resemblance metric results

Values in bold highlight the best-performing approach per trained model and metric

DLA Data Labelling Analysis, AUROC Area Under the Receiver Operating Characteristic Curve, MAE Mean Absolute Error, DGAN DöppgelGANger, WGAN-GP Wasserstein 
Generative Adversarial Network with Gradient Penalty
a The subscripts on the model column refer to the dataset used for the training step

Generation 
Method

Modela DLA AUROC Correlation Similarity Autocorrelation MAE Fγ

A1 DGANT 0.902 ± 0.010 0.880 ± 0.010 2.601 ± 0.176 0.987 ± 0.006
WGAN-GPT 0.900 ± 0.004 0.979 ± 0.004 2.575 ± 0.058 0.980 ± 0.004

DGANM 0.744 ± 0.012 0.929 ± 0.014 1.526 ± 0.043 0.989 ± 0.005
WGAN-GPM 0.814 ± 0.016 0.942 ± 0.015 1.527 ± 0.046 0.942 ± 0.005
DGANP 1.000 ± 0.000 0.624 ± 0.091 1.004 ± 0.174 0.970 ± 0.015
WGAN-GPP 1.000 ± 0.000 0.743 ± 0.049 0.998 ± 0.074 0.893 ± 0.063

A2 DGANT 0.902 ± 0.008 0.823 ± 0.011 3.190 ± 0.358 0.836 ± 0.039

WGAN-GPT 0.903 ± 0.040 0.951 ± 0.002 4.160 ± 0.023 0.908 ± 0.010

DGANM 0.890 ± 0.011 0.645 ± 0.118 1.582 ± 0.063 0.758 ± 0.040

WGAN-GPM 0.898 ± 0.025 0.797 ± 0.039 1.842 ± 0.045 0.656 ± 0.230

DGANP 1.000 ± 0.000 0.550 ± 0.097 1.944 ± 0.005 0.699 ± 0.097

WGAN-GPP 1.000 ± 0.000 0.657 ± 0.050 1.573 ± 0.004 0.000 ± 0.000

A3 DGANT 0.901 ± 0.003 0.906 ± 0.003 2.518 ± 0.006 0.945 ± 0.006

WGAN-GPT 0.890 ± 0.024 0.894 ± 0.003 5.789 ± 0.074 0.981 ± 0.002
DGANM 0.871 ± 0.004 0.742 ± 0.057 3.985 ± 0.036 0.742 ± 0.017

WGAN-GPM 0.972 ± 0.027 0.527 ± 0.010 5.840 ± 0.046 0.627 ± 0.044

DGANP 0.999 ± 0.000 0.865 ± 0.060 3.249 ± 0.244 0.541 ± 0.084

WGAN-GPP 1.000 ± 0.000 0.654 ± 0.000 2.082 ± 0.006 0.128 ± 0.037
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Fig. 2  Precision and recall value pairs for each generated dataset. There are eight markers per model and dataset combination. The recall metric 
is equivalent to the overlapped area between the real and synthetic distributions, while the precision refers to the sample quality

Fig. 3  Multivariate correlations of the real (left) and synthetic TMET datasets. The upper row shows the data generated with the DGAN, 
while the lower row shows the data generated with the WGAN-GP. The three columns on the right refer to the different approaches followed 
during the synthesis. HR: Heart Rate; VO2: Oxygen Volume; VCO2: Carbon Dioxide Volume; RR: Respiratory Rate; VE: Exhaled Volume
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approach. There was no difference in the DLA analysis 
for the PMData dataset as the samples were properly dis-
tinguished by the classifiers in every case.

To finish with the resemblance assessment, the auto-
correlation analysis was performed considering the time-
dependent variables in each dataset. As evaluating the A1 
approach would not make sense (both the generated and 
the original data contain the same real time series), these 
values were set to use them as baselines for the other two 
methods. The A2 approach was the method that best 
emulated the autocorrelation metrics in A1 for the hypo-
tension subset, the PMData dataset, and the WGAN-
GPT model, while A3 was the best-performing one for 
DGANT.

The utility metrics derived from the DGANT models 
show the most useful data was generated using the A3 
approach, while A1 was the worst-performing one, even 
if the statistical significance was not proven as it can be 
checked in Table  3. On the other hand, DGANM mod-
els demonstrate the opposite for the hypotension sub-
set, the first approach being the best-performing one 
(p > 0.05). Concerning the WGAN-GP models, the ones 
trained with the TMET dataset show the best approach 
is also A3, even if not far from the other two methods. 

The WGAN-GPM combination performed the best using 
the A2 approach. No statistical test associated with these 
model and dataset combinations resulted in statisti-
cal significance. Regarding the PMData dataset, the A1 
approach performed best in the DGAN case (p < 0.05), as 
well as for the WGAN-GPP (p < 0.05). In Table 5 the val-
ues obtained for the TSTR evaluation can be compared.

The last results to be presented are those of the pri-
vacy assessment. Regarding the WGAN-GP models, 
both datasets yielded similar values among approaches: 
the WGAN-GPT resulting in precision values around 
0.7 with a slightly better outcome for A3 in the highest 
proportions known by the attacker, and the WGAN-GPM 
not being able to counter the MIA in any scenario. For 
the WGAN-GPP models, all the approaches resulted 
in private data as a zero precision was achieved during 
the MIA simulations. With respect to DGANT, the best 
results were achieved with A2 and for low proportions of 
the dataset known by the adversary (0.1–0.3). For higher 
proportions (0.4–0.5), comparable results were obtained 
with every tested approach. The DGANM model in A1 
and A2 outperformed the A3 approach for the lowest 
proportions (0.1–0.3) with zero precision on the MIA 
setup, even if for the highest proportions the precision 

Fig. 4  Multivariate correlations of the real (left) and synthetic hypotension datasets. The upper row shows the data generated with the DGAN, 
while the lower row shows the data generated with the WGAN-GP. The three columns on the right refer to the different approaches followed 
during the synthesis. GCS: Glasgow Comma Scale. Note that blank values appear for features with a standard deviation equal to zero, which leads 
to a null value in correlation calculations
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deteriorated significantly. Last, the DGAN models 
trained with the PMData dataset resulted in private data 
again as the precision was zero for all the approaches. 
The MIA simulation results are graphically represented 
in Fig. 6.

Discussion
Resemblance assessment
The resemblance results presented on the evaluation 
section were found to follow a pattern dependent on 
the initial characteristics of the dataset to be synthe-
sized. Specifically, the time-series-to-metadata ratio, 
which refers to the number of longitudinal variables with 
respect to the static ones in a dataset, was found to pre-
determine resemblance metrics, as well as the length 
of the time series, as these are determinant on the data 
quantity that remains real in the A1 approach. In fact, 
the time-series-to-metadata ratio in the TMET dataset 
was 6:5, from which it can be inferred that 54.5% of the 
dataset variables were time series, while for the hypo-
tension subset a ratio of 6:2 constituted the 75% of the 
dataset variables being longitudinal, and for the PMData 
dataset the ratio was 1:4. Considering this fact, A1 seems 
to be favoured when higher ratios and/or longer series 

are used, since a higher percentage of the generated SD 
remains real, achieving improved resemblance metrics. 
In principle, approaches A2 and A3 should not depend 
on this ratio as both metadata and time series are synthe-
sized in these approaches.

Regarding statistical analysis of results on the resem-
blance metrics, most of correlation similarity checks, 
autocorrelation measurements and F-score metrics 
resulted in statistically significant differences. DLA was 
demonstrated to be statistically significant just for the 
MIMIC dataset, while no difference was found for TMET 
and PMData ones.

Utility assessment
Regarding the utility aspect of the generated data, the 
approach A3 was the best performing one for the TMET 
data, while approach A1 was better for PMData and 
DGANM. This could lead to a similar rationale as dis-
cussed in the resemblance section, where a larger quan-
tity of real data could potentially enhance the outcomes 
in the resultant datasets.

As for the significance of the performed compari-
sons, neither the models trained with the TMET data-
set, nor the DGANM model were found to be statistically 

Fig. 5  Multivariate correlations of the real (left) and synthetic PMData datasets. The upper row shows the data generated with the DGAN, 
while the lower row shows the data generated with the WGAN-GP. The three columns on the right refer to the different approaches followed 
during the synthesis. HR: Heart Rate. Note that blank values appear for the features with a standard deviation equal to zero, which lead to a null 
value in correlation calculations
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significant. In contrast, both the DGAN and the WGAN-
GP trained with the PMData dataset and the WGAN-
GPM model were found to be different to a great extent.

Privacy assessment
The MIA setup used for evaluation in this study is strin-
gent, but no standardized time-series-specific MIA setup 

was found in the literature either. Future work in the area 
of privacy assessment will comprise research and incor-
poration of different attacks and thresholds to create 
potential scenarios that encompass a broader range of 
possibilities.

The WGAN-GP model was found to be susceptible to 
mode-collapse [26], which might explain the precision 
achieved by the adversary when attacking the WGAN-
GPM generated data. Finding no significant differences in 
the WGAN-GPT suggests no approach is better than the 
other in terms of privacy preservation.

Attacks to the data generated with DGANT suggest the 
most privacy-preserving approach is A2, which is con-
sistent with the utility metrics that were obtained with it 
(best utility is achieved with A3). Contrary to our initial 
hypothesis, the privacy assessment on DGANM resulted 
in approaches A1 and A2 outperforming A3 when using 
the DGAN model, which might relate to how the MIA 
parameters were configured.

Regarding the MIA simulations performed with the 
PMData dataset, the low number of subjects in the origi-
nal dataset may have conditioned the results. A lower 
number of subjects decreases the possibility to find a 
potential match between records as fewer calculations 
are performed.

Contributions and limitations
The main contribution of this work is the detailed defini-
tion and systematic comparison of the three methods for 
generating time series together with metadata in terms 
of different evaluation dimensions, presenting them in a 
common framework and substantially extending analyses 
previously published by the authors in [12, 13].

Table 5  Utility metric results

Values in bold highlight the best-performing approach per trained model and 
metric

TSTR Train on Synthetic and Test on Real
a The subscripts on the model column refer to the dataset used for the training 
step

Generation Method Modela TSTR metric

A1 DGANT 0.802 ± 0.033

WGAN-GPT 0.880 ± 0.002

DGANM 0.931 ± 0.064
WGAN-GPM 0.909 ± 0.065

DGANP 0.983 ± 0.005
WGAN-GPP 0.986 ± 0.002

A2 DGANT 0.900 ± 0.589

WGAN-GPT 0.837 ± 0.109

DGANM 0.869 ± 0.078

WGAN-GPM 0.924 ± 0.049
DGANP 0.906 ± 0.083

WGAN-GPP 0.919 ± 0.000

A3 DGANT 0.919 ± 0.167
WGAN-GPT 0.900 ± 0.156
DGANM 0.893 ± 0.079

WGAN-GPM 0.758 ± 0.125

DGANP 0.957 ± 0.016

WGAN-GPP 0.778 ± 0.120

Fig. 6  Membership Inference Attack (MIA) precision results. Each subplot represents the approach that was followed to synthesize the data, 
and each curve represents the pseudo-cross-validated mean precision of a MIA. AU: Arbitrary Unit
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The first limitation of the study is related to the fact 
that no standardized metrics can be found in the litera-
ture to evaluate longitudinal synthetic datasets. Even if 
utility and resemblance metrics can be adapted easily to 
this use case, it was difficult to objectively evaluate the 
privacy of the data considering the different thresholds 
and parameters that were introduced during the assess-
ment, as well as the differences between the datasets that 
were used. Also, even if the longitudinal variables were 
jointly evaluated with the metadata, autocorrelation 
was the only time-series-specific metric that was calcu-
lated. For the future, a deeper research on this aspect is 
planned by analysing time series features such as central 
tendency (e.g. mean, mode and median), variability met-
rics (e.g. range and variance), trend metrics (e.g. slope), 
or seasonality metrics (e.g. seasonal index and cycle).

Moreover, the generated SD did not overcome any 
clinical validation and, therefore, the utility of the data 
for real scenarios or use cases was evaluated just by simu-
lating possible downstream applications with the data as 
it is. Conclusions drawn from analyses derived from the 
SD should be checked and discussed by clinical experts 
to provide enough evidence for using SD in real scenarios 
or use cases.

Conclusion
In this research, a comparative assessment of three differ-
ent STSG methods was conducted, evaluating three key 
dimensions of SD: resemblance (1), utility (2), and pri-
vacy (3). Although it may not be entirely decisive for set-
ting a gold standard, the research was useful to state that 
the A2 approach performed worst overall, and therefore, 
approaches A1 and A3 should be prioritized for any use 
case.

Depending on the dataset characteristics, the use case, 
and the risk to be assumed by an end-user, the findings 
of this analyses point the user in the direction of imple-
menting either A1 or A3 with regard to resemblance and 
utility metrics. This recommendation should be analyzed 
more cautiously before generalazing it, as further metric 
calculations may prompt a shift in direction. The pri-
vacy assessment is warranted as a main future work line, 
including the evaluation of datasets with different char-
acteristics (e.g. low subject quantity), since it is pivotal for 
SD sharing or publication.
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