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Abstract

Cyber-Physical Systems (CPSs) are heterogeneous systems in which software com-

ponents and physical processes interact with each other. These systems have strict

requirements that are difficult to verify, resulting in very costly verification processes

which often lack automation. As CPSs and their requirements become more complex,

development practices that still rely on manual intervention struggle to scale up. As

such, there is a need to identify the fundamental problems that currently prevent the

automation of those processes, and find solutions to them. One such problem is the

inability to accurately define the expected behaviour of the systems for their verifica-

tion, namely, the test oracle problem. Due to factors such as ambiguous requirements

or non-determinism, testing activities for CPSs often involve human oracles, since

automated oracles cannot be implemented without defining specific properties to

verify.

Metamorphic Testing (MT) is an alternative verification approach which can be

used to define test oracles. Instead of focusing on a single system execution, MT

defines properties that compare the behaviours from two or more system executions

with known relationships between their inputs and outputs, the so-called Metamorphic

Relations (MRs).

This thesis aims to advance the current practice on testing CPSs by proposing

methods that alleviate the test oracle problem by using MT. First, we present a general

CPS DevOps architecture which will enable the automation of all the development

tasks, focusing on the verification components where the MT techniques will be

implemented. Second, we propose methods for identifying MRs for CPSs. On the

one hand, we propose a pattern for performance-based MRs, which can be used to

instantiate MRs for specific CPSs more easily. On the other hand, we implement a

fully-automated approach for generating MRs for a given system based on samples

of correct and incorrect system behaviours. We implement two prototypes of this

technique. The first prototype enables automatic performance MR generation for

CPSs, given user-provided test execution pairs. The second prototype demonstrates

the full automation of a generic whole MR generation process. Finally, we propose an
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optimization approach for MT, metamorphic test selection. The goal of this approach

is to maximize the cost-effectiveness of MT by reducing the number of tests that need

to be executed, which is important due to the high cost of executing CPSs.
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Laburpena

Sistema ziber-fisikoak (CPSak) software-osagaiek eta prozesu fisikoek elkarri eragiten

dioten sistemak dira. Sistema hauek balidatzeko zailak diren propietateak izan ohi

dituzte, eta ondorioz sarritan automatizaziorik ez duten balidazio prozesuak izaten

dituzte. CPSak eta heuren propietateak konplexuagoak bihurtzen diren heinean, inter-

bentzio manualetan oinarritzen diren praktikek eskalatzeko harazoak izaten dituzte.

Hori dela eta, prozesu horien automatizazioa eragozten duten oinarrizko arazoak

identifikatu beharra dago, eta horiei irtenbideak bilatu. Arazo horietako bat sistemaren

balidaziorako espero den portaera zehaztasunez definitzeko ezintasuna da, hau da,

orakuluaren arazoa. Baldintza anbiguoak eta ez-determinismoa bezalako faktoreak

direla eta, CPSetarako balidazioek askotan orakulu manualak izaten dituzte, orakulu

automatizatuak ezin baitira inplementatu balidatzeko propietate zehatzik gabe.

Metamorphic Testing (MT) orakuluak definitzeko erabil daitekeen balidazio

teknika alternatibo bat da. Sistemaren exekuzio bakarra erabili beharrean, MTek

bi exekuzio edo gehiagoren portaerak alderatzen dituzten propietateak definitzen ditu,

haien sarrera eta irteeren arteko erlazio ezagunak dituztenak, erlazio metamorfikoak

(MRs) deiturikoak.

Tesi honen helburua CPSak balidatzeko egungo jardunbideak hobetzea da, MT

teknika erabiliz orakuluaren arazoari irtenbidea hematen dioten metodoak proposatuz.

Lehenik eta behin, sistemaren garapena automatizatzea ahalbidetuko duen CPS De-

vOps arkitektura orokor bat aurkezten dugu, MT teknikak implementatuko dituzten bal-

idazio osagaietan zentratuz. Bigarrenik, CPSetarako MRak identifikatzeko metodoak

proposatzen ditugu. Alde batetik, errendimendu metriketan oinarritutako MRetarako

txantiloi bat proposatzen dugu, CPSetarako MRak errazago instantziatzeko erabil

daitekeena. Bestalde, sistema baterako MRak sortzeko teknika automatizatu bat pro-

posatzen dugu, sistemaren jokabide zuzen eta okerren laginetan oinarrituta. Teknika

honen bi prototipo inplementatzen ditugu. Lehenengo prototipoak errendimendu

metriketan oinarritutako MRen sorkuntza ahalbidetzen du CPSetarako, erabiltzaileek

emandako test bikoteak erabiliz. Bigarren prototipoak MRak sortzeko prozesuaren
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automatizazio osoa demostratzen du. Azkenik, MTrako optimizazio bat proposatzen

dugu, test metamorfikoen selekzioa. Teknika honen helburua exekutatu behar diren

test kopurua murriztuz MTen eraginkortasuna handitzea da, eta hori garrantzitsua da

CPSak exekutatzeko kostu handia dela eta.
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Resumen

Los sistemas cyber-físicos (CPSs) son sistemas heterogéneos en los que componentes

de software y procesos físicos interactuan entre ellos. Estos sistemas tienen requisitos

estrictos que son difíciles de verificar, lo que resulta en costosos procesos de verifi-

cación que no suelen estar automatizados. A medida que los CPSs y sus requisitos

se vuelven más complejos, las prácticas del proceso de desarrollo que dependen de

la intervención manual escalan cada vez peor. Debido a esto, hay una necesidad

de identificar los problemas fundamentales que bloquean la automatización de estos

procesos, así como de encontrar soluciones a estos problemas. Uno de estos proble-

mas es la dificultad de definir el comportamiento esperado de los sistemas durante

su verificación, lo que se conoce como el problema del oráculo. Debido a factores

como los requisitos ambíguos o el no determinismo de los sistemas, las actividades de

testeo para CPSs suelen involucrar oráculos humanos, puesto que la implementación

de oráculos de testeo automatizados requiere la definición de propiedades específicas

a verificar.

Metamorphic Testing (MT) es una técnica de verificación alternativa que per-

mite definir oráculos de testeo. El lugar de centrarse en ejecuciones individuales

del sistema, MT permite definir propiedades basadas en múltiples ejecuciones con

relaciones específicas entre las entradas y salidas del sistema, las llamadas relaciones

metamórficas (MRs).

Esta tesis tiene como objetivo avanzar en la práctica actual del testeo de sistemas

cyber-físicos mediante la propuesta de métodos para aliviar el problema del oráculo

de testeo mediante el uso de MT. En primer lugar, presentamos una arquitectura

DevOps para CPSs que permitirá automatizar todas las tareas de desarrollo del sistema,

centrandonos en los componentes de verificación en los que se integrarán las técnicas

de MT. En segundo lugar, proponemos métodos para identificar MRs en CPSs. Por una

parte, proponemos un patrón general para MRs basadas en métricas de rendimiento, el

cual puede ayudar a instanciar MRs para CPSs concretos de forma más fácil. Por otra

parte, implementamos una técnica completamente automática para generar MRs para

cualquier sistema a partir de ejecuciones que demuestren su comportamiento correcto
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e incorrecto. Desarrollamos dos prototipos de esta técnica. El primer prototipo es

capaz de generar MRs basadas en métricas de rendimiento de forma automática a partir

de parejas de ejecuciones del sistema proporcionadas por los usuarios. El segundo

prototipo demuestra la automatización completa del proceso de generación de MRs

genéricas. Finalmente, proponemos una técnica de optimización para MT que consiste

en la selección de testeos metamórficos. La finalidad de esta técnica es maximizar

la eficiencia de MT mediante la reducción del número de testeos que tienen que ser

ejecutados, lo cual es muy relevante dado el alto coste de ejecutar CPSs.

xii
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Chapter 1

Introduction

This chapter introduces the main motivation and scope of the research work carried

out by the Ph.D. candidate, and the problems that have been tackled. The research

methodology is presented, and the main technical contributions and the corresponding

publications are highlighted. Other related activities, such as research stays and

research project contributions, are also described.

1.1 Motivation and Scope

The term Cyber-Physical System (CPS) refers to heterogeneous systems of networked

computational entities and software that interact with the physical world [Lee08]. This

paradigm is a holistic approach to systems development where different engineering

disciplines are deeply intertwined with each other. The applications of CPSs extend to

many areas, such as aerospace, automotive, healthcare, manufacturing and consumer

appliances [Lee08].

Many of these applications have strict safety requirements, whereas others require

the products to be resilient to failures while interacting with humans or operating in

unknown environments [KM14]. Because of these requirements, verification is one

of the major concerns when it comes to CPS development. In several application

domains, the verification process requires over 50% of the development resources

[BG11]. This is partly due to the high complexity of these systems, as well as the

inherent uncertainty of their interactions with the physical environment, which can

make generating test oracles for them infeasible [KFK14].

This is a particularly common issue when non-functional properties such as

performance indicators [NJT13] or Quality of Service (QoS) metrics [CP13] are

involved, since there are often no mechanisms to determine if the values obtained for

such metrics are correct.

For instance, multi-elevator installations developed by Orona, one of the leading

elevator companies in Europe, suffers from this problem. In a building with multiple
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elevators attending calls, it is difficult to estimate the expected values of QoS metrics

(e.g. passenger waiting times, energy consumption...), and it is therefore very hard

to identify failures which are affecting these metrics negatively (e.g. caused by a

software bug in the dispatching algorithm) [ASA+20]. Some hard requirements can

be defined, such as a general maximum waiting time for the passengers, but such

rigid requirements must necessarily be permissive, and are therefore only useful to

identify the most blatant failures. Regression oracles are currently the only form of

fully automated testing widely used by Orona, since they allow the identification of

failures that result in a worse QoS than a previous software release. Nevertheless, such

oracles are only applicable when an appropriate baseline is available. For example,

a system that must be deployed to a new building will still require extensive manual

verification, since the data from a different building is not comparable.

This inability to define test oracles due to the lack of an exact specification

of properties for the System Under Test (SUT) or the high difficulty of verifying

known properties is referred to as the test oracle problem [BHM+14]. In such cases,

testing and verification processes can still be performed by human oracles, but manual

processes result in a much higher cost compared with fully automated ones.

The high complexity of these systems also results in very costly configuration,

deployment and execution tasks, which often involves some manual intervention in

practice [AGA+20]. Due to this reliance on human involvement, the release cycles

for new software versions are often very long, which makes keeping up with new

regulations, feature requests and bug fixes increasingly difficult.

In contrast to this, other domains such as web engineering have already adopted

methods such as DevOps [EGHS16], which streamline the software development

process by automating the transition from a commit in the source repository to the

verification and deployment to production, and also automate the monitoring and

verification of the deployed system during its operation. A DevOps approach could

greatly reduce the duration of release cycles for CPSs. However, adopting it in this

context requires the definition and implementation of automated approaches for all

the related tasks, including deployment, monitoring, and verification. In order to

accomplish that, fundamental issues such as the test oracle problem also need to be

addressed to the point where tool-supported full automation becomes feasible.

Regarding the oracle problem, Metamorphic Testing (MT) is a technique which

can alleviate this issue by defining an alternative type of system properties. Instead of

defining properties over individual system executions, MT uses known input and out-

put relations that should hold among multiple executions, the so-called Metamorphic

Relation (MR) [CCY98]. In multi-elevator installations, although predicting the QoS
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of a given test scenario installation is difficult, we can define changes to a test scenario

which should have a predictable impact on the QoS. For example, if the elevators

are made faster, the Average Waiting Time (AWT) of the passengers can be expected

to decrease or remain the same in any scenario. This way, we can identify system

failures from cases where the faster elevators obtain a worse AWT, since this should

never happen if the system is working correctly.

Considering the issues described above, we identified the following challenges to

tackle for achieving a full automation of the CPS development process:

� Define a DevOps system suitable for CPS development, which must be reliable

and flexible enough to address the various concerns and needs from different

sub-domains.

I Propose an approach to manage the requirements for a CPS DevOps system. Due

to the specific challenges posed by CPSs, these requirements will be different

from other domains where DevOps is already in use, such as web engineering.

Furthermore, the requirements of a DevOps system might change significantly

in different sub-domains.

I Design an architecture which is flexible enough to accommodate the DevOps

needs from different CPS developers. This architecture should be adaptable

to the different development paradigms and tools that are used for CPSs, and

its subsystems should be loosely coupled in order to facilitate their addition or

removal.

� Propose an approach to alleviate the oracle problem, which is one of the fundamen-

tal issues preventing the automation of verification activities [BHM+14]. MT is

a potentially useful alternative approach which could be employed to tackle this

challenge, but more research needs to be done on applying this technique in the

domain of CPSs.

I Generating MRs manually is a task which requires extensive practical experience

with the CPS under test. Metamorphic Relation Patterns (MRPs) can aid in this

task by providing reusable templates which can be used to instantiate MRs in

new domains [SPTRC18, ZSCT18]. The study of such patterns, particularly for

the domain of CPSs is a topic which is yet largely unexplored, and this work

must be done in order to assess the usefulness of MT in this context.

I As an alternative to defining MRs manually, automated approaches may be able

to identify such properties for a given system. Such techniques must be able to

generate MRs that are valid (i.e. have no false positives), but also effective (i.e.
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as few false negatives as possible) and, ideally, not excessively complex for a

human to understand.

� Propose techniques for optimizing MT in the context of CPS verification. Testing

CPSs is usually a costly process, and as such, running a full test suite is often

not possible [BG11]. Furthermore, MRs require multiple test executions to check,

further increasing the testing costs with respect to other techniques. Test case

selection is one of the most basic optimization techniques, and consists in selecting a

subset of the test suite in order to maximize its cost-effectiveness [YH12]. Although

many related techniques exist, an assessment of the most efficient algorithms and

fitness functions needs to be made for the context of CPSs.

1.2 Research Methodology

The research method of this Ph.D. followed the guidelines for the Design Science

Research (DSR) paradigm, as described by Hevner and Chatterjee [HC10].

Hevner and Chatterjee identified three different cycles that are present in any

design research project [HC10]. On the one hand, the Relevance Cycle bridges the

contextual environment with the research activities. On the other hand, the Rigor

Cycle provides the existing knowledge base to the research project in order to ensure

the innovativeness of the contributions that are made. Finally, the Design Cycle is the

heart of the project, where new designs are generated and evaluated until a satisfactory

result is obtained. This thesis, as well as each of its individual contributions, have

followed the guidelines related to each of these cycles [HC10].

Our research followed the DSR guidelines detailed in [HMPR04].

� Guideline 1: Design as an artifact. We produce viable artifacts for each of the

contributions of this thesis, mostly in the form of methods and tools.

� Guideline 2: Problem relevance. Our contributions solve relevant problems, as

they are motivated by industrial case studies.

� Guideline 3: Design evaluation. We attempt to demonstrate the effectiveness of

our solutions, mostly by performing experimental evaluations on industrial case

studies.

� Guideline 4: Research contributions. Verifiable research contributions to the

state of the art on the relevant topics are made for each part of this thesis.
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� Guideline 5: Research rigor. For each contribution, we followed rigorous devel-

opment and evaluation processes, mostly based on the standards set by notable

research works on the related topics.

� Guideline 6: Design as a search process. We followed an iterative process to

develop designs that efficiently solve the problems we set to solve, evaluating and

refining possible solutions until satisfactory results were achieved.

� Guideline 7: Communication of the research. Our research is presented in terms

of both technological advancements and tangible costs and benefits for the adopting

organizations.

Design Science Research Framework

Knowledge
Flows

Process
Steps

Outputs

Awareness
of problem

Suggestion

Develpment

Evaluation

Conclusion

Circumscription

Operational
and Goal

Knowledge

Proposal

TentativeDesign

Artifact

Performance measures

Results

Figure 1.1: DSR process model [VK15]

The specific development process followed the general model described by Vaish-

navi and Kuechler [VK15]. This process model is shown in Figure 1.1, and comprises

the following steps:

� Awareness of the problem. The awareness of an existing research problem may

come from sources such as new developments in industry. The output of this

process is a formal or informal proposal for a new research effort.

� Suggestion. This is a creative step where new functionality is envisioned, and a

tentative design is suggested. This design is usually an integral part of a research

proposal.
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� Development. The tentative design is further developed and implemented, and a

novel artifact is created. The novelty of the artifact usually resides solely in its

design.

� Evaluation. The developed artifact is evaluated based on criteria which are often

made explicit in the proposal. This stage contains an analytic sub-phase where,

for every deviation from the expected results that is detected, hypotheses are made

to explain the behaviour, the hypotheses are tested and adjusted, and the resulting

knowledge is fed back to the previous stages.

� Conclusion. The research cycle ends when the requirements specified in the

previous steps are met. The results from the process are consolidated and the

obtained knowledge is disseminated.

1.3 Research Contributions

The main contributions of this thesis can be summarized as follows:

� A taxonomy for eliciting requirements for CPS DevOps systems is presented. Our

taxonomy considers four different dimensions of the requirements: Scope, domain,

lifecycle stage, and subsystem. The presented taxonomy is a template which can be

extended and adapted depending on the needs of the practitioners from different

domains. This work is based on two industrial case studies from the elevation

and railway domains, for which we elicit requirements in order to evaluate and

iterate our taxonomy. Based on their needs, our taxonomy comprises DevOps

subsystems for: Deployment, monitoring, validation and integration. Our work

for this thesis has mainly focused on the validation subsystem. This contribution

has been published in the IEEE 28th International Requirements Engineering

Conference (RE) [AGA+20].

� An architecture for CPS DevOps systems based on microservices is defined. This

architecture follows the taxonomy and requirements elicited in our previous contri-

bution, and instantiates a solution for the case study from the elevation domain. Our

solution defines microservices which implement the various subsystems, which

employ both synchronous (REST) and asynchronous (MQTT) communications to

integrate with each other. The subsystems defined include deployment, monitoring

and validation, each of which comprises a server-side orchestrator and agents which

perform operations directly on the target nodes (i.e. the CPSs). Furthermore, an

automation server integrates all of these subsystems by triggering the DevOps
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pipeline when a new plan is launched (e.g. when a code commit is made). This in-

volves generating the artifacts for each subsystem, which are pulled from a Docker

registry, and coordinating their respective actions. Once again, the contribution of

this thesis lies mainly in the validation subsystem of the architecture. This contribu-

tion has been published in the IEEE 28th International Requirements Engineering

Conference (RE) [GAA+21b].

� A method for generating performance MRs based on patterns is proposed. The

core contribution is the proposed Performance Variation (PV) MRP, a general

pattern which represents MRs that involve input changes that have a predictable

impact on performance measurements. We exploit this pattern in our case study

from the elevation domain, deriving various Metamorphic Relation Input Patterns

(MRIPs) from the PV pattern, and then defining MRs based on the proposed

MRIPs and domain-specific performance metrics. In our experimental evaluation

we show that, as a solution to alleviate the test oracle problem, the MRs we develop

outperform regression and threshold-based oracles, which are the only existing

alternative solutions for our case studies. An initial version of this contribution has

been published in the IEEE 31st International Symposium on Software Reliability

Engineering (ISSRE) [ASA+20], and an extension introducing a new open-source

case study from the autonomous driving domain has also been published in the

IEEE Transactions on Reliability journal [AVS+22a]. A replication package for the

open-source case study experiments has also been included in the latter publication

[AVS+22b].

� A tool-supported automated approach for generating MRs is presented. The ap-

proach adapts a previous evolutionary approach for generating Java assertions

[TJTP20] to the context of generating performance MRs for CPSs. This evolu-

tionary approach employs correct and incorrect execution traces and a genetic

algorithm in order to generate test oracles which can distinguish between them with

the fewest false positives and false negatives as possible. An initial stage of this

approach generates output relations for some given MRIPs, which can be manually

defined, for instance, based on existing MR patterns. We evaluate this approach

in the context of our industrial elevation case study, and the results show that the

automated approach matches or outperforms the effectiveness of the manually gen-

erated MRs. The second stage of this contribution introduces various approaches

for generating full MRs from scratch. We implement a tool which can generate

MRs for Java methods in a fully automated way by integrating existing mutation

testing and test suite generation tools. Our evaluation reveals that this approach is
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capable of generating valid and effective MRs for 8 out of 10 methods. The initial

stage of this contribution has been published in the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE) [ATA+21]. An additional publication intended

to be submitted to the IEEE International Conference on Software Testing, Verifica-

tion and Validation (ICST) research track is being worked on, and an extension of

this work is also planned to be submitted to the ACM Transactions on Software

Engineering and Methodology (TOSEM) journal.

� A search-based metamorphic test selection approach for CPSs which optimizes

the cost-effectiveness of the test suites is proposed. The test suite execution cost is

combined with five other objective functions, two of which are generic and three of

them specific to the elevation domain. Our approach employs the Non-dominated

Sorting Genetic Algorithm II (NSGA-II), but also comprises a problem representa-

tion specific to the problem and novel mutation and crossover operators specific to

the metamorphic test selection problem. Our approach is evaluated with our case

study from the elevation domain, using the randomly generated test suite, MRs

and mutants employed in our previous work on manually generating QoS-based

MRs [ASA+20]. This contribution has been accepted for publication in the IEEE

33rd International Symposium on Software Reliability Engineering (ISSRE 2022)

[AAPA22a]. This publication includes a replication package containing the source

code for the metamorphic test case selection implementation, the experimental data,

and the results obtained [AAPA22b].

1.4 Publications

Several peer-reviewed journal and conference publications have been achieved during

the Ph.D. The journal publications have been rated based on the Journal Citation

Reports (JCR), showing their score and quartile. Conference publications show

their GII-GRIN-SCIE (GGS)1 rating, which is the metric endorsed by the Spanish

Informatics Scientific Society (SCIE)2.

1.4.1 Journal Publications

An article was published at the IEEE Transactions on Reliability (TR) journal. Fur-

thermore, at the time this thesis is being submitted, a journal article to be submitted to

1http://gii-grin-scie-rating.scie.es/
2https://www.scie.es/

9

http://gii-grin-scie-rating.scie.es/
https://www.scie.es/


1. INTRODUCTION

the ACM Transactions on Software Engineering and Methodology (TOSEM) is being

worked on.

� Aitor Gartziandia, Aitor Arrieta, Jon Ayerdi, Miren Illarramendi, Aitor Agirre,

Goiuria Sagardui, Maite Arratibel. “Machine learning-based test oracles for

performance testing of cyber-physical systems: An industrial case study on el-

evators dispatching algorithms” in Journal of Software: Evolution and Process

(Special Issue - Methodology Paper), 25 May 2022, pp. e2465. DOI: https:

//doi.org/10.1002/smr.2465. JCR: 1.844. Q3.

� Jon Ayerdi, Pablo Valle, Sergio Segura, Aitor Arrieta, Goiuria Sagardui, Maite

Arratibel. “Performance-Driven Metamorphic Testing of Cyber-Physical Systems”

in IEEE Transactions on Reliability (Early Access), 04 August 2022, pp. 1-19.

DOI: https://doi.org/10.1109/TR.2022.3193070. JCR: 5.15. Q1.

1.4.2 International Conferences

A total of 7 publications were achieved at international conferences. At the time

this thesis is being submitted, the ISSRE 2022 conference has not occurred yet, and

its proceedings have not been published. Furthermore, an additional article to be

submitted to the IEEE International Conference on Software Testing, Verification and

Validation (ICST) research track is being worked on.

� Jon Ayerdi, Aitor Garciandia, Aitor Arrieta, Wasif Afzal, Eduard Enoiu, Aitor

Agirre, Goiuria Sagardui, Maite Arratibel, Ola Sellin. “Towards a Taxonomy for

Eliciting Design-Operation Continuum Requirements of Cyber-Physical Systems”

in IEEE 28th International Requirements Engineering Conference (RE), Industrial

Innovation track, 09 October 2020. GGS: A

� Jon Ayerdi, Sergio Segura, Aitor Arrieta, Goiuria Sagardui, Maite Arratibel. “QoS-

aware Metamorphic Testing: An Elevation Case Study” in IEEE 31st International

Symposium on Software Reliability Engineering (ISSRE), Research Track, 11

November 2020. GGS: B

� Aitor Gartziandia, Jon Ayerdi, Aitor Arrieta, Shaukat Ali, Tao Yue, Aitor Agirre,

Goiuria Sagardui, Maite Arratibel. “Microservices for Continuous Deployment,

Monitoring and Validation in Cyber-Physical Systems: an Industrial Case Study for

Elevators Systems” in IEEE 18th International Conference on Software Architecture

(ICSA), Software Architecture in Practice Track, 10 May 2021. GGS: A-
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� Aitor Arrieta, Jon Ayerdi, Miren Illarramendi, Aitor Agirre, Goiuria Sagardui,

Maite Arratibel. “Using Machine Learning to Build Test Oracles: an Industrial

Case Study on Elevators Dispatching Algorithms” in IEEE/ACM International

Conference on Automation of Software Test (AST), 28 June 2021. GGS: Work in
Progress

� Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, Maite

Arratibel. “Generating metamorphic relations for cyber-physical systems with

genetic programming: an industrial case study” in 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE), Industry Track, 18 August 2021. GGS: A+

� Jon Ayerdi, Aitor Arrieta, Ernest Bota Pobee, Maite Arratibel. “Multi-Objective

Metamorphic Test Case Selection: an Industrial Case Study” in IEEE 33rd Interna-

tional Symposium on Software Reliability Engineering (ISSRE), Research Track,

2022. GGS: B

1.5 Related Activities

In addition to developing the mentioned conference and journal publications and

attending the corresponding conferences, various other research activities have been

performed by the the Ph.D. student. These activities include disseminating the re-

search through talks at a conference and a summer school, two research stays, and

participation in an European project.

1.5.1 Talks

The research from this thesis was also disseminated in the Hot off the Press (HoP)

track from the GECCO 2022 conference, as well as the SMILESENG summer school.

� Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, Maite

Arratibel. “Evolutionary generation of metamorphic relations for cyber-physical

systems” in The Genetic and Evolutionary Computation Conference (GECCO),

2022, Hot off the Press (HoP) track. The talk given by the Ph.D. student dissemi-

nated the work carried out on automatic MR generation for CPSs [ATA+21].

� International Summer School on Search and Machine Learning-based Software

Engineering (SMILESENG), third edition 3. The talk given by the Ph.D. student,

3https://www.uco.es/smileseng/
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entitled “Generating Complex Metamorphic Relations for Cyber-Physical Systems

with Genetic Programming”, disseminated the work carried out on automatic MR

generation [ATA+21] and proposed some new related research avenues.

1.5.2 Research Stays

During the development of this thesis, the Ph.D. student visited other institutions in

order to collaborate with researchers with expertise in particular topics. Two research

stays were undertaken, each of which had a duration of three months. The first stay

was at the University of Seville, Spain. The second stay was at Università della

Svizzera italiana (USI), Switzerland.

� Universidad de Sevilla, at the Applied Software Engineering (ISA) research group

with Prof. Sergio Segura, mid October 2019 to mid December 2019. The objective

of the research stay was to collaborate with expert researchers in the field of MT.

During the stay, the Ph.D. student learned about MT and worked towards adapting

this technique to CPSs following the feedback from the experts. The results from the

collaboration include a conference and a journal publication [ASA+20, AVS+22a].

� Università della Svizzera italiana (USI), at the TAU research group at the Software

Institute with Prof. Paolo Tonella, mid October 2021 to mid December 2021. The

objective of the research stay was to collaborate with expert researchers on the topic

of automatic test oracle generation, on which some preliminary work had already

been done via remote collaboration [ATA+21]. The results from the collaboration

include an article to be submitted to the IEEE International Conference on Software

Testing, Verification and Validation (ICST), as well as some preliminary work

for a journal extension to be submitted to the ACM Transactions on Software

Engineering and Methodology (TOSEM).

1.5.3 Research Projects

The Ph.D. student has been involved in the Adeptness4 project, which is funded by the

European Union’s Horizon 2020 research programme and has the goal of automating

the design-operation continuum of CPSs. The research done during the Ph.D. studies

had the goal of meeting some of the objectives from this project, so the student

contributed to it with several related publications5, as well as the implementation of

some demonstrators for verification-related tasks.

4https://adeptness.eu/
5https://adeptness.eu/scientific-publications/
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1.6. Outline of the Dissertation

1.6 Outline of the Dissertation

This thesis is structured as follows: Part I of the thesis contains the Foundation and

Context. Chapter 1 introduces the motivation and scope of this thesis, describes the

research methodology, and summarizes the research contributions, publications, and

other related activities performed by the Ph.D. student. Chapter 2 presents the basic

technical background and terminology used throughout the topics discussed in this

thesis. Chapter 3 summarizes the state of the art for the related topics and highlights

the potential points for research contributions. Chapter 4 describes the theoretical

framework, including the research objectives and hypotheses, an overview of the

contributions, and the case studies employed for evaluating the proposed solutions.

Part II corresponds to the context of this thesis, which is the definition of methods

for automating CPS development processes. Chapter 5 proposes a taxonomy for

eliciting requirements for a DevOps framework for CPSs. Chapter 6 proposes one

such DevOps framework, which is based on a microservices architecture.

Part III proposes the use of MT to alleviate the test oracle problem for CPSs.

Chapter 7 presents our proposal for the manual definition of MR for CPSs based on

specific patterns. Then, Chapter 8 presents a framework for automatically generating

MRs.

Part IV addresses the optimization problem for MT. In this regard, Chapter 9

proposes a metamorphic test selection approach for CPSs.

Finally, Part V contains the final remarks of this thesis. In Chapter 10 the con-

tributions that have been made are summarized, and the lessons learned and future

prospects are discussed.
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Chapter 2

Background

This chapter contains technical background information on various topics within the

scope of this thesis. First, Section 2.1 provides the background related to Cyber-

Physical Systems (CPSs). Then, Section 2.2 explains the verification techniques used

on CPSs. Next, Section 2.3 describes the verification of non-functional aspects of a

system. Then, Section 2.4 introduces Metamorphic Testing (MT). Finally, Section 2.5

presents the background on Search-Based Software Engineering (SBSE).

2.1 Cyber-Physical Systems

CPSs are a combination of computation and physical processes that interact with

each other in complex ways [Lee08]. They usually consist of feedback loops in

which physical processes affect the computations and vice versa. These systems are

quickly becoming ubiquitous, and can now be found in various areas, such as avionics,

healthcare, or consumer electronics [Lee08].

Due to their interaction with the physical world, the discrete logic of the computing

systems must interface with continuous and concurrent dynamics that cannot be

fully observed or controlled [KM14]. This introduces uncertainties, which must be

contained or tolerated in order to fulfil the requirements of the system [KFK14]. These

requirements are not only functional, but also include privacy, security, fault tolerance,

and other non-functional requirements [Lee08].

Currently, most of the software related technologies, such as programming lan-

guages and concurrency models, are built on abstractions that do not match real-time

physical systems correctly. For instance, the semantics of the C programming lan-

guage do not consider aspects of the behaviour of the program such as the timing of

the execution, which makes it unpredictable for real-time applications [Lee08]. Many

CPSs also contain device networks, and therefore networking technologies also need

to be adapted in order to accomplish a predictable and reliable real-time performance

needed for these systems [Lee08].
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2.1. Cyber-Physical Systems

The following list summarizes the main challenges that CPS engineering faces:

� Heterogeneous engineering disciplines: Apart from software engineering, CPSs

usually require the collaboration with experts from many other engineering disci-

plines. The gap between these disciplines and the different formalisms they use

needs to be closed in order to integrate all the partial solutions into a product

[Par10, GTB+17], and the later this integration is done in the development process,

the less optimal it is [TDUE07].

� Complexity: On the other hand, the increasing complexity of these systems makes

developing them, and especially performing quality assurance, very challenging

and time-consuming. This is especially the case when the systems are autonomous,

which makes predicting and understanding their behaviour very challenging.

� Variability: Product Line Engineering is an approach that improves the reusability

of the components for different product variants, thus enhancing the productivity

and quality of the development process. CPSs in particular are systems that contain

high variability due to the different environments and scenarios in which they

operate. This variability introduces additional challenges, especially when it comes

to verification, since verifying the entire product line is usually not feasible.

� Uncertainty: Another issue that CPSs face compared to purely cyber systems is

their stochastic nature, which can make them unpredictable to a certain extent

[ZSA+16]. Some of the uncertainty sources in CPSs are:

I The unpredictable environment is a major source of uncertainty for CPSs. Some

characteristics of the operational environment, such as different weather con-

ditions, can have a very significant impact on the behaviour of the system and

are difficult to predict. Furthermore, the system may be used in a context which

was not contemplated in its design, such as different temperature or humidity

conditions [dWOJ+07].

I Human intervention both during development and runtime, is also intrinsically

inexact and susceptible to errors. CPS development is still largely based on

human participation, and the errors introduced to the system can vary in unpre-

dictable ways based on many factors, such as developer experience and team

workflow, or the skills of the operators of the product [dWOJ+07].

I Unreliable components are another source of uncertainty which can make the

system behave unpredictably. Even when the developers are already familiar

with a component, it is not always known how accurate and reliable it will
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be when used in a new context or interacting with other parts of the system

[dWOJ+07].

I Software itself does not, in general, have a fully deterministic real-time be-

haviour, especially if concurrency or communication with other devices are

involved [Ram00]. This is even more so the case for machine learning appli-

cations or any kind of adaptive systems in general, where the behaviour of the

system is uncertain due to the sheer complexity of its decision-making process.

2.2 Verification of Cyber-Physical Systems

The increased use of CPSs brings the need for new Quality Assurance (QA) processes

to identify and fix defects in these systems, especially in the case of safety-critical

applications. Analogously to the other related technologies, system and software

verification techniques and tools need to be adapted to the context of CPSs.

There are many verification techniques that have already been proposed for CPSs.

The following list shows an overview of the available methods [ZJKK15]:

� Formal methods

I Static analysis is a technique which can provide approximate but sound guaran-

tees about the behaviour of a program without actually executing it [DKW08].

This term encompasses a family of techniques which is typically used by compil-

ers (e.g. for emitting warnings) and their optimizers, but it can also be used for

verification purposes. This is accomplished by computing invariants, and thus

proving properties of the program. These approaches have also been applied to

CPSs, but they tend to not scale well or introduce many false positives as the

programs get larger and have more complex interactions [ZJKK15].

I Theorem proving consists in translating a given program into a logical formula

whose validity reflects the correctness of the program, and then passing that

formula to a theorem prover which checks the formula. For non-trivial programs,

this involves significant human intervention and various refinement passes from

an abstract specification of the program to the source code implementation. In

[KEH+09], an operating system kernel which is part of a complex CPS is fully

verified using this technique, although it required a careful design of the system,

and the effort for proving its correctness was about 20 person-years (and this

proof assumes the correctness of the compiler, hardware...etc.).

I Model Checking is a technique for checking whether a given model meets a

given specification in an automated and exhaustive way [CES86]. This technique
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2.2. Verification of Cyber-Physical Systems

is applied to models rather than working systems, so its usage is limited to the

parts of the system that can be accurately modelled. For a CPS it is not always

possible to prove some requirements algorithmically, because the physical part

of the system cannot be accurately predicted, and even the software cannot be

analysed [Ram00] unless it has been automatically generated from a model by a

verified tool. Statistical Model Checking is a technique based on the randomized

sampling of simulations of a stochastic model. This variant of Model Checking

is more suitable for CPSs because it accounts for their randomness [CZ11].

� Testing is a common verification process for software which aims to find bugs or de-

fects in the systems [Ber07]. This is accomplished by executing some components

of the system and checking that the behaviour of the execution is correct. Although

testing a component can usually not be done exhaustively and therefore the lack of

detected failures does not ensure the correctness of the system in general, it can

expose deviations from the requirements [Ber07]. There are different testing levels

depending of what is being tested: Unit testing for individual components, integra-

tion testing for component interactions, or application testing for the whole system.

The tests can be manually created, or automatically generated based on black box

techniques such as boundary value analysis or white box metrics such as code

coverage [Lim09]. Analogously to software, hardware can also be tested, either as

an abstract definition such as a Hardware Description Language (HDL) or a model,

or with physical hardware. Model-Based Design (MBD) is a widely used method

for developing CPSs [SWYS11, JCL11], and Model-Based Testing (MBT) allows

testing the functionality of these models, which describe the software, hardware

and the physical environment of the system [UPL06, JCL11].

� Runtime Verification is a technique which consists in analysing execution traces

of the System Under Test (SUT) to check that a given specification is not violated.

2.2.1 Execution Levels

During the development and verification of CPSs, it is common to use X-in-the-loop

simulations to bridge the gap between the system specification and the implementation

[SH09]. There are four typical configurations defined for this:

� Model-in-the-Loop (MiL): This configuration consists on testing the controller

model along with the simulated plant model. The model executor usually uses

high-precision floating point arithmetic in order to compute the most accurate

results. Once the MiL test results are satisfactory, they can be used as a reference
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for comparison with subsequent execution levels. At the model level, the failures

detected during an execution should be trivial to diagnose and fix for an engineer

who is familiar with the tool and the problem.

� Software-in-the-Loop (SiL): In this level, the executable code of the SUT is

used, which can be autogenerated from the model used in the previous stage. The

executable code is generated for the development or testing machine rather than the

target processor. The software is still tested with a simulated plant and hardware.

The goal is to detect computation errors such as overflow or division-by-zero, which

may not have been detected due to the different arithmetic in the model executor.

� Processor-in-the-Loop (PiL): Next, the executable code for the target processor,

i.e. the code that will actually be used in the final product, is generated. While

the software is still being interfaced with a simulated plant and hardware, the

software itself runs in the target processor, possibly in an evaluation board or a

virtual machine. Although the tests at this level are still not Real-Time (RT), they

can reveal arithmetic errors or otherwise inadequate target-specific code that were

not revealed when compiling for the testing machine.

� Hardware-in-the-Loop (HiL): Finally, the product is verified with the software

running in the target processor and a hardware setup which can emulate the real

execution environment. The execution of the whole system will be done in RT, so

under these circumstances the performance requirements and timing constraints of

the system will be validated. Since execution must happen in real-time, this process

might take a very long time (hours, days) to complete.

Level Software Arithmetic Hardware / Plant Time
MiL Model Floating point Simulated Non RT
SiL Simulating processor Fixed point Simulated Non RT
PiL Target processor Fixed point Simulated Non RT
HiL Target processor Fixed point Physical / Emulated RT

Table 2.1: Comparative of the X-in-the-Loop Levels

Figure 2.1 summarizes the X-in-the-loop phases and the artefacts involved on each

stage. Table 2.1 compares the characteristics of each of the stages.

Although the X-in-the-loop paradigm is typically used in Model Based Devel-

opment [SSSG14], the SiL, PiL and HiL simulation levels can still be implemented

regardless of the software development methodology used, as long as hardware and

plant simulators are available.
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Figure 2.1: Summary of X-in-the-loop phases [SH09]

2.3 Non-Functional Verification

Besides verifying the functional aspects of a system, many domains require the

verification of non-functional aspects.

Performance testing is the most explored form of non-functional testing, with the

most commonly verified performance metrics for software being: Execution time,

memory usage and energy consumption [ATF09, SDPMBS20]. Another relevant non-

functional aspect are the Quality of Service (QoS) attributes of the system [ATF09,

HCL19], such as response time, availability, reliability, etc. Other non-functional

aspects that have been explored in the context of verification are: Security, usability

and safety [ATF09].

In the context of CPSs, many of these aspects are particularly important. For

instance, all of the previously mentioned performance metrics are highly relevant in

embedded software, where computation resources and memory are usually scarce, and

the energy consumption and execution times are often constrained (e.g. smart sensors

and real-time systems respectively). On the other hand, QoS and security testing have

also been explored in this domain, mostly in the context of cloud-based and Internet
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of Things (IoT) systems (e.g. [PTP+19]).

2.4 Metamorphic Testing

A common problem with CPS verification is the difficulty of obtaining exact specifi-

cations for these complex systems [KFK14], i.e., the oracle problem [BHM+14]. For

CPSs, the derived specifications are often approximations that can lead to false posi-

tives or negatives in some cases (e.g. [KFK14]). For some systems, such as machine

learning based ones, it may even be infeasible to define any sort of specification, since

they are often applied to problems where the expected functionality of the system is

not defined explicitly [XHM+11, DAS+18].

MT is a technique which adopts an alternative approach to alleviate the oracle

problem: instead of verifying the correctness of an individual execution, MT exploits

known input and output relations that should hold among multiple executions, which

are known as Metamorphic Relation (MR) [CCY98].

A typical example of MT is the verification of a program that calculates the sine

function by using the following known property: sin(x) = sin(π − x). In this

example, MT would allow us to test this program not by computing the sine separately

for verification, but instead by generating any input pair x and π − x, executing the

program with both inputs, and verifying that the outputs are equal. The properties

that define the relations between the inputs and the outputs of the program are known

as MRs. The common way of performing MT consists in generating a source test

case (x) by using existing test generation techniques such as random testing, and then

generating the corresponding follow-up test case based on the input relation (π − x).

A possible application of this technique for a self-driving car would be verifying that

the system behaves identically for multiple test cases traversing the same routes under

different weather conditions (e.g. by applying rain or snow filters to the image, such

as in [TPJR18]).

MT has been used in many domains, such as machine learning applications,

web services, computer graphics, and compilers [SFSRC16]. This technique has

also been successfully applied in the domain of CPSs, such as for testing Wireless

Sensor networks [CCC+07], autonomous drones [LPMS17], or self-driving cars

[TPJR18, ZZZ+18, ZS19].
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2.5 SBSE

Search-Based Software Engineering (SBSE) is an approach in which Search-Based

Optimization (SBO) algorithms are used to address software engineering problems

[HMZ12]. Miller and Spooner [MS76] where the first to apply such optimization

techniques to a software engineering problem [HMZ12], specifically in the software

testing domain. The term SBSE was later coined by Harman and Jones [HJ01]. Since

then, this approach has become increasingly popular in many software engineering

problems, including those related to testing and verification. Such problems include

test case generation [FA11], selection [AWM+19], or prioritization [AWSE19], and

even test oracle generation [TJTP20].

Harman and Jones identified the three key ingredients for applying SBSE to a

problem [HJ01]: (1) The choice of representation for the problem, (2) the definition

of fitness functions to guide the search, and (3) the manipulation operators to explore

the search-space.

2.5.1 Algorithms

Random Search (RS) is the most basic search algorithm, which simply consists of

randomly exploring the search-space for candidate solutions [HMSY10]. With this

algorithm, the fitness functions are not used for guidance, and the only manipulation

operator consists of producing new random candidate solutions from scratch. This

technique will struggle to locate optimal solutions for problems where these are located

at specific subsets of the search-space, since this algorithm will not focus on these

areas.

Local search refers to the algorithms which address a single candidate solution at

a time, “moving” from the current candidate solution to a neighbouring one in order

to find a solution with the highest possible fitness [HMSY10]. These algorithms can

efficiently traverse the search-space for increasingly better solutions with the guidance

from fitness functions, until a locally optimal one is found. Examples of local search

algorithms include Hill Climbing [SG06] and Simulated Annealing [KGJV83].

Global search algorithms, on the other hand, address many points of the search-

space at the same time [HMSY10]. This approach is appropriate for problems with

several local optima, since a local search might get stuck in a locally optimal so-

lution and fail to locate the global best solution in the search-space. Genetic Al-

gorithms (GAs) [Hol75, Gol89], which evolve a population of candidate solutions

emulating Darwinian evolution, are the most well known form of global search algo-

rithm [HMSY10].
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(a) Single Point Mutation Operator
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Figure 2.2: Example Manipulation Operators

Genetic Algorithms

In Genetic Algorithms (GAs), the candidate solutions from the population, known as

individuals, undergo selection, mutation, and reproduction processes, which guide

the search towards a population with fitter individuals. The selection process decides

which individuals get to live and/or reproduce to pass their genes to the next genera-

tion, and is usually guided by the fitness functions. One of the most commonly used

selection operators is Tournament Selection, where the individuals are randomly intro-

duced into “tournaments”, and the fittest ones are chosen as parents for reproduction

[MMGG95]. In the reproduction step, crossover operators are used to combine the

genes of the parents selected from the previous generation. Mutation operators can

also be used in order to introduce changes to the individuals from the next generation

and enable a broader exploration of the search-space.

As an example, consider a test case selection problem, where a test suite comprises

a set of test cases which can be selected or not: TS = {t1, t2, ..., tN}. An adequate

solution representation could be a bitset S = {s1, s2, ..., sN}, where the value of the

bit sn would indicate whether the test case tn is selected or not (e.g. 1 if it is selected,

0 if it is not). For this solution representation, we could use the single point mutation

operator depicted in Figure 2.2a, which randomly selects and flips one of the bits

from the individual. On the other hand, in order to combine the genes of the selected

for reproduction, parents, Figure 2.2b illustrates a single point crossover operator.

This operator randomly chooses an index from the solutions, known as the crossover

point, and recombines the genes from both parents using that point as a boundary.

The remaining tasks to adapt this problem for SBSE would be defining an appropriate

fitness function (e.g. maximize the effectiveness versus cost ratio of the test suite) and

choosing a search algorithm.
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2.5.2 Multi-Objective Search

For some problems where SBSE may be applied, there might be multiple different

optimization objectives, often conflicting with each other to some degree [Deb14]. For

the previous test selection example, it is common to define the problem with at least

two objectives [CGT+20]: (1) minimize the cost of the test suite, and (2) maximize

the effectiveness (e.g. Fault Detection Capability (FDC)) of the test suite.

−Cost

Effectiveness

Dominated
Solutions

Pareto-Front

Figure 2.3: Test Selection Pareto-Front

Figure 2.3 shows an example set of solutions for a test selection problem with

two competing objectives, plotted in 2-D space depending on their fitness for the

two objectives. Note that the cost is negated in order to convert it to a maximization

objective, so the best solutions are the ones further away from the axes’ origin. Even

though there are multiple conflicting objectives, and their relative weight might not be

clear, there are still some solutions that are clearly better than others. A solution is

considered dominated when there is a different solution with an better fitness for at

least one objective and equal or better fitness for the rest. In these cases, the solution

that is dominated would be uninteresting, since the dominating solution has a superior

fitness regardless of how we weigh each objective. Non-dominated solutions are called

pareto-optimal, and the set of these solutions form the pareto-front.

Many multi-objective search algorithms are pareto-based, i.e., they return the

set of solutions from the pareto-front they find. Commonly used multi-objective

search algorithms include the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) [DPAM02], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [ZLT01] and

Pareto Envelope-based Selection Algorithm II (PESA-II) [CJKO01]. These algo-

rithms have been widely adopted for solving test case generation, selection and

prioritization problems [YH07, AWM+17a, AWM+19]. A common drawback of

many of these algorithms is the lack of scalability for a large number of objectives
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[PKT17]. Other algorithms such as the Non-dominated Sorting Genetic Algorithm III

(NSGA-III) [DJ13] and Multi-objective Evolutionary Algorithm Based on Decompo-

sition (MOEA/D) [ZL07] have been developed to address this issue. Panichella et al.

developed an algorithm tailored to the test case generation problem called DynaMOSA

(Many-Objective Sorting Algorithm with Dynamic target selection) [PKT17]. This

technique has been adopted as the default algorithm by Evosuite, a popular Java test

suite generation tool [FA11, FA12].

2.5.3 Co-Evolution

Co-evolution consists of having two or more populations evolving concurrently, with

fitness functions that make the populations affect each other. This concept is inspired

by natural phenomena where species influence each other’s evolution, such as predators

and prey or hosts and parasites [AHH04]. This technique can be used to generate a

competitive process between opposing entities (e.g. mutants and test suites), which

makes the training set for each of them dynamic, and thus prevents getting stuck at

local maxima [Hil90].

The first application of this technique for SBSE was an approach to co-evolve

mutants and test cases by Adamopoulos et al., where the mutants act as prey and test

cases act as predators [AHH04]. Arcuri and Yao proposed an approach to generate

programs from their specifications by co-evolving the program itself and its unit tests

[AY07, AY14]. The same authors also developed an automatic software bug fixing

approach where, given the program specifications and a buggy program, the test cases

and programs would co-evolve as predators and prey respectively, eventually leading

to a fixed program [AY08]. More recently, Terragni et al. developed a co-evolutionary

technique for test oracle generation, where one population prioritizing false positive

reduction and another prioritizing false negative reduction share genetic material with

each other periodically [TJTP20].
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State of the Art

This chapter presents an overview of the state of the art for the topics related to

this thesis, highlighting the most relevant publications. Furthermore, Section 3.4

performs a critical analysis of of this state of the art and points out various research

opportunities.

3.1 Automation of CPS Development

Due to the long development life-cycles of Cyber-Physical Systems (CPSs), the

adoption of DevOps techniques in this domain is being studied in order to speed

up the related processes [ABG+20]. The DevOps approach is an evolution of the

agile methodology, which advocates short and incremental release iterations with

intermediate reviews over a longer and more complete release cycle [LRK+19]. This

approach can increase the frequency and quality of new software releases [LRK+19],

but the overhead of many current development practices, as well as regulation and

security concerns, make it infeasible for CPSs in practice [ABG+20]. In this regard,

the adoption of automated tools for the development process, which is a domain known

as Continuous Software Engineering (CSE), is paramount to implement the DevOps

approach in the context of CPSs [OEC17]. In order to develop such automation

tools, different design techniques have been explored in the literature, such as model-

based engineering [CW19], Digital Twins [UQES20], or microservices architectures

[OEC17].

3.1.1 Model-Based Engineering

Model-Based Design (MBD) is a popular CPS development paradigm in which ab-

stract models are used to describe the functionality of the system [SWYS11, JCL11].

In order to perform design and development tasks with this paradigm, many techniques

such as Model-Based Testing (MBT) have been proposed [UPL06].
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Combemale and Wimmer discussed a full model-based DevOps approach encom-

passing all the related tasks, including testing, integrating, deploying, monitoring,

execution and monitoring [CW19]. Their approach includes the use of runtime models

in order to link the system’s operational data with the models and support model-based

techniques at the operation stage [CW19].

Most of the research work, however, is focused on specific DevOps tasks. For

deployment, Ferry et al. proposed a deployment and orchestration approach for smart

Internet of Things (IoT) systems which uses the GeneSIS modelling language, a

novel model-based representation which encompasses design and run-time activities

[FNS+19]. Petrovic and Tosic defined a model-based approach for the deployment and

adaptation of container-based fog applications [PT20]. As for monitoring, Monisha

et al. presented a secure and robust framework for monitoring healthcare systems

based on CPS modelling techniques [MRB19]. Regarding verification and validation,

Balasubramaniyan et al. proposed a tool-supported approach for CPSs which combines

multi-objective evolutionary optimization and model checking techniques [BSB+16].

3.1.2 Digital Twins

Digital Twins are virtual real-time replicas of a system built with a combination of

functional models and monitored data, i.e., they stimulate a real CPS in its current state

[GS12]. This technique allows an accurate digital replication of the system, enabling

processes such as monitoring, verification, or failure prediction and adaptation [GS12,

GV17].

Ugarte et al. presented an approach which uses Digital Twins as an enabler for

DevOps in the context of Cyber-Physical Production Systems (CPPSs) [UQES20].

More specifically, the Digital Twins can be used to collect data and predict system

malfunctions, as well as to verify newly implemented functionality in a controlled

(digital) environment [UQES20].

3.1.3 Microservices Architectures

One if the common solutions for CSE is the microservices architecture, which consists

in having a set of small and self-contained tools, each of which providing a specific

functionality [OEC17]. This architecture allows the seamless integration of new

functionalities or changes to a system with minimal complexity and error-proneness

[OEC17, GL18]. This design is particularly useful for CPS tooling because the De-

vOps systems would have to adapt to the heterogeneous nature of this domain. Indeed,

different CPS vendors will use different development environments, communication
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technologies, monitoring systems, etc., so custom tooling will have to be seamlessly

integrated into each environment [ABG+20].

Many practitioners have already experimented with microservices architectures

for developing the CPS themselves. Butzin et al. proposed adopting microservices ar-

chitectures for IoT systems due to the ability to easily integrate services from different

providers [BGT16]. Later, Lu et al. proposed the use of a microservices architecture

following specific Application Programming Interface (API) design patterns to en-

hance the security of IoT systems [LHWM17]. Alam et al. proposed a Docker-based

architecture for highly modular time sensitive systems, which aims to simplify their

management while ensuring reliability and recoverability [ARF+18].

On the other hand, microservice architectures have also been proposed for specific

DevOps tasks. Kang et al. proposed a container-based microservice-style DevOps

approach for cloud infrastructure deployment tasks [KLT16]. Miglierina and Tam-

burri presented Omnia, a factory pattern for automatically composing monitoring

systems intended to reduce the entry-cost of adopting monitoring solutions for CSE

[MT17]. Waseem et al. recently performed a systematic literature review on microser-

vice architectures in DevOps, and identified 47 primary studies and 50 related tools

[WLS20]. They identify research addressing quality attributes, design, development

and deployment, testing, and monitoring of microservice architectures for DevOps

[WLS20].

3.2 Oracle problem

The oracle problem manifests itself when defining a test oracle for a particular system

becomes infeasible. This happens when there is no accurate specification for the

behaviour of the system, which can be the case in several domains [BHM+14]. This

section describes the typical instances of the oracle problem and the techniques that

can be used to alleviate it.

According to [BHM+14], test oracles can be classified into three main categories:

� Specified oracles. These are oracles based on specifications of the System Under

Test (SUT), including partial system behaviour specifications such as assertions or

models.

� Implicit oracles. This type of oracle relies on common knowledge which can

be used to identify incorrect behaviour, such as buffer overflows or uncaught

exceptions being errors (i.e. blatant faults).
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� Derived oracles. These oracles distinguish the system’s correct and incorrect

behaviour based on information derived from artifacts such as documentation,

system execution traces or other versions of the system.

The following subsections describe the most notable techniques from each of these

categories.

3.2.1 Specified Oracles

These oracles are based on partial or complete specifications of the SUT. Any form of

specification is implicitly an oracle which can be used to judge whether the system

behaves according to it [BHM+14].

The main challenges for this type of oracles is usually either the lack of a for-

mal specification or its imprecision. Indeed, many specification formalisms rely on

abstraction, and comparing real system behaviour and outputs against an abstract

specification is not always straightforward. Indeed, this is often the case for CPSs,

where the specifications are often imprecise or incomplete [KFK14].

The following are some of the most common specification formalisms used across

various domains.

Model-Based Specifications

Model-Based specification languages model the system as a collection of states and

operations to alter them, with preconditions and postconditions which constrain the

behaviour.

The Abstract State Machine (ASM) specification language generalizes Finite

State Machines (FSMs) by allowing states to be arbitrary structures (mathematical

structures, which may contain data, functions, events, etc.) [Bör10]. Such a model

can be used to check whether a given system output is possible, and a mismatch with

the model can be identified as an invalid behaviour.

Many other model-based specification languages, such as VDM [FL09] or Z

notation [SA92], can also express invariants, which can be directly derived into test

oracles. Li and Offutt evaluated different test oracle strategies for model-based testing

with varying precisions (more precise means checking more variables) and frequencies

(more frequency means checking variables more frequently) [LO16]. They concluded

that higher precision or frequency does not necessarily result in more effectiveness

[LO16].

Other oracles simply check that the system’s transitions and outputs of an execution

comply with the idealized state machine. In this case, a failing verdict is emitted
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when the state machine does not accept the real system’s execution. For CPSs, such

modelling can suffer from spurious divergences due to the non-determinism from

physical processes. Gay et al. presented a model steering approach which consists

in backtracking the model state and performing small corrective changes to match

the behaviour of the SUT in order to increase the tolerance of these oracles for CPSs

[GRH16].

Zhang et al. presented a framework for modelling the uncertainty of CPSs with the

Unified Modeling Language (UML) [ZAY+19b]. This framework, named UncerTum,

enables the development of CPS models using the UML Uncertainty Profile (UUP)

and extensions to the UML profile for Modeling and Analysis of Real-Time and

Embedded Systems (MARTE). Their modelling of uncertainty is based on the U-

Model [ZSA+16], which comprises: (1) Belief Model, which describes the subjective

worldview (Beliefs) of BeliefAgents; (2) Uncertainty Model, which describes the

uncertainties themselves (type, locality, effect, risk, lifetime, etc.); and (3) Measure

Model, which describes how the uncertainty is measured (in terms of probability,

fuzziness, ambiguity, etc.). Their toolchain supports standard UML-based Model-

Based Testing (MBT) practices using the UML Testing Profile V.2.

Algebraic Specifications

Algebraic specification languages describe first-order logic axioms which the system

should follow. They are typically used to describe Abstract Data Types (ADTs),

which contain both data and operations over that data, and are commonly used for

specifications of classes and interfaces in object-oriented designs [PZ14].

Temporal logic is a family of languages used for the formal specification of system

behaviours [BFFR18]. The most common and basic form of temporal logic is Linear

Temporal Logic (LTL), which supports propositional formulas and qualitative (e.g.

always, never, eventually, until) temporal operators [Pnu77].

There are variants of LTL which consider a quantitative notion of time, i.e. they

consider the timestamps of the events rather than only taking the ordering of the events

into account. This is important for CPSs, and particularly for those with real-time

requirements. Metric temporal logic (MTL) [Koy90] is one of these variants, in which

temporal operators are annotated with intervals.

Signal Temporal Logic (STL) is a variant which is particularly relevant for CPSs,

because instead of events it considers collections of signals in the continuous time

and value domains as traces [MN04]. This can be seen as the combination of the

metric temporal logic extension of LTL and the addition of continuous numerical

value predicates. There is also an extension which adds first-order logic operators to
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STL called Signal First-order Logic (SFO) [BFHN18]. This formalism is suitable for

verifying hardware components and CPS models in a simulation environment (e.g.

Simulink models).

It must be noted that the more expressive variants of LTL usually result in an

increased oracle cost, i.e. more resources (time, memory...) are needed to verify the

properties. In fact, some researchers deliberately restrict the expressiveness of their

specification language in order to be able to generate more efficient monitors. Menghi

et al. proposed a method to generate online test oracles for Simulink models based

on properties expressed in Restricted Signals First-Order Logic (RFOL), a language

which can handle continuous signals while being feasible to implement in practice

[MNGB19].

Boufaied et al. presented SB-TemPsy, a model-driven approach for checking

signal-based temporal properties for CPSs [BMB+20]. Their solution includes a

novel Domain-Specific Language (DSL) to express the most common requirement

types for CPSs, as well as a trace-checking procedure which uses model-driven

techniques to reduce the cost of checking complex system properties.

More recently, Boufaied et al. developed a taxonomy of the various types of signal-

based properties used to specify the behaviour of CPSs, describing the expressiveness

and other features of each formalism [BJB+21].

Program Assertions

An assertion is a check placed at a certain point of the program which ensures that a

particular boolean expression is true. These checks can also be considered test oracles

[BHM+14].

Compared with other specification languages, assertions reduce mismatches be-

tween the specification and the implementation, since they are specified directly in

the implementation (source code) and can therefore directly define relations over the

program variables [BHM+14].

The design by contract approach extends regular assertions by defining pre and

post conditions that check contracts between a client and a supplier. For instance, Java

Modelling Language (JML) is a specification language for annotating Java classes and

interfaces with behavioural information (e.g. requisites for the input, constraints for

the returned values, etc.) [LBR06]. This specification language was also extended by

Murphy et al. to allow the definition and checking of metamorphic properties at the

method level [MSK09b].
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3.2.2 Implicit Oracles

Although not fully universal, implicit oracles exploit common knowledge in the

context of the SUT (domain, programming language, etc.) in order to derive test

oracles.

In order to find implicit anomalies, a common approach is to employ fuzzing, i.e.,

generating and feeding random inputs to the program under test [MFS90], since the

implicit oracles usually represent rules which must hold for any given input.

The first works to employ implicit oracles consisted in systems to detect common

concurrency errors, such as deadlocks, livelocks, or data races [Kel76].

Another instance of such oracles is related to performance testing with metrics

such as the CPU time used by an application [MHH13], since degradations of such

metrics can reveal system errors.

Another common technique is implemented by profilers which can automatically

detect memory leaks of a program by tracking references and reporting objects which

have become unreachable without having been freed [ABS94].

Newer studies have also derived oracles for Machine Learning (ML) systems

by exploiting common knowledge from their domain to estimate their confidence.

Stocco et al. exploited implicit domain-knowledge to predict misbehaviours from

autonomous vehicles with image-based Deep Neural Network (DNN) driving systems

[SWCT20]. Their approach, SelfOracle, employs an autoencoding technique in order

to estimate the confidence level of the DNN [SWCT20]. This technique exploits

the knowledge that DNNs are more likely to misbehave on unseen inputs. A newer

research exploits the attention maps from the driving system in a similar way, using

the assumption that uncommon attention maps correlate with a lower confidence from

the DNN [SNdT22].

3.2.3 Derived Oracles

When specified test oracles are unavailable, new specifications can be extracted by

using additional information such as system execution traces, other versions of the

system, documentation, etc.

Pseudo-Oracles

Pseudo-oracles are alternate versions of the SUT developed independently from the

original, which can be used as test oracles in order to reveal faults in non-testable

programs [DW81]. According to Weyuker [Wey82], non-testable programs are either:

(1) Written to determine the given answer, thus the correct answer is not known and
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cannot be verified, or (2) programs which produce so much output that it is impractical

to fully verify it.

This approach is similar to the N-version programming technique for fault-tolerant

computing, where different implementations of the software are executed in parallel

and a voting mechanism decides the final output should the outputs differ [Avi95].

In [Fel98], genetic algorithms were used to produce diverse versions of the same

software that can be used for this purpose. This technique was adopted by Sprenkle

et al. for evaluating the HTML output of a web application by comparing it with the

previous version [SPE+07].

Regression Testing

Regression testing aims to detect whether modifications made to a new version of the

SUT have interfered with any existing functionalities. With this technique, a previous

version of the SUT is assumed to be correct and used as an oracle for the previously

existing functions.

A system update can belong to one of the following categories, an this affects how

regression testing is performed:

1. Corrective changes. These are modifications which are intended to only fix errors

without adding or removing functionality. In this case, all the program can be tested

for regressions, checking that no disruptions are made to the existing functionality,

and also that the fix covers all the cases which can trigger the bug [GBHS10].

2. Perfective changes. These updates add new functionality which was not present

in the previous version. For these changes, regression testing can be applied to the

older functions of the SUT, which ought to remain unchanged, and the oracle and

test suite should then be augmented to handle the new functionality [HA08].

3. Specification changes. This class of modifications is often not differentiated from

perfective changes. This is because when such a change happens, the functionality

with a changed specification can be considered as a new function, while the

versions compliant with an older specification can just be considered deprecated

functionalities.

Mezzetti et al. applied regression testing for Node.js (JavaScript) libraries in order

to detect breaking changes to their public interface [MMT18]. Their approach learns

models of the library interface in order to detect typing changes, which are a common

source of breaking changes between minor (perfective) and patch (corrective) updates

that are often detected late due to JavaScript’s dynamic nature [MMT18]. However,
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the most common approach is using automatic regression test suite generation tools,

such as the Java tool Evosuite [FA11]. Such tools generally try maximize the code

coverage and similar metrics while maintaining a small test suite size, providing a high

cost-effectiveness for regression testing after corrective changes [FA12]. Such test

suites would need to be expanded or refactored in the case of changes to the system

functionality.

Oracles Based on Textual Documentation

Textual documentation can be written as natural language descriptions of the system

functionality or with a structured format, such as an API documentation. Either way,

these documents describe the intended functionality of the system, and thus, they can

potentially be used as test oracles.

It has been acknowledged that documentation is one of the key factors to improve

the quality of the software development process, including the testing phases [Par11].

Nevertheless, using documentation as a basis for test oracles is usually limited to

humans (i.e., manual testing) due to the difficulty of interpreting natural language

specifications, and testing based on extracted documentation (e.g. auto-generated

from the source code) is circular because it assumes that the code from which the

documentation was extracted was correct in the first place [Par11].

Parnas et al. proposed the use of fully-formal tabular expression-based specifica-

tion formats from which test oracles can be automatically derived [PP98, FPTO11].

Another approach for automated test oracle extraction from documentation written in

a (restricted) natural language was proposed by Schwitter [Sch02]. This language was

PENG, a subset of the English language with controlled vocabulary and grammatical

structures which can be deterministically transformed into first-order predicate logic

[Sch02]. More recently, Motwani and Brun [MB19] presented an approach to generate

test oracles and executable tests from structured natural language specifications, and

applied their approach to generate tests which verify compliance with the JavaScript

specification. The generated test suite was able to identify faults in two different

JavaScript implementations.

Blasi et al. proposed MEMO [BGE+21], an approach to automatically identify

Metamorphic Relations (MRs) from JavaDoc comments. They employ a two-step

approach for this: First, they identify sentences which describe MRs in the JavaDoc.

Then, the identified MRs are translated from the natural language specification to an

executable MR.
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Metamorphic Testing

Oracles for MRs are an alternative that can be used when the expected output of a

system cannot be known. This is often the case, for example, when verifying Machine

Learning applications, due to factors such as a large number of inputs, unpredictability

of the system, and inexactitude of the outputs (e.g. an image classifier may not

classify all the inputs correctly) [DAS+18]. Rather than checking the correctness

of the program output, metamorphic oracles check whether multiple executions of

the program under test fulfil certain conditions referred to as metamorphic relations.

[SFSRC16].

MRs can consist of any type of relation between executions. For example,

sin(x) = sin(π − x) is a metamorphic relation for the sin function. These relations

can be expressed in general as rules of the form if <relation among inputs/outputs>

then <relation among inputs/outputs>, where the first part corresponds with the source

test case and the second part corresponds with the follow-up test case [SDTC17]. For

the previous example, we could write: if sin(x) = y then sin(π − x) = y.

These kinds of oracles have been applied in many fields, such as Web applications

[JJB+19], embedded systems, machine learning applications [DAS+18, ZZZ+18,

ZS19], numerical programs and code generators [LAS14, BBSB20, DELT17], among

others [SFSRC16]. As for examples of the industrial adoption of metamorphic testing,

this technique has been successfully applied to the Data Collection JavaScript Library

of the Adobe Analytics software in order to find bugs related with specific versions

of browsers or their JavaScript engines [WTZC18]. In [LGÁW15], a model-based

metamorphic testing approach was used in NASA’s Data Access Toolkit, which is an

interface to query a large database of telemetry data, in order to verify that its API

returns the correct data for the input queries.

In [STDRC17, STDRC18], Segura et al. proposed the use of metamorphic test-

ing for identifying performance-related bugs in programs rather than just functional

failures. Such MRs had previously been used by Chan et al. [CCC+07] to find

non-functional faults based on the energy consumption of Wireless Sensor Networks.

Johnston et al. applied performance MRs based on the statistical distribution of web

page load times in order to identify bugs in a tag manager library [JJB+19]. Ahlgren

et al. implemented an approach for tackling the test oracle and test flakiness prob-

lems in Facebook’s simulation-based testing platform by employing statistical MRs

[ABB+21]. Donaldson et al. defined semantics-preserving source code transforma-

tion patterns to test OpenGL graphics shader compilers [DL16, DELT17]. In order to

locate faults on code generators, Boussaa et al. employed a statistical approach with

MRs based on the performance and resource usage of the generated code [BBSB20].
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Several works have applied metamorphic testing for the verification of CPSs.

Chan et al. defined MRs to verify both functional and non-functional properties of

Wireless Sensor networks [CCC+07]. Lindvall [LPMS17] et al. presented a model-

based approach for testing autonomous drones, in which they derive MRs that check

the drone’s state (e.g. disarmed, takeoff, flying) and its transitions. More recently,

several techniques based on metamorphic testing have emerged for testing autonomous

driving systems [TPJR18, ZZZ+18, ZS19]. Several of them focus on equivalence

MRs, such as simulating environmental conditions like rain or fog [TPJR18, ZS19].

More recently, Deng et al. presented a rule-based metamorphic testing framework

for testing autonomous driving systems, which enables the conversion of human-

written rules to MRs using natural language processing techniques [DZZ+22]. This

framework also encompasses automatic metamorphic test generation using image

transformations.

Metamorphic Test Cases
As for the generation of metamorphic test cases, the most common approaches

for obtaining source test cases are random test generation and using an existing test

suite [SFSRC16]. Empirical studies have also concluded that randomly generated data

may be more effective than manually designed test suites, although a combination

of both can be even more effective [CKLT04, SHBRC11]. In [GB03], a technique

for automatically generating test data for MRs called Automatic Metamorphic Testing

(AMT) is presented. This technique consists in analysing the source code of the

program, written in a subset of C, and using Constraint Logic Programming to

find test data which violates a given MR. Other test generation approaches consist

in maximizing the branch coverage of the program by using genetic algorithms

[BS11, CCL+12] or symbolic execution [DGZ13].

Discovery of Metamorphic Relations
One of the main downsides of this approach is the necessity of defining meta-

morphic relations. Some generic metamorphic relations can be easily defined, but

research has shown that defining good metamorphic relations requires knowledge of

the problem domain [SFSRC16]. Nevertheless, it is possible to discover metamorphic

relations by using various automated approaches.

Many publications have suggested reusing abstract patterns in the input or the

output relations in order to derive concrete MRs for a particular system [SPTRC18,

ZSCT18]. Chen et al. presented an approach and tool to achieve the semi-automation

of this process called METRIC [CPX16]. This tool generates candidate MRs based on

category-choices over the input domain, which the user can accept or reject [CPX16].
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Sun et al. later extended this approach with METRIC+, which considers both the

input and output domains when generating candidate MRs [SFP+19].

Another approach is to exploit Metamorphic Relation Patterns (MRPs) and define

reusable templates, which may be instantiated to generate MRs for different systems.

Segura et al. defined such patterns for query-based systems [SDTRC19]. Their work

assumes that the system performs standard operations such as filtering, ordering and

pagination, and defines patterns such as: “Shuffling the search terms should result

in equivalent results” [SDTRC19]. This is a generalization of their previous work,

where they defined such patterns specifically for REST APIs [SPTRC18]. Xie et al.

developed METTLE, a Metamorphic Testing (MT) approach for testing unsupervised

ML systems which relies on 11 generic MR templates [XZC+20]. They propose

patterns such as shuffling the dataset or scaling the coordinate system [XZC+20].

Liu et al. proposed an approach to construct new metamorphic relations by

combining several existing ones, with the idea that the composite MRs would embed

all properties of the original MRs into a single, more effective one [LLC12]. Arrieta

recently explored the use of using composite MRs for testing image recognition deep

learning systems, but concluded that composite MRs where less effective than their

components [Arr22b].

Some fully-automated MR discovery approaches have also emerged lately. Blasi

et al. presented an approach for identifying equivalence MRs from natural language

documentation [BGE+21]. Kanewala et al. proposed static analysis techniques to

predict MRs based on the the control flow graph of the program under test using

graph kernels [KB13, KBBH16], and Duque et al. recently reproduced their approach

with positive results [DTPRK22]. On the other hand, Zhang et al. presented a MR

prediction approach based on the method’s control flow graph and an improved radial

basis function (RBF) neural network [ZZPL17].

Another popular approach is the use of search-based methods over program exe-

cutions. Goffi et al. proposed an approach for inferring equivalent method sequences,

which can be expressed as equivalence MRs [GGM+14]. Zhang et al. presented

Metamorphic Relation Inferrer (MRI), a tool to discover MRs which can be expressed

as equalities of polynomial expressions [ZCH+14]. Their approach employs Particle

Swarm Optimization (PSO) and a set of program executions in order to infer MRs.

Zhang et al. later developed AutoMR, another approach based on PSO with a greater

expressiveness and effectiveness than MRI [ZZC+19]. AutoMR is capable of dis-

covering both equality and inequality MRs, and includes additional filtering steps to

remove invalid or redundant MRs, resulting in a smaller pool of more effective MRs

[ZZC+19].
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Oracles Derived with Machine Learning

Another possible approach consists in having the oracles infer the rules of the system

behaviour based on the execution traces by using Machine Learning techniques.

Neural Networks
Shahamiri et al. employed Artificial Neural Networks (ANNs) to learn the

behaviour of the program and generate oracles which detect anomalies [SKIH11,

SWKIH12].
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Figure 3.1: ANN Oracle Generation Process [SKIH11]

Figure 3.1 shows an overview of the process for generating an ANN-based oracle

(the initial training data generation is omitted). This approach is divided into three

main steps:

1. Generate training data. The first step is to generate training data for the oracle.

The datasets are generated separately for each output, considering only the inputs
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2. Train the ANNs. Then, the ANNs are trained with the generated data. Rather

than using a single network for modelling the behaviour of the whole system,

this approach uses an independent ANN for each output of the system. The I/O

relationships of the system are analysed before the initial training data generation,

so each ANN only considers the inputs that affect their corresponding output.

3. Apply the trained ANNs. Finally, the trained ANNs can be integrated with the

system as an oracle. The verdict from the ANN oracle is calculated as the Mean

Squared Error (MSE) between the monitored system outputs and the ANN outputs,

which means that the oracle can calculate a quantitative verdict.

More recently, Dinella et al. presented TOGA, a neural approach to generate

both assertion and exception-checking oracles for Java programs [DRML22]. Unlike

the previous approach by Shahamiri et al., this technique uses the test prefix and the

method context to generate the oracles. Here, the test prefix is the code which sets

the system to the state where the method under test is called, whereas the method

context encompasses surrounding method signatures and documentation. The oracle

generation process is broken into two steps:

1. Exceptional Oracle Classifier. First, a neural model performs the binary decision

task of choosing between expecting an exception or not. In the case of expecting

an exception, the exception-expecting oracle can generated immediately, which

has the form of a try...catch block surrounding the method under test. Otherwise,

TOGA proceeds to use the Assertion Oracle Ranker to produce a regular assertion

oracle.

2. Assertion Oracle Ranker. This second neural model chooses a single element

between a set of candidate assertions. The candidate assertions are constructed

over combinations of the method return value, global variables, and a dictionary of

the most common constant values.

Support Vector Machine
On the other hand, Chen et al. presented a different approach which uses Support

Vector Machines (SVMs) and mutants for learning property monitors [CPS18].

Their approach has the following steps:

1. Randomly execute the original system for n times and collect normal traces.

2. Construct mutants from the original system.
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3. Execute mutants and collect mutant traces.

4. Identify abnormal traces by comparing mutant traces with the normal ones.

5. Collect a set of positive feature vectors from the normal traces.

6. Collect a set of negative feature vectors from the abnormal traces.

7. Learn a SVM classifier.

8. If stopping criteria is not met, restart with additional data.

After the SVM is generated, Statistical Model Checking (SMC) is used to estimate

the probability of the classifier’s correctness. If the probability is low, the process can

be restarted with different randomly sampled data. Otherwise, the generated SVM

can be used to classify the live monitored data and raise an alarm when the behaviour

does not classify as normal.

Unsupervised Learning
Afzal et al. developed Mithra, an approach for detecting anomalies in CPSs based

on telemetry data [ALGT21]. Their approach employs a multivariate time series

clustering over system execution traces to discover the different correct behaviours of

the CPSs. The output from this clustering is then used to derive robustness oracles

which identify anomalous behaviours from the system.

Invariant Generation
Ernst et al. presented Daikon, a dynamic invariant detection approach which

reports likely invariants that hold over all the observed program executions [EPG+07].

This approach checks for a set of 75 different possible invariants, which can be

instantiated over the program variables at method entry or exit (i.e., method pre and

post conditions). Their implementation supports several programming languages or

raw data inputs, as well as multiple output formats for the invariants.

Gupta and Rybalchenko developed INVGEN, an invariant generator which relies

on user-provided templates and constraint-based techniques [GR09]. Given a user-

provided template of parameterized linear inequalities at a specific program point,

INVGEN computes parameters that instantiate the template into a concrete invariant

that is valid. In order to do this, INVGEN collects dynamic information for the

minimized program using both concrete and symbolic execution, and converts it into

a series of constraints. Then, a constraint solver computes parameter values which

satisfy these constraints, and these parameters are used to instantiate the templates

into concrete invariants.
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Terragni et al. proposed GASSERT (Genetic ASSERTion improvement), an auto-

mated oracle improvement technique based on genetic algorithms which can generate

Java program assertions [TJP+20]. This approach employs samples of correct and

incorrect program states in order to evolve program assertions, with the goal of min-

imizing false positives and false negatives. A novel co-evolutionary approach they

propose evolves two populations of assertions concurrently, one prioritizing false

positives and the other false negatives. Their tree-based assertion representation al-

lows arbitrary numeric or Boolean sub-expressions in the generated assertions. They

also leverage the OASIS (Oracle ASsessment and Improvement) test oracle assessor

[JCHT16, JCHT18], which is a tool that combines test case generation to reveal false

positives and mutation testing to reveal false negatives in the oracle. The false posi-

tives and negatives identified by OASIS are incorporated into the set of correct and

incorrect states, and a new iteration of the GASSERT evolutionary algorithm is run.

More recently, Molina et al. presented EVOSPEX, an approach for automatically

generating postcondition assertions for Java methods [MPAF21]. Similar to GAS-

SERT [TJTP20], this approach also relies on samples of correct and incorrect subject

method executions and a genetic algorithm. However, their approach uses a different

representation for postcondition assertions, in which they are modelled as variable-

length conjunctions of assertions with a single relational (e.g. ==, ! =, >, ...)

or quantification (all or some) operator. Since this approach employs an assertion

representation which involves quantification, it is especially suited for reference-based

classes with strong representation invariants, such as container types like ArrayList or

HashMap.

Molina et al. later developed SPECFUZZER, a dynamic invariant detection tech-

nique which employs grammar-based fuzzing [MdA22]. This approach generates

invariants by following these steps: (1) The Grammar Extractor generates a specific

grammar for the assertions of a given class, (2) the Grammar Fuzzer produces candi-

date assertions from the class grammar, (3) the Invariant Detector filters out assertions

invalidated by a test suite using Daikon [EPG+07], and (4) the Invariant Selector uses

a mutation analysis mechanism to cluster and rank assertions in order to discard weak

or redundant ones.

3.3 Test Optimization

Test optimization refers to various techniques that may be used to reduce the cost and

maximize the effectiveness of the testing process. This is particularly important in the

domain of CPSs, where testing is very costly, taking over 50% of the development

40



3.3. Test Optimization

resources in some domains [BG11]. This section describes the relevant work on

various test optimization techniques.

3.3.1 Test Selection

Test selection is an optimization technique which focuses on selecting a subset of

the available test cases in order to maximize the cost-effectiveness of testing. Test

minimization is a variation of test selection where redundant test cases are permanently

eliminated from the test suite. In contrast, test selection usually does not imply that

the tests which are not selected are redundant. Thus, test minimization can effectively

be considered a special case of test selection [Har11, YH12].

Kazmi et al. presented a systematic literature review of 47 studies addressing

regression test case selection [KJMG17]. In that work, it is revealed that the ma-

jority of relevant publications between 2007 and 2015 employ “mining and learn-

ing” approaches, with Genetic Algorithms (GAs) being the most popular techniques

[KJMG17].

In practice, there are often multiple criteria to consider when selecting test cases,

which is why test selection is often formulated as a multi-objective problem [YH07].

Yoo and Harman proposed the use of pareto-efficient multi-objective algorithms for

this task, and presented an empirical evaluation demonstrating this approach [YH07].

Their experiments employed the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) algorithm and the statement coverage and computational cost objective functions

[YH07]. They also proposed vNSGA-II, an island extension of NSGA-II which uses

multiple sub-populations in order to achieve wider pareto-frontiers. The same authors

later applied multi-objective search algorithms to tackle the test minimization problem

[YH10]. They proposed Hybrid NSGA-II (HNSGA-II), a hybrid algorithm which

complements with NSGA-II with a greedy algorithm in order to achieve a higher

efficiency [YH10].

Panichella et al. presented DIversity based Genetic Algorithm (DIV-GA), a multi-

objective genetic algorithm which injects new orthogonal individuals during the search

process in order to encourage diversity [PODPDL14]. In their experiments, they found

that DIV-GA outperforms both greedy and a multi-objective algorithm (vNSGA-II

[YH07]) which employ only coverage and cost objectives.

Pradham et al. proposed an approach for test case selection when there is a

limited time budget for executing test cases [PWAY16]. They evaluated various

multi-objective and weight-based search algorithms, and concluded that the Strength

Pareto Evolutionary Algorithm 2 (SPEA2) outperformed every other technique in both

real-world and large-scale artificial case studies [PWAY16].
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In the domain of CPSs, Arrieta et al. proposed a black-box test case selection

approach using NSGA-II and six different objective functions based on anti-patterns

and similarity measures [AWM+19]. The specific objective functions they explored

were: Instability, discontinuity, growth to infinity, output minimum and maximum

difference, input-based test similarity, and output-based test similarity [AWM+19].

Their study concluded that these black-box metrics outperform white-box approaches

for test selection in this domain [AWM+19]. A newer study which used the same

approach and case studies proposed effective seeding strategies to help the search

converge [AVAS22].

Beyond GA approaches, some research has explored fuzzy expert systems [XGKS14]

and PSO [DSPBA13]. Furthermore MBT techniques have also been applied for test

case selection. In this regard, Hemmati et al. explored similarity-based test case

selection approaches for test suites generated from state machines, and evaluated them

on two industrial case studies from the embedded systems domain [HAB13].

3.3.2 Test Prioritization

Test prioritization is an optimization technique loosely related to test selection. In

contrast to test selection or minimization, test prioritization aims to order a set of test

cases to be executed [KIJT18]. The goal is to execute highly significant test cases first

in order to achieve some objective, such as revealing faults, earlier [KIJT18]. The

main advantage over test selection is the ability to dynamically incorporate (and insert

in the correct order) new test cases while the test suite is being executed [KIJT18].

Khatibsyarbini et al. recently performed a systematic literature review on test case

prioritization approaches in regression testing [KIJT18]. Their study revealed that

search-based techniques are the most popular, which include GAs [BS19, BLC13,

BKH+15] and greedy algorithms [LHH07, AWSE16b], among others. The most

common objectives for such approaches are coverage [BLC13, BKH+15], fault

[RUCH99, YL12] or requirement [SHD16] targets [KIJT18]. Some approaches also

exploit historical data from previous test execution results [KP02, LCTK13, CKL16].

Henard et al. performed a comparison of black-box (e.g. input similarity based) and

white-box (e.g. coverage based) approaches, and concluded that the results were

comparable in terms of achieved Failure Detection Ratio (FDR), and that there was

also a great overlap in the specific faults located [HPH+16]

Coverage-based prioritization approaches aim to achieve a high coverage of the

system under test as early as possible [YH12]. This involves analysing the SUT, and

using measures such as branch or statement coverage [HZZ+15]. Yoo et al. identified

two main types of coverage approaches: total and additional [YH12]. Total cover-
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age approaches simply prioritize the test cases based on their individual coverages,

while additional approaches aim to achieve a complete coverage earlier by priori-

tizing test cases with a higher coverage on yet uncovered parts of the SUT [YH12].

Khatibsyarbini et al. observed that coverage-based approaches tend to employ greedy

algorithms [KIJT18].

While most approaches target regular software rather than CPSs, some recent

studies have tackled this domain. Arrieta et al. presented a test case prioritization

approach for configurable CPSs using weight-based search algorithms [AWSE16b].

Their approach converts a multi-objective problem into a single objective one by

assigning relative weights to the normalized test execution cost and Fault Detection

Capability (FDC) objectives [AWSE16b]. They later extended this approach to support

CPS product variants [AWSE19]. This extension also considers multi-level testing

for CPSs, since many non-functional requirements (e.g. timing constraints) are only

testable at the Hardware-in-the-Loop (HiL) level [AWSE19]. On the other hand,

Mossige et al. proposed a test case scheduling approach to enable running tests

concurrently on multiple machines [MGS+17]. Their solution employs constraint

programming in order to provide the schedule which will result in the fastest possible

execution of the test suite while ensuring consistent access to shared resources (e.g.

hardware devices) [MGS+17]. Zhang et al. presented an approach for generating and

minimizing CPS test suites based on uncertainty [ZAY19a]. Their solution includes

various multi-objective test generation and minimization strategies which aim to

reduce the number of test cases while maximizing various uncertainty-based coverage

measures [ZAY19a].

3.3.3 Metamorphic Testing

Since MT employs multiple test cases at once, generic test optimization techniques

may not be straightforward to apply, although many concepts can be carried over.

One of the most straightforward approaches to optimize MT is adopting existing

test case generation or selection approaches, and applying them to the source test

cases. Most contributions on MT use randomly generated test cases or pre-existing

test suites for the creation of source test cases, but some other approaches have been

explored [SFSRC16].

Batra and Sengupta proposed a source test case selection approach which employs

GAs to maximize the code coverage [BS11]. Chen et al. proposed another approach

based on GAs, which aims to diversify the test inputs by partitioning the input domain

and trying to cover as many of these partitions as possible [CCL+12]. Sun et al.

proposed an approach for generating source test cases based on their associated path
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constraints, which are obtained through symbolic execution [SLF+22]. The path

distance among test cases can also leveraged to guide the prioritization of source test

cases [SLF+22].

On the other hand, Arrieta recently proposed an approach for selecting metamor-

phic test cases for deep learning systems based on the cost and the confidence of the

test inputs, considering both the source and the follow-up test cases [Arr22a].

Another approach for optimizing MT is selecting the most effective MRs and

discarding ineffective or redundant ones.

Many studies have analysed correlation between the features of MRs and their

effectiveness, and pointed out specific characteristics which might indicate whether

they are strong or weak. For instance, studies have shown that MRs with more

dissimilar executions in their corresponding source and follow-up test cases (in terms

of white-box coverage) tend to be stronger [CHTZ04, CZC13]. On the other hand,

Chen et al. concluded that black-box approaches are inadequate for identifying

effective MRs [CHTZ04]. However, Mayer et al. later pointed out that the black-box

criteria employed by Chen et al. were inadequate, and suggested other criteria [MG06].

For instance, they identified that MRs consisting of simple equalities tend to be weak,

as they are susceptible to many types of false negatives (e.g. if the result is multiplied

by a factor, or if a constant is added to the result) [MG06].

As for automated approaches, Spieker and Gotlieb proposed Adaptive Metamor-

phic Testing (ART), an approach which uses a reinforcement learning technique

(contextual bandits) to select MRs which are more likely to reveal faults [SG20]. On

the other hand, Srinivasan et al. proposed the use of coverage and fault based criteria

to prioritize MRs [SK22].

Composite MR generation approaches can also be considered a type of MT

optimization. In their work on this topic, Liu et al. explicitly present achieving

the same effectiveness with fewer MRs as a potential advantage of composite MRs

[LLC12].

3.4 Analysis of the State of the Art

This section aims to identify the potential research avenues for CPS development

process automation, focusing on test automation and alleviating the oracle problem.

The adoption of Continuous Software Engineering (CSE) tools is a necessary step

to bring DevOps methods to the CPS domain. Some partial solutions for related tasks,

such as deployment [RVT+18, FNS+19, PT20], monitoring [VCHB+18, MRB19], or

validation [BSB+16, MLM18] have already been proposed, but a holistic and generic
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architecture for DevOps which addresses all the concerns specific to CPSs is yet to be

defined. Combemale and Wimmer described a more complete DevOps architecture,

but it is tailored for model-based development, and is therefore not suitable for

CPSs which do not follow a model-based design extensively [CW19]. A unified

architecture should address the concerns specific to CPSs, such as heterogeneous

tooling or high reliability requirements. A major challenge in this regard is the need

to integrate components from different vendors and tailor the DevOps system to the

requirements from different industry practitioners (existing development models, tool-

chains, etc.) [ABG+20]. Microservice architectures can provide a flexible solution

for this by defining the DevOps system as a set of loosely-coupled and composable

tools [OEC17, GL18].

Regarding CPS testing, many systems require the verification of performance

or Quality of Service (QoS) metrics, for which defining a test oracle is particularly

challenging due to their unpredictability and non-determinism. When it comes to

performance testing, most approaches so far rely on either setting threshold values

which can never be violated, detecting known types of problems, or comparing

the results against existing data [JH15]. In some cases, it is possible to execute

the same performance tests multiple times in order to detect inconsistencies among

executions, or even performing comparisons within the results of the same execution

[JH15], but the most common approach is to perform regression testing against an

existing baseline (e.g., a previous version of the system) [FJA+15, JH15, SHNF15].

Metamorphic testing can be an alternative to regression oracles which can mitigate

the oracle problem by defining output relations among different test case executions.

The application of performance metamorphic testing has not been explored yet in

many domains [STDRC17, STDRC18], and most of the existing examples of this

approach address testing software applications rather than CPSs [SFSRC16]. It would

be interesting to define MRs over performance or QoS metrics in order to detect

failures in CPSs, which is an avenue that has not yet been explored extensively by

any previous work. Another potential contribution could be comparing MT with other

alternative test oracles, such as approaches based on Machine Learning (ML).

One of the major challenges of MT is the definition of correct and effective MRs,

which should have as few false positives and negatives as possible. The definition of

such MRs is known to require practical experience with the SUT and its application

domain [SFSRC16], which results in a high cost in the form of time spent by domain-

experts to define the MRs. Some semi-automated approaches which aim to assist the

test engineers in this task have been proposed [CPX16, SFP+19], but they can only

mitigate this issue to a degree, since they require domain-specific information and
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user input. Template-based approaches have also been evaluated with great success in

the domains of query-based systems [SDTRC19] and machine-learning [XZC+20],

but such templates are domain specific, and significant work needs to be done in order

to develop such templates for a new domain. Some fully-automated MR generation

approaches have also been presented. AutoMR uses an approach based on PSO which

can discover polynomial numeric MRs of a function, and also includes processes to

filter out incorrect and redundant MRs [ZZC+19]. Despite this approach being fully-

automated and generic, it is limited to numeric, and specifically polynomial properties

only. Furthermore, while the generated MRs can be expected to be correct, they are

not necessarily effective, since the search process does not use incorrect input/output

pairs, and thus does not have a concept of false negatives. A fully automated approach

which is more generic and considers false negatives in order to identify more effective

MRs could help the adoption of automatic MR discovery tools. GAssert is a tool which

implements such an approach, using Genetic Programming (GP) in order to generate

Java program assertions based on correct and incorrect test executions [TJP+20],

but this technique would have to be adapted to the domain of CPSs and to MT in

particular.

Regarding the optimization of MT, several approaches have been proposed for

source test case generation or selection [BS11, CCL+12, SLF+22], as well as for MR

selection [SG20, SK22]. However, these approaches only consider a single dimension

for the optimization: Source test case selection approaches do not consider the MRs

to be used nor the follow-ups generated, whereas MR selection approaches do not

consider the source and follow-up test cases. Arrieta recently proposed an approach

which considers both source and follow-up test cases [Arr22a], but it is tailored for

deep learning systems and does not consider the selected MRs (e.g. maximizing MR

diversity). A more general approach for selecting metamorphic tests considering all

factors (sources, follow-ups, and MRs) could target more complex objectives at once

(e.g. maximizing MR diversity and input diversity for both source and follow-up test

cases), which may allow for a more effective test selection process for MT.
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Chapter 4

Theoretical Framework

This chapter presents the objectives (Section 4.1) and hypotheses (Section 4.2) for the

research. Then, a high-level overview of the theoretical framework for metamorphic

testing and its intended application context is shown, and the areas of contribution

are highlighted (Section 4.3). Finally, a description of the case studies employed to

evaluate the contributions is provided (Section 4.4).

4.1 Research Objectives

The goal of this thesis is to develop and evaluate Metamorphic Testing (MT) based
methods to alleviate the oracle problem for Cyber-Physical Systems (CPSs). Based

on the research opportunities identified after analysing the state of the art, we defined

the following objectives:

� Objective 1: Develop and evaluate a MT approach to alleviate the oracle problem

for CPSs were the effectiveness of specified oracles is limited.

� Objective 2: Identify and document useful Metamorphic Relation Patterns (MRPs)

that could aid the development of Metamorphic Relations (MRs) for CPSs from

different domains.

� Objective 3: Implement and evaluate a tool for automatically generating MRs

using Genetic Programming (GP).

� Objective 4: Implement a metamorphic test selection tool and evaluate differ-

ent metaheuristics and fitness functions in order to maximize the resulting cost-

effectiveness of MT.

4.2 Research Hypotheses

The research work will try to prove the following hypotheses:
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� Hypothesis 1: MT can detect faulty behaviours of CPSs that cannot be detected

with specified oracles. This corresponds to research objective 1.

� Hypothesis 2: The definition of MRPs can help define effective MRs for different

domains. This corresponds to research objective 2.

� Hypothesis 3: The use of GP can allow the automatic generation of effective MRs.

This corresponds to research objective 3.

� Hypothesis 4: Multi-objective search algorithms can be used to increase the

cost-effectiveness of MT by selecting a subset of the metamorphic tests. This

corresponds to research objective 4.

4.3 Overview of the Theoretical Framework

Figure 4.1 depicts the theoretical framework for metamorphic testing, which is appli-

cable for the verification of CPSs. Section 4.3.1 describes the application context in

which this framework is intended to be applied, whereas Section 4.3.2 describes the

framework itself.

4.3.1 Application Context

CPSs are inherently complex systems which include both software and hardware

components [Lee08, Alu15]. During the lifecycle of these systems, the software is

constantly evolving to adapt to new requirements, fix vulnerabilities, or correct bugs

[AGA+20]. However, with the existing engineering practices for CPSs, releasing and

deploying new software versions to production is a time-consuming and error-prone

activity.

The high cost of developing new software for CPSs comes from the need of

manual intervention for many key processes which could potentially be automated,

such as configuration, deployment, monitoring and verification. In other domains,

such as web development, DevOps practices have streamlined these processes and

minimized the time to market for software changes. Unfortunately, these practices are

yet to be adopted in the domain of CPSs.

The adoption of DevOps techniques for CPSs is a largely unexplored subject, so

there is no standard to base on for defining the related methods and tools. On this note,

we first developed a taxonomy in order to elicit the requirements for a CPS DevOps

pipeline, and we applied it in two industrial case studies [AGA+20]. Furthermore,

we later proposed a microservices-based design for this pipeline [GAA+21b] which
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Figure 4.1: Overview of the theoretical framework and the contribution points of this
dissertation

49



4. THEORETICAL FRAMEWORK

addresses these requirements. Part II of this thesis describes the proposed DevOps

framework for CPSs in detail, and the specific problems that need to be solved.

In this thesis, we focus on the verification sub-problem of the DevOps framework,

and more specifically in the test automation problem. One of the main issues for

automating testing is the test oracle problem [BHM+14], which refers to the inability

to determine whether a test outcome is correct or incorrect. This problem forces the

reliance on human oracles in many CPSs, resulting in manual or semi-manual testing

processes. We evaluate MT as a solution to this problem, and we identify and address

some of the gaps in the state of the art for this technique.

4.3.2 Metamorphic Testing Framework

In this section we describe the framework for MT, which is based on the existing

literature on this technique [CCY98, SFSRC16, STZC20]. The MT process comprises

5 main steps (numbered rectangular boxes), and the specific contribution points are

highlighted in green and orange, corresponding with the Parts and Chapters were the

contributions are presented in this paper. The research objectives specifically target

steps 1a (Objective 2), 1b (Objective 3), and 4 (Objective 4), while Objective 1 aims

to develop and evaluate the overall framework in the context of CPSs.

The steps to perform metamorphic testing for CPSs include the following:

� Step 1: MR Generation. The first step is the generation of MRs to use as auto-

mated test oracles. This task usually requires advanced domain expertise in order

to get correct and effective MRs, and it is usually not obvious whether an MR

will be effective at detecting failures or not before evaluating it. Because this is a

complicated and highly unexplored process, we evaluate two alternative approaches.

This step outputs the MRs for the Systems Under Test (SUTs).

I Step 1a: Manual MR Generation. The most common way of generating

new MRs for a system is to define them manually. Besides having practical

experience with the SUT and its domain [SFSRC16], this often requires some

imagination, since MRs are often not mentioned in requirement documents.

MRPs can help this process by allowing the reuse of common ideas for MRs.

I Step 1b: Automatic MR Generation. An alternative approach to generate

MRs is to employ automated techniques. These can be based on static [KB13,

KBBH16] or dynamic [ZCH+14, ZZC+19] analysis of the system, as well

as other artifacts like system documentation [BGE+21]. On the one hand,

these approaches can potentially solve the reliance on human imagination and

expertise. On the other hand, these approaches can be difficult to implement
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and costly to apply, and automatically generated oracles may be prone to false

positives [JCHT16, TJTP20].

� Step 2: Test Generation. The second step is the generation of test cases. The

typical workflow for MT is to generate source test cases first, and then apply

some transformations to generate follow-up test cases for each MR such that

the input relation is satisfied. With this formulation, test cases can be generated

using traditional test generation strategies, including random testing, black-box

techniques (e.g. input diversity-based) [ND12, AWM+17b, AWM+17a], and white-

box techniques (e.g. coverage-based) [ND12, MNBB16, MNBB18]. This step

remained out of the scope of this thesis. The output of this step are source test cases

for the SUTs.

� Step 3: Follow-up Generation. For each MR and source test case combination, it

is then necessary to generate one or more follow-up test cases such that the output

relation of the MR can be checked. This is often a straightforward task, provided

that a rule for transforming test cases such that the input relation is satisfied can be

easily derived. This step remained out of the scope of this thesis. The inputs for

this step are the MRs (input relations) and source test cases, and the outputs are

follow-up test cases. We call each source and follow-up test case pair for a specific

MR a Metamorphic Test.

� Step 4: Test Selection. As an optional optimization step, a subset of the generated

Metamorphic Tests can be selected in order to minimize the cost of execution

while ideally maintaining most of the failure detection capability. This selection is

typically done based on the features of the test cases [AWM+19]. The inputs for

this step are the available Metamorphic Tests, and its output is a subset of them.

� Step 5: Test Execution. Finally, the Metamorphic Tests are executed in the SUTs,

and the results are collected. For CPSs, the test executions can happen at many

levels, such as Software-in-the-Loop (SiL), Hardware-in-the-Loop (HiL), or even

the real operation environment [SH09, AWSE16a]. This step usually incurs the

highest cost, and for environments such as HiL, manual intervention is often

required. Some execution environments, particularly those that involve networking

or physical components, may be inherently non-deterministic. In such cases, the

same tests might have to be executed multiple times [GM07, GMSF07]. This

step remained out of the scope of this thesis. The inputs for this step are the

Metamorphic Tests and the MRs, and the outputs are the test results (pass or fail

verdicts).
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4.4 Case Studies

In order to evaluate the proposed testing approaches, we employ two different CPSs:

An industrial case study from the elevation domain (Section 4.4.1), and an open-source

case study from the automotive domain (Section 4.4.2).

4.4.1 Multi-elevator Installations

The first case study is an industrial multi-elevator system provided by Orona, one of

the leading companies from the sector in Europe [Oro22]. This case study is used in

Chapters 5, 6, 7, 8 and 9.

A multi-elevator installation is a complex CPS where the software and hardware

components interact with the goal of transporting passengers safely while optimizing

certain Quality of Service (QoS) metrics. These metrics to optimize vary depending

on the customer needs, and include aspects such as the waiting times of the passengers

or the energy consumption of the system.

Architecture

Figure 4.2 shows a simplified view of the system architecture. As the image shows, this

is a distributed CPS, where most of the hardware components are interconnected via

Controller Area Network (CAN) bus. These components include the traffic master, the

individual elevator controllers, and various user interface elements, such as displays

and elevator call buttons.

Among all these components, the traffic master is the computational unit in charge

of managing the overall passenger flow of the installation. This component has many

software modules, including the elevator dispatching algorithm, which decides which

elevator should attend each call. The dispatching algorithm has a high impact on

the QoS metrics of the installation. There are many different dispatching algorithms

which optimize for different QoS metrics, but the one most commonly used at Orona

is a deterministic rule-based algorithm called Conventional Group Control (CGC).

The source code of this algorithm has been written in C in order to make it portable to

different targets, including embedded systems and desktop hardware (for simulation-

based testing).

Unlike other optimization systems, such as source code compilers, the dispatcher

algorithm needs to make predictions of where the passengers will arrive, so the QoS

metrics need to be optimized based on incomplete information. In general, the choices

of the algorithm are based on the most common passenger behaviour patterns. Because

of this, there is no objective definition of which dispatching behaviours or obtained
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Figure 4.2: Architecture of Multi-elevator Installations

QoS measures are valid for a specific scenario, as tradeoffs need to be made when

choosing which elevators to send for each passenger call. This is one of the reasons

why there are not many automated test oracles available for this system.

Execution Environment

Figure 4.3 illustrates the current software development process at Orona. After the

initial requirements elicitation step, the software is developed at the SiL level, using a

simulator to mock the environment and hardware components of the system. After

a release candidate has been developed and verified at the SiL level, the software is

deployed into a HiL testbench, where most of the real hardware is used and the tests

are run in real-time. Finally, the system is deployed into the real elevator installation,
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but is still monitored in order to detect issues and send feedback to the development

team. The testing process, as well as fixing detected issues, becomes increasingly

expensive at the latter phases of the process, so ideally most of the system’s verification

activities should be performed at the SiL level.

For the evaluation of different testing methods in this thesis, we employ the SiL

level execution environment. The main tool employed in this environment is Elevate

[Lim22], a domain-specific tool which can simulate entire multi-elevator installations,

including the software, the hardware and the environment.

The test cases to be executed on Elevate are defined in two files. On the one hand,

the building data is an XML file which describes the elevator installation, including

the building layout and characteristics of the elevators. This includes information such

as the number of floors, number of elevators and their initial positions, the maximum

speed of each elevator, etc. On the other hand, the passengers list contains information

about the passengers that will call the elevators to get to a different floor. For each

passenger on the list, the file contains: (1) the arrival time, (2) the arrival floor, (3) the

destination floor, and (4) the passenger’s weight, as well as some extra information

which determines the passenger’s behaviour under various circumstances.

Testing Interface

To describe test cases for this system, we define the operation serve(E,S,C), were

E is a list of integers indicating the floors where the elevators are initially positioned,

S is the nominal speed of the elevators, and C is a list of passenger calls.

The output of this operation is a QoS measure obtained by the elevation installation,

which determines how effective the dispatching algorithm was for the scenario defined

by the test case inputs. The goal of the test oracles is to determine whether the obtained

QoS measures indicate a system failure or not.

Specifically, the QoS metrics employed for verifying the system are:

� Average Waiting Time (AWT). This is the average time the passengers have to

wait from the moment they call for an elevator until an elevator opens its doors at

the calling floor, measured in seconds. This is among the most important metrics

to provide a good user experience [BAS15], and the main metric that the most

common CGC dispatching algorithm aims to optimize.

� Total Distance (TD). The sum of distances traversed by all the elevators in the

installation, measured in floors. This metric can reveal faulty behaviours such as

sending multiple elevators for a single call or moving elevators for no reason, which

would not necessarily have an impact on the AWT.
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� Total Movements (TM). The total count of movements (engine start-ups) per-

formed by all the elevators. This metric is also intended to detect failures similar to

the ones described in TD.

4.4.2 Autonomous Driving System

The second case study is an open-source Autonomous Driving System (ADS) pub-

lished by MathWorks [Mat]. This case study is used in Chapter 7.

The goal of this system is to autonomously drive a car from its initial position to a

destination location through a path of reference waypoints. The quality of the ADS

can be measured by QoS metrics such as the time to arrive to the destination or the

degree of deviation from the reference path.

Architecture

Figure 4.4 depicts the overall architecture of this system. The subsystem on the top

left (green) contains the reference waypoints that are passed to the ADS controller. On

the bottom left (white) is the ADS controller which contains the software controlling

the vehicle. The largest subsystem (blue) contains all the physical components of the

system, including the internal vehicle dynamics and the environment interactions.

For any given initial and destination positions, the system will run a pathfinding

algorithm do determine the shortest path between them. This pathfinding is based on

a map of the road with reference road points which the vehicle is allowed to traverse.

Once the path is determined, the autonomous vehicle must traverse the reference

points in the path, moving in a straight line from its current position to the following

reference point. The ADS will also receive a nominal speed as an input, which is the

reference speed that should be maintained in stable conditions, although the controller

may reduce it when the vehicle is adjusting its angle.

Besides the vehicle controlled by the ADS, known as the ego vehicle, other moving

cars might be present in the road, which can force the ego vehicle to stop and wait until

the path is clear in order to avoid collisions. In order to detect these other vehicles,

the autonomous vehicle has a proximity sensor which the controller can use to detect

obstacles.

Execution Environment

This system has been implemented entirely on Matlab/Simulink [DVDBSR13, Mat22],

which is also the environment used to execute test cases on the system.
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The scenarios for this system are defined by three main elements. Firstly, there is

a map containing the reference points for the ADS, each of which is a joint between

roads, as well as the ego vehicle’s initial and destination points. Secondly, there are

tunable parameters for the ADS, such as the nominal speed for the vehicle. Finally,

the scenario may contain obstacles that the ADS must avoid, which in this case are

other vehicles with an initial position and moving trajectory.

Testing Interface

We define the operation move(P, pA, pB, S,O) in order to describe a test execution

of this system. Here, P is a set of guidance points to follow, pA is the initial position

point, pB is the destination point, S is the vehicle’s nominal speed, and O is the set of

obstacles in the environment (other vehicles).

The output of this operation is a QoS measure obtained by the ADS, which

determines how effective it was for the scenario defined by the test case inputs. The

goal of the test oracles is to determine whether the obtained QoS measures indicate a

system failure or not.

The QoS metrics employed for verifying this system are:

� Time To Destination (TTD). The time it took from the start of the scenario

execution until the vehicle is stopped at its destination point, measured in seconds.

The ADS is expected to reach its destination as fast as possible, provided that the

nominal speed is respected and there is no risk of collision against obstacles or

deviating too much from the reference path.

� Total Trajectory Offset (TTO). This is the integral of the offset between the

vehicle’s angle and the reference angle. This metric determines how accurately the

vehicle is facing the next reference point in its path. A high value of this metric

may, for instance, indicate that the vehicle is having trouble to stabilize its direction

because it is moving too fast. The ADS is expected to keep the value of this metric

reasonably low in order to provide a safe and comfortable driving experience.
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Chapter 5

Requirements for CPS DevOps

Cyber-Physical Systems (CPSs) are holistic systems with typically long lifecycles, due

to factors like the complex interactions between software and physical components

and the strict safety requirements [Alu15]. Nevertheless, the software of these systems

needs to be updated in order to keep up with customer demands, new regulations, or

bug fixes, among other factors [AGA+20]. Currently, the development and deployment

processes are not well integrated together, resulting in a high cost for deploying new

versions of the CPS software.

This chapter aims to lay the groundwork for the adoption of DevOps practices in

CPS software development by: (1) defining a taxonomy of the relevant concepts, and

(2) using the taxonomy to elicit the requirements for a DevOps pipeline for CPSs. We

base this work on two industrial case studies from the elevation and railway domains.

This work has been developed in a collaboration between Mondragon University,

Ikerlan, Mälardalen University, Orona, and Bombardier Transportation [AGA+20].

The work for this thesis has been mainly focused on the validation subsystem of

the DevOps taxonomy, and the facets of the taxonomy that do not involve a specific

subsystem have been developed jointly.

5.1 Introduction

The design, development and deployment of CPS software is a complex and costly

process which can take over a year from the start until it is deployed into the production

environment [Alu15]. This is mainly due to the lack of synergy between the different

phases of the process, as well as the lack of automation in many of the key steps.

In other domains, such as web development, DevOps [EGHS16] methods have

already been adopted, and the entire process from development to deployment to

production is completely streamlined. For CPSs, however, adopting DevOps methods

requires a substantial change to ensure that the much stricter quality, dependability

and safety requirements are met. Furthermore, some tasks such as the monitoring
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and replication of failures in operation can be much more challenging due to the high

uncertainty of the dynamics between physical and software components.

To this end, we develop a taxonomy of the concepts relevant to capturing the

requirements of DevOps systems for CPSs, in order to assist with the elicitation of

such requirements for different CPSs. This work has been developed based on two

industrial case studies from different domains, for which we also elicited DevOps

requirements using the taxonomy. This chapter will focus mainly on the validation

aspect of the DevOps system, which is the part that is relevant to this thesis.

The rest of this chapter is structured as follows: Section 5.2 describes the method

used to define the taxonomy, Section 5.3 introduces the two case studies in which this

work is based on, Section 5.4 presents the taxonomy itself, Section 5.5 discusses the

related work, and Section 5.6 concludes the chapter and highlights future work in this

line of research.

5.2 Taxonomy Definition Method

The taxonomy definition process was based on the guidelines provided by Ralph

[Ral18]. The first step proposed by these guidelines is choosing a strategy. In this

regard, “grounded theory and interpretive case studies” was chosen, although it was

complemented with the personal experience from industrial and academic partners

who had worked on the relevant CPSs for years.

Following this, we performed the site selection for the taxonomy. In this case, our

sites are two different CPSs developing organizations and their corresponding systems:

Orona (elevation domain) and Bombardier (railway domain). Both of these sites are

relevant to our research questions, since they are large, industrial CPS developers with

interest in adopting DevOps methodologies to their development process. Furthermore,

the fact that the sites belong to different industry domains might indicate that the

resulting taxonomy is generalizable to an extent.

Next, the data collection was performed on both sites. Two of different proposed

data collection strategies were used [Ral18]. On the one hand, direct observation of

the processes at each of the companies was employed, which involved reviewing their

internal documentation such as process descriptions or source code comments. On

the other hand, interviews to multiple domain practitioners with different positions

and experience levels were employed to obtain additional information. The format of

the interviews was semi-structured, since the development of a taxonomy on such an

unexplored topic required the questions to be open-ended.

Following this, the data analysis step was performed by coding the observations
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from the collected data into the taxonomy. Here, an initial taxonomy had been

developed based on concepts from the existing DevOps methods for web development,

and the new taxonomy was generated by modifying this template based on the collected

data.

Finally, a conceptual evaluation was performed in order to ensure that the final

taxonomy encompasses all the relevant concepts. The taxonomy was validated by

involving additional researchers and practitioners from both of the industrial case

studies. As suggested by Ralph [Ral18], the participants were asked to identify

weaknesses in the theory, as well as to define the evaluation criteria to determine

whether the taxonomy is credible and transferable.

5.3 Case Studies

This section describes the two industrial case studies employed to define and evaluate

the taxonomy. The first case study belongs to the vertical transportation domain (i.e.,

elevation), and the second one is from the railway transportation domain. In what

follows, we describe the relevant subsystems and software development processes that

are currently employed in these companies, as well as the expected benefits that would

be provided by the adoption of DevOps methodologies into their current workflow.

5.3.1 Elevation Domain

Orona, one of the leading elevator companies in Europe, works on the design, manu-

facturing, installation, maintenance, and upgrading of elevators, escalators, moving

ramps, and walkways.

A multi-elevator installation is a complex distributed CPS with various components

interacting with each other in order to provide the best possible Quality of Service

(QoS) for its passengers. This QoS can be measured by employing domain-specific

metrics such as the Average Waiting Time (AWT), and more recently, additional

criteria such as the energy consumption. Most of the changing functionalities of the

elevators, including the optimization of QoS metrics, is provided by the software

controlling the elevator installations.

An overview of the development process at Orona was previously shown in Figure

4.3, and the system’s architecture is described in Section 4.4.1. As a reminder, the

traffic master is the component which manages the passenger flow of the installation,

and includes software modules such as the elevator dispatcher algorithm and the access

control. The traffic master is constantly evolving in order to improve functionality, fix

bugs, or adapt to new requirements and regulations. Currently, as depicted in Figure

62



5.3. Case Studies

4.3, the deployment of a new version of this software requires it to be validated at

the SiL and HiL levels, as well as a deployment and test at the elevator installation

location, performed manually by a technician.

Given this complicated process, and the several manual and semi-manual steps

involved, this product would greatly benefit from DevOps methodologies to streamline

them. More specifically, the transition to the Hardware-in-the-Loop (HiL) phase

requires hour of work in order to ensure a proper configuration by domain experts,

and the test executions at this level also currently require manual supervision. Ad-

ditionally, the deployment of new software versions, currently a manual task, could

also be performed remotely, combined with a set of automatic checks of the new

software’s functionality. On the other hand, the monitorization of the installation

and the subsequent reproduction of the relevant scenarios at the SiL phase is also

a complex and error-prone process which complicates the identification of bugs or

possible optimizations. With DevOps methodologies, these tasks could be further

automated, resulting in an increase of the software quality and a reduction in time to

deploy changes.

5.3.2 Railway Domain

Bombardier Transportation (BT) is a leading company from the rail industry which

manufactures, maintains and manages rolling stock. Its products include light rail

vehicles, metros, and commuter and regional trains.

Train control systems are distributed CPSs with many components, such as dis-

plays, buttons, or engine control systems. The Train Control and Management Sys-

tem (TCMS) is the core of this system, and is involved in most of the functionalities

of the train, either for control or monitoring. As a component with many complex soft-

ware modules, it is prone to requiring updates to add new functionality or reconfigure

or fix existing modules.

The test plan documents the testing process of the system, including scope, ap-

proach and resource allocation. It also describes the PASS/FAIL criteria for each

of the tests, which is linked to one or more of the system requirements. All the

software development processes (including requirements engineering and testing)

are performed according to safety standards and regulations [CEN01]. Figure 5.1

depicts the software development process at BT. As shown in the figure, the testing is

performed at three different levels: (1) software component test, (2) function test, and

(3) system test. Component and function tests are generally executed using Model-

in-the-Loop (MiL) or Software-in-the-Loop (SiL) simulators, while system tests are

typically performed on a HiL environment.
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Figure 5.1: Software Development Process at BT [AGA+20]

The execution of test plan at all levels follows the same general procedure: (1)

prepare test infrastructure, (2) develop software components/features, (3) implement

test cases, (4) build and deploy on test bench, (5) execute test cases, (6) record failures

(if any), (7) generate test report, (8) release software when no test failures remain.

Many test activities, such as setting up the test environment, currently require manual

intervention.

The adoption of DevOps methodologies is expected to allow the efficient manage-

ment of different configurations and requirements across the different testing levels,

resulting in a faster and less error-prone process. Similarly to the other case study,

the deployment of new software and monitoring of the installation are also tasks that

are planned to be automated. The information collected by the monitoring is also

expected to enable the generation of better test cases for subsequent testing tasks.

5.4 Taxonomy for CPS DevOps

There are two main classification approaches to organize a taxonomy: enumerative

or faceted [RH17]. An enumerative taxonomy contains a predefined set of classes,

resulting in very simple schemes that are appropriate for well-explored domains with

an established and complete knowledge base. On the other hand, a faceted taxonomy

contains multiple dimensions for the classifications, resulting in more flexible, yet
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complex structures. The latter is considered more appropriate for new domains which

are not yet well-established [UBBM17], and we therefore chose the faceted approach

for our new taxonomy.

The final taxonomy consists of four orthogonal facets, one of which contains

multiple levels of sub-categories. The full taxonomy is shown in Figure 5.2.

5.4.1 Lifecycle stage

This facet of the taxonomy represents the X-in-the-loop system execution level to

which the requirement applies to. While some requirements may be specific to one of

these levels, many of them will be applicable to multiple or even all of them. This is

an aspect specific to CPS development which is not present in other software-related

domains, and thus, it is not something considered by current DevOps systems. As

shown in Figure 5.2, our taxonomy considers four different classes, which are the

ones relevant to our case studies, and the most common ones in our experience.

Nevertheless, it is true that more execution levels might be needed for other case

studies, such as Processor-in-the-Loop (PiL). Given the innovative nature of this work,

we consider our taxonomy a template which can be expanded in the future depending

on the needs of other users from different domains, such as adding new lifecycle stages

that are not considered in our current taxonomy.

The first X-in-the-loop execution level we consider is MiL, where the entirety

of the system is defined and executed in a modelling environment, such as Modelica

[FPA+20, 216] or Simulink [DVDBSR13, Mat22]. Such an environment allows

an easy definition, analysis and debugging of heterogeneous systems (environment,

hardware, and software), which allows an early and efficient detection of many types

of failures. Nevertheless, there are many potential issues that cannot be revealed at this

level, such as those related with communications between components or problems

that can only be observed in real-time execution environments.

Next, the SiL level consists in running the real CPS software on a development

machine and a simulated environment. Using the real software allows the detection of

additional problems which could not be observed at MiL, such as numeric precision

issues. However, many aspects of the hardware and the environment are still not

testable, and the fact that the software is not running in the target processor means that

even some software-related issues can still be missed.

Following that, the HiL execution level consists in deploying the software on

the real hardware, but some controlled environment. For instance, in the elevation

domain, the real computational unit, buttons and indicators are used, as well as the

real Controller Area Network (CAN) bus for communication between them, but the
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elevators and the shaft are miniature models. At this level, the system executions

are real-time, which allows the detection of many new error classes, but also makes

executions much more costly.

Finally, the Operation execution level corresponds with the real environment in

which the CPS is supposed to run, possibly the production environment. The system

will be running real scenarios at this stage, so executing specific test cases will no

longer be possible. Nevertheless, some non-intrusive verification techniques, such as

runtime verification [LS09, BFFR18], can still be performed.

5.4.2 Scope

The scope defines the applicability of a requirement, and is intended to specify and

enable its reusability. The three classes we define in this taxonomy are generic, and

may have to be adjusted or extended for each organization depending on the strategy

used to define products.

The organization scope refers to DevOps requirements that are applicable through-

out all the products from the organization, and corresponds with the most general

and reusable requirements. For example, this may include being able to deploy files

through a SSH connection, if that is the method that will be used to deploy software

updates throughout all the organization’s products.

Next, the product scope refers to more specific requirements that only affect

a particular product line, but can be reused across the different configurations or

variants of the same product. As an example from the elevation domain, for elevator

dispatchers, the DevOps system should be able to deploy and launch the domain-

specific simulator used to test the product at the SiL execution level.

Finally, the release scope indicates that the requirement is specific to a particular

product variant or configuration. For instance, the verification of the access control

feature of an elevator dispatcher will be specific to the installation where such a

security feature has been requested by the customer.

5.4.3 Domain

The domain of a requirement is a facet intended to facilitate its assignment to the

appropriate team within the organization. We currently envision two categories, the

first of which would be handled by DevOps specialists (could be the organization’s IT

department), whereas the second one would be assigned to the domain experts (i.e.,

the product development team).

The first domain class is infrastructure, which encompasses requirements for

the DevOps infrastructure itself. As an example, these might include monitoring the
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status of the deployment process. The roles responsible for these requirements do

not need to have knowledge of the CPS under development, but should ideally be

knowledgeable of DevOps systems instead.

The other domain we propose is application, which encompasses requirements

related to the product under development (i.e., the CPS). For instance, these require-

ments might include system monitoring, such as tracking the status of the elevators

installation based on CAN messages between components. These requirements would

be best defined and managed by the same domain experts who develop the product,

since this is the group which possesses the relevant knowledge.

5.4.4 Subsystem

The subsystem facet defines the DevOps task for which the requirement is relevant.

Our version of the taxonomy specifies four DevOps tasks: Deployment, Monitoring,

Validation and Integration.

The deployment subsystem allows uploading new software versions and other

files to a target machine [NFE+19], either in the real CPS in production or in a

development environment (e.g., for testing). The deployable artifacts include not only

components related to the CPS, but also components of the DevOps system itself,

such as monitors or test oracles.

The monitoring subsystem extracts data from the CPS so that it can be analysed

[LMLK14]. This analysis may be done by other subsystems for tasks such as valida-

tion, failure reproduction, or predictive maintenance. Furthermore, the data can also

be stored to perform offline analyses later on.

The validation subsystem provides various techniques to perform testing and

other verification and validation activities, such as different types of test oracles. This

subsystem also encompasses the execution of the CPS in a controlled environment for

testing activities, such as launching a simulation.

Finally, the integration subsystem manages the interaction between multiple

subsystems in order to have them perform useful tasks jointly. For instance, the test

oracles used for validation typically require monitoring the system and collecting the

necessary execution data, and these DevOps components will also need to be deployed

with all their dependencies before they can start running. We define an integration

subsystem which will streamline the integration of the other subsystems in order to

facilitate the full automation of the DevOps pipeline.

Next, we describe the validation subsystem in more detail, as this is the DevOps

aspect that is directly relevant to this thesis.
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Validation Subsystem

Testing, verification and validation activity requirements are all encompassed by this

subsystem. This task is particularly important in CPSs, since they are often safety-

critical or have failure modes which can have severe consequences. This is also the

subsystem to which the work of this thesis will contribute to, and where the proposed

verification methods or techniques will be implemented. Recall that in the context of

CPS development, there are multiple execution levels where verification tasks can be

performed, with testing the software in the real CPS (Operation) usually being the

last and most costly environment. Before that, the software is typically verified in

multiple MiL, SiL and HiL setups, where various simulator tools and test benches are

used to execute test cases. In order to facilitate a full automation of such a multi-level

verification process, the test oracles which encode the various requirements of the

CPS should be reusable at all the execution levels, including Operation.

We consider three sub-classes of requirements for this subsystem: Those related

to the artifacts required to execute the CPS, the requirements related to the test inputs,

and those referring to the test oracles.

Firstly, the execution artifact class refers to the requirements related to the system

execution itself. Here, we distinguish the following sub-categories: (1) Environment

conditions in which the System Under Test (SUT) is executed (e.g. the elevators instal-

lation shall have 10 floors). (2) The requirements for the SUT itself (e.g. the elevators

dispatcher shall be compiled into a library which can interface with the SiL simulator).

(3) Tool requirements, encompassing simulation or modelling environments required

to execute the system (e.g. the Elevate simulator shall be used to execute test cases).

Secondly, the test input class is related with the requirements for the data which

will be injected to the SUT in order to test it. We distinguish the following sub-

categories: (1) Test input data related requirements (e.g. at least one test input must

have concurrent passenger calls). (2) Format of the test inputs (e.g. the test inputs will

be provided as a XML file compatible with the Elevate simulator).

Thirdly, the test oracle class is related with the components which determine

whether the SUTs execution has revealed a failure or the behaviour was correct. When

the SUT is executed, the monitoring subsystem will record execution data, which

can be consumed by a test oracle in order to emit a PASS or FAIL verdict. Note,

however, that the monitoring data may be used for purposes other than verification,

which is why monitoring is classified as a different subsystem. This class is further

divided into: (1) Validated property, referring to the system’s requirements which

are checked by the test oracle (e.g. the AWT of the installation shall not be higher

than 30 seconds). (2) Activation criteria, which defines the conditions that must be
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met in order to consider the test oracle’s verdict valid or useful (e.g. the checked

property shall hold at any point starting from a minute after the execution starts until

the execution finishes). (3) Required data, defining the data fields that the test oracle

needs to receive from the monitoring system (e.g. the oracle shall be provided with

the AWT of the installation of every 5 minute window). (4) Verdict format, the syntax

and semantics of the verdicts provided by the test oracle (e.g. the test oracle shall

provide a quantitative verdict from 0 to 1, with 1 meaning full compliance and smaller

values meaning a smaller degree of compliance).

5.5 Related Work

There are many previous works in the literature which have developed taxonomies for

complex systems. Roman et al. [Rom85] presented a classification of requirements

specification techniques, highlighting the role they have in the development cycle and

the common problems that are faced. Jarke et al. [JBR+93] describe an ontology of

requirements engineering with three different worlds: (1) Subject world (representation

of the domain), (2) Usage world (interfaces with the users), and (3) Development

world (evolution process of the system). Hughes et al. [HRS94] proposed a taxonomy

for requirements analysis with two dimensions: (1) Concerns, which relate to the

views of the stakeholders and (2) frames, which represent the views of technical

specialists. Nuseibeh et al. [NKF94] propose a viewpoint interaction model to

reconcile multiple partial requirements specifications with different representation

schemes and development strategies, since CPSs are usually developed by multiple

participants with different requirements that may be complimentary, overlapping, or

even contradictory with each other. White et al. [WE95] defined a taxonomy for

specifying complex system requirements and specifications, including non-functional

aspects and specification for the growth and change of the system. They also present a

classification for different specification approaches, ranging from informal (natural

language) to formal (mathematical). Hasan et al. [HLN14] documented the techniques

for specifying non-functional requirements that exist in the literature and performed a

qualitative analysis of their scopes and characteristics.

Regarding requirement elicitation approaches for CPSs, Reza et al. [RKS+16]

elicited quality-based requirements, such as those related to availability or perfor-

mance, for a CubeSat spacecraft system. Wiesner et al. [WHHT16] present a gamified

approach for eliciting stakeholder requirements, which they successfully applied in

three industrial CPS use cases. Loucopoulos et al. [LKC19, LKM22] introduce

the e-CORE (early Capability Oriented Requirements Engineering) framework, an
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asset-centric approach for the traceable requirements engineering of Cyber-Physical

Production Systems (CPPSs), which they apply to an industrial case study from the

automotive domain.

To the best of our knowledge, this is the first taxonomy for the requirements

of a DevOps system for CPSs. Due to the particular challenges that this specific

type of systems pose, the requirements will be significantly different compared to

other domains where DevOps systems have already been implemented, such as web

development. Thus, we have generated a new taxonomy based on the requirements

from two industrial systems belonging to different domains.

5.6 Conclusion and Future Work

This chapter describes the development of a taxonomy which can be used to elicit

requirements for CPS DevOps systems. The taxonomy has been developed based

on two industrial CPS case studies from different domains, following the guidelines

proposed by Ralph [Ral18]. Experts from both case studies have been interviewed

in order to develop and validate the taxonomy, and a set of requirements have been

instantiated for each of the case studies based on it.

The current taxonomy is intended to be used as a template that can be extended or

modified for other domains, where the desired scope or the requirements for a DevOps

system might be significantly different to our current case studies. In the future, a

more comprehensive version of the taxonomy may be published based on additional

sources from the literature and experiences from other industrial case studies. The

Subsystem facet of the taxonomy might also be extended in order to support additional

functionalities, such as unforeseen situation detection or automated fault recovery.
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Chapter 6

Microservices for CPS DevOps

Considering the requirements for a Cyber-Physical System (CPS) DevOps pipeline

we defined in Chapter 5, this chapter presents a domain-agnostic DevOps architecture

for CPSs based on microservices [GAA+21b].

This work has been developed in a collaboration between Ikerlan, Mondragon

University, Simula Research Laboratory, and Orona [GAA+21b], in the context of

the Adeptness project [ade]. Same as for Chapter 5, the work for this thesis has been

mainly focused on the validation subsystem of the DevOps architecture, with some

general aspects developed jointly.

6.1 Introduction

CPSs integrate software with hardware components and the physical environment

[Alu15]. The software of these systems, which implements an increasing amount of

their functionality, needs to evolve constantly in order to keep up with bug fixes and

new requirements [AGA+20]. In order to reduce the cost and increase the quality of

the software development process, the adoption of DevOps techniques in the context

of CPS development has been proposed in Chapter 5. In that chapter, the groundwork

for eliciting the requirements for such techniques is laid down, and the requirements

for two industrial CPSs are elicited.

This chapter presents an architecture for CPS DevOps based on microservices,

which has been instantiated for the elevation case study described in Chapter 5.

The current processes employed by Orona, the company developing the elevator

systems, still rely on manual intervention in many instances: The software deployment

and validation steps are still semi-manual, and there is a lack automatic feedback

mechanisms that prevent the accurate replication of bugs observed during operation

in a controlled environment. The architecture presented in this chapter supports

automatic deployment, continuous monitoring of the installation, and fully automated

validation. This chapter will focus mainly on the validation subsystem, which is the

72



6.2. Architecture Development Methodology

Figure 6.1: Methodology for developing the DevOps microservice architecture
[GAA+21b]

one where we will integrate the techniques developed in this thesis.

The rest of this chapter is structured as follows: Section 6.2 describes the method

used to develop the architecture, Section 6.3 architecture itself, Section 6.4 presents

the prototypical implementation and its evaluation, Section 6.5 discusses the related

work, and Section 6.6 concludes the chapter and highlights future work in this line of

research.

6.2 Architecture Development Methodology

We first defined a systematic methodology to develop the DevOps architecture, in-

cluding the definition of the requirements and the technical decisions made to satisfy

them. Figure 6.1 shows an overview of the full process, including the requirements

elicitation and the definition of the architecture itself.

An architecture based on microservices was opted for due to its advantages in terms

of complexity management and error-proneness [OEC17, GL18]. We specifically

considered the fact that the DevOps system would be implemented incrementally, and

that extensions and changes are expected to be introduced regularly due to the novelty

of DevOps toolchains in the domain of CPSs.

Thus, the architecture development methodology comprised the following steps:

1. Requirements definition

1.1. Use case definition. First of all, the use-case scenarios for Orona were defined

by domain experts. These scenarios are accessible in [Ikeb].

1.2. Stakeholder requirements elicitation. After defining the use-case scenarios,

a domain expert elicited a total of 56 requirements from the stakeholders. The

requirements can be found in [Ikea].
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1.3. Toolchain requirements elicitation. Using the taxonomy developed in Chap-

ter 5 [AGA+20], the stakeholder requirements were classified into two main

categories: (1) System requirements for the overall architecture, and (2) the

requirements specific to the individual subsystems. These requirements, along

with the test cases to validate them, can be found in [Ikea].

2. Architecture development

2.1. Requirements analysis. Using the requirements elicited in the previous

steps, the technical requirements for the architecture were defined by a system

architect.

2.2. Microservice identification. A series of microservices were identified, and

the previously defined requirements were assigned to each of them.

2.3. Interface identification. On the one hand, a single high level interface for all

the microservices was defined for both C and Python implementations. On

the other hand, the specific interface for each of the microservices was defined

in the form of synchronous and asynchronous messaging protocols.

3. Instantiation. As a final step, the microservice templates were instantiated and

integrated together.

6.3 Microservices Architecture

The proposed architecture comprises several services which can be composed together

and reused across different lifecycle stages when possible. Each microservice is

responsible for a single specific task within the CPS development and operation

process, and provides different communication protocols to interact with it. This

design ensures flexibility in terms of both extending and scaling the system, which

might be necessary due to the heterogeneous nature of CPS ecosystems and their

ever-changing requirements [ade].

All the microservices defined in this architecture provide a basic common inter-

face, which includes endpoints for synchronous (HTTP) and asynchronous (MQTT)

communication. The synchronous interfaces allow getting information about or con-

trolling a specific microservice, whereas the asynchronous interfaces can be use to

discover the available microservices. All of these common interfaces are part of the

basic microservice template that has been developed [ade].
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Figure 6.2: Overview of the DevOps microservice architecture [GAA+21b]

6.3.1 Subsystems

Figure 6.2 shows an overview of the architecture instantiated for Orona’s systems. The

DevOps subsystems developed for this case study are: Deployment, monitoring, and

validation, as well as an automation server to orchestrate the tasks to be performed by

the rest of the subsystems.

The automation server is the subsystem which performs the programmed DevOps

tasks by orchestrating other subsystems. It also monitors the source code repositories

in order to trigger specific plans when a new commit is made. When a new plan is

launched, the required artifacts are generated, Docker images are created and stored in

the Docker registry, and the configurations or plans for the individuals subsystems are

pushed so that they start working and coordinate with each other. As shown in Figure

6.2, the automation subsystem is executed exclusively in the cloud.

The deployment subsystem is responsible for moving the artifacts required for

a specific task to their target nodes. This subsystem comprises the deployment

orchestrator (cloud) and the deployment agent (target device).
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The monitoring subsystem provides information about operational variables of

the CPS, possibly in real-time. It provides this information to other subsystems

which may need it, such as the oracles from the validation subsystem. This subsystem

comprises the monitoring orchestrator (cloud) and the monitoring agent (target device).

Finally, the validation subsystem validates the system’s behaviour and reports

to other subsystems when a potential failure is identified. We now describe this

subsystem in more detail.

Validation Subsystem

The continuous validation subsystem performs verification and validation activities

at all the X-in-the-loop execution levels, including Operation. At the Model-in-the-

Loop (MiL) and Software-in-the-Loop (SiL) levels, these activities can be executed

using only software and generic computational resources (with a tool such as El-

evate [Lim22] simulating the physical parts of the system), whereas Hardware-in-

the-Loop (HiL) and Operation require setting up the physical components of the

system and interacting with them. This subsystem currently comprises five different

microservices:

� Validation orchestrator: This microservice receives the validation plan from the au-

tomation server and executes it. This orchestrator communicates with the validation

agents from different nodes in order to perform the validation tasks. A validation

plan may contain tasks which require multiple execution levels. This microservice

is intended to be executed in the cloud.

� Validation agent: These agents manage the validation tasks for a node. Their

tasks include launching the executions (e.g. launching the simulator tool at the SiL

level), activating the test oracles, and providing the oracle verdicts to the validation

orchestrator. Most of these tasks are handled by the next three microservices, which

are instantiated by this microservice. The agents are executed in the edge nodes.

� External tool: This microservice launches domain-specific tools which are required

to execute the CPS at the MiL, SiL, or HiL levels. In Orona’s case, two different

external tool microservices have been defined:

I Elevate launcher: The domain-specific simulator required for SiL executions.

I Controller Area Network (CAN) frames injector: A tool to simulate scenarios at

the HiL level by injecting frames to the system’s CAN bus, such as simulated

passenger calls.
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� Oracle: These microservices subscribe to the operational data published by the

monitoring subsystem and verifies the correctness of the CPS’s behaviour. In the

case of Orona, many of the oracles are based on the Quality of Service (QoS) mea-

sures from the system, such as the Average Waiting Time (AWT) of the passengers

or the energy consumption of the elevators installation. Some special types of

oracles have also been implemented, such as the metamorphic test oracles devel-

oped in this thesis [ASA+20, AVS+22a], or others that employ machine learning

[AAI+21, GAA+22].

� Uncertainty detection: This microservice employs machine learning techniques in

order to detect unforeseen situations in the system by combining operational data

and other information collected during development, such as test logs.

6.4 Implementation and Evaluation

In order to evaluate this architecture, a prototype implementation has been developed

for Orona’s SiL validation use case1. The prototype consists of a Jenkins pipeline

which incorporates all the subsystems described in Section 6.3. All the microservices

are provided as Docker images which have been pushed to a Docker registry.

The deployment subsystem continuously queries the repositories, and launches

the deployment pipeline when a change is made. An agent fetches and launches the

Docker images of the microservices, making sure that they are started correctly. The

monitoring pipeline configures the monitored variables and the corresponding topics

where their values will be published, and then activates the monitors so they start

publishing operational data. When all the monitors have been activated successfully,

the validation pipeline is started.

The validation pipeline configures the topics for the operational variables obtained

by the monitoring subsystem, as well as the topics where the oracle verdicts will be

published. Then, the microservices are activated, and the test oracles are continuously

polled until a verdict is issued. The verdicts will then be published to the corresponding

MQTT topics so that the success or failure of the validation can be reported.

If any failure happens during any step of this DevOps pipeline, the process is

aborted, all the Docker containers are stopped, the environment is cleared, and the

error is logged.

The work of this thesis is being developed in the context of the validation subsys-

tem of this architecture. The following are the benefits that this approach can bring to

Orona’s current verification workflow:
1Video of the prototype: https://youtu.be/uoq9n9k4kgc
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� While the unitary test cases of short scenarios will still be defined manually, the

generation of longer test cases will be based on real data from the installation,

rather than theoretical passenger profiles. The new test cases will be more likely to

reproduce real problems.

� The configuration of the validation processes will be based on pre-existing templates

rather than done from scratch. The execution of the validation processes will be

triggered automatically from Jenkins rather than manually by the developers.

� Automatic and reusable test oracles will be deployed throughout all the execution

levels, increasing the number of bugs detected and reducing efforts. Previously,

human oracles where used extensively, which are costly and error-prone.

� The bugs identified during execution will be reproducible in the development

environment using the data collected by the monitoring subsystem. Currently, logs

are enabled on demand and inspected manually, which is costly and less accurate.

6.5 Related Work

Microservice-based architectures are already being adopted in CPS and Internet of

Things (IoT) domains due to their flexibility, maintainability and scalability [BGT16].

Our architecture is designed to obtain these benefits for integrating DevOps processes

for CPS development.

Other works have proposed microservice architectures for the CPS itself. Alam

et al. propose an architecture based on Docker in order to develop highly modular

systems and simplify their management, and conclude that their approach ensures

the reliability and recoverability of the system, even for time sensitive applications

[ARF+18]. Thramboulidis et al. describe a framework for exploiting microservice

architectures in the domain of manufacturing systems, and weigh their pros (e.g.

flexibility) and cons (e.g. the high latency introduced by the microservice containers

and their integration protocols) [TVS18]. In contrast, our work adopts microservices

for development and operational tasks, rather than for the system itself.

Due to the long development life-cycles of CPSs, the adoption of DevOps meth-

ods in this domain is being studied in order to speed up the related processes

[ABG+20]. To this end, different techniques have been proposed in the literature,

such as model-based engineering [CW19] or Digital Twins [UQES20]. Our work pro-

poses a microservice-based architecture to solve this problem. Most of the proposed

methodologies and tools focus exclusively on specific DevOps activities, such as de-

ployment [RVT+18, FNS+19, PT20], monitoring [VCHB+18, MRB19], or validation
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[BSB+16, MLM18]. In contrast, our architecture integrates all of these subsystems,

and is designed to be extended if more functionality is needed.

There have also been works which apply microservice architectures for DevOps

activities in the domain of cloud infrastructure management. Kang et al. propose a

container-based approach to redesign the OpenStack deployment architecture, and

discuss the benefits and limitations [KLT16]. Miglierina et al. present a factory pattern

for automatically composing and configuring monitoring systems, which is intended

to reduce the entry-cost of adopting monitoring solutions [MT17].

6.6 Conclusion and Future Work

This chapter describes a microservices based architecture for enabling DevOps meth-

ods in the domain of CPSs, and also presents a prototype implementation for Orona’s

SiL system verification use case. This architecture is based on the requirements

elicited following the work from Chapter 5.

The adoption of DevOps in the domain of CPSs, where the development lifecycles

are so long and the tasks are so fragmented, has the potential to greatly reduce the

cost and increase the quality of these systems. However, due to the heterogeneous

environments used, as well as the different needs of each CPS, it is difficult to

formulate a generic DevOps system which can easily be adapted to all of them. Our

proposed microservice architecture provides the modularity and flexibility required

to enable the maximum reuse of the subsystem artifacts, while ensuring that new or

modified services can be integrated as easily as possible in order to satisfy the specific

requirements for each CPS.

In the future, this architecture will be refined and extended in order to accommo-

date more of Orona’s use cases. For instance, automatic recovery mechanisms are

planned to be integrated, which will support scenarios such as rolling back a software

release if a significant performance regression is detected during online verification.
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Part III

Oracle Problem



Chapter 7

Manual Generation of
Metamorphic Relations

Within the context of Cyber-Physical System (CPS) development methodologies, Part

II presented a general DevOps taxonomy and architecture proposal in order to improve

the quality and reduce the cost of developing these systems. This part focuses on the

more specific goal of this thesis, which is the mitigation of the test oracle problem in

CPSs. This is currently one of the major bottlenecks for the development of reliable

systems in a cost-effective manner.

This chapter presents a solution to the oracle problem in CPSs based on a tech-

nique called Metamorphic Testing (MT). More specifically, we research the cost-

effectiveness of employing this technique for determining whether the performance

or Quality of Service (QoS) measures obtained by a system are adequate or reveal

a system failure. Our research reports the results from applying this technique on

systems where the only current test oracles are regression tests and manual decisions,

and presents Metamorphic Relation Patterns (MRPs) and lessons learned which might

help the adoption of MT for CPS verification [ASA+20, AVS+22a].

The effectiveness of MT is then compared with regression oracles, which is another

solution that is being researched on the same industrial case study from the elevation

domain that we use to evaluate MT [AAI+21, GAA+21a, GAA+22].

7.1 Introduction

Cyber-Physical Systems (CPSs) are highly complex systems that often have strict

safety and robustness requirements, and their compliance must be ensured through a

thorough verification and validation process. Indeed, verification is one of the major

concerns when developing these systems, and is even estimated to consume over 50%

of the development resources in some domains, such as aviation [BG11].
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One of the main challenges in this context is deciding whether the system’s be-

haviour on a test case is valid or not. In performance testing, for instance, the exact

frontier between correct and incorrect values for a performance metric is often un-

known. This inability to determine whether a test outcome is correct or not is known as

the test oracle problem, and is widely recognized as one of the fundamental problems

in software testing [Wey82, BHM+14]. Currently, many industrial practitioners resort

to employing human oracles, i.e., having test engineers manually assess the outcome

of a test case [FJA+15, ASA+20]. Unfortunately, this solution is costly and does not

scale well as these system’s complexity increases, since it prevents the full automation

of verification processes.

Metamorphic Testing (MT) is an alternative approach to testing which consists of

comparing the outcomes from multiple test executions with known input relations in

order to identify violations of output relations, which are necessary properties that

must be held between test executions [CCY98]. These relations among the inputs and

outputs of multiple test executions are known as Metamorphic Relations (MRs). For

example, consider a self-driving vehicle traversing a given route, and the time it needs

to reach the destination as a performance metric. With traditional testing, it would

be difficult to determine if a time to destination obtained by the system (time(R))

is acceptable for the route R, since there are many factors to consider, such as the

vehicle parameters or the road topology. However, if we were to reverse the original

route, such that the vehicle would have to traverse the same path backwards, we would

expect the time to destination to be very similar to that of the original route. Formally,

we can define the output relation of this MR as: time(R′) ' time(R), and the input

relation as: R′ = reverse(R).

It is often possible to define abstract MRs, which represent many possible MRs

that can be instantiated for specific contexts. These abstract MRs can facilitate the

adoption of MT in new domains, since they provide patterns that can be referenced in

order to identify new MRs for those systems, which is a necessary step of MT. These

abstract MRs are called Metamorphic Relation Pattern (MRP) [SPTRC18, ZSCT18].

It is also common to define patterns where only the input or the output relations are

specified, which are called Metamorphic Relation Input Patterns (MRIPs) [ZSCT18]

and Metamorphic Relation Output Patterns (MROPs) [SPTRC18] respectively.

This chapter presents the Performance Variation (PV) pattern, a MRP which can

be used to identify failures in CPSs by defining MRs based on input changes with

predictable impacts in performance [AVS+22a]. Using this pattern, we instantiate

MRs for the contexts of testing Autonomous Driving Systems (ADSs) [Val21] and

elevation systems [ASA+20], and our empirical evaluation demonstrates that this
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approach is effective at detecting failures automatically based on performance metrics.

Furthermore, we compare the obtained results with threshold-based and regression

oracles [AAI+21, GAA+22], and conclude that our MRs provide clear advantages

over these alternatives in terms of cost-effectiveness. We also make the replication

package for the open-source ADS case study publicly available [AVS+22b].

The rest of this chapter is structured as follows: Section 7.2 presents the PV pattern

with various examples, Section 7.3 defines the experimental evaluation and discusses

the obtained results, Section 7.4 points out the threats to validity, Section 7.5 describes

the related work, and Section 7.6 concludes the chapter.

7.2 Performance Variation Pattern

This section describes PV, the MRP which encompasses all the MRs employed in this

chapter. We define this MRP as follows [AVS+22a]:

Performance Variation (PV). This pattern represents those MRs that involve a

change in the source input that has a predictable effect on the performance of the test

case execution.

Even though most of the research on MT has been focused on functional fault

detection [SFSRC16, CKL+18] so far, more recent work has started applying perfor-

mance metamorphic testing [STDRC17, STDRC18] in various contexts. This type of

MT defines relations based on the performance metrics of the system, such as execu-

tion time or energy consumption. For instance, if we have an algorithm which applies

a filter to an image, we can intuitively assert that applying the filter with an upscaled

version of an image should require more execution time than the original, since the

upscaled image has more pixels to process: T (filter(I)) ≤ T (filter(upscale(I))).

Performance measurements are inherently non-deterministic. In many systems,

external factors such as the system workload or environmental changes can affect them

in unpredictable manners, and the measurements themselves are often not completely

accurate. Many systems are also non-deterministic themselves, and may behave

differently even if same inputs are provided. The presence of so many possible sources

of noise means that it is not feasible to perform a direct comparison between the

performance measurements obtained from different system executions (e.g., expecting

identical execution times when running the same test twice). Several approaches have

been proposed to address this issue, such as using tolerance thresholds when comparing

performance measurements [MSK09a] or comparing statistical distributions from

multiple runs rather than individual measurements [GM07]. Thus, when we define our

MRs, we refer to a performance measurement being lower (.), higher (&) or similar
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(') than another, and we assume that some of the previous methods will be used to

mitigate the noise in the measurements.

In what follows, we present several MRIPs derived from the PV pattern, each of

which represents groups of MRs sharing the same input relation, as well as at least

one MR that can be instantiated for a specific performance metric. Note that these are

examples provided for illustrative purposes, and are therefore rather simple. Section

7.3 will present the MRs implemented in practice, and Section 7.3.4 will discuss the

specific reasons why some MRs were not used or implemented differently.

7.2.1 Elevation Control System

Passenger elevator control systems fulfil vertical transportation requests by coordi-

nating one or more elevators so that all the passengers are attended as efficiently

as possible. The performance or Quality of Service (QoS) of these systems can be

measured with various metrics, such as the total execution time for all the requests, the

average waiting time of the passengers, or the energy consumption of the elevators.

In order to describe our MRs, we define the operation serve(E,S,C) for elevator

installations, where E is the list of floor numbers where the elevators are positioned

initially, S is the nominal speed of the elevators, and C is a set of passenger calls

c ∈ C, each of which will be encoded as (ct, cs, cd), representing an arrival time

(ct), a source floor (cs), and a destination floor (cd). Figure 7.1a shows an example

scenario of a 6-story building with two elevators in floors 4 and 5, which we encode

as E = {4, 5}. For simplicity, we assume that the speed parameter S applies to all the

elevators equally, i.e., all the elevators are identical.

MRIP1: Additional calls. This MRIPs represents MRs where the follow-up test

inputs are constructed by adding one or more passenger calls to the source input.

When this happens, the performance of the system is generally expected to be the

same or worse, since there is extra work for the elevators to perform. For instance,

the total distance (TD) traversed by the elevators should increase or remain the same

in the follow-up test case, since the elevators need to attend to additional passengers.

This MR can be expressed as follows:

TD(serve(E,S,Cs)) . TD(serve(E,S,Cf )) (7.1)

where Cf = Cs ∪ c.
For instance, suppose a source test case consisting of the initial elevator positions

from Figure 7.1a, E = {4, 5}, nominal speed S = 1, and the set of passenger calls

Cs = {(1, 2, 3)}, representing a single call at t = 1 from floor 2 to floor 3. A follow-
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Figure 7.1: Elevator system scenarios.
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up test case can be created by adding a new call at t = 2 from floor 5 to floor 3:

Cf = {(1, 2, 3), (2, 5, 3)}. In this case, the TD should increase or remain the same:

TD(serve({4, 5}, 1, {(1, 2, 3)})) . TD(serve({4, 5}, 1, {(1, 2, 3), (2, 5, 3)})) (7.2)

MRIP2: Additional elevators. This MRIPs describes the relations where the

follow-up test input is generated by adding new elevators to the source input. In this

case, the performance of the system should generally be expected to improve, since the

elevator control system has more resources to work with. For example, the following

MR is an instance of this pattern, where adding one ore more elevators is expected to

decrease the Average Waiting Time (AWT) for the passengers:

AWT (serve(Es, P, C)) & AWT (serve(Ef , P, C)) (7.3)

where Ef ⊃ Es.

Figure 7.1b shows a possible follow-up of this MR for the scenario from Figure

7.1a. An additional elevator e3 is added at floor 4 in the follow-up test case, resulting

in Ef = {4, 5, 4}. Consider the arbitrary nominal speed S = 1 and passenger calls

C = {(1, 2, 3)}. In this scenario, the AWT should decrease or remain the same after

adding the new elevator:

AWT (serve({4, 5}, 1, {(1, 2, 3)})) & AWT (serve({4, 5, 4}, 1, {(1, 2, 3)})) (7.4)

MRIP3: Faster elevators. This pattern groups the relations where the nominal

speed of the elevators is increased for the follow-up test case (Sf > Ss). As an

example, the AWT of the follow-up test case is expected to improve due to the

elevators being able to attend calls faster, hence the following MR:

AWT (serve(E,Ss, C)) & AWT (serve(E,Sf , C)) (7.5)

where Sf > Ss.

For example, suppose the initial elevator positions from Figure 7.1a, the set of

passenger calls Cs = {(1, 2, 3)}, and the nominal speed Ss = 1. A follow-up test

case can be created by doubling the nominal speed of the elevators (Sf = 2). In this

scenario, we should expect the AWT of the follow-up test case to be lower, or at worst

similar to the one obtained in the source test case:

AWT (serve({4, 5}, 1, {(1, 2, 3)})) & AWT (serve({4, 5}, 2, {(1, 2, 3)})) (7.6)
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MRIP4: Initial position change. This pattern represents the MRs where the

initial positions of the elevators Es are randomly changed to any other positions Ef ,

but without changing the number of available elevators (|Ef | = |Es|). In this case,

most of the metrics such as the AWT should remain similar as long as the test case

is long enough, since the initial positions of the elevators should have an almost

negligible effect in longer scenarios:

AWT (serve(Es, S, C)) ' AWT (serve(Ef , S, C)) (7.7)

where Ef 6= Es and |Ef | = |Es|.
For example, suppose the initial elevator positions from Figure 7.1a are changed

to those from Figure 7.1c (Ef = {4, 2}), and we have the set of passenger calls

Cs = {(1, 2, 3), (2, 5, 3)}, and the nominal speed S = 1. We would expect the AWT

of both test cases to be similar:

AWT (serve({4, 5}, 1, {(1, 2, 3), (2, 5, 3)})) ' AWT (serve({4, 2}, 1, {(1, 2, 3), (2, 5, 3)})) (7.8)

MRIP5: Shift floors. This MRIPs represents MRs where all the positions for

both the elevators (E) and passenger calls (C) are offset by the same amount of floors.

In this case, all the metrics, such as AWT, would intuitively remain very similar, since

both scenarios are identical in terms of the relative positions between elevators and

passengers. Here, we are assuming that all the floors and distances between them are

identical. We can define the MR based on AWT as follows:

AWT (serve(Es, S, Cs)) ' AWT (serve(Ef , S, Cf )) (7.9)

where Ef and Cf are generated by offsetting the positions of Es and Cs by a

constant number of floors.

For instance, consider the source test case from Figure 7.1a, where Es = {4, 5},
S = 1, and Cs = {(1, 2, 3)}. A follow-up test case can be generated by offseting all

the positions to be one floor below, i.e., Ef = {3, 4} and Cf = {(1, 1, 2)}. In this

case, the AWT should remain the same in both scenarios:

AWT (serve({4, 5}, 1, {(1, 2, 3)})) ' AWT (serve({3, 4}, 1, {(1, 1, 2)})) (7.10)

7.2.2 Autonomous Driving System

ADSs are capable of planning the route of a vehicle and driving through it without any

human intervention. These vehicles (henceforth referred to as autonomous vehicles)
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(a) Original elevators state (b) MRIP4: Fewer guidance points

Figure 7.2: ADS scenarios.

may be cars, ships, drones or submarines, for example, but in this work we employ a

car with a waypoint-based navigation system. The autonomous car can specifically:

(1) Plan an efficient route from the source to the destination points, (2) traverse the

route while keeping track of its current position, and (3) identify and avoid obstacles

in its path.

In order to formulate MRs for this system, we represent its functionality as the

operation move(P, pA, pB, S,O), where P is a set of guidance points known by the

ADS, pA is the origin point (the vehicle’s initial position), pB is the destination point,

S is the vehicle’s nominal speed, and O is the set of obstacles in the environment,

which should be avoided by the vehicle. Note that both the origin and destination

points must be part of the set of guidance points from the map (pA ∈ P and pB ∈ P ).

Figure 7.2a shows an example scenario where the vehicle (green) must traverse several

guidance points (blue and purple) to reach the destination point (red). We use an

autonomous car to illustrate scenarios for the proposed MRs because this is the type

of vehicle we use in our empirical evaluation, but the MRs described in this section

are also applicable to drones, boats, and other vehicles, as long as their functionality

can be described with the move operation we have defined.

MRIP1: Faster vehicles. This pattern represents MRs where the vehicle’s nom-

inal speed is increased in the follow-up test case (Sf > Ss). In terms of Time To

Destination (TTD), we would expect a similar or lower time, since the vehicle can

89



7. MANUAL GENERATION OF METAMORPHIC RELATIONS

traverse its route faster as long as it can accelerate to its nominal speed.

The expected performance should be the same or better in terms of travel time,

since the vehicle can traverse its route faster as long as it can accelerate to its nominal

speed. Thus, we define the following MR:

TTD(move(P, pA, pB, Ss, O)) & TTD(move(P, pA, pB, Sf , O)) (7.11)

where Sf > Ss.

For instance, consider a scenario for a self-driving car where the route comprises

the waypoints P = {w1, w2, w3}, the starting point is pA = w1, the goal is pB = w3,

and there are no obstacles (O = {}). If the nominal speed Ss = 60 is increased for

the follow-up test case (Sf = 80), the time to destination should decrease:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) & TTD(move({w1, w2, w3}, w1, w3, 80, {})) (7.12)

MRIP2: Additional obstacles. This MRIP groups the MRs where follow-up test

cases are created by adding obstacles to the environment where the vehicle operates

(Of ⊃ Os). In this case, the TTD should be expected to increase, since the vehicle

must overcome the new obstructions in its path by taking otherwise unnecessary

actions. Obstacles may include static or dynamic objects, such as a cone in the middle

of the path or another vehicle driving through the same road. For TTD, we can define

following MR:

TTD(move(P, pA, pB, S,Os)) . TTD(move(P, pA, pB, S,Of )))

(7.13)

where Of ⊃ Os.

For the autonomous car example, consider a scenario where an obstacle, such as a

cone in the middle of the road is introduced as an obstacle, resulting in the car having

to steer to avoid it. Consider the inputs P = {w1, w2, w3}, pA = w1, pB = w3,

S = 60, with Os = {} and Of = {cone}. The alternative trajectory should be less

optimal than the original one, resulting in an increase on the TTD:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) . TTD(move({w1, w2, w3}, w1, w3, 60, {cone})) (7.14)

MRIP3: Reversed path. This pattern represent MRs where the path Ps is re-

versed in Pf . Intuitively, this should result in the source and follow-up test executions

90



7.3. Evaluation

being very similar in most cases, since the same path is traversed in both cases, only

in opposite directions. This MRIP has already been used multiple times in previous

publications [CHTZ04, SFSRC16], but here we use it to instantiate MRs based on

performance metrics. For example, the corresponding MR for TTD would be:

TTD(move(Ps, pA, pB, S,O)) ' TTD(move(Pf , pB, pA, S,O))) (7.15)

where Pf is obtained by reversing the order of the waypoints in Ps.

As an example, consider the inputs Ps = {w1, w2, w3}, pA = w1, pB = w3,

S = 60, and O = {}. The corresponding relation after reversing the waypoints to

Pf = {w3, w2, w1} would be:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) ' TTD(move({w3, w2, w1}, w3, w1, 60, {})) (7.16)

MRIP4: Fewer guidance points. This MRIPs corresponds with the MRs where

some of the guidance waypoints from the path of the vehicle are removed in the

follow-up test case (Pf ⊂ Ps). Here, we assume that there are enough waypoints such

that omitting some of them will still allow the vehicle to follow along a very similar

path, as shown in Figure 7.2b. With this transformation the traversed path will be very

similar, so the TTD should also remain similar:

TTD(move(Ps, pA, pB, S,O)) ' TTD(move(Pf , pA, pB, S,O))) (7.17)

where Pf ⊂ Ps.

Consider the same inputs as the other examples Ps = {w1, w2, w3}, pA = w1,

pB = w3, S = 60, and O = {}. The follow-up path could be generated by omitting

the intermediate waypoint w2, resulting in Pf = {w1, w3}. Then, the relation would

be:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) ' TTD(move({w1, w3}, w3, w1, 60, {})) (7.18)

7.3 Evaluation

This section describes two empirical experiments that aim to assess the cost-effectiveness

of applying the PV pattern for testing CPSs. We specifically aim to answer the follow-

ing Research Questions (RQs):
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� RQ1. Do the MRs trigger false positives, and if so, what is their cause? False

positives are likely to emerge due to the unpredictable behaviour of our Systems

Under Test (SUTs), especially since CPSs encompass physical components and an

environment which is often uncertain to some extent. We aim to investigate to what

extent false positives can happen in practice.

� RQ2. Is the PV pattern effective in revealing failures in CPSs? We aim to study

the effectiveness of the proposed MRP in terms of detecting failures in CPSs. Due

to the lack of specified oracles for our experimental subjects, we will employ

automated regression test oracles as a baseline for the results obtained by our MRs.

� RQ3. Do particular MRIPs or performance metrics perform significantly bet-

ter than others? We aim to compare the performance of different MRIPs and

performance metrics in order to determine whether some of them are subsumed

or complemented by others. Due to the high cost of MT and CPS testing, it is

particularly interesting to know if certain MRs can be skipped without sacrificing

effectiveness.

Table 7.1: Main characteristics of the experimental case studies [AVS+22a]

SUT Language Tests (source + follow-up) Execution time Mutants MRs Metrics
Elevator C 1340 (140 + 1200) ∼60 hours 89 9 3
ADS Simulink 1300 (100 + 1200) ∼8 hours 20 12 2

The main features of the two case studies employed in this empirical evaluation

are summarized in Table 7.1.

7.3.1 Evaluation metrics

This section presents the key definitions and metrics used for describing the experi-

mental results of both experiments.

We define a metamorphic test as a check of the output relation of an MR, which is

preceded by the execution of a pair of source and follow-up test cases that satisfy the

corresponding input relation. If the output relation is violated, the metamorphic test is

said to have failed, indicating a test failure.

Since our experimental setup involves mutation testing, the correctness of the test

executions is known a priori. We refer to a test failure over a pair of test executions

that is supposed to be correct as a False Positive (FP).

We employ three different evaluation metrics to determine the effectiveness of our

approach. First, we report the FPs, which is the ratio of test failures on the original
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system executions. FPs may result in unnecessary debugging efforts, so the lower the

ratio of FPs the better. Second, we report the Mutation Score (MS), which is defined as

the ratio of mutants killed by a MR. Specifically, we consider a mutant as “detected"

or “killed" when one or more of the metamorphic tests on it resulted in a failure,

and the corresponding metamorphic test on the original system did not. The higher

the mutation score, the better, since more seeded faults are detected. Third, we also

measure the Failure Detection Ratio (FDR), which is the ratio of metamorphic tests

on mutants that resulted in a test failure. A higher FDR is better, since it indicates that

more faulty behaviours are identified. In general, the MS represents the diversity of

faults detected, whereas the FDR represents their quantity.

7.3.2 Experiment 1: Elevator Control System

The first experiment is based on the industrial elevator control system developed by

Orona [Oro22], which was introduced in Section 4.4.1. This case study also inspired

the example MRs presented in Section 7.2.1, and the MRs we have implemented are

more refined versions of some of the ones presented in that section. In what follows,

we describe the implemented MRs, the experimental setup, and the results of the

experiment.

Metamorphic Relations

In this section, we define the MRs we have implemented for the elevation control

system based on the QoS metrics described in Section 4.4.1, namely Average Waiting

Time (AWT), Total Distance (TD), and Total Movements (TM).

The following MRs are defined assuming the elevator control system always

provides an optimal assignment. Unfortunately, a real elevator system does not

have the information needed to yield an optimal response, since this would require

knowing the passenger calls and destinations beforehand. In practice, this means

that false positives could arise for most of these MRs, since there is no objective

way of distinguishing between suboptimal behaviour which can be tolerated and

actual faulty behaviour. To mitigate this, as explained in Section 7.2, we define

approximate relations (',&,.) instead of strict ones (=,≥,≤). In practice, these are

implemented using tolerance thresholds for some of the MRs, meaning that a only

violations exceeding a certain value will be considered as test failures. This way, most

of the tolerable suboptimal behaviours will not result in a test failure. The specific

threshold values used for each MR are detailed in Section 7.3.2.

For simplicity, we still use the same notation introduced in Section 4.4.1 for

describing the system functionality, where serve(E,S,C) denotes an execution of
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the dispatcher, E is a set of floors indicating the positions of the elevators, S is the

nominal speed of the elevators, and C is a list of passenger calls.

MRIP1: Additional calls. We propose several MRs based on the MRIP from

Equation 7.1 in Section 7.2.1, where the passenger calls from the follow-up test input

are a superset of those in the source test inputs Cf = Cs ∪ c′. More specifically, we

append a single passenger call (c′) as the last call (arrival time at the same time of

the last call in Cs or later). With this MRIP, the TD traversed by the elevators should

increase, since there is one more passenger call to attend to. Nevertheless, we found

that it is possible to define a tighter —and therefore more likely to reveal failures

[SFSRC16]— MR by making an estimation of the worst case distance required to be

traversed for the additional call, measured as the sum of the largest possible distance to

the source floor and the distance between the source and the destination floors. Thus,

we define the following MR:

TD(serve(E,S,Cf )) . TD(serve(E,S,Cs)) + TDw(c′) (MR1TD)

where TDw(c′) is the worst case distance that an elevator will have to traverse

for serving c′, calculated as: TDw(c) = max(cs − 1, FLOORS − cs) + |cs − cd|,
where max(cs− 1, FLOORS − cs) is the longest possible distance that may need to

be traversed to reach the source floor cs, and |cs − cd| is the distance from the source

floor to the destination floor of the passenger.

A similar relation is defined based on the expected impact on the AWT:

AWT (serve(E,S,Cf )) . AWT (serve(E,S,Cs)) +WTw(c′) (MR1AWT)

where WTw(c′) is the estimated worst case waiting time for c′, calculated as

T (max(cs−1, FLOORS−cs)), wheremax(cs−1, FLOORS−cs)) is the longest

possible waiting distance that was also used for TDw(c′), and T (distance) is a

formula which calculates the time in seconds that it takes an elevator to traverse the

given distance considering its speed, acceleration and jerk.

Finally, the TM should increase or remain the same for attending the extra call:

TM(serve(E,S,Cf )) & TM(serve(E,S,Cs)) (MR1TM)

MRIP2: Additional elevators. Based on the MRIP from Equation 7.3 in Section

7.2.1, we define MRs where one or more additional elevators are enabled for the

follow-up test case. Formally, this input relation can be defined as Ef = Es ∪ E′,
where E′ is a nonempty set of new elevators. This provides the elevator control
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Figure 7.3: Conflicting objectives in elevator control systems.

system additional workers to perform its tasks (fulfilling passenger requests), so the

performance of the installation should generally improve. Since the main objective of

the elevator dispatching algorithm we are testing is optimizing for the lowest possible

AWT, we can expect this metric to be reduced, or at least not increase:

AWT (serve(Ef , S, C)) . AWT (serve(Es, S, C)) (MR2AWT)

Conversely, the TD is likely to increase if more elevators are moving in parallel,

since this metric conflicts with improving the AWT by attending calls in parallel with

multiple elevators. Figure 7.3 shows two conflicting solutions for the same scenario,

where Figure 7.3a obtains the best TD, but Figure 7.3b obtains a better AWT (TD is

doubled, but the passenger in floor 4 has a lower waiting time because it is attended

directly). Our SUT in this case would expected to favour the solution with a better

AWT. This is reflected in the following MR:

TD(serve(Ef , S, C)) . TD(serve(Es, S, C)) · (1 + |Ef | − |Es|) (MR2TD)
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where |Ef |−|Es| is the upper bound of the traversed distance based on the number

of additional elevators. For instance, if we add 2 more elevators, the TD could be

increased by up to 200% in the worst case.

For the same reason as TD, the TM can also be expected to increase if new

elevators are added:

TM(serve(Ef , S, C)) . TM(serve(Es, S, C)) · (1 +
|Ef | − |Es|

2
) (MR2TM)

where |Ef |−|Es|
2 is the upper bound of the traversed distance based on the number

of additional elevators. In this case, TM is only expected to increase by up to 50% for

each extra elevator because the number of movements to move the passengers to their

destination is the same either way, and only the movements to attend the calls may

increase. For instance, if we compare the scenario in Figure 7.3a and the one in Figure

7.3b, they perform 3 and 4 movements respectively.

MRIP3: Faster elevators. Following the MRIP from Equation 7.5 in Section

7.2.1, we define MRs where the speed of the elevators is increased in the follow-up

test case. Formally, Sf > Ss. Note that S affects all the elevators from the installation

equally. This change should generally reduce the AWT, since the faster elevators

should be able to attend the calls faster, hence the following relation:

AWT (serve(E,Sf , C)) . AWT (serve(E,Ss, C)) (MR3AWT)

As for the TD, it can be expected to increase instead. The reason for this is that

the slower elevators will cause more passenger calls to accumulate, resulting in more

passengers travelling together on average. As a result, the distance and number of

movements that the slower elevators will have to perform will generally be reduced.

For instance, consider the scenario depicted in Figure 7.3a, where the elevator is able

to pick up the passengers coming from floor 3 and 4 and have them travel together

to floor 6. If the passenger from floor 4 calls for the elevator 20 seconds before the

passenger from floor 3 does, an elevator which can reach floor 4 within 20 seconds

would not pick the passenger from floor 3 on their way, and would instead travel to

the first passenger’s destination, and then make another trip attend the call from floor

3. Thus, we define the following MR:

TD(serve(E,Pf , C)) & TD(serve(E,Ps, C)) (MR3TD)

For the same reason, TM is also expected to increase:

TM(serve(E,Pf , C)) & TM(serve(E,Ps, C)) (MR3TM)
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Experimental Setup

Test case template. The test cases used for our experiments are based on a template

project from a real multi-elevator installation with 10 floors and 6 elevators. For

simplicity, the 10 floors have the same height, and all the elevators use identical

configurations. Thus, E can be a set of size 2 to 6 (at least 2 elevators must be

enabled) of positions (floors 1 through 10), S corresponds with the real installation’s

configuration unless the MRIP changes it, and C is a nonempty list of passenger calls,

each of which must have different source and destination floors (1 through 10).

Source test cases. The source test cases were randomly generated based on the

template described above. Each test case lasts an average of 3 minutes. For each

generated test case, we selected a random number of elevators (between 2 and 6), a

random initial floor for each elevator (between 1 and 10), and a random passenger

list generated by uniformly distributing the calls across a fixed time period, as well

as randomly selected source and destination floors. In total, 140 random source test

cases were generated.

Follow-up test cases. The follow-up test cases for MRIP1 (additional calls) were

generated by appending a single additional call to the end of the passengers list. The

arrival time of the new calls was set to a random time between the last call and 30

seconds after it, such that: last(Cs) ≤ last(Cf ) ≤ last(Cs) + 30. For MRIP2

(additional elevators), follow-up test cases were generated by randomly selecting a

number of elevators |Ef | > |Es|, but also respecting that |Ef | ≤ 6. The additional

elevators were given random initial positions, and the positions of the ones that were

in Es remained unchanged. For MRIP3 (faster elevators), the speed of the elevators

was scaled: Sf = Ss ·m, where m ∈ {2, 3, 4}. In total, 1200 pairs of source and

follow-up test cases were generated: 420 for MRIP1, 360 for MRIP2, and 420 for

MRIP3.

Mutants. We employed mutation testing in order to assess the effectiveness of our

approach. Just et al. found that seeding artificial faults is a valid way of estimating the

ability for finding real faults [JJI+14]. For this experiment, we generated 89 mutants

of Orona’s elevator dispatching algorithm by seeding faults using traditional mutation

operators [ADH+89]. The faults were seeded manually in a uniform manner by a

domain expert. The 140 source test cases and 1200 follow-up test cases were executed

in the original SUT, as well as the 89 mutants, resulting in a total of (140 + 1200)×
(1 + 89) = 120, 600 individual test executions. The test execution outputs for all

the SUTs were compared with each other in order to ensure that none of them were

semantically equivalent.

Thresholds. As previously mentioned, we defined tolerance thresholds for some
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of the MRs in order to mitigate possible FPs. After some preliminary tests, we defined

a threshold of 30% for MR3TD and MR3TM. For instance, MR3TD was implemented

as: TD(serve(E,Pf , C)) ≥ TD(serve(E,Ps, C)) · 0.7. The remaining MRs were

implemented by evaluating them strictly, just replacing the approximate operators for

their strict equivalent (e.g. . becomes ≤). For example, MR3AWT was evaluated as

AWT (serve(E,Pf , C)) ≤ AWT (serve(E,Ps, C)).

Baseline

Table 7.2: Main characteristics of the test cases used by the baseline approach
[AVS+22a]

Test case Up Calls Down Calls Killed Mutants Duration (h:min)
real1 2756 1711 18 8:30
real2 3086 2366 18 9:10
real3 3438 3117 18 11:45
real4 3508 3050 21 13:35
theoretical1 3994 3377 20 12:55
theoretical2 3950 3379 18 12:55
theoretical3 3983 3379 26 12:55
theoretical4 3989 3402 18 12:55
theoretical5 3989 3387 18 12:55
theoretical6 3964 3384 19 12:55
theoretical7 3977 3386 21 12:55
theoretical8 3919 3433 21 12:55
theoretical9 3976 3354 18 12:55
theoretical10 3945 3407 20 12:55

The current practice for verifying elevator dispatching algorithm versions at Orona

at the Software-in-the-Loop (SiL) level includes the use of an automated regression

test oracle [AAI+21]. These oracles evaluate the QoS measures obtained by the SUT

over time by comparing it with the measures obtained by a golden implementation,

which is usually a previous version of the SUT. The regression oracles used at Orona

specifically check three different properties of the AWT: (1) No major regressions

must occur within a single 5 minute period, (2) no accumulated regressions over

multiple 5 minute periods, and (3) no significant regression in the global AWT. These

oracles are typically applied over a test suite comprised by 14 full-day traffic profiles,

4 of which are obtained from real installations, while the remaining 10 are based on

theoretical traffic profiles. Table 7.2 summarizes the key characteristics of these test

cases.
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In order to provide a fair comparison between our MRs and Orona’s current

automated testing approach, we perform mutation testing with the same 89 mutants,

but we have this baseline use the test cases from Table 7.2 because that is the test suite

that is used in reality. Out of the 89 mutants, 8 were unable to finish the simulations

due to getting stuck (some passengers were never attended), and we will consider

killed for our evaluation because an implicit timeout can easily detect the failure.

The total simulation time of all of the scenarios is 10,330 minutes, or approximately

7 days. However, the regression oracles require the execution for two systems, resulting

in double the execution costs. Therefore, the total execution time employed by this

approach is 20,660 minutes, or approximately 14 days.

Experimental Results

Table 7.3: Evaluation results on the elevator dispatcher (MS: Mutation Score, FDR:
Fault Detection Ratio, FP: False Positives) [AVS+22a]

MRIP MR MS (%) FDR (%) FP (%)

MRIP1
MR1AWT 29.21

85.39

88.76

0.19 0.00
MR1TD 65.17 0.88 0.24
MR1TM 75.28 0.98 0.24

MRIP2
MR2AWT 42.70

42.70
2.27 0.00

MR2TD 13.48 0.08 0.00
MR2TM 5.62 0.03 0.00

MRIP3
MR3AWT 31.46

44.94
0.55 0.24

MR3TD 33.71 0.24 0.00
MR3TM 6.74 0.06 0.00

Table 7.3 shows the experimental results obtained from the elevator control system

experiments, including the FP, MS, and FDR metrics. In what follows, we discuss the

results.

The experiments resulted in a single false positive (FP ratio of 0.24%) for three of

the MRs, namely: MR1TD, MR1TM and MR3AWT. These false positives were manually

checked with the help of domain experts in order to determine their cause. After some

investigation, we found that one of the cases was due to the Elevate simulator sending

information to the elevator dispatching algorithm in a way that Orona’s controllers

never do, which caused the algorithm to misbehave. This discrepancy is known

by the engineers at Orona, and is recognized and ignored when observed due to

the cost of changing the dispatcher or the controllers to fix it not being justifiable.

Another case was caused by an elevator skipping a passenger call in a scenario where

stopping for the passenger seemed to be a more obvious choice, which affected the
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QoS significantly because it was a rather short test case. This was caused by an

heuristic of the algorithm which provides a better QoS on average, even though it can

cause suboptimal behaviour in specific instances. Reporting a failing condition could

be considered acceptable in both of these cases, since both issues were identified and

fixes were attempted at some point, although leaving the algorithm unchanged was

found to be the preferable choice in the end. on the other hand, the false positive from

MR3AWT was found to be simply a statistical anomaly, where making the elevators

faster caused the scenario to diverge in an unfavourable way, which is a possible but

unlikely occurrence.

As for the overall effectiveness, the combined MS for our MRs was 88.76% (79

out of 89 mutants killed). As for the FDR, the combined result was 0.5% (1,593 out

of 320,400 metamorphic test failures). Note that we employ 89 mutants, with 1200

test pairs and 3 different MRs which can be checked for each of the metamorphic test

pairs, so the number of metamorphic tests is 89× 1200× 3 = 320, 400.

As shown in Table 7.3, the MS of individual MRs ranged from 5.62% to 75.28%,

whereas the FDR ranged from 0.03% to 2.27%, which implies that their effectiveness

varies greatly. A combination of MR1TD and MR1TM would seem to yield the best

results in terms of cost-effectiveness, since they provide a MS close to the global

aggregate and an above-average FDR. MR2AWT seems to be an outlier in terms of

FDR, and might also be cost-effective to use. These three MRs combined obtain an

aggregate MS of 87.64%, which is only one less mutant killed than with the aggregate

of all the MRs.

Comparing the results with the baseline presented in Section 7.3.2, which employs

regression oracles, the MRs killed 32 additional mutants. In terms of MS, the results

are 52.8% for the baseline and 88.76% for our approach, which is a very significant

improvement in effectiveness. On the other hand, since both approaches employ

test cases with very different features, there is no meaningful way to compare the

FDRs. As for the cost, which we measure in terms of execution time, the total cost of

running all of our metamorphic tests was 3678.62 minutes, or approximately 2 days

and a half. As for the baseline, the total cost of the test suite was 10,330 minutes, or

approximately 7 days, although the actual cost of the baseline could be considered

to be twice as much if the reference implementation needs to be run as well. In any

case, our approach reduces the cost of testing by over a factor of 3. Nevertheless, our

MRs resulted in 3 FPs, which may lead to some unnecessary efforts from the domain

experts, whereas the baseline approach is considered to not have FPs due to the way it

is formulated (performance regressions are assumed to never be false positives).

Next, we discuss the MSs obtained by the MRs grouped by MRIP or QoS metric
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in order to identify how they compliment or subsume each other. Figure 7.4 shows

the number of mutants killed by the MRs grouped by MRIP, whereas Figure 7.5

shows the MSs grouped by QoS metric. Looking at Figure 7.4, MRIP1 (additional

calls) is the most effective pattern in terms of MS by a large margin, and only three

additional mutants that can be killed by other MRIPs. Nevertheless, the fact that each

of its two best MRs yielded a false positive should be considered. As for Figure 7.5,

AWT is shown to be the least effective metric, even though this QoS metric is the

main optimization objective for our SUT. Despite this, AWT-based MRs still kill 6

mutants missed with TD and 7 mutants missed with TM. It is also worth noting that

the AWT-based MRs obtained the best FDRs with both MRIP2 and MRIP3.

7.3.3 Experiment 2: Autonomous Driving System

The second experiment is based on the open-source Autonomous Driving System

(ADS) published by MathWorks [Mat], introduced in Section 4.4.2. This case study

inspired the example MRs presented in Section 7.2.2, and the MRs we have imple-

mented are a superset of the ones presented in that section. next, we describe the

implemented MRs, the experimental setup, and the results of this experiment.

Metamorphic Relations

In this section, we define the MRs we have implemented for the ADS. We define

these MRs based on the QoS metrics described in Section 4.4.2, namely Time To

Destination (TTD) and Total Trajectory Offset (TTO).
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Just like in the previous experiment, we define approximate relations (',&,.)

implemented with tolerance thresholds, and later detail the specific threshold values

we used in Section 7.3.3.

We still use the same notation introduced in Section 4.4.2 for describing the system

functionality, where move(P, pA, pB, S,O) denotes an execution of the ADS, P is a

set of waypoints in the map, pA and pB are the origin and destination of the vehicle,

and S is the nominal speed of the vehicle, and O is a set of obstacles (other vehicles).

MRIP1: Faster vehicles. We propose several MRs based on the MRIP from

Equation 7.11 in Section 7.2.2, where the follow-up test input is created by increasing

the original nominal speed (Sf > Ss). With this MRIP, the TTD can be expected to

be reduced in the follow-up test case, since a faster vehicle should be able to reach its

destination in less time:

TTD(move(P, pA, pB, Sf , O)) . TTD(move(P, pA, pB, Ss, O)) (MR1TTD)

where Sf > Ss.

Conversely, the TTO can be expected to increase, since steering precisely becomes

harder the faster the vehicle is driving. Thus, we define the following MR:

TTO(move(P, pA, pB, Sf , O)) & TTO(move(P, pA, pB, Ss, O)) (MR1TTO)

MRIP2: Additional obstacles. Based on the MRIP from Equation 7.13 in Section

7.2.2, we define MRs where an extra obstacle is placed in the vehicle’s trajectory

(Of ⊃ Os). Due to the interference from the additional obstacle, the TTD is expected

to increase, hence the following MR:

TTD(move(P, pA, pB, S,Of )) & TTD(move(P, pA, pB, S,Os)) (MR2TTD)

where Of ⊃ Os.

On the other hand, the ADS we use for this case study reacts to the obstacles by

stopping and waiting for the other cars to pass, so its trajectory should not change

significantly. Therefore, we expect the TTO to be similar in test cases:

TTO(move(P, pA, pB, S,Of )) ' TTO(move(P, pA, pB, S,Os)) (MR2TTO)

MRIP3: Reversed path. Following the MRIP from Equation 7.15 in Section

7.2.2, we define MRs where the origin and destination points pA and pB are swapped.
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This change should result in the vehicle traversing the same trajectory in reverse,

which would not affect the TTO significantly, thus:

TTD(move(P, pA, pB, S,O)) ' TTD(move(P, pB, pA, S,O)) (MR3TTD)

For the same reason, the TTO should also remain similar:

TTO(move(P, pA, pB, S,O)) ' TTO(move(P, pB, pA, S,O)) (MR3TTO)

MRIP4: Fewer guidance points. We derive MRs form the MRIP from Equation

7.17 in Section 7.2.2, in which some of the waypoints are removed from the map

(Pf ⊂ Ps). We assume that the map contains non-essential waypoints which help the

vehicle navigate more accurately, similar from the blue waypoints shown in Figure

7.2. In this case, the TTD is expected to remain similar, since the trajectory should

not change much:

TTD(move(Pf , pA, pB, S,O)) ' TTD(move(Ps, pA, pB, S,O)) (MR4TTD)

where Pf ⊂ Ps.

For the same reason, the TTO should also remain similar:

TTO(move(Pf , pA, pB, S,O)) ' TTO(move(Ps, pA, pB, S,O)) (MR4TTO)

Experimental Setup

Test case template. The test cases used for our experiments are short-scenario test

cases with an average duration of 2 minutes (simulation time). These scenarios are

based on a template city map with 51 reference waypoints provided with the open-

source implementation of the SUT. The template also contains two additional cars

that move in a straight line with a constant speed, which can act as obstacles for the

ADS if they cross its path.

Source test cases. The source test cases were randomly generated based on the

template described above. For each test case, two random points ware selected as

pA and pB , and the two additional cars which act as obstacles were given random

trajectories and speeds. The actual path that the vehicle will follow is computed by the

navigation controller from the ego car by calculating the shortest path between pA and

pB . Following this process, we generated 100 source test cases for our experiments.
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Follow-up test cases. The follow-up test cases for MRIP1 (faster vehicles) were

generated by multiplying the nominal speed of the vehicle by a constant. For this

MRIP, we generated three groups of MRs with different speed multipliers: MR1.1

with a value of 1.1, MR1.2 with a value of 1.2, and MR1.3 with a value of 1.3. For

MRIP2 (additional obstacles), the trajectory and speed of one of the other vehicles was

modified to ensure that it would interfere with the ego car’s trajectory. The follow-ups

for MRIP3 (reversed path) were simply implemented by swapping the initial and

destination waypoints. As for MRIP4 (fewer guidance points), 20% of the waypoints

from the vehicle’s path were randomly selected and removed, excluding the initial

and destination points. In total, 600 pairs of source and follow-up test cases were

generated: 3 · 100 for MRIP1, 100 for MRIP2, 100 for MRIP3, and 100 for MRIP4.

Mutants. We employed the same mutation testing approach as for the previous

experiment in order to assess the effectiveness of our approach. 20 mutants of the ADS

were generated by manually seeding faults in a uniform manner. We used traditional

mutation operators [B+12] for Simulink models in order to introduce these faults, and

we checked that there were no equivalent mutants or models that could not be executed.

The 100 source test cases and 600 follow-up test cases were executed in the original

SUT, as well as the 20 mutants, resulting in a total of (100+600)×(1+20) = 14, 700

individual test executions. Some of the test executions on the original system did not

terminate correctly and had to be timed out, since the vehicle failed to stop completely

and close enough to the destination point. These test cases have been ignored in our

evaluation,including the corresponding executions of these test cases on the mutants.

In total, 4 out of 100 source test cases and one of the follow-ups for MRIP2 failed

to terminate correctly, so there are 100− 4 = 96 test pairs for every MR and mutant

from MRIP1, MRIP3 and MRIP4, and 100− 4− 1 = 95 test pairs for MRIP2.

Thresholds. After some preliminary tests, we defined a threshold of 50% for

MR3TTO and MR4TTO, and a threshold of 15% for the rest of the MRs. Both of the

50% thresholds were found necessary for very short test cases (some of them were

shorter than 10 seconds). In the case of MR3TTO, the vehicle attempts to through

the right lane of the road, which means that the sharpness of the turns may differ

depending on the direction. As for MR4TTO, removing some certain waypoints could

make the vehicle take a shorter path and make significantly smoother or sharper turns.

Baseline

Since no other test oracle is available for the ADS case study, we have implemented a

simple one based on thresholds for the QoS measures. This is inspired by the QoS

oracles for the domain of autonomous vehicles proposed by [JST21], but we compute
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the ideal thresholds for our test suite instead of performing a human study. Our

thresholds define maximum values for the TTD
distance and TTO

distance of every test case. In

this context, the ideal thresholds are the smallest possible values which result in zero

FPs with our test suite. Hence, these ideal thresholds are simply calculated as:

maxt∈T (
TTDt

distancet
) (ThresholdTTD)

maxt∈T (
TTOt

distancet
) (ThresholdTTO)

where T is our experimental test suite, which includes all the source and follow-up

test cases.

Analogously to the approach followed for the definition of MRs, we also increased

the thresholds by 10% to allow small variations in the performance measurements,

which would be a necessary step if the thresholds were to be used realistically.

Table 7.4: Baseline results on the ADS [AVS+22a]

Thresholds Metric MS (%) FDR (%) FP (%)

Tolerance
TTD 90

95
6.89

16.12
0.00

TTO 60 9.76 0.00

Perfect
TTD 90

95
7.02

16.74
0.00

TTO 65 10.25 0.00

Table 7.4 shows the results obtained by these threshold-based oracles with the

same test suite we use to evaluate our MRs. The “Tolerance" rows show the results

obtained with the calculated thresholds increased by 10%, and the “Perfect" rows show

the results for the exact thresholds. Note that the “Perfect" results are the best results

that can be obtained with these oracles and test suite, since reducing the thresholds is

guaranteed to result in some FPs.

As a sanity check, we validated our test oracles with a different test suite with

100 random test cases, and we confirmed that all the QoS measures where within the

thresholds with 10% tolerance. On the other hand, the “Perfect" thresholds resulted in

false positives, which confirms that they are too tight to be used in practice.

Experimental Results

Table 7.5 shows the experimental results obtained from the ADS experiments, includ-

ing the FP, MS, and FDR metrics. In what follows, we discuss the results.

The experiments resulted in four false positives from MR3TTO. After investing,

we found that the curves have a different sharpness when traversing them from either
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Table 7.5: Evaluation results on the ADS (MS: Mutation Score, FDR: Fault Detection
Ratio, FP: False Positives) [AVS+22a]

MRIP MR MS (%) FDR (%) FP (%)

MRIP1

MR1.1TTD 25

55

100

0.31 0.00
MR1.1TTO 50 2.08 0.00
MR1.2TTD 20 0.63 0.00
MR1.2TTO 55 2.29 0.00
MR1.3TTD 15 0.83 0.00
MR1.3TTO 55 2.86 0.00

MRIP2
MR2TTD 25

80
1.05 0.00

MR2TTO 80 7.79 0.00

MRIP3
MR3TTD 90

100
14.58 0.00

MR3TTO 65 11.98 4.17

MRIP4
MR4TTD 85

85
3.18 0.00

MR4TTO 55 2.71 0.00

direction due to the vehicle always driving on the right lane. Usually, such cases would

be compensated by having balanced right and left turns, and in very short test cases

the difference would not be significant. All the test cases with FPs were found to be

longer test cases (~30 seconds duration) with unbalanced left and right turns, resulting

in an accumulated divergence of the TTOs. This issue could be worked around by

either increasing the tolerance threshold for this MR or using only test cases where

the ratio of left and right turns is not very unbalanced.

Regarding the global effectiveness, the combined MS for our MRs was 100% (20

out of 20 mutants killed). As for the FDR, the combined result was 4.19% (964 out of

23,000 metamorphic test failures). Note that we employ 20 mutants, 12 different MRs,

and 100 test pairs per MR, but 4 of the source test cases did not terminate, and neither

did one additional follow-up test case from MRIP2. Thus, the number of metamorphic

tests is 20× 12× 96− 20× 2× 1 = 23, 000.

Table 7.5 shows that the MS of individual MRs ranged from 15% to 90%, whereas

the FDR ranged from 0.31% to 14.58%. MR3TTD and MR3TTO appear to be the best

MRs by a wide margin, as they obtain a MS of 100% when combined together while

having the highest and second highest FDRs by far. Note, however, that MR3TTO

has a non-negligible rate of FPs. On the other hand, MR2TTO is the only other MR

with comparable results, and also the MR based on TTO with the highest MS by far.

Considering that there could be failure modes which can only be detected with TTO,

MR2TTO might also be a useful MR for this system.

Comparing these results with those from the oracles based on global thresholds

for the QoS measures, which were presented in Section 7.3.3, our MRs killed the
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last mutant which could not be detected with that approach. Both approaches have

identical costs in this case, so the cost-effectiveness of the MRs can be said to be better

than the baseline. The mutant which could not be killed with the baseline approach

and our evaluation test suite is detected by MR2TTO, MR3TTD and MR4TTD. The

baseline approach does obtain better FDRs than most MRs, but the top three MRs

with the best MS do obtain comparable results. Also note that one of the top MRs did

yield some FPs, whereas the baseline did not.

MRIP3 MRIP4

MRIP1 MRIP2

20

11 16

10

10

11

10

15 11
16 11

15

10

17

17

Figure 7.6: Mutants killed per MRIP (out of 20)
[AVS+22a]

19 1817

TTD TTO

Figure 7.7: Mutants killed
per QoS metric (out of 20)
[AVS+22a]

Figure 7.6 shows the number of mutants killed by the MRs grouped by MRIP,

whereas Figure 7.7 shows the MSs grouped by QoS metric. Regarding Figure 7.4,

MRIP1, MRIP2 and MRIP4 appear to be redundant based on the results from this

experiment, since MRIP3 alone killed all the mutants. However, the FP rate from

MR3TTO might indicate that some MR from a different MRIP might be more practical

to use instead of it. On the other hand, Figure 7.7 reveals that TTD is a more effective

metric to detect mutants than TTO in general, especially considering that most of the

killed mutants for TTO are from MR2TTO, which is an outlier.

7.3.4 Discussion

In this section, we discuss the results obtained from both experiments and we answer

our RQs based on them.

RQ1: False Positives

One of the most important factors which determine the feasibility of adopting an

automated test oracle is the rate of FPs it yields. Every FP issued by an oracle is a
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false alarm which will cost some resources to check and dismiss, so a high rate will

result in too much overhead for the oracle to be considered useful.

In order to mitigate this, we employed tolerance thresholds on some of our MRs,

which can reduce the FP rate at the cost of limiting the Fault Detection Capability

(FDC). Despite this, some of the MRIPs we identified from the elevator control

system (Section 7.2.1) had to be changed or discarded. Compared with our initial

experiments [ASA+20], MRIP1 (additional calls) was changed so that the additional

passenger is always the last one to arrive, because otherwise this passenger could

affect the scenario in unpredictable ways, which makes identifying simple and useful

MRs complicated. On the other hand, MRIP3 (faster elevators) [AVS+22a] replaced

MRIP4 (initial position change) [ASA+20], because the latter was also found to have

unpredictable effects on the QoS measures. Finally, MRIP5 (shift floors) was found to

be impractical due to it changing the distance to the ground floor, which can affect the

behaviour of most elevator dispatching algorithms in some cases.

Our evaluation resulted in 3 FPs in the elevator control system experiments, and

4 FPs in the ADS experiments. Considering that our MRs obtained mutation scores

ranging between 88% and 100%, this rate of FPs would seem to be affordable in

practice, as the benefits greatly outweigh the extra cost of checking a few more short

test executions than strictly necessary.

It is also worth noting that 2 out of 3 FPs from the elevation case study did reveal

some abnormal behaviour in the system, although these cases are currently dismissed

by the system engineers during manual testing. These cases could potentially be

handled by simply adding a duplicate issue identification system to the approach, with

which these cases could be automatically marked as “ignore” or similar. In this regard,

Lampel et al. proposed an approach for classifying failures based on test case features

[LJAZ21] which might be applicable.

As for the remaining 5 FPs from our experiments, no abnormal behaviour was

identified, and were instead caused by the inaccuracy of the MRs. These inaccura-

cies could possibly be worked around by employing statistical metamorphic testing

[GM07], which applies MT over statistical distributions of the QoS metrics rather

than using individual measurements. Nevertheless, despite being potentially less

error-prone than our tolerance thresholds, this approach may not be feasible in practice

due to the high cost of executing enough test cases for a meaningful statistical analysis

RQ1 – In summary: Our MRs triggered some false positives, but the number is

manageable. Some of them could be avoided by detecting duplicate issues, while

others may require the use of more costly statistical techniques.
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RQ2: Effectiveness

Regarding the effectiveness of our approach, which we measure mainly based on

the Mutation Score (MS) and Failure Detection Ratio (FDR) evaluation metrics, the

experimental results show that the PV pattern is very effective at alleviating the oracle

problem. Our MRs detected 88.76% and 100% of the injected faults in our case studies,

which we believe justifies the cost of executing multiple test cases that is inherent to

MT, especially when compared with manual testing. It is also noteworthy that most of

our MRs are highly reusable across different system configurations, and even different

systems with similar features. This last point is very relevant for Orona’s elevator

control systems, since there are different dispatcher algorithms and configurations for

every building, which limits the use of techniques such as QoS value thresholds or

regression oracles in new installations.

It is also worth noting that the experiments presented in this work employ random

testing, which is the most basic approach for generating test cases. Using a test suite

generated with more sophisticated techniques would most likely improve the results

we obtained, since the failures which can be detected depend on the test suite’s ability

to reveal them.

Compared with the baselines, which are regression and threshold-based oracles,

our MRs outperformed them in terms of MS in both experiments, showing that the PV

pattern identify failure modes that are difficult to detect with regular oracles. On the

other hand, the FDR of the threshold-based oracles from the second experiment was

found to be higher. However, the MRs with the highest MS did outperform the FDR

from the baseline. Furthermore, neither of the baselines yielded FPs, whereas our

MRs did, which would result in some unnecessary extra testing effort. Nevertheless,

the cost of the regression oracles from the first experiment was also much higher

than that of MT. Some work has already been done in order to reduce the cost of

the regression oracles in this domain by employing Machine Learning (ML) models

which predict the QoS of the system without having to execute it, which removes the

need to execute the reference implementation [AAI+21, GAA+22]. Since this ML

approach is an approximation of regression testing, it still lacks the flexibility of our

MRs, and its effectiveness can not be expected to be higher than the regression oracles

either.

All in all, our approach seems to be more effective than the baselines as long as

a small number of FPs can be tolerated. We must also remember that our MRs are

applicable across different SUT configurations, whereas both regression and threshold-

based would need reference executions for every configuration.
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RQ2 – In summary: Our MRs based on the PV pattern are able to detect 9

out of every 10 faults in CPSs on average, which make them an effective and

fully automated solution to the test oracle problem. Compared with regression

and threshold-based oracles, our approach shows clear benefits in terms of cost-

effectiveness and applicability.

RQ3: Differences between MRIPs and performance metrics

As for the differences between MRIPs and QoS metrics, we observed a significant

disparity in terms of our evaluation metrics. When grouping the MRs by MRIPs or

QoS metric, we found that some groups were subsumed by others, indicating that they

might not be useful in practice.

In the experiments from the elevation domain, one of the MRIPs dominated the

rest by a large margin, to the point where using any of the other MRs might not seem

cost-effective. Nevertheless one of the other MRs obtained outstanding FDR results,

which might make it useful to complement the best MRIP.

As for the ADS experiments, a single MRIP also dominated over the others, but

one of its MRs also yielded all the 4 FPs from those experiments. Since some MRs

derived from different MRIPs achieved comparable results, using those to compliment

the superior MRIP might also be reasonable. Furthermore, one of the MRs from

another MRIP also obtained very good results with TTO, while none of the other MRs

based on that QoS metric were outstanding.

Generally, the best results seem to be obtained when combining specific MRIPs

and QoS metrics, and all of the QoS metrics seemed to be able to achieve good results

with some MR in both case studies, so none of them can be said to be useless. On

the other hand, our results seem to imply that some MRIPs can be discarded without

sacrificing much effectiveness. Ideally, some preliminary experiments would be done

first in order to determine the effectiveness of each MR and select an optimal subset

of them for maximum cost-efficiency. Lacking such an evaluation, we advocate for

defining diverse MRs in terms of the type of changes that are made to the inputs and

the QoS metrics that are used, since such diversity has been found to be the best way

to maximize the cost-effectiveness of MT [LKTC13].

RQ3 – In summary: The results from some MRIPs and QoS metrics are subsumed

by others, but there are also synergies between some of them. In line with previous

results in metamorphic testing, MRs should be as diverse as possible.
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7.4 Threats to Validity

In this section we enumerate the internal and external validity threats to our work, and

how they have been mitigated.

7.4.1 Internal Validity

Internal validity threats refer to the factors that might have affected the results of our

evaluation. One such threat is our use of mutation testing and the potential issues with

it, such as the selected mutants biasing the results or the number of mutants being

insufficient. For the ADS case study, we employ an amount of mutants similar to other

research in the literature that uses Simulink models [LNB+17, MNBB18, AWSE19].

As for the case study from the elevation domain, we employed even more mutants.

We also checked for equivalent mutants in both cases and confirmed that none had

identical behaviours, as recommended by Papadakis et al. [PJHLT15, PHH+16]. The

faults were seeded manually in both cases due to technical limitations that prevented

the use of automated tools, and we introduced the mutations uniformly throughout the

relevant parts of the system’s source code or model in order to avoid introducing bias.

Another potential threat are the employed test suites, which might also introduce

bias or contain too few test cases. Similar to the mutants, we mitigate this by generating

a large and diverse set of test cases automatically. For the ADS case study, we even

significantly increased the number of test cases with respect to earlier work [Val21] in

order to provide a more thorough evaluation.

In the earlier stages of this work, we employed somewhat complex MRs which

utilized tolerance thresholds determined by consulting with domain experts, which

might introduce an additional threat [ASA+20]. However, in the latest version of our

work, which we present in Section 7.3, we employ much simpler MRs and thresholds

in order to demonstrate that the results obtained can be replicated without resorting to

a costly trial and error process.

7.4.2 External Validity

External validity threats relate to the generalizability of the obtained results. Our

evaluation assesses the effectiveness of applying the PV pattern on two different case

studies, which might not be enough to conclude that it is an effective approach for

all or most CPSs. Nevertheless, we must note that both case studies are significantly

different, both are highly complex, and the elevator control system is an industrial

CPS employed in many real elevator installations.
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Apart from that, the manual generation of MRs might be too complicated or costly

in some cases, making this approach impractical. As mentioned before, we deliberately

simplified the MRs so the results we obtain represent what can be accomplished with

just a reasonable amount of domain knowledge.

7.5 Related Work

7.5.1 Metamorphic Testing

This chapter proposes the use of performance-based MRs in order to mitigate the test

oracle problem in CPSs. The content of this chapter is based on our latest published

research on the topic [AVS+22a]. That publication is, in turn, an extension of our

previous work on applying this type of MRs to the elevator control system [ASA+20]

and the ADS [Val21].

Performance MRs were already being proposed as early as [CCC+07], where

Chan et al. defined a MR to detect non-functional failures on a wireless sensor

network based on the power consumption of the nodes. However, this type of MR

have not been widely discussed until Segura et al. explicitly defined the concept

of performance metamorphic testing and pointed out its potential in many contexts

[STDRC17, STDRC18]. Research on this type of MRs is being widely adopted

more recently, with practical applications in domains such as data analytic platforms

[JJB+19] and code generators [BBSB20]. To the best of our knowledge, our work is

the first to apply performance metamorphic testing in the domain of CPSs.

Regarding ADSs, which are lately a popular SUT in verification-related research,

MT has already been applied for testing various types of vehicles. Lindvall et al.

proposed several MRIPs similar to the ones we use for the ADS, such as altering the

path of the vehicle in a way which should not significantly affect the outcome or adding

obstacles to the vehicle’s path [LPMS17]. On the other hand, many publications have

adopted MRIPs which simulate different environmental conditions, such as fog or

rain, in order to detect erroneous behaviour [TPJR18, ZS19]. Nevertheless, all of

these propose MRs based on the system’s functional output or internal state, whereas

our work presents the novel approach of using output relations based on performance

metrics.

7.5.2 Testing CPSs

Verification and validation is one of the most important and costly aspects of CPS

development, and is therefore a determining factor for the success of these products.
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Because of this, there are many recent publications discussing this topic, and several

of them address the test oracle problem in some way.

Regarding specified oracles, the use of different forms temporal logic has been

widely researched in order to define properties of the CPSs in terms of time or space-

continuous signals. Menghi et al. proposed a method to generate online test oracles

for Simulink models based on properties expressed in Restricted Signals First-Order

Logic (RFOL), a language which can handle continuous signals while being feasible

to implement in practice [MNGB19]. Boufaied et al. developed a taxonomy of the

different state-of-the-art temporal logics which can be used for the definition of test

oracles for CPSs, and discussed their different levels of expressiveness [BJB+21]. Our

work focuses on using MT in order to alleviate the test oracle problem in cases where

defining such properties for CPSs is not feasible.

Different types of derived oracles have also been proposed for the cases where

specified oracles cannot be used. A popular approach is to employ machine learning

techniques in order to automatically learn invariants of the system [BHM+14]. In

this regard, Chen et al. employed a Support Vector Machine (SVM) classifier trained

with execution traces displaying normal and abnormal (e.g. seeded software faults)

system behaviours in order to detect anomalies in a water purification plant testbed

[CPS18]. Another possible application of machine learning is generating a model

that can predict the system outputs, which can then be used for performing regression

testing against the real system. Shahamiri et al. presented one such approach by

using Artificial Neural Networks (ANNs) [SKIH11, SWKIH12], which is capable

of emitting quantitative verdicts based on the error between the real and predicted

outputs. Some of our work related with this thesis has also applied machine learning

in the domain of elevation in order to detect [AAI+21] and non-functional [GAA+22]

faults by predicting the QoS of the system. We compared the cost-effectiveness of

this technique with our MT approach in Section 7.3.2. In the context of verifying

Deep Neural Network (DNN) based vehicles, Zhang et al. [ZZZ+18] and Stocco et al.

[SWCT20] presented different approaches for predicting unsupported driving scenar-

ios based on Generative Adversarial Networks (GANs) and autoencoders respectively.

A different approach for the autonomous vehicle domain is finding the correlation

between the quality metrics used in the domain and the human perception of driving

quality by means of a human study,and then generate test oracles that approximate

human oracles based on quality metrics [JST21]. Other types of derived oracles, such

as those based on the system’s documentation, have also been proposed for software

verification, but not applied in the context of CPSs yet [BHM+14]. This thesis focuses

specifically on MT, which is also a technique to generate derived oracles.
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7.6 Conclusion

This chapter presents a performance-driven approach for CPSs based on MT. To this

end, we describe the PV pattern and derive multiple MRs from it to illustrate it. The

purpose of this MRP is to facilitate the identification of MRs in different domains

in order to alleviate the test oracle problem. We evaluate the effectiveness of PV by

deriving and assessing MRs for two different case studies, one of which is an industrial

elevator control system and the other is an open-source autonomous car. Our MRs

managed to detect 88.76% and 100% of a set of faults seeded on these systems, while

keeping the ratio of false positives at 4% or less. For the open-source case study, we

provide a publicly available replication package of these experiments [AVS+22b].

Given that the MRs are highly reusable (e.g. across different configurations of the

systems), we conclude that the approach is a cost-effective solution to the test oracle

problem, despite the potential difficulty of identifying the MRs and the cost of having

to execute multiple test cases for checking each MR.

The lines of future work include, on the one hand, the application of this MRP

on additional CPSs from different domains in order to further assert its effectiveness.

On the other hand, the full potential of this approach remains to be seen, since we do

not employ state-of-the-art test case generation, selection or prioritization techniques

in our evaluation. Apart from that, the fault localization from a metamorphic test

failure could potentially be automated, for which approaches based on metamorphic

slices have already been proposed [XWCX13]. Furthermore, the identification of

MRs could also be at least partially automated, for which we present an approach in

Chapter 8.
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Chapter 8

Automatic Generation of
Metamorphic Relations

Chapter 7 has shown that Metamorphic Testing (MT) is an effective technique to

mitigate the oracle problem in Cyber-Physical Systems (CPSs). However, manually

defining valid and effective Metamorphic Relations (MRs) is a costly and error-prone

task which requires the involvement of domain-experts who have practical experience

with the System Under Test (SUT) [SFSRC16].

This chapter presents an automated approach to generate MRs based on a set of

system executions labelled as correct or incorrect. We propose a genetic programming

technique which co-evolves two populations of MRs with the goal of reducing their

false positives and false negatives over the provided dataset of system executions. This

technique is inspired by GASSERT, an approach for automatically generating Java

program assertions [TJTP20, TJTP21].

Our first implementation of this approach, GASSERTMRS, is a tool to automat-

ically generate the output relations for performance MRs. Our evaluation of this

approach is based on Orona’s multi-elevator installation, and compares the effective-

ness of the automatically generated MRs with the ones we identified manually in

Chapter 7 [ATA+21, ATA+22].

GENMORPH is a second implementation of the approach which can generate MRs

for Java methods in a fully-automated way. In order to automate the collection of

correct and incorrect executions, this tool leverages well-established solutions for

test generation and mutation testing, namely EVOSUITE [FA11] and MAJOR [Jus14]

respectively. The MR generation process has also been extended to generate both

input and output relations automatically, i.e., full MRs. Furthermore, we also employ

OASIS [JCHT18], an oracle assessment tool, in order to filter out invalid MRs. We

have evaluated this solution on 10 different methods from the Apache Commons Math

library in order to assess its effectiveness.
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8.1 Introduction

Software systems are becoming more complex over time, making test automation

an increasingly important but challenging task. This is particularly the case for

Cyber-Physical Systems (CPSs), which encompass physical processes and software

components and have strict safety and robustness requirements [BG11, Alu15, LS16].

One of the fundamental challenges for test automation is the so-called test oracle prob-

lem, the problem of distinguishing between correct and incorrect system behaviours

[BHM+14]. While there have been significant advances in automated test input gen-

eration [FA11, PKT17, LKF20], the test oracle problem is still a major bottleneck in

the path towards full test automation [HMSY13].

Metamorphic Testing (MT) is an alternative technique for alleviating the oracle

problem by leveraging relations among the inputs and outputs from multiple test

executions [CCY98]. These properties, known as Metamorphic Relations (MRs),

have been shown to exist in most non-trivial software systems, and are therefore

a useful solution for the cases where traditional test oracles cannot determine the

correctness of system executions [SFSRC16].

MT has been successfully applied in the domain of CPSs, e.g., for testing wire-

less sensor networks [CCC+07], autonomous drones [LPMS17], or self-driving cars

[TPJR18, ZS19]. This technique has also been used to define oracles for performance

testing [STDRC17, STDRC18, BBSB20, JJB+19]. Recently, large companies such as

FACEBOOK [ABB+21], GOOGLE [DL16, DELT17], ADOBE [WTZC18], and NASA

[LGÁW15] are employing MT to test their systems.

While the usefulness of this technique is well recognized, identifying MRs is

still a costly activity which requires extensive experience in the application domain

[SFSRC16]. The automated identification of MRs is still a largely unexplored prob-

lem, and only a few solutions have been proposed thus far. MRI [ZCH+14] and

AutoMR [ZZC+19], which are approaches to automatically identify polynomial MRs

in mathematical programs, are currently the closest to a generic solution. They both

rely on a search-based technique based on Particle Swarm Optimization (PSO) to

effectively explore the space of possible MRs, and have been shown to effectively

identify valid and useful MRs. Nevertheless, more research towards complementary

and orthogonal solutions to this problem needs to be done.

We present an approach inspired by recently proposed techniques to automatically

generate pre/post conditions [MPAF21] and program assertions [TJTP20, TJTP21].

Our search-based approach uses co-evolutionary multi-objective algorithms to explore

the space of candidate MRs driven by a fitness function that rewards candidates with
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fewer false positives and false negatives. In the context of test oracles, false positives

represent correct system executions in which fail but should pass, and false negatives

represent incorrect executions which pass but should fail [JCHT16, JCHT18, JCHT19].

A high-quality oracle is one with no false alarms (i.e. yields no false positives) that is

effective at exposing faults (yields as few false negatives as possible).

This chapter presents two versions of our automated MR generation approach, the

first targeting CPSs and the second for Java methods:

� GASSERTMRS: Genetic ASSERTion improvement for MRs [ATA+21]. An

approach to automatically generate MRs from user-provided Metamorphic Relation

Input Patterns (MRIPs) and datasets of correct and incorrect system executions.

We present an evaluation of this tool on and industrial case study, namely Orona’s

multi-elevator system. Our experimental results show that our automated approach

matches or outperforms the MRs we identified manually in Chapter 7 in terms of

mutation score.

� GENMORPH: Generator of Metamorphic Relations. An approach to generate

MRs for a given Java method in a fully-automated way. We evaluate this tool

on ten numerical functions from the open-source Apache Commons Math library.

The results show that GENMORPH can generate effective MRs for eight of these

subjects.

The rest of this chapter is structured as follows: Section 8.2 describes the GAS-

SERTMRS approach and presents its experimental evaluation. Section 8.3 describes

the GENMORPH approach and presents its experimental evaluation. Section 8.4 points

out the threats to validity, Section 8.5 highlights the related work, and Section 8.6

concludes the chapter.

8.2 GAssertMRs

GASSERTMRS is our first version of the approach, which aims to automate the

generation of output relations for MRs, and is applied in the domain of performance

testing for CPSs.

8.2.1 Approach

GASSERTMRS is an adaptation of GASSERT [TJTP20], an automatic test oracle

generation and improvement approach. In GASSERT, candidate solutions are Boolean

expressions composed of numerical and Boolean variables, which represent program
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assertions. GASSERTMRS adapts this approach to generate output relations of MRs

instead. The oracle improvement process requires and initial assertion (Boolean ex-

pression) and a set of correct and incorrect program states. In the case of generating

oracles from scratch, a trivial expression (e.g. true) can be used as the initial as-

sertion. The evolutionary algorithm explores the space of possible assertions with

a co-evolutionary algorithm guided by fitness functions that reward solutions with

fewer false positives and false negatives. The algorithm returns an improved assertion

with the lowest possible number of false positives and false negatives (with respect to

the correct and incorrect states from the input), in that order of priority. Assertions

with zero false positives are favoured because false alarms result in costly debugging

processes.

MRs are Boolean expressions that predicate on the input/output relations of test

cases, instead of predicating on internal variables like assertion oracles. GASSERT-

MRS uses the same oracle generation and improvement algorithm as GASSERT,

adapting it to the context of MT. We now describe the differences between GASSERT

and GASSERTMRS.

First, GASSERTMRS does not implement the iterative improvement process used

in GASSERT [TJTP20], which uses OASIS [JCHT16] to evaluate the assertion oracles,

find new false positives and false negatives, and relaunch the oracle improvement

with this information. This is because OASIS is not suitable for assessing MRs, as it

generates individual test cases to evaluate the oracles.

Second, GASSERTMRS focuses in black-box system-level testing, as opposed to

GASSERT, which predicates on internal variables at arbitrary program points. This is

because generating oracles for the system’s internal states is not always possible or

desirable in the domain of CPSs.

Furthermore, the expressions generated by GASSERTMRS predicate on the inputs

and outputs of the source and follow-up test cases, as opposed to predicating over

the variables of an individual test case, since they represent output relations and not

assertions over individual executions.

This approach can generate arbitrary Boolean expressions, which might be ex-

cessive in the context of MRs. Indeed, many expressions over the inputs and outputs

of the source and follow-up test cases may not actually define a relation between

their outputs, and thus, the result might not be a MR. For this reason, we restrict

GASSERTMRS to generate Boolean expressions with the following form:

Of [operator] F (Os, Is, If ) (MR Template)

where Os and Of are the outputs obtained from the source and follow-up test case

executions; Is and If are the inputs of the test cases; F (Os, Is, If ) is the generated
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Table 8.1: Features of Elevation Test Cases [ATA+21].

Feature Name Description

ElevatorsCount Count of elevators available

ElevatorsDistanceFloors
Sum of the distances between the positions of each elevator
in the source and follow-up test cases (MRIP3 only)

ElevatorsDifferenceTime
Aproximated time it takes to traverse
ElevatorsDistanceFloors (MRIP3 only)

PassengersCount Count of passenger calls

PassengersWaitFloors
Maximum number of floors that must be traversed
to reach the calling floor of each call

PassengersWaitTime Approximated time it takes to traverse PassengersWaitFloors

PassengersTravelFloors
Distance in floors from the calling floor to the destination
of each call

PassengersTravelTime Approximated time it takes to traverse PassengersTravelFloors

numerical expression; and [operator] is a relational operator (such as =, 6=, <, >, ≤
or ≥).

GASSERTMRS assumes that all the inputs and outputs have numeric types. For

cases where not all inputs are numeric, which is the case of our elevation case study,

domain-specific functions to reduce the inputs into numeric features should be defined.

Table 8.1 shows the features we define for the test cases in the elevation domain,

where the inputs are a set of elevators and their positions and a passenger calls list, as

explained in Section 4.4.1.

The generated MRs check a single (numeric) output variable, and thus, multiple

MRs need to be generated with different configurations of GASSERTMRS in order

to verify multiple output variables. GASSERTMRS itself only generates numerical

expressions in the form F (Os, Is, If ), and the full output relations are constructed by

using the selected output variable (Os) and relational operator ([operator]) passed

as input parameters for the tool. This way, each individual of the populations of

the evolutionary algorithm is a numeric expression F (Os, Is, If ), and the full output

relations Of [operator] F (Os, Is, If ) will only be generated to evaluate the fitness

functions or to output the final MR.

Evolutionary Algorithm

At the core of both GASSERT and GASSERTMRS is a co-evolutionary algorithm that

evolves a population of candidate oracles as follows:

1. Selection samples pairs of individuals (parents) from the population, usually pre-

ferring individuals with a better fitness.
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2. Reproduction combines the genetic material (sub-expressions) of the parents by

means of crossover operators, and returns the resulting two new individuals.

3. Mutation modifies the new individuals by means of mutation operators with a

certain probability, and adds the resulting individual to the new population.

The co-evolutionary algorithm that evolves two populations of candidate oracles

in parallel, with three competing objectives:

1. Minimizing the number of false positives,

2. Minimizing the number of false negatives,

3. Minimizing the size of the expression.

The fitness function used in the first population (φFP) rewards solutions with fewer

false positives first, while the fitness function of the second population (φFN) prioritizes

fewer false negatives. Both populations consider the remaining objectives only in tie

cases, with the size of the expression having the least priority in both cases. The two

populations exchange their best individuals every few generations (migration) in order

to provide potentially useful genetic material to improve the secondary objectives.

Let FP(α) denote the false positive rate of α, and FN(α) denote the false negative

rate of α, where α is a candidate oracle (assertion in GASSERT, output relation in

GASSERTMRS). The following definitions are used to determine dominance among

individuals for each of the two populations:

Definition 1 FP-fitness (φFP). Given two assertions α1 and α2, α1 dominatesFP α2

if any of the following conditions is satisfied:

– FP(α1) < FP(α2)

– FP(α1) = FP(α2) ∧ FN(α1) < FN(α2)

– FP(α1) = FP(α2) ∧ FN(α1) = FN(α2) ∧ size(α1) < size(α2)

Definition 2 FN-fitness (φFN). Given two assertions α1 and α2, α1 dominatesFN

α2 if any of the following conditions is satisfied:

– FN(α1) < FN(α2)

– FN(α1) = FN(α2) ∧ FP(α1) < FP(α2)

– FN(α1) = FN(α2) ∧ FP(α1) = FP(α2) ∧ size(α1) < size(α2)
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Next, we describe in detail the selection, reproduction and mutation operations

and the specific operators we implement.

Selection. GASSERTMRS implements the following selection operators, which are

chosen randomly with a configured probability every time a selection needs to be

performed.

Tournament Selection. This selection operators runs two tournaments among K

randomly-chosen individuals, selecting the two individuals with the best fitness as

parents for the next generation [MMGG95]. Following the configuration from GAS-

SERT, we use K = 2, which helps prevent getting stuck in a the local optima[Whi94].

Best-match Selection. This is a novel selection operator presented by the authors

of GASSERT. This operator samples the first parent randomly from the population,

and then selects the other parent according to its “complementarity” with respect

to the first parent. The operator attempts to maximize their combined coverage of

the correct and incorrect test executions. Here, a test execution being covered by an

individual means that it is classified correctly, i.e., the expression evaluates to “true”

for correct executions or “false” for incorrect executions. Specifically, a weighted

random selection is used, where the weight of each individual is determined by the

test executions that it covers but the first parent does not. For the φFP, the weights

based on the coverage of correct executions, whereas for φFN the weights are based

on the incorrect executions.

Reproduction. GASSERTMRS employs a canonical tree-based crossover as its only

reproduction operator. Given two parents, a random crossover point is chosen for each

parent, and then the two offsprings are created by swapping the sub-trees from the

respective crossover points [Koz94].

Mutation After the reproduction step, one of the following mutation operators may

be applied to the offsprings with a fixed probability. The specific operator to use is

chosen randomly every time with a configured probability.

Node Mutation. This operator chooses a single node from the tree and replaces it

with a new randomly generated node of the same type [BB07].

Subtree Mutation. This operator chooses a sub-tree from the tree and replaces it

with a new randomly generated sub-tree of the same type [BB07].

Constant value mutation. This operator changes the value of a single constant

within the tree. Specifically, a single numeric constant node is chosen, and a random

value in (−∆,∆) is added to its value. We define ∆ as a relative small constant (we

use 0.1 in our experiments) so that the constant values change in small increments.

This is a new mutation operator that was not used in GASSERT, but we identified that
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adjusting constant values was particularly important in the context of performance

testing CPSs.

Note that GASSERT used additional crossover and mutation operators that are not

used in GASSERTMRS because they are inadequate for MRs.

Test Cases Classification

In order to compute the fitness of individuals GASSERTMRS employs a dataset of

correct and incorrect system executions which can be used to compute false positives

and false negatives respectively. Given the context of black-box testing, the elements

of this dataset are tests, which include: (1) the test case inputs, (2) the execution

outputs, and (3) the classification (correct or incorrect). Furthermore, in the context

of MT, these tests should actually be test pairs.

Using mutation testing, the test executions from the original system can be classi-

fied as correct, whereas the executions from mutants with different outputs from the

original can be classified as incorrect. Mutant executions with equivalent outputs can

be discarded, as they are redundant. For our elevation case study, we define additional

constraints to classify an execution from a mutant as incorrect. Specifically, we define

a minimum threshold for the difference between the test execution outputs, in order to

avoid “incorrect” outputs which are virtually impossible to distinguish from correct

ones. We employ different thresholds for each output metric, which were defined with

the help from domain experts: For the Average Waiting Time (AWT), at least 20%

and 6 seconds increase; For Total Distance (TD), at least 10% and 5 floors increase;

For Total Movements (TM), at least 10% and 4 movements increase.

In order to classify test pairs, we employ the following rules. For correct test

executions, we simply classify the test pairs as correct unconditionally. For incorrect

test executions, we only consider test pairs incorrect if: (1) the source test case is

incorrect and we are using the > or ≥ operators, or (2) the follow-up test case is

incorrect and we are using the < or ≤ operators. This is because our performance

metrics are minimization objectives, so the > operator would be used to identify

failures from the source test case (Os is on the left side of the operator) and vice-versa.

8.2.2 Evaluation

This section describes our empirical evaluation of GASSERTMRS, which is based on

the multi-elevator system from Orona, previously described in Section 4.4.1.

Our experiments aim to answer the following four Research Questions (RQs):
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� RQ1: Is GASSERTMRS effective at generating metamorphic relations? We assess

GASSERTMRS effectiveness based on its ability to generate output relations with

(ideally) no false positives and as few false negatives as possible.

� RQ2: How does GASSERTMRS compare with unguided search for generating

metamorphic relations? We evaluate whether or not the fitness functions provide

useful guidance to generate better MRs by comparing the results from GASSERT-

MRS with a modified version with no fitness-based guidance.

� RQ3: How does GASSERTMRS perform when comparing with human-defined

metamorphic relations? We compare the effectiveness of the generated MRs with

the results obtained by the MRs we identified manually in Chapter 7.

� RQ4: How do generated metamorphic relations compare with similarly generated

regular assertions? We compare the effectiveness of the generated MRs with

regular assertions generated by a modified version of GASSERTMRS, which makes

use of individual test cases instead of test pairs. As a template for the regular

assertions, we use: M ≤ F (I), where M is a performance metric, and F (I) is a

function over the inputs of the test case. Just like in GASSERTMRS, only F (I)

is generated by the evolutionary algorithm. Furthermore, we also defined a mode

with “free form” assertions, where an arbitrary Boolean expression is generated

by the tool, similarly to GASSERT [TJTP20]. For the Boolean expressions, in

addition to the regular elements in GASSERTMRS, we enable Boolean literals and

the following additional operators: =, 6=, >, <, ≥, ≤, AND, OR, IMPLIES and

IFF.

Experimental Setup

Test cases and mutants. We employed mutation testing for evaluating the proposed

approach. We used the same set of mutants and test cases that were used for our work

in Chapter 7, where the same type of MRs were developed manually [ASA+20].

As a reminder, the dataset consists of 1,340 different test cases: 140 source test

cases, 420 follow-up test cases for MRIP1, 360 follow-up test cases for MRIP2, and

420 follow-up test cases for MRIP3. Each of these test cases were executed on the

original system and 89 mutants. The mutants were generated by seeding faults based

on traditional arithmetic, logical and relational operator mutations [ADH+89].

The MRIPs we defined are the following [ASA+20]:

� MRIP1: Additional calls. An additional call is inserted to the passengers list.
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� MRIP2: Additional elevators. The number of available elevators is increased,

without changing the initial positions of the originally available elevators.

� MRIP3: Initial position change. The initial positions of all the elevators are

shuffled.

Initial oracles. In order to generate the initial population for GASSERTMRS, we

define a simple initial expression for each configuration. For the MR oracles, the

atomic numeric expression Ms was used for all cases as right hand side of Equation

(MR Template), where M is the performance metric used in the configuration. For

instance, a configuration with the AWT metric as M and the ≤ operator would start

with AWTf ≤ AWTs as the initial output relation. The rationale for this is that Ms

is an element which can be expected to be present on the right side of the MR. For

regular assertion oracles, we just used the constant 0 as the initial right-side expression,

resulting in initial assertions such as AWT ≤ 0. Finally, for regular assertions that do

not have a fixed structure, we used true as the initial assertion.

Results validation. The datasets comprise source and follow-up test pairs, or individ-

ual tests for the regular assertions baseline. In order to avoid evaluating the resulting

MRs with the same test cases we used for their generation, we employed 10-fold cross

validation on the dataset, ensuring that the training and testing datasets contained the

same proportion of correct and incorrect test executions. We used identical partitions

for all the configurations, but the regular assertions baseline used different partitions

due to the samples being individual test cases rather than test case pairs. In order to ac-

count for the stochastic nature of GASSERTMRS, we repeated each of the experiments

12 times with different random seeds. In total, each GASSERTMRS configuration was

executed 10× 12 = 120 times.

Evaluation metrics. GASSERTMRS and the baselines were evaluated based on the

following metrics.

FP and FN represent the percentage of false positives and false negatives over the

training dataset, i.e., they represent the final (and best) fitness results obtained by the

evolutionary algorithm.

DF (Detected Failures) refers to the number of failing verdicts over the mutant

test executions from the testing dataset.

MS (Mutation Score) refers to the percentage of mutants detected from the testing

dataset (out of 89). A mutant is considered detected by an oracle if its assertion returns

false in at least one of the corresponding mutant executions.

In the cases where a given assertion caused a false positive in a test, the results

from the corresponding mutant executions do not affect the DF or MS. In the case of
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Table 8.2: GASSERTMRS Configuration Parameters [ATA+21].

Parameter Description Value Parameter Description Value

bound on the size of the assertions 32 time budget (minutes) 15
size of each of the populations (N) 1,000 prob. of crossover 90%
minimum number of generations 100 prob. of mutation 30%
maximum number of generations 10,000 prob. of tournament selection 50%
frequency of elitism (every X gen) 1 prob. of best-match selection 50%
frequency of migration (every X gen) 10 prob. constant mutation min 5%
number of assertions for elitism 10 prob. constant mutation max 50%
number of assertions to migrate (M) 160 increase prob. const. mut. every gen. 0.45%

an error occurring during the assertion evaluation (e.g. division by 0), a failing verdict

is assigned.

Configuration. Table 8.2 shows the parameter values used for our experiments with

GASSERTMRS. The Unguided variant used for RQ2 also used the same parameter

values, except for the parent selection, which was 100% random instead, and the

elitism and migration, which were disabled. These parameter values were largely

based on those used by GASSERT in their experiments [TJTP20]. One difference

is that the probability of either using or altering a constant during mutation was

made dynamic, increasing it linearly in newer generations in order to encourage the

exploration of optimal constant values in the later generations.

We configured GASSERTMRS with each of the 3 different MRIPs used in our

case study, combined with 3 performance metrics, and 2 relational operators (≥ and

≤). Hence, there were 18 different configurations of GASSERTMRS (3 MRIPs ×
3 metrics × 2 operators). Furthermore, each configuration was run 12 times with

different random seeds.

Results

Table 8.3 shows the evaluation results for GASSERTMRS (RQ1), as well as the ones

for the Unguided (RQ2) and Manual MRs (RQ3) baselines. The reported numbers

represent the median obtained on the testing dataset across each cross-validation

partition and random seed. For fair comparison, the results of Manual MRs were

also calculated separately over the testing sub-samples of each of the cross-validation

partitions.

Table 8.4 shows the evaluation results for the Regular Assertions (RQ4) baseline,

where every evaluation metric reported is again the median of over the cross-validation

partitions and random seeds.
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≥
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80.00%
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7.87%
0.00%
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0.00%
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≤

0.00%
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19.0
2.25%

0.00%
54.17%

19.0
2.25%

0.00%
100.00%

0.0
0.00%
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Table 8.4: Evaluation Results for RQ4 (median) [ATA+21].

Metric Operator GASSERT (RQ4)
FP FN DF MS

All Free form 0.00% 97.40% 34.0 14.61%

AWT ≤ 0.00% 91.33% 83.0 21.35%
Free form 0.00% 96.08% 42.5 16.85%

TD ≤ 0.00% 95.91% 33.5 10.11%
Free form 0.00% 96.64% 28.0 8.99%

TM ≤ 0.00% 92.45% 8.5 3.37%
Free form 0.00% 93.94% 8.5 2.25%

RQ1: Effectiveness of GASSERTMRS. Column GASSERTMRS of Table 8.3 shows

the median results obtained by our proposed approach for each of the possible configu-

rations. While the median of FPs is 0 and the mean was always less than 1, there were

actually some FPs in some configurations. It is also important to note that the results

shown in Table 8.3 are obtained with the testing dataset, which represents only 10%

of the test cases, and therefore the mutation score is expected to be low. For reference,

the Manual MRs obtain an average mutation score of over 30% with each of the 10

cross-validation partitions of the full test suite.

The results show that GASSERTMRS is able to generate MRs with zero or very

few FPs and are capable of identifying some of the seeded faults. On the other hand,

we observe a very large percentage of FNs in many configurations, which may indicate

that it is difficult to generate MRs which cover a large amount of seeded faults at

once. Furthermore, the results show significantly different performance across the

different configurations, indicating that some MRIP, performance metric, and operator

combinations might be more effective than others.

RQ1 – In summary: The automatic MR generation process of GASSERTMRS

can generate valid and effective MRs that have zero or very few false positives and

identify some of the system failures.

RQ2: Comparison with Unguided Search. The Unguided columns from Table 8.3

show the results obtained with the evolutionary approach without fitness guidance.

A comparison with the GASSERTMRS columns reveals that the latter approach

dominates the former, as the results from all metrics are either the same or better.

There is a single outlier configuration where Unguided obtained a higher DF, and two

outlier configurations where it obtained a higher MS. The difference was minimal in

most of these cases.

We also employed statistical tests to evaluate whether there is a statistically
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significant difference between both approaches. First, we applied the Shapiro-Wilk

test to assess the distribution of the data, and concluded that it was not normally

distributed. Therefore, we applied the Mann-Whitney U-test to evaluate the statistical

difference. We used a significance threshold of 0.05 for the p-value, and employed the

Vargha and Delaney Â12 metric in order to measure the effect sizes [VD00]. To make

the results more readable, as suggested by Romano et al. [RKC+06], we categorized

the Â12 values as negligible if d < 0.147, small if d < 0.33, medium if d < 0.474,

or large if d >= 0.474, where d = 2 · |Â12 −0.5|.
Regarding MS, the results from GASSERTMRS were better than unguided in 16

out of 18 configurations. Out of these 16 cases, 11 were statistically significant, and

the difference was large in 2 cases, medium in 2 cases, and small in 9 cases, while the

remaining were negligible. On the other hand, Unguided obtained a better MS in one

of the two remaining configurations, with a small effect size.

For the FNs, the comparison was in favour of GASSERTMRS in 17 out of 18

cases, with 9 of them having statistical significance. 7 of those cases had a small effect

size, and 3 of them had a medium effect size. As for the FPs, Unguided showed better

results than GASSERTMRS in all cases, but the results were statistically significant

only in 6 out of 18 cases, and the effect size was small in four cases and negligible for

the remaining 14 cases.

This indicates that the guidance provided by the implemented fitness functions and

selection operators does improve the generated MRs substantially, but at the cost of a

small increase in the tendency to get FPs. This may be caused by the fitness guidance

generating tighter MRs, which reveal more failures but may have a higher tendency

for false alarms (overfitting the training dataset).

RQ2 – In summary: The fitness guidance allows the evolutionary algorithm to

converge into more effective MRs in many configurations, but also results in a very

small increase of false positives.

RQ3: Comparison with Manual MRs. The Manual MRs columns from Table 8.3

show the results obtained with the MRs identified manually in Chapter 7. A compari-

son with the GASSERTMRS columns reveals that the latter approach dominates the

former, as the results from the DF and MS evaluation metrics are either the same or

better, barring a few outliers where there is a small difference in favour of the manual

MRs. Furthermore, the differences are very significant, with a 10 times increase in MS

in some cases, for instance. However, the manual MRs do have 0 false positives along

the full dataset, whereas GASSERTMRS MRs do have a small but non-zero number

of FPs (but a median of 0 FPs for all configurations). Note that comparing FNs is not
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meaningful, since the manual MRs were not generated with a process involving the

training set of test executions.

Overall, we observe only two advantages for the manual MRs over GASSERT-

MRS: (1) exactly 0 FPs on all evaluation tests, and (2) lower complexity of the MR

expressions, with a maximum of 6 elements for manual MRs and a maximum of 32

for GASSERTMRS.

RQ3 – In summary: The MRs generated with GASSERTMRS are more effective

at detecting failures than those generated manually, but are also slightly more prone

to false positives, as well as more complex.

RQ4: Comparison with Regular Assertions. We compare the GASSERTMRS

results from Table 8.3 with the results from its Regular Assertions variant in Table

8.4. Here, we can see that there are several configurations where GASSERTMRS

outperforms the regular assertions in terms of DF and MS. We disregard FNs because

are not directly comparable with the MRs, since they use individual test executions

instead of test pairs.

For oracles based on the TD and TM metrics, the MRs achieve better results

(higher DF and MS) with the best configurations of GASSERTMRS than with the best

configurations for regular assertions. Nevertheless, the regular assertions with the best

results (AWT with the ≤ operator) do outperform any other MR configuration in both

DF and MS.

On the other hand, regular assertions also achieve a median of 0 FPs, but similarly

to MRs, the actual number of FPS is not always 0.

As noted before, the regular assertions employ individual test cases, and therefore

each of the configurations in Table 8.4 used all the 1340 test cases in the dataset. As

for the MR configurations, each of them could only use the source test cases and the

follow-up test cases of their corresponding MRIP, and the follow-ups for different

MRIPs were unusable. This is an inherent disadvantage of MT, and so we compare

both results despite this difference. On the other hand, this allows generating more

different MR oracles, because we can (and do) generate different output relations for

every MRIP. this is why the MRs have more configurations. However, this also means

that the effort needed for generating these oracles is higher. In this case specifically,

we have 18 configurations (rows in Table 8.3) for MRs, and 7 configurations (rows in

Table 8.4) for regular assertions, so the cost of generating all the MRs is 18
7 ≈ 2.57

times higher.
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RQ4 – In summary: MRs show some advantages over regular assertions, but

mixed results are obtained when comparing them, with MRs being more effective

with two of our performance metrics, but regular assertions being more effective

with the remaining one.

Discussion

Automated generation of MR is feasible with GASSERTMRS. The need to define

techniques for automatically identifying metamorphic relations has been acknowl-

edged in a recent industrial study [ABB+21]. In this paper we develop such a method

based on recent advancements on automatic program assertions generation techniques

GASSERT [TJTP20]. Our results show that GASSERTMRS is competitive with

manually-defined MRs in the context of an industrial case study, on top of being an

automated approach. According to engineers from Orona, the ability to generate MRs

which are difficult to identify manually is a significant benefit of GASSERTMRS. As

for the cost, manually validated field executions are often already available (e.g. for

regression testing purposes), and incorrect executions can be produced by seeding

faults. Thus, this approach can be adopted without unreasonable overhead.

Small test suites are sufficient for the generation of MRs in an industrial context.
One of the main challenges of testing CPSs is the high cost of executing tests, which

often results in having to work with a reduced test suite. Indeed, compared with the

experiments with Java programs of GASSERT [TJTP20], we employed the fixed and

small test suite that we had available. A small dataset might result in the evolutionary

algorithm generating poor quality MR. However, our experimental results show that

GASSERTMRS can generate useful MRs with this relatively small test suite, which

has a realistic size to be used in practice in our case study.

Setting constraints on the generated MRs can make the approach more effective.

The current implementation of GASSERTMRS relies on numerical inputs and outputs,

since the expression trees it generates only support this type of variables. We consider

this constraint to be reasonable for CPSs, where the input/output domains consist of

numerical variables in most cases [Alu15]. For the systems where this is not true,

which is the case for our elevation case study, it is possible to transform complex inputs

into numerical variables with user-defined functions that extract numeric input features.

Defining these functions requires some effort, and may bias the MR generation process,

but it also results in more familiar MRs and a reduced search-space. We believe that

these limitations and our proposed MR template are effective for most performance

testing contexts from the domain of CPSs.
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Automatically generated MRs are complex. While the MRs generated by GAS-

SERTMRS are highly effective compared with manually generated ones, many of

them may be difficult to interpret for human engineers. One of the main reasons

for this is the high complexity of the generated expressions, which is often partially

unnecessary due to tautologies and other simplifiable sub-expressions. This issue

could be mitigated by employing automated techniques that simplify expressions

[Sto11] to reduce the complexity of the MRs before outputting them.

8.3 GenMorph

GENMORPH is our second version of the approach, which aims to automate the

generation of full MRs, and is applied in the context of generating universal test

oracles for Java methods.

8.3.1 Approach

Test 
Generation
(Evosuite)

Mutant 
Generation

(Major)

Method Input 
Transformations

(GenMorph)

Test Execution
(JUnit)

Generation of 
input/output relations

(GenMorph)

Source 
Test

cases
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Figure 8.1: Architecture of GENMORPH MR generation

Given a function implementation P , the goal is to automatically generate one

or more MRs that have zero false positives and the fewest possible false negatives.

To this end, GENMORPH takes a Java method P and a time budget as its inputs.

This tool explores the search-space of all the possible MRs, and yields the best ones

that have been found after the time budget has expired. GENMORPH explores the

search-space with an evolutionary algorithm driven by fitness functions that reward

MRs with fewer false positives, false negatives, and complexity. This is a variation of

the same co-evolutionary algorithm employed by GASSERTMRS and GASSERT, and

similarly to those approaches, GENMORPH relies on a dataset of correct and incorrect

test executions to compute the fitness of the MRs.

Figure 8.1 shows an overview of the entire MR generation process of GENMORPH,

which can be broken down into six steps.
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(1) Source Inputs Generation. The first step to generate a dataset for the evolutionary

algorithm is to generate the test inputs. In order to discover valid and meaningful

MRs, these test inputs should be diverse enough to reveal the different behaviours

of the method under test. Our implementation employs EVOSUITE [FA11, FA12]

to generate such a set of source test inputs. EVOSUITE is mainly driven by branch

coverage, which guarantees that the test inputs cover diverse execution paths of the

method under test [FA12]. Furthermore, this tool can also minimize the test suites,

which compresses the dataset and reduces the execution costs of GENMORPH. The

generated test inputs will be used as source test cases, as the input relations have not

been decided yet at this stage.

(2) Mutants Generation. In order to obtain incorrect test executions, we need to

execute our test inputs on faulty versions of the method under test. These faulty

versions are obtained with MAJOR [Jus14], a mutation testing tool which can seed

diverse artificial faults into Java methods.

(3) Initial Input Transformations. The input relations are generated based on pre-

defined templates which specify canonical input transformations [DTPRK22]. These

input transformations can be used to generate corresponding follow-up test inputs for

each of the source test inputs, as well as to define the input relations. In step (5), output

relations will be generated for each of these input relations, but different “relaxations”

of the input relations might also be explored.

(4) Collection of Program Executions. The test executions used as a dataset for the

evolutionary algorithm are generated by running the source and follow-up test input

pairs. These test inputs are run on the original and faulty versions of the method

under test in order to generate correct and incorrect test executions, respectively. We

specifically use JUNIT to execute these tests, since it is one of the most popular testing

frameworks for Java. The resulting test executions can then be used by the evolutionary

algorithm to compute the false positives and false negatives of the candidate MRs

(5) Generation of MRs. GENMORPH implements an evolutionary algorithm that,

given an initial input relation and a set of correct and incorrect executions, navigates

the space of candidate MRs to find ones with the fewest possible false positives and

negatives (in that order of priority). We propose two modes to generate MRs: strict

and relaxed mode. In strict mode, we explore candidate output relations, keeping the

input relation fixed, similarly to GASSERTMRS. In relaxed mode, certain “relaxations”

of the initial input relation are also explored, thus allowing the generation of more

general MRs.

(6) Filtering MRs. Generally, the MRs generated by step (5) will have zero false

positives over the training dataset (correct test execution), since this is the highest
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priority of the fitness function. Nevertheless, the MRs may still be invalid, i.e., some

other correct test executions may trigger false positives. To filter such MRs, GEN-

MORPH implements a two-step filtering process that uses the RANDOOP [PLEB07]

test input generator and the OASIS [JCHT18] oracle assessor.

Input Transformations

GENMORPH starts generating MRs by identifying input relations from a set of prede-

fined input transformation templates. From the predefined transformation templates,

we select a set of (metamorphic) input transformations compatible with the method

under test. For each of the selected transformations, a canonical input relation can

be derived, and the follow-up test inputs for each source test input are also generated.

The canonical input relation represents the most strict interpretation of the applied

transformation: Given the values of the source test inputs, there is only a single

possible value of the follow-up inputs that satisfies the canonical input relation.

Our transformation templates are derived from the numeric MRs commonly

used in the literature, which were identified by Duque et al. [DTPRK22]. Some of

them can be parametrized with a number, so multiple instantiations are possible. We

specifically implement the following transformations.

PermuteParameters. This transformation permutes two of the input parameters of

the method. It can be applied to any pair of method parameters, as long as they are of

the same type. For instance, the follow-up for add(a, b) would be add(b, a). In this

example, the canonical input relation would be: (af = bs) ∧ (bf = as).

BooleanFlip. This transformation flips the value of a single Boolean parameter from

true to false or vice versa. Although our experimental evaluation does not contain any

suitable method for this transformation, and the study of Duque et al. [DTPRK22]

does not mention this relation either, we implemented it to support methods with

Boolean parameters for completeness.

NumericAddition(Number). This transformation adds a constant number (positive

or negative) to a single numeric parameter. For the add(a, b) method, we could apply

NumericAddition(-1) to its second parameter to generate the follow-up input

add(a, b− 1). The canonical input relation would be: (af = as) ∧ (bf = bs − 1).

NumericMultiplication(Number). This transformation multiplies a single numeric

parameter by a constant number (positive or negative). For the add(a, b) method,

we could apply NumericMultiplication(2) to its first parameter to generate

the follow-up input add(a · 2, b). The canonical input relation would be: (af =

as · 2) ∧ (bf = bs).
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For most Java methods, there will be many possible input transformations that

can be generated following the transformation templates described above. In fact,

a single numeric parameter in the method results in an almost unlimited number of

possible input transformations, since NumericAddition and NumericMultiplication can

be instantiated with any numeric constant.

Because of this, it is necessary to sample a meaningful set of values for the

parameterized transformation templates. To this end, GASSERTMRS collects a

pool of constants, consisting of the predefined values -1 and 1, plus all the constant

values appearing in the method under test. These constant values are extracted by

instrumenting all the variable accesses and literal expressions of the method under

test, and analysing their values for all the executions with the test inputs generated

by EVOSUITE. If a variable access or literal expression evaluates to and identical

numeric value on every execution, that value is considered meaningful for the method

under test, and added to the constants pool. A weighted random sampling is then

performed to select the constants to use with the parameterized templates, using the

frequency with which each constant appears as its weight.

Evolutionary Algorithm

GENMORPH employs an extended version of the co-evolutionary algorithm used by

GASSERT [TJTP20] and GASSERTMRS [ATA+21], previously described in Section

8.2.

The core algorithm is still a co-evolutionary algorithm that evolves two populations

of candidate oracles in parallel, with three competing objectives:

1. Minimizing the number of false positives,

2. Minimizing the number of false negatives,

3. Minimizing the size of the expression.

Function MR-GENERATION of Algorithm 1 defines the co-evolutionary algo-

rithm used to explore the search-space of MRs. Remember that the fitness func-

tion φFP prioritizes false positives over false negatives, while φFN prioritizes false

negatives. This is a version of the GASSERT [TJTP20] algorithm in which SE-
LECT+REPRODUCE has been extended to support transformations of MRs at different

scopes, namely, input relations, output relations, or both (whole MR).

Strict and relaxed modes. GENMORPH implements two different strategies for MR

generation: strict and relaxed. In strict mode, the canonical input relation is not

modified at all, and the evolutionary algorithm only explores the space of possible
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input : Ri: canonical input relation
correct E+ and incorrect E− test executions

output :MR a set of the best metamorphic relations
1 function MR-GENERATION
2 PopulFP ← GET-INITIAL-RANDOM-POPULATION(Ri)
3 PopulFN ← GET-INITIAL-RANDOM-POPULATION(Ri)
4 gen← 0
5 repeat
6 gen← gen + 1
7 do in parallel
8 PopulFP←SELECT+REPRODUCE(PopulFP, φFP, gen)
9 PopulFN←SELECT+REPRODUCE(PopulFN, φFN, gen)

10 end
11 if gen % FREQ_MIGRATION = 0 then
12 add GET-BEST-MRS(PopulFN, φFN) to PopulFP

13 add GET-BEST-MRS(PopulFP, φFP) to PopulFN

14 end
15 until time budget is expired
16 return GET-BEST-MRS ({PopulFP ∪ PopulFN}, φFP)

17 function SELECT+REPRODUCE
18 Popul← COMPUTE-FITNESS(Popul, φ, E+, E−)
19 PopulNEW ← GET-BEST-MRS (Popul, φ)
20 repeat
21 〈MRp1,MRp2〉 ←SELECT-PARENTS(Popul, φ)
22 case mode = "strict" do
23 scope← "output relation"
24 end
25 case mode = "relaxed" do
26 scope← GET-RANDOM-SCOPE("output relation", "input relation", "whole MR")
27 end
28 〈MRo1,MRo2〉←CROSSOVER+MUTATION(scope, MRp1,MRp2)
29 add 〈MRo1,MRo2〉 to PopulNEW

30 until PopulNEW is full
31 return PopulNEW

Algorithm 1: GENMORPH CO-EVOLUTIONARY MR GENERATION

output relations, similar to GASSERTMRS. On the other hand, relaxed mode allows

for certain modifications to the input relation. More specifically, this mode allows

modifications to the input relation which make it strictly more satisfiable, i.e., the set

of test pairs that satisfy the input relation must be a superset of the ones that satisfy

the canonical input relation. The main advantage of relaxed mode is that it allows for

the exploration of MRs with more general input relations. On the other hand, it also

entails the following disadvantages wrt strict mode: (1) More general input relations

may lead to over-generalization and false positives; (2) The search-space becomes

significantly larger, and the fitness functions are also more costly to compute; (3) The

relaxed input relations may be satisfied by multiple follow-up inputs, so generating

follow-ups is not as straightforward.

Selection. GENMORPH employs the same selection operators as GASSERTMRS,

namely Tournament Selection and Best-match Selection (see Section 8.2.1).

Reproduction (output relation). GENMORPH employs the same canonical tree-
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based crossover [Koz94] as GASSERTMRS for the output relations (see Section

8.2.1).

Mutation (output relation). GENMORPH employs the same mutation operators for

output relations as GASSERTMRS, namely Node Mutation, Subtree Mutation and

Constant Value Mutation (see Section 8.2.1).

Relaxed mode operations. In relaxed mode, GENMORPH can modify the input

relations with specific crossover and mutation operators. There are two different ways

in which the input relation can be relaxed. First, the clauses from the input relation can

be dropped, such that the value of one of the input parameters for the method becomes

unconstrained. For instance, the input relation af = as ∧ bf = bs may become just

af = as. The second way is to relax the operator used in the clauses. Currently, all

the template-based input relations are a conjunctive group of equality clauses, and the

equality (=) operator can be relaxed by replacing it with ≤ or ≥. For instance, the

input relation af = as ∧ bf = bs may become af ≤ as ∧ bf = bs. In order to support

these operations, we represent the input relations as the combination of: (1) A bitset

indicating whether the clauses are used or dropped, and (2) a list of the operators (=,

≤ or ≥) used by each clause.

Reproduction (input relation). For the input relations, GENMORPH implements a

single-point crossover operator [Koz94]. Crossover is performed at the same point for

both the used/dropped bitset and the set of operators.

Mutation (input relation). As mentioned before, GENMORPH implements two dif-

ferent input relation mutation operators. On the one hand, Clause selection randomly

selects one of the clauses from the input relations and flips its corresponding bit, indi-

cating whether the clause is used or dropped. On the other hand, Operator mutation

randomly selects one of the clauses and changes its operator (possibly switching ≤ or

≥ back to =).

Reproduction (whole MR). GENMORPH supports two crossover operators for com-

bining the genes from two MRs. On the one hand, Single Crossover randomly selects

either the input or the output relation, and then it randomly selects and applies an ap-

propriate crossover operator to it. On the other hand, Swapping Crossover recombines

the input and output relations from both parents (i.e. combines the input relation from

parent1 with the output relation from parent2 and vice-versa).

Mutation (whole MR). GENMORPH mutates whole MRs by randomly selecting

either the input or the output relation, and then randomly selecting and applying an

appropriate mutation operator to it.

Constraints. GENMORPH constrains the generated MRs in order to avoid producing
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1 @Test
2 public void testMR0() {
3 int a_s = 1, b_s = 2; // source input
4 int a_f = 1, b_f = 1; // follow-up input
5 int o_s = add(k_s, e_s); // run source
6 int o_f = add(k_f, e_f); // run follow-up
7 if ((a_f == a_s) && (b_f == b_s - 1)) { // IR is true
8 assertTrue(o_f != o_s); // check OR
9 }

10 }

Listing 8.1: Executable MR Test

undesirable results. If a newly-generated individual violates either of these constraints,

it is deleted immediately. First of all, the output relations have a configurable complex-

ity limit, which the generated expressions must not surpass. In relaxed mode, there is

an additional constraint: The input relation must be satisfied by less than 50% of all

the possible test pair combinations, so as to avoid input relations that are too general,

or even trivial to satisfy. Furthermore, we also implemented an “elitist” constraint

which is required for an individual to be considered for the elite set or as the best

individual, but is not necessary for being part of the population. This constraint is that

the output relation must contain both the source and the follow-up variables from the

method outputs. The goal of this is to filter out individuals which do not compare

the outputs from both test cases, and are therefore not really MRs (e.g. an assertion

over only the source test case). Since these individuals may still contain useful genetic

material, they are still allowed into the population.

Filtering MRs

The final step of GENMORPH consists of a filtering process to discard invalid MRs

and avoid reporting them. The validity of an MR is determined by the lack of false

positives after a 2-step filtering process.

The first step validates the MRs with test inputs unseen by the evolutionary

algorithm. These inputs are automatically generated by RANDOOP [PLEB07], which

is a different tool than the oue we use to generate the training dataset. In order to

generate the corresponding follow-up test inputs for the automatically generated MRs,

we employ a Satisfiability Modulo Theory (SMT) solver to find follow-up test inputs

which satisfy the input relations. More specifically, we convert the source test inputs

and the input relations to SMTLIB2 [SMT22] language constraints, and we use the Z3

theorem prover [MB08] to find follow-up input values which satisfy all the constraints.

For each MR, we generate a JUNIT test suite with a test case for each source

and follow-up input pair generated by RANDOOP and Z3, respectively. Listing
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8.1 shows a JUnit test case generated for the example add(a, b) method and the

NumericAddition(-1) transformation, with the output relation add(a, b− 1) 6=
add(a, b).

The second step uses OASIS [JCHT16, JCHT18], an oracle assessor which can

identify false positives and negatives for test oracles using a search-based test input

generation approach. To detect false positives, the oracle assertion expression is

negated and converted to a new branch, and then OASIS attempts to cover that branch

in order to find counterexamples to the assertion.

OASIS is designed to work with regular program assertions, but we adapted its

implementation for MRs. Given a MRs, OASIS creates a new method that, similarly

to Listing 8.1, has an if statement with the input relation as its condition and another

statement with the output relation as its body. However, unlike Listing 8.1, the

generated method is not input specific, but takes the source and follow-up inputs

as parameters. Furthermore, the output relation becomes a condition for an empty

if statement rather than an assertion. This new branch becomes the target of the

search-based test generation. This setup allows the detection of false positives, as

OASIS has to generate inputs that satisfy the input relation but do not satisfy the

output relation in order to cover the target branch.

8.3.2 Evaluation

This section describes our empirical evaluation of GENMORPH, which is based on 10

different Java methods from the Apache Commons Math library.

Our experiments aim to answer the following four Research Questions (RQs):

� RQ1: Is GENMORPH effective at generating metamorphic relations?

� RQ2: How does GENMORPH compare with other baseline strategies?

� RQ3: How do GENMORPH’s strict and relaxed mode compare with each other?

� RQ4: Is the filtering mode of GENMORPH effective at detecting invalid metamor-

phic relations?

Baselines

For RQ2, we implement two additional approaches for automatic MR generation:

FULLMR and INPUTFIRST. These baselines still employ the same core evolutionary

algorithm from GENMORPH, but handle the generation of input relations differently

from the template-based input transformation approach we propose.
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FULLMR uses Algorithm 1 to directly generate both input and output relations

in a completely unconstrained manner. The algorithm is modified to treat input

relations exactly like output relations, enabling the use of tree-based mutation and

crossover operators on them. Naturally, the input relations are constrained to not use

any output variables. While this baseline can explore arbitrary Boolean expressions as

input relations, and is therefore more expressive than our approach, we expect that

navigating this much larger search space will complicate the exploration process.

INPUTFIRST uses a hill climbing algorithm [SG06] to search for potential input

relations first, and then generates the corresponding output relations using Algorithm 1

in strict mode. The hill climbing considers the following objectives with a descending

priority: (1) Maximize the number of satisfied test inputs (encourage test input

coverage), (2) minimize the number of test pairs (penalize redundant test pairs), and

(3) minimize the size of the input relation. Moreover, the input relation must satisfy

between 5% and 50% of all the possible test pair combinations. The lower bound

of 5% ensures that the resulting input relation is not too difficult to satisfy, whereas

the upper bound prevents almost-trivial input relations from being generated. The

hill climbing algorithm uses the tree-based representation and mutation operators for

navigating its search-space.

Experimental Setup

Experimental Subjects. We evaluate GENMORPH on the Apache Commons Math

3 Library [Apa22], one of the most popular open-source mathematical libraries for

Java. Specifically, we selected 10 methods from the library which fulfil the following

criteria: (1) They contain at least 10 lines of code; (2) they are static methods (to

avoid methods which use or modify states); (3) all of their parameters are numeric

or Boolean; (4) they are fully-deterministic pure methods (i.e. they do not use I/O

or random number generators). The ten selected methods span five different classes.

The first four columns of Table 8.5 show their name, signature, LOC, and number of

evaluation mutants.

Step 1: Source Input Generation. For each subject, we ran EVOSUITE [FA11]

(v. 1.1.0) to generate the source test inputs. We configured EVOSUITE with the

branch coverage criterion, minimization enabled, and a time budget of 5 minutes. We

performed 10 runs with different random seeds and aggregated all the test cases to

obtain a diverse and large set of test inputs.

Step 2: Mutants Generation. For each subject, we ran MAJOR [Jus14] (v. 1.3.5)

enabling all the supported mutation operators. We automatically filtered the mutations

that do not directly affect the method under test.
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Step 3: Initial Input Transformation. For both the strict and relaxed modes of

GENMORPH, we select four instantiations of the input transformation templates for

each run.

Step 4: Collection of Program Executions. We enforced a limit of 9,000 correct

and 9,000 incorrect executions in order to prevent slowing the evolutionary algorithm

down by providing too large of a dataset. The test executions are randomly sampled if

there are more than those configured amounts.

Table 8.6: Configuration Parameters for Algorithm 1

Parameter Description Value Parameter Description Value
time budget (minutes) 30 prob. of crossover 90%
max correct executions 9,000 prob. of mutation 30%
max incorrect executions 9,000 frequency of migration (every X gen) 10
bound on the size of Ro 16 number of individuals for elitism 10
size of each of the populations 1,000 number of individuals to migrate 160

Step 5: Generation of MRs. Table 8.6 shows the configuration of Algorithm 1 we

use for all of our experiments. For each subject method and strategy, we used a time

budget of 30 minutes and we generated four different MRs. For the INPUTFIRST

baseline, the budget was split into 10 minutes for hill climbing and 20 minutes for

Algorithm 1. We repeated each run 12 times in order to account for the stochastic

nature of our algorithms.

Step 6: Filtering MRs. For each subject, we ran RANDOOP [PLEB07] (v. 4.3.0)

with 12 different random seeds. Because of the high cost of running Z3 [MB08] (v.

4.8.14), we sampled a maximum of 100 RANDOOP test cases for each run. Next,

we executed multiple runs of OASIS with a budget of 150 seconds per run and an

overall budget of 10 minutes. For each MR, the filtering process is interrupted if a

false positive is found at any point

We ran OASIS [JCHT18] multiple times (due to its stochastic nature) with an

overall budget of 10 minutes, giving each run a budget of 150 seconds. We stop OASIs

when we find the first FP.

Results

RQ1: Effectiveness of GENMORPH. RQ1 evaluates the effectiveness of GEN-

MORPH at generating effective MRs using Mutation Score (MS), i.e., the ratio of

mutants killed.

We only consider the MS of the MRs that pass the 2-step filtering process described

in Section 31). For each MR which passed the filtering, we ran the PIT [CLH+16]
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(v. 1.7.4) mutation testing tool to compute the MS. We use 12 different test suites

generated by RANDOOP and Z3, resulting in a total of 12 different MS measures for

each MR. For MRs that did not pass the filtering step, we record a MS of 0 for each

of the 12 runs. Note that our evaluation setup deliberately uses different tools for

generating the MRs and for evaluating them.

Table 8.5 shows the average MS obtained with each approach and subject method.

The average MS ranges from 0% to 77% for strict mode, and between 0% and 52% for

relaxed mode. Excluding acos and log10, the average MS is no smaller than 13%

for strict mode in the remaining eight methods, which can be considered effective. On

the other hand, the relaxed mode obtains an average MS of at least 11% for five out of

ten methods.

RQ1 – In summary: GENMORPH generates effective (>10% MS on average)

MRs for 8 out of 10 methods, and very effective (>50% MS on average) ones for 3

out of 10 methods with its strict mode.

RQ2: Comparison with Baselines. RQ2 compares our MR generation approach

with two baselines. We computed the evaluation metric (MS) of the MRs generated

by these baseline techniques following the same process we used for RQ1.

Since all the approaches share the same source test executions, we pair their

runs with the same random seeds together for comparison. Thus, we employ the

paired Wilcoxon signed-rank test [Woo07] to assess the statistical significance of

the difference between the MS of each pair of approaches. We set the significance

threshold for the p-value to 0.05. We measure the effect sizes by employing the Vargha

and Delaney Â12 metric. As suggested by Romano et al. [RKC+06], we categorized

the difference as N (negligible) if d < 0.147, S (small) if d < 0.33, M (medium) if

d < 0.474 and L (large) if d >= 0.474, where d = 2|Â12 −0.5|.
Table 8.7 shows the effect sizes for the comparison between the approaches. The

comparisons that are not statistically significant are omitted (-). The subscript for each

effect size is 1 if the technique on the left has the better MS, or 2 otherwise.

The results reveal that strict mode outperforms FULLMR with a Large difference

in six methods while FULLMR never outperforms strict mode. On the other hand,

relaxed mode outperforms FULLMR with a Large difference in two methods, but it is

conversely outperformed in three methods.

As for INPUTFIRST, it is outperformed by strict mode in six methods, while

it never outperforms strict mode. Relaxed mode outperforms INPUTFIRST with a

Large difference in four methods, and is also never significantly outperformed by

INPUTFIRST.
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Table 8.7: Comparison of techniques (Effect size for MS).

S<>F S<>I R<>F R<>I S<>R
nextPrime L1 L1 S2 L1 L1
isPrime L1 L1 L1 L1 -
gcd S1 L1 L2 L1 L1
pow L1 L1 L1 L1 S1
stirling L1 L1 M2 M1 L1
acos - - N1 N1 N2
log10 N1 N1 - - N1
sin L1 L1 - - L1
sinh M1 M1 - S1 M1
tan L1 L1 - - L1

Legend: S = strict, R = relaxed, F = FULLMR, and I = INPUTFIRST

RQ2 – In summary: The strict mode of GENMORPH clearly outperforms both

baselines with statistical significance. The relaxed mode clearly outperforms

INPUTFIRST, but not the FULLMR baseline.

RQ3: Comparison between Modes. This RQ aims to compare the relative effective-

ness of the two GENMORPH modes: strict and relaxed. We measure their relative

effectiveness in terms of MS, using the same statistical analysis used in the baselines

comparison from RQ2.

The S<>R column from Table 8.7 shows the comparison between the MS obtained

with the strict and relaxed modes. The results show that strict mode outperforms

relaxed mode with statistical significance with a Large difference in five methods,

while the relaxed mode never outperforms strict with a non-negligible difference.

Even though Table 8.5 shows that relaxed mode obtains a better average MS for

two of the methods, the difference is not significant. In general, strict mode clearly

outperforms relaxed, particularly for the five methods with floating-point arithmetic

(parameters of type double). For these methods, relaxed mode never obtained a better

MS than 2%, while strict obtains an MS higher than 10% for three of them. The

cause of this may be that it is easy to over-generalize and generate invalid MRs when

inequalities are used on the input relations for these methods, which is what relaxed

mode does.

RQ3 – In summary: The results suggest that strict mode, which directly uses

the canonical input relations from the input transformation templates, generally

achieves better results than relaxed mode.

RQ4: Filtering. This RQ evaluates the effectiveness of the filtering process (step 6)

in detecting invalid MRs. We refer to the ratio of MRs that pass both steps of the
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filtering process as PZ.

Table 8.5 shows that the PZ ranges between 0% and 69% for strict mode and

between 0% and 85% for relaxed mode. The results also indicate that the filtering

process eliminates significantly more MRs for the methods that use floating-point

arithmetic. A possible reason for this is that floating-point arithmetic can have special

values such as NaN or Infinity, which the MR may not handle correctly if these

values were not part of the dataset for their generation. For instance, the property

sinh(x+ 1) > sinh(x) may appear to be correct, but does not hold for x =∞.

To provide more insights on the satisfiability of the input relations, we count the

number of unique test inputs generated by OASIS, as well as the number of those

unique inputs that satisfy the input relation. We call the ratio of the latter count over

the former one the Satisfiability (SAT) of the input relation.

The SAT columns from Table 8.5 show their average values. Note that SAT values

are never zero. The missing value for the last column of the sinh row is because all

the MRs generated by INPUTFIRST were filtered during the first step, leaving none to

compute the satisfiability. The results show that OASIS is more effective at generating

test inputs that satisfy input relations generated with the relaxed mode than by the

strict mode. These results are expected, since the goal of relaxed mode is to obtain

more general input relations, which makes them easier to satisfy. The lower SAT for

strict mode is not necessarily a problem, since MRs with a more general input relation

have a higher chance for false positives.

RQ4 – In summary: GENMORPH’s filtering process is effective at filtering MRs

that do not generalize well on unseen inputs, and the MRs generated with strict

mode are harder to falsify than those generated with relaxed mode.

Discussion

Automated generation of MR is feasible with GENMORPH. Following the research

work from GASSERTMRS, we have developed a fully-automated approach to generate

MRs, and we have shown that this approach can be effectively used to identify useful

MRs for Java methods. The MR generation process has a cost comparable to GASSERT

[TJTP20, TJTP21], which generates program assertions using a similar evolutionary

process using samples of correct and incorrect executions.

Multiple iterations of GENMORPH might be needed. Our results have shown that

GENMORPH still fails to generate a good proportion of useful MRs for some method,

possibly due to factors like special floating-point values (NaN, infinity) not being

considered in the training dataset. This issue might be solved by including an outer
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loop of the filtering process, similarly to how GASSERT [TJTP20] employs an outer

loop with OASIS [JCHT16, JCHT18] in order to allow further refinement of the test

oracles after new false positives and false negatives have been identified. With this

change, the final MRs would be expected to be significantly more robust, possibly

allowing GENMORPH to obtain positive results with the Java methods for which it

currently generates very few useful MRs. Nevertheless, this change would also result

in a significant increase of the total time budget needed for generating MRs.

The relaxing of MRs is currently ineffective. Our comparisons between the strict

and relaxed modes of GENMORPH have revealed that the generalization of the input

relations performed in relaxed mode are counter-productive with the current approach.

We speculate that more general MRs are more prone to false positives, resulting

in fewer valid MRs passing the filtering process, and thus, worse average results.

However, we must note that integrating the filtering step as an outer loop for GEN-

MORPH, as discussed in the previous point, may resolve this issue. Another concern

is that the search-space becomes much larger when the input relations are not constant,

and mitigating this may require the definition of more advanced exploration techniques.

Adapting GENMORPH for CPSs is challenging. GENMORPH is a general MR

generation approach which could theoretically be adapted to the context of CPSs, but

testing this type of systems brings in an additional set of challenges. One of them is the

inability of our current input transformation templates to express many useful MRIPs.

Indeed, looking at the MRIPs we identified for our elevation case study in Chapter

7, “Faster elevators” is the only one that could be expressed with our templates. In

order to resolve this, more advanced input transformation templates which operate on

sets, lists, and other complex types should be defined. Beyond functional concerns,

generating a large dataset of correct and incorrect test executions might not be possible

for many CPSs due to the high cost of executing tests on these systems. Some

techniques, such as surrogate models, could be used to mitigate this [Jin11], but the

usefulness of MRs generated based on datasets created by such means would need

to be investigated. Indeed, the use of such models for testing activities when the cost

of executing the real system is too high has already been proposed by previous work

[MS11, BSH17, KM18]. In fact, potentially suitable Machine Learning (ML) models

for predicting performance measures have already been developed for our industrial

elevation CPS case study, and are currently used the context of generating regression

testing oracles [AAI+21, GAA+21a, GAA+22].
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8.4 Threats to Validity

In this section we enumerate the internal and external validity threats to our work, and

how they have been mitigated.

8.4.1 Internal Validity

Internal validity threats refer to the factors that might have affected the results of

our evaluation. One such threat may arise from errors in the measurements or the

implementation of our tools. We mitigate this threat by manually inspecting the output

and internal behaviour of the tools for a few sample runs.

Another potential threat to the validity of our empirical evaluation is the use of

mutation testing, which might have introduced a bias in our results. Mutation testing

introduces a bias when the mutants are too few or there are many equivalent mutants

[PJHLT15]. To mitigate this threat, we used an amount of mutants comparable to

other related works that use simulation-based mutation testing [AWSE19, LNB+17,

MNBB18] for the case study from the elevation domain used to evaluate GASSERT-

MRS. Furthermore, we checked these mutants to identify and filter out equivalent

mutants, as recommended by Papadakis et al. [PJHLT15]. As for GENMORPH, we

employed MAJOR [Jus14] and PIT, which are well-established mutation testing tools

that can automatically generate a large amount of faulty versions of the SUT.

The test suites which might also introduce bias or contain too few test cases. For

GASSERTMRS, we generated a large and diverse set of test cases automatically. As

for GENMORPH, we employed existing test suite generation tools to mitigate this

threat, namely EVOSUITE [FA11] and RANDOOP [PLEB07].

The approach and evaluation methods we use are also inherently stochastic. We

account for this by repeating the experiments multiple times with different random

seeds and performing statistical analyses. For GASSERTMRS, each configuration

was executed 12 times, and 10-fold cross-validation was used to partition the test

suite into non-overlapping training and testing subsets, resulting in 10 × 12 = 120

samples. As for GENMORPH, we ran each configuration 12 times, and we performed

the evaluation with 12 different test suites, resulting in 12× 12 = 144 samples.

8.4.2 External Validity

External validity threats relate to the generalizability of the obtained results. Our

evaluation to assess the effectiveness of GASSERTMRS employs a single case study

which might not be enough to conclude that it is an effective approach for most CPSs.

Nevertheless, we note that this is a highly complex industrial CPS employed in many
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real elevator installations. As for GENMORPH, we mitigated this threat by selecting

ten different functions from a popular open-source library. Moreover, we evaluated

GENMORPH with unseen test inputs and seeded faults generated with different tools

from the ones used to generate the MRs.

8.5 Related Work

Metamorphic testing for CPSs. MT has already been used to mitigate the oracle

problem CPSs. Lindvall et al. combined MT and model based approaches in order

to perform simulation-based testing of autonomous drones [LPMS17]. Several other

works have explored the use of MT to verify self-driving cars [TPJR18, ZS19]. Unlike

those works, ours focuses on the generation of MRs, rather than on their application.

NLP-based MR generation. Regarding documentation-based techniques, Blasi et

al. proposed MEMO [BGE+21], an approach to automatically derive equivalence

MRs from JavaDoc comments. Their solution breaks the problem into two major

steps: Finding sentences which describe MRs in the JavaDoc and translating the

identified MRs from natural language to an executable specification. Naturally, the

quality of derived MRs depends on the completeness and correctness of the available

documentation. In contrast, our approach relies on labelled test executions rather than

documentation. Our solution is also not limited to equivalence MRs.

ML-based MR generation. ML has also been leveraged to identify specific types of

MRs. Kanewala et al. proposed techniques to predict MRs based on the the control

flow graph of the SUT using graph kernels [KB13, KBBH16]. On the other hand,

Zhang et al. presented RBF-MLMR, another MR prediction approach based on an

improved radial basis function (RBF) neural network [ZZPL17]. These approaches

only predict whether predefined types of MRs hold for a given method, whereas our

solution generates executable MRs.

Search-based MR generation. As for search-based techniques, MRI [ZCH+14] and

AUTOMR [ZZC+19], which are both approaches based on PSO which can discover

polynomial numeric MRs that are valid, i.e., have no false positives over a given set

of correct executions. AUTOMR extended the MRI approach by adding support for:

(1) Inequality MRs, (2) multiple inputs, and (3) arbitrary degree polynomials. Unlike

our approach, these techniques only consider false positives as a fitness function,

and therefore have no guidance to generate more effective (e.g. higher mutation

score) MRs, just valid ones. Furthermore, our approach is not limited to polynomial

expressions for the generated MRs.
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Assertion generation. GASSERT [TJTP20, TJTP21] and EVOSPEX [MPAF21] gen-

erate oracles with evolutionary algorithms driven by false positives and false negatives,

based on a dataset of test executions labelled as correct or incorrect. However, these ap-

proaches generate regular program assertions, whereas our approach aims to generate

MRs.

8.6 Conclusion

This chapter presented a novel approach to automatically generate MRs, which is

one of the first solutions that have been proposed for this topic [ZCH+14, ZZC+19].

Our solution employs a co-evolutionary algorithm which evolves two populations

of candidate MRs, with the goal of reducing their false positives and false negatives

over a given set of test executions labelled as correct or incorrect. We present two

implementations of the approach: GASSERTMRS, which generates performance MRs

for a given MRIP, and GENMORPH, a more complete and generic approach which

fully automates the MR generation process for Java methods.

Our experiments with GASSERTMRS show that the it is possible to generate valid

and effective MRs in the context of an industrial CPS, enabling the automation of a

significant part of the testing process at an affordable cost. The experimental results

showed that the automatically generated MRs outperformed the manually identified

ones, given a time budget of 15 minutes for each run of the evolutionary algorithm.

The evaluation of GENMORPH, which was done in the context of testing Java

methods, also showed that this approach can be extended to fully automate the process,

with only the SUT given as an inputs, and still obtain positive results. The experiments

revealed that GENMORPH could efficiently generate useful MRs for eight out of ten

subject methods.

Future works will aim to increase the applicability and generalizability of the

approach.

Extending GASSERTMRS. An interface to easily plug test generation and muta-

tion testing tools would greatly enhance the experience of adopting this tool for a new

system. Full automation like GENMORPH will never be feasible due to the different

tools that are used in different domains. Then, GASSERTMRS should be evaluated

with other CPSs in order to assess its usefulness in different application domains.

Extending GENMORPH. While the general design of GENMORPH allows for

arbitrarily complex expressions and type systems, our current implementation for Java

methods only supports Boolean and numeric values. More work is needed to support

complex types (e.g., lists or sets) and their operations in the generated expressions, and
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research on how this extension affects the cost-effectiveness of the tool (search-space

may become larger) needs to be done.

Adapting GENMORPH for CPSs. Except for the automation of generating

correct and incorrect test executions, the GENMORPH approach is general enough to

be adapted to the context of CPSs. However, there are many challenges that need to

be overcome for that. One of them is the inability of our current input transformation

templates to express many useful MRIPs, as they are currently only based on numeric

and Boolean operations. Another challenge is the high cost of generating a large

dataset of correct and incorrect test executions for CPSs, and techniques to mitigate

this issue need to be explored.

Improving MRs readability. We found that the MRs generated by our approach

could be simplified in many cases. Examples include tautologies (e.g. true∨A⇒ A)

or expressions with shorter mathematical equivalents (e.g. 1 + 1⇒ 2). An important

future work is to investigate post-processing to simplify the MRs, as well as a study

on how easy the generated MRs really are for the human engineers to understand.
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Chapter 9

Metamorphic Test Selection

Part III presented Metamorphic Testing (MT) as a solution to the test oracle problem

[BHM+14] for Cyber-Physical Systems (CPSs), which is one of the most complicated

problems in the verification process of these systems. Nevertheless, the verification

process still requires other components, such as a test suite. Although it is usually

simple to generate some (e.g. random) test suite for most Systems Under Test (SUTs),

the cost-effectiveness of the verification process greatly depends on its quality, since it

must reveal the different aspects of the system’s behaviour in order to allow the test

oracles to verify them. There are many existing solutions for this problem, such as

techniques to generate test cases with more diverse inputs [CLM04]. However, since

metamorphic tests employ multiple test executions, most of these solutions do not

map directly into MT.

This chapter presents a generic and novel approach for metamorphic test selection

which aims to optimize the cost-effectiveness of MT [AAPA22a]. We specifically

explore the general case where a provided test suite contains metamorphic test cases

for multiple Metamorphic Relations (MRs), and we aim to find the most cost-effective

subsets. We formulate this as an optimization problem, and we propose a search-based

technique to obtain a set of pareto-optimal solutions. Our approach is evaluated on the

test suite from the elevation domain employed in the evaluation of Chapter 7.

9.1 Introduction

Metamorphic Testing (MT) [CCY98] is a testing technique based on relations between

the inputs and outputs of multiple test executions, the so-called Metamorphic Relations

(MRs). In this thesis, we have applied this technique in order to alleviate the oracle

problem for CPSs [ASA+20, AVS+22a], and we have achieved great success in our

experiments with both open-source ad industrial case studies. Other research has

also reported positive results with this technique in other types of CPSs, such as

autonomous drones [LPMS17] and self-driving cars [TPJR18, ZS19].
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Testing CPSs is a very costly process [BG11], since executing the SUT is usually

computationally expensive at the Software-in-the-Loop (SiL) level (using simulators),

and requires setting up the physical environment and real-time executions at the

Hardware-in-the-Loop (HiL) and operation levels. Furthermore, the fact that MRs

require at least two test executions to verify often translate to even higher costs, since

more test executions will be needed. To mitigate this issue, test selection aims to select

a subset of the test suite in order to optimize the cost-effectiveness of the process.

In this chapter, we present an approach for metamorphic test selection, and we

report our experiences after applying it in our industrial case study from the elevation

domain. Our approach employs the NSGA-II evolutionary algorithm in order to obtain

pareto-optimal solutions for the metamorphic test selection problem. We describe

the problem representation we use for this, the objective functions we use to guide

the search algorithm, and a set of new genetic operators for this problem. For our

evaluation, we employ the execution cost and the mutation score as metrics in order

to measure the the quality of the solutions. We compare our approach with Random

Search and NSGA-II without our new genetic operators, and we conclude that our

proposed solution is more effective than these baselines. Furthermore, we try different

objective combinations with our approach, and we discuss which objectives provide

the best guidance for obtaining the most cost-effective test suites.

We also provide a replication package for the experiments we present in this

chapter, which includes the source code for our implementation of metamorphic test

selection, the test inputs for the test suite, the mutants killed with each metamorphic

test, and the results obtained after applying our test selection approach [AAPA22b].

The rest of this chapter is structured as follows: Section 9.2 presents the proposed

approach, Section 9.3 defines the experimental evaluation and discusses the obtained

results, Section 9.4 summarizes the lessons learned from our evaluation, Section 9.5

points out the threats to validity, Section 9.6 describes the related work, and Section

9.7 concludes the chapter.

9.2 Approach

In this section, we describe our metamorphic test selection approach.

9.2.1 Problem Formulation

We formulate metamorphic test selection as a multi-objective optimization problem in

which the cost of the test suite must be minimized while maximizing its effectiveness.

Specifically, we use execution time as the cost metric and Mutation Score (MS) as the
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effectiveness metric, although other metrics can be used with this approach. The test

suite TS consists of a set of test case pairs, each of which belongs to a specific MR

(TCm
MRn

∈ TS). Since the goal of this technique is to minimize the cost of executing

the test suite, we assume that the test cases have not been executed yet. Thus, each

test case TC consists of the system inputs only, and the cost and effectiveness of the

solutions might have to be predicted or approximated based on that information alone.

The goal is to compute subsets of the test suite TS′ ⊂ TS with the best cost-efficiency.

9.2.2 Search Algorithm

Considering our problem formulation, we chose a multi-objective search algorithm

which can find the pareto-optimal solutions. More specifically, following other re-

search on test selection [YH07, PWAY16, LFN+17, AWM+19], we chose the Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) [DPAM02] as the metaheuristic

for our approach. This algorithm is known to be less effective when using more than

three objectives [PKT17], but we consider this limitation to be acceptable for this

problem.

9.2.3 Genetic Operators

Next, we describe the solution representation we employ for this problem, and then

we describe the mutation and crossover operators used on this representation. While

some of these are equivalent to the traditional genetic operators for bit sets [YH07],

we also define new ones which operate on groups of metamorphic tests which share

the same source test case.

Solution Representation

We represent a metamorphic test selection solution as a bit set indicating whether each

of the follow-up test cases has been selected or not. This representation is derived from

the observation that each follow-up test case usually has a single corresponding source

test case, which they are often derived from. Because of this, each metamorphic

test corresponds with an individual follow-up test case and vice-versa, and thus

selecting follow-up test cases and selecting metamorphic tests is equivalent. With

this representation, the source test cases are implicitly selected based on whether at

least one of its follow-ups is selected or not, since executing only the source or the

follow-up test case is never desirable in MT. To the best of our knowledge, there is no

metamorphic testing work in the existing literature which contradicts the assumption

we make here (follow-up test cases gave a single corresponding source test case).
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Despite the solutions only consisting of bit sets representing the selected follow-

up IDs, the algorithm must globally store the test inputs for each test ID, as well as

the mappings of source test cases to their corresponding follow-up test cases. This

information is used by the objective functions, as well as some of the genetic operators.

Mutation

(1) 0 0 (1) 1 0

(0) 0 0 (1) 1 0

1

0

(a) Follow-up flip

(1) 1 0

(1) 1 0

(0) 0 00

(1) 1 10

(b) Source group flip

Figure 9.1: Mutation operators [AAPA22a]

� Follow-up flip.This operator selects or deselects a single follow-up test case from

the test suite by randomly flipping a single bit from the solution. This is equivalent

to a standard bit-flip mutation. Figure 9.1a shows a follow-up test case being chosen

as a mutation point and getting deselected (a value of 1 indicates selected, and 0

deselected). The source test cases, which we depict as bits between parentheses

with a blue background, are not actually part of the solution, but rather implicitly

selected or deselected based on the corresponding follow-ups. In this example, the

first source test case becomes implicitly deselected because none of its follow-ups

is selected after the mutation.

� Source group flip. This operator selects or deselects all the follow-up test cases

corresponding with a single source test case. This is done by randomly selecting

a source test case from the metadata first. If the source test case is (implicitly)

deselected, one of the follow-ups is randomly chosen and selected first, ensuring

that the source test case is (implicitly) selected after the mutation, and then every

other follow-up has a fixed probability of being selected. On the other hand, if the

source test case is (implicitly) selected, all the follow-ups are simply deselected.

Figure 9.1b shows the first source test case being chosen as a mutation point.

One of the follow-ups is randomly chosen and always selected, and the rest of its

follow-ups can be selected with a fixed probability. In this case, its first and third

follow-ups are selected, but the second one is not.
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Crossover

S1 F11 F13 S2 F21 F22F12(0) 0 (1) 1 00

S1 F11 F13 S2 F21 F22F12 1 (0) 0 0

S1 F11 F13 S2 F21 F22F12(1) 0 1 (0) 0 00

S1 F11 F13 S2 F21 F22F12(1) 1 0 (1) 1 00

0

(1) 1 0

Parent 1

Parent 2

Child 1

Child 2

Figure 9.2: Follow-up crossover [AAPA22a]

S1 F11 F13 S2 F21 F22F12(1) 0 (1) 1 01

S1 F11 F13 S2 F21 F22F12 1 (0) 0 0

S1 F11 F13 S2 F21 F22F12(1) 0 0 (0) 0 01

S1 F11 F13 S2 F21 F22F12(1) 1 1 (1) 1 00

0

(1) 1 0

Child 1

Child 2

Parent 1

Parent 2

Figure 9.3: Source group crossover [AAPA22a]

� Follow-up crossover. This operator performs a single-point crossover on a randomly

chosen crossover point over the bit set representing the solution, where each bit

corresponds with a follow-up test case. This is equivalent to a standard single-point

crossover. Figure 9.2 shows an example where the crossover point (dotted vertical

red line) is set after the second follow-up test case, and so the follow-up selections

are crossed over that point. Remember that the source test cases (bits between

parentheses with blue background) are not part of the solution, and this particular

operator does not interact with them directly. However, Child 1 ends up having

the first source test case deselected despite both parents having it selected, because

none of its follow-ups is selected after the crossover from this example.

� Source group crossover. This operator performs a single point crossover over the

source test-case groups. Although the source test cases are not part of the solution

representation, a crossover point is chosen for the source test cases, and a crossover

of entire groups is performed. At the solution level, all the bits that correspond

to the same source group will always be entirely copied from either parent, never
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combined. Figure 9.3 shows an example where the crossover point (dotted vertical

red line) is after the first source test case. Child 1 ends up with Parent 1’s bits

for source test case 1 and Parent 2’s bits for source test case 2, while Child 2 is

constructed the other way around.

Multiple Operators

Since our proposed approach contains two mutation and two crossover operators, a

strategy for applying them must be defined. In our implementation, we use top level

mutation and crossover operators which choose one of the corresponding operators

randomly with equal probability, and then apply the chosen operator. This way, for

example, ~50% of the crossovers will use “Follow-up crossover”, and the remaining

~50% will use “Source group crossover”.

9.2.4 Objective Functions

We define a set of objective functions to guide the search algorithm towards more

cost-effective solutions. Keep in mind that at the point the algorithm is run, the system

outputs are not available, and thus the objective functions are based on the test inputs

and their features. Even though the inputs and their features are domain-specific, many

of our objective functions are generic. Other than the Cost, which is a minimization

objective, the rest of them are maximization objectives which should approximate the

test suite’s effectiveness.

� Cost. This objective aims to minimize the execution cost of the test suites. Its

value is calculated as the sum of the costs of the selected test cases. Since the

real execution time is unknown, we employ the following value for the elevation

domain in order to approximate the execution time in seconds for a given test case:

Tlast − Tfirst + 60

where Tlast is the arrival time of the last passenger, and Tfirst is the arrival time

of the first passenger, all measured in seconds. This formula estimates that all the

passengers will be transported to their destination 60 seconds after the last call to

the elevators, which was found to be a good approximation after some tests. The

cost estimation we use here is specific to the elevation domain, but it is generally

simple enough to approximate a formula for most domains. Ultimately, the cost of

each test case could just be estimated to be 1 if there is no better approximation or

if all test cases have similar costs.
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� MR Coverage. This objective aims to balance the number of metamorphic tests

selected for each MR by maximizing the minimum count of tests selected for any

MR, as shown in the following formula:

min
∀MRn∈MR

(
|TCselected

MRn
|

|TCall
MRn
|

)

where MR is the set of all MRs used in our test suite, |TCselected
MRn

| is the count

of test cases for MRn selected, and |TCall
MRn
| is the total count of test cases for

MRn. This is a novel objective function which has been defined specifically for

metamorphic test selection, and is domain-agnostic. The rationale behind this

objective is that diversifying the MRs might result in a higher failure detection

capability, since different MRs may be able to detect different types of failures.

� Input Diversity. This objective aims to maximize the diversity of the inputs

[CLM04]. The input diversity of a solution TS′ is calculated as the sum of the

minimum distance of each input test case from every other input test case in the

test suite: ∑
t1∈TS′

(
min

t2∈TS′\t1
(dist(t1, t2))

)
The dist(t1, t2) function computes the euclidean distance between t1 and t2, which

are numeric vectors representing the test inputs of the individual test cases (not

test pairs) in TS′. Since many types of systems have complex inputs that are not

wholly numeric, a vector of numeric features can be used instead. For instance, for

the elevators system described in Section 4.4.1, the passenger calls and elevator

positions are complex inputs that have different lengths on each test case, so we

derive numeric features such as elevators count, passenger count, or the ratio of

passengers going up/down from lower/middle/upper floors. While the input vector

shapes are domain-specific, this function is otherwise domain-agnostic.

� Passenger Density. This objective aims to maximize the overall passenger density

of the selected test cases, which is computed as the sum of the passenger counts on

each test case divided by the sum of the costs of each test case:∑
t∈TS′ |tcalls|∑
t∈TS′ cost(t)

where |tcalls| is the number of passenger calls and cost(t) is the estimated cost

of test case t, which uses the same formula as the Cost objective function. The

reasoning behind this objective is that more dense test cases will result in more

complex decisions taken by the elevator system, which might reveal more failures.

This objective is specific to the elevation domain.
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� Passenger Count. This objective aims to maximize the total passenger count of the

selected test cases: ∑
t∈TS′

|tcalls|

where |tcalls| is the number of passenger calls in test case t. The reasoning behind

this objective is that more passenger calls will result in more operations from the

elevator system, which would be expected to reveal more failures. This objective is

specific to the elevation domain.

� Passenger Distance Travelled. This fitness function aims to maximize the total

distance travelled by the passengers in the selected test cases:∑
t∈TS′

∑
c∈tcalls

|cs − cd|

where |cs − cd| is the distance travelled for the passenger call c. The reasoning

behind this objective is that longer travel distances will result in more complex

decisions taken by the elevator system, which might reveal more failures. This

objective is specific to the elevation domain.

Table 9.1: Objective function combinations (Cost is always included) [AAPA22a]

Combination Objective 1 Objective 2

c1 MR Coverage -
c2 Input Diversity -
c3 Passenger Density -
c4 Passenger Count -
c5 Passenger Distance Travelled -
c6 MR Coverage Input Diversity
c7 MR Coverage Passenger Density
c8 MR Coverage Passenger Count
c9 MR Coverage Passenger Distance Travelled
c10 Input Diversity Passenger Density
c11 Input Diversity Passenger Count
c12 Input Diversity Passenger Distance Travelled
c13 Passenger Density Passenger Count
c14 Passenger Density Passenger Distance Travelled
c15 Passenger Count Passenger Distance Travelled

We decided to try every combination of two or three objective functions, where

the first objective is always Cost and the remaining one or two objectives can be either

of the other ones, which are used to estimate the efficiency of the test suite. This is
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in line with our chosen algorithm’s limitations, as NSGA-II is known to not scale

well beyond three objective functions [PKT17]. Hence, we have 15 possible objective

function combinations, which are shown in Table 9.1.

9.3 Evaluation

This section enumerates the Research Questions (RQs) we aim to answer with our

evaluation, describes our experimental setup, and presents the results obtained.

9.3.1 Research Questions

We define the following RQs for our experiments:

� RQ1. How does our approach compare with Random Search (RS)? This RQ aims

to simply determine the effectiveness of our approach by comparing it with a trivial

baseline. We compare the effectiveness of our approach (NSGA-II-MET) with that

of Random Search (RS), for each of the 15 possible objective combinations.

� RQ2. Do the new genetic operators we propose increase the effectiveness of our

approach? This RQ aims to determine whether or not our new source group

based mutation and crossover operators increase the effectiveness of our approach.

We determine this by comparing a variant of our approach which only uses the

traditional operators (NSGA-II-TR) with our full approach (NSGA-II-MET), for

each of the 15 objective combinations.

� RQ3. Which of the different objective combinations is most effective with our

approach? This RQ aims to determine the best objectives to use with our approach

in order to guide the algorithm towards more cost-effective solutions. In order

to answer this RQ, we compare the results of all 15 objective combinations for

NSGA-II-MET.

9.3.2 Experimental Setup

Algorithm Configuration

All the experiments were configured with populations of size 100 and with the number

of fitness evaluations set to 25,000 in order to make comparisons of the results fair. The

NSGA-II experiments were configured with binary tournament selection [DPAM02],

a crossover rate of 1.0, and a mutation probability of 1
N , where N is the count of

metamorphic tests on the full test suite. All the other parameters were chosen based
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on previous work related to multi-objective test selection [YH07, WAG13, PWAY16,

AWSE16a, AWM+19].

Evaluation Dataset

For this evaluation, we employed the same set of test cases and mutants as the

ones presented in [ASA+20]. The metamorphic tests are based on the Metamorphic

Relation Input Patterns (MRIPs) described that work, namely: MRIP1 (Additional

call), MRIP2 (Additional elevators), and MRIP3 (Initial position change). The test

suite consists of 140 randomly generated source test cases and 1200 follow-up test

cases: 420 for MRIP1, 360 for MRIP2, and 420 for MRIP3. These are short-scenario

test cases with an average duration of ~3 minutes. Mutation scores were computed

over a set of 89 mutants of Orona’s most common dispatching algorithm, which were

generated by seeding faults based on traditional operator mutations [ADH+89]. The

full test suite achieves a total mutation score of 83.1% [ASA+20].

The evaluation dataset consists of two separate groups of artifacts: (1) The set of

test case inputs and the list of test input pairs for each MR, and (2) a table indicating

which mutants are killed by each metamorphic test. Only the data from (1) was used

for the test selection, whereas the data from (2) is used exclusively for the evaluation,

since only (1) would be available before executing the entire test suite.

Evaluation Metrics

We evaluated the effectiveness of solutions using the following metrics:

� The cost of a solution indicates how expensive it is to execute the test suite. In

this case, we measure the sum of the execution times for the selected test cases in

seconds.

� The Mutation Score (MS) of a solution is the ratio of mutants that are identified

as incorrect by at least one of the selected metamorphic tests. Test cases which

have a false positive (i.e., identify the non-mutant system output as incorrect) are

not considered for this metric.

The solutions provided by the search algorithm are only pareto-optimal for its

objective functions, which are different from these evaluation metrics. Specifically,

the exact MS is never known before executing the test suite, so the objective functions

(other than cost) are used to estimate it. Therefore, a second pareto-frontier based

on cost and MS is generated for the evaluation, and the solutions are translated to it.

We use the Hypervolume (HV) of this evaluation pareto-frontier in order to measure
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the quality of the solutions, similar to other multi-objective test case selection work

[PODPDL14, AWM+19, OP21, AVAS22]. A higher HV, indicates a more effective

test selection approach.

Although the HV is a widely accepted metric to evaluate multi-objective search

algorithms [WAY+16], it is interesting to see the effectiveness of each algorithm for

different cost thresholds. This is because some approaches might, for instance, be

more effective at finding solutions specifically under 10% of the total cost. Because of

this, we also employ time budget based Decision Makers (DMs) in our evaluation to

provide additional insights. These DMs receive an evaluation pareto-front as an input,

and output the best solution for the given cost threshold (i.e., the solution with the

highest MS at or under the specified time budget). In previous studies on this topic,

industrial participants have shown interest in computing the most effective test suites

for a fixed time budget [PWAY16], which is what DMs provide. In this work, we use

time budgets based on fractions of the cost of the full test suite, and we refer to the

DM for X% of the cost as DM_X . For instance, DM_10 provides the best MS that

can be obtained with a time budget of 10% of the execution time for the whole test

suite.

Statistical Tests

Due to the stochastic nature of our test selection algorithms, we repeated every

experiment configuration 50 times with different random seeds, as suggested by

Arcuri and Briand [AB11]. We then performed statistical tests over the results in order

to analyse them. First, we applied the Shapiro-Wilk test [SW65] to determine the

distribution of the data. Then, after confirming that the data was normally distributed,

we applied the t-test to assess whether there was statistically significant difference

between the algorithms.

The p-value threshold for statistical significance was set to 0.05. Furthermore,

for the cases with statistical difference, we employed the Vargha and Delaney Â12

test [VD00] to assess the effect size of the difference between approaches. To make

the results more readable, as suggested by Romano et al. [RKC+06], we categorized

the Â12 values as N (negligible) if d < 0.147, S (Small) if d < 0.33, M (Medium) if

d < 0.474, or L (Large) if d >= 0.474, where d = 2 · |Â12 −0.5|.

9.3.3 Experimental Results

In this section, we discuss the results obtained from our experiments and we answer

our RQs based on them.
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RQ1: Comparison vs Random Search (RS)

This RQ aims to determine the effectiveness of our approach (NSGA-II-MET) by

comparing it with a trivial baseline, namely, Random Search (RS).

Table 9.2: (RQ1 + RQ2) Statistically significant effect sizes and average improvement
of NSGA-II-MET with respect to RS and NSGA-II-TR for the HV metric [AAPA22a]

Combination NSGA-II-MET vs RS NSGA-II-MET vs NSGA-II-TR

Effect size Improvement Effect size Improvement

c1 L+ 52.53% - 0.32%
c2 L+ 53.05% - -0.39%
c3 L+ 41.81% L+ 14.45%
c4 L+ 69.70% L+ 2.91%
c5 L+ 71.62% M+ 1.36%
c6 L+ 50.99% - 0.10%
c7 L+ 47.99% L+ 7.24%
c8 L+ 64.87% S+ 1.22%
c9 L+ 63.74% M+ 2.07%
c10 L+ 51.57% - 0.79%
c11 L+ 66.42% L+ 2.37%
c12 L+ 66.57% L+ 1.97%
c13 L+ 60.44% L+ 4.66%
c14 L+ 60.65% L+ 5.09%
c15 L+ 70.05% L+ 2.37%

Average 59.47% 3.10%

Table 9.2 shows the comparison of the HV from our approach (NSGA-II-MET)

and Random Search (RS). The “Effect size” column under “NSGA-II-MET vs RS”

shows the Â12 effect sizes from the statistical comparison, with a ‘+’ postfix indicating

that NSGA-II-MET obtained better results, or a ‘-’ postfix indicating the opposite.

The results show that our approach achieves a better HV than RS with statistical

significance and a large effect size for all objective combinations.

The “Improvement” column shows the average improvement of our approach

compared to RS for the HV. The final row shows an overall average improvement of

~60%, with the improvements for different objective function combinations ranging

between ~40% and ~70%.

Figure 9.4 shows the average mutation scores for various DMs with the objective

combination that achieved the best HV (c15). This figure reveals that RS fails to find

any suitable solution for time budgets under 45% of the full cost. The HV is also

lower for higher cost solutions up to 60% of the cost, although the difference is not
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Table 9.3: (RQ1 + RQ2) - Statistically significant effect sizes for mutation scores with
different DMs [AAPA22a]

DM 1 5 10 15 20 25 30 35 40 45 50 55 60

c1 M+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L- L- L-
c2 L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ - - L+
c3 L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ M+ L+ L+
c4 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+

NSGA-II-MET c5 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+
vs c6 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L- L- M-
RS c7 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ - - S+

c8 - L+ L+ L+ L+ L+ L+ L+ L+ L+ - - -
c9 N+ L+ L+ L+ L+ L+ L+ L+ L+ L+ - - -
c10 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ M- M- S-
c11 N+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+
c12 N+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+
c13 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ S+ - N+
c14 N+ L+ L+ L+ L+ L+ L+ L+ L+ L+ S+ - -
c15 S+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ L+ -

c1 - - L+ M+ M+ S+ - - - M- L- L- L-
c2 M+ L+ M+ S+ - - - S- S- - - - -
c3 S+ - - M+ L+ L+ L+ L+ L+ L+ L+ L+ L+
c4 - - S+ L+ L+ L+ L+ M+ L+ L+ L+ L+ M+

NSGA-II-MET c5 - S+ S+ - M+ L+ L+ L+ - S+ - - -
vs c6 - - M+ S+ - - - - - - S- M- M-

NSGA-II-TR c7 - - M+ S+ - M+ L+ L+ L+ L+ L+ L+ M+
c8 - - M+ L+ - - - - - - - - S+
c9 - - L+ L+ L+ - S+ - - M+ - - -
c10 - - - - - - - - M+ - - - -
c11 - - L+ M+ M+ S+ - - - - - -
c12 - - L+ M+ L+ - - - - - - - M+
c13 - - M+ L+ M+ M+ M+ L+ M+ L+ L+ M+ L+
c14 - S+ M+ L+ L+ L+ L+ - L+ M+ M+ L+ L+
c15 - S+ - M+ L+ L+ L+ L+ M+ L+ L+ L+ M+

as extreme. Table 9.3 shows all the mutation score comparison across all objective

combinations and DMs. This table shows that RS does not always obtain worse

results at DM_50 or higher, although our approach still obtains better results for most

objective combinations. Even though RS appears to obtain significantly better results

at DM_50 or higher with some objectives (c1, c6 and c10), RQ3 will reveal that these

objectives are the least effective ones overall, which makes that RS obtaining better

results with those objective combinations is not significant.

RQ1 – In summary: Our approach was significantly more effective than RS for

every possible objective function combination, with a ~60% higher HV on average.
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Figure 9.4: Average mutation scores for the best objective combination (c15)
[AAPA22a]

RQ2: Effectiveness of Genetic Operators

This RQ aims to determine the effectiveness of our new genetic operators (NSGA-

II-MET) by comparing it with a variant of our approach where only the traditional

genetic operators are used (NSGA-II-TR).

The “Effect size” column under “NSGA-II-MET vs NSGA-II-TR” from Table 9.2

reveals that our approach with the new genetic operators dominates over the version

without them in terms of HV. The results show statistically significant improvements

with 11 out of 15 objective combinations, and no statistically significant difference

with the rest of them.

As for the “Improvement” column, the final row shows an overall average improve-

ment of ~3%, with the improvements for different objective function combinations

ranging between ~0% and ~14%.

Figure 9.4 reveals a modest but consistent improvement of the mutation score for

all the DMs with the best objective combination (c15). The bottom half of Table 9.3

also reveals various degrees of improvement across the board, except in some cases

with the objective combinations c1, c6 and c10. Once again, these outliers are not

significant because, as RQ3 will reveal, these three objectives are the least effective

ones.

RQ2 – In summary: The use of our new genetic operators resulted in similar or

moderately better results across all the objective combinations, with a ~3% higher

HV on average, revealing that the new operators do improve the search process.
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RQ3: Best Objective Combinations

This RQ aims to determine the most effective objective function combinations for our

approach (NSGA-II-MET) by comparing them with each other.

Table 9.4: (RQ3) Statistically significant HV effect sizes of objective combination
comparisons for NSGA-II-MET. “+” suffix indicates better HV for the objective in
the first column [AAPA22a]

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

c1 - S+ L- L- L- - L- L- L- - L- L- L- L- L-
c2 S– - L- L- L- S- L- L- L- M- L- L- L- L- L-
c3 L+ L+ - L- L- L+ S- L- L- M+ L- L- L- L- L-
c4 L+ L+ L+ - - L+ L+ L+ L+ L+ S+ M+ L+ L+ -
c5 L+ L+ L+ - - L+ L+ L+ L+ L+ S+ S+ L+ M+ -
c6 - S+ L- L- L- - L- L- L- - L- L- L- L- L-
c7 L+ L+ S+ L- L- L+ - L- L- L+ L- L- L- L- L-
c8 L+ L+ L+ L- L- L+ L+ - - L+ L- L- - M- L-
c9 L+ L+ L+ L- L- L+ L+ N+ - L+ L- L- S- S- L-
c10 - M+ M- L- L- - L- L- L- - L- L- L- L- L-
c11 L+ L+ L+ S- S- L+ L+ L+ L+ L+ - - M+ S+ M-
c12 L+ L+ L+ M- S- L+ L+ L+ L+ L+ - - M+ - M-
c13 L+ L+ L+ L- L- L+ L+ - - L+ M- M- - - L-
c14 L+ L+ L+ L- M- L+ L+ M+ S+ L+ S- - - - L-
c15 L+ L+ L+ - - L+ L+ L+ L+ L+ M+ M+ L+ L+ -

Table 9.4 shows the effect size of the HV comparisons between all the objective

function combinations with each other. For the most effective objective combinations,

c4, c5 and c15 stand out because they dominate the rest, as they show statistically

significant improvement over some others while not being worse than any other with

statistical significance. These objective combinations correspond with “Passenger

Count” (c4), “Passenger Distance Travelled” (c5) and the combination of both (c15).

The combination of both objectives (c15) appears to be the most effective by a small

margin.

On the other side of the spectrum, the worst results are obtained by “Input Diversity”

(c2), followed by “MR Coverage” (c1), and then the combination of both (c6).

Figure 9.5 shows a graph of the average mutation scores from every objective

function combination for different DMs. This reveals, once again, that c4, c5 and c15

achieve better results than the other objective combinations.

In conclusion, the domain-specific “Passenger Count” and “Passenger Distance

Travelled” objective functions provide the best guidance towards test suites with
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Figure 9.5: Average mutation scores for all objective combinations [AAPA22a]

higher mutation scores, whereas generic objectives such as “MR Coverage” or “Input

Diversity” are clearly less effective.

RQ3 – In summary: The domain-specific maximization objectives “Passenger

Count”, “Passenger Distance Travelled”, and the combination of both achieved the

best results, whereas “Input Diversity” and “MR Coverage” had the worst results.

9.4 Lessons Learned

This section presents the lessons learned from this work, and highlights related future

research avenues of interest.

Lesson 1: Effectiveness of the approach. Our experimental results have revealed

a huge potential for reducing the cost of MT without significantly compromising its

effectiveness. In our case study, looking at the average mutation scores achieved with

our approach (Figure 9.4), we can achieve 90% of the mutation score from the whole

test suite for only 50% of its total cost, and 60% of the mutation score can be achieved

for only 10% of the total cost. These results are just the first approximation to the

problem, as other fitness functions and test suites generated with different techniques

still need to be evaluated, and are likely to yield even better results.

Lesson 2: Domain-specific objective functions. The results have also shown

that the most effective approach is to employ some domain-specific objective functions

we defined. Specifically for our case study from the elevation domain, the experiments

show that maximizing the number of passengers and the distance they traverse are the
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best objective functions to obtain test suites with higher mutation scores. Generalizing

the multi-elevator controller as a system that performs tasks, the best objective func-

tions appear to be maximizing count and the total complexity of the tasks to perform,

which makes sense. Conversely, diversifying the inputs or the MR coverage does not

appear to be very effective in comparison.

Lesson 3: Different target time budgets. The results from Table 9.3 and Figure

9.5 suggest that different objective functions may be more effective depending on the

target time budget. For instance, Figure 9.5 shows that c5 obtains the best mutation

scores up to DM_35, but beyond that point c4 obtains better results. In this particular

case, the difference between the top three objective combinations (c4, c5 and c15) is

mostly negligible, so just using the overall best one (c15) for all cases would probably

be acceptable. Nevertheless, using different objective functions depending on the

target time budget might be a lot more worthwhile for other case studies where the top

objective functions vary significantly depending on the DM.

Future prospect 1: Generalizability to other systems. Our experimental evalu-

ation is based on a single case study, so our conclusions do not necessarily generalize

to other types of systems. It would be interesting to perform a similar evaluation on

CPSs from different domains to see if our approach is still effective. The selection of

objective functions is a specific aspect where a large set of experiments from different

domains would be required in order to provide general guidelines.

Future prospect 2: MR Coverage based on historical results. The results from

our experiments have shown that our “MR Coverage” objective is not very effective

for guiding the search process. Nevertheless, our implementation attempts to provide a

uniformly distributed coverage for all the MRs, which may not be the best approach. In

Chapter 7 of this thesis, we found that there is often a significant disparity between the

effectiveness of the different MRs [ASA+20, AVS+22a], so biasing “MR Coverage”

such that the most effective MRs get selected more might be a better approach. While

this is not possible to do for a new set of MRs, their effectiveness can be derived from

historical data as different iterations of the SUT are tested (e.g. number of bugs found

by each MR). This historical data could be leveraged to enhance the metamorphic test

selection process by adjusting the “MR Coverage” and refining the selected test cases

accordingly. An analysis on how this tuning might be performed and how effective it

can be would be an interesting research topic.
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9.5 Threats to Validity

9.5.1 Internal Validity.

The test suite and mutants we employ for our experiments are a potential threat to

the validity of our work. We argue that the number of mutants we use is significantly

higher than other CPS testing experiments [LNB+17, MNBB18, AWSE19], and that

the test suite is large enough, considering the high cost of executing it (approximately

2 days and a half) [AVS+22a]. The parameters chosen for the search algorithm are

another potential threat. To mitigate this, we chose parameter values based on previous

studies on multi-objective test case selection [YH07, AWSE19]. The parameters were

also different NSGA-II and RS because many of them are not applicable to RS.

Nevertheless, the maximum number of fitness evaluations were the same, making

the comparisons between them fair, and the baseline algorithm (RS) has no other

parameters to consider. Furthermore, we had to consider the stochastic nature of the

search algorithms we employ. We deal with this non-determinism by repeating each

experiment 50 times and applying statistical tests to analyse the results.

9.5.2 External Validity.

The main external validity threat relates to the generalizability of our results, since

our experiments are based on a single case study. In this regard, we note that we use

a complex industrial system which is used in production in many real multi-elevator

installations. Still, we acknowledge that our conclusions might not generalize to all

CPSs, and we propose further experiments to remedy that.

9.6 Related Work

9.6.1 Test Case Selection

Test case selection is widely recognized as a multi-objective problem [CGT+20]. Since

Yoo and Harman [YH07] first proposed the use of pareto-based search algorithms for

test case selection, many research works have focused on applying these algorithms in

different domains, such as software product lines [WAG13], Java programs [MHD15],

or autonomous vehicles [BGK+22]. Our work applies these technique in the context

of an elevator control system from Orona.

Regarding CPSs specifically, test case selection has also been applied in various

domains, such as configurable CPSs [YH07] or Simulink models [AWM+19]. Our
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approach tackles a variation of this problem, namely, metamorphic test selection,

where metamorphic test cases comprise multiple test cases.

Some approaches have also proposed specific operators for the search algorithm

in order to enhance the process. Arrieta et al. proposed and evaluated different

strategies for seeding the initial population of the algorithm [AVAS22]. Panichella

et al. proposed various operators to increase the diversity of the selected test cases

[PODPDL14]. Olsthoorn and Panichella proposed a novel crossover operator based

on linkage learning [OP21]. We also propose new mutation and crossover operators,

but ours are designed specifically for the metamorphic test selection problem.

9.6.2 Metamorphic Testing Cost Minimization

In order to reduce the cost of MT, some publications have presented different criteria

for selecting the most effective MRs, and thus ignore the ones that are likely to yield

worse results. Many of them simply identify features of the MRs which might indicate

that they are stronger or weaker (e.g. output relations that are simple equalities

are generally weaker) [CHTZ04, MG06, CZC13]. More recently, Srinivasan et al.

proposed the use of coverage and fault based criteria to prioritize MRs [SK22].

On the other hand, other research has applied regular test case selection strategies

for this problem. Barus et al. noted that most MT research simply employs random

testing for generating the source test cases, and reported that using Adaptive Random

Testing (ART) instead could improve the effectiveness of MT [BCK+16]. Regarding

white-box techniques, Alatawi et al. used dynamic symbolic execution (DSE) to

generate source test cases with better source-code coverage [AMS16], and Saha et al.

explored using various coverage-based criteria from EVOSUITE [SK18]. Analogously,

other work has focused on selecting the best follow-up test cases instead. In this

regard, Arrieta proposed a multi-objective strategy to generate follow-ups for deep

learning systems, which aims to minimize the number of generated follow-ups while

maximizing the uncertainty of the model [Arr22a].

This work presents an approach for metamorphic test selection, which is more

general and fine-grained than either MR selection, source test case selection, or follow-

up test case selection. The former requires MRs to be either fully selected or discarded,

whereas the others consider either the source or the follow-up test cases, but not both.

To the best of our knowledge, this work is the first application of metamorphic test

selection.
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9.7 Conclusion

This chapter presents a metamorphic test selection approach which aims to reduce

the cost of MT while preserving as much of its effectiveness as possible. Our ap-

proach employs a multi-objective search algorithm, for which we define the problem

representation, new genetic operators, and objective functions to guide the search

towards more cost-effective solutions. We define an empirical evaluation based on

an industrial case study from the elevation domain, and we perform experiments to

assess the effectiveness of our approach. We also provide a replication package for

these experiments [AAPA22b].

The experimental results show that there is a great potential to improve the cost-

effectiveness of MT, and we conclude that our approach outperforms all the baselines

at this task. We discover that our approach performs best with domain-specific

objective function in our experiments. Finally, we derive some lessons learned from

this work, and we propose several promising research avenues that can be explored in

the future.
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Chapter 10

Conclusion

This chapter concludes the thesis. Section 10.1 summarizes the contributions, ad-

dresses the validation of the hypotheses and highlights the limitations of the proposed

solutions. Section 10.2 discusses the lessons learned from the work on this thesis. Fi-

nally, Section 10.3 highlights the potential future work related to this thesis, including

the industry transfer of the solutions, their application in new domains, and further

research avenues.

10.1 Summary of the Contributions

The automation of Cyber-Physical System (CPS) development is a challenging

task due to fundamental issues such as the test oracle problem. This dissertation

presents various approaches to achieve this automation, focusing mainly on the use of

Metamorphic Testing (MT) [CCY98] to automate the verification process of systems

which could not be tested automatically otherwise. The following list summarizes the

specific contributions made:

1. A taxonomy for eliciting requirements of a DevOps architecture suitable for CPSs

has been presented. This taxonomy was developed based on the requirements from

Orona and Bombardier Transportation, which are major industrial CPS developers

from the elevation and railway domains respectively. The goal of this taxonomy

is to assist with the elicitation, management and reuse of the requirements by

providing a framework to classify them. So far, this work comprises DevOps

subsystems for deployment, monitoring, validation and integration, but extensions

for additional tasks such as automated failure recovery are expected.

2. A DevOps architecture suitable for CPSs is proposed based on the taxonomy and

requirements derived from the previous contribution. This architecture comprises

various microservices which communicate though REST and MQTT endpoints,

such that the DevOps system can be easily extended with new microservices
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implementing other subsystems. The version we present includes subsystems for

deployment, monitoring and verification, as well as an automation server which

orchestrates all of them. The verification subsystem can incorporate the MT

techniques presented in this thesis, among others.

3. A method for identifying performance-related Metamorphic Relations (MRs) based

on the Performance Variation (PV) Metamorphic Relation Pattern (MRP) has

been defined. MRs derived from this pattern exploit input changes that have a

predictable impact on performance metrics, allowing the definition of a test oracle

for systems where no other alternatives exist. Our experiments with Orona’s

elevator dispatcher and an open-source Autonomous Driving System (ADS) show

that the MRs generated following this approach outperform threshold-based oracles

and regression testing, while also not requiring to define threshold values or provide

a baseline.

4. An evolutionary approach for generating MRs in a fully-automated way based

on system executions labelled as correct or incorrect has been developed. The

algorithm evolves a population of MRs with the goals of minimizing the false

positives and false negatives, based on the provided correct and incorrect system

executions. More specifically, two sub-populations are co-evolved: One prioritizing

the minimization of false positives, and the other prioritizing the minimization of

false negatives. Both populations exchange their best MRs regularly, and the MR

with the fewest false positives, fewest false negatives, and the least complexity, in

that order of priority, is selected as the best. Our experiments with Orona’s case

study revealed that the MRs generated with this automated approach outperform

the MRs we generated manually in our previous contribution.

5. An approach to optimize MT by applying multi-objective test selection has been

proposed. Due to the high cost of testing CPSs, such a technique is necessary in

order to increase the cost-effectiveness of the process to the point where running the

test suite repeatedly is feasible. We propose the use of the Non-dominated Sorting

Genetic Algorithm II (NSGA-II), in combination with novel genetic operators and

various black-box fitness functions, to perform the metamorphic test selection.

The experimental evaluation on Orona’s case study revealed that our approach

outperforms a random baseline, and that our new genetic operators increase the

efficiency of the technique.

Overall, this thesis proposed approaches to enable a fully-automated verification

process for CPSs. We believe that these contributions advance the state of the art
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towards the point where reliance on human intervention can be removed or minimized.

Since processes which rely on manual intervention do not scale, this is a necessary

step to make the future development of increasingly complex CPSs sustainable.

10.1.1 Hypotheses Validation

This section discusses whether the hypotheses presented in Section 4.2 have been

validated through the research performed in this thesis.

Hypothesis 1

“MT can detect faulty behaviours of CPSs that cannot be detected with specified

oracles”.

We tested this hypothesis throughout Part III by generating performance MRs

using two different approaches, one manual and the other automated. In Chapter

7, manually generated MRs are applied to the industrial multi-elevator system from

Orona, as well as an open-source ADS, both of which lacked fully-automated specified

oracles. We compared the effectiveness of MT at detecting faults with the results of

regression oracles for the multi-elevator system, and with threshold-based oracles for

the ADS. These baselines were the best automated test oracles we had available for

these systems. Our experimental results showed that the MRs detected faults which

the baseline oracles were unable to identify. On the other hand, Chapter 8 evaluated

an automated method for generating MRs for CPSs, supported by a tool named GAS-

SERTMRS. Our evaluation of the MRs generated for Orona’s case study revealed

that this approach outperforms our MRs generated manually for the same system. In

summary, our evaluations showed that MT can detect more faulty behaviours than

other existing test oracles, using either of the proposed MR generation approaches.

Considering these results, we conclude that the stated hypothesis has been validated.

Hypothesis 2

“The definition of MRPs can help define effective MRs for different domains”.

Chapter 7 presents an approach for identifying MRs for CPSs based on a general

MRP named Performance Variation (PV). This pattern encourages the definition of

input transformations that have a predictable effect on the performance or Quality of

Service (QoS) measures of the system. We employ the PV pattern to identify various

Metamorphic Relation Input Patterns (MRIPs) for two different CPSs, a multi-elevator

system and an ADS. Each of these MRIPs is then combined with QoS metrics specific

to the Systems Under Test (SUTs) in order to instantiate concrete MRs. The empirical

evaluation employed a randomly generated test suite and seeded faults in order to

asses the false positives and ability to identify failures of the MRs and the other test
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oracles. As stated in the previous hypothesis validation, the experimental results

showed that these MRs were more effective than any of the alternative automated

oracles. Some false positives were observed during the experiments with some MRs,

but their number was small enough to be manageable. Considering the results, we

conclude that the hypothesis has been validated.

Hypothesis 3

“The use of Genetic Programming (GP) can allow the automatic generation of

effective MRs”.

This hypothesis was tested by defining and implementing a tool which generates

MRs automatically with GP based on labelled execution traces which show correct

and incorrect behaviours of the SUT. Chapter 8 describes this approach, in which a

co-evolutionary genetic algorithm evolves a population of MRs with the objectives

of minimizing false positives, false negatives, and the complexity of the MRs. Our

initial implementation of this approach, GASSERTMRS, was used to generate output

relations for the elevator system MRIPs defined in Chapter 7 for the previous hypothe-

sis validation. Our empirical evaluation with this case study revealed that the MRs

generated by GASSERTMRS either matched or outperformed the manually generated

MRs in terms of mutation score. On the other hand, the automated approach did result

in a higher number of false positives, as well as more complex MRs. Nevertheless,

neither of these issues was severe enough to be considered unmanageable. An ex-

tension of this approach, GENMORPH, was also developed in order to remove the

need of user-provided MRIPs, thus allowing the fully-automated generation of MRs

from scratch. We implemented this new tool targeting the generation of Java methods,

were popular test generation and mutation testing tools could be leveraged in order

to demonstrate the full automation of MR generation with only the SUT given as an

input. We presented and evaluated multiple strategies for generating the input and

output relations of the MRs, and we also incorporate a filtering step to identify and

discard invalid MRs. We performed an experimental evaluation of GENMORPH using

10 methods from the Apache Commons Math library as SUTs. The results showed

that our best strategy was capable of generating valid and effective (average mutation

score >10%) MRs for 8 out of 10 methods. Considering the results from both of these

empirical evaluations, we conclude that the stated hypothesis has been validated.

Hypothesis 4

“Multi-objective search algorithms can be used to increase the cost-effectiveness

of MT by selecting a subset of the metamorphic tests”.

Chapter 9 from Part IV presents a search-based multi-objective metamorphic test
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selection approach which aims to increase the cost-effectiveness of test suites used for

MT. Our approach employs the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) and a set of custom genetic operators specifically designed for the metamorphic test

selection problem. We define a cost function and various generic and domain-specific

black-box objective functions for our multi-elevator system case study. Our empirical

evaluation first assesses the effectiveness of our algorithm versus Random Search

(RS), concluding that NSGA-II results in a significantly more effective (~60% average

improvement) test suite in terms of the ratio of total execution time versus achieved

mutation score (using the Hypervolume (HV) quality indicator). We also evaluated the

effectiveness of our new genetic operators, and the experiments revealed moderately

better results (~3% average improvement). Finally, we compared the effectiveness of

the different objective function combinations, and concluded that the domain-specific

fitness functions (e.g. maximize passengers count) were more effective than generic

ones (e.g. maximize input diversity). Overall, the results of applying our metamorphic

test selection approach were positive, and demonstrated that 90% of the mutation

score obtained with the whole test suite could be achieved for only 50% of the total

cost for Orona’s multi-elevator case study. Given these results, we believe that the

stated hypothesis has been validated.

10.1.2 Limitations of the Proposed Solutions

This section discusses some of the limitations that the proposed solutions might have

in practice.

Regarding the requirements taxonomy and proposed architecture for CPS DevOps

systems, we note that they are initial proposals which address the most basic needs of

the two industrial case studies. On the one hand, the DevOps subsystems we define in

this work encompass only the minimum set of functionality we expect, and further

work is planned to incorporate failure prediction and recovery subsystems. On the

other hand, even though we developed this work using industrial CPS developers from

the elevation and railway domains, other sub-domains may have requirements that

have not been addressed in our work. In this regard, we employed a microservices-

based architecture precisely because of its flexibility [OEC17, GL18], since we expect

practitioners from various domains to extend or modify it in different ways depending

on their specific requirements.

As for the rest of our contributions, we note that the MT approaches have been

validated with Orona’s multi-elevator system, with the open-source ADS case study

also being used for evaluating our manually-generated MRs in Chapter 7. Considering

this, additional evaluations need to be performed with other SUTs in order to assert
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that our methods are generally applicable for verifying CPSs. Regarding tool support,

we note that our implementations require some work in order to adapt different SUTs

to them. Future work will improve the experience of adapting these tools to support

new data formats and other requirements that might arise from different CPSs.

Our proposal for generating MRs based on the PV pattern has the obvious limita-

tion of needing to identify the MRs manually, which is a complex task which requires

practical experience with the domain and the SUT [SFSRC16]. Fortunately, MRs

are highly reusable, even across different product versions and configurations, so

this overhead is only an issue when first adopting MT. On the other hand, we also

observed that some of our MRs yielded false positives, although their number was

easily manageable. Unfortunately, false positives or negatives are commonplace in

performance testing, as the frontier between correct and incorrect behaviours is often

unclear [SDPMBS20]. Finally, MT requires the execution of multiple test cases in

order to check whether a MR holds, so this technique can be marginally more costly

than using traditional test oracles which apply over individual test executions. This

is a particular issue in the context of CPSs, where executing tests can be very costly

[BG11], especially at the X-in-the-Loop levels which require real-time executions

[SH09]. The metamorphic test selection approach we present in Chapter 9 aims to

mitigate this problem.

As for our automated MR generation techniques, they overcome the limitations

related to identifying the MRs manually, but also introduce new ones. On the one

hand, our approach requires the collection of a representative set of system executions

labelled as correct or incorrect. Ideally, the incorrect test executions should be obtained

based on historical faults of the SUT, but this is often not possible due to the lack

of a database documenting such faults. Artificially seeded faults can be used as an

alternative, but they may not be representative of real faults, potentially leading to

ineffective MRs being generated. A set of previously validated test executions or

a trusted configuration of the system is also required in order to obtain the correct

test executions. On the other hand, this automated approach is computationally

expensive, with our configurations using time budgets of 30 minutes for each MR

generated. Apart from that, the complexity of the automatically generated MRs was

higher than that of manually generated ones, which generally makes them harder to

interpret for the human engineers. Finally, the expressiveness of our implementation

is currently limited to a type system with Boolean or numeric expressions. We plan to

extend our tool to support more complex types, such as sets and lists, in the future,

which will allow the generation of MRs that currently can not be expressed by our

implementation.
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Our metamorphic test selection approach currently only considers black box

objectives. Two of these objectives (input diversity and MR coverage) are generic,

but the others are domain-specific for the multi-elevator SUT. Considering that our

experimental results showed that the domain-specific objectives were significantly

more effective, our current approach would require the definition of new objective

functions when using it on a different SUT. Thus, future work should evaluate this

approach on more SUTs and derive general guidelines on how to select appropriate

objectives for a system.

10.2 Lessons Learned

This section summarizes lessons learned from the research carried out during this

Ph.D. thesis. These lessons can be employed as a guide by researchers and industrial

practitioners.

� Metamorphic Testing (MT) is a viable solution to alleviate the oracle problem in

CPSs. This technique enables the definition of automated test oracles for systems

where no other alternative solution exists. This is particularly the case when non-

functional properties such as performance metrics are involved, since defining the

expected outcome for each system configuration and test input is often infeasible

[STDRC17, STDRC18]. MRs are often configuration-agnostic, and therefore de-

scribe properties of the system that are highly reusable without parametrization.

This technique has already been applied to CPSs from many other domains, in-

cluding Wireless Sensor Networks [CCC+07], autonomous drones [LPMS17], or

self-driving cars [TPJR18, ZZZ+18, ZS19].

� Defining valid and effective MRs is difficult. In this thesis we evaluate two alterna-

tive approaches, one manual and the other automated, each with its own advantages

and drawbacks. The manual approach places a certain burden on the domain ex-

perts, who need to identify such MRs. On the other hand, the automated approach

is computationally expensive, and still requires some effort to understand the gener-

ated MRs. We also found that, for some systems, it may not be possible to define

performance MRs that never result in false alarms. In our elevation case study, for

instance, the elevator dispatcher implements an algorithm which aims to optimize

metrics such as the Average Waiting Time (AWT), and the MRs we defined for it

assume that this algorithm is optimal. In reality, the dispatching algorithm cannot

be perfectly optimal in every scenario, because it needs to make assumptions about

the passengers that will arrive in the immediate future and their destinations. As
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a consequence, not all the sub-optimal behaviours observed in isolated scenarios

indicate the presence of a fault, since attempting to fix some specific case may

introduce performance regressions in other cases [NCRL15]. There is currently no

workaround for this issue, and performance failures identified by any automated

test oracle, including MRs, need to be reviewed manually.

� Search-Based Software Engineering (SBSE) approaches are effective at solving

CPS verification problems. During this thesis, SBSE techniques have been used

for automatic MR generation, as well as for metamorphic test selection. In both

cases, we have concluded that search-based algorithms are effective at solving the

complex multi-objective CPS verification problems that we have encountered. For

the MR generation, a co-evolutionary algorithm proposed by Terragni et al. has

been used, in which the fitness functions aim to minimize false positives and false

negatives [TJTP20]. For metamorphic test selection, the more common NSGA-II

algorithm is used to obtain pareto-optimal cost-effective solutions to the problem.

Both evolutionary algorithms have yielded positive results for the problems where

we applied them. Several research publications have already demonstrated the

effectiveness of SBSE for solving CPS test generation, selection and prioritization

[MNBB16, AWM+17a, ANBS18, AWM+19], as well as for generating test oracles

[GGM+14, ZCH+14, ZZC+19, TJTP20, MPAF21].

� Implementation of generic CPS verification techniques and tooling is difficult. The

heterogeneous nature of CPSs leads to developers using different tool-chains and

environments to develop them. Matlab/Simulink is one of the most popular tools

for developing CPSs, since it is an environment which supports modelling physical

and software components [DVDBSR13, Mat22]. However, other CPS developers

might use a different modelling environment, such as Modelica [FPA+20, 216].

For our case studies, the Orona’s multi-elevator systems use the C programming

language for software development, and the domain-specific Elevate simulator to

model the physical components [Lim22]. On the other hand, the open-source ADS

uses Matlab/Simulink [Mat]. Implementing tools which can integrate with any of

these environments is not feasible, so most solutions are specific to an environment

(e.g. Matlab/Simulink [MNBB16]). In our case, the tools developed during this

thesis can be adapted for different systems, but require some manual work to adapt.

Even at a more conceptual level, some approaches, such as those based white-box

metrics like coverage, are not always applicable due to practical limitations (e.g.

can not generate instrumented code to measure coverage).
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10.3 Future Prospects

This section highlights the potential future work related to this thesis from three

different perspectives: Industry transfer, application of the proposed solutions in new

domains and further research avenues.

10.3.1 Industry Transfer

The research performed by the Engineering Faculty from the University of Mondragon

is industry oriented. The main motivating case study we use throughout the chapters

of this thesis is Orona’s multi-elevator system, which is an industrial CPS deployed

in many buildings throughout the world. Our collaboration with Orona has allowed

us to use their software in order to evaluate our proposed solutions, which we have

demonstrated that are effective in this context. The next logical step is to transfer these

solutions to Orona for their eventual adoption in their development process. Many

of these solutions have been or are being integrated within the Adeptness project

[ade], through which they will be transferred to the industrial partners of the project:

Orona (elevation) and Bombardier Transportation (railway). Still, further work on

tool support needs to be done in order to encourage a wider industrial adoption of our

proposed solutions.

10.3.2 Application in New Domains

The solutions proposed in this dissertation are generic for any type of CPSs, and

particularly suitable for systems where performance or QoS metrics are relevant.

However, most of our evaluation is centered around a single industrial system from

the elevation domain, with an additional open-source ADS used in one of the chapters.

In the future, our solutions will have to be evaluated in CPSs from different domains

in order to assess their generalizability. We foresee that some adjustments will have

to be made to our methods in order to accommodate new domains, and more general

lessons will be learned from this exercise.

10.3.3 Further Research

Some of the contributions from this dissertation lead to research avenues that have not

been explored yet.

Regarding the DevOps architecture we defined, future work will include defining

new subsystems and evaluating them. The MT techniques developed in this thesis are

also being integrated into this architecture, and will be transferred to the industry in this
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context through the Adeptness project [ade]. As mentioned in the limitations section,

most of our contributions have been validated with either one (DevOps architecture

and MT) or two (DevOps requirements taxonomy) industrial case studies, and the cost

and effectiveness of our approaches in the context of CPSs from other domains still

has to be investigated.

As for the approaches to define MRs, further research needs to be done on how

useful the PV pattern we have proposed is for defining new MRs for other CPSs.

Similar research on performance metamorphic testing [STDRC17, STDRC18] is

being done on various types of systems [CCC+07, JJB+19, BBSB20], but the domain

of CPSs remains largely unexplored in this regard. For our automated solution,

extensions to augment the expressiveness of the tool and new strategies to increase

the efficiency of the process are being actively developed and evaluated. When such

extensions are defined, the increased search-space and the resulting high computational

cost will be major concerns to address. Another research avenue for the automatically

generated MRs would be assessing their understandability, and possibly developing

methods to make these MRs simpler. This assessment should ideally involve a human

study with engineers from an industrial case study, so as to evaluate how easy the

generated MRs really are to interpret in a real scenario.

The empirical results we present throughout Part III represent a lower bound of the

cost-effectiveness of MT, as we use randomly generated test suites in our experiments.

The practical effectiveness of MT also needs to be assessed in combination with more

effective test case generation, selection, or prioritization techniques [GB03, BS11,

CCL+12, DGZ13], including our metamorphic test selection approach. On the topic

of practical usefulness, our work does not yet address the process after a metamorphic

test failure is found, i.e., fault localization [WGL+16]. Some approaches based on

metamorphic slices have already been proposed [XWCX13], but their usefulness in a

real-world CPS use case has not been evaluated yet.

Finally, our metamorphic test selection contribution resulted in the conclusion that

domain-specific objective functions are the most effective, but no general guidelines

on which type of properties should be used as objective functions were derived.

Answering that question would require evaluating our approach on more case studies,

until some general conclusions can be drawn on how to select good objective functions.

Furthermore, the effectiveness of white-box fitness functions, such as code coverage,

has also not been evaluated in our work.
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